WorldWideScience

Sample records for climate change scenario

  1. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  2. Climate change and future scenarios

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander; Krupková, Lenka; Marek, Michal V.

    Volume 1. 1. Brno: Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i, 2015 - (Urban, O.; Klem, K.), s. 8-24 ISBN 978-80-87902-14-1 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : climate change * global climate change * ecosystems * tipping points * adaptation * mitigation * complexity Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. Climate change scenarios for Canada's national parks : a users manual

    International Nuclear Information System (INIS)

    A screening level impact assessment has shown that the implications of climate change for Canada's national parks are considerable. Climate change scenarios will be an important component in examining the potential climate change impacts and the implications of adaptation strategies. Most climate change scenarios are based on vulnerability, impact and adaptation research. This user's manual describes the development of 3 types of climate change scenarios including scenarios from global climate models (GCMs), bioclimate scenarios and daily scenarios for use by Parks Canada. The manual offers advice to first-time climate change scenario users in choosing and interpreting climate change, bioclimate and daily scenarios. It also addresses the theoretical and practical foundations of each climate scenario and shows how to access data regarding the various scenarios. Hands-on exercises are included as an interpretive aid. 20 refs., 4 tabs., 19 figs

  4. Socio-economic Scenario Development for Climate Change Analysis

    OpenAIRE

    KRIEGLER Elmar; O'Neill, Brian-C; Hallegatte, Stéphane; Kram, Tom; Moss, Richard-H; Lempert, Robert; Wilbanks, Thomas J

    2010-01-01

    Socio-economic scenarios constitute an important tool for exploring the long-term consequences of anthropogenic climate change and available response options. They have been applied for different purposes and to a different degree in various areas of climate change analysis, typically in combination with projections of future climate change. Integrated assessment modeling (IAM) has used them to develop greenhouse gas (GHG) emissions scenarios for the 21st century and to investigate strategies...

  5. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  6. A New Scenario Framework for Climate Change Research

    OpenAIRE

    van Vuuren, Detlef P.; KRIEGLER Elmar; O’Neill, Brian C.; Kristie L. Ebi; Riahi, Keywan

    2014-01-01

    This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different adaptation and mitigation strategies (in terms of their costs, risks and other consequences) and the possible trade-offs and synergies. The two main axes of the matrix are: 1) the level of radiative ...

  7. A new scenario framework for Climate Change Research: scenario matrix architecture

    NARCIS (Netherlands)

    van Vuuren, D.P.; Kriegler, E.; O'Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; Winkler, H.

    2014-01-01

    This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different ad

  8. Infectious disease, development, and climate change, A scenario analysis

    OpenAIRE

    Tol, R.S.J.; Ebi, K L; Yohe, G. W.

    2007-01-01

    We study the effects of development and climate change on infectious disease in Sub-Saharan Africa. Infant mortality and infectious disease are close related, but there are better data for the former. In an international cross-section, per capita income, literacy, and absolute poverty significantly affect infant mortality. We use scenarios of these three determinants, and of climate change to project the future incidence of malaria, assuming it to change proportionally to infant mortality. Ma...

  9. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  10. Modelling precipitation extremes in climate change scenarios

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Gaál, Ladislav; Beranová, Romana; Plavcová, Eva

    Patras: University of Patras, 2010 - (Argiriou, A.; Kazantzidis, A.), s. 833-838 ISBN 978-960-99254-0-2. [International Conference of Meteorology, Climatology and Atmospheric Physics (COMECAP2010) /10./. Patras (GR), 25.05.2010-28.05.2010] R&D Projects: GA AV ČR KJB300420801 Grant ostatní: ENSEMBLES(XE) 505539 Institutional research plan: CEZ:AV0Z30420517 Keywords : precipitation extremes * region-of-influence method * regional climate models Subject RIV: DG - Athmosphere Sciences, Meteorology

  11. Possible climate change over Eurasia under different emission scenarios

    Science.gov (United States)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  12. Assessement of user needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  13. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  14. Overview of a new scenario framework for climate change research

    Science.gov (United States)

    Ebi, K. L.

    2013-12-01

    The scientific community is developing new integrated global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes; the risks these could pose to human and natural systems, particularly how these changes could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce the risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship with sustainable development. Developing new scenarios for use in impacts, adaptation, and mitigation research requires more than emissions of greenhouse gases and resulting climate change. Scenarios also require assumptions about socioeconomic development, including a narrative, and qualitative and quantitative assumptions about development patterns. An insight recently gained is that the magnitude and extent of greenhouse gas emissions is relatively independent of demographic and socioeconomic development; that is, multiple demographic and socioeconomic development pathways can lead to any particular emission scenario. A relatively wealthy world with high population density could have low greenhouse gas emissions because of policies that encourage energy efficiency and sufficient low emission technology. The opposite also is plausible. Therefore, demographic and socioeconomic development pathways can be described separately from the Representative Concentration Pathways and then combined using a matrix architecture into a broader range of scenarios than was possible with the SRES. Shared Socioeconomic Pathways (SSPs) define the state of human and natural societies at a macro scale. To encompass a wide range of possible development pathways, five SSPs are defined along two axes describing worlds with increasing socioeconomic challenges to mitigation (y-axis) and adaptation (x

  15. Long-range scenarios for climate change. Policy analysis. Proceedings

    International Nuclear Information System (INIS)

    Scenarios are conceivable future states of affairs given certain assumptions about the present and the course of events in the intervening period. They are particularly useful for investigating uncertainty and its consequences for decision making. Scenarios explicitly recognize that our ability to forecast the future course of events is very limited. Accordingly they identify the key areas of uncertainty and look at the consequences of different outcomes in those key areas. From the wide-ranging discussion held at the workshop, the criteria and principles listed below were developed to guide the process of scenario building in the particular context of climate change policy analysis. Such criteria should also help to avoid the inappropriate use of scenarios by policy makers and others. (author)

  16. A hybrid approach to incorporating climate change and variability into climate scenario for impact assessments

    OpenAIRE

    Gebretsadik, Yohannes; Strzepek, Kenneth; Schlosser, C. Adam

    2014-01-01

    Traditional 'delta-change' approach of scenario generation for climate change impact assessment to water resources strongly depends on the selected base-case observed historical climate conditions that the climate shocks are to be super-imposed. This method disregards the combined effect of climate change and the inherent hydro-climatological variability in the system. Here we demonstrated a hybrid uncertainty approach in which uncertainties in historical climate variability are combined with...

  17. Operating Water Resources Systems Under Climate Change Scenarios

    Science.gov (United States)

    Ahmad, S.

    2002-12-01

    sustainable management of water resources. The decision support system helps in analyzing the impacts of different reservoir operation scenarios, under changing climate conditions, by exploring multiple- what-if- scenarios. Canadian study areas and data sets are used for the research. However, the proposed approach provides a general framework that can be used in other parts of the world.

  18. A new scenario framework for Climate Change Research: Scenario matrix architecture

    Energy Technology Data Exchange (ETDEWEB)

    Van Vuuren, Detlef; Kriegler, Elmar; O' Neill, Brian; Ebi, Kristie L.; Riahi, Keywan; Carter, Tim; Edmonds, James A.; Hallegatte, Stephane; Kram, Tom; Mathur, Ritu; Winkler, Harald

    2014-02-01

    In this paper, we present the scenario matrix architecture as part of the new scenario framework for climate change research. The matrix architecture focuses on a key question of current climate research, namely the identification of trade-offs and synergies (in terms of risks, costs and other consequences) of different adaptation and mitigation strategies. The framework has two main axes: 1) the level of forcing (as represented by the RCPs) and 2) different socio-economic reference pathways. The matrix can be used as a tool to guide new scenario development and analytical analysis. It can also be used as a heuristic tool for classifying new and existing scenarios for assessment. Key elements of the architecture, in particular the shared socio-economic reference pathways and the shared policy assumptions, are elaborated in other papers in this special issue.

  19. Forest associations and global climate change - current climatic conditions; Forest associations and global climate change - CCCM climatic scenario; Forest associations and global climate change - GISS climatic scenario; Forest associations and global climate change - dT1 climatic scenario; 1 : 1 000 000

    International Nuclear Information System (INIS)

    Bioclimatic areas of wood species represent the areas of natural spreading of wood species as determined by the threshold values of air temperature by climatic amplitudes established for the individual wood species. Establishment of climatic amplitudes of the individual wood species in Slovakia was based on the existing studies, which analysed the results of natural spreading of wood species in Slovakia in relation to the vertical climatic changes. The presented bioclimatic areas are assessed for the following conditions (table): · Tn contemporary climate; · CCCM (Canadian Climate Center Model) climatic scenario; · GISS (Goddard Institute for Space Studies) climatic scenario; · dT1 (National Climatic Programme) climatic scenario. (authors)

  20. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  1. The development of climatic scenarios for assessing impacts of climate change

    International Nuclear Information System (INIS)

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  2. Energy savings in drastic climate change policy scenarios

    International Nuclear Information System (INIS)

    This paper reports a climate change policy scenario compatible with long-term sustainable objectives set at EU level (6th Environment Action Plan). By setting ambitious targets for GHG emissions reduction by 2030, this normative scenario relies on market-based instruments and flexible mechanisms. The integrated policy that is simulated (i.e. addressing energy, transport, agriculture and environmental impacts) constitutes a key outlook for the next 5-year report of the European Environment Agency (EEA). This scenario highlights what it would take to drastically curb EU GHG emissions and how much it might cost. The findings show that such a 'deep reduction' climate policy could work as a powerful catalyst for (1) substantial energy savings, and (2) promoting sustainable energy systems in the long term. The implications of this policy lever on the energy system are many-fold indeed, e.g. a substantial limitation of total energy demand or significant shifts towards energy and environment-friendly technologies on the supply side. Clear and transparent price signals, which are associated with market-based instruments, appear to be a key factor ensuring sufficient visibility for capital investment in energy efficient and environment-friendly options. Finally it is suggested that market-based policy options, which are prone to lead to win-win situations and are of particular interest from an integrated policy-making perspective, would also significantly benefit from an enhanced energy policy framework

  3. Arctic Climate Change Analysed By Two 30-year Scenario Regional Climate Model Runs

    Science.gov (United States)

    Kiilsholm, S.; Christensen, J. H.

    High-resolution climate change simulations for an area covering the entire Arctic have been conducted with the regional climate model (RCM) HIRHAM. The emission sce- narios used were the IPCC SRES1 marker scenarios A2 and B2. Three 30-year time slice experiments were conducted with HIRHAM for periods representing present-day (1961-1990) and the future (2071-2100) in the two scenarios. Changes of the climate between these two periods will be presented with special emphasize on the climate of Greenland.

  4. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  5. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs. PMID:26429363

  6. SITE-94. The central scenario for SITE-94: A climate change scenario

    International Nuclear Information System (INIS)

    The central scenario includes the following main components: a deterministic description of the most probable climatic state for Sweden (with special ref. to the Aespoe area) for the next c. 120,000 years, a description of the likely nature of the surface and geological environment in the area at each stage of the climate sequence selected, and quantitative information on how these changes might affect the disposal system. The climate models suggest glacial maxima at c. 5, 20, 60 and 100 thousand years from now. The Aespoe region is predicted to be significantly affected by the latter three glacial episodes, with the ice sheet reaching and covering the area during the latter two episodes (by up to c 2200m and 1200m thickness of ice, resp.). Permafrost thicknesses over the next 120,000 years have been calculated. Assumptions, estimates and alternatives to the prescribed climate evolution are discussed. Following definition of a realistic, albeit non-unique, climate sequence, the objective of scenario development is to provide an indicator of the physical, chemical and hydrogeological conditions at the front of and beneath the advancing and retreating ice sheets, with the aim of identifying critical aspects for Performance Assessment modelling. The effect of various factors, such as ice loading, development of permafrost, temperature changes and sea level changes are considered in terms of their impact on hydrogeology, groundwater chemistry, rock stress and surface environments. 183 refs

  7. SITE-94. The central scenario for SITE-94: A climate change scenario

    Energy Technology Data Exchange (ETDEWEB)

    King-Clayton, L.M.; Chapman, N.A. [QuantiSci Ltd, Melton Mowbray (United Kingdom); Kautsky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Svensson, N.O. [Lund Univ. (Sweden). Dept. of Quaternary Geology; Marsily, G. de [Univ. VI Paris (France); Ledoux, E. [Ecole Nationale Superieure des Mines, 77 - Fontainebleau (France)

    1995-12-01

    The central scenario includes the following main components: a deterministic description of the most probable climatic state for Sweden (with special ref. to the Aespoe area) for the next c. 120,000 years, a description of the likely nature of the surface and geological environment in the area at each stage of the climate sequence selected, and quantitative information on how these changes might affect the disposal system. The climate models suggest glacial maxima at c. 5, 20, 60 and 100 thousand years from now. The Aespoe region is predicted to be significantly affected by the latter three glacial episodes, with the ice sheet reaching and covering the area during the latter two episodes (by up to c 2200m and 1200m thickness of ice, resp.). Permafrost thicknesses over the next 120,000 years have been calculated. Assumptions, estimates and alternatives to the prescribed climate evolution are discussed. Following definition of a realistic, albeit non-unique, climate sequence, the objective of scenario development is to provide an indicator of the physical, chemical and hydrogeological conditions at the front of and beneath the advancing and retreating ice sheets, with the aim of identifying critical aspects for Performance Assessment modelling. The effect of various factors, such as ice loading, development of permafrost, temperature changes and sea level changes are considered in terms of their impact on hydrogeology, groundwater chemistry, rock stress and surface environments. 183 refs.

  8. Beyond 'dangerous' climate change: emission scenarios for a new world.

    Science.gov (United States)

    Anderson, Kevin; Bows, Alice

    2011-01-13

    The Copenhagen Accord reiterates the international community's commitment to 'hold the increase in global temperature below 2 degrees Celsius'. Yet its preferred focus on global emission peak dates and longer-term reduction targets, without recourse to cumulative emission budgets, belies seriously the scale and scope of mitigation necessary to meet such a commitment. Moreover, the pivotal importance of emissions from non-Annex 1 nations in shaping available space for Annex 1 emission pathways received, and continues to receive, little attention. Building on previous studies, this paper uses a cumulative emissions framing, broken down to Annex 1 and non-Annex 1 nations, to understand the implications of rapid emission growth in nations such as China and India, for mitigation rates elsewhere. The analysis suggests that despite high-level statements to the contrary, there is now little to no chance of maintaining the global mean surface temperature at or below 2°C. Moreover, the impacts associated with 2°C have been revised upwards, sufficiently so that 2°C now more appropriately represents the threshold between 'dangerous' and 'extremely dangerous' climate change. Ultimately, the science of climate change allied with the emission scenarios for Annex 1 and non-Annex 1 nations suggests a radically different framing of the mitigation and adaptation challenge from that accompanying many other analyses, particularly those directly informing policy. PMID:21115511

  9. Acadia National Park Climate Change Scenario Planning Workshop summary

    Science.gov (United States)

    Star, Jonathan; Fisichelli, Nicholas; Bryan, Alexander; Babson, Amanda; Cole-Will, Rebecca; Miller-Rushing, Abraham J.

    2016-01-01

    This report summarizes outcomes from a two-day scenario planning workshop for Acadia National Park, Maine (ACAD). The primary objective of the workshop was to help ACAD senior leadership make management and planning decisions based on up-to-date climate science and assessments of future uncertainty. The workshop was also designed as a training program, helping build participants' capabilities to develop and use scenarios. The details of the workshop are given in later sections. The climate scenarios presented here are based on published global climate model output. The scenario implications for resources and management decisions are based on expert knowledge distilled through scientist-manager interaction during workgroup break-out sessions at the workshop. Thus, the descriptions below are from these small-group discussions in a workshop setting and should not be taken as vetted research statements of responses to the climate scenarios, but rather as insights and examinations of possible futures (Martin et al. 2011, McBride et al. 2012).

  10. Review of Climate Scenarios

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Concept and application requirements of climate scenarios were introduced briefly,meanwhile,progresses on theoretical and applied aspects of climate scenarios creation techniques were discussed systematically.Two methods on predicted regional climate changing scenarios,elevating the spatial resolution output and downscaling method,could retrieve the insufficiencies respectively.And the statistical-dynamical downscaling method will be an important developing trend in the developing of downscaling techniques.

  11. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N;

    2012-01-01

    illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...... in this paper, applied to relative humidity, but it could be adopted to other variables if needed....

  12. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  13. Preparing local climate change scenarios for the Netherlands using resampling of climate model output

    International Nuclear Information System (INIS)

    A method to prepare a set of four climate scenarios for the Netherlands is presented. These scenarios for climate change in 2050 and 2085 (compared to present-day) are intended for general use in climate change adaptation in the Netherlands. An ensemble of eight simulations with the global model EC-Earth and the regional climate model RACMO2 (run at 12 km resolution) is used. For each scenario time horizon, two target values of the global mean temperature rise are chosen based on the spread in the CMIP5 simulations. Next, the corresponding time periods in the EC-Earth/RACMO2 simulations are selected in which these target values of the global temperature rise are reached. The model output for these periods is then resampled using blocks of 5 yr periods. The rationale of resampling is that natural variations in the EC-Earth/RACMO2 ensemble are used to represent (part of the) uncertainty in the CMIP5 projections. Samples are then chosen with the aim of reconstructing the spread in seasonal temperature and precipitation changes in CMIP5 for the Netherlands. These selected samples form the basis of the scenarios. The resulting four scenarios represent 50–80% of the CMIP5 spread for summer and winter changes in seasonal means as well as a limited number of monthly statistics (warm, cold, wet and dry months). The strong point of the method—also in relation to the previous set of the climate scenarios for the Netherlands issued in 2006—is that it preserves nearly all physical inter-variable consistencies as they exist in the original model output in both space and time. (paper)

  14. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies

    Science.gov (United States)

    Qian, Budong; De Jong, Reinder; Huffman, Ted; Wang, Hong; Yang, Jingyi

    2016-02-01

    The potential impact of the rise in atmospheric CO2 concentration and associated climatic change on agricultural productivity needs assessment. Projecting crop yield changes under climate change requires future climate scenarios as input to crop yield models. It is widely accepted that downscaling of climate data is required to bridge the gap between large-scale global climate models (GCMs) and climate change impact models, such as crop growth models. Regional climate models (RCMs) are often used to dynamically downscale GCM simulations to smaller regional scales, while statistical methods, such as regression-based transfer functions and stochastic weather generators, are also widely employed to develop future climate scenarios for this purpose. The methods used in developing future climate scenarios often contribute to uncertainties in the projected impacts of climate change, in addition to those associated with GCMs and forcing scenarios. We employed climate scenarios from the state-of-the-art RCMs in the North American Regional Climate Change Assessment Program (NARCCAP), along with climate scenarios generated by a stochastic weather generator based on climate change simulations performed by their driving GCMs, to drive the CERES-Wheat model in DSSAT to project changes in spring wheat yield on the Canadian Prairies. The future time horizon of 2041-2070 and the baseline period of 1971-2000 were considered. The projected changes showed an average increase ranging from 26 to 37 % of the baseline yield when the effects of the elevated CO2 concentration were simulated, but only up to 15 % if the elevated CO2 effect was excluded. In addition to their potential use in climate change impact assessment, the results also demonstrated that the simulated crop yield changes were fairly consistent whether future climate scenarios were derived from RCMs or they were generated by a stochastic weather generator based on the simulated climate change from the GCMs that were used

  15. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO. Compa

  16. Climate change scenarios and key climate indices in the Swiss Alpine region

    Science.gov (United States)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  17. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover; Nathan J. Mantua; Littell, Jeremy; Michael A. Alexander; Michelle M. McClure; Janet Nye

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  18. The future of scenarios: issues in developing new climate change scenarios

    International Nuclear Information System (INIS)

    In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.

  19. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    Science.gov (United States)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the

  20. Economic impacts of climate change. Flooding and salinity in scenarios, models and cases

    International Nuclear Information System (INIS)

    In this report, climatic and economic scenarios are combined and future risks are calculated for the consequences of climate change, such as a rising sea level, flooding, extreme draughts and salinity. The calculation of these economic effects of climate change are based on climate scenarios of the KNMI (Royal Dutch Meteorological Institute), TNO's RAEM model (Spatial General Economic Model), the high tide information system of the Dutch Ministry of Waterways and Public Works and the Space scanner of the Environmental Assessment Agency. Next to information on scenarios and models, this report also addresses damage calculations of flooding near Lopik and Ter Heide. The report ends with policy recommendations for adaptation policy. [mk

  1. Transient scenarios for robust climate change adaptation illustrated for water management in The Netherlands

    Science.gov (United States)

    Haasnoot, M.; Schellekens, J.; Beersma, J. J.; Middelkoop, H.; Kwadijk, J. C. J.

    2015-10-01

    Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for local or regional decision making on climate adaptation are static ‘endpoint’ projections. This paper describes the development and use of transient (time-dependent) scenarios by means of a case on water management in the Netherlands. Relevant boundary conditions (sea level, precipitation and evaporation) were constructed by generating an ensemble of synthetic time-series with a rainfall generator and a transient delta change method. Climate change impacted river flows were then generated with a hydrological simulation model for the Rhine basin. The transient scenarios were applied in model simulations and game experiments. We argue that there are at least three important assets of using transient scenarios for supporting robust climate adaptation: (1) raise awareness about (a) the implications of climate variability and climate change for decision making and (b) the difficulty of finding proof of climate change in relevant variables for water management; (2) assessment of when to adapt by identifying adaptation tipping points which can then be used to explore adaptation pathways, and (3) identification of triggers for climate adaptation.

  2. Predicting China’s Land-use Change and Soil Carbon Sequestration under Alternative Climate Change Scenarios

    OpenAIRE

    Li, Man; Wu, Junjie

    2010-01-01

    This paper examines and predicts the effects of climate change and climate extremes on China’s land use conversion and soil carbon sequestration under two alternative climate change scenarios. It intends to investigate the following three questions. 1) How did climate factors affect land-use conversion in China from 1988 to 2000 and what was the relative importance of these factors? 2) How would the predicted future climate change pattern affect land-use choice under alternative climate chang...

  3. Diminished Wastewater Treatment: Evaluation of Septic System Performance Under a Climate Change Scenario

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2015-12-01

    The effects of climate change are expected to reduce the ability of soil-based onsite wastewater treatment systems (OWTS), to treat domestic wastewater. In the northeastern U.S., the projected increase in atmospheric temperature, elevation of water tables from rising sea levels, and heightened precipitation will reduce the volume of unsaturated soil and oxygen available for treatment. Incomplete removal of contaminants may lead to transport of pathogens, nutrients, and biochemical oxygen demand (BOD) to groundwater, increasing the risk to public health and likelihood of eutrophying aquatic ecosystems. Advanced OWTS, which include pre-treatment steps and provide unsaturated drainfields of greater volume relative to conventional OWTS, are expected to be more resilient to climate change. We used intact soil mesocosms to quantify water quality functions for two advanced shallow narrow drainfield types and a conventional drainfield under a current climate scenario and a moderate climate change scenario of 30 cm rise in water table and 5°C increase in soil temperature. While no fecal coliform bacteria (FCB) was released under the current climate scenario, up to 109 CFU FCB/mL (conventional) and up to 20 CFU FCB/mL (shallow narrow) were released under the climate change scenario. Total P removal rates dropped from 100% to 54% (conventional) and 71% (shallow narrow) under the climate change scenario. Total N removal averaged 17% under both climate scenarios in the conventional, but dropped from 5.4% to 0% in the shallow narrow under the climate change scenario, with additional leaching of N in excess of inputs indicating release of previously held N. No significant difference was observed between scenarios for BOD removal. The initial data indicate that while advanced OWTS retain more function under the climate change scenario, all three drainfield types experience some diminished treatment capacity.

  4. The role of internal climate variability for interpreting climate change scenarios

    Science.gov (United States)

    Maraun, Douglas

    2013-04-01

    When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with

  5. Effort sharing in ambitious, global climate change mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [TKK Helsinki University of Technology, Espoo (Finland); Soimakallio, Sampo; Syri, Sanna; Savolainen, Ilkka [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); Moltmann, Sara; Hoehne, Niklas [Ecofys Germany GmbH, Cologne (Germany)

    2010-04-15

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either or from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system. (author)

  6. Forecasting the Future Risk of Barmah Forest Virus Disease under Climate Change Scenarios in Queensland, Australia

    OpenAIRE

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal reg...

  7. Temperature and extreme rainfalls on France in a climatic change scenario

    International Nuclear Information System (INIS)

    Impact of an anthropogenic climate change scenario on the frequency distribution of temperature and precipitation over France is studied with a numerical simulation calibrated with observed daily data from the synoptic network. (author)

  8. Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Tuan B. Le

    2015-07-01

    Full Text Available Recent studies by the United Nations Environment Programme (UNEP and the Intergovernmental Panel on Climate Change (IPCC indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to project the impact of climate change on the seasonal availability of surface water of the Huong River in Central Vietnam in the twenty-first century through hydrologic simulations driven by climate model projections. To calibrate and validate the hydrologic model, the model was forced by the rain gage-based gridded Asian Precipitation–Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE V1003R1 Monsoon Asia precipitation data along with observed temperature, humidity, wind speed, and solar radiation data from local weather stations. The simulated discharge was compared to observations for the period from 1951 until present. Three Global Climate Models (GCMs ECHAM5-OM, HadCM3 and GFDL-CM2.1 integrated into Long Ashton Research Station-Weather Generator (LARS-WG stochastic weather generator were run for three IPCC–Special Report on Emissions Scenarios (IPCC-SRES emissions scenarios A1B, A2, and B1 to simulate future climate conditions. The hydrologic model simulated the Huong River discharge for each IPCC-SRES scenario. Simulation results under the three GCMs generally indicate an increase in summer and fall river discharge during the twenty-first century in A2 and B1 scenarios. For A1B scenario, HadCM3 and GFDL-CM2.1 models project a decrease in river discharge from present to the 2051–2080 period and then increase until the 2071–2100 period while ECHAM5-OM model produces opposite projection that discharge will increase until the 2051–2080 period and then decrease for the rest of the century. Water management

  9. Estimation of Crop Coefficient of Corn (Kccorn) under Climate Change Scenarios Using Data Mining Technique

    OpenAIRE

    Kampanad Bhaktikul; Rommanee Anujit; Jongdee To-im

    2012-01-01

    The main objectives of this study are to determine the crop coefficient of corn (Kccorn) using data mining technique under climate change scenarios, and to develop the guidelines for future water management based on climate change scenarios. Variables including date, maximum temperature, minimum temperature, precipitation, humidity, wind speed, and solar radiation from seven meteorological stations during 1991 to 2000 were used. Cross-Industry Standard Process for Data Mining (CRISP-DM) was a...

  10. Hydrological Response to Climate Change over the Blue Nile Basin Distributed hydrological modeling based on surrogate climate change scenarios

    Science.gov (United States)

    Berhane, F. G.; Anyah, R. O.

    2010-12-01

    The program Soil and Water Assessment Tool (SWAT2009) model has been applied to the Blue Nile Basin to study the hydrological response to surrogate climate changes over the Blue Nile Basin (Ethiopia) by downscaling gridded weather data. The specific objectives of the study include (i) examining the performance of the SWAT model in simulating hydrology-climate interactions and feedbacks within the entire Blue Nile Basin, and (ii) investigating the response of hydrological variables to surrogate climate changes. Monthly weather data from the Climate Research Unit (CRU) are converted to daily values as input into the SWAT using Monthly to Daily Weather Converter (MODAWEC). Using the program SUFI-2 (Sequential Uncertainty Fitting Algorithm), data from 1979 to 1983 are applied for sensitivity analysis and calibration (P-factor = 90%, R-factor =0.7, R2 =0.93 and NS=0.93) and subsequently to validate hindcasts over the period 1984-1989 (R2 =0.92 and NS=0.92). The period from 1960-2000 was used as baseline and has been used to determine the changes and the effect of the surrogate climate changes over the Blue Nile Basin. Overall, our surrogate climate change based simulations indicate the hydrology of the Blue Nile catchment is very sensitive to potential climate change with 100%, 34% and 51% increase to the surface runoff, lateral flow and water yield respectively for the A2 scenario surrogate. Key Words: SWAT, MODAWEC, Blue Nile Basin, SUFI-2, climate change, hydrological modeling, CRU

  11. A new statistical tool to predict phenology under climate change scenarios

    NARCIS (Netherlands)

    Gienapp, P.; Hemerik, L.; Visser, M.E.

    2005-01-01

    Climate change will likely affect the phenology of trophic levels differently and thereby disrupt the phenological synchrony between predators and prey. To predict this disruption of the synchrony under different climate change scenarios, good descriptive models for the phenology of the different sp

  12. ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan

    OpenAIRE

    Iizumi, Toshichika; Semenov, Mikhail A.; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2012-01-01

    We developed a dataset of local-scale daily climate change scenarios for Japan (called ELPIS-JP) using the stochastic weather generators (WGs) LARS-WG and, in part, WXGEN. The ELPIS-JP dataset is based on the observed (or estimated) daily weather data for seven climatic variables (daily mean, maximum and minimum temperatures; precipitation; solar radiation; relative humidity; and wind speed) at 938 sites in Japan and climate projections from the multi-model ensemble of global climate models (...

  13. PREDICTION OF CHANGES IN VEGETATION DISTRIBUTION UNDER CLIMATE CHANGE SCENARIOS USING MODIS DATASET

    Directory of Open Access Journals (Sweden)

    H. Hirayama

    2016-06-01

    Full Text Available The distribution of vegetation is expected to change under the influence of climate change. This study utilizes vegetation maps derived from Terra/MODIS data to generate a model of current climate conditions suitable to beech-dominated deciduous forests, which are the typical vegetation of Japan’s cool temperate zone. This model will then be coordinated with future climate change scenarios to predict the future distribution of beech forests. The model was developed by using the presence or absence of beech forest as the dependent variable. Four climatic variables; mean minimum daily temperature of the coldest month (TMC,warmth index (WI, winter precipitation (PRW and summer precipitation (PRS: and five geophysical variables; topography (TOPO, surface geology (GEOL, soil (SOIL, slope aspect (ASP, and inclination (INCL; were adopted as independent variables. Previous vegetation distribution studies used point data derived from field surveys. The remote sensing data utilized in this study, however, should permit collecting of greater amounts of data, and also frequent updating of data and distribution maps. These results will hopefully show that use of remote sensing data can provide new insights into our understanding of how vegetation distribution will be influenced by climate change.

  14. Prediction of Changes in Vegetation Distribution Under Climate Change Scenarios Using Modis Dataset

    Science.gov (United States)

    Hirayama, Hidetake; Tomita, Mizuki; Hara, Keitarou

    2016-06-01

    The distribution of vegetation is expected to change under the influence of climate change. This study utilizes vegetation maps derived from Terra/MODIS data to generate a model of current climate conditions suitable to beech-dominated deciduous forests, which are the typical vegetation of Japan's cool temperate zone. This model will then be coordinated with future climate change scenarios to predict the future distribution of beech forests. The model was developed by using the presence or absence of beech forest as the dependent variable. Four climatic variables; mean minimum daily temperature of the coldest month (TMC) warmth index (WI) winter precipitation (PRW) and summer precipitation (PRS): and five geophysical variables; topography (TOPO), surface geology (GEOL), soil (SOIL), slope aspect (ASP), and inclination (INCL); were adopted as independent variables. Previous vegetation distribution studies used point data derived from field surveys. The remote sensing data utilized in this study, however, should permit collecting of greater amounts of data, and also frequent updating of data and distribution maps. These results will hopefully show that use of remote sensing data can provide new insights into our understanding of how vegetation distribution will be influenced by climate change.

  15. Regional climate change scenarios over South Asia in the CMIP5 coupled climate model simulations

    Science.gov (United States)

    Prasanna, Venkatraman

    2015-10-01

    This paper evaluates the performance of a suite of state-of-art coupled atmosphere-ocean general circulation models (AOGCMs) in their representation of regional characteristics of hydrological cycle and temperature over South Asia. Based on AOGCM experiments conducted for two types of future greenhouse gas emission scenarios (RCP4.5 and RCP8.5) extending up to the end of 21st century, scenarios of temperature and hydrological cycle are presented. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed hydrological cycle and also inter-model differences. The regional climate change scenarios of temperature ( T), atmospheric water balance components, precipitation, moisture convergence and evaporation ( P, C and E) up to the end of the 21st century based on CMIP5 modeling experiments conducted for (RCP4.5 and RCP8.5) indicate marked increase in both rainfall and temperature into the 21st century, particularly becoming conspicuous after the 2050s. The monsoon rainfall and atmospheric water balance changes under RCP4.5 and RCP8.5 scenarios are discussed in detail in this paper. Spatial patterns of rainfall change projections indicate maximum increase over South Asia in most of the models. Model simulations under scenarios of increased greenhouse gas concentrations suggests that the intensification of the hydrological cycle is driven mainly by the increased moisture convergence due to increase in the water holding capacity of the atmosphere in a warmer environment, the intensification of the hydrological cycle is greater for RCP8.5 compared to RCP4.5, also fewer models indicate increased variance of temperature and rainfall in a warmer environment. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative

  16. Development of water use scenarios as a tool for adaptation to climate change

    Directory of Open Access Journals (Sweden)

    R. Jacinto

    2013-06-01

    Full Text Available The project ADAPTACLIMA, promoted by EPAL, the largest Portuguese Water Supply Utility, aims to provide the company with an adaptation strategy in the medium and long term to reduce the vulnerability of its activities to climate change. We used the four scenarios (A1, A2, B1, B2 adopted in the Special Report Emissions Scenarios (SRES of the IPCC (Intergovernmental Panel on Climate Change to produce local scenarios of water use. Available population SRES for Portugal were downscaled to the study area using a linear approach. Local land use scenarios were produced using the following steps: (1 characterization of the present land use for each municipality of the study area using Corine Land Cover and adaptation of the CLC classes to those used in the SRES; (2 identification of recent tendencies in land use change for the study area; (3 identification of SRES tendencies for land use change in Europe; and (4 production of local scenarios of land use. Water use scenarios were derived considering both population and land use scenarios as well as scenarios of change in other parameters (technological developments, increases in efficiency, climate changes, or political and behavioural changes. The A2 scenario forecasts an increase in population (+16% in the study area while the other scenarios show a reduction in the resident population (−6 to 8%. All scenarios, but especially A1, show a reduction in agricultural area and an increase in urban area. Regardless of the scenario, water use will progressively be reduced until 2100. These reductions are mainly due to increased water use efficiency and the reduction of irrigated land. The results accord with several projects modelling water use at regional and global level.

  17. Decadal-Timescale Estuarine Geomorphic Change Under Future Scenarios of Climate and Sediment Supply

    OpenAIRE

    Ganju, Neil K.; Schoellhamer, David H

    2010-01-01

    Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day condi...

  18. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    Science.gov (United States)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are

  19. Simulating climate change scenarios using an improved K-nearest neighbor model

    Science.gov (United States)

    Sharif, Mohammed; Burn, Donald H.

    2006-06-01

    An improved weather-generating model that allows nearest neighbour resampling with perturbation of the historic data is applied to generate weather data based upon plausible climate scenarios. The intent is to create an ensemble of climate scenarios that can be used for the assessment of the vulnerability of a watershed to extreme events, including both floods and droughts. Analysis of the results clearly indicates that the model adequately simulated extreme unprecedented events for five different climate change scenarios. Based on the simulation results, the increasing precipitation scenario is identified as the critical scenario for the assessment of risks associated with the occurrence of floods in the basin. The increasing temperature scenario appears to be the critical scenario for the analysis of droughts in the basin. Frequency analysis was carried out to determine the impact of potential climatic change on the occurrence of storm depths of any given magnitude. A promising potential application of the model is in rainfall-runoff modelling where the storms depths could be related to the occurrence of extreme events in the basin. The proposed model, in conjunction with a rainfall-runoff model, has the potential of providing valuable aid in developing efficient management strategies for a watershed. The model produces spatially correlated data, which is crucial for accurate runoff estimation. Although the model is applied to the Upper Thames River Basin in the Canadian province of Ontario, it is generic and transportable to any other watershed with minimal changes.

  20. ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan.

    Science.gov (United States)

    Iizumi, Toshichika; Semenov, Mikhail A; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2012-03-13

    We developed a dataset of local-scale daily climate change scenarios for Japan (called ELPIS-JP) using the stochastic weather generators (WGs) LARS-WG and, in part, WXGEN. The ELPIS-JP dataset is based on the observed (or estimated) daily weather data for seven climatic variables (daily mean, maximum and minimum temperatures; precipitation; solar radiation; relative humidity; and wind speed) at 938 sites in Japan and climate projections from the multi-model ensemble of global climate models (GCMs) used in the coupled model intercomparison project (CMIP3) and multi-model ensemble of regional climate models form the Japanese downscaling project (called S-5-3). The capability of the WGs to reproduce the statistical features of the observed data for the period 1981-2000 is assessed using several statistical tests and quantile-quantile plots. Overall performance of the WGs was good. The ELPIS-JP dataset consists of two types of daily data: (i) the transient scenarios throughout the twenty-first century using projections from 10 CMIP3 GCMs under three emission scenarios (A1B, A2 and B1) and (ii) the time-slice scenarios for the period 2081-2100 using projections from three S-5-3 regional climate models. The ELPIS-JP dataset is designed to be used in conjunction with process-based impact models (e.g. crop models) for assessment, not only the impacts of mean climate change but also the impacts of changes in climate variability, wet/dry spells and extreme events, as well as the uncertainty of future impacts associated with climate models and emission scenarios. The ELPIS-JP offers an excellent platform for probabilistic assessment of climate change impacts and potential adaptation at a local scale in Japan. PMID:22291226

  1. Quantifying Florida Bay Habitat Suitability for Fishes and Invertebrates Under Climate Change Scenarios

    Science.gov (United States)

    Kearney, Kelly A.; Butler, Mark; Glazer, Robert; Kelble, Christopher R.; Serafy, Joseph E.; Stabenau, Erik

    2015-04-01

    The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate ( Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

  2. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    Directory of Open Access Journals (Sweden)

    González Paula LM

    2009-07-01

    Full Text Available Abstract Background Oligoryzomys longicaudatus (colilargo is the rodent responsible for hantavirus pulmonary syndrome (HPS in Argentine Patagonia. In past decades (1967–1998, trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent

  3. MODELING REGIONAL ALTERNATIVE MANAGEMENT SCENARIOS WITH FUTURE CLIMATIC CHANGE INFLUENCE ACCOUNTING

    OpenAIRE

    Romanenko, Irina

    2008-01-01

    The methodology of construction of the alternative agricultural production scenarios at regional level includes profitability and feasibility analysis based on assessment the effect of global climate change on productivity parameters for the main agricultural crops, cost efficiency of crop growing and cattle breeding. To propose links between economic adaptation to climate change and carbon (organic C) stock management in agricultural ecosystems for use in developing long-term adoption strate...

  4. Using Maps of City Analogues to Display and Interpret Climate Change scenarios and their uncertainty

    International Nuclear Information System (INIS)

    We describe a method to represent the results of climate simulation models with analogues. An analogue to a city A is a city B whose climate today represents A's simulated future climate. Climates were characterized and compared non-parametrically, using the 30-years distribution of three indicators: Aridity Index, Heating Degree Days and Cooling Degree Days. Analogy was evaluated statistically with the two-samples Kolmogorov-Smirnov test, generalized to 3 dimensions. We looked at the climate of 12 European cities at the end of the century under an A2 climate change scenario. We used two datasets produced with high-resolution regional climate simulation models from the Hadley Center and Meteo France. Climate analogues were generally found southward of present locations, a clear warming trend even if much model and scenario uncertainty remains. Climate analogues provide an intuitive way to show the possible effects of climate change on urban areas, offering a holistic approach to think about how cities adapt to different climates. Evidence of its communication value comes from the reuse of our maps in teaching and in several European mass-media. (authors)

  5. Using the New Scenarios Framework to Inform Climate Change Adaptation Policy in Finland

    Science.gov (United States)

    Carter, T. R.

    2013-12-01

    In 2005, Finland was among the first countries in the world to develop a national climate change adaptation strategy (Marttila et al., 2005). This included a characterization of future changes in climate and socioeconomic conditions using scenarios based on the IPCC Special Report on Emissions Scenarios (SRES - IPCC, 2000). Following a government evaluation of the strategy, completion of a national adaptation research programme, and in light of the recent European Union adaptation strategy, the Finnish strategy is now under revision. As part of this revision process, the New Scenario Framework (Moss et al., 2010) is being used to guide the mapping of future conditions in Finland out to the end of the 21st century. Future Finnish climate is being analysed using the CMIP5 climate model simulations (Taylor et al., 2012), including downscaled information based on regional climate model projections in the EURO-CORDEX project (Vautard et al., 2013). All projections are forced by the Representative Concentration Pathways (RCPs - van Vuuren et al., 2011). Socioeconomic scenarios are also being developed by outlining alternative pathways that reflect national social, economic, environmental and planning goals. These are designed according to the Shared Socioeconomic Pathway (SSP) framework of challenges to adaptation and mitigation (Kriegler et al., 2012). Work is in progress to characterize these pathways, mainly qualitatively, for different sectors in Finland. Preliminary results of the conceptual scenario development phase will be presented in this session. These initial ideas will be exchanged with representatives of ministries, regional government and key stakeholder groups. The eventual form and number of scenarios that appear in the revised strategy will be determined following a formal review of the draft document to be prepared in 2014. Future work could include quantification of scenarios, possibly mapping them onto the specific SSP worlds. This would then provide

  6. Climate change driving forces. Nuclear energy and the latest IPCC emission scenarios

    International Nuclear Information System (INIS)

    How the world will develop over the next 100 years is riddled with uncertainties. Yet analysts can assess alternative developmental paths and diverse sets of driving forces to gain an image of the future - in fact a number of images, depending on assumptions they use. Over the past decades, the scientific and research community has devoted considerable attention to studying issues of climate change, and to modeling its possible future development, impact and ways to mitigate potential effects. The studies are complex, involving assessments of social, economic, and technological developments in diverse fields. In early 2000, the Intergovernmental Panel on Climate Change (IPCC) approved a Special Report on Emission Scenarios (SRES) for the period through 2100. It contains 40 scenarios, prepared with six computer models, for the world and its main regions, and focuses largely on the main greenhouse gases (GHGs) and sulphur dioxide. The scenarios are designed to provide a basis for assessments of climate change and its impact. The new scenarios are 'non-intervention' ones with regard to climate change - that is, they exclude measures to reduce greenhouse gas emissions. However, policies with respect to other environmental factors are included; this includes, for example, progress in sulphur abatement technologies in developing countries, which results in lower global sulphur dioxide emissions than in previous IPCC assessments. This article briefly reviews the latest IPCC emission scenarios and looks closely at the projected role of nuclear energy, which can provide a valuable long-term perspective for nuclear development. This perspective is especially useful since the possible 'nuclear futures' were modelled in the scenarios without taking into account considerations specifically related to climate change. Rather, the scenarios focused on technical and economic competition among energy supply options as the key driving force for determining the fuel mix in the energy

  7. WATER AVAILABILITY IN SOUTHERN PORTUGAL FOR DIFFERENT CLIMATE CHANGE SCENARIOS SUBJECTED TO BIAS CORRECTION

    Directory of Open Access Journals (Sweden)

    Sandra Mourato

    2014-01-01

    Full Text Available Regional climate models provided precipitation and temperature time series for control (1961–1990 and scenario (2071–2100 periods. At southern Portu gal, the climate models in the control period systematically present higher temp eratures and lower precipitation than the observations. Therefore, the direct inpu t of climate model data into hydrological models might result in more severe scenarios for future water availability. Three bias correction methods (Delta Change, Dire ct Forcing and Hybrid are analysed and their performances in water availability impac t studies are assessed. The Delta Change method assumes that the observed series variab ility is maintained in the scenario period and is corrected by the evolution predicted by the climate models. The Direct Forcing method maintains the scenario series variabi lity, which is corrected by the bias found in the control period, and the Hybrid method maintains the control model series variability, which is corrected by the bias found in the control period and by the evolution predicted by the climate models. To assess the climate impacts in the water resources expected for the scenario period, a physically based spatially distributed hydrological model, SHETRAN, is used for runoff pro jections in a southern Portugal basin. The annual and seasonal runoff shows a runoff d ecrease in the scenario period, increasing the water shor tage that is already experienc ed. The overall annual reduction varies between –80% and –35%. In general, the results show that the runoff reductions obtained with climate models corrected with the Delt a Change method are highest but with a narrow range that varies between –80% and –5 2%.

  8. Climate Change Impacts for the Conterminous USA. An Integrated Assessment. Part 1. Scenarios and Context

    International Nuclear Information System (INIS)

    As carbon dioxide and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how derivative changes in climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using twelve scenarios derived from General Circulation Model (GCM) projections to drive biophysical impact models. These scenarios are described in this paper. The scenarios are first put into the context of recent work on climate-change by the IPCC for the 21st century and span two levels of global-mean temperature change and three sets of spatial patterns of change derived from GCM results. In addition, the effect of either the presence or absence of a CO2 fertilization effect on vegetation is examined by using two levels of atmospheric CO2 concentration as a proxy variable. Results from three GCM experiments were used to produce different regional patterns of climate change. The three regional patterns for the conterminous United States range from: an increase in temperature above the global-mean level along with a significant decline in precipitation; temperature increases in line with the global-mean with an average increase in precipitation; and, with a sulfate aerosol effect added to in the same model, temperature increases that are lower than the global-mean. The resulting set of scenarios span a wide range of potential climate changes and allows examination of the relative importance of global-mean temperature change, regional climate patterns, aerosol cooling, and CO2 fertilization effects

  9. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    Science.gov (United States)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  10. Mediterranean climate modelling: variability and climate change scenarios; Modelisation climatique du Bassin mediterraneen: variabilite et scenarios de changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Somot, S

    2005-12-15

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  11. Risk perception: The social construction of spatial knowledge around climate change-related scenarios in Lima

    NARCIS (Netherlands)

    L. Miranda Sara; S. Jameson; K. Pfeffer; I. Baud

    2016-01-01

    Lima's environmental sustainability is threatened by increasing water scarcity, heavy rain events and limited attention for water vulnerability and climate change scenarios. In this paper we examine how knowledge construction and risk perception on water-related disaster risks and vulnerabilities af

  12. Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios

    OpenAIRE

    Tuan B. Le; Hatim O. Sharif

    2015-01-01

    Recent studies by the United Nations Environment Programme (UNEP) and the Intergovernmental Panel on Climate Change (IPCC) indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to project the impact of climate change on the seasonal availability of surface water of the Huong River ...

  13. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios

    Science.gov (United States)

    Adloff, Fanny; Somot, Samuel; Sevault, Florence; Jordà, Gabriel; Aznar, Roland; Déqué, Michel; Herrmann, Marine; Marcos, Marta; Dubois, Clotilde; Padorno, Elena; Alvarez-Fanjul, Enrique; Gomis, Damià

    2015-11-01

    The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air-sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961-2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001-2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air-sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070-2099 period compared to 1961-1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in

  14. Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario and climate model choice.

    Science.gov (United States)

    Ziter, Carly; Robinson, Emily A; Newman, Jonathan A

    2012-09-01

    Experimental studies of the impact of climatic change are hampered by their inability to consider multiple climate change scenarios and indeed often consider no more than simple climate sensitivity such as a uniform increase in temperature. Modelling efforts offer the ability to consider a much wider range of realistic climate projections and are therefore useful, in particular, for estimating the sensitivity of impact predictions to differences in geographical location, and choice of climate change scenario and climate model projections. In this study, we used well-established degree-day models to predict the voltinism of 13 agronomically important pests in California, USA. We ran these models using the projections from three Atmosphere-Ocean Coupled Global Circulation Models (AOCGCMs or GCMs), in conjunction with the SRES scenarios. We ran these for two locations representing northern and southern California. We did this for both the 2050s and 2090s. We used anova to partition the variation in the resulting voltinism among time period, climate change scenario, GCM and geographical location. For these 13 pest species, the choice of climate model explained an average of 42% of the total variation in voltinism, far more than did geographical location (33%), time period (17%) or scenario (1%). The remaining 7% of the variation was explained by various interactions, of which the location by GCM interaction was the strongest (5%). Regardless of these sources of uncertainty, a robust conclusion from our work is that all 13 pest species are likely to experience increases in the number of generations that they complete each year. Such increased voltinism is likely to have significant consequences for crop protection and production. PMID:24501055

  15. Using Rapid-Response Scenario-Building Methodology for Climate Change Adaptation Planning

    Science.gov (United States)

    Ludwig, K. A.; Stoepler, T. M.; Schuster, R.

    2015-12-01

    Rapid-response scenario-building methodology can be modified to develop scenarios for slow-onset disasters associated with climate change such as drought. Results of a collaboration between the Department of the Interior (DOI) Strategic Sciences Group (SSG) and the Southwest Colorado Social-Ecological Climate Resilience Project are presented in which SSG scenario-building methods were revised and applied to climate change adaptation planning in Colorado's Gunnison Basin, United States. The SSG provides the DOI with the capacity to rapidly assemble multidisciplinary teams of experts to develop scenarios of the potential environmental, social, and economic cascading consequences of environmental crises, and to analyze these chains to determine actionable intervention points. By design, the SSG responds to acute events of a relatively defined duration. As a capacity-building exercise, the SSG explored how its scenario-building methodology could be applied to outlining the cascading consequences of slow-onset events related to climate change. SSG staff facilitated two workshops to analyze the impacts of drought, wildfire, and insect outbreak in the sagebrush and spruce-fir ecosystems. Participants included local land managers, natural and social scientists, ranchers, and other stakeholders. Key findings were: 1) scenario framing must be adjusted to accommodate the multiple, synergistic components and longer time frames of slow-onset events; 2) the development of slow-onset event scenarios is likely influenced by participants having had more time to consider potential consequences, relative to acute events; 3) participants who are from the affected area may have a more vested interest in the outcome and/or may be able to directly implement interventions.

  16. Large-scale winds in the southern North Sea region: The wind part of the KNMI'14 climate change scenarios

    OpenAIRE

    Sterl, Andreas; Bakker, A.; Van den Brink, H.; Haarsma, Reindert J.; Stepek, A; Wijnant, I; Winter, R.C. de

    2015-01-01

    The wind climate and its possible change in a warming world are important topics for many applications, among which are marine and coastal safety and wind energy generation. Therefore, wind is an important variable to investigate for climate change scenarios. In developing the wind part of the KNMI'14 climate change scenarios, output from several model categories have been analysed, ranging from global General Circulation Models via regional climate model (RCMs) to suitably re-sampled RCM out...

  17. Potential changes in benthic macrofaunal distributions from the English Channel simulated under climate change scenarios

    Science.gov (United States)

    Rombouts, Isabelle; Beaugrand, Grégory; Dauvin, Jean-Claude

    2012-03-01

    Climate-induced changes in the distribution of species are likely to affect the functioning and diversity of marine ecosystems. Therefore, in economic and ecological important areas, such as the English Channel, projections of the future distributions of key species under changing environmental conditions are urgently needed. Ecological Niche Models (ENMs) have been applied successfully to determine potential distributions of species based on the information of the environmental niche of a species (sensu Hutchinson). In this study, the niches of two commercially exploited benthic species, Pecten maximus and Glycymeris glycymeris, and two ecologically important species, Abra alba and Ophelia borealis were derived using four contemporary hydrographic variables, i.e. sea surface temperature, sea surface salinity, water depth and sediment type. Consequently, using these ecological envelopes, the Non-Parametric Probalistic Ecological Niche model (NPPEN) was applied to calculate contemporary probabilities of occurrence for each species in the North East Atlantic and to predict potential re-distributions under the climate change scenario A2 for two time periods 2050-2059 and 2090-2099. Results show general northern displacements of the four benthic species from the English Channel into the North Sea and southern Norwegian coast. The projections mostly indicate a reduction of suitable habitat for benthic species with a notable disappearance of their distributions in the English Channel, except for A. alba. However, interpretations should be treated with caution since many uncertainties and assumptions are attached to ecological niche models in general. Furthermore, opening up potential habitats for benthic species does not necessarily imply that the species will actually occupy these sites in the future. The displacement and colonisation success of species are a function of many other non-climatic factors such as species life histories, dispersal abilities, adaptability

  18. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Suchithra Naish

    Full Text Available BACKGROUND: Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV disease under climate change scenarios in Queensland, Australia. METHODS/PRINCIPAL FINDINGS: We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall, socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. CONCLUSIONS/SIGNIFICANCE: We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  19. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks

    Science.gov (United States)

    Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart, III; Yi, S.; Thompson, Catharine Copass

    2009-01-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat

  20. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.

    Science.gov (United States)

    Euskirchen, E S; McGuire, A D; Chapin, F S; Yi, S; Thompson, C C

    2009-06-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003-2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 +/- 0.23 W x m(-2) x 10 yr(-1) [mean +/- SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (-5.1 +/- 1.6 d/10 yr) resulted in much greater regional heat

  1. Spatio-temporal distribution of dengue fever under scenarios of climate change in the southern Taiwan

    Science.gov (United States)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2014-05-01

    Dengue fever has been recognized as the most important widespread vector-borne infectious disease in recent decades. Over 40% of the world's population is risk from dengue and about 50-100 million people are infected world wide annually. Previous studies have found that dengue fever is highly correlated with climate covariates. Thus, the potential effects of global climate change on dengue fever are crucial to epidemic concern, in particular, the transmission of the disease. This present study investigated the nonlinearity of time-delayed impact of climate on spatio-temporal variations of dengue fever in the southern Taiwan during 1998 to 2011. A distributed lag nonlinear model (DLNM) is used to assess the nonlinear lagged effects of meteorology. The statistically significant meteorological factors are considered, including weekly minimum temperature and maximum 24-hour rainfall. The relative risk and the distribution of dengue fever then predict under various climate change scenarios. The result shows that the relative risk is similar for different scenarios. In addition, the impact of rainfall on the incidence risk is higher than temperature. Moreover, the incidence risk is associated to spatially population distribution. The results can be served as practical reference for environmental regulators for the epidemic prevention under climate change scenarios.

  2. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    Science.gov (United States)

    Vallam, P.; Qin, X. S.

    2016-04-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  3. Estimation of Crop Coefficient of Corn (Kccorn under Climate Change Scenarios Using Data Mining Technique

    Directory of Open Access Journals (Sweden)

    Kampanad Bhaktikul

    2012-01-01

    Full Text Available The main objectives of this study are to determine the crop coefficient of corn (Kccorn using data mining technique under climate change scenarios, and to develop the guidelines for future water management based on climate change scenarios. Variables including date, maximum temperature, minimum temperature, precipitation, humidity, wind speed, and solar radiation from seven meteorological stations during 1991 to 2000 were used. Cross-Industry Standard Process for Data Mining (CRISP-DM was applied for data collection and analyses. The procedures compose of investigation of input data, model set up using Artificial Neural Networks (ANNs, model evaluation, and finally estimation of the Kccorn. Three climate change scenarios of carbon dioxide (CO2 concentration level: 360 ppm, 540 ppm, and 720 ppm were set. The results indicated that the best number of node of input layer - hidden layer - output layer was 7-13-1. The correlation coefficient of model was 0.99. The predicted Kccorn revealed that evapotranspiration (ETcorn pattern will be changed significantly upon CO2 concentration level. From the model predictions, ETcorn will be decreased 3.34% when CO2 increased from 360 ppm to 540 ppm. For the double CO2 concentration from 360 ppm to 720 ppm, ETcorn will be increased 16.13%. The future water management guidelines to cope with the climate change are suggested.

  4. Climate change and species distribution: possible scenarios for thermophilic ticks in Romania.

    Science.gov (United States)

    Domșa, Cristian; Sándor, Attila D; Mihalca, Andrei D

    2016-01-01

    Several zoonotic tick-borne diseases are emerging in Europe due to various factors, including changes of the cultural landscape, increasing human populations, variation of social habits and climate change. We have modelled the potential range changes for two thermophilic tick species (Hyalomma marginatum and Rhipicephalus annulatus) by use of MaxEnt® and 15 climatic predictors, taking into account the aptitude for future climatic change in Romania. Current models predict increased temperatures, both in the short term (up to 2050) and in the long term (up to 2070), together with possible changes also of the other climatic factors (e.g. precipitation), and may lead to higher zoonotic risks associated with an expansion of the range of the target species. Three different models were constructed (the present, 2050 and 2070) for four representative concentration pathways (RCPs) of greenhouse gas scenarios: RCP2.6, RCP4.5, RCP6, and RCP8.5. The most dramatic scenario (RCP8.5) produced the highest increase in the probable distribution range for both species. In concordance with similar continental-wide studies, both tick species displayed a shift of distribution towards previously cooler areas of Romania. In most scenarios, this would lead to wider ranges; from 9.7 to 43.1% for H. marginatum, and from 53.4 to 205.2% for R annulatus. Although the developed models demonstrate a good predictive power, the issue of species ecology should also be considered. PMID:27245802

  5. Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Gaál, Ľ.; Beranová, R.; Hlavčová, K.; Kyselý, Jan

    2014-01-01

    Roč. 2014, č. 943487 (2014), s. 1-14. ISSN 1687-9309 Institutional support: RVO:67179843 ; RVO:68378289 Keywords : precipitation extremes * regional climate models * climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 0.946, year: 2014

  6. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.

    Directory of Open Access Journals (Sweden)

    Mathukumalli Srinivasa Rao

    Full Text Available The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM of future data on daily maximum (T.max, minimum (T.min air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1. This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF -2020, Distant future (DF-2050 and Very Distant future (VDF-2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1-2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18-22% over baseline. Analysis of variance (ANOVA was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%, model (1.74% and scenario (0.74%. The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods.

  7. 2050 Scenarios for Long-Haul Tourism in the Evolving Global Climate Change Regime

    Directory of Open Access Journals (Sweden)

    Jako Volschenk

    2012-12-01

    Full Text Available Tourism and its “midwife”, aviation, are transnational sectors exposed to global uncertainties. This scenario-building exercise considers a specific subset of these uncertainties, namely the impact of the evolving global climate change regime on long-haul tourism (LHT, with a 2050 horizon. The basic problematique is that unconstrained growth in aviation emissions will not be compatible with 2050 climate stabilisation goals, and that the stringency and timing of public policy interventions could have far-reaching impacts — either on the market for future growth of LHT, or the natural ecosystem on which tourism depends. Following an intuitive-logic approach to scenario-building, three meta-level scenarios that can be regarded as “possible” futures for the evolution of LHT are described. Two of these, i.e., the “grim reaper” and the “fallen angel” scenarios, are undesirable. The “green lantern” scenario represents the desired future. Long-haul tourist destinations should heed the early warning signals identified in the scenario narratives, and contribute towards realising the desired future. They should further guard against being passive victims if the feared scenarios materialise, by adapting, repositioning early upon reading the signposts, hedging against risks, and seizing new opportunities.

  8. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios

    International Nuclear Information System (INIS)

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. This paper extends that analysis to explore a range of plausible socioeconomic scenarios and emission pathways. Results from multiple climate and economic models are combined to examine the global and regional impacts of climate change on agricultural yields, area, production, consumption, prices and trade for coarse grains, rice, wheat, oilseeds and sugar crops to 2050. We find that climate impacts on global average yields, area, production and consumption are similar across shared socioeconomic pathways (SSP 1, 2 and 3, as we implement them based on population, income and productivity drivers), except when changes in trade policies are included. Impacts on trade and prices are higher for SSP 3 than SSP 2, and higher for SSP 2 than for SSP 1. Climate impacts for all variables are similar across low to moderate emissions pathways (RCP 4.5 and RCP 6.0), but increase for a higher emissions pathway (RCP 8.5). It is important to note that these global averages may hide regional variations. Projected reductions in agricultural yields due to climate change by 2050 are larger for some crops than those estimated for the past half century, but smaller than projected increases to 2050 due to rising demand and intrinsic productivity growth. Results illustrate the sensitivity of climate change impacts to differences in socioeconomic and emissions pathways. Yield impacts increase at high emissions levels and vary with changes in population, income and technology, but are reduced in all cases by endogenous changes in prices and other variables. (paper)

  9. Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project

    Science.gov (United States)

    Keener, V. W.; Brewington, L.; Finucane, M.

    2015-12-01

    For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.

  10. Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios

    Science.gov (United States)

    Khan, Firdos; Pilz, Jürgen

    2015-04-01

    The last decade of the 20th century and the first decade of the 21st century showed that climate change or global warming is happening and the latter one is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C on May 26, 2010. The changing climate has impact on various areas including agriculture, water, health, among others. There are two main forces which have central role in changing climate: one is natural variability and the other one is human evoked changes, increasing the density of green house gases. The elements in the bunch of Energy-Food-Water are interlinked with one another and among them water plays a crucial role for the existence of the other two parts. This nexus is the central environmental issue around the globe generally, and is of particular importance in the developing countries. The study evaluated the importance and the availability of water in Indus River under different emission scenarios. Four emission scenarios are included, that is, the A2, B2, RCP4.5 and RCP8.5. One way coupling of regional climate models (RCMs) and Hydrological model have been implemented in this study. The PRECIS (Providing Regional Climate for Impact Studies) and CCAM (Conformal-Cubic Atmospheric Model) climate models and UBCWM (University of British Columbia Watershed Model) hydrological model are used for this purpose. It is observed that Indus River contributes 80 % of the hydro-power generation and contributes 44 % to available water annually in Pakistan. It is further investigated whether sufficient water will be available in the Indus River under climate change scenarios. Toward this goal, Tarbela Reservoir is used as a measurement tool using the parameters of the reservoir like maximum operating storage, dead level storage, discharge capacity of tunnels and spillways. The results of this study are extremely important for the economy of Pakistan in various key areas like agriculture, energy, industries and ecosystem

  11. Assessing impact of climate change on season length in Karnataka for IPCC SRES scenarios

    Indian Academy of Sciences (India)

    Aavudai Anandhi

    2010-08-01

    Changes in seasons and season length are an indicator, as well as an effect, of climate change. Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human activities such as agriculture and irrigation. This study investigates the uncertainty of season length in Karnataka state, India, due to the choice of scenarios, season type and number of seasons. Based on the type of season, the monthly sequences of variables (predictors) were selected from datasets of NCEP and Canadian General Circulation Model (CGCM3). Seasonal stratifications were carried out on the selected predictors using K-means clustering technique. The results of cluster analysis revealed increase in average, wet season length in A2, A1B and B1 scenarios towards the end of 21st century. The increase in season length was higher for A2 scenario whereas it was the least for B1 scenario. COMMIT scenario did not show any change in season length. However, no change in average warm and cold season length was observed across the four scenarios considered. The number of seasons was increased from 2 to 5. The results of the analysis revealed that no distinct cluster could be obtained when the number of seasons was increased beyond three.

  12. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change

    Directory of Open Access Journals (Sweden)

    Matthias Albert

    2015-05-01

    Full Text Available Background Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we (1 characterize differences in forest dynamics under three management scenarios, (2 analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and (3 quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress. Methods In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs (minimum, median, maximum based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development. Results The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive. Conclusions Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario, but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate

  13. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change

    Institute of Scientific and Technical Information of China (English)

    Matthias; Albert; Jan; Hansen; Jürgen; Nagel; Matthias; Schmidt; Hermann; Spellmann

    2015-01-01

    Background: Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we(1) characterize differences in forest dynamics under three management scenarios,(2) analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and(3) quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress.Methods: In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs(minimum, median, maximum) based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development.Results: The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive.Conclusions: Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario,but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate counter-measures such as

  14. Scenarios of long-term farm structural change for application in climate change impact assessment

    NARCIS (Netherlands)

    Mandryk, M.; Reidsma, P.; Ittersum, van M.K.

    2012-01-01

    Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, ada

  15. Anticipatory flood risk assessment under climate change scenarios: from assessment to adaptation

    Science.gov (United States)

    Neuhold, C.; Hogl, K.; Seher, W.; Nachtnebel, H. P.; Scherhaufer, P.; Nordbeck, R.; Löschner, L.

    2012-04-01

    According to the Centre for Research on Epidemiology Disasters, floods are the type of natural disasters that affected the highest number of people from 1900 to 2008 worldwide. Specifically, Austria suffered from heavy floods in recent years, affecting thousands of people and causing billions of Euro in economic losses. Although there is yet no proof that these accumulated extreme events are a direct consequence of climate change, they may indicate what can be expected. Currently, comprehensive climate modelling research is being conducted for Austria that may lay the foundation for enhanced climate impact assessments (regional climate modelling under consideration of different global models and varying scenarios). However, the models so far have neither special focus on Austria nor a distinct definition of boundary conditions for Austria. Therefore, results of climate models are considered as too unreliable and inconsistent for predicting changes in flood characteristics, especially at a regional to local scale. As a consequence, adaptation strategies have to be derived from integrated impact analyses that are based on dissecting mechanisms and drivers for changes and not only on the dimension of climate change. This paper discusses a dynamic flood risk assessment methodology considering potential spatial and temporal developments of hazard and vulnerability under climate change scenarios. The approach integrates quantifiable results from assessments of hazard, exposure and sensitivity and the qualitative, interview based, assessment of adaptive capacities. Flood risk assessment will be conducted for the current state in Austria and enhanced by potential (1) flood scenarios increased by a climate change allowance (2) demographic development scenarios (3) land-use change scenarios and (4) adaptation policy assessment to identify regions especially prone to flooding. Comparing the current state with various anticipatory hazard and vulnerability scenarios provides

  16. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation.

    Science.gov (United States)

    De Marco, Alessandra; Proietti, Chiara; Cionni, Irene; Fischer, Richard; Screpanti, Augusto; Vitale, Marcello

    2014-11-01

    Defoliation is an indicator for forest health in response to several stressors including air pollutants, and one of the most important parameters monitored in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The study aims to estimate crown defoliation in 2030, under three climate and one nitrogen deposition scenarios, based on evaluation of the most important factors (meteorological, nitrogen deposition and chemical soil parameters) affecting defoliation of twelve European tree species. The combination of favourable climate and nitrogen fertilization in the more adaptive species induces a generalized decrease of defoliation. On the other hand, severe climate change and drought are main causes of increase in defoliation in Quercus ilex and Fagus sylvatica, especially in Mediterranean area. Our results provide information on regional distribution of future defoliation, an important knowledge for identifying policies to counteract negative impacts of climate change and air pollution. PMID:25118942

  17. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India

    Indian Academy of Sciences (India)

    K T Senzeba; S Rajkumari; A Bhadra; A Bandyopadhyay

    2016-04-01

    Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios foran eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of ArunachalPradesh with an area of 52 km^2 is selected for the present study with an elevation range of 3143–4946 mabove mean sea level. Satellite images from October to June of the selected hydrological year 2006–2007were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done usingNDSI method. Based on long term meteorological data, temperature and precipitation data of selectedhydrological year are normalized to represent present climatic condition. The projected temperatureand precipitation data are downloaded from NCAR’s GIS data portal for different emission scenarios(SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020,2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired locationby spatially interpolating the gridded data and then by statistical downscaling using linear regression.Snow depletion curves for all projected scenarios are generated for the study area and compared withconventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth fordifferent future years are highest under A1B and lowest under IPCC commitment, whereas A2 andB1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for differentfuture years follows almost the same trend as change in precipitation from present climate under allprojected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snowcover, the total streamflow under projected climatic scenarios in future years will be primarily governedby the change in precipitation and not by change in snowmelt depth. Advancing of depletion curves

  18. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India

    Science.gov (United States)

    Senzeba, K. T.; Rajkumari, S.; Bhadra, A.; Bandyopadhyay, A.

    2016-04-01

    Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios for an eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of Arunachal Pradesh with an area of 52 km2 is selected for the present study with an elevation range of 3143-4946 m above mean sea level. Satellite images from October to June of the selected hydrological year 2006-2007 were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done using NDSI method. Based on long term meteorological data, temperature and precipitation data of selected hydrological year are normalized to represent present climatic condition. The projected temperature and precipitation data are downloaded from NCAR's GIS data portal for different emission scenarios (SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020, 2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired location by spatially interpolating the gridded data and then by statistical downscaling using linear regression. Snow depletion curves for all projected scenarios are generated for the study area and compared with conventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth for different future years are highest under A1B and lowest under IPCC commitment, whereas A2 and B1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for different future years follows almost the same trend as change in precipitation from present climate under all projected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth. Advancing of

  19. Developing climate change scenarios for Tamil Nadu, India using MAGICC/SCENGEN

    Science.gov (United States)

    Jeganathan, Anushiya; Andimuthu, Ramachandran

    2013-11-01

    This paper describes the projection of climate change scenarios under increased greenhouse gas emissions, using the results of atmospheric-ocean general circulation models in the Coupled Model Intercomparison Project phase 3 dataset. A score is given to every model based on global and regional performance. Four out of 20 general circulation models (GCMs) were selected based on skill in predicting observed annual temperature and precipitation conditions. The ensemble of these four models shows superiority over the individual model scores. These models were subjected to increases in future anthropogenic radiative forcings for constructing climate change scenarios. Future climate scenarios for Tamil Nadu were developed with MAGICC/SCENGEN software. Model results show both temperature and precipitation increases under increased greenhouse gas scenarios. Northeast and northwest parts of Tamil Nadu show a greater increase in temperature and precipitation. Seasonally, the maximum rise in temperature occurred during the MAM season, followed by DJF, JJA, and SON. Decreasing trends of precipitation were observed during DJF and MAM.

  20. A scenario neutral approach to assess low flow sensitivity to climate change

    Science.gov (United States)

    Sauquet, Eric; Prudhomme, Christel

    2015-04-01

    Most impact studies of climate change on river flow regime are performed following top-down approaches, where changes in hydrological characteristics are obtained from rainfall-runoff models forced by downscaled projections provided by GCMs. However, such approaches are not always considered robust enough to bridge the gap between climate research and stake holders needs to develop relevant adaptation strategy (Wilby et al., 2014). Alternatively, 'bottom-up' approaches can be applied to climate change impact studies on water resources to assess the intrinsic vulnerability of the catchments and ultimately help to prioritize adaptation actions for areas highly sensitive to small deviations from the present-day climate conditions. A general framework combining the scenario-neutral methodology developed by Prudhomme et al. (2010) and climate elasticity analyses (Sankarasubramanian et al., 2001) is presented and applied to measure the vulnerability of low flows and droughts on a large dataset of more than 400 French gauged basins. The different steps involved in the suggested framework are: - Calibration of the GR5J rainfall runoff model (Pushpalatha et al., 2011) against observations, - Identification of the main climate factors influencing low flows, - Definition of the sensitivity domain for precipitation (P), temperature (T) and potential evapotranspiration (PE) scenarios consistent with most recent climate change projections, - Derivation of the response surface describing changes in low flow and drought regime in terms of severity, duration and seasonality (Catalogne, 2012), - Uncertainty assessment. Results are the basis for a classification of river basins according to their sensitivity at national scale and for discussions on adaptation requirements with stakeholders. Catalogne C (2012) Amélioration des méthodes de prédétermination des débits de référence d'étiage en sites peu ou pas jaugés. PHD thesis, Université Joseph Fourier, Grenoble, 285 pp

  1. Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C earth system model

    Directory of Open Access Journals (Sweden)

    P. D. Falloon

    2012-06-01

    Full Text Available The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios – the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20, allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario – one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C.

    In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in scrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during winter and spring; small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively and increased global precipitation

  2. Climate change in high definition : scenarios for impacts and adaptation research : conference proceedings

    International Nuclear Information System (INIS)

    This conference provided a forum to review information and tools to conduct climate change impact and adaptation research and assessments. The research community, policy advisors and resource managers reviewed the latest advancements in global and regional climate modeling, climate scenarios, downscaling tools and application of scenarios for decision-making. The new Climate Change Scenarios Network (CCSN) website was also launched at this meeting, which also provided training in Environment Canada's new statistical downscaling tool developed in collaboration with the Institut National de la Recherche Scientifique, Eau, Terre et Environnement (INRS-ETE). New features of the CCSN were presented along with examples of how information from the network can be applied in specific cases, including assessments of impacts in areas such as human health and water resources. A training session on downscaling with the newly developed Automated Statistical Downscaling (ASD) tool was also provided. The conference featured 19 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  3. Climate change scenarios and its impact on water resources of Langtang Khola Basin, Nepal

    Science.gov (United States)

    Adhikari, T. Raj; Prasad Devkota, L.; Bhakta Shrestha, A.

    2014-09-01

    General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data were used for the future climate scenarios prediction for the period 2000-2050s, under the Special Report on Emissions Scenarios (SRES) A2 and A1B scenarios. In addition, rating equation was developed from measured discharge and gauge (stage) height data. The generated precipitation and temperature data from downscale and rating equation was used to run the HBV-Light 3.0 conceptual rainfall-runoff model for the calibration and validation of the model, gauge height was taken in the reference period (1988-2009). In the HBV-Light 3.0, a GAP optimization approach was used to calibrate the observed streamflow. From the precipitation scenarios with SRES A2 and A1B emissions at Kyanging, an increase of precipitation during summer and spring and a decrease during winter and autumn seasons was shown. The model projected annual precipitation for the 2050s of both the A2 and A1B scenarios are 716.4 mm and 703.6 mm, respectively. Such precipitation projections indicate the future increase of precipitation in all seasons except the summer. By the end of the 2050s simulation projects an increase maximum (minimum) discharge of 37.8 m3/s (13.9 m3/s) for A1B scenario and 36.2 m3/s (14.3 m3/s) for A2 scenario. A maximum projected discharge will increase for all seasons except for spring, whereas the minimum will decrease in summer.

  4. Climate change scenarios and the effect of sea-level rise for Estonia

    Science.gov (United States)

    Kont, Are; Jaagus, Jaak; Aunap, Raivo

    2003-03-01

    Climate warming due to the enhanced greenhouse effect is expected to have a significant impact on natural environment and human activity in high latitudes. Mostly, it should have a positive effect on human activity. The main threats in Estonia that could be connected with sea-level rise are the flooding of coastal areas, erosion of sandy beaches and the destruction of harbour constructions. Possible climate change and its negative impacts in the coastal regions of Estonia are estimated in this paper. Climate change scenarios for Estonia were generated using a Model for the Assessment of Greenhouse-gas Induced Climate Change (MAGICC) and a regional climate change database—SCENanario GENerator (SCENGEN). Three alternative emission scenarios were combined with data from 14 general circulation model experiments. Climate change scenarios for the year 2100 indicate a significant increase in air temperature (by 2.3-4.5 °C) and precipitation (by 5-30%) in Estonia. The highest increase is expected to take place during winter and the lowest increase in summer. Due to a long coastline (3794 km) and extensive low-lying coastal areas, global climate change through sea-level rise will strongly affect the territory of Estonia. A number of valuable natural ecosystems will be in danger. These include both marine and terrestrial systems containing rare plant communities and suitable breeding places for birds. Most sandy beaches high in recreational value will disappear. However, isostatic land uplift and the location of coastal settlements at a distance from the present coastline reduce the rate of risk. Seven case study areas characterising all the shore types of Estonia have been selected for sea-level rise vulnerability and adaptation assessment. Results and estimates of vulnerability to 1.0-m sea-level rise by 2100 are presented in this paper. This is the maximum scenario according to which the actually estimated relative sea-level rise would vary from 0.9 m (SW Estonia) to 0

  5. A new scenario framework for climate change research. Background, process, and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Kristie L. [ClimAdapt, LLC, Los Altos, CA (United States); Hallegatte, Stephane [World Bank, Washington, DC (United States); Kram, Tom [Netherlands Environmental Assessment Agency (PBL), Bilthoven (Netherlands); Arnell, Nigel W. [Walker Inst. for Climate System Research, Reading (United Kingdom); Carter, Tim [Finnish Environment Inst. (SYKE), Helsinki (Finland); Edmonds, James A. [Joint Global Change Research Inst., Baltimore, MD (United States); Kriegler, Elmar [Potsdam Inst. for Climate Impact Research (Germany); Mathur, Ritu [TERI, New Delhi (India); O' Neill, Brian [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Riahi, Keywan [International Inst. for Applied System Analysis, Laxenburg (Austria); Winkler, Harald [Univ. of Cape Town (South Africa); Van Vuuren, Detlef P. [Netherlands Environmental Assessment Agency (PBL), Bilthoven (Netherlands); Netherlands Environmental Assessment Agency (PBL), Bilthoven (Netherlands); Zwickel, Timm [Potsdam Inst. for Climate Impact Research (Germany)

    2013-09-27

    The scientific community is developing new integrated global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes could pose to human and natural systems; how these could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce those risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship with sustainable development. This paper provides the background to, and process of, developing the conceptual framework for these scenarios, described in three other papers in this Special Issue (van Vuuren et al.; O'Neill et al.; Kriegler et al.). The paper also discusses research needs to further develop and apply this framework. The goal is to encourage climate change researchers from a broad range of perspectives and disciplines to work together to develop policy-relevant scenarios and explore the implications of different possible futures for the challenges and opportunities human and natural systems could face with increasing climate change.

  6. Changing Evaporative and ET Demands in the Lower Colorado River Basin Under Different Climate Scenarios

    Science.gov (United States)

    Bunk, D. A.; Piechota, T. C.

    2011-12-01

    Observed and projected trends in free-water evaporation and evapotranspiration (ET) are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering crop patterns; and changing the temporal and spatial distribution of water deliveries through agricultural-urban water transfers. This study uses observations and projections under different climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on free-water evaporation and riparian ET in the lower Colorado River basin. The projected changes in evaporative and ET demands may then accessed to determine their impacts on the reliability of water supplies and reservoir operations in the Colorado River basin under changing climate conditions. Finally, a discussion on the uncertainties in estimating key parameters, such as solar radiation, mean daily dewpoint, and atmospheric resistance, given limitations in the hydroclimatic dataset, will also be provided.

  7. GIS analysis to apply theoretical Minimal Model on glacier flow line and assess glacier response in climate change scenarios

    OpenAIRE

    M. Moretti; Mattavelli, M; De Amicis, Mattia; Maggi, V

    2014-01-01

    The development of theoretical work about glacier dynamics has given rise to the construction of mathematical models to assess glacier response in climate change scenarios. Glacier are sentinels of climate condition and the Project of Interest NextData will favour new data production about the present and past climatic variability and future climate projections, as well as new assessments of the impact of climate change on environment. The aim of this specific research program is to develo...

  8. Uncertainties in Predicting Tourist Flows Under Scenarios of Climate Change. Editorial Essay

    International Nuclear Information System (INIS)

    Tourism is largely dependent on climatic and natural resources. For example, 'warmer' climates generally constitute preferred environments for recreation and leisure, and natural resources such as fresh water, biodiversity, beaches or landscapes are essential preconditions for tourism. Global environmental change threatens these foundations of tourism through climate change, modifications of global biogeochemical cycles, land alteration, the loss of non-renewable resources, unsustainable use of renewable resources and loss of biodiversity. This has raised concerns that tourist flows will change to the advantage or disadvantage of destinations, which is of major concern to local and national economies, as tourism is one of the largest economic sectors of the world, and of great importance for many destinations. In consequence, an increasing number of publications have sought to analyse travel flows in relation to climatic and socio-economic parameters. The ultimate goal has been to develop scenarios for future travel flows, possibly including 'most at risk destinations', both in economic and in environmental terms. Such scenarios are meant to help the tourist industry in planning future operations, and they are of importance in developing plans for adaptation

  9. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    Science.gov (United States)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to

  10. Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Gaál, Ladislav; Beranová, Romana; Plavcová, Eva

    2011-01-01

    Roč. 104, 3-4 (2011), s. 529-542. ISSN 0177-798X R&D Projects: GA ČR GAP209/10/2265 Grant ostatní: European Commission(XE) 505539 Institutional research plan: CEZ:AV0Z30420517 Keywords : precipitation extremes * regional climate models * ENSEMBLES * climate change * region-of-influence method Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.942, year: 2011 http://www.springerlink.com/content/95wj1140307nu5k7/fulltext.pdf

  11. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    Science.gov (United States)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  12. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  13. Integrating Climate Change Scenarios and Co-developed Policy Scenarios to Inform Coastal Adaptation: Results from a Tillamook County, Oregon Knowledge to Action Network

    Science.gov (United States)

    Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.

    2014-12-01

    Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The

  14. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina

    Science.gov (United States)

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-01-01

    Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural

  15. Scenario Planning Provides a Framework for Climate Change Adaptation in the National Park Service

    Science.gov (United States)

    Welling, L. A.

    2012-12-01

    Resource management decisions must be based on future expectations. Abundant evidence suggests climate change will have highly consequential effects on the Nation's natural and cultural resources, but specific impacts are difficult to accurately predict. This situation of too much information but not enough specificity can often lead to either paralysis or denial for decision makers. Scenario planning is an emerging tool for climate change adaptation that provides a structured framework for identifying and exploring critical drivers of change and their uncertain outcomes. Since 2007, the National Park Service (NPS) has been working with its partners to develop and apply a scenario-based approach for adaptation planning that integrates quantitative, model-driven, climate change projections with qualitative, participatory exercises to explore management and policy options under a range of future conditions. Major outcomes of this work are (1) increased understanding of key scientific results and uncertainties, (2) incorporation of alternative perspectives into park and landscape level planning, (3) identification of "no brainer" and "no gainer" actions, (4) strengthening of regional science-management partnerships, and (5) overall improved capacity for flexible decision making. The basic approach employed by NPS for scenario planning follows a typical adaptive management process: define the focal question, assess the relevant science, explore plausible futures, identify effective strategies, prioritize and implement actions, and monitor results. Many science and management partners contributed to the process, including NOAA Regional Integrated Science and Assessment teams (RISAs) and Regional Climate Centers (RCCs), USGS Research Centers, and other university and government scientists. The Global Business Network, an internationally recognized leader in scenario development, provided expert facilitation and training techniques. Climate science input is provided

  16. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  17. Scenario analysis of climate change and tourism in Spain and other European regions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A.M.

    2005-06-15

    The aim of the study is to determine the possible impact of climate change on the tourist industry in Spain, with an especial focus on coastal regions. This includes the identification of potential areas suffering a decrease in the tourist flows, as well as different regions that could see a benefit on increasing temperatures and more reliable weather predictions. To do so, a Tourism Climate Index will be used, studying the potentiality of an area for tourism considering different elements of the climate which are relevant for the tourism activities. Current and future climatological scenarios over the main tourist sites in Spain will be built. In addition, the study will include an evaluation of the context around Spain, including case studies in other 5 different countries and a global description for the rest of the continent. Chapter 2 focuses mainly on the tourist sector. The global importance of this activity, together with the international tourism flows, serves as introduction to a more detailed assessment of the significant role that Spain plays as a tourist destination. The complex interrelations between climate (change) and tourism are reviewed in chapter 3. First, a brief introduction about climate change and descriptions of major projections about future climate world wide. This description is further detailed for Spain. Additionally, the interactions between tourism and climate are described thoroughly. Chapter 4 discusses the concept of 'Tourist Comfort Index', addressing key issues such as factors included and weighting. This section gives also a brief overview of the analysis and the data that was needed in the elaboration of the thesis. The implementation of the index and the results for current climate and future climate is presented. After the data analysis, chapter 5 provides an in-depth discussion of the results and compares them with other studies. This chapter is followed by the conclusions and recommendations in chapter 6.

  18. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area.

    Science.gov (United States)

    Viola, F; Francipane, A; Caracciolo, D; Pumo, D; La Loggia, G; Noto, L V

    2016-02-15

    The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. PMID:26674680

  19. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    Science.gov (United States)

    Mani, Amir; Tsai, Frank T.-C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha

    2016-09-01

    This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints.

  20. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Directory of Open Access Journals (Sweden)

    D. Paradis

    2015-08-01

    Full Text Available Nitrate (N-NO3 concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada, currently exceeds the 10 mg L−1 (N-NO3 health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentrations could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2. A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1 the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2 the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. Climate change alone (practices maintained at their current level would contribute only 0 to 6 % to that increase according to the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to the slow dynamics

  1. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, D.; Vigneault, H.; Lefebvre, R.; Savard, M. M.; Ballard, J.-M.; Qian, B.

    2015-08-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentrations could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. Climate change alone (practices maintained at their current level) would contribute only 0 to 6 % to that increase according to the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to the slow dynamics of nitrate

  2. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Trnka, M.; Holman, I. P.; Svobodová, E.; Harrison, P. A.

    2015-01-01

    Roč. 128, 3-4 (2015), s. 169-186. ISSN 0165-0009 R&D Projects: GA MŠk LD12029 Institutional support: RVO:68378289 Keywords : global Climate Model * ensemble of models * climate change * climate change scenarios * climate change impact indices * Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.430, year: 2014 http://link.springer.com/article/10.1007%2Fs10584-014-1297-7

  3. CLIMATE AND LULC CHANGE SCENARIOS TO STUDY ITS IMPACT ON HYDROLOGICAL REGIME

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2012-07-01

    Full Text Available Climate change, whether as a natural cycle variability and/or due to anthropogenic reasons, is affecting and likely to further affect the water resources, which is a vital necessity for existence of life form. The predicted intensification of hydrological cycle would change all of its constituents both in time and space domain. This is a long term phenomenon and the necessity is to understand the intensity of the effects on various aspects of water resources by way of scientific studies backed by the available field data. Therefore, in the present study, the impact of climate and land use land cover change on entire India under different assumed plausible hypothetical scenarios has been studied. These scenarios were developed by increasing; temperature by 1, 2 and 30C; rainfall by 5, 10 and 15%; and then the combination of both. To carry out this analysis, variable infiltration capacity (VIC semi-distributed macroscale hydrological model has been investigated. It was found that slight change in climate may pose huge difference on hydrological cycle and its component.

  4. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Science.gov (United States)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  5. Integrated scenarios of acidification and climate change in Asia and Europe

    International Nuclear Information System (INIS)

    Two integrated assessment models, one for climate change on a global scale (IMAGE 2) and another for the regional analysis of the impacts of acidifying deposition (RAINS), have been linked to assess the impacts of reducing sulphur emission on ecosystems in Asia and Europe. While such reductions have the beneficial effect of reducing the deposition of acidifying compounds and thus the excedance of critical loads of ecosystems, they also reduce the global level of sulphate aerosols and thus enhance the impact of increased emissions of greenhouse gases, and consequently increase the risk of potential vegetation changes. The calculations indicate that about 70% of the ecosystems in Asia would be affected by either acid deposition or climate change in the year 2100 (up from 20% in 1990) for both sulphur emission scenarios (controlled and uncontrolled), whereas in Europe the impacted area would remain at a level of about 50%, with a dip early next century. (author)

  6. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. PMID:27341115

  7. Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam

    Science.gov (United States)

    Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.

    2010-01-01

    Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.

  8. The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa

    Science.gov (United States)

    Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach

  9. Tropical peatland carbon dynamics simulated for scenarios of disturbance and restoration and climate change

    Science.gov (United States)

    Frolking, S. E.; Warren, M.; Dai, Z.; Kurnianto, S.; Hagen, S. C.

    2015-12-01

    Tropical peatlands contain a globally significant carbon pool. Southeast Asian peatlands are being deforested, drained and burned at very high rates, mostly for conversion to industrial oil palm or pulp and paper plantations. The climate mitigation potential of tropical peatlands has gained increasing attention in recent years as persistent greenhouse gas emissions can be avoided or decreased if peatlands remain intact or are rehabilitated. In addition, peatland conservation or rehabilitation for climate mitigation also includes multiple co-benefits such as maintenance of ecosystem services, biodiversity, and air quality from reduced fire occurrence. Inventory guidelines and methodologies have only recently become available, and are based on few data from a limited number of sites. Few heuristic tools are available to evaluate the impact of management practices on carbon dynamics in tropical peatlands, and the potential climate mitigation benefits of peatland restoration. We used a process based dynamic tropical peatland model to explore the C dynamics of several peatland management trajectories represented by hypothetical scenarios, within the context of simulated 21st century climate change. All scenarios with land use, including those with optimal restoration, simulate C loss over the 21st century, with C losses ranging from 10% to essentially 100% of pre-disturbance values. Fire, either prescribed as part of a crop rotation cycle, or stochastic occurrences in sub-optimally managed degraded land can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. A single 25-year oil palm rotation, with a prescribed initial burn, lost 40-50 kg C/m2, equivalent to accumulation during the previous 500 years, 10-30% of which was restored in 75 years of optimal restoration. Our results indicate that even under the most optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one-third of the carbon

  10. Estimation of future carbon budget with climate change and reforestation scenario in North Korea

    Science.gov (United States)

    Kim, Damin; Lim, Chul-Hee; Song, Cholho; Lee, Woo-Kyun; Piao, Dongfan; Heo, Seongbong; Jeon, Seongwoo

    2016-09-01

    In terms of climate change, quantifying carbon budget in forest is critical for managing a role of forest as carbon sink. Deforestation in North Korea has been exacerbating at a noticeable pace and caused to worsen the carbon budget. Under the circumstance, this study aimed to assess the impact of climate change and reforestation on the carbon budget in 2020s and 2050s, using the VISIT (Vegetation Integrative SImulator for Trace gases) model. In order to analyze the impact of reforestation, future land cover maps for the 2020s and 2050s were prepared. Among the deforested areas (2.5 × 106 ha) identified by comparing land cover maps for different periods, the potential reforestation areas were selected by a reforestation scenario considering slope, accessibility from residence, and deforestation types. The extracted potential reforestation areas were 1.7 × 106 ha and the increased forest area was spatially distributed to each district. The percentage change in carbon budget caused by climate change from the 2000s to 2020s is 67.60% and that from the 2020s to 2050s is 45.98% on average. Based on the future land cover, NEP (net ecosystem production) with reforestation will increase by 18.18% than that without reforestation in the 2050s, which shows the contribution to carbon balance. In connection with this long term projection, it is revealed that the gross fluxes such as photosynthesis and respiration may be impacted more obviously by the climate change, especially global warming, than the net carbon flux because of the offset between the changes in the gross fluxes. It is analyzed that changes in carbon budget are very sensitive to climate changes, while the impact of reforestation is relatively less sensitive. Although it is impossible to significantly improve carbon sequestration by establishing forest in a short-term, reforestation is imperative in a long-term view as it clearly has a potential mechanism to offset emitted carbon.

  11. Modelling soil organic carbon stocks along topographic transects under climate change scenarios using CarboSOIL

    Science.gov (United States)

    Kotb Abd-Elmabod, Sameh; Muñoz-Rojas, Miriam; Jordán, Antonio; Anaya-Romero, María; de la Rosa, Diego

    2014-05-01

    CarboSOIL is a land evaluation model for soil organic carbon (SOC) accounting under global change scenarios (Muñoz-Rojas et al., 2013a; 2013b) and is a new component of the MicroLEIS Decision Support System. MicroLEIS is a tool for decision-makers dealing with specific agro-ecological problems as, for example, soil contamination risks (Abd-Elmabod et al., 2010; Abd-Elmabod et al., 2012)which has been designed as a knowledge-based approach incorporating a set of interlinked data bases. Global change and land use changes in recent decades have caused relevant impacts in vegetation carbon stocks (Muñoz-Rojas et al., 2011) and soil organic carbon stocks, especially in sensible areas as the Mediterranean region (Muñoz-Rojas et al., 2012a; 2012b). This study aims to investigate the influence of topography, climate, land use and soil factors on SOC stocks by the application of CarboSOIL in a representative area of the Mediterranean region (Seville, Spain). Two topographic transects (S-N and W-E oriented) were considered, including 63 points separated 4 km each. These points are associated to 41 soil profiles extracted from the SDBm soil data base (De la Rosa et al., 2001) and climatic information (average minimum temperature, average maximum temperature and average rainfall per month) extracted from raster data bases (Andalusian Environmental Information Network, REDIAM). CarboSOIL has been applied along topographic transects at different soil depths and under different climate change scenarios. Climate scenarios have been calculated according to the global climate model (CNRMCM3) by extracting spatial climate data under IPCC A1B scenario for the current period (average data from 1960-2000), 2040, 2070 and 2100. In the current scenario, results show that the highest SOC stock values located on Typic Haploxeralfs under olive groves for soil sections 0-25 cm and for 25-50 cm, but the highest values were determined on fruit-cropped Rendolic Xerothent in the 50-75cm

  12. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2012-09-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10–90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the

  13. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  14. Transcriptomic Characterization of Tambaqui (Colossoma macropomum, Cuvier, 1818) Exposed to Three Climate Change Scenarios

    Science.gov (United States)

    Prado-Lima, Marcos; Val, Adalberto Luis

    2016-01-01

    Climate change substantially affects biodiversity around the world, especially in the Amazon region, which is home to a significant portion of the world’s biodiversity. Freshwater fishes are susceptible to increases in water temperature and variations in the concentrations of dissolved gases, especially oxygen and carbon dioxide. It is important to understand the mechanisms underlying the physiological and biochemical abilities of fishes to survive such environmental changes. In the present study, we applied RNA-Seq and de novo transcriptome sequencing to evaluate transcriptome alterations in tambaqui when exposed to five or fifteen days of the B1, A1B and A2 climate scenarios foreseen by the IPCC. The generated ESTs were assembled into 54,206 contigs. Gene ontology analysis and the STRING tool were then used to identify candidate protein domains, genes and gene families potentially responsible for the adaptation of tambaqui to climate changes. After sequencing eight RNA-Seq libraries, 32,512 genes were identified and mapped using the Danio rerio genome as a reference. In total, 236 and 209 genes were differentially expressed at five and fifteen days, respectively, including chaperones, energetic metabolism-related genes, translation initiation factors and ribosomal genes. Gene ontology enrichment analysis revealed that mitochondrion, protein binding, protein metabolic process, metabolic processes, gene expression, structural constituent of ribosome and translation were the most represented terms. In addition, 1,202 simple sequence repeats were detected, 88 of which qualified for primer design. These results show that cellular response to climate change in tambaqui is complex, involving many genes, and it may be controlled by different cues and transcription/translation regulation mechanisms. The data generated from this study provide a valuable resource for further studies on the molecular mechanisms involved in the adaptation of tambaqui and other closely

  15. Transcriptomic Characterization of Tambaqui (Colossoma macropomum, Cuvier, 1818) Exposed to Three Climate Change Scenarios.

    Science.gov (United States)

    Prado-Lima, Marcos; Val, Adalberto Luis

    2016-01-01

    Climate change substantially affects biodiversity around the world, especially in the Amazon region, which is home to a significant portion of the world's biodiversity. Freshwater fishes are susceptible to increases in water temperature and variations in the concentrations of dissolved gases, especially oxygen and carbon dioxide. It is important to understand the mechanisms underlying the physiological and biochemical abilities of fishes to survive such environmental changes. In the present study, we applied RNA-Seq and de novo transcriptome sequencing to evaluate transcriptome alterations in tambaqui when exposed to five or fifteen days of the B1, A1B and A2 climate scenarios foreseen by the IPCC. The generated ESTs were assembled into 54,206 contigs. Gene ontology analysis and the STRING tool were then used to identify candidate protein domains, genes and gene families potentially responsible for the adaptation of tambaqui to climate changes. After sequencing eight RNA-Seq libraries, 32,512 genes were identified and mapped using the Danio rerio genome as a reference. In total, 236 and 209 genes were differentially expressed at five and fifteen days, respectively, including chaperones, energetic metabolism-related genes, translation initiation factors and ribosomal genes. Gene ontology enrichment analysis revealed that mitochondrion, protein binding, protein metabolic process, metabolic processes, gene expression, structural constituent of ribosome and translation were the most represented terms. In addition, 1,202 simple sequence repeats were detected, 88 of which qualified for primer design. These results show that cellular response to climate change in tambaqui is complex, involving many genes, and it may be controlled by different cues and transcription/translation regulation mechanisms. The data generated from this study provide a valuable resource for further studies on the molecular mechanisms involved in the adaptation of tambaqui and other closely related

  16. A climate profile indicator based comparative analysis of climate change scenarios with regard to maize (Zea mays L.) cultures

    Energy Technology Data Exchange (ETDEWEB)

    Dios, N.; Szenteleki, K.; Ferenczy, A.; Petranyl, G. [Corvinus Univ. of Budapest (Hungary). Dept. of Mathematics and Informatics; Hufnagel, L. [Hungarian Academy of Sciences, Budapest (Hungary). Adaptation to Climate Change Research Group

    2009-07-01

    Recent research results let us conclude that climate change might have a significant effect on the yield of wheat, barley, rye, potato and maize, and the borderlines of their area of cultivation might shift 100--150 kilometers to the north. The possible mass occurrence of new aggressive pest, pathogen and weed species in Hungary might also create a problem from plant protection. Maize is one of the most important fodder-plants. Hungary has close to the largest total cultivating area in Europe. Maize is used in many ways, thus being of outstanding economic importance. In Hungary the conditions of maize cultivation are -- except for dry years -- quite favorable in most cultural regions and complex cultivating technologies are available. It also might gain a significant role in the line of new environment-friendly alternative sources of energy. For these reasons, it is important to examine the influence of meteorological factors on maize ecosystems and this examination should include as many climate change scenarios and as long a time series as possible. Using ecological data compiled from scientific literature on pest, pathogen and weed species characteristic in maize cultures in Hungary, we defined monthly climate profile indicators and applied them to complete a comparative analysis of the historical and modelled climate change scenario meteorological data of the city of Debrecen. Our results call attention to a drastic decline of the competitive ability of maize as compared to several C{sub 4} and especially C{sub 3} plants. According to the stricter scenarios, the frequency of potential pest and pathogen damage emergency situations will grow significantly by the end of the century.

  17. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios.

    Science.gov (United States)

    Miguel Ayala, Laura; van Eupen, Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G; Lisboa, Leila S; Beltrao, Norma E

    2016-11-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent water bodies. These impacts might be intensified by projected climate change in tropical areas. A Water Footprint Assessment (WFA) serves as a tool to assess environmental impacts of water and fertiliser use. The aim of this study was to understand potential impacts on environmental sustainability of agricultural intensification close to a protected forest area of the Amazon under climate change. We carried out a WFA to calculate the water footprint (WF) related to soybean production, Glycine max, to understand the sustainability of the WF in the Tapajós river basin, a region in the Brazilian Amazon with large expansion and intensification of soybean. Based on global datasets, environmental hotspots - potentially unsustainable WF areas - were identified and spatially plotted in both baseline scenario (2010) and projection into 2050 through the use of a land-use change scenario that includes climate change effects. Results show green and grey WF values in 2050 increased by 304% and 268%, respectively. More than one-third of the watersheds doubled their grey WF in 2050. Soybean production in 2010 lies within sustainability limits. However, current soybean expansion and intensification trends lead to large impacts in relation to water pollution and water use, affecting protected areas. Areas not impacted in terms of water pollution dropped by 20.6% in 2050 for the whole catchment, while unsustainability increased 8.1%. Management practices such as water consumption regulations to stimulate efficient water use, reduction of crop water use and evapotranspiration, and optimal fertiliser application control could be key factors in achieving sustainability within a river basin. PMID

  18. Large-scale winds in the southern North Sea region: The wind part of the KNMI'14 climate change scenarios

    NARCIS (Netherlands)

    Sterl, Andreas; Bakker, A; van den Brink, H; Haarsma, Reindert J.; Stepek, A; Wijnant, I; de Winter, R.C.

    2015-01-01

    The wind climate and its possible change in a warming world are important topics for many applications, among which are marine and coastal safety and wind energy generation. Therefore, wind is an important variable to investigate for climate change scenarios. In developing the wind part of the KNMI'

  19. Measured and CQESTR simulated soil organic carbon changes of dryland agroecosystem under climate change scenarios

    Science.gov (United States)

    The potential effects of global climate change (CC) on C cycling and soil organic carbon (SOC) storage/loss in agroecosystems can be assessed by process-based models such as CQESTR. The CQESTR model was used to simulate the effect of tillage and N fertilization on SOC storage/loss in three long-term...

  20. Civil war, climate change and development: A scenario study for Sub-Saharan Africa

    OpenAIRE

    Devitt, Conor; Tol, Richard S.J.

    2010-01-01

    We construct a model of development, civil war, and climate change. There are multiple interactions. Economic growth reduces the probability of civil war and the vulnerability to climate change. Climate change increases the probability of civil war. The impacts of climate change, civil war, and civil war in the neighbouring countries reduce economic growth. The model has two potential poverty traps ? a climate-change-induced one and a civil-war-induced one ? and the two poverty traps may rein...

  1. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.

    Science.gov (United States)

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-09-01

    Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural

  2. Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios in a Climate Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The changes in the thermohaline circulation (THC) because of the increased CO2 in the atmosphere play an important role in future climate regimes.In this article, a new climate model developed at the Max-Planck Institute for Meteorology is used to study the variation in THC strength, the changes of North Atlantic deep-water (NADW) formation, and the regional responses of the THC in the North Atlantic to increasing atmospheric CO2.From 2000 to 2100, under increased CO2 scenarios (B1, A1B, and A2), the strength of THC decreases by 4 Sv (106 m3/s), 5.1 Sv, and 5.2 Sv, respectively, equivalent to a reduction of 20%, 25%, and 25.1% of the present THC strength.The analyses show that the oceanic deep convective activity significantly strengthens in the Greenland-Iceland-Norway(GIN) Seas owing to saltier (denser) upper oceans, whereas weakens in the Labrador Sea and in the south of the Denmark Strait region (SDSR) because of surface warming and freshening due to global warming.The saltiness of the GIN Seas is mainly caused by the increase of the saline North Atlantic inflow through the Faro-Bank (FB) Channel.Under the scenario A1B, the deep-water formation rate in the North Atlantic decreases from 16.2 Sv to 12.9 Sv with increasing CO2.

  3. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    International Nuclear Information System (INIS)

    This study presents an estimate of the effects of climate variables and CO2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  4. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Miroslava Garza

    2014-05-01

    Full Text Available BACKGROUND: Chagas disease kills approximately 45 thousand people annually and affects 10 million people in Latin America and the southern United States. The parasite that causes the disease, Trypanosoma cruzi, can be transmitted by insects of the family Reduviidae, subfamily Triatominae. Any study that attempts to evaluate risk for Chagas disease must focus on the ecology and biogeography of these vectors. Expected distributional shifts of vector species due to climate change are likely to alter spatial patterns of risk of Chagas disease, presumably through northward expansion of high risk areas in North America. METHODOLOGY/PRINCIPAL FINDINGS: We forecast the future (2050 distributions in North America of Triatoma gerstaeckeri and T. sanguisuga, two of the most common triatomine species and important vectors of Trypanosoma cruzi in the southern United States. Our aim was to analyze how climate change might affect the future shift of Chagas disease in North America using a maximum entropy algorithm to predict changes in suitable habitat based on vector occurrence points and predictive environmental variables. Projections based on three different general circulation models (CCCMA, CSIRO, and HADCM3 and two IPCC scenarios (A2 and B2 were analyzed. Twenty models were developed for each case and evaluated via cross-validation. The final model averages result from all twenty of these models. All models had AUC >0.90, which indicates that the models are robust. Our results predict a potential northern shift in the distribution of T. gerstaeckeri and a northern and southern distributional shift of T. sanguisuga from its current range due to climate change. CONCLUSIONS/SIGNIFICANCE: The results of this study provide baseline information for monitoring the northward shift of potential risk from Chagas disease in the face of climate change.

  5. Investigations into a plankton population model: Mortality and its importance in climate change scenarios

    OpenAIRE

    Cropp, Roger; Norbury, John

    2006-01-01

    The potential for marine plankton ecosystems to influence climate by the production of dimethylsulphide (DMS) has been an important topic of recent research into climate change. Several General Circulation Models, used to predict climate change, have or are being modified to include interactions of ecosystems with climate. Climate change necessitates that parameters within ecosystem models must change during long-term simulations, especially mortality parameters that increase as organisms are...

  6. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  7. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    OpenAIRE

    Posch, M.; Aherne, J.; Forsius, M.; Fronzek, S.; N. Veijalainen

    2008-01-01

    The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically) feasible reductions (MFR). Future climate (temperature and precipitation) was derived from the HadAM3 and ECHAM4/OPYC3 general circula...

  8. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    OpenAIRE

    Posch, M.; Aherne, J.; Forsius, M.; Fronzek, S.; N. Veijalainen

    2008-01-01

    The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically) feasible reductions (MFR). Future climate (temperature and precipitation) was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under ...

  9. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined and...... evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change and...... illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  10. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  11. Contributions to uncertainty in projections of future drought under climate change scenarios

    Directory of Open Access Journals (Sweden)

    I. H. Taylor

    2012-11-01

    Full Text Available Drought is a cumulative event, often difficult to define and involving wide reaching consequences for agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought may change in the future and which sources of uncertainty are dominant can inform appropriate decisions to guide drought impacts assessments. Uncertainties in future projections of drought arise from several sources and our aim is to understand how these sources of uncertainty contribute to future projections of drought. We consider four sources of uncertainty; climate model uncertainty associated with future climate projections, future emissions of greenhouse gases (future scenario uncertainty, type of drought (drought index uncertainty and drought event definition (threshold uncertainty. Three drought indices (the Standardised Precipitation Index (SPI, Soil Moisture Anomaly (SMA and Palmer Drought Severity Index (PDSI are calculated for the A1B and RCP2.6 future emissions scenarios using monthly model output from a 57 member perturbed parameter ensemble of climate simulations of the HadCM3C Earth system model, for the baseline period, 1961–1990, and the period 2070–2099 (representing the 2080s. We consider where there are significant increases or decreases in the proportion of time spent in drought in the 2080s compared to the baseline and compare the effects from the four sources of uncertainty. Our results suggest that, of the included uncertainty sources, choice of drought index is the most important factor influencing uncertainty in future projections of drought (60%–85% of total included uncertainty. There is a greater range of uncertainty between drought indices than that between the mitigation scenario RCP2.6 and the A1B emissions scenario (5%–6% in the 2050s to 17%–18% in the 2080s and across the different model variants in the ensemble (9%–17%. Choice of drought threshold has the least influence on uncertainty in future

  12. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2011-08-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland

  13. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2012-02-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern

  14. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    Directory of Open Access Journals (Sweden)

    Karine Princé

    Full Text Available Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform

  15. Future Climatic and agroclimatic conditions in Europe based on a stochastic weather generator and climate change scenarios of different levels of complexity

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Trnka, Miroslav

    Berlín: European Meteorological Society, 2013. [EMS Annual Meeting /13./ and European Conference on Applied Climatology /11./. 09.09.2013-13.09.2013, Reading] R&D Projects: GA MŠk LD12029 Institutional support: RVO:68378289 Keywords : stochastic weather generator * Global Climate Model * climate change Scenarios * climate change impacts * climatic indices * agroclimatic indices * Europe Subject RIV: DG - Athmosphere Sciences, Meteorology http://meetingorganizer.copernicus.org/EMS2013/EMS2013-683-2.pdf

  16. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2007-09-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. Predicted changes in dissolved organic carbon induced by reductions in acid deposition or increases in temperature may potentially influence the recovery of surface waters from acidification and may offset the increase in pH resulting from S deposition reductions. However, many climate-induced changes in processes are generally not incorporated in current versions of acidification models. To allow more reliable forecasts, the mechanisms by

  17. Evaluating watershed service availability under future management and climate change scenarios in the Pangani Basin

    Science.gov (United States)

    Notter, Benedikt; Hurni, Hans; Wiesmann, Urs; Ngana, James O.

    Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved. In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios. The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times

  18. Climatic change effects on agriculture. A future scenario; Auswirkungen des Klimawandels auf die Landwirtschaft. Ein Zukunftsszenario

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Udo [Deutscher Wetterdienst, Offenbach (Germany). Abt. Agrarmeteorologie

    2014-07-01

    The contribution on the effect of the climatic change on agriculture covers the topics meteorology - agriculture, modeling of the climate, observation of projected changes - temperature, precipitation and extreme weather conditions; effects of the climatic change on selected agro-meteorological parameters in agriculture - surface temperature, shift of the growing period, corn and other energy plants for biogas production, droughts.

  19. Potential Impact of Climate Changes on the Inundation Risk Levels in a Dam Break Scenario

    Directory of Open Access Journals (Sweden)

    Sudha Yerramilli

    2013-03-01

    Full Text Available The overall objective of the study is to generate information for an enhanced land use planning with respect to flood hazards. The study assesses the potential impact of climate change by simulating a dam break scenario in a high intensity rainfall event and evaluates the vulnerability risk in the downstream region by integrating ArcGIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS technologies. In the past century, the evidence of climate changes are observed in terms of increase in high intensity rainfall events. These events are of high concern, as increased inflow rates may increase the probability of a dam failure, leading to higher magnitude flooding events involving multiple consequences. The 100 year historical rainfall data for the central Mississippi region reveals an increased trend in the intensity of rainfall rates after the 1970s. With more than 10% of high hazard dams in the central region, the damage can be far accumulative. The study determines occurrence of the high intensity rainfall event in the past 100 years for central Mississippi and simulates a Ross Barnett Reservoir dam break scenario and evaluates the vulnerability risks due to inundation in the immediate downstream region, which happens to be the State Capital. The results indicate that the inundation due to a Ross Barnett Reservoir failure under high intensity rainfall event is comparable to a catastrophic flood event experienced by the region in 1979, which almost equals a 200-year flood magnitude. The results indicate that the extent and depth of flood waters poses a significant destructive threat to the state capital, inundating various infrastructural and transportation networks.

  20. DDF-curves updating in climate change scenarios for Southern Italy

    Science.gov (United States)

    Liuzzoa, L.; Freni, G.

    2015-12-01

    Recently trends in extreme rainfall were investigated on the global, regional and local scales. On the global scale, there is robust observational evidence that the frequency and intensity of extreme events significantly changed over the last decades. For this reason, climate change effects on extreme rainfall should be accounted in the design of hydraulics infrastructures, in particular in the definition of rainfall depth-duration-frequency (DDF) curves. The purpose of this study is to provide an assessment of the effects of statistically significant trends in extreme rainfall on the rainfall depth-duration-frequency (DDF) curves for the return periods typically used in the design of urban drainage systems. The methodology proposed in this study was applied in Southern Italy, specifically in Sicily. Firstly, the detection and quantification of trends in the annual maximum rainfall series of different durations, recorded in 65 rain gauges over the 1950-2008 period, were carried out. For each duration, the moving averages were computed and then the Mann-Kendall test was applied. Results showed that, for all the durations, increasing and decreasing trends occurred over the examined period. The generalized extreme value distribution (GEV) has been employed to compute extreme rainfall with return periods equal to 5, 10 and 20 years. The magnitude of statistically significant trends were used in order to modify the GEV parameters and define the DDF curves in some climate scenarios. The study highlighted the need to revise and update design criteria to account for potential future variations of extreme rainfall due to climate change.

  1. Socio-economic scenarios for climate change impact assessment : a guide to their use in the UK Climate Impacts Programme

    OpenAIRE

    2001-01-01

    Enormous challenges are faced in devising socio-economic scenarios for the assessment of future impacts and there is very little experience to draw upon. Socio-economic scenarios have not been widely used within impacts studies, but this report will serve to encourage their use more widely within the UK Climate Impacts Programme (UKCIP). The aim has been to develop a scenarios framework through which stakeholders are able to reflect upon possible alternative futures and to make...

  2. Economic impacts of climate change. Flooding and salinity in scenarios, models and cases; Economische effecten van klimaatverandering. Overstroming en verzilting in scenario's, modellen en cases

    Energy Technology Data Exchange (ETDEWEB)

    Jonkhoff, W.; Koops, O.; Van der Krogt, R.; Oude Essink, G.; Rietveld, E.

    2008-07-15

    In this report, climatic and economic scenarios are combined and future risks are calculated for the consequences of climate change, such as a rising sea level, flooding, extreme draughts and salinity. The calculation of these economic effects of climate change are based on climate scenarios of the KNMI (Royal Dutch Meteorological Institute), TNO's RAEM model (Spatial General Economic Model), the high tide information system of the Dutch Ministry of Waterways and Public Works and the Space scanner of the Environmental Assessment Agency. Next to information on scenarios and models, this report also addresses damage calculations of flooding near Lopik and Ter Heide. The report ends with policy recommendations for adaptation policy. [mk]. [Dutch] In dit rapport zijn klimaat- en economische scenario's met elkaar gecombineerd en toekomstige risico's berekend voor de gevolgen van klimaatverandering, zoals zeespiegelstijging, overstromingen, extreme droogte en verzilting. Om deze economische effecten van klimaatverandering te kunnen berekenen is gebruik gemaakt van klimaatscenario's van het KNMI, TNO's RAEM model (Ruimtelijk Algemeen Economisch Model), het Hoogwater Informatie Systeem van Rijkswaterstaat en de Ruimtescanner van het Milieu- en Natuur Planbureau. Behalve dat ingegaan wordt op scenario's en modellen, bevat dit rapport ook schadeberekeningen van overstromingen bij Lopik en Ter Heide. Het rapport sluit af met beleidsaanbevelingen voor adaptatiebeleid.

  3. Hydrologic response of Upper Ganga basin under changing land use and climate scenarios

    Science.gov (United States)

    Mujumdar, P.; Chawla, I.

    2013-12-01

    In the backdrop of recent devastation caused by flooding of the Ganga River in the upstream reaches of Uttarakhand region, India, it has become necessary to understand the implications of climate variability and human induced changes in landscape on the hydrology of the region. The present study assesses the effect of changing land use and climate on the hydrology of the Upper Ganga basin (UGB) using the Variable Infiltration Capacity (VIC) model. Initially, the temporal changes in land use and land cover (LULC) of the region are identified using high resolution multispectral satellite imageries from Landsat, for the years 1973, 1980, 2000 and 2011. The LULC analysis results show an increase in crop land and urban area in the region by 47% and 122% respectively from 1973 to 2011. After an initial decline in dense forest for three decades (from 14.5% in 1973 to 11.44% in 2000), a slight increase in dense forest is observed between 2000- 2011,from 11.44% to 14.8%. The scrub forest area and the barren land are observed to decline in the study region by 62% and 96% respectively since 1973. The land cover information along with meteorological data and soil data are used to drive the VIC model to investigate the impact of LULC changes on hydrological processes such as streamflow, baseflow, evapotranspiration (ET) and soil moisture in the UGB. For the simulation purpose, the basin is divided into three regions: (1) upstream, (2) midstream and (3) downstream. The VIC model is calibrated and validated for all the three regions independently at monthly time scale. The model outputs from the three regions are aggregated appropriately to generate the hydrologic response of the entire UGB. Using the calibrated model for the three regions of the UGB, sensitivity analysis is performed by generating hydrologic scenarios corresponding to different land use (LU) and climate conditions. The results from an experiment in which the climate is held constant at 1971 level and effect of

  4. Quantifying uncertainty in urban flooding analysis caused by the combined effect of climate and land use change scenarios

    Directory of Open Access Journals (Sweden)

    I.-W. Jung

    2010-08-01

    Full Text Available How will the combined impacts of land use change and climate change influence changes in urban flood frequency and what is the main uncertainty source of the results? We attempt to answer to these questions in two catchments with different degrees of urbanization, the Fanno catchment with 84% urban land use and the Johnson catchment with 36% urban land use, both located in the Pacific Northwest of the US. Five uncertainty sources – general circulation model (GCM structures, future greenhouse gas (GHG emission scenarios, land use change scenarios, natural variability, and hydrologic model parameters – are considered to compare the relative source of uncertainty in flood frequency projections. Two land use change scenarios conservation and development, representing possible future land use changes are used for analysis. Results show the highest increase in flood frequency under the combination of medium high GHG emission (A1B and development scenarios, and the lowest increase under the combination of low GHG emission (B1 and conservation scenarios. Although the combined impact is more significant to flood frequency change than individual scenarios, it does not linearly increase flood frequency. Changes in flood frequency are more sensitive to climate change than land use change in the two catchments for 2050s (2040–2069. Shorter term flood frequency change, 2 and 5 year floods, is highly affected by GCM structure, while longer term flood frequency change above 25 year floods is dominated by natural variability. Projected flood frequency changes more significantly in Johnson creek than Fanno creek. This result indicates that, under expected climate change conditions, an adaptive urban planning based on the conservation scenario could be more effective in less developed Johnson catchment than in the already developed Fanno catchment.

  5. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on river basin sediment yield

    Science.gov (United States)

    Coulthard, T. J.; Ramirez, J.; Fowler, H. J.; Glenis, V.

    2012-07-01

    Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status, as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from Global or Regional Climate Models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade". This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070-2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070-2099 High emissions scenario, sediment discharges from 50 yr return period events are predicted to

  6. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield

    Directory of Open Access Journals (Sweden)

    T. J. Coulthard

    2012-11-01

    Full Text Available Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from global or regional climate models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade".

    This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070–2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070–2099 High emissions scenario, sediment discharges from 50-yr

  7. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield

    Science.gov (United States)

    Coulthard, T. J.; Ramirez, J.; Fowler, H. J.; Glenis, V.

    2012-11-01

    Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from global or regional climate models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade". This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070-2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070-2099 High emissions scenario, sediment discharges from 50-yr return period events are predicted to

  8. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on river basin sediment yield

    Directory of Open Access Journals (Sweden)

    T. J. Coulthard

    2012-07-01

    Full Text Available Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status, as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from Global or Regional Climate Models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade".

    This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070–2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070–2099 High emissions scenario, sediment discharges from 50 yr

  9. How to manage uncertainty in future Life Cycle Assessment (LCA) scenarios addressing the effect of climate change in crop production

    DEFF Research Database (Denmark)

    Niero, Monia; Ingvordsen, Cathrine Heinz; Bagger Jørgensen, Rikke;

    2015-01-01

    When Life Cycle Assessment (LCA) is used to provide insights on how to pursue future food demand, it faces the challenge to describe scenarios of the future in which the environmental impacts occur. In the case of future crop production, the effects of climate change should be considered. In this...... context, the objectives of this paper are two-fold: (i) to recommend an approach to deal with uncertainty in scenario analysis for LCA of crop production in a changed climate, when the goal of the study is to suggest strategies for adaptation of crop cultivation practices towards low environmental impacts......, and (ii) to implement the suggested approach to spring barley cultivation in Denmark. First, the main implications of climate change for future crop cultivation are analyzed, and the factors which should be included when modeling the climate change effects on crops through LCA are introduced, namely...

  10. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios

    Directory of Open Access Journals (Sweden)

    M. E. Elshamy

    2008-06-01

    Full Text Available Global circulation models (GCMs depict different pictures for the future of Nile basin flows in general and for the Blue Nile sub-basin in particular. This study analyses the output of 17 GCMs included in the 4th IPCC assessment report. Downscaled precipitation and potential evapotranspiration (PET scenarios for the 2081–2098 period were constructed for the upper Blue Nile basin. These were used to drive a fine-scale hydrological model of the Nile Basin to assess their impacts on the flows of the upper Blue Nile at Diem, which accounts for about 60% of the total annual Nile yield. All models showed increases in temperature with annual values ranging from 2°C to 5°C. All GCMs also showed increases in total annual PET varying from +2 to +14%. GCMs disagreed on precipitation changes with values between −15% and +14%, but more models reported reductions (10 than those reporting increases (7. The ensemble mean of the 17 GCMs showed no change. Compounded with the high climatic sensitivity of the basin, the annual flow changed by values ranging between −60% to +45%. The increase in PET either offsets the increase in rainfall or exacerbates its reduction and the ensemble mean flow is reduced by 15%. The results were also used to study the linkages between temperature, rainfall, PET and flow. Simple relationships are devised that can be used to estimate the impacts of climate change and facilitate comparison with output from other hydrological models and GCMs.

  11. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    Science.gov (United States)

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-01-01

    A new Web-based application, titled “Application of Flood Regressions and Climate Change Scenarios To Explore Estimates of Future Peak Flows”, has been developed by the U.S. Geological Survey, in cooperation with the New York State Department of Transportation, that allows a user to apply a set of regression equations to estimate the magnitude of future floods for any stream or river in New York State (exclusive of Long Island) and the Lake Champlain Basin in Vermont. The regression equations that are the basis of the current application were developed in previous investigations by the U.S. Geological Survey (USGS) and are described at the USGS StreamStats Web sites for New York (http://water.usgs.gov/osw/streamstats/new_york.html) and Vermont (http://water.usgs.gov/osw/streamstats/Vermont.html). These regression equations include several fixed landscape metrics that quantify aspects of watershed geomorphology, basin size, and land cover as well as a climate variable—either annual precipitation or annual runoff.

  12. Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-quantitative Scenario Planning Workshops

    Science.gov (United States)

    Ray, A. J.

    2015-12-01

    This presentation will describe a project to between ecologists and climate scientists to inform National Park Service managers who are developing scenario planning for their parks and surrounding areas; this effort is advancing scenario methodologies and improving delivery mechanisms and applications to decision-making for National Parks. Climate change is expressed in both regional climatic shifts (e.g., temperature and precipitation changes) and local resource impacts. Resource management in a changing climate is challenging because future climate change and resource responses cannot be precisely predicted. Scenario planning is a tool to assess the range of plausible future conditions. However, selecting, acquiring, synthesizing, and scaling climate information for scenario planning requires significant time and skills. This project, which was recently selected for funding by the NC CSC, has three goals: 1) synthesize climate data into 3-5 distinctly different but plausible climate summaries for the northern Great Plains region; 2) craft summaries of these climate futures that are relevant to local land management units; and 3) apply these local summaries to further develop quantitative climate-resource-management scenarios through participatory workshops and simulation models. We will engage multiple stakeholders in two focal areas within the region: southwestern South Dakota in the vicinity of Badlands National Park, and central North Dakota in the vicinity of Knife River Indian Villages National Historic Site. This effort will increase climate change planning efficiency in the region; promote collaborations across jurisdictions; and develop a prototype for a novel, efficient, and replicable form of scenario planning that could serve additional management units.

  13. Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: a pairwise comparison approach

    DEFF Research Database (Denmark)

    Abildtrup, Jens; Audsley, E.; Fekete-Farkas, M.;

    2006-01-01

    European agricultural land use. The scenarios are interpreted from the storylines described in the intergovernmental panel on climate change (IPCC) special report on emission scenarios (SRES), which ensures internal consistency between the evolution of socio-economics and climate change. A stepwise...... downscaling procedure based on expert-judgement and pairwise comparison is presented to obtain quantitative socio-economic parameters, e.g. prices and productivity estimates that are input to the ACCELERATES integrated land use model. In the first step, the global driving forces are identified and quantified...... for each of the four SRES scenario families. In the second step, European agricultural driving forces are derived for each scenario from global driving forces. Finally, parameters for the agricultural land use model are quantified. The stepwise procedure is appropriate when developing socio...

  14. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Joyner

    Full Text Available Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km(2 and 8 km(2 and a 6-variable BioClim data set at 8 km(2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting approximately 14-16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting approximately 15% loss at 55 km(2, approximately 34% loss at 8 km(2, and approximately 30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km(2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B

  15. Winds of change: How will windstorms and forest harvesting affect C cycling in northern MN under different climate scenarios?

    Science.gov (United States)

    Lucash, M. S.; Scheller, R. M.; Gustafson, E.; Sturtevant, B.

    2013-12-01

    Forest managers struggle to manage timber resources while integrating the complex interactions that exist among disturbances with the novel conditions produced by a changing climate. To help forest managers better integrate climate change and disturbance projections into their forest management plans, we are using a forest landscape disturbance and succession model (LANDIS-II, Century extension) to project carbon sequestration in northern Minnesota under multiple climate change, management and disturbance scenarios. The model was calibrated and validated using empirical estimates of aboveground productivity and net ecosystem exchange. Our simulations suggest that windstorms will decrease tree biomass and soil organic matter and will increase dead C, resulting in an overall decrease in total C and C sink strength under the GFDL A1FI climate scenario. However the direct effects of climate change on C via altered production and heterotrophic respiration were larger than the impacts of wind. In contrast, forest harvesting will remain the dominant determinant of C dynamics under A1FI, even under management scenarios of more selective logging and longer rotation periods. Recovery from historic (late 1800s and early 1900s) disturbance - clearcut logging and wildfire - remain an important, though declining, driver of long-term C dynamics. Our research results will inform regional planning efforts and help forest managers evaluate the relative importance of disturbances (e.g. wind) and forest harvesting under a changing climate.

  16. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2008-03-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.

  17. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    Science.gov (United States)

    Powell, Thomas W. R.; Lenton, Timothy M.

    2013-06-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species-energy and species-area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect.

  18. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    International Nuclear Information System (INIS)

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species–energy and species–area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect. (letter)

  19. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios

    Directory of Open Access Journals (Sweden)

    C. S. Cheng

    2007-01-01

    Full Text Available Freezing rain is a major atmospheric hazard in mid-latitude nations of the globe. Among all Canadian hydrometeorological hazards, freezing rain is associated with the highest damage costs per event. Using synoptic weather typing to identify the occurrence of freezing rain events, this study estimates changes in future freezing rain events under future climate scenarios for south-central Canada. Synoptic weather typing consists of principal components analysis, an average linkage clustering procedure (i.e., a hierarchical agglomerative cluster method, and discriminant function analysis (a nonhierarchical method. Meteorological data used in the analysis included hourly surface observations from 15 selected weather stations and six atmospheric levels of six-hourly National Centers for Environmental Prediction (NCEP upper-air reanalysis weather variables for the winter months (November–April of 1958/59–2000/01. A statistical downscaling method was used to downscale four general circulation model (GCM scenarios to the selected weather stations. Using downscaled scenarios, discriminant function analysis was used to project the occurrence of future weather types. The within-type frequency of future freezing rain events is assumed to be directly proportional to the change in frequency of future freezing rain-related weather types The results showed that with warming temperatures in a future climate, percentage increases in the occurrence of freezing rain events in the north of the study area are likely to be greater than those in the south. By the 2050s, freezing rain events for the three colder months (December–February could increase by about 85% (95% confidence interval – CI: ±13%, 60% (95% CI: ±9%, and 40% (95% CI: ±6% in northern Ontario, eastern Ontario (including Montreal, Quebec, and southern Ontario, respectively. The increase by the 2080s could be even greater: about 135% (95% CI: ±20%, 95% (95% CI: ±13%, and 45% (95% CI: ±9

  20. Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands

    Science.gov (United States)

    Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

    2013-12-01

    In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario

  1. Application of the new scenario framework for climate change research: Future social vulnerability in large urban areas

    Science.gov (United States)

    Rohat, Guillaume; Flacke, Johannes; Dao, Hy

    2016-04-01

    It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more

  2. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios and Ecosystem ServicesIndicators

    Science.gov (United States)

    While discussions of global climate change tend to center on greenhouse gases and sea level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasin...

  3. Water resources under future scenarios of climate change and biofuel development: A case study for Yakima River basin

    Science.gov (United States)

    Demissie, Y. K.

    2013-12-01

    In recent years, biofuel has become an important renewable energy source with a potential to help mitigate climate change. However, agriculture productivity and its potential use for sustainable production of biofuel are strongly dependent on climate and water conditions that may change in response to future changes in climate and/or socio-economic conditions. For instant in 2012, the US has experienced the most severe drought that results in a 12% decrease in corn production - the main feedstock used for biofuel in US - indicating the vulnerability of biofuel development and policies to change in climate and associated extreme weather conditions. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have applied a SWAT watershed model which integrates future scenarios of climate change and biofuel development and simulates the associated impacts on watershed hydrology, water quality, soil erosion, and agriculture productivity. The study is applied to the Yakima River basin (YRB), which has higher biomass resources in Washington State and represents a region where forestry and agriculture intersect with considerable water shortage as well as spatial variations in annual precipitation. Unlike earlier studies, which commonly define biofuel and climate change scenarios independently, in this study the decision on alternative biofuel feedstock mixes and associated change in land use and management take into account the anticipated climate change. The resulted spatial and temporal distributions of water budget, nutrient loads, and sediment erosion is analyzed to evaluate the effectiveness of biofuel policies under constraints of climate change and water resources in the region.

  4. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-04-01

    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness. PMID:26841292

  5. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    Science.gov (United States)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  6. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario

    Science.gov (United States)

    Stempniewicz, Lech; Błachowiak-Samołyk, Katarzyna; Węsławski, Jan M.

    2007-11-01

    Many arctic terrestrial ecosystems suffer from a permanent deficiency of nutrients. Marine birds that forage at sea and breed on land can transport organic matter from the sea to land, and thus help to initiate and sustain terrestrial ecosystems. This organic matter initiates the emergence of local tundra communities, increasing primary and secondary production and species diversity. Climate change will influence ocean circulation and the hydrologic regime, which will consequently lead to a restructuring of zooplankton communities between cold arctic waters, with a dominance of large zooplankton species, and Atlantic waters in which small species predominate. The dominance of large zooplankton favours plankton-eating seabirds, such as the little auk ( Alle alle), while the presence of small zooplankton redirects the food chain to plankton-eating fish, up through to fish-eating birds (e.g., guillemots Uria sp.). Thus, in regions where the two water masses compete for dominance, such as in the Barents Sea, plankton-eating birds should dominate the avifauna in cold periods and recess in warmer periods, when fish-eaters should prevail. Therefore under future anthropogenic climate scenarios, there could be serious consequences for the structure and functioning of the terrestrial part of arctic ecosystems, due in part to changes in the arctic marine avifauna. Large colonies of plankton-eating little auks are located on mild mountain slopes, usually a few kilometres from the shore, whereas colonies of fish-eating guillemots are situated on rocky cliffs at the coast. The impact of guillemots on the terrestrial ecosystems is therefore much smaller than for little auks because of the rapid washing-out to sea of the guano deposited on the seabird cliffs. These characteristics of seabird nesting sites dramatically limit the range of occurrence of ornithogenic soils, and the accompanying flora and fauna, to locations where talus-breeding species occur. As a result of climate

  7. Winter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indices

    Science.gov (United States)

    Hong, Ja-Young; Ahn, Joong-Bae; Jhun, Jong-Ghap

    2016-03-01

    The changes in the winter climatology and variability of the East Asian winter monsoon (EAWM) for the late 21st century (2070-2099) under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected in terms of EAWM indices (EAWMIs). Firstly, the capability of the climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating the boreal winter climatology and the interannual variability of the EAWM for the late 20th century (1971-2000) is examined. Nine of twenty-three climate models are selected based on the pattern correlations with observation and a multi-model ensemble is applied to the nine model data. Three of twelve EAWMIs that show the most significant temporal correlations between the observation and CMIP5 surface air temperatures are utilized. The ensemble CMIP5 is capable of reproducing the overall features of the EAWM in spite of some biases in the region. The negative correlations between the EAWMIs and boreal winter temperature are well reproduced and 3-5 years of the major interannual variation observed in this region are also well simulated according to power spectral analyses of the simulated indices. The fields regressed onto the indices that resemble the composite strong winter monsoon pattern are simulated more or less weakly in CMIP5 compared to the observation. However, the regressed fields of sea level pressure, surface air temperature, 500-hPa geopotential height, and 300-hPa zonal wind are well established with pattern correlations above 0.83 between CMIP5 and observation data. The differences between RCPs and Historical indicate strong warming, which increases with latitude, ranging from 1 to 5 °C under RCP4.5 and from 3 to 7 °C under RCP8.5 in the East Asian region. The anomalous southerly winds generally become stronger, implying weaker EAWMs in both scenarios. These features are also identified with fields regressed onto the indices in RCPs. The future projections reveal

  8. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget

    NARCIS (Netherlands)

    Karjalainen, T.; Pusinen, A.; Liski, J.; Nabuurs, G.J.; Eggers, T.; Lapveteläinen, T.; Kaipainen, T.

    2003-01-01

    Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of

  9. Constructing climate change scenarios of urban heat island intensity and air quality

    OpenAIRE

    Robert L. Wilby

    2008-01-01

    As the global population becomes increasingly urbanised, so interest has grown in the potential climate change impacts on city infrastructure, services, and environmental quality. However, urban areas are only beginning to be represented explicitly in the land-surface schemes of dynamical climate models through modified energy and moisture budgets. This paper summarises recent evidence of urban impacts on climate and vice versa. The technique of statistical downscaling is then introduced thro...

  10. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    Energy Technology Data Exchange (ETDEWEB)

    Baruffi, F. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cisotto, A., E-mail: segreteria@adbve.it [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Pretner, A.; Galli, A. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Scarinci, A., E-mail: andrea.scarinci@sgi-spa.it [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Marsala, V.; Panelli, C. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Gualdi, S., E-mail: silvio.gualdi@bo.ingv.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Bucchignani, E., E-mail: e.bucchignani@cira.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Torresan, S., E-mail: torresan@cmcc.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Pasini, S., E-mail: sara.pasini@stud.unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); Critto, A., E-mail: critto@unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); and others

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  11. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    International Nuclear Information System (INIS)

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961–1990 and the projection period 2010–2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071–2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble

  12. The carbon budget of Pinus radiata plantations in south-western Australia under 4 climate change scenarios

    International Nuclear Information System (INIS)

    The future stem wood production and net ecosystem production of Pinus radiata plantations in southwestern Australia were estimated in this modelling study, which was conducted in order to determine the potential effects of anticipated severe rainfall reductions in the region. Four climate change and emission scenarios were considered as well as simulations of the present climate. Results of the study showed that stem wood production and NEP were not significantly influenced by moderate changes in temperature. However, stem wood production and NEP decreased significantly under the most pessimistic climate change scenarios. Results of the study suggested that a trade-off between the positive effects of rising atmospheric carbon dioxide (CO2) on plant and water use efficiency and the negative impacts of decreased rainfall and increased temperatures. Changes in heterotrophic respiration lagged behind changes in plant growth. It was concluded that realistic predictions of forest production and carbon sequestration potential will require modelling tools capable of characterizing interactions between environmental variables, plant physiology and soil organic matter decomposition, as well as the potential range of climate change scenarios. 53 refs., 4 tabs., 9 figs

  13. Species distributions and climate change:current patterns and future scenarios for biodiversity

    DEFF Research Database (Denmark)

    Hof, Christian

    How does climate change affect biodiversity? - Answering this question is one of the most important tasks in current ecological research. Earth has been warming by 0.7°C during the last 100 years, and the consequences are already apparent in biotic systems. For example, species are responding...... suggest that climatic changes during and after the Pleistocene may have been much faster than commonly assumed. In one of the studies of this thesis I discuss the consequences of these findings for species and ecosystems. Since these rapid climate change events did not cause a broad-spectrum mass...... extinction, one might assume that most species may also be able to successfully cope with contemporary climate change. However, current ecosystems are heavily modified by humans. Among other factors, habitat destruction and fragmentation caused by anthropogenic land-use changes negatively affect species...

  14. Hydrological projections of climate change scenarios in the Lena and the Mackenzie basins: modeling and uncertainty issues

    Science.gov (United States)

    Gelfan, Alexander; Gustafsson, David; Motovilov, Yury; Arheimer, Berit; Kalugin, Andrei; Krylenko, Inna; Lavrenov, Alexander

    2016-04-01

    The ECOMAG and the HYPE regional hydrological models were setup to assess possible impacts of climate change on the hydrological regime of two pan-Arctic great drainage basins: the Lena and the Mackenzie rivers. We firstly assessed the reliability of the hydrological models to reproduce the historical streamflow series and analyse the hydrological projections from the climate change scenarios. The impacts were assessed in three 30-year periods: early- (2006-2035), mid- (2036-2065) and end-century (2070-2099) using an ensemble of five GCMs and four Representative Concentration Pathways (RCP) scenarios. Results show, particularly, that the basins react with multi-year delay to changes in the RCP2.6 mitigation (peak-and-decline) scenario, and consequently to the potential mitigation measures. Then we assessed the hydrological projections' uncertainty, which is caused by the GCM's and RCP's variabilities, and indicated that the uncertainty rises with the time horizon of the projection and, generally, the uncertainty interval is wider for Mackenzie than for Lena. We finally compare the potential future hydrological impacts predicted based on the GCM-scenario ensemble approach and the delta-change transformation method of the historical observations. We found that the latter method can produce useful information about the climate change impact in the great Arctic rivers, at least for the nearest decades.

  15. Consideration of environmental change in the safety evaluation: Long-term climate scenarios in the Iberian Peninsula

    International Nuclear Information System (INIS)

    The main objective of this report is twofold. On the one hand, to define the most likely sequences of climate states in the Iberian Peninsula for a period of 125 Ka into the future, to the next interglacial stage, 125 Ka AP; on the other hand, to establish potential climate scenarios during such a period of time determining also the variability ranges of primary climate and climate-related variables of interest to the post-closure performance assessment and underground repository safety evaluations. The report reviews the potential effects of environmental changes on the performance of underground radioactive waste repositories, emphasizing the consideration given to long-term climatic changes in radioactive waste disposal system safety evaluations. (Author)

  16. How Do Land-Use and Climate Change Affect Watershed Health? A Scenario-Based Analysis

    Science.gov (United States)

    With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing comp...

  17. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-01-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  18. Using Scenario Planning to Evaluate the Impacts of Climate Change on Wildlife Populations and Communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-04-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  19. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades.

    Science.gov (United States)

    Catano, Christopher P; Romañach, Stephanie S; Beerens, James M; Pearlstine, Leonard G; Brandt, Laura A; Hart, Kristen M; Mazzotti, Frank J; Trexler, Joel C

    2015-04-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise. PMID:25371194

  20. Modelling runoff response from Hindukush-Karakoram-Himalaya, Upper Indus Basin under prevailing and projected climate change scenarios

    Science.gov (United States)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2015-04-01

    We, analyzing observations from high altitude automated weather stations from the Hindukush-Karakoram-Himalaya (HKH) within upper Indus basin (UIB), assess prevailing state of climatic changes over the UIB and whether such state is consistently represented by the latest generation climate model simulations. We further assess impacts of future climate change on the hydrology of the UIB, and changes in its snow and glacier melt regimes, separately. For this, a semi-distributed watershed model (UBC - University of British Columbia) has been calibrated/validated for UIB at Besham Qila (just above the Tarbela reservoir) using daily historical climate (Tmax, Tmin and Precipitation) and river flow data for the period 1995-2012. Our results show that the UIB stands out the anthropogenic climate change signal, featuring a significant cooling (warming) during the mid-to-late (early) melt season and an enhanced influence of the westerly and monsoonal precipitation regimes. We also show that such phenomena, particularly the summer cooling is largely absent from the latest generation climate model simulations, suggesting their irrelevance for at least near-future assessment of climate change impacts on the hydrology of UIB. Therefore, we construct a hypothetical but more relevant near-future climate change scenario till 2030 based on prevailing state of climate change over UIB. We additionally obtain climate change scenario as projected by five high-resolution CMIP5 climate models under an extreme representative concentration pathway RCP8.5 for the period 2085-2100, assuming that such a scenario may only be realized in the far-future, if at all. Under the hypothetical near-future scenario, our modelling results show that the glacier melt (snowmelt) contribution will decrease (increase) due to cooling (warming) in mid-to-late (early) melt season, though the overall flows will drop. Consequently, the overall hydrological regime will experience an early snow- but a delayed glacier

  1. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee

    2014-01-01

    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  2. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  3. Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios

    OpenAIRE

    Bedia, J.; Herrera, S.; Camia, A.; Moreno, J.M.; Gutiérrez, J M

    2014-01-01

    We present future fire danger scenarios for the countries bordering the Mediterranean areas of Europe and north Africa building on a multi-model ensemble of state-of-the-art regional climate projections from the EU-funded project ENSEMBLES. Fire danger is estimated using the Canadian Forest Fire Weather Index (FWI) System and a related set of indices. To overcome some of the limitations of ENSEMBLES data for their application on the FWI System-recently highlighted in a previous study by Herre...

  4. FINADAPT scenarios for the 21st century. Alternative futures for considering adaptation to climate change in Finland. FINADAPT Working Paper 2

    OpenAIRE

    Carter, Timothy R.; JylhÀ, Kirsti; Perrels, Adriaan; Fronzek,Stefan; KankaanpÀÀ, Susanna

    2005-01-01

    A set of three scenarios of environmental and socio-economic conditions in Finland during the 21st century is presented. The scenarios were developed to provide a contextual framework for research into adaptation to climate change in the FINADAPT project. They have similarities to the IPCC SRES global scenarios, but they also differ from SRES because they are national in scope and they account for climate policy. The scenarios are labelled: Global Markets, assuming low greenhouse gas levels, ...

  5. Possible Scenarios of Impacts of Climatic Change on Potential Evapotranspiration in the Watershed of the Conchos River, Mexico

    Science.gov (United States)

    Raynal-Villasenor, J. A.; Rodriguez-Pineda, J. A.

    2007-12-01

    The watershed of the Conchos River is the main watershed of the state of Chihuahua, Mexico, and it is the main source of water of the watershed of the Grande river downstream El Paso, Texas. Such part of the watershed of the Grande River is also the border between Mexico and the United States of America, from El Paso-Ciudad Juarez up to Brownsville-Matamoros. It is very important for the state of Chihuahua and Mexico as a whole, to construct possible scenarios of the effects of the global climatic change in the potential evapotranspiration in such watershed and to construct likely scenarios which results will help to define an integrated watershed management to mitigate those global climate change impacts. The results of a recent study sponsored by the alliance between WWF-Fundacion Gonzalo Rio Arronte, are presented in the paper. The study was conducted to construct possible scenarios on the effects of the global climatic change on the potential evapotranspiration in the watershed of the Conchos River in Mexico. Three watershed characteristic meteorological stations were selected to conduct such study. The predictions of change of the surface air temperature and the change of the rainfall produced by the global climatic change, by the end of the XXI Century, were those published by the Hadley Center. The results show that air temperature increment of one degree centigrade increases evapotranspiration values between 3 and 3.5% with respect current values. As a consequence moisture deficiency increases from 9% to 40%. With an air temperature increment of three degrees centigrades, the potential evapotranspiration increases between 8.8% and 10% increasing moisture deficiency from 27.5% up to 116%. The expected rainfall increment values show a negligible contribution for the potential evapotranspiration reduction in the Rio Conchos watershed. These results conclude that immediate actions need to be taken to mitigate climate change impacts all along the watershed.

  6. Scenario-Patent Protection Compared to Climate Change: The Case of Green Patents

    OpenAIRE

    Araken Alves de Lima; Patricia Carvalho dos Reis; Julio César Moreira Reis Castelo Branco; Rodrigo Danieli; Cibele Cristina Osawa; Eduardo Winter; Douglas Alves Santos

    2013-01-01

    The United Nations Framework on Climate Change (UNFCCC) took effect as a treaty in 1994 to promote international cooperation in the fight against global warming. Currently, nearly 190 countries are signatories of the UNFCCC, which has had successive additions as the Kyoto Protocol (1997). In 1995, the Climate Technology Initiative was established within the UNFCCC to encourage international cooperation in the accelerated development and diffusion of environmentally Sound Technologies - EST. S...

  7. Climate change and socio-economic scenarios, land use modelling implications on water resources in an inner alpine area, Switzerland

    Science.gov (United States)

    Rey, Emmanuel; Schneider, Flurina; Liniger, Hanspeter; Weingartner, Rolf; Herweg, Karl

    2014-05-01

    The MontanAqua project aims to study the water resources management in the region Sierre-Montana (Valais, Switzerland). Land use is known to have an influence on the water resources (soil moisture dynamic, soil sealing, surface runoff and deep percolation). Thus land use modelling is of importance for the water resources management. An actual land use map was produced using infrared imagery (Niklaus 2012, Fig.1). Land use changes are known to be mainly drived by socio-economic factors as well as climatic factors (Dolman et al. 2003). Potential future Land uses was separatly predicted according to 1-. socio-economic and 2-. climatic/abiotic drivers : 1. 4 socio-economic scenarios were developped with stakeholders (Schneider et al. 2013) between 2010 and 2012. We modeled those socio-economic scenarios into a GIS application using Python programming (ModelBuilder in ArcGIS 10) to get a cartographic transcription of the wishes of the stakeholders for their region in 2050. 2. Uncorrelated climatic and abiotic drivers were used in a BIOMOD2 (Georges et al. 2013) framework. 4 models were used: Maximum Entropy (MAXENT), Multiple Adaptive Regression Splines (MARS), Classification Tree Analysis (CTA) and the Flexible Discriminant Analysis (FDA) to predict grassland, alpine pasture, vineyards and forest in our study region. Climatic scenarios were then introduced into the models to predict potential land use in 2050 driven only by climatic and abiotic factors The comparison of all the outputs demonstrates that the socio-economic drivers will have a more important impact in the region than the climatic drivers (e.g. -70% grassland surface for the worst socio-economic scenario vs. -40% of grassland surface for the worst climatic models). Further analysis also brings out the sensitivity of the grassland/alpine pasture system to the climate change and to socio-economic changes. Future work will be to cross the different land use maps obtained by the two model types and to use

  8. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d' Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

    2014-01-01

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

  9. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  10. Climate change scenarios of precipitation extremes in the Carpathian region based on an ENSEMBLE of regional climate models

    Czech Academy of Sciences Publication Activity Database

    Gaál, Ladislav; Beranová, Romana; Hlavčová, K.; Kyselý, Jan

    2014-01-01

    Roč. 2014, č. 943487 (2014), s. 1-14. ISSN 1687-9309 R&D Projects: GA ČR(CZ) GA14-18675S Institutional support: RVO:68378289 Keywords : precipitation extremes * regional climate models * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.946, year: 2014 http://www.hindawi.com/journals/amete/2014/943487/

  11. ESTIMATES OF CHANGES IN COUNTY-LEVEL HOUSING PRICES IN THE UNITED STATES UNDER SCENARIOS OF FUTURE CLIMATE CHANGE

    OpenAIRE

    FRANCES SUSSMAN; BANSARI SAHA; Bierwagen, Britta G.; Weaver, Christopher P.; WILL COOPER; Morefield, Philip E.; Thomas, John V.

    2014-01-01

    Climate in a given location influences people's housing decisions, and changes in climate may affect these decisions in ways that alter our understanding of desirable locations. This study examines the potential sensitivity of future housing prices in the United States to changes in temperature, precipitation, and humidity by developing a hedonic regression model of the relationship between climate variables and housing prices and exploring implications of different climate futures for the am...

  12. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  13. Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar

    Directory of Open Access Journals (Sweden)

    Sulin Tao

    2016-02-01

    Full Text Available A sensitivity analysis of the responses of crops to the chosen production adaptation options under regional climate change was conducted in this study. Projections of winter wheat production for different sowing dates and cultivars were estimated for a major economic and agricultural province of China from 2021 to 2080 using the World Food Study model (WOFOST under representative concentration pathways (RCPs scenarios. A modeling chain was established and a correction method was proposed to reduce the bias of the resulting model-simulated climate data. The results indicated that adjusting the sowing dates and cultivars could mitigate the influences of climate change on winter wheat production in Jinagsu. The yield gains were projected from the chosen sowing date and cultivar. The following actions are recommended to ensure high and stable yields under future climate changes: (i advance the latest sowing date in some areas of northern Jiangsu; and (ii use heat-tolerant or heat-tolerant and drought-resistant varieties in most areas of Jiangsu rather than the currently used cultivar. Fewer of the common negative effects of using a single climate model occurred when using the sensitivity analysis because our bias correction method was effective for scenario data and because the WOFOST performed well for Jiangsu after calibration.

  14. The mechanism and scenarios of how mean annual runoff varies with climate change in Asian monsoon areas

    Science.gov (United States)

    Chen, Junxu; Xia, Jun; Zhao, Changsen; Zhang, Shifeng; Fu, Guobin; Ning, Like

    2014-09-01

    Understanding the effects of climate change on runoff is important for the sustainable management of water resources. However, the mechanism of such effects in the Asian monsoon region remains unclear. This study revisits Fu's two-parameter climate elasticity index and enhances it by using the Gardner function to strengthen the former's prediction reliability when the future climate condition is beyond the historical range. Then the improved method was applied to study the elasticity change with temperature and precipitation in the eastern monsoon basins of China, whereas to explore the mechanism of climate change on runoff. Furthermore, the runoff change and the elasticity of the study area from 2020 to 2050 under representative concentration pathways (RCPs) were predicted. Results show that the trend of elasticity change assumes a centrosymmetric picture with the symmetric point (0, 0). Different catchments respond differently to the same climate change scenario: the sensitivity of the Haihe Basin is the highest; those of Yellow, Huaihe, Liaohe, Songhua, Pearl, Yangtze, and Southeast Rivers are lower, in descending order. The changing mode of precipitation and temperature differs greatly to keep the runoff unchanged. For semi-humid regions in which the mean annual temperature ranges from 0.71 °C to 9.0 °C, such as the basins of Songhua, Liaohe, Haihe, and Yellow, a 1 °C increase in temperature requires a corresponding 3.2-4.0% increase in precipitation to keep the runoff unchanged. However, in wet regions, such as the basins of Yangtze, Southeast Rivers, and Pearl, the same change in temperature requires a less than 2.8% increase in precipitation to keep the runoff unchanged. In the future, the runoff in most basins may decrease in different degrees. The decreasing velocity of the runoff is the fastest in the RCP8.5 scenario and the decreasing trend of the runoff slows down under the RCP4.5 and RCP2.6 scenarios. The proposed method can be applied to other

  15. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  16. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    DEFF Research Database (Denmark)

    Molina Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia;

    2014-01-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water...... and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno...... the worst-case combined scenario compared to the sum of individual scenarios. Our model framework may help water managers to assess and manage how these multiple environmental stressors interact and ultimately affect aquatic ecosystems. (C) 2013 Elsevier B.V. All rights reserved....

  17. Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar

    OpenAIRE

    Sulin Tao; Shuanghe Shen; Yuhong Li; Qi Wang; Ping Gao; Isaac Mugume

    2016-01-01

    A sensitivity analysis of the responses of crops to the chosen production adaptation options under regional climate change was conducted in this study. Projections of winter wheat production for different sowing dates and cultivars were estimated for a major economic and agricultural province of China from 2021 to 2080 using the World Food Study model (WOFOST) under representative concentration pathways (RCPs) scenarios. A modeling chain was established and a correction method was proposed to...

  18. Projecting excess emergency department visits and associated costs in Brisbane, Australia, under population growth and climate change scenarios

    OpenAIRE

    Ghasem Toloo; Wenbiao Hu; Gerry FitzGerald; Peter Aitken; Shilu Tong

    2015-01-01

    The direct and indirect health effects of increasingly warmer temperatures are likely to further burden the already overcrowded hospital emergency departments (EDs). Using current trends and estimates in conjunction with future population growth and climate change scenarios, we show that the increased number of hot days in the future can have a considerable impact on EDs, adding to their workload and costs. The excess number of visits in 2030 is projected to range between 98–336 and 42–127 fo...

  19. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    Science.gov (United States)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  20. Sustain ability, energy and climate change, future scenarios; Sostenibilidad, energia y cambio climatico, escenarios con futuro

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Beltran, D.

    2009-07-01

    The permanent social and environmental crisis and the nowadays economic and financial ones add only to the reasons for a change in the development models at all levels. The article reviews the preconditions for change at global level, the EU Agenda for Change to be reinforced and above all implemented at EU level, so that the EU can show the way and lead the Change. Also analyses the scenarios with a future for Spain, so that Spain can participate in both changes and act as a showcase , participating and even leading this third industrial revolution and obtaining the competitive advantages of the pioneers, considering in particular the potentials in renewable energy sources and the need, in any case, of a radical change in Spain's ongoing development model. (Author)

  1. The sensitivity of fluvial flood risk in Irish catchments to the range of IPCC AR4 climate change scenarios

    International Nuclear Information System (INIS)

    In the face of increased flood risk responsible authorities have set out safety margins to incorporate climate change impacts in building robust flood infrastructure. Using the case study of four catchments in Ireland, this study subjects such design allowances to a sensitivity analysis of the uncertainty inherent in estimates of future flood risk. Uncertainty in flood quantiles is quantified using regionalised climate scenarios derived from a large number of GCMs (17), forced with three SRES emissions scenarios. In terms of hydrological response uncertainty within and between hydrological models is assessed using the GLUE framework. Regionalisation is achieved using a change factor method to infer changes in the parameters of a weather generator using monthly output from the GCMs, while flood frequency analysis is conducted using the method of probability weighted moments to fit the Generalised Extreme Value distribution to ∼ 20,000 annual maximia series. Sensitivity results show that for low frequency events, the risk of exceedence of design allowances is greater than for more frequent events, with considerable implications for critical infrastructure. Peak flows for the five return periods assessed were found to be less sensitive to temperature and subsequently to potential evaporation (PET) than to rainfall. The average width of the uncertainty range for changes in flood magnitude is greater for low frequency events than for high frequency events. In all catchments there is a progressive increase in the peak flows associated with the 5, 25, 50 and 100-year return periods when moving from the 2020s to the 2080s. - Highlights: → Sensitivity of fluvial flood risk to climate change is assessed for irish catchments. → Impact of climate change is not as great for flood peaks with smaller return periods. → Flood peaks are significantly less sensitive to PET than to rainfall scenarios. → A progressive increase in the peak flow for irish river catchment when

  2. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    Science.gov (United States)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  3. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios

    Directory of Open Access Journals (Sweden)

    P. Gottschalk

    2012-08-01

    Full Text Available We use a soil carbon (C model (RothC, driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

  4. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios

    Directory of Open Access Journals (Sweden)

    P. Gottschalk

    2012-01-01

    Full Text Available We use a soil carbon (C model (RothC, driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC stocks. The results suggest an overall global increase in global SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. Projected land use changes are also simulated, but have relatively small impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop asking the general question of whether SOC stocks will increase or decrease under future climate since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

  5. Climate change scenarios for Europe (with special attention to the Czech Republic) in terms of changes in temperature, precipitation, and drought conditions

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Trnka, Miroslav

    Volume 1. 1. Brno: Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i, 2015 - (Urban, O.; Klem, K.), s. 25-37 ISBN 978-80-87902-14-1 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : climate change scenarios * global Climate Models * palmer drought indices Subject RIV: DG - Athmosphere Sciences, Meteorology

  6. Mathematical model for the formulation of runoff scenarios before possible variants of the climatic change

    International Nuclear Information System (INIS)

    The application of mathematical modelling to evaluate the hydrological response of different river basins under multiple climate scenarios has become a wide spread tool. However, most of the existing models demand high volumes of data and high data quality. Usually, in Latin America not only the amount of data is scarce, but also the quality of it is very poor, so it is difficult to implement mathematical models with good validation results. Additionally, those models have to be applied over big geographical regions making the hydrological modelling process an almost impossible task. All these factors are pointing to the necessity to develop low data demanding models with few data quality requirements. In this light, this paper shows an attempt to develop a hydrological model under these restrictions. The results shown are concerned with the validation assessment of a study case in Colombia over an extensive region for the Catatumbo watershed. Finally, the improvements currently under implementation are shown

  7. Modeling the water balance of sloped vineyards under various climate change scenarios

    Directory of Open Access Journals (Sweden)

    Hofmann Marco

    2015-01-01

    Full Text Available Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture, models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up to 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over two years. The results showed good agreement of modelled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in soil water holding capacity. The model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes.

  8. Predicting Future European Breeding Distributions of British Seabird Species under Climate Change and Unlimited/No Dispersal Scenarios

    Directory of Open Access Journals (Sweden)

    Deborah J.F. Russell

    2015-11-01

    Full Text Available Understanding which traits make species vulnerable to climatic change and predicting future distributions permits conservation efforts to be focused on the most vulnerable species and the most appropriate sites. Here, we combine climate envelope models with predicted bioclimatic data from two emission scenarios leading up to 2100, to predict European breeding distributions of 23 seabird species that currently breed in the British Isles. Assuming unlimited dispersal, some species would be “winners” (increase the size of their range, but over 65% would lose range, some by up to 80%. These “losers” have a high vulnerability to low prey availability, and a northerly distribution meaning they would lack space to move into. Under the worst-case scenario of no dispersal, species are predicted to lose between 25% and 100% of their range, so dispersal ability is a key constraint on future range sizes. More globally, the results indicate, based on foraging ecology, which seabird species are likely to be most affected by climatic change. Neither of the emissions scenarios used in this study is extreme, yet they generate very different predictions for some species, illustrating that even small decreases in emissions could yield large benefits for conservation.

  9. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    International Nuclear Information System (INIS)

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales. (letter)

  10. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    Science.gov (United States)

    Tobin, Isabelle; Jerez, Sonia; Vautard, Robert; Thais, Françoise; van Meijgaard, Erik; Prein, Andreas; Déqué, Michel; Kotlarski, Sven; Fox Maule, Cathrine; Nikulin, Grigory; Noël, Thomas; Teichmann, Claas

    2016-03-01

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales.

  11. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand.

    Science.gov (United States)

    Trisurat, Yongyut; Eawpanich, Piyathip; Kalliola, Risto

    2016-05-01

    The Thadee watershed, covering 112km(2), is the main source of water for agriculture and household consumption in the Nakhon Srithammarat Province in Southern Thailand. As the natural forests upstream have been largely degraded and transformed to fruit tree and rubber plantations, problems with landslides and flooding have resulted. This research attempts to predict how further land-use/land-cover changes during 2009-2020 and conceivable changes in rainfall may influence the future levels of water yield and sediment load in the Thadee River. Three different land use scenarios (trend, development and conservation) were defined in collaboration with the local stakeholders, and three different rainfall scenarios (average rainfall, climate change and extreme wet) were determined on the basis of literature sources. Spatially explicit empirical modelling was employed to allocate future land demands and to assess the contributions of land use and rainfall changes, considering both their separate and combined effects. The results suggest that substantial land use changes may occur from a large expansion of rubber plantations in the upper sub-watersheds, especially under the development land use scenario. The reduction of the current annual rainfall by approximately 30% would decrease the predicted water yields by 38% from 2009. According to the extreme rainfall scenario (an increase of 36% with respect to current rainfall), an amplification of 50% of the current runoff could result. Sensitivity analyses showed that the predicted soil loss is more responsive to changes in rainfall than to the compared land use scenarios alone. However, very high sediment load and runoff levels were predicted on the basis of combined intensified land use and extreme rainfall scenarios. Three conservation activities-protection, reforestation and a mixed-cropping system-are proposed to maintain the functional watershed services of the Thadee watershed region. PMID:26915561

  12. Current and future niche of North and Central American sand flies (Diptera: psychodidae in climate change scenarios.

    Directory of Open Access Journals (Sweden)

    David Moo-Llanes

    Full Text Available Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i potential change in niche breadth, ii direction and magnitude of niche centroid shifts, iii shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3, for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%, while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases.

  13. Neotropical vegetation responses to Younger Dryas climates as analogs for future climate change scenarios and lessons for conservation

    Science.gov (United States)

    Rull, V.; Vegas-Vilarrúbia, T.; Montoya, E.

    2015-05-01

    The Younger Dryas (YD) climatic reversal (12.86-11.65 cal ky BP), especially the warming initiated at ∼12.6 cal ky BP, and the associated vegetation changes have been proposed as past analogs to forecast the potential vegetation responses to future global warming. In this paper, we applied this model to highland and midland Neotropical localities. We used pollen analysis of lake sediments to record vegetation responses to YD climatic changes, which are reconstructed from independent paleoclimatic proxies such as the Mg/Ca ratio on foraminiferal tests and Equilibrium Line Altitude (ELA) for paleotemperature, and grayscale density and Titanium content for paleoprecipitation. Paleoclimatic reconstructions at both highlands and midlands showed a clear YD signal with a conspicuous warming extending into the early Holocene. A small percentage of taxa resulted to be sensitive to these YD climate changes. Response lags were negligible at the resolution of the study. However, changes in the sensitive taxa were relevant enough to determine changes in biodiversity and taxonomic composition. Highland vegetation experienced mainly intra-community reorganizations, whereas midland vegetation underwent major changes leading to community substitutions. This was explained in terms of threshold-crossing non-linear responses in which the coupling of climatic and other forcings (fire) was proposed as the main driving mechanism. Paleoecology provides meaningful insights on the responses of highland and midland Neotropical vegetation to the YD climatic reversal. Biotic responses at both individual (species) and collective (assemblage) levels showed patterns and processes of vegetation change useful to understand its ecological dynamics, as well as the mechanisms and external drivers involved. The use of paleoecological methods to document the biotic responses to the YD climate shifts can be useful to help forecasting the potential consequences of future global warming. Due to its quasi

  14. Optimizing irrigation management using CropSyst: Solving water allocation problems under Climate Change scenarios

    Science.gov (United States)

    Meza, F. J.; Maureira, F.; Stockle, C.

    2012-12-01

    Irrigation is fundamental to achieve economically viable yields in Mediterranean and semi-arid areas. Under normal conditions, irrigation systems are designed considering unlimited water supply and in many cases operated at relatively low marginal costs. Total satisfaction of plant water demands is seen as the main objective to maximize crop productivity. This paradigm is currently challenged by higher pressure on water resources as a consequence of economic and population growth, increasing exposure to impacts associated to droughts. In addition, future climate projections for these regions show likely increase in temperature and significant reductions in precipitation that will affect snowmelt dynamics and streamflows. This new scenario requires an efficient management of water resources at all levels, and especially to explore irrigation alternatives to maximize productivity with limited water resources. Crop Simulation models can become a very attractive tool to evaluate ex ante the results of different irrigation strategies. In this study, we used CropSyst to simulate the responses of maize as function of multiple combinations of monthly irrigation decisions. We generated six irrigation treatments that represented a range from 100% to 50% irrigation water demands. Each treatment was evaluated using a series of daily climate in the basin of Limari, Chile. Model results showed that crop productivity can be improved when compared to standard irrigation practices that consider constant irrigation reductions proportional to expected decreases in water availability.

  15. Trends in African dust transport to the Caribbean: African sources, changing climate, and future scenarios

    Science.gov (United States)

    Prospero, J. M.

    2012-12-01

    Aerosol studies were begun on Barbados in 1965 and in Miami in 1974 and they continue to this day. This continuous record of daily measurements shows great variability in dust concentrations on time scales ranging from days to decades. Most notable was the great increase in dust concentrations in the early 1970s, apparently in response to drought in West Africa. Increased dust could impact a number of climate processes and human health in the Caribbean Basin. Indeed, in recent decades the dust concentrations over the Caribbean often exceed the US EPA standards for respirable particles. Thus there is concern over possible health impacts in the present day and how these might change in the future in response to climate change in Africa. It is logical to link of increased dust with drought. Indeed, over much of the Barbados record there was a strong negative correlation between dust concentrations and rainfall in the Sahel-Soudano (SS) region of North Africa. However, in retrospect this correlation was largely driven by three distinct periods in the early record: the period of high rainfall and low dust transport in the mid-to-late 1960s; the first drought in the early 1970s; and the extremely intense drought of the early 1980s. During this period, there seemed to be promising relationships between transport and various climate indices: e.g., El Niño, NAO, AMO. However, since the early 1990s there have been large year-to-year changes in SS rainfall but there is no consistent relationship to dust on Barbados or between dust and common climate indices. Furthermore, over the entire record there is a strong shift in seasonal dust transport, most notably, a great increase in winter and spring transport compared to the pre-drought and early drought period. These trends seem to suggest that there have been profound long-term changes in dust emissions and transport. A possible contributing factor could be increased population and land use in the SS region where over the past

  16. Bright Farming: An Innovative Approach for Sustainable Socio Ecosystem in Climate Change Scenario

    Directory of Open Access Journals (Sweden)

    Yogranjan

    2014-08-01

    Full Text Available Mitigating the effects of global climate change brought about by increasing emissions of greenhouse gases has grown to the worldwide sensed challenges. Possible strategies for lessening the ill impacts of agriculture on climate change and in parallels, optimizing overall yield potential of agricultural crops would certainly consider the initiatives for development of varieties having utmost reflectivity with least/no impact on photosynthetic yield. Crops having traits for maximum reflectivity such as specific plant height, leaf inclination, chlorophyll content, waxy leaf hairs, glossiness and/or canopy structural and morphological traits would be comprised in an ideotype. Genetic manipulation of crop reflectivity and/or selection for specific morphology of canopy might be possible using plant breeding however transgenesis for leaf waxy ness or canopy structure could achieve greater temperature reductions and may offer a viable solution to problem.

  17. Indian Agricultural Scenario and Food Security Concerns in the Context of Climate Change: a Review

    OpenAIRE

    Dasgupta, Purnamita; Sirohi, Smita

    2010-01-01

    This paper presents a brief review of the trends in foodgrain production in India, the determinants of its growth and domestic foodgrain supply projections to draw inferences about the future foodgrain production trends. The foodgrain supply forecasts are examined in relation to the likely demand of foodgrains to answer whether India would have a situation of food surplus or deficit. The paper summarizes the supply and demand side aspects of food security in the context of climate change-...

  18. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Czech Academy of Sciences Publication Activity Database

    Hirschi, M.; Stoeckli, S.; Dubrovský, Martin; Spirig, C.; Calanca, P.; Rotach, M. V.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-01-01

    Roč. 3, č. 1 (2012), s. 33-47. ISSN 2190-4979 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z30420517 Keywords : Climate change * downscaling * weather generator * pest and disease modelling * Switzerland Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.earth-syst-dynam.net/3/33/2012/esd-3-33-2012.pdf

  19. Modeling Effects of Climate Change on Air Quality and Population Exposure in Urban Planning Scenarios

    Directory of Open Access Journals (Sweden)

    Lars Gidhagen

    2012-01-01

    Full Text Available We employ a nested system of global and regional climate models, linked to regional and urban air quality chemical transport models utilizing detailed inventories of present and future emissions, to study the relative impact of climate change and changing air pollutant emissions on air quality and population exposure in Stockholm, Sweden. We show that climate change only marginally affects air quality over the 20-year period studied. An exposure assessment reveals that the population of Stockholm can expect considerably lower NO2 exposure in the future, mainly due to reduced local NOx emissions. Ozone exposure will decrease only slightly, due to a combination of increased concentrations in the city centre and decreasing concentrations in the suburban areas. The increase in ozone concentration is a consequence of decreased local NOx emissions, which reduces the titration of the long-range transported ozone. Finally, we evaluate the consequences of a planned road transit project on future air quality in Stockholm. The construction of a very large bypass road (including one of the largest motorway road tunnels in Europe will only marginally influence total population exposure, this since the improved air quality in the city centre will be complemented by deteriorated air quality in suburban, residential areas.

  20. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly.

    Science.gov (United States)

    Bozinovic, Francisco; Medina, Nadia R; Alruiz, José M; Cavieres, Grisel; Sabat, Pablo

    2016-07-01

    Climate change poses one of the greatest threats to biodiversity. Most analyses of the impacts have focused on changes in mean temperature, but increasing variance will also impact organisms and populations. We assessed the combined effects of the mean and the variance of temperature on thermal tolerances-i.e., critical thermal maxima, critical thermal minima, scope of thermal tolerance, and survival in Drosophila melanogaster. Our six experimental climatic scenarios were: constant mean with zero variance or constant variance or increasing variance; changing mean with zero variance or constant variance or increasing variance. Our key result was that environments with changing thermal variance reduce the scope of thermal tolerance and survival. Heat tolerance seems to be conserved, but cold tolerance decreases significantly with mean low as well as changing environmental temperatures. Flies acclimated to scenarios of changing variance-with either constant or changing mean temperatures-exhibited significantly lower survival rate. Our results imply that changing and constant variances would be just as important in future scenarios of climate change under greenhouse warming as increases in mean annual temperature. To develop more realistic predictions about the biological impacts of climate change, such interactions between the mean and variance of environmental temperature should be considered. PMID:27003422

  1. Scenario analysis on the adaptation of different maize varieties to future climate change in Northeast China

    Science.gov (United States)

    Xu, Yanhong; Guo, Jianping; Zhao, Junfang; Mu, Jia

    2014-06-01

    Based on gridded meteorological data for the period 1981-2100 from the RegCM3 regional model, the changing trends of climatic resources in Northeast China are analyzed, and the distributions of maize varieties are accordingly adjusted. In order to explore the effects of different adaptation countermeasures on climatic productivity and meteorological suitability in the future, maize cultivars with resistance to high temperatures and/or drought are selected. The results show that, in the future, there is likely to be a significant increase in thermal resources, and potential atmospheric evaporation will increase correspondingly. Meanwhile, radiation is predicted to increase significantly during 2041-2070 in the growing season. However, changes in precipitation are unlikely to be sufficient enough to offset the intensification in atmospheric evaporation caused by the temperature increase. Water resources and high temperatures are found to be the two major factors constraining grain yield. The results also show that the warming climate will be favorable for maize production where thermal resources are already limited, such as in central and northern Heilongjiang Province and eastern Jilin Province; while in areas that are already relatively warm, such as Liaoning Province, climatic productivity will be reduced. The climatic productivity and the meteorological suitability of maize are found to improve when the planting of resistant varieties is modeled. The utilization of agricultural climatic resources through the adaptation countermeasures of maize varieties is to increase obviously with time. Specifically, maize with drought-resistant properties will have a marked influence on meteorological suitability during 2011-2070, with suitable areas expanding. During 2071-2100, those maize varieties with their upper limit of optimum temperature and maximum temperature increased by 2°, or water requirement reduced to 94%, or upper limit of optimum temperature and maximum

  2. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  3. New climate change scenarios reveal uncertain future for Central Asian glaciers

    Directory of Open Access Journals (Sweden)

    A. F. Lutz

    2012-11-01

    Full Text Available Central Asian water resources largely depend on (glacier melt water generated in the Pamir and Tien Shan mountain ranges, located in the basins of the Amu and Syr Darya rivers, important life lines in Central Asia and the prominent water source of the Aral Sea. To estimate future water availability in the region, it is thus necessary to project the future glacier extent and volume in the Amu and Syr Darya river basins. The aim of this study is to quantify the impact of uncertainty in climate change projections on the future glacier extent in the Amu and Syr Darya river basins. The latest climate change projections provided by the fifth Coupled Model Intercomparison Project (CMIP5 generated for the upcoming fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC are used to model future glacier extent in the Central Asian region for the two large river basins. The outcomes are compared to model results obtained with the climate change projections used for the fourth IPCC assessment (CMIP3. We use a regionalized glacier mass balance model to estimate changes in glacier extent as a function of glacier size and projections of temperature and precipitation. The model is developed for implementation in (large scale hydrological models, when the spatial model resolution does not allow for modelling of individual glaciers and data scarcity is an issue. Both CMIP3 and CMIP5 model simulations point towards a strong decline in glacier extent in Central Asia. However, compared to the CMIP3 projections, the CMIP5 projections of future glacier extent in Central Asia provide a wider range of outcomes, mostly owing to greater variability in precipitation projections among the latest suite of climate models. These findings have great impact on projections of the timing and quantity of water availability in glacier melt dominated rivers in the region. Uncertainty about the size of the decline in glacier extent remains large, making

  4. Projection in Future Drought Hazard of South Korea Based on RCP Climate Change Scenario 8.5 Using SPEI

    OpenAIRE

    Byung Sik Kim; In Gi Chang; Jang Hyun Sung; Hae Jin Han

    2016-01-01

    The Standardized Precipitation Evapotranspiration Index (SPEI) analysis was conducted using monthly precipitation data and temperature data on a 12.5 km × 12.5 km resolution based on a Representative Concentration Pathways (RCP) 8.5 climate change scenario, and the characteristics of drought were identified by the threshold. In addition, the changes in drought severity and intensity were projected using the threshold based on the run-length concept and frequency analysis. As a result of the a...

  5. Drought prediction till 2100 under RCP 8.5 climate change scenarios for Korea

    Science.gov (United States)

    Park, Chang-Kyun; Byun, Hi-Ryong; Deo, Ravinesh; Lee, Bo-Ra

    2015-07-01

    An important step in mitigating the negative impacts of drought requires effective methodologies for predicting the future events. This study utilises the daily Effective Drought Index (EDI) to precisely and quantitatively predict future drought occurrences in Korea over the period 2014-2100. The EDI is computed from precipitation data generated by the regional climate model (HadGEM3-RA) under the Representative Concentration Pathway (RCP 8.5) scenario. Using this data for 678 grid points (12.5 km interval) groups of cluster regions with similar climates, the G1 (Northwest), G2 (Middle), G3 (Northeast) and G4 (Southern) regions, are constructed. Drought forecasting period is categorised into the early phase (EP, 2014-2040), middle phase (MP, 2041-2070) and latter phase (LP, 2071-2100). Future drought events are quantified and ranked according to the duration and intensity. Moreover, the occurrences of drought (when, where, how severe) within the clustered regions are represented as a spatial map over Korea. Based on the grid-point averages, the most severe future drought throughout the 87-year period are expected to occur in Namwon around 2039-2041 with peak intensity (minimum EDI) -3.54 and projected duration of 580 days. The most severe drought by cluster analysis is expected to occur in the G3 region with a mean intensity of -2.85 in 2027. Within the spatial area of investigation, 6.6 years of drought periodicity and a slight decrease in the peak intensity is noted. Finally a spatial-temporal drought map is constructed for all clusters and time-periods under consideration.

  6. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.

  7. Modeling the Impact of Climate and Population Change Scenarios in a Semi-arid Aquifer

    Science.gov (United States)

    Neff, K.; Mallakpour, I.; Maddock, T.; Meixner, T.

    2011-12-01

    The Upper San Pedro River in Southern Arizona has been modeled using MODFLOW several times, most recently by Goode and Maddock (2000) and Pool and Dickinson (2006). It is the last free-flowing river in Arizona and its riparian area serves as habitat for migrating birds and several endangered native species. Understanding how the river will respond to future climate and population change is critical for the successful management of this resource. In the current model, we improve upon previous models by adding a third season to represent the summer monsoon rains, changing the model domain to include only the basin fill in order to minimize error, and using newer MODFLOW packages such as Streamflow Routing (SFR) to more accurately model the riparian system. GMS is used to produce the initial MODFLOW files. Once the new regional model was developed, we changed inputs to the model in order to observe the effects of changes in regional precipitation and temperature due to climate change, as well as changes in pumping for human use, on the aquifer and river. The challenge of adapting an older model to use new data and technology is valuable because it will improve model performance and provide better information to water resources decision-makers in the basin, who are faced with potential increases in population and thus municipal water demand. The new regional model is also intended to be coupled in the future with a stream network flood routing model to reflect the role of flood-pulse recharge on groundwater and streamflow levels.

  8. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    Science.gov (United States)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming

  9. Analysis of climate change scenarios in an olive orchard microcatchment in Spain using the model WIMMED

    Science.gov (United States)

    Guzmán, Enrique; Aguilar, Cristina; José Polo, María; Taguas, Encarnación V.

    2015-04-01

    Olive orchards constitute traditional systems in the Mediterranean Basin. In Andalusia, Southern Spain, more than 1.5Mha are dedicated to olive crop land use, which represent a production of 1Mt of olive oil per year. This is a strategic economic sector with environmental and social relevance. In the context of climate change in Andalusia, the Intergovernmental Panel on Climate Change has highlighted that an increase of temperatures and rainfall intensities as well as the reduction of cumulated rainfall might be expected. This may mean serious detrimental economic and environmental risks associated to floods and the reduction of available water resources which would be convenient to quantify. The objective of this work is to analyse the rainfall-runoff relationships in an olive orchard catchment by the application of the distributed hydrological model WIMMED (Herrero et al., 2009) simulating the effects of climate change, with a special emphasis on extreme events. Firstly, the model was calibrated and validated with 9 maximum annual events of a datasets from 2005-2012 obtained in an olive orchard catchment in Spain (Taguas et al., 2010). In this stage, only the saturated hydraulic conductivity and soil moisture in saturation were adjusted after a sensitivity analysis where 68 simulations were carried out. A good agreement was obtained between observed and simulated hydrographs. The mean errors and the root mean square errors were 0.18 mm and 2.19 mm for the calibration and 0.18 and 1.94 mm, for the validation. Finally, the catchment response to the increase of intensity and temperature and the reduction of cumulated rainfall were simulated for the maximum event of the series. The results showed a rise of 11% of the runoff coefficient quantifying the possible impact of climate change. REFERENCES Herrero J, Polo M., Moñino A., Losada MA (2009). An energy balance snowmelt model in a Mediterranean site. J. Hydrol. 371, pp. 98-107 Taguas EV, Peña A, Ayuso JL, Yuan Y

  10. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios

    Directory of Open Access Journals (Sweden)

    M. E. Elshamy

    2009-05-01

    Full Text Available This study analyses the output of 17 general circulation models (GCMs included in the 4th IPCC assessment report. Downscaled precipitation and potential (reference crop evapotranspiration (PET scenarios for the 2081–2098 period were constructed for the upper Blue Nile basin. These were used to drive a fine-scale hydrological model of the Nile Basin to assess their impacts on the flows of the upper Blue Nile at Diem, which accounts for about 60% of the mean annual discharge of the Nile at Dongola. There is no consensus among the GCMs on the direction of precipitation change. Changes in total annual precipitation range between −15% to +14% but more models report reductions (10 than those reporting increases (7. Several models (6 report small changes within 5%. The ensemble mean of all models shows almost no change in the annual total rainfall. All models predict the temperature to increase between 2°C and 5°C and consequently PET to increase by 2–14%. Changes to the water balance are assessed using the Budyko framework. The basin is shown to belong to a moisture constrained regime. However, during the wet season the basin is largely energy constrained. For no change in rainfall, increasing PET thus leads to a reduced wet season runoff coefficient. The ensemble mean runoff coefficient (about 20% for baseline simulations is reduced by about 3.5%. Assuming no change or moderate changes in rainfall, the simulations presented here indicate that the water balance of the upper Blue Nile basin may become more moisture constrained in the future.

  11. Scenarios of changes of selected components of hydrosphere and biosphere in catchment basin of Hron River and Vah River as consequence of climatic change

    International Nuclear Information System (INIS)

    This text-book consist of the following parts: (1) Hydrologic and climatic relationship of catchment basins; (2) Space interpretation of outputs of climatic scenarios in catchment basins of Hron River and Vah River by geostatistical methods; (3) Teleconnection of annual overflows with SO, NAO, AO and QBO phenomenons; (4) Snow; (5) Mathematical model for modelling of influence of climatic changes on runoff processes; (6) Multi-linear model of transformation of runoff in river-basins; (7) Influence of climatic change on capacity utilization of reserve volume of water reservoir Orava River; (8) Quality of surface waters; (9) Influence of climatic changes on biological factors and soil hydrology; (10) Proposal of framing adaptation arrangements.

  12. On the role of climate scenarios for adaptation planning

    International Nuclear Information System (INIS)

    Climate scenarios have been widely used in impact, vulnerability and adaptation assessments of climate change. However, few studies have actually looked at the role played by climate scenarios in adaptation planning. This paper examines how climate scenarios fit in three broad adaptation frameworks: the IPCC approach, risk approaches, and human development approaches. The use (or not) of climate scenarios in three real projects, corresponding to each adaptation approach, is investigated. It is shown that the role played by climate scenarios is dependant on the adaptation assessment approach, availability of technical and financial capacity to handle scenario information, and the type of adaptation being considered. (author)

  13. Freshwater Availability in the Brahmaputra River Basin Under Projected Climate and Land Use Land Cover Change Scenarios

    Science.gov (United States)

    Pervez, M. S.; Henebry, G. M.

    2014-12-01

    We used the Soil and Water Assessment Tool to evaluate sensitivities and patterns in freshwater availability due to projected climate and land use changes in the Brahmaputra basin. The daily observed discharge at Bahadurabad station in Bangladesh was used to calibrate the model and analyze uncertainties with SUFI-II algorithm for 1988-1997, and to validate the model for 1998-2004. The R2, NS, and biases were, respectively, 0.85, 0.85, and -3.2% during calibration, and 0.89, 0.88, and -4.4% during validation for basinwide simulations of monthly streamflow. The sensitivities and impacts of projected climate and land use changes on basin hydrological components were simulated and analyzed relative to a baseline scenario of 1988-2004. Sensitivity analysis identified a doubling of CO2 concentration to 660 ppm caused average annual evapotranspiration (ET) to decrease by 12%, resulting in increases in water yield by 5%, streamflow by 6%, and groundwater recharge by 8%. With an increase in temperature, annual average ET was predicted to increase, while responses of water yield and streamflow varied by season. An increase in precipitation caused proportional increases in water yield, streamflow, and groundwater recharge, but led to only minor impacts on ET. Annual average water yield, soil water content, ET, streamflow, and groundwater recharge were predicted to increase with higher seasonal variability in response to climate and land use change projections for the A1B and A2 scenarios generated from downscaled CGCM3.1 and IMAGE, respectively. Water yield, soil water content, streamflow, and groundwater recharge were predicted to increase with a strong increasing trend during August to October, indicating exacerbated flood potential, while during May to July, the hydrological components-except soil water content-were predicted to decrease with a strong decreasing trend, indicating enhanced drought potential throughout the 21st century. Overall, results indicated that the

  14. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    Science.gov (United States)

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  15. Simulating infectious disease risk based on climatic drivers: from numerical weather prediction to long term climate change scenario

    Science.gov (United States)

    Caminade, C.; Ndione, J. A.; Diallo, M.; MacLeod, D.; Faye, O.; Ba, Y.; Dia, I.; Medlock, J. M.; Leach, S.; McIntyre, K. M.; Baylis, M.; Morse, A. P.

    2012-04-01

    Climate variability is an important component in determining the incidence of a number of diseases with significant health and socioeconomic impacts. In particular, vector born diseases are the most likely to be affected by climate; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the surrounding environmental conditions. Disease risk models of various complexities using different streams of climate forecasts as inputs have been developed within the QWeCI EU and ENHanCE ERA-NET project frameworks. This work will present two application examples, one for Africa and one for Europe. First, we focus on Rift Valley fever over sub-Saharan Africa, a zoonosis that affects domestic animals and humans by causing an acute fever. We show that the Rift Valley fever outbreak that occurred in late 2010 in the northern Sahelian region of Mauritania might have been anticipated ten days in advance using the GFS numerical weather prediction system. Then, an ensemble of regional climate projections is employed to model the climatic suitability of the Asian tiger mosquito for the future over Europe. The Asian tiger mosquito is an invasive species originally from Asia which is able to transmit West Nile and Chikungunya Fever among others. This species has spread worldwide during the last decades, mainly through the shipments of goods from Asia. Different disease models are employed and inter-compared to achieve such a task. Results show that the climatic conditions over southern England, central Western Europe and the Balkans might become more suitable for the mosquito (including the proviso that the mosquito has already been introduced) to establish itself in the future.

  16. The assessment of natural flood management measures as a climate change adaptation option through land use scenarios

    Science.gov (United States)

    Iacob, Oana; Rowan, John; Brown, Iain; Ellis, Chris

    2014-05-01

    Climate change is one of the most pressing issues facing civil society. Greater variability and more frequent extremes of temperature and precipitation will result in increased flood risk and corresponding social, economic and environmental impacts. Complementing more traditional structurally-based engineering interventions an important additional adaptation strategy is through natural flood management (NFM) measures utilising natural soil, wetland and groundwater storage at the catchment scale to attenuate runoff generation and downstream flooding. Such schemes have multiple co-benefits including improved water quality, biodiversity and amenity and so contribute to greater resilience to uncertain climate futures. As a case-study of a more integrated approach to land use planning we here consider the policy target of the Scottish Government to expand woodland in Scotland by 100,000 ha by 2025 from the current 3 000 ha/year. In this paper we examine runoff response under different woodland expansion scenarios using climate projections obtained from the UK Climate Projections (UKCP09). Woodland creation has recognised potential as a NFM measure, but locating this new planting is constrained by physical and cultural constraints. Land use choices in the future will also strongly reflect emergent socio-economic contexts, here assessed through scenario analysis. The distributed hydrological model WaSiM-ETH was utilised for the analysis using the case-study of the Tarland catchment, a tributary of the River Dee. Terrain data were obtained on a 50 m grid and the model calibrated using meteorological and river gauge data from 2005 to 2007 following a manual and an automatic calibration process. This novel approach highlights that land use change should be carefully managed for planned benefits and to avoid unintended consequences, such as changing the timing of tributary flood responses. Whilst woodland expansion may only provide modest gains in flood reductions the co

  17. Climate variability and change scenarios for a marine commodity: Modelling small pelagic fish, fisheries and fishmeal in a globalized market

    Science.gov (United States)

    Merino, Gorka; Barange, Manuel; Mullon, Christian

    2010-04-01

    The world's small pelagic fish populations, their fisheries, fishmeal and fish oil production industries and markets are part of a globalised production and consumption system. The potential for climate variability and change to alter the balance in this system is explored by means of bioeconomic models at two different temporal scales, with the objective of investigating the interactive nature of environmental and human-induced changes on this globalised system. Short-term (interannual) environmental impacts on fishmeal production are considered by including an annual variable production rate on individual small pelagic fish stocks over a 10-year simulation period. These impacts on the resources are perceived by the fishmeal markets, where they are confronted by two aquaculture expansion hypotheses. Long-term (2080) environmental impacts on the same stocks are estimated using long-term primary production predictions as proxies for the species' carrying capacities, rather than using variable production rates, and are confronted on the market side by two alternative fishmeal management scenarios consistent with IPCC-type storylines. The two scenarios, World Markets and Global Commons, are parameterized through classic equilibrium solutions for a global surplus production bioeconomic model, namely maximum sustainable yield and open access, respectively. The fisheries explicitly modelled in this paper represent 70% of total fishmeal production, thus encapsulating the expected dynamics of the global production and consumption system. Both short and long-term simulations suggest that the sustainability of the small pelagic resources, in the face of climate variability and change, depends more on how society responds to climate impacts than on the magnitude of climate alterations per se.

  18. Linking soil chemistry, treeline shifts and climate change: scenario modeling using an experimental approach

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Anderson, Susanne; Blum, Alex; Wells, Aaron; Dahms, Dennis; Egli, Markus

    2014-05-01

    Climate change and global warming have a strong influence on the landscape development. As cold areas become warmer, both flora and fauna must adapt to new conditions (a). It is widely accepted that climate changes deeply influence the treeline shifts. In addition to that, wildfires, plant diseases and insect infestation (i.e. mountain pine beetle) can promote a selective replacement of plants, inhibiting some and favoring others, thus modifying the ecosystem in diverse ways. There is little knowledge on the behavior of soil chemistry when such changes occur. Will elemental availability become a crucial factor as a function of climate changes? The Sinks Canyon and Stough Basin - SE flank of the Wind River Range, Wyoming, USA - offer an ideal case study. Conceptually, the areas were divided into three main subsets: tundra, forest and a subarid environment. All soils were developed on granitoid moraines (b, c). From each subset, a liquid topsoil extract was produced and mixed with the solid subsoil samples in batch reactors at 50 °C. The batch experiments were carried out over 1800 h, and the progress of the dissolution was regularly monitored by analyzing liquid aliquots using IC and ICP-OES. The nutrients were mostly released within the first hours of the experiment. Silicon and Al were continuously released into the solution, while some alkali elements - i.e. Na - showed a more complex trend. Organic acids (acetic, citric) and other ligands produced during biodegradation played an active role in mineral dissolution and nutrient release. The mineral colloids detected in the extract (X-ray diffraction) can significantly control surface reactions (adsorption/desorption) and contributed to specific cationic concentrations. The experimental set up was then compared to a computed dissolution model using SerialSTEADYQL software (d, e). Decoding the mechanisms driving mineral weathering is the key to understand the main geochemical aspects of adaptation during climate

  19. Development of fuzzy multi-criteria approach to prioritize locations of treated wastewater use considering climate change scenarios.

    Science.gov (United States)

    Chung, Eun-Sung; Kim, Yeonjoo

    2014-12-15

    This study proposed a robust prioritization framework to identify the priorities of treated wastewater (TWW) use locations with consideration of various uncertainties inherent in the climate change scenarios and the decision-making process. First, a fuzzy concept was applied because future forecast precipitation and their hydrological impact analysis results displayed significant variances when considering various climate change scenarios and long periods (e.g., 2010-2099). Second, various multi-criteria decision making (MCDM) techniques including weighted sum method (WSM), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy TOPSIS were introduced to robust prioritization because different MCDM methods use different decision philosophies. Third, decision making method under complete uncertainty (DMCU) including maximin, maximax, minimax regret, Hurwicz, and equal likelihood were used to find robust final rankings. This framework is then applied to a Korean urban watershed. As a result, different rankings were obviously appeared between fuzzy TOPSIS and non-fuzzy MCDMs (e.g., WSM and TOPSIS) because the inter-annual variability in effectiveness was considered only with fuzzy TOPSIS. Then, robust prioritizations were derived based on 18 rankings from nine decadal periods of RCP4.5 and RCP8.5. For more robust rankings, five DMCU approaches using the rankings from fuzzy TOPSIS were derived. This framework combining fuzzy TOPSIS with DMCU approaches can be rendered less controversial among stakeholders under complete uncertainty of changing environments. PMID:25218330

  20. Yield response and optimal allocation of irrigation water under actual and simulated climate change scenarios in a southern Italy district

    Directory of Open Access Journals (Sweden)

    Pietro Rubino

    2012-03-01

    Full Text Available The potential effect of climate change on the optimal allocation of irrigation water was investigated for a Southern Italy district. The study was carried out on 5 representative crops (grapevine, olive, sugar beet, processing tomato, asparagus, considering six simulated climate change conditions, corresponding to three 30-year periods (2011-2040; 2041-2070; 2071-2100 for two greenhouse gas emission schemes proposed by IPCC (A2 and B1, plus the current climatic condition. The framework adopted was based on: i the modeling of crop yield response for increasing levels of water supply, under current and future climatic conditions, through a non-linear regression equation and ii the definition of the best water allocation by means of a mathematical optimization model written in GAMS. Total irrigation water (TIW volume was allowed to vary from a low total supply 10000 m3 to 7000000 m3, whilst a fixed surface, corresponding to that currently occupied in the studied district, was assigned to each crop. The economic return was studied in terms of Value of Production less the fixed and variable irrigation costs (VPlic. The TIW volume that maximized the VPlic of the whole district surface under the current climatic condition was 5697861 m3. The total volume was partitioned among the five crops as a function of the surface occupied: grapevine>olive>processing tomato>asparagus>sugar beet. Nevertheless, grapevine and olive received seasonal volumes corresponding only to 59 and 50% of total irrigation water requirements. On the contrary, processing tomato and asparagus received seasonal water volumes close to those fully satisfying irrigation water requirements (100% and 85% ETc. Future climatic conditions slightly differed from the current one for the expected optimal allocation. Under water shortage conditions (160000 m3 the whole irrigation water was allocated to the horticultural crops. Forecasted growing season features varied to a different extent in

  1. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  2. Atmospheric contribution to Mediterranean sea level variability under different climate change scenarios

    OpenAIRE

    Jordá, Gabriel; Gomis, Damià; Álvarez-Fanjul, Enrique; Pérez, Begoña; Somot, Samuel; Marcos, Marta

    2011-01-01

    Póster presentado en la 2011 WCRP OSC Conference (World Climate Research Programme), "Climate Research in Service to Society," celebrada en Denver, Co. (Estados Unidos) del 24 al 28 de octubre de 2011

  3. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia.

    Science.gov (United States)

    González, Camila; Paz, Andrea; Ferro, Cristina

    2014-01-01

    Visceral leishmaniasis (VL) is caused by the trypanosomatid parasite Leishmania infantum (=Leishmania chagasi), and is epidemiologically relevant due to its wide geographic distribution, the number of annual cases reported and the increase in its co-infection with HIV. Two vector species have been incriminated in the Americas: Lutzomyia longipalpis and Lutzomyia evansi. In Colombia, L. longipalpis is distributed along the Magdalena River Valley while L. evansi is only found in the northern part of the Country. Regarding the epidemiology of the disease, in Colombia the incidence of VL has decreased over the last few years without any intervention being implemented. Additionally, changes in transmission cycles have been reported with urban transmission occurring in the Caribbean Coast. In Europe and North America climate change seems to be driving a latitudinal shift of leishmaniasis transmission. Here, we explored the spatial distribution of the two known vector species of L. infantum in Colombia and projected its future distribution into climate change scenarios to establish the expansion potential of the disease. An updated database including L. longipalpis and L. evansi collection records from Colombia was compiled. Ecological niche models were performed for each species using the Maxent software and 13 Worldclim bioclimatic coverages. Projections were made for the pessimistic CSIRO A2 scenario, which predicts the higher increase in temperature due to non-emission reduction, and the optimistic Hadley B2 Scenario predicting the minimum increase in temperature. The database contained 23 records for L. evansi and 39 records for L. longipalpis, distributed along the Magdalena River Valley and the Caribbean Coast, where the potential distribution areas of both species were also predicted by Maxent. Climate change projections showed a general overall reduction in the spatial distribution of the two vector species, promoting a shift in altitudinal distribution for L

  4. Future PMP Estimation in Korea under AR5 RCP 8.5 climate change scenarios and its Changes Cause Analysis

    Science.gov (United States)

    Kim, S.; Lee, J.; Okjeong, L.; Bogyeong, C.; Park, M. W.

    2015-12-01

    In this presentation, Korea's probable maximum precipitations (PMPs) which reflects all of the storm data until recently are calculated, and are compared to the existing PMPs which were calculated at 2000. In Korea, abnormal weather phenomena such as typhoon Rusa and Maemi, and the extreme rainfall event occurred on the east coast of the northern region, that can have a significant impact on the PMP estimation, have frequently happened since 2000. After selecting 240 major storm events from 1973 to 2012, new PMPs are proposed with respect to storm areas (25, 100, 225, 400, 900, 2025, 4900, 10000 and 19600 km2) and storm durations (1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 hours) using the Korea hydro-meteorological method. After estimating future PMPs using future rainfall and dew point temperature information under the Korea Meteorological Administration AR5 RCP 8.5, changes in the PMPs under climate change will be investigated by comparison with present and future PMPs. By separating the changes in PMPs under climate change into the changes caused by rainfall and dew point temperature, the relative impact of future rainfall and dew point temperature information under climate change on future PMPs is quantified. This research was supported by a grant 'Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change' [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

  5. Future projections of insured losses in the German private building sector following the A1B climatic change scenario

    Science.gov (United States)

    Held, H.; Gerstengarbe, F.-W.; Hattermann, F.; Pinto, J. G.; Ulbrich, U.; Böhm, U.; Born, K.; Büchner, M.; Donat, M. G.; Kücken, M.; Leckebusch, G. C.; Nissen, K.; Nocke, T.; Österle, H.; Pardowitz, T.; Werner, P. C.; Burghoff, O.; Broecker, U.; Kubik, A.

    2012-04-01

    We present an overview of a complementary-approaches impact project dealing with the consequences of climate change for the natural hazard branch of the insurance industry in Germany. The project was conducted by four academic institutions together with the German Insurance Association (GDV) and finalized in autumn 2011. A causal chain is modeled that goes from global warming projections over regional meteorological impacts to regional economic losses for private buildings, hereby fully covering the area of Germany. This presentation will focus on wind storm related losses, although the method developed had also been applied in part to hail and flood impact losses. For the first time, the GDV supplied their collected set of insurance cases, dating back for decades, for such an impact study. These data were used to calibrate and validate event-based damage functions which in turn were driven by three different types of regional climate models to generate storm loss projections. The regional models were driven by a triplet of ECHAM5 experiments following the A1B scenario which were found representative in the recent ENSEMBLES intercomparison study. In our multi-modeling approach we used two types of regional climate models that conceptually differ at maximum: a dynamical model (CCLM) and a statistical model based on the idea of biased bootstrapping (STARS). As a third option we pursued a hybrid approach (statistical-dynamical downscaling). For the assessment of climate change impacts, the buildings' infrastructure and their economic value is kept at current values. For all three approaches, a significant increase of average storm losses and extreme event return levels in the German private building sector is found for future decades assuming an A1B-scenario. However, the three projections differ somewhat in terms of magnitude and regional differentiation. We have developed a formalism that allows us to express the combined effect of multi-source uncertainty on return

  6. The development of climatic scenarios for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1996-12-31

    One of the main objectives of the Finnish Research Programme on Climate Change (SILMU) has been to assess the possible impacts of future changes in climate due to the enhanced greenhouse effect on natural systems and human activities in Finland. In order to address this objective, it was first necessary to specify the types of climate changes to be expected in the Finnish region. Estimates of future climate are conventionally obtained using numerical models, which simulate the evolution of the future climate in response to radiative forcing due to changes in the composition of the atmosphere (i.e. of greenhouse gases and aerosols). However, there are large uncertainties in the model estimates because current knowledge and understanding of atmospheric processes remains incomplete. Since accurate predictions of climate change are not available, an alternative approach is to develop scenarios. These are plausible projections which reflect the best estimates to the future conditions but at the same time embrace the likely uncertainties attached to these estimates. In order to obtain expert opinion on the most appropriate methods of providing scenarios for SILMU, an International Workshop was organised in 1993. The recommendations of the Workshop formed the basis of the present project, initiated in 1994, to develop standard climatic scenarios for Finland

  7. Using Statistical Downscaling to Quantify the GCM-Related Uncertainty in Regional Climate Change Scenarios: A Case Study of Swedish Precipitation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.

  8. Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios.

    Science.gov (United States)

    Muñoz-Mas, R; Lopez-Nicolas, A; Martínez-Capel, F; Pulido-Velazquez, M

    2016-02-15

    The impact of climate change on the habitat suitability for large brown trout (Salmo trutta L.) was studied in a segment of the Cabriel River (Iberian Peninsula). The future flow and water temperature patterns were simulated at a daily time step with M5 models' trees (NSE of 0.78 and 0.97 respectively) for two short-term scenarios (2011-2040) under the representative concentration pathways (RCP 4.5 and 8.5). An ensemble of five strongly regularized machine learning techniques (generalized additive models, multilayer perceptron ensembles, random forests, support vector machines and fuzzy rule base systems) was used to model the microhabitat suitability (depth, velocity and substrate) during summertime and to evaluate several flows simulated with River2D©. The simulated flow rate and water temperature were combined with the microhabitat assessment to infer bivariate habitat duration curves (BHDCs) under historical conditions and climate change scenarios using either the weighted usable area (WUA) or the Boolean-based suitable area (SA). The forecasts for both scenarios jointly predicted a significant reduction in the flow rate and an increase in water temperature (mean rate of change of ca. -25% and +4% respectively). The five techniques converged on the modelled suitability and habitat preferences; large brown trout selected relatively high flow velocity, large depth and coarse substrate. However, the model developed with support vector machines presented a significantly trimmed output range (max.: 0.38), and thus its predictions were banned from the WUA-based analyses. The BHDCs based on the WUA and the SA broadly matched, indicating an increase in the number of days with less suitable habitat available (WUA and SA) and/or with higher water temperature (trout will endure impoverished environmental conditions ca. 82% of the days). Finally, our results suggested the potential extirpation of the species from the study site during short time spans. PMID:26674698

  9. Effects of Kosovo's energy use scenarios and associated gas emissions on its climate change and sustainable development

    International Nuclear Information System (INIS)

    Climate change will be the first truly global challenge for sustainability. Energy production and consumption from fossil fuels has central role in respect to climate change, but also to sustainability in general. Because climate change is regionally driven with global consequences and is a result of economic imperatives and social values, it requires a redefinition as to the balance of these outcomes globally and regionally in Kosovo. Kosovo as one of the richest countries with lignite in Europe, with 95-97% of the electric power production from lignite and with 90% of vehicles over 10 years old, represents one of the regions with the greatest ratio of CO2 emissions per unit of GDP, as well as one of the countries with the most polluted atmosphere in Europe. The modelling is carried out regionally for Kosovo for two dynamical systems which are the main emitters of greenhouse gases (CO2, CH4, NOx, etc.) and air pollutants (CO, SO2, dust CHx, etc.): electricity generation and transportation emissions systems, for the time period 2000-2025. Various energy scenarios of the future are shown. We demonstrate that a transition to environmentally compatible sustainable energy use in Kosovo is possible. Implementing the emission reduction policies and introducing new technologies in electrical power production and transportation in Kosovo ensure a sustainable future development in Kosovo, electric power production and transport that become increasingly environmentally compatible.

  10. Effects of Kosovo's energy use scenarios and associated gas emissions on its climate change and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Kabashi, Skender; Bekteshi, Sadik; Ahmetaj, Skender [Faculty of Mathematical and Natural Sciences, University of Prishtina (RS); Kabashi, Gazmend [Faculty of Electric Engineering and Computer Sciences, University of Prishtina, Prishtina (RS); Najdovski, Dimitrij [X3DATA, Novi trg 6, Ljubljana (Slovenia); Zidansek, Aleksander [Jozef Stefan Institute and Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana (Slovenia); Slaus, Ivo [R. Boskovic Institute, Bijenicka 54, Zagreb (Croatia)

    2011-02-15

    Climate change will be the first truly global challenge for sustainability. Energy production and consumption from fossil fuels has central role in respect to climate change, but also to sustainability in general. Because climate change is regionally driven with global consequences and is a result of economic imperatives and social values, it requires a redefinition as to the balance of these outcomes globally and regionally in Kosovo. Kosovo as one of the richest countries with lignite in Europe, with 95-97% of the electric power production from lignite and with 90% of vehicles over 10 years old, represents one of the regions with the greatest ratio of CO{sub 2} emissions per unit of GDP, as well as one of the countries with the most polluted atmosphere in Europe. The modelling is carried out regionally for Kosovo for two dynamical systems which are the main emitters of greenhouse gases (CO{sub 2}, CH{sub 4}, NO{sub x}, etc.) and air pollutants (CO, SO{sub 2}, dust CH{sub x}, etc.): electricity generation and transportation emissions systems, for the time period 2000-2025. Various energy scenarios of the future are shown. We demonstrate that a transition to environmentally compatible sustainable energy use in Kosovo is possible. Implementing the emission reduction policies and introducing new technologies in electrical power production and transportation in Kosovo ensure a sustainable future development in Kosovo, electric power production and transport that become increasingly environmentally compatible. (author)

  11. Water Resources Sustainability in Northwest Mexico: Analysis of Regional Infrastructure Plans under Historical and Climate Change Scenarios

    Science.gov (United States)

    Che, D.; Robles-Morua, A.; Mayer, A. S.; Vivoni, E. R.

    2012-12-01

    The arid state of Sonora, Mexico, has embarked on a large water infrastructure project to provide additional water supply and improved sanitation to the growing capital of Hermosillo. The main component of the Sonora SI project involves an interbasin transfer from rural to urban water users that has generated conflicts over water among different social sectors. Through interactions with regional stakeholders from agricultural and water management agencies, we ascertained the need for a long-term assessment of the water resources of one of the system components, the Sonora River Basin (SRB). A semi-distributed, daily watershed model that includes current and proposed reservoir infrastructure was applied to the SRB. This simulation framework allowed us to explore alternative scenarios of water supply from the SRB to Hermosillo under historical (1980-2010) and future (2031-2040) periods that include the impact of climate change. We compared three precipitation forcing scenarios for the historical period: (1) a network of ground observations from Mexican water agencies; (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution; and (3) gridded fields from the Weather Research and Forecasting (WRF) model at 10 km resolution. These were compared to daily historical observations at two stream gauging stations and two reservoirs to generate confidence in the simulation tools. We then tested the impact of climate change through the use of the A2 emissions scenario and HadCM3 boundary forcing on the WRF simulations of a future period. Our analysis is focused on the combined impact of existing and proposed reservoir infrastructure at two new sites on the water supply management in the SRB under historical and future climate conditions. We also explore the impact of climate variability and change on the bimodal precipitation pattern from winter frontal storms and the summertime North American monsoon and its consequences on water

  12. Life under Climate Change Scenarios: Sea Urchins’ Cellular Mechanisms for Reproductive Success

    Directory of Open Access Journals (Sweden)

    Desislava Bögner

    2016-03-01

    Full Text Available Ocean Acidification (OA represents a major field of research and increased efforts are being made to elucidate its repercussions on biota. Species survival is ensured by successful reproduction, which may be threatened under detrimental environmental conditions, such as OA acting in synergy with other climate change related stressors. Achieving successful gametogenesis, fertilization, and the development of larvae into healthy juveniles and adults is crucial for the perpetuation of species and, thus, ecosystems’ functionality. The considerable vulnerability of the abovementioned developmental stages to the adverse conditions that future OA may impose has been shown in many species, including sea urchins which are commonly used due to the feasibility of their maintenance in captivity and the great amount of gametes that a mature adult is able to produce. In the present review, the latest knowledge about the impact of OA on various stages of the life cycle of sea urchins is summarized with remarks on the possible impact of other stressors. The cellular physiology of the gametes before, at fertilization and, at early development, is extensively described with a focus on the complex enzymatic machinery and the intracellular pH (pHi and Ca2+ homeostasis for their vulnerability when facing adverse conditions such as acidification, temperature variations, or hypoxia.

  13. Evaluating climate change adaptation options for urban flooding in Copenhagen based on new high‐end emission scenario simulations

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Leonhardsen, Lykke; Madsen, Henrik

    2014-01-01

    simulations. These include a regional climate model projection forced to a global temperature increase of 6 degrees as well as a projection based on the RCP8.5 scenario. With these scenarios projected impacts of extreme precipitation increase significantly. For extreme sea surges the impacts do not seem to...

  14. Projected impact of climate change in the North and Baltic Sea. Results from dynamical downscaling of global CMIP climate scenarios

    Science.gov (United States)

    Gröger, Matthias; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Sein, Dmitry

    2013-04-01

    Climate models have predicted strongest climate change impact for the mid/high lattiude areas. Despite their importance, shelves seas (which are supposed to account for more than 20% of global marine primary production and for up to 50% of total marine carbon uptake) are not adequately resolved in climate models. In this study, the global ocean general circulation and biogeochemistry model MPIOM/HAMOCC has been setup with an enhanced resolution over the NW European shelf (~10 km in the southern North Sea). For a realistic representation of atmosphere-ocean interactions the regional model REMO has been implemented. Thus, this model configuration allows a physically consistent simulation of climate signal propagation from the North Atlantic over the North Sea into the Baltic Sea since it interactively simulates mass and energy fluxes between the three basins. The results indicate substantial changes in hydrographic and biological conditions for the end of the 21st Century. A freshening by about 0.75 psu together with a surface warming of ~2.0 K and associated circulation changes in and outside the North Sea reduce biological production on the NW European shelf by ~35%. This reduction is twice as strong as the reduction in the open ocean. The underlying mechanism is a spatially well confined stratification feedback along the shelf break and the continental slope which reduces the winter mixed layer by locally more than 200 m compared to current conditions. As a consequence winter nutrient supply from the deep Atlantic declines between 40 and 50%. In addition to this, the volume transport of water and salt into the North Sea will slightly reduce (~10%) during summer. At the end of the 21st Century the North Sea appears nearly decoupled from the deep Atlantic. The projected decline in biological productivity and subsequent decrease of phytoplankton (by averaged 25%) will probably negatively affect the local fish stock in the North Sea. In the Baltic Sea the climate

  15. Stochastic Modeling of Soil Water and Plant Water Stress Using Cumulant Expansion Theory and Its Application to Climate Change Scenarios

    Science.gov (United States)

    Kim, S.; Lee, A.; Keem, M.; Shin, H.

    2009-12-01

    For better understanding of soil water and plant water stress dynamics, a stochastic soil water and plant water stress model will be proposed and applied to climate change impact assessment. The proposed model is derived by using cumulant expansion theory from a stochastic differential equation with stochastic rainfall forcings. This model has the advantage of providing the probabilistic solution in the form of a probability distribution function, from which the ensemble average behavior of the system can be obtained easily. Also, since this model uses only the statistics of rainfall time series, the effect of different climate conditions on the soil water and plant water stress dynamics can be incorporated effectively. The simulation result of soil water confirms that the proposed model can reproduce the observation properly and shows that the soil water behaves with consistent cycle based on the precipitation pattern. In order to understand the impact of climate change on soil water and plant water stress behaviors, the RCM data developed by Korean Meteorological Administration (KMA RCM) and the third GCM by Canadian Centre for Climate Modeling and Analysis(CGCM3) are used with two time periods of 2051~2060 and 2091~2100. With all the simulation results, it can be conclude that the simulation results will be different with what climate change scenario is selected since different climate change model predicts different soil water and plant water stress behaviors. This analysis can be expected as a starting point for better understanding of the effect of soil water on ecosystem dynamics such as climate-soil-vegetation interaction. Figure 1. The evolution of the soil water PDF. The soil water PDFs have two different patterns according to wet season from June to September and dry season from October to May. From such result, it can be inferred that the mechanisms which influence the soil water behavior are different in wet and dry seasons. That is to say, in wet

  16. Probabilistic Climate Scenario Information for Risk Assessment

    Science.gov (United States)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  17. Climate response to projected changes in short-lived species under an A1B scenario from 2000-2050 in the GISS climate model

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Shindell, Drew T.; Faluvegi, Greg; Bauer, Susanne E.; Koch, Dorothy M.; Unger, Nadine; Menon, Surabi; Miller, Ron L.; Schmidt, Gavin A.; Streets, David G.

    2007-03-26

    We investigate the climate forcing from and response to projected changes in short-lived species and methane under the A1B scenario from 2000-2050 in the GISS climate model. We present a meta-analysis of new simulations of the full evolution of gas and aerosol species and other existing experiments with variations of the same model. The comparison highlights the importance of several physical processes in determining radiative forcing, especially the effect of climate change on stratosphere-troposphere exchange, heterogeneous sulfate-nitrate-dust chemistry, and changes in methane oxidation and natural emissions. However, the impact of these fairly uncertain physical effects is substantially less than the difference between alternative emission scenarios for all short-lived species. The net global mean annual average direct radiative forcing from the short-lived species is .02 W/m{sup 2} or less in our projections, as substantial positive ozone forcing is largely offset by negative aerosol direct forcing. Since aerosol reductions also lead to a reduced indirect effect, the global mean surface temperature warms by {approx}0.07 C by 2030 and {approx}0.13 C by 2050, adding 19% and 17%, respectively, to the warming induced by long-lived greenhouse gases. Regional direct forcings are large, up to 3.8 W/m{sup 2}. The ensemble-mean climate response shows little regional correlation with the spatial pattern of the forcing, however, suggesting that oceanic and atmospheric mixing generally overwhelms the effect of even large localized forcings. Exceptions are the polar regions, where ozone and aerosols may induce substantial seasonal climate changes.

  18. Adaption strategies to the effect of climate change on a coastal area in Northwest Germany with different land management scenarios

    Science.gov (United States)

    Graeff, Thomas; Krause, Stefan; Maier, Martin; Oswald, Sascha

    2015-04-01

    Coastal areas are highly vulnerable to the impact of climate change and handling is difficult. Adaption to two different situations has to be taken into account. On the one hand, increasing global sea level in combination with increased precipitation and higher storm surge frequency has to be handled. On the other hand, in summer periods due to the increase of temperature, enhanced evapotranspiration and an increase of salty seawater intrusion into groundwater have to be managed. In this study we present different landuse management scenarios on a coastal area in Northwest Germany, East Frisia, and their effect on the hydrological response. Landuse is dominated by dairy farming and intensive crop farming. 30 percent of the area lies below sea level. A dense channel network in combination with several pumping stations allows permeant drainage. The soils are characterised by marsh soils and impermeable layers which prevent an interaction with the confined brackish aquifer. Observations in those areas indicate a high salinity with concentrations peaking during the summer period. The landuse strategies include a scenario that the technological level of the management will be adapted to rainfall and sea level but without additional drainage from the hinterland to reduce salt water concentration. A second scenario includes the adaptation to increasing precipitation and the sea level with a polder system and wetland areas designated as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods. Two scenarios use large polder areas in the future as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods, additional usage for nature conservation and as the storage of carbon sequestration or extensive farming are planned. Also, stakeholders have developed a system of several smaller polders in combination with an intensification of the water resource management, and this is

  19. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe.

    Science.gov (United States)

    Bezirtzoglou, Christos; Dekas, Konstantinos; Charvalos, Ekatherina

    2011-12-01

    Climate change is a current global concern and, despite continuing controversy about the extent and importance of causes and of its effects, it seems likely that it will affect the incidence and prevalence of both residual and imported infections in Europe. Climate affects mainly the range of infectious diseases, whereas weather affects the timing and intensity of outbreaks. Climate change scenarios include a change distribution of infectious diseases with warming and changes in outbreaks associated with weather extremes. The largest health impact from climate change for Europe doesn't come from vector borne infectious diseases. This does not mean that these types of health impacts will not arise in Europe. The ranges of several vector-borne diseases or their vectors are already changing in altitude due to warming. In addition, more intense weather events create conditions conductive to outbreaks of infectious diseases: Heavy rains leave insect breeding sites, drive rodents from burrows, and contaminate clean water systems. The incidence of mosquito-borne parasitic and viral diseases, are among those diseases most sensitive to climate. Climate change affect disease transmission by shifting the vector's geographic range and by shortening the pathogen incubation period. climate-related increases in temperature in sea surface and level would lead to higher incidence of waterborne infectious and toxin-related illnesses, such as cholera and seafood intoxication. Climate changes all around the world with impact in Europe are demonstrated by the fact that recent cases of cholera have been imported to Europe from Kenya, where spreading epidemic has been linked to the El Niño phenomenon, originated from the Pacific Ocean. Human migration and damage to health infrastructures from aberrant climate changes could indirectly contribute to disease transmission. Human susceptibility to infections might be further compounded by alterations in the human immune system caused by

  20. Evaluation of mitigation scenarios of climate change in the electric sector

    International Nuclear Information System (INIS)

    The electricity generation contributes to development and to improve the quality of life, But it is ones of the most important contributors to the Greenhouse Gas and particle emissions particularly in Cuba where 99.4% of electricity in the National Electric System is generated from fossil fuels. In the paper from mitigation measures three mitigation scenarios are evaluated for the Expansion of the Cuban electric system using DECADES Tools. Evaluated scenarios include the Use of 60% of the biomass potential, the combinations of this with nuclear power reactors, Hydraulic energy and combined cycle power plants. Finally in the paper the Greenhouse Gas level reduction, investment, fuel, operation and Maintenance costs and Carbon Intensity in generation are analyzed for evaluated mitigation Scenarios and conclusions are offered

  1. Changing Demands from Riparian Evapotranspiration and Free-Water Evaporation in the Lower Colorado River Basin Under Different Climate Scenarios

    Science.gov (United States)

    Bunk, D. A.; Piechota, T. C.

    2012-12-01

    Observed and projected trends in riparian evapotranspiration (ET) and free-water evaporation are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most previous research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in precipitation and wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering cropping patterns; and changing the temporal and spatial distribution of water deliveries. This study uses observations and projections under changing climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on riparian ET and free-water evaporation in the lower Colorado River mainstream downstream of Lake Mead and Hoover Dam. The projected changes in evaporative demands were assessed to determine their impacts on water supply and reservoir operations in the Colorado River basin under changing climate conditions. Based on analysis of observed and projected hydroclimatic data from the Variable Infiltration Capacity (VIC) hydrologic model, mean annual daily temperature in the lower Colorado River mainstream reach has increased by 0.8° Celsius (C) from the 30-year period ending in 1980 to period ending in 2010 and is projected to increase by an additional 1.7° C by 30-year period ending in 2060. Analysis of riparian ET derived from the ASCE Penman-Monteith method (Allen et al., 2005, from Monteith, 1965 and 1981) and Westenburg et al. (2006) and free-water evaporation derived from the Penman combination model in Dingman (2008) indicates that combined evaporative demand in the lower Colorado River

  2. Scenario development for reaching urban and environmental planning integration in the context of climate change

    NARCIS (Netherlands)

    Zagare, V.M.E.; Sepulveda Carmona, D.A.

    2014-01-01

    Presentation based on a research done by appointment of Lincoln Institute of Land Policy, Cambridge, MA, USA. Nov 2013. Scenarios for an integral approach to urban and environmental dimensions in the Lower Parana Delta (Argentina). Consortia UBA-SU Buenos Aires-TUD

  3. The first Rossby Centre regional climate scenario - Dynamical downscaling of CO{sub 2}-induced climate change in the HadCM2 GCM

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J.; Rummukainen, M.; Ullerstig, A.; Bringfelt, B.; Hansson, Ulf; Willen, U.

    1999-02-01

    Results of the first 10-year climate change experiment made with the Rossby Centre regional climate model (RCA) are described. The boundary data for this experiment were derived from two simulations with the global HadCM2 ocean-atmosphere GCM, a control run and a scenario run with 150% higher equivalent CO{sub 2} and 2.6 deg C higher global mean surface air temperature. Some of the climate changes (scenario run - control run) simulated by RCA are substantial. The annual mean temperature in the Nordic region increases by roughly 4 deg C, with largest warming in winter. Annual absolute minimum temperatures increase even more than the winter mean temperature, presumably due to greatly reduced snow and ice cover. Precipitation is also simulated to increase in northern Europe, locally by 40% in the annual mean in Swedish Lappland. The larger time mean precipitation is accompanied by a marked increase in the number of days with heavy precipitation. The large-scale temperature and precipitation changes simulated by RCA are similar to those in HadCM2. Unlike HadCM2, however, RCA simulates a strong local maximum of wintertime warming over the northern parts of the Baltic Sea. This is caused by radically reduced ice cover, but the crude treatment of the Baltic Sea and its ice even in RCA complicates the interpretation. Large differences between the models occur in the simulated changes of winter mean total cloudiness and near-surface wind speed, demonstrating the sensitivity of these to differences in resolution and/or physical parameterizations. The significance of the simulated climate changes against interannual variability depends on the parameter considered. Of highest statistical significance are changes in surface air temperature and strongly temperature-related variables such as snow and ice cover. In general, changes in annual means are more commonly significant than those in seasonal means. The impact of the limited averaging period is also studied by comparing the

  4. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old

    NARCIS (Netherlands)

    van Vuuren, D.P.; Carter, T.R.

    2014-01-01

    A suggestion for mapping the SRES illustrative scenarios onto the new scenarios framework of representative concentration pathways (RCPs) and shared socio-economic pathways (SSPs) is presented. The mapping first compares storylines describing future socio-economic developments for SRES and SSPs. Nex

  5. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China

    Science.gov (United States)

    Zhang, Yuqing; You, Qinglong; Chen, Changchun; Ge, Jing

    2016-09-01

    Researchers often examine hydro-climatological processes via Global Circulation Model (GCM) and hydrological model, which have been shown to benefit water resources management and prediction, especially at the basin scale. In this study, the Soil and Water Assessment Tool (SWAT) and Statistical Downscaling Method (SDSM) were integrated and applied to estimate streamflows in the Xin River Basin, China, based on climate change scenarios downscaled from different GCMs (BCC-CSM1.1, CanESM2, and NorESM1-M) under three Representative Concentration Pathways (RCPs). Results confirmed that the calibrated SWAT model accurately depicts hydrological processes features at daily, monthly, and yearly scales. Three GCMs based on the calibrated SDSM showed that temperature is continually increasing in the region, however, future precipitation is highly complex and uncertain; there were significant differences among various GCM RCP scenarios. The average of the precipitation in three models showed slight and steady increase trends under RCP2.6 and RCP4.5, but a significant increase under the RCP8.5 scenario. The ensemble average of streamflow in GCMs demonstrated that many RCPs significantly decrease from May to June but increase from August to September relative to the baseline period. The ensemble mean of the multi-GCM indicated that future streamflows under RCP2.6 and RCP4.5 scenarios will be closer to the current streamflow volume. Many RCPs also revealed a significant increase in monthly streamflow dispersion coefficient in October, reflecting a tendency for drought and flood events in that month. The BCC-CSM1.1 and NorESM1-M models showed that streamflows are higher than the baseline with median probability in the future. The low monthly streamflow (10th percentile) processes for each GCM were altogether similar to the baseline, whereas the high monthly streamflows (90th percentile) showed various levels of disparity compared to the baseline.

  6. Projecting Changes in Everglades Soil Biogeochemistry for Carbon and Other Key Elements, to Possible 2060 Climate and Hydrologic Scenarios

    Science.gov (United States)

    Orem, William; Newman, Susan; Osborne, Todd Z.; Reddy, K. Ramesh

    2015-04-01

    Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10 % increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10 % reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10 % increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.

  7. Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions

    Directory of Open Access Journals (Sweden)

    R. Quilbé

    2007-06-01

    Full Text Available Watershed runoff is closely related to land use, but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec, Canada and had two objectives: (i to quantify the influence of historical agricultural land use evolution on watershed runoff; and (ii to assess the effect of future land use evolution scenarios under climate change conditions (CC. To achieve this, we used the integrated modeling system GIBSI. Past land use evolution was constructed using satellite images that were integrated into GIBSI. The general trend was an increase of agricultural land in the 1980s, a slight decrease in the beginning of the 1990s and a steady state over the last ten years. Simulations based on thirty years of daily meteorological series showed strong correlations between land use evolution and water discharge at the watershed outlet, especially for summer and fall seasons. For the prospective approach, we first assessed the effect of CC and then defined two opposite land use evolution scenarios for the horizon 2025 based on two different trends: agriculture intensification or sustainable development. Simulation results showed that CC would induce an increase of water discharge during winter and a decrease the rest of the year, while land use scenarios would have a more drastic effect, agriculture intensification counterbalancing the effect of CC during summer and fall. Due to the large uncertainty linked to CC simulations, it is difficult to conclude that one land use scenario provides a better adaptation to CC than another, but this study shows that land use is a key factor that has to be taken into account when predicting potential future hydrological responses of a watershed.

  8. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    Science.gov (United States)

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use. PMID:23830922

  9. Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise

    Directory of Open Access Journals (Sweden)

    D. Di Nitto

    2013-02-01

    Full Text Available Mangrove forests prominently occupy an intertidal boundary position where the effects of sea level rise will be fast and well visible. This study in East Africa (Gazi Bay, Kenya addresses the question whether mangroves can be resilient to a rise in sea level by focusing on their potential to migrate towards landwards areas. The combinatory analysis between remote sensing, DGPS-based ground truth and digital terrain models (DTM unveils how real vegetation assemblages can shift under different projected (minimum (+9 cm, relative (+20 cm, average (+48 cm and maximum (+88 cm scenarios of sea level rise (SLR. Under SLR scenarios up to 48 cm by the year 2100, the landward extension remarkably implies an area increase for each of the dominant mangrove assemblages, except for Avicennia marina and Ceriops tagal, both on the landward side. On one hand, the increase of most species in the first 3 scenarios, including the socio-economically most important species in this area, Rhizophora mucronata and C. tagal on the seaward side, strongly depends on the colonisation rate of these species. On the other hand, a SLR scenario of +88 cm by the year 2100 indicates that the area flooded only by equinoctial tides strongly decreases due to the topographical settings at the edge of the inhabited area. Consequently, the landward Avicennia-dominated assemblages will further decrease as a formation if they fail to adapt to a more frequent inundation. The topography is site-specific; however non-invadable areas can be typical for many mangrove settings.

  10. Vulnerability Assessment of Dust Storms in the United States under a Changing Climate Scenario

    Science.gov (United States)

    Severe weather events, such as flooding, drought, forest fires, and dust storms can have a serious impact on human health. Dust storm events are not well predicted in the United States, however they are expected to become more frequent as global climate warms through the 21st cen...

  11. Development of a management tool for the equal evaluation of economic, social and ecological effects of adaptation scenarios for attenuating the effects of climate change induced flooding

    OpenAIRE

    De Smet, Lieven; De Sutter, Renaat

    2008-01-01

    Climate change is expected to influence river flooding which may have important implications for socio-economic and ecological systems. Changed flood risks require a proper policy. Water managers need to develop and select those adaptation scenarios that maximise welfare. Doing so requires addressing various challenges; integrating climate change effects in flood modelling, development of assessment methods for flood risk to social and ecological systems, development of methodologies for the ...

  12. The environmental sustainability of sugarcane cultivation under scenarios of climate change: case studies for Brazil and Ghana

    Science.gov (United States)

    Black, E.; Vidale, P. L.; Verhoef, A.; Cuadro, S. V.

    2012-04-01

    Over the next decades increasing oil and carbon prices will lead to a proliferation of energy crop cultivation initiatives. Many of these will be based in developing countries, and hence will affect some of the poorest people in the world. The capacity of such initiatives to alleviate poverty in the long term depends on their environmental sustainability. Specifically, the exploitation of water resources in an unsustainable manner may permanently damage vulnerable ecosystems and ultimately deepen poverty. These issues have motivated a collaborative project - Integrated Carbon, Water and Land Management for Poverty Alleviation (ICWALPA), which asks whether the export of bio-fuel technology from Brazil to Ghana will alleviate poverty. This presentation will describe the initial results from ICWALPA - including the development of an integrated environmental modelling framework and its application to sugarcane cultivation under scenarios of climate change. The environmental model used to represent the biophysical interactions is process-based and implemented in the framework of the Joint UK Land Environment Simulator (JULES). Crop growth is predicted dynamically by accumulating the carbon assimilated during photosynthesis and is then allocated according to well-established allometric principles. Two contrasting case studies will be presented: the Sao Paulo region of Brazil (where there is an established sugarcane industry) and the Daka River region of Ghana (where commercial sugarcane cultivation is planned). We show that our model is capable of reproducing both the spatial and temporal variability in sugarcane yield for the Sao Paulo province of Brazil - lending credence to the projections for Ghana. For Ghana, we show that, providing there is sufficient irrigation, it is possible to generate approximately 75% of the yield achieved in the Sao Paulo province. In the final part of the study, the behaviour of sugarcane under an idealized climate change scenario is

  13. Projecting excess emergency department visits and associated costs in Brisbane, Australia, under population growth and climate change scenarios

    Science.gov (United States)

    Toloo, Ghasem (Sam); Hu, Wenbiao; Fitzgerald, Gerry; Aitken, Peter; Tong, Shilu

    2015-08-01

    The direct and indirect health effects of increasingly warmer temperatures are likely to further burden the already overcrowded hospital emergency departments (EDs). Using current trends and estimates in conjunction with future population growth and climate change scenarios, we show that the increased number of hot days in the future can have a considerable impact on EDs, adding to their workload and costs. The excess number of visits in 2030 is projected to range between 98-336 and 42-127 for younger and older groups, respectively. The excess costs in 2012-13 prices are estimated to range between AU$51,000-184,000 (0-64) and AU$27,000-84,000 (65+). By 2060, these estimates will increase to 229-2300 and 145-1188 at a cost of between AU$120,000-1,200,000 and AU$96,000-786,000 for the respective age groups. Improvements in climate change mitigation and adaptation measures are likely to generate synergistic health co-benefits and reduce the impact on frontline health services.

  14. Clearing the cloudy crystal balls: Hybrid modelling for energy and climate change mitigation scenarios – A case study for Portugal

    OpenAIRE

    Silva, Patrícia Alexandra Fortes da

    2014-01-01

    Dissertação para obtenção do Grau de Doutor em Ambiente Energy and greenhouse gas (GHG) emissions scenarios, generated by energy-economy-environment (E3) models, have been used to explore alternative futures and support energy and climate mitigation policy decisions. The uncertainty carried in these scenarios comes from inherent uncertainty of future conditions, reflected in the models input assumptions, and from the models intrinsic features (e.g. technology bottom-up vs. economic top-...

  15. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Varandas, S G P; Pereira, M G; Sousa, R; Teixeira, A; Lopes-Lima, M; Cortes, R M V; Pacheco, F A L

    2015-04-01

    In this study, we assess the impacts of future climate and land-use in the Beça River (northern Portugal) under different scenarios and how this will translate into the conservation status of the endangered pearl mussel Margaritifera margaritifera (Linnaeus, 1758). This species is currently present in several stretches of the Beça River that still hold adequate ecological conditions. However, the species is threatened by projected declines in precipitation for the 21st century, with implication on the river flows and water depths that might decrease below the species requisites. This situation could be especially critical during summer conditions since the ecological flows may not be assured and several river stretches may be converted into stagnant isolated pools. The habitat connectivity will also be affected with reverberating effects on the mobility of Salmo trutta, the host of M. margaritifera, with consequences in the reproduction and recruitment of pearl mussels. In addition, human-related threats mostly associated with the presence of dams and an predicted increases in wildfires in the future. While the presence of dams may decrease even further the connectivity and river flow, with wildfires the major threat will be related to the wash out of burned areas during storms, eventually causing the disappearance of the mussels, especially the juveniles. In view of future climate and land-use change scenarios, conservation strategies are proposed, including the negotiation of ecological flows with the dam promoters, the replanting of riparian vegetation along the water course and the reintroduction of native tree species throughout the catchment. PMID:25574975

  16. Climate Change

    Science.gov (United States)

    ... can be caused by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate change can affect our health. It can lead to More heat-related illness ...

  17. Global warming: Climate scenarios and international agriculture

    International Nuclear Information System (INIS)

    The potential impacts of climatic change on international agriculture are summarized, drawing on results from the Intergovernmental Panel on Climate Change impacts working group. The four different climate change scenarios used for investigating impacts: historical studies, artificial scenarios, analogues, and general circulation models, are briefly reviewed. Climate change will affect agriculture in three ways: direct effects of increased carbon dioxide concentration, effects of altered weather patterns, and secondary effects on social and economic situations. The effect of increased carbon dioxide concentration is uncertain, but potentially will enhance plant growth and water use efficiency. The sensitivity of grain maize to incremental changes in annual temperature is described, with the suitable zone expanding from the middle of Europe to southern Scandinavia. Potential damage from insect pests may increase under warmer climates, with northerly movement of insect breeding grounds. Temperature increases are likely to lengthen the growing season where temperature is a limiting factor, especially at higher lattitudes in the Northern Hemisphere. Higher temperatures, shorter periods of grain filling, and reduced winter chilling will reduce potential yields in current core grain-growing areas, and changing moisture regimes will shift agricultural patterns. The horn of Africa and parts of western Africa are likely to suffer enhanced food supply vulnerability. 16 refs., 4 figs

  18. Predicting Plausible Impacts of Sets of Climate and Land Use Change Scenario on Water Resources

    Science.gov (United States)

    As the new decade ushers in, there will be new challenges. The world’s population is increasing and the land use patterns are changing. Inevitably with these global changes, there will be various environmental consequences. For example, our water resources, both in terms of qu...

  19. Change in the Annual Water Withdrawal-to-Availability Ratio and Its Major Causes: An Evaluation for Asian River Basins Under Socioeconomic Development and Climate Change Scenarios

    OpenAIRE

    Ayami Hayashi; Keigo Akimoto; Takashi Homma; Kenichi Wada; Toshimasa Tomoda

    2014-01-01

    More than half of the world's population lives in Asia, and ensuring a stable water supply is a critical issue. This study evaluates changes in the annual water withdrawal-to-availability ratio (WAR), and the major causes  thereof, for each of Asian river basins under different socioeconomic development and climate change scenarios. According to our evaluation, the WAR will increase in 59%–61% of the Asian river basin areas by around 2030, as a result of population growth and the increase in ...

  20. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Marengo, Jose A.; Valverde, Maria C.; Torres, Roger R.; Santos, Daniel C. [Centro de Ciencia do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, CCST/INPE, Sao Paulo, SP (Brazil); Ambrizzi, Tercio; Rocha, Rosmeri P. da [University of Sao Paulo, IAG-DCA/USP, Department of Atmospheric Sciences, Sao Paulo, SP (Brazil); Alves, Lincoln M. [Centro de Previsao de Tempo e Estudos Climaticos, Instituto Nacional de Pesquisas Espaciais, CPTEC/INPE, Sao Paulo, SP (Brazil); Cuadra, Santiago V. [Universidade Federal de Vicosa, Vicosa, MG (Brazil); Ferraz, Simone E.T. [Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2010-11-15

    Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5 N-15 S band, both in summer and especially in winter, reaching up to 6-8 C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4 C and in winter between 3 and 5 C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of

  1. Behavioural Climate Change Mitigation Options and Their Appropriate Inclusion in Quantitative Longer Term Policy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Schroten, A.; Bles, M.; Sevenster, M.; Markowska, A.; Smit, M. [CE Delft, Delft (Netherlands); Rohde, C.; Duetschke, E.; Koehler, J.; Gigli, M. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany); Zimmermann, K.; Soboh, R.; Van ' t Riet, J. [Landbouw Economisch Instituut LEI, Wageningen (Netherlands)

    2012-01-15

    Changes in consumer behaviour can lead to major reductions in greenhouse gas emissions in the European Union, particularly in the areas of transport, housing and food. Behavioural changes can complement technological changes and can allow emission reduction targets to be achieved more cost-effectively overall. The study identifies 36 options for behavioural change that would cut greenhouse gas emissions. Of these, 11 particularly relevant options have been studied in detail. They include shifting to a more healthy and balanced diet, eating less meat and dairy products, buying and using a smaller car or an electric car, teleworking, adjusting room temperature and optimising ventilation. For each of the behavioural changes studied in depth, emission reduction potentials have been quantified for 2020, 2030 and 2050. The study identifies barriers to implementing the changes, and quantifies the likely effects of policy packages which could overcome these barriers. The results show that the behavioural changes that could take place simultaneously have the potential to save emissions totalling up to about 600 million tonnes of CO2-equivalent a year in 2020. This is about one-quarter of the projected annual emissions from sectors not covered by the EU emissions trading system. The savings potential is particularly high in the area of food.

  2. Potential Distribution of Podocnemis lewyana (Reptilia:Podocnemididae and Its Possible Fluctuation Under Different Global Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Carlos Ortiz-Yusty

    2014-06-01

    Full Text Available We implemented a species distribution modelling approach to establish the potential distribution of Podocnemis lewyana, to explore the climatic factors that may influence the species’ distribution and to evaluate possible changes in distribution under future climate scenarios. The distribution models predicted a continuous distribution from south to north along the Magdalena River, from Rivera and Palermo in the department of Huila to the departments of Atlántico and Magdalena in the north. Temperature was the variable most influential in the distribution of P. lewyana; this species tends to be present in warm regions with low temperature variability. The distribution model predicted an increase in the geographic range of P. lewyana under climate change scenarios. However, taking into account the habitat preferences of this species and its strong association with water, this result should be treated with caution since the model considered only terrestrial climatic variables. Given the life history characteristics of this species (temperature-dependent sex determination, high pivotal temperature and a very narrow transition range and the negative effect of changes in hydrological regimes on embryo survival, expansion of the potential distribution of P. lewyana in the future does not mean that the species will not be affected by global climate change.DISTRIBUCIÓN POTENCIAL DE (Podocnemis lewyana, REPTILIA: Podocnemididae Y SU POSIBLE FLUCTUACIÓN BAJO ESCENARIOS DE CAMBIO CLIMÁTICO GLOBALEn este estudio se implementó el modelaje de distribución de especies para establecer el rango de distribución potencial de Podocnemis lewyana, explorar los componentes del clima que pueden influenciar dicha distribución y evaluar posibles fluctuaciones de su distribución bajo escenarios de clima futuro. Los modelos obtenidos predicen una distribución continua de sur a norte por todo el río Magdalena, desde los municipios de Rivera y Palermo en el

  3. The impacts of climate and land-use change scenarios on river ecology: the case of Margaritifera margaritifera

    Science.gov (United States)

    Santos, Regina; Fernandes, Luís; Varandas, Simone; Pereira, Mário; Sousa, Ronaldo; Teixeira, Amilcar; Lopes-Lima, Manuel; Cortes, Rui; Pacheco, Fernando

    2015-04-01

    Climate change is one of the most important causes of biodiversity loss in freshwater ecosystems and it is expected to cause extinctions in many species in the future. Freshwater ecosystems are also highly affected by anthropogenic pressures such as land use/land cover changes, water abstractions and impoundments. The aim of this study is to assess the impacts of future climate and land-use in the Beça River (northern Portugal) namely on the conservation status of the endangered pearl mussel Margaritifera margaritifera (Linnaeus, 1758). This is an environmental indicator and endangered species currently present in several stretches of the Beça River that still hold adequate ecological conditions. However, the species is threatened by the precipitation decrease projected for the 21st century and the deviation of a significant portion of the river water to an adjacent watershed (since 1998). This decrease in river water can be especially acute during the summer months, forming small pools dispersed along the water course where M. margaritifera, and its host (Salmo trutta), barely find biological conditions for survival. The materials and methods used in this study include; (i) the assessment of water quality based on minimum, maximum and average values of relevant physicochemical parameters within the period 2000-2009; (ii) assessment of future climate change settings based on air temperature and precipitation projected by Regional and Global Circulation Models for recent past (1961 - 1990) and future climate scenarios (2071 - 2099); (iii) data processing to remove the model biases; and, (iv) integrated watershed modelling with river-planning (Mike Basin) and broad GIS (ArcMap) computer packages. Our findings comprise: (i); a good relationship between current wildfire incidence and river water quality; (ii) an increase in the future air temperature throughout the year; (iii) increases in future precipitations during winter and decreases during the other seasons

  4. Climate protection scenario 2050. Summary

    International Nuclear Information System (INIS)

    The report on the meeting of the experts on modeling of the climate protection scenario 2050 summarizes the substantial results: 80-90% reduction the greenhouse gas emissions means a reduction of fossil energy carriers by up to 98%. The electricity generation industry has to provide most of the reduction since esp. agriculture cannot reduce the CO2 emissions. The amount of renewable energy for electricity production has to increase to about 95%. The economic analysis shows that a strategy of energy efficiency and electricity production from renewable energy sources plus product innovation is a no-regret strategy that will be advantageous for Germany in a long-term.

  5. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors

    Science.gov (United States)

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  6. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors.

    Science.gov (United States)

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions. PMID:27153819

  7. Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks

    OpenAIRE

    Williams, Craig R.; Mincham, Gina; Ritchie, Scott A.; Viennet, Elvina; Harley, David

    2014-01-01

    Background Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. Methods Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomi...

  8. Interaction between Cities and Climate Change: Modelling Urban Morphology and Local Urban Planning Scenarios from Open Datasets across European Cities

    Science.gov (United States)

    Thomas, Bart; Stevens, Catherine; Grommen, Mart

    2015-04-01

    Cities are characterised by a large spatiotemporal diversity of local climates induced by a superposition of various factors and processes interacting at global and regional scales but also at the micro level such as the urban heat island effect. As urban areas are known as 'hot spots' prone to climate and its variability over time leading to changes in the severity and occurrence of extreme events such as heat waves, it is of crucial importance to capture the spatial heterogeneity resulting from variations in land use land cover (LULC) and urban morphology in an effective way to drive local urban climate simulations. The first part of the study conducted in the framework of the NACLIM FP7 project funded by the European Commission focusses on the extraction of land surface parameters linked to urban morphology characteristics from detailed 3D city models and their relationship with openly accessible European datasets such as the degree of soil sealing and disaggregated population densities from the European Environment Agency (EEA) and the Joint Research Centre (JRC). While it has been demonstrated that good correlations can be found between those datasets and the planar and frontal area indices, the present work has expanded the research to other urban morphology parameters including the average and variation of the building height and the sky view factor. Correlations up to 80% have been achieved depending on the considered parameter and the specific urban area including the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Moreover, the transferability of the established relations has been investigated across the various cities. Secondly, a flexible and scalable approach as a function of the required the level of detail has been elaborated to update the various morphology parameters in case of integration with urban planning data to analyse the local impact of future land use scenarios

  9. Climate Change Projections for the 21st Century by the NCC/IAP T63 Model with SRES Scenarios

    Institute of Scientific and Technical Information of China (English)

    XU Ying; ZHAO Zongci; LUO Yong; GAO Xuejie

    2005-01-01

    The projections of climate change in the globe and East Asia by the NCC/IAP T63 model with the SRES A2 and A1B scenarios have been investigated in this paper. The results pointed out a global warming of 3.6℃/100 yr and 2.5℃/100 yr for A2 and A1B during the 21st century, respectively. The warming in high and middle latitudes will be more obvious than that in low latitudes, especially in the winter hemisphere.The warming of 5.1℃/100 yr for A2 and 3.6℃/100 yr for A1B over East Asia in the 21st century will be much higher than that in the globe. The global mean precipitation will increase by about 4.3%/100 yr for A2 and 3.4%/100 yr for A1B in the 21st century, respectively. The precipitation will increase in most parts of the low and high latitudes and decrease in some regions of the subtropical latitudes. The linear trends of the annual mean precipitation anomalies over East Asia will be 9.8%/100 yr for A2 and 5.2%/100 yr for A1B, respectively. The drier situations will occur over the northwestern and southeastern parts of East Asia.The changes of the annual mean temperature and precipitation in the globe for the 21st century by the NCC/IAP T63 model with SRES A2 and A1B scenarios are in agreement with a number of the model projections.

  10. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: Surface air temperature

    Science.gov (United States)

    Suh, Myoung-Seok; Oh, Seok-Geun; Lee, Young-Suk; Ahn, Joong-Bae; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere- Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor's skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are +1.54oC/+1.92oC for RCP2.6, +1.68oC/+2.91oC for RCP4.5, +1.17oC/+3.11oC for RCP6.0, and +1.75oC/+4.73oC for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.

  11. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature

    Science.gov (United States)

    Suh, Myoung-Seok; Oh, Seok-Geun; Lee, Young-Suk; Ahn, Joong-Bae; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere- Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor's skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are +1.54°C/+1.92°C for RCP2.6, +1.68°C/+2.91°C for RCP4.5, +1.17°C/+3.11°C for RCP6.0, and +1.75°C/+4.73°C for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.

  12. Estimating Soil Organic Carbon Sequestration in Rice Paddies as Influenced by Climate Change under Scenario A2 and B2 of an i-EPIC model of Thailand

    OpenAIRE

    Noppol Arunrat; Nathsuda Pumijumnong; Attaya Phinchongsakuldit

    2014-01-01

    Carbon sequestration in soils constitutes an important option that can be used to reduce CO2 emissions to the atmosphere and reduce environmental impacts. Soil organic carbon (SOC) is both a source of carbon release and a sink for carbon sequestration. Our objectives in this study were to validate the interactive Environmental Policy Impact Calculator (i-EPIC) model version 0509, as well as to estimate SOC sequestration under climate change scenarios A2 and B2 SRES emission scenarios in Thail...

  13. The effects of temperature increases on a temperate phytoplankton community - A mesocosm climate change scenario

    DEFF Research Database (Denmark)

    Lassen, Majbritt Kjeldahl; Nielsen, Kathryn Dewar; Richardson, Katherine;

    2010-01-01

    Prior to the spring bloom in 2003 and 2004, batch temperature experiments of approximately 3 weeks' duration were carried out in land-based mesocosms in at the Espeland field station (Norway), with temperatures on average increased ~ 2.7-3 °C (T1) and ~ 5.2-5.6 °C (T2) above in situ fjord...... temperature (RM). The development in the chlorophyll concentrations showed an earlier bloom as a response to increased temperatures but the carbon biomass showed that the warmest treatment yielded the lowest biomass. This study indicates that a part of the relationship between temperature and spring bloom...... timing stems from a temperature-induced change in phytoplankton algal physiology (the efficiency of photosystem II, Fv/Fm, and growth rates, µmax), i.e. a direct temperature effect. Data analysis performed on microscope identified and quantified species did not show a significant temperature influence on...

  14. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    Science.gov (United States)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    conditions. As a general result, the model allows one to obtain long-term series of estimated water temperatures, which can be valuably considered in climate change studies. The model has been applied to different lakes (Lake Baikal, Siberia; Lake Garda, Italy; Great Lakes, Canada and USA; Lake Mara, Canada) showing a noticeable agreement with the validation datasets and allowing for predictions of future trends of lake surface water temperature. Finally, it is worth noting that if the model is calibrated using air temperature series from climate models (global scale) and measured records of water temperature (lake scale), air temperatures are contemporaneously converted and downscaled. In conclusion, the model can be used as a downscaling tool, both for historical conditions and projected scenarios.

  15. Framework for Probabilistic Projections of Energy-Relevant Streamflow Indicators under Climate Change Scenarios for the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, Thorsten [Univ. of Bristol (United Kingdom); Mann, Michael [Pennsylvania State Univ., State College, PA (United States); Crane, Robert [Pennsylvania State Univ., State College, PA (United States)

    2014-04-29

    This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach to establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.

  16. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Clausen, Niels-Erik; Drews, Martin; MacKellar, N.; Kjellström, E.

    Regional Climate Models. Additionally, internal (inherent) variability and initial conditions exert a strong impact on projected wind climates throughout the twenty-first century. Simulations of wind gusts by one of the RCMs (RCA3) indicate some evidence for increased magnitudes (of up to +10%) in the...... be used in interpreting this inference given the high degree of wind climate projection spread that derives from the specific AOGCM and RCM used in the downscaling....

  17. Assessment of droughts at a continental scale under different climate change scenarios. Case study: La Plata Basin

    Science.gov (United States)

    Sordo-Ward, Alvaro; Iglesias, Ana; Garrote, Luis; Bejarano, Maria Dolores; Asenjo, Victor; Bianucci, Paola

    2016-04-01

    In this study, we characterized and diagnosed the droughts across La Plata Basin for the reference (1961 - 2005) and future (2007 - 2040, 2041 - 2070 and 2071 - 2099) scenarios. La Plata Basin is located in the Centre-South of South America and comprises 3.174.229 km2 and five countries. Despite the significant impact of droughts on agriculture, cattle, water supply, natural water courses and wetlands, droughts are still difficult to predict in the region, both in time and space. We used the Standardized Precipitation-Evapotranspiration Index (SPEI) to characterize droughts based on Potential Evapotranspiration (PET) and Precipitation (P) at a monthly scale. PET and P were obtained for all 10 x 10 km-size cells within the basin by using the regional climatic model Eta, under the boundary conditions of the HadGEM2-ES model and the CO2 emissions scenario RCP 4.5. Cell to cell information was integrated into a sub-basin level in order to show and analyze the results. For each sub-basin, climate scenario, and temporal scale of SPEI (1, 3, 6 and 12 months), we identified the beginning of each drought, calculated its duration, magnitude, maximum and mean intensities, and the duration between drought events. Additionally, for each SPEI temporal scale and sub-basin, we described the spatial coverage of droughts for the temporal series of all climate scenarios. Spatially, we found a decrease of PET from North to South. Temporally, results showed a future increase of PET for the Paraguay river basin and upper Parana river basin but similar to present values for the remaining basin. Results showed that P will be similar in the future for the Paraguay river basin and upper Parana river basin, but will increase within the remaining basin. During the 2007 - 2040 scenario, we expect that the northern sub-basins suffer from several droughts while the southern ones have wetter climate with few short drought events. As we analyzed more distant future scenarios the wet climate

  18. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species

    OpenAIRE

    Santos, R.M.B.; Sanches Fernandes, L.F.; Varandas, Simone; Pereira, M.G.; Sousa, Ronaldo; Teixeira, Amílcar; Lopes-Lima, Manuel; Cortes, R.; Pacheco, F. A. L.

    2015-01-01

    In this study, we assess the impacts of future climate and land-use in the Beça River (northern Portugal) under different scenarios and how this will translate into the conservation status of the endangered pearl mussel Margaritifera margaritifera (Linnaeus, 1758). This species is currently present in several stretches of the Beça River that still hold adequate ecological conditions. However, the species is threatened by projected declines in precipitation for the 21st century, with implicati...

  19. Application of the new scenario framework for climate change research: Future social vulnerability in large urban areas

    OpenAIRE

    Rohat, Guillaume Thibaut; Flacke, Johannes; Dao, Quoc-Hy

    2016-01-01

    It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the ...

  20. Scenarios to prioritize observing activities on the North Slope, Alaska in the context of resource development, climate change and socio-economic uncertainties

    Science.gov (United States)

    Lee, O. A.; Eicken, H.; Payne, J. F.; Lassuy, D.

    2014-12-01

    The North Slope of Alaska is experiencing rapid changes in response to interacting climate and socioeconomic drivers. The North Slope Science Initiative (NSSI) is using scenarios as a tool to identify plausible, spatially explicit future states of resource extraction activities on the North Slope and adjacent seas through the year 2040. The objective of the scenarios process is to strategically assess research and monitoring needs on the North Slope. The participatory scenarios process involved stakeholder input (including Federal, State, local, academic, industry and non-profit representatives) to identify key drivers of change related to resource extraction activities on the North Slope. While climate change was identified as a key driver in the biophysical system, economic drivers related to oil and gas development were also important. Expert-reviewed informational materials were developed to help stakeholders obtain baseline knowledge and stimulate discussions about interactions between drivers, knowledge gaps and uncertainties. Map-based scenario products will allow mission-oriented agencies to jointly explore where to prioritize research investments and address risk in a complex, changing environment. Scenarios consider multidecadal timescales. However, tracking of indicator variables derived from scenarios can lead to important insights about the trajectory of the North Slope social-environmental system and inform management decisions to reduce risk on much shorter timescales. The inclusion of stakeholders helps provide a broad spectrum of expert viewpoints necessary for considering the range of plausible scenarios. A well-defined focal question, transparency in the participation process and continued outreach about the utility and limitations of scenarios are also important components of the scenarios process.

  1. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Trnka, Miroslav; Holman, I. P.; Svobodová, Eva; Harrison, P. A.

    2015-01-01

    Roč. 128, 3-4 (2015), s. 169-186. ISSN 0165-0009 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : adaptation * design * climate change * Europe * global climate models Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.430, year: 2014

  2. The impact of climate change on summer maize phenology in the northwest plain of Shandong province under the IPCC SRES A1B scenario

    International Nuclear Information System (INIS)

    Climate change will affect agricultural production. Combining a climate model and a crop growth model furnishes a good approach for analyzing this effect quantitatively. The purpose of this study is to analyze the effect of climate change on summer maize phenology in northwest Shandong province under the A1B climate scenario using a regional climate model and the CERES-Maize growth model. The results showed that the temperature would increase significantly during the maize growth season in the study region, that the increased temperature would shorten the maize growth stage and result in a potential yield loss using the current cultivar, and that it is critical to breed a heat-resistant and late-maturing cultivar to maintain the yield

  3. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: precipitation

    Science.gov (United States)

    Oh, Seok-Geun; Suh, Myoung-Seok; Lee, Young-Suk; Ahn, Joong-Bae; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    Precipitation changes over South Korea were projected using five regional climate models (RCMs) with a horizontal resolution of 12.5 km for the mid and late 21st century (2026-2050, 2076- 2100) under four Representative Concentration Pathways (RCP) scenarios against present precipitation (1981-2005). The simulation data of the Hadley Centre Global Environmental Model version 2 coupled with the Atmosphere-Ocean (HadGEM2-AO) was used as boundary data of RCMs. In general, the RCMs well simulated the spatial and seasonal variations of present precipitation compared with observation and HadGEM2-AO. Equal Weighted Averaging without Bias Correction (EWA_NBC) significantly reduced the model biases to some extent, but systematic biases in results still remained. However, the Weighted Averaging based on Taylor's skill score (WEA_Tay) showed a good statistical correction in terms of the spatial and seasonal variations, the magnitude of precipitation amount, and the probability density. In the mid-21st century, the spatial and interannual variabilities of precipitation over South Korea are projected to increase regardless of the RCP scenarios and seasons. However, the changes in area-averaged seasonal precipitation are not significant due to mixed changing patterns depending on locations. Whereas, in the late 21st century, the precipitation is projected to increase proportionally to the changes of net radiative forcing. Under RCP8.5, WEA_Tay projects the precipitation to be increased by about +19.1, +20.5, +33.3% for annual, summer and winter precipitation at 1-5% significance levels, respectively. In addition, the probability of strong precipitation (≥ 15 mm d-1) is also projected to increase significantly, particularly in WEA_Tay under RCP8.5.

  4. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: Precipitation

    Science.gov (United States)

    Oh, Seok-Geun; Suh, Myoung-Seok; Lee, Young-Suk; Ahn, Joong-Bae; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    Precipitation changes over South Korea were projected using five regional climate models (RCMs) with a horizontal resolution of 12.5 km for the mid and late 21st century (2026-2050, 2076-2100) under four Representative Concentration Pathways (RCP) scenarios against present precipitation (1981-2005). The simulation data of the Hadley Centre Global Environmental Model version 2 coupled with the Atmosphere-Ocean (HadGEM2-AO) was used as boundary data of RCMs. In general, the RCMs well simulated the spatial and seasonal variations of present precipitation compared with observation and HadGEM2-AO. Equal Weighted Averaging without Bias Correction (EWA_NBC) significantly reduced the model biases to some extent, but systematic biases in results still remained. However, the Weighted Averaging based on Taylor's skill score (WEA_Tay) showed a good statistical correction in terms of the spatial and seasonal variations, the magnitude of precipitation amount, and the probability density. In the mid-21st century, the spatial and interannual variabilities of precipitation over South Korea are projected to increase regardless of the RCP scenarios and seasons. However, the changes in area-averaged seasonal precipitation are not significant due to mixed changing patterns depending on locations. Whereas, in the late 21st century, the precipitation is projected to increase proportionally to the changes of net radiative forcing. Under RCP8.5, WEA_Tay projects the precipitation to be increased by about +19.1, +20.5, +33.3% for annual, summer and winter precipitation at 1-5% significance levels, respectively. In addition, the probability of strong precipitation (≥ 15 mm d-1) is also projected to increase significantly, particularly in WEA_Tay under RCP8.5.

  5. "Actionable" Climate Scenarios for Natural Resource Managers in Southwestern Colorado

    Science.gov (United States)

    Rangwala, I.; Rondeau, R.; Wyborn, C.

    2014-12-01

    Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change. To provide such information, we developed narrative scenarios of future climate change and its impacts on different ecosystems in southwestern Colorado. This multi-institution and trans-disciplinary project seeks to provide useful and useable knowledge to facilitate climate change adaptation in the context of uncertainty. The narratives are intended to provide detailed insights into the range of changes that natural resource managers may face in the future. These scenarios were developed in an iterative process through interactions between ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal probability as another scenario. Rather than a qualitative narration of the general direction of change and range in responses, we quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. This presentation will discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We will also cover the process by which these scenarios get used, and how the user feedbacks are integrated in further developing the tools and processes.

  6. Future PMPs Estimation in Korea under AR5 RCP 8.5 Climate Change Scenario: Focus on Dew Point Temperature Change

    Science.gov (United States)

    Okjeong, Lee; Sangdan, Kim

    2016-04-01

    According to future climate change scenarios, future temperature is expected to increase gradually. Therefore, it is necessary to reflect the effects of these climate changes to predict Probable Maximum Precipitations (PMPs). In this presentation, PMPs will be estimated with future dew point temperature change. After selecting 174 major storm events from 1981 to 2005, new PMPs will be proposed with respect to storm areas (25, 100, 225, 400, 900, 2,025, 4,900, 10,000 and 19,600 km2) and storm durations (1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 hours) using the Korea hydro-meteorological method. Also, orographic transposition factor will be applied in place of the conventional terrain impact factor which has been used in previous Korean PMPs estimation reports. After estimating dew point temperature using future temperature and representative humidity information under the Korea Meteorological Administration AR5 RCP 8.5, changes in the PMPs under dew point temperature change will be investigated by comparison with present and future PMPs. This research was supported by a grant(14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  7. Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    OpenAIRE

    Sweeney, John; Brereton, Tony; Byrne, Clare; Charlton, Rosemary; Emblow, Chris; Fealy, Rowan; Holden, Nicholas; Jones, Mike; Donnelly, Alison; Moore, Sonja; Purser, Patrick; Byrne, Ken; Farrell, Edward; Mayes, Eleanor; Minchin, Dan

    2003-01-01

    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°...

  8. Baseline scenarios of global environmental change

    International Nuclear Information System (INIS)

    This paper presents three baseline scenarios of no policy action computed by the IMAGE2 model. These scenarios cover a wide range of coupled global change indicators, including: energy demand and consumption; food demand, consumption, and production; changes in land cover including changes in extent of agricultural land and forest; emissions of greenhouse gases and ozone precursors; and climate change and its impacts on sea level rise, crop productivity and natural vegetation. Scenario information is available for the entire world with regional and grid scale detail, and covers from 1970 to 2100. (author)

  9. Quantifying and valuing potential climate change impacts on coral reefs in the United States: comparison of two scenarios.

    Directory of Open Access Journals (Sweden)

    Diana R Lane

    Full Text Available The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a "business as usual" (BAU greenhouse gas (GHG emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated "avoided loss" from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100.

  10. Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Beguería, S.; Beranová, Romana; Gaál, Ladislav; López-Moreno, J. I.

    98-99, December (2012), s. 63-72. ISSN 0921-8181 R&D Projects: GA ČR GAP209/10/2265 Institutional support: RVO:68378289 Keywords : climate change * precipitation extremes * regional climate models * extreme value analysis * Mediterranean Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.155, year: 2012 http://dx.doi.org/10.1016/j.gloplacha.2012.06.010

  11. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  12. Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data

    Science.gov (United States)

    Mezősi, Gábor; Blanka, Viktória; Bata, Teodóra; Ladányi, Zsuzsanna; Kemény, Gábor; Meyer, Burghard C.

    2016-07-01

    The changes in rate and pattern of wind erosion sensitivity due to climate change were investigated for 2021-2050 and 2071-2100 compared to the reference period (1961-1990) in Hungary. The sensitivities of the main influencing factors (soil texture, vegetation cover and climate factor) were evaluated by fuzzy method and a combined wind erosion sensitivity map was compiled. The climate factor, as the driving factor of the changes, was assessed based on observed data for the reference period, while REMO and ALADIN regional climate model simulation data for the future periods. The changes in wind erosion sensitivity were evaluated on potentially affected agricultural land use types, and hot spot areas were allocated. Based on the results, 5-6% of the total agricultural areas were high sensitive areas in the reference period. In the 21st century slight or moderate changes of wind erosion sensitivity can be expected, and mostly `pastures', `complex cultivation patterns', and `land principally occupied by agriculture with significant areas of natural vegetation' are affected. The applied combination of multi-indicator approach and fuzzy analysis provides novelty in the field of land sensitivity assessment. The method is suitable for regional scale analysis of wind erosion sensitivity changes and supports regional planning by allocating priority areas where changes in agro-technics or land use have to be considered.

  13. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    Science.gov (United States)

    Basheer, Amir K.; Lu, Haishen; Omer, Abubaker; Ali, Abubaker B.; Abdelgader, Abdeldime M. S.

    2016-04-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT - the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.

  14. Scenarios of global climate change and its impact on the potency of lowland rice yields in Sukamandi and Cianjur

    International Nuclear Information System (INIS)

    Improvement of accuracy in planning and managing rice field requires a model that is able to predict variability and crop yield potential. Using modelling and simulation technique various components can be integrated directly in predicting crop yield potential. This research is a regional approach case study using crop growth of Decision Support System for Agrotechnology Transfer to predict the effects of climate change on crop yield potential productivity. Preventive action to control climate changing can be taken by forecasting future climates using General Circulation Models. There are three main General Circulation Models: Geophysical Fluid Dynamics Laboratory, Goddard Institute for Space Studies, and United Kingdom Meteorological Office. Simulated climate change indicates that increasing greenhouse gasses from 330 ppm to 555 ppm carbon dioxide will increase solar radiation, maximum temperature, minimum temperature, and precipitation. Compared to the condition in the 1970-1990 decades, the change in climate condition in the decades of 2010, 2030 and 2050 will drastically reduce rice grain yield as well as the biomass

  15. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  16. A Spatial Agent-Based Model to Explore Scenarios of Adaptation to Climate Change in an Alpine Tourism Destination

    OpenAIRE

    Stefano Balbi; Pascal Perez; Carlo Giupponi

    2010-01-01

    A vast body of literature suggests that the European Alpine region may be one of the most sensitive to climate change impacts. Adaptation to climate change of Alpine socio-ecosystems is increasingly becoming an issue of interest for the scientific community while the people of the Alps are often unaware of or simply ignore the problem. ClimAlpTour is a European research project of the Alpine Space Programme, bringing together institutions and scholars from all countries of the Alpine arch, in...

  17. Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios

    DEFF Research Database (Denmark)

    Niero, Monia; Ingvordsen, Cathrine Heinz; Peltonen-Sainio, Pirjo;

    2015-01-01

    leaching and change in crop yield). The main input data originate from experiments, where spring barley cultivars were cultivated in a climate phytotron under controlled and manipulated treatments. Effects of changed climate on both crop productivity and crop quality were represented, as well as impacts of...

  18. A dataset of future daily weather data for crop modelling over Europe derived from climate change scenarios

    Science.gov (United States)

    Duveiller, G.; Donatelli, M.; Fumagalli, D.; Zucchini, A.; Nelson, R.; Baruth, B.

    2015-10-01

    Coupled atmosphere-ocean general circulation models (GCMs) simulate different realizations of possible future climates at global scale under contrasting scenarios of land-use and greenhouse gas emissions. Such data require several additional processing steps before it can be used to drive impact models. Spatial downscaling, typically by regional climate models (RCM), and bias-correction are two such steps that have already been addressed for Europe. Yet, the errors in resulting daily meteorological variables may be too large for specific model applications. Crop simulation models are particularly sensitive to these inconsistencies and thus require further processing of GCM-RCM outputs. Moreover, crop models are often run in a stochastic manner by using various plausible weather time series (often generated using stochastic weather generators) to represent climate time scale for a period of interest (e.g. 2000 ± 15 years), while GCM simulations typically provide a single time series for a given emission scenario. To inform agricultural policy-making, data on near- and medium-term decadal time scale is mostly requested, e.g. 2020 or 2030. Taking a sample of multiple years from these unique time series to represent time horizons in the near future is particularly problematic because selecting overlapping years may lead to spurious trends, creating artefacts in the results of the impact model simulations. This paper presents a database of consolidated and coherent future daily weather data for Europe that addresses these problems. Input data consist of daily temperature and precipitation from three dynamically downscaled and bias-corrected regional climate simulations of the IPCC A1B emission scenario created within the ENSEMBLES project. Solar radiation is estimated from temperature based on an auto-calibration procedure. Wind speed and relative air humidity are collected from historical series. From these variables, reference evapotranspiration and vapour pressure

  19. Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios.

    Directory of Open Access Journals (Sweden)

    Albert Ruhí

    embedded in these vulnerable and often overlooked ecosystems will be affected by long-term climate change.

  20. Climatic impacts of land-use change due to crop yield increases and a universal carbon tax from a scenario model

    OpenAIRE

    Davies-Barnard, T.; Valdes, P.J.; Singarayer, Joy; Jones, C. D.

    2014-01-01

    Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical ef...

  1. Global-scale projection and its sensitivity analysis of the health burden attributable to childhood undernutrition under the latest scenario framework for climate change research

    International Nuclear Information System (INIS)

    This study assessed the health burden attributable to childhood underweight through 2050 focusing on disability-adjusted life years (DALYs), by considering the latest scenarios for climate change studies (representative concentration pathways and shared socioeconomic pathways (SSPs)) and conducting sensitivity analysis. A regression model for estimating DALYs attributable to childhood underweight (DAtU) was developed using the relationship between DAtU and childhood stunting. We combined a global computable general equilibrium model, a crop model, and two regression models to assess the future health burden. We found that (i) world total DAtU decreases from 2005 by 28 ∼ 63% in 2050 depending on the socioeconomic scenarios. Per capita DAtU also decreases in all regions under either scenario in 2050, but the decreases vary significantly by regions and scenarios. (ii) The impact of climate change is relatively small in the framework of this study but, on the other hand, socioeconomic conditions have a great impact on the future health burden. (iii) Parameter uncertainty of the regression models is the second largest factor on uncertainty of the result following the changes in socioeconomic condition, and uncertainty derived from the difference in global circulation models is the smallest in the framework of this study. (letters)

  2. The Potential for Global Energy Crop Production from Intensification and Extensification Under Current and Global Climate Change Scenarios

    Science.gov (United States)

    Ray, D. K.; Gerber, J. S.; Mueller, N. D.; Ramankutty, N.; Foley, J. A.

    2010-12-01

    Various countries have mandated ethanol blending into transportation fuel and increase in biodiesel production over time. To grow the extra biofuel either an intensification to prevent further land cover changes or extensification that would result in land cover change would be imperative. In this paper we developed and applied the relationship between the yield of specific energy crops such as maize and sugarcane and management decisions such as fertilizer applications and irrigation to determine the potential to further intensify energy crop production at locations where they are currently grown. Specifically we show the potential for further increases in global and country specific biofuel production from circa 2005. For the extensification case we identify those locations that are currently used for other crops or not cultivated including forest and pasture land circa 2005 and use the year 2005 yield information of energy crops from analogous locations (such as locations with similar climate, soils and economic status) to determine the global yield under extensification conditions. Finally, both intensification and extensification could be affected by global climate changes. Thus, we provide information of global biofuel production potential from intensification and extensification under both the current climate as well as global climate change conditions using the IPCC AR4 GCM projections circa 2050.

  3. A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates

    NARCIS (Netherlands)

    Tedesco, P.A.; Oberdorff, T.; Cornu, J.-F.; Beauchard, O.; Brosse, S.; Dürr, H.H.; Grenouillet, G.; Leprieur, F.; Tisseuil, C.; Zaiss, R.; Hugueny, B.

    2013-01-01

    1. Current models estimating impact of habitat loss on biodiversity in the face of global climate change usually project only percentages of species committed to extinction' on an uncertain time-scale. Here, we show that this limitation can be overcome using an empirically derived background extinct

  4. Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modelled climate change

    International Nuclear Information System (INIS)

    Groundwater systems in arid regions will be particularly sensitive to climate change owing to the strong dependence of rates of evapotranspiration on temperature, and shifts in the precipitation regimes. In agricultural areas, such changes in climate may require increased irrigation, putting stress on existing water supplies. In this study, a regional-scale numerical groundwater model was developed for the Oliver region of the south Okanagan, British Columbia, Canada, to simulate the impacts of future predicted climate change on groundwater. In future time periods (the 2050s and 2080s), the most noticeable change in the water budget is the increased contribution of recharge to the annual water budget, estimated at 1.2% (2050s) and 1.4% (2080s) of the total annual budget relative to the current conditions. This increase is related primarily to increases to irrigation return flow resulting from higher irrigation needs under warmer temperatures and a longer growing season. Increases in recharge and irrigation return flow will result in higher water tables with future climate conditions, particularly in the irrigation districts. Median value increases in groundwater level of up to 0.7 m by the 2080s are estimated.

  5. The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kriegler, Elmar; O' Neill, Brian; Hallegatte, Stephane; Kram, Tom; Lempert, Rob; Moss, Richard H.; Wilbanks, Thomas

    2012-10-01

    A new set of socioeconomic scenarios (Shared Socioeconomic Pathways) are described that provide a set of global narratives and socio-economic pathways to pair with climate model scenarios developed using the new Representative Concentration Pathways.

  6. Climatic change

    International Nuclear Information System (INIS)

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  7. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    Science.gov (United States)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  8. Politics scenarios for climatic protection V - On the way to structural change, scenarios of greenhouse gas emissions up to the year 2030; Politikszenarien V - auf dem Weg zum Strukturwandel, Treibhausgas-Emissionsszenarien bis zum Jahr 2030

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, P.; Matthes, F.C. (eds.)

    2010-07-01

    For the project 'Politics scenarios for climate protection V' (Politics scenarios V), two scenarios for the development of greenhouse gas emissions in Germany for the period 2005 to 2030 were developed: (a) a 'With-Measure-scenario'; (b) a 'structural-change-scenario'. In the context of the scenario analyses a detailed evaluation of the respective climatic political and energy political measures is performed regarding to their effects on the development of the greenhouse gas emissions in Germany. Methane, laughing gas, halogenated hydrocarbons, perfluorinated hydrocarbons and sulphur hexafluoride are considered for the source sectors energy, industrial processes, product application, agriculture and waste management are considered. Sector-specific model analyses are used in the development of the scenarios. These model analyses are summarized to consistent and complete quantity structure for the power requirement and the emissions of greenhouse gases. Specific investigations are accomplished for the areas space heating and warm water, electrical devices, industry, trade and services, traffic, power generation from renewable energies and the fossil power generation as well as for the volatile emissions of the energy sector, process-related emissions of carbon dioxide, methane and nitrous oxides. For other selected sources (emissions of halogenated hydrocarbons and sulphur hexafluoride as well as the agriculture) results of other investigations were taken over and processed. In the case of an integration and determination of emissions a system integration module and an emission computation model are used in order to consolidate the detailed sector results to a quantity structure. This quantity structure completely is compatible to the German greenhouse gas inventories (according to the conditions of the inventory report 2008).

  9. Introducing land-cover and land-use changes in a climate scenario of the 21. century

    International Nuclear Information System (INIS)

    The main objective of this work has been to run a climate simulation of the 21. century that includes not only greenhouse gases and aerosols emitted by human activity but also land-use and land-cover changes. To achieve this goal, the integrated impact model IMAGE2.2 (developed at RIVM, The Netherlands) was used, which simulates the evolution of greenhouse gases concentrations as well as land-cover changes. This model has been coupled to the general circulation model ARPEGE/OPA provided by the CNRM. Before coupling the models, sensitivity experiments with each model have been performed to test their respective sensitivity to the forcing of the other. Ultimately, a simulation with the two models coupled together has shown that interactions between climate and vegetation are not of primary importance for century scale studies. (author)

  10. The changing nutrition scenario

    Directory of Open Access Journals (Sweden)

    C Gopalan

    2013-01-01

    Full Text Available The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and ′Green Revolution fatigue′. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and "hidden hunger" from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large.

  11. The changing nutrition scenario.

    Science.gov (United States)

    Gopalan, C

    2013-09-01

    The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and 'Green Revolution fatigue'. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and "hidden hunger" from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large. PMID:24135189

  12. Climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on

  13. Climate change

    International Nuclear Information System (INIS)

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  14. Changes in Winter Stratospheric Circulation in CMIP5 Scenarios Simulated by the Climate System Model FGOALS-s2

    Institute of Scientific and Technical Information of China (English)

    REN Rongcai; YANG Yang

    2012-01-01

    Diagnosis of changes in the winter stratospheric circulation in the Fifth Coupled Model Intercomparison Project (CMIP5) scenarios simulated by the Flexible Global Ocean-Atmosphere-Land System model,second version spectrum (FGOALS-s2),indicates that the model can generally reproduce the present climatology of the stratosphere and can capture the general features of its long-term changes during 1950 2000,including the global stratospheric cooling and the strengthening of the westerly polar jet,though the simulated polar vortex is much cooler,the jet is much stronger,and the projected changes are generally weaker than those revealed by observation data.With the increase in greenhouse gases (GHGs) effect in the historical simulation from 1850 to 2005 (called the HISTORICAL run) and the two future projections for Representative Concentration Pathways (called the RCP4.5 and RCP8.5 scenarios) from 2006 to 2100,the stratospheric response was generally steady,with an increasing stratospheric cooling and a strengthening polar jet extending equatorward.Correspondingly,the leading oscillation mode,defined as the Polar Vortex Oscillation (PVO),exhibited a clear positive trend in each scenario,confirming the steady strengthening of the polar vortex.However,the positive trend of the PVO and the strengthening of the polar jet were not accompanied by decreased planetary-wave dynamical heating,suggesting that the cause of the positive PVO trend and the polar stratospheric cooling trend is probably the radiation cooling effect due to increase in GHGs.Nevertheless,without the long-term linear trend,the temporal variations of the wave dynamic heating,the PVO,and the polar stratospheric temperature are still closely coupled in the interannual and decadal time scales.

  15. Scenario Analysis on the Adaptation of Diff erent Maize Varieties to Future Climate Change in Northeast China

    Institute of Scientific and Technical Information of China (English)

    MU Jia

    2014-01-01

    Based on gridded meteorological data for the period 1981-2100 from the RegCM3 regional model, the changing trends of climatic resources in Northeast China are analyzed, and the distributions of maize va-rieties are accordingly adjusted. In order to explore the eff ects of diff erent adaptation countermeasures on climatic productivity and meteorological suitability in the future, maize cultivars with resistance to high temperatures and/or drought are selected. The results show that, in the future, there is likely to be a sig-nifi cant increase in thermal resources, and potential atmospheric evaporation will increase correspondingly. Meanwhile, radiation is predicted to increase signifi cantly during 2041-2070 in the growing season. How-ever, changes in precipitation are unlikely to be suffi cient enough to off set the intensifi cation in atmospheric evaporation caused by the temperature increase. Water resources and high temperatures are found to be the two major factors constraining grain yield. The results also show that the warming climate will be favorable for maize production where thermal resources are already limited, such as in central and northern Heilongjiang Province and eastern Jilin Province; while in areas that are already relatively warm, such as Liaoning Province, climatic productivity will be reduced. The climatic productivity and the meteorological suitability of maize are found to improve when the planting of resistant varieties is modeled. The utilization of agricultural climatic resources through the adaptation countermeasures of maize varieties is to increase obviously with time. Specifi cally, maize with drought-resistant properties will have a marked infl uence on meteorological suitability during 2011-2070, with suitable areas expanding. During 2071-2100, those maize varieties with their upper limit of optimum temperature and maximum temperature increased by 2℃, or water requirement reduced to 94%, or upper limit of optimum temperature and

  16. Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-08-01

    This study aimed at assessing the effects of global warming (increasing air temperature and decreasing soil moisture content) on the bioaccumulation kinetics of As, Cd and Zn in the earthworm Eisenia andrei in two polluted soils (mine tailing and watercourse soil). Earthworms were exposed for up to 21 d under four climate conditions: 20 °C + 50% soil water holding capacity (WHC) (standard conditions), 20 °C + 30% WHC, 25 °C + 50% WHC and 25 °C + 30% WHC. Porewater metal/metalloid availability did not change in the mine tailing soil after the incubation period under the different climate conditions tested. However, in the watercourse soil, porewater Cd concentrations decreased from ∼63 to ∼32-41 μg L(-1) after 21 d and Zn concentrations from ∼3761 to ∼1613-2170 μg L(-1), especially at 20 °C and 50% WHC. In both soils, As and Zn showed similar bioaccumulation patterns in the earthworms, without major differences among climate conditions. Earthworm concentrations peaked after 1-3 d of exposure (in μg g(-1) dry weight: As∼32.5-108, Zn∼704-1172) and then remained constant (typical pattern of essential elements even for As). For Cd the bioaccumulation pattern changed when changing the climate conditions. Under standard conditions, earthworm Cd concentrations increased to ∼12.6-18.5 μg g(-1) dry weight without reaching equilibrium (typical pattern of non-essential elements). However when increasing temperature and/or decreasing soil moisture content the bioaccumulation pattern changed towards that more typical of essential elements due to increased Cd elimination rates (from ∼0.11 to ∼0.24-1.27 d(-1) in the mine tailing soil, from ∼0.07 to ∼0.11-0.35 d(-1) in the watercourse soil) and faster achievement of a steady state. This study shows that metal/metalloid bioaccumulation pattern in earthworms may change dependent on climate conditions. PMID:27182979

  17. The central climate change scenario: SKI's SITE-94 project to evaluate the future behaviour of a deep repository for spent-fuel

    International Nuclear Information System (INIS)

    Part of the SITE-94 project currently being performed by the Swedish Nuclear Power Inspectorate (SKI) involves the construction of scenarios to assist in the evaluation of the future behaviour of a deep repository for spent-fuel. The project uses real data from the Aspoe site, and assumes that a hypothetical repository (reduced in size to approximately 10 %) is situated at about 500 m depth in granitic bedrock in this coastal area of SE Sweden. A Central Scenario, involving prediction of the climate and consequent surface and subsurface environments at the site for the next. 120,000 years, lies at the heart of the scenario definition work. The Central Climate Change Scenario has been based on the climate models ACLIN (Astronomical climate index), Imbrie and Imbrie (1980) and the PCM model by Berger et al. (1989). These models suggest glacial maxima at c. 5000, 20,000, 60,000 and 100,000 years from now. The Aspoe region is predicted to be significantly affected by the latter three glacial episodes, with the ice sheet reaching and covering the area during the latter two episodes (by up to c. 2200 m and 1200 m thickness of ice respectively). The objective of this work is to provide a first indicator of the physical and hydrogeological conditions below and at the front of the advancing and retreating ice sheet, with the aim of identifying critical aspects for modelling impacts of future glaciations on far-field groundwater flow, rock stress and groundwater chemistry. The output of this study is a time-dependent description of the properties of the site, coupled to predictions of key parameter values at different times in the future, for input into performance assessment modelling. (authors). 30 refs., 4 figs

  18. Estimating Soil Organic Carbon Sequestration in Rice Paddies as Influenced by Climate Change under Scenario A2 and B2 of an i-EPIC model of Thailand

    Directory of Open Access Journals (Sweden)

    Noppol Arunrat

    2014-01-01

    Full Text Available Carbon sequestration in soils constitutes an important option that can be used to reduce CO2 emissions to the atmosphere and reduce environmental impacts. Soil organic carbon (SOC is both a source of carbon release and a sink for carbon sequestration. Our objectives in this study were to validate the interactive Environmental Policy Impact Calculator (i-EPIC model version 0509, as well as to estimate SOC sequestration under climate change scenarios A2 and B2 SRES emission scenarios in Thailand. The SOC estimated by i-EPIC was compared with data from the Office of Soil Resources Survey and Research, Land Development Department. The results indicated that performance testing of i-EPIC is able to estimate SOC. Validation of SOC proved to be satisfactory with a resulting root mean square error (RMSE % value of 34.60. The SOC content showed a decreasing trend under B2 and A2 climate scenarios (average 0.87% and 0.85%, respectively compared to the reference from 2007 (average 0.92%. Stepwise regression analysis also revealed that carbon from residue decomposition, biomass pool carbon, and the total change of the carbon pool were directly correlated with the SOC (R2= 0.99, p< 0.01. Furthermore, the change from rain supplied water to irrigation also resulted in an increase of carbon inputs but a decrease in the SOC sequestered during the 2007-2017 period. Regression analyses indicated that soil carbon sequestration responds linearly to carbon input. Significant changes in carbon input as well as decreases in SOC levels were observed as temperature and precipitation increased. Based on the testing and analysis, we concluded that i-EPIC is capable of reliably simulating effects of climate change on SOC sequestration. Based on the results, this knowledge and information can increase effectiveness in the promotion of integrated rice management for rice production in Thailand.

  19. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    Directory of Open Access Journals (Sweden)

    M. Pančić

    2015-03-01

    Full Text Available The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1 and different temperatures (1, 5 and 8 °C to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20–50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20–37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  20. Potential soil organic carbon stocks in semi arid areas under climate change scenarios: an application of CarboSOIL model in northern Egypt

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Abd-Elmabod, Sameh K.; Jordán, Antonio; Zavala, Lorena M.; Anaya-Romero, Maria; De la Rosa, Diego

    2014-05-01

    1. INTRODUCTION Climate change is predicted to have a large impact on semi arid areas which are often degraded and vulnerable to environmental changes (Muñoz-Rojas et al., 2012a; 2012b; 2013). However, these areas might play a key role in mitigation of climate change effects through sequestration of carbon in soils (United Nations, 2011). At the same time, increasing organic carbon in these environments could be beneficial for soil erosion control, soil fertility and, ultimately, food production (Lal, 2004). Several approaches have been carried out to evaluate climate change impacts on soil organic carbon (SOC) stocks, but soil carbon models are amongst the most effective tools to assess C stocks, dynamics and distribution and to predict trends under climate change scenarios (Jones et al., 2005 ). CarboSOIL is an empirical model based on regression techniques and developed to predict SOC contents at standard soil depths of 0 to 25, 25 to 50 and 50-75 cm (Muñoz-Rojas et al., 2013). CarboSOIL model has been designed as a GIS-integrated tool and is a new component of the agroecological decision support system for land evaluation MicroLEIS DSS (De la Rosa et al., 2004). 2. GENERAL METHODS In this research, CarboSOIL was applied in El-Fayoum depression, a semi arid region located in northern Egypt with a large potential for agriculture (Abd-Elmabod et al, 2012). The model was applied in a total of six soil-units classified according the USDA Soil Taxonomy system within the orders Entisols and Aridisols under different climate climate change scenarios. Global climate models based on the Organisation for Economic Co-operation and Development (Agrawala at al., 2004) and the Intergovernmental Panel on Climate Change (IPCC, 2007) were applied to predict short-, medium- and long-term trends (2030, 2050 and 2100) of SOC dynamics and sequestration at different soil depths (0-25, 25-50 and 50-75) and land use types (irrigated areas, olive groves, wheat, cotton and other annual

  1. In the right place at the right time: habitat representation in protected areas of South American Nothofagus-dominated plants after a dispersal constrained climate change scenario.

    Science.gov (United States)

    Alarcón, Diego; Cavieres, Lohengrin A

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226

  2. Inter-seasonal and inter-variable dependencies in multi-model projections: lessons learnt from the CH2011 climate change scenarios

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Appenzeller, Christof

    2014-05-01

    The new climate change scenarios "CH2011" provide a consistent assessment of how precipitation and temperature may change in Switzerland during the 21st century. Digital data were made available at different spatial and temporal aggregation levels. Here we revisit one product of CH2011, the climate scenarios of seasonal means, with the aim to enhance its practicalities for impcat studies. These scenarios are based on the joint analysis of several regional climate models (RCMs) from the ENSEMBLES project that were all run according to the A1B emission scenario. Combined multi-model projections using a sophisticated Bayesian algorithm are provided for three different Swiss regions, four seasons and three projection periods in the 21st century. Uncertainty, arising from model-to-model projection and from internal decadal variability, is expressed with three estimates following an expert judgement: a lower, medium and upper estimate. In CH2011, the three uncertainty estimates are derived and provided in an univariate way separately for each lead-time, region and season without providing information on combined changes and uncertainties. Yet, for impact applications often several climatological variables must be considered together and across all four seasons. Here, we elucidate further on the inter-seasonal and inter-variable dependencies by inspecting correlations in the underlying climate model data of CH2011. The analysis shows that a firm conclusion on the correlation structure is highly challenged by the uncertainty of the different model projections, by the limited set of independent models and, possibly, the complex climate regime Switzerland is located in. Regarding the inter-variable relationship toward the end of the 21st century, confidence is still too low to make firm conclusions, although in summer a tendency for a negative relation can be inferred from the limited model set. Similar to the inter-variable relation, no recommendation can be given on how to

  3. The Mediterranean surface wave climate inferred from future scenario simulations

    Science.gov (United States)

    Lionello, P.; Cogo, S.; Galati, M. B.; Sanna, A.

    2008-09-01

    This study is based on 30-year long simulations of the wind-wave field in the Mediterranean Sea carried out with the WAM model. Wave fields have been computed for the 2071-2100 period of the A2, B2 emission scenarios and for the 1961-1990 period of the present climate (REF). The wave model has been forced by the wind field computed by a regional climate model with 50 km resolution. The mean SWH (Significant Wave Height) field over large fraction of the Mediterranean sea is lower for the A2 scenario than for the present climate during winter, spring and autumn. During summer the A2 mean SWH field is also lower everywhere, except for two areas, those between Greece and Northern Africa and between Spain and Algeria, where it is significantly higher. All these changes are similar, though smaller and less significant, in the B2 scenario, except during winter in the north-western Mediterranean Sea, when the B2 mean SWH field is higher than in the REF simulation. Also extreme SWH values are smaller in future scenarios than in the present climate and such SWH change is larger for the A2 than for the B2 scenario. The only exception is the presence of higher SWH extremes in the central Mediterranean during summer for the A2 scenario. In general, changes of SWH, wind speed and atmospheric circulation are consistent, and results show milder marine storms in future scenarios than in the present climate.

  4. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios

    International Nuclear Information System (INIS)

    The United States is the largest producer of maize in the world, a crop for which demand continues to rise rapidly. Past studies have projected that climate change will negatively impact mean maize yields in this region, while at the same time increasing yield variability. However, some have questioned the accuracy of these projections because they are often based on indirect measures of soil moisture, have failed to explicitly capture the potential interactions between temperature and soil moisture availability, and often omit the beneficial effects of elevated carbon dioxide (CO2) on transpiration efficiency. Here we use a new detailed dataset on field-level yields in Iowa, Indiana, and Illinois, along with fine-resolution daily weather data and moisture reconstructions, to evaluate the combined effects of moisture and heat on maize yields in the region. Projected climate change scenarios over this region from a suite of CMIP5 models are then used to assess future impacts and the differences between two contrasting emissions scenarios (RCP 4.5 and RCP 8.5). We show that (i) statistical models which explicitly account for interactions between heat and moisture, which have not been represented in previous empirical models, lead to significant model improvement and significantly higher projected yield variability under warming and drying trends than when accounting for each factor independently; (ii) inclusion of the benefits of elevated CO2 significantly reduces impacts, particularly for yield variability; and (iii) net damages from climate change and CO2 become larger for the higher emission scenario in the latter half of the 21st century, and significantly so by the end of century. (paper)

  5. The distribution of Polychlorinated Biphenyls (PCBs) in the River Thames Catchment under the scenarios of climate change.

    Science.gov (United States)

    Lu, Qiong; Johnson, Andrew C; Jürgens, Monika D; Sweetman, Andy; Jin, Li; Whitehead, Paul

    2015-11-15

    Measurements have shown low levels of PCBs in water but relatively high concentrations in the resident fish of the River Thames (UK). To better understand the distribution and behaviour of PCBs in the Thames river basin and their potential risks, a level III fugacity model was applied to selected PCB congeners (PCB 52, PCB 118 and PCB 153). The modelling results indicated that fish and sediments represent environmental compartments with the highest PCB concentrations; but the greatest mass of PCBs (over 70%) is likely to remain in the soil. As emissions decline, soil could then act as a significant secondary source of PCBs with the river bed-sediment functioning as a long-term reservoir of PCBs. The predicted changes in temperature and rainfall forecast in the UK Climate Projections 2009 (UKCP09) over the next 80 years had only a modest influence on PCB fate in the model. The most significant result was a tendency for climate change to enhance the evaporation of PCBs from soil to air in the Thames catchment. PMID:26156137

  6. Marine storminess in the Mediterranean in future climate scenarios

    Science.gov (United States)

    Lionello, P.

    2009-09-01

    This talk reviews the analysis that is presently available on marine storms, their climatology and change in future climate scenarios. The cyclones that are responsible for the storms are analyzed using a regional climate model simulations of present day (1961-1990) and future (2071-2100, A2 and B2 emission scenarios) and the differences between northern Europe and Mediterranean are discussed. In the A2 and B2 scenarios the annual average storm track intensity increases over the North-East Atlantic and decreases over the Eastern Mediterranean region with respect to present day conditions,. The number of cyclones decreases in future scenarios throughout Europe, except over the central Europe and Mediterranean in summer, where it increases. This overall change pattern is larger in the A2 than in the B2 simulations. Wind-wave field changes are discussed considering a similar analysis. The mean SWH (Significant Wave Height) field over large fraction of the Mediterranean Sea is lower for the A2 scenario than for the present climate during winter, spring and autumn. During summer the A2 mean SWH field is also lower everywhere, except for two areas, those between Greece and Northern Africa and between Spain and Algeria, where it is significantly higher. All these changes are similar, though smaller and less significant, in the B2 scenario, except during winter in the north-western Mediterranean Sea, when the B2 mean SWH field is higher than in the REF simulation. Also extreme SWH values are smaller in future scenarios than in the present climate and such SWH change is larger for the A2 than for the B2 scenario. In general, changes of SWH, wind speed and atmospheric circulation are consistent, and results show milder marine storms in future scenarios than in the present climate.

  7. Steric Sea Level Change in Twentieth Century Historical Climate Simulation and IPCC-RCP8.5 Scenario Projection: A Comparison of Two Versions of FGOALS Model

    Institute of Scientific and Technical Information of China (English)

    DONG Lu; ZHOU Tianjun

    2013-01-01

    To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC's Representative Concentration Pathway 8.5 (RCP8.5) scenario,the results of two versions of LASG/IAP's Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed.Both models reasonably reproduce the mean dynamic sea level features,with a spatial pattern correlation coefficient of 0.97 with the observation.Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated.The results show that,in the 20th century,negative trends covered most parts of the global ocean.Under the RCP8.5 scenario,global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean.The magnitude of the changes in the 21st century is much larger than that in the 20th century.By the year 2100,the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2),respectively.The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated.In the 20th century,the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run.In contrast,in the 21st century,the thermosteric component,mainly from the upper 1000 m,dominates the steric sea level change in both models under the RCP8.5 scenario.In addition,the steric sea level change in the marginal sea of China is attributed to the thermosteric component.

  8. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise

    Directory of Open Access Journals (Sweden)

    M. Meinshausen

    2010-10-01

    Full Text Available We present climatic consequences of the Representative Concentration Pathways (RCPs using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of possible future greenhouse gas (GHG concentrations pathways. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3α to imply a maximal warming by the middle of the 21st century slightly above 1.5 °C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 2 m of steric sea level rise by 2500 under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300–800 m is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.

  9. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise

    Directory of Open Access Journals (Sweden)

    J. Schewe

    2011-03-01

    Full Text Available We present climatic consequences of the Representative Concentration Pathways (RCPs using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3α to imply a maximal warming by the middle of the 21st century slightly above 1.5 °C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300–800 m is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.

  10. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  11. Do we need to account for scenarios of land use/land cover changes in regional climate modeling and impact studies?

    Science.gov (United States)

    Strada, Susanna; de Noblet-Ducoudré, Nathalie; Perrin, Mathieu; Stefanon, Marc

    2016-04-01

    By modifying the Earth's natural landscapes, humans have introduced an imbalance in the Earth System's energy, water and emission fluxes via land-use and land-cover changes (LULCCs). Through land-atmosphere interactions, LULCCs influence weather, air quality and climate at different scales, from regional/local (a few ten kilometres) (Pielke et al., 2011) to global (a few hundred kilometres) (Mahmood et al., 2014). Therefore, in the context of climate change, LULCCs will play a role locally/regionally in altering weather/atmospheric conditions. In addition to the global climate change impacts, LULCCs will possibly induce further changes in the functioning of terrestrial ecosystems and thereby affect adaptation strategies. If LULCCs influence weather/atmospheric conditions, could land use planning alter climate conditions and ease the impact of climate change by wisely shaping urban and rural landscapes? Nowadays, numerical land-atmosphere modelling allows to assess LULCC impacts at different scales (e.g., Marshall et al., 2003; de Noblet-Ducoudré et al., 2011). However, most scenarios of climate changes used to force impact models result from downscaling procedures that do not account for LULCCs (e.g., Jacob et al., 2014). Therefore, if numerical modelling may help in tackling the discussion about LULCCs, do existing LULCC scenarios encompass realistic changes in terms of land use planning? In the present study, we apply a surface model to compare projected LULCC scenarios over France and to assess their impacts on surface fluxes (i.e., water, heat and carbon dioxide fluxes) and on water and carbon storage in soils. To depict future LULCCs in France, we use RCP scenarios from the IPCC AR5 report (Moss et al., 2011). LULCCs encompassed in RCPs are discussed in terms of: (a) their impacts on water and energy balance over France, and (b) their feasibility in the framework of land use planning in France. This study is the first step to quantify the sensitivity of land

  12. Scenario analysis on the goal of carbon emission peaking around 2030 of China proposed in the China-U.S. joint statement on climate change

    Science.gov (United States)

    Zheng, T.

    2015-12-01

    A goal of carbon (C) emission peaking around 2030 of China was declared in the China-U.S. joint statement on climate change, and emphasized in China's intended nationally determined contributions (INDC). Here, we predicted the carbon emission of China during the period 2011~2050 under seven scenarios, and analyzed the scientific and social implications of realizing the goal. Our results showed that: (1) C emissions of China will reach their peaks at 2022~2045 (with peak values 3.15~5.10 Pg C), and the predicted decay rates of C intensity were 2.1~4.2% in 2011~2050; (2) the precondition that the national C emission reaches the peak before 2030 is that the annual decay rates of C intensity must exceed 3.3% , as decay rates under different scenarios were predicted higher than that except for Past G8 scenario; (3) the national C emission would reach the peak before 2030, if the government of China should realize the C emissions reduction goals of China's 12th five-year plan, climate commitments of Copenhagen and INDC; (4) Chinese government could realize the goal of C emission peaking around 2030 from just controlling C emission intensity , but associated with relatively higher government's burden. In summary, China's C emission may well peak before 2030, meanwhile the combination of emissions reduction and economic macro-control would be demanded to avoid heavier social pressure of C emissions reduction occurred.

  13. The Change of North China Climate in Transient Simulations Using the IPCC SRES A2 and B2 Scenarios with a Coupled Atmosphere-Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    BUHE Cholaw(布和朝鲁); Ulrich CUBASCH; LIN Yonghui(林永辉); JI Liren(纪立人)

    2003-01-01

    This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCCSRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-oceancoupled general circulation nodel. In the last three decades of the 21st century, the global warming enlargesthe land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation tobe strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increasessignificantly in North China. It is suggested that the East Asian rainy area would expand northward toNorth China in the last three decades of the 21st century. In addition, the North China precipitationwould increase significantly in September. In July, August, and September, the interannual variability ofthe precipitation enlarges evidently over North China, implying a risk of flooding in the future.

  14. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  15. A modeling approach to determine the impacts of land use and climate change scenarios on the water flux of the upper Mara River

    Directory of Open Access Journals (Sweden)

    L. M. Mango

    2010-08-01

    Full Text Available With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool (SWAT and Landsat imagery were utilized in the upper Mara River Basin in order to 1 map existing field scale land use practices in order to determine their impact 2 determine the impacts of land use change on water flux; and 3 determine the impacts of rainfall (0%, ±10% and ±20% and air temperature variations (0% and +5% based on the Intergovernmental Panel on Climate Change projections on the water flux of the upper Mara River.

    This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.

  16. Climate Change Projected Effects on Coastal Foundation Communities of the Greater Everglades Using a 2060 Scenario: Need for a New Management Paradigm

    Science.gov (United States)

    Koch, M. S.; Coronado, C.; Miller, M. W.; Rudnick, D. T.; Stabenau, E.; Halley, R. B.; Sklar, F. H.

    2015-04-01

    Rising sea levels and temperature will be dominant drivers of coastal Everglades' foundation communities (i.e., mangrove forests, seagrass/macroalgae, and coral reefs) by 2060 based on a climate change scenario of +1.5 °C temperature, +1.5 foot (46 cm) in sea level, ±10 % in precipitation and 490 ppm CO2. Current mangrove forest soil elevation change in South Florida ranges from 0.9 to 2.5 mm year-1 and would have to increase twofold to fourfold in order to accommodate a 2060 sea level rise rate. No evidence is available to indicate that coastal mangroves from South Florida and the wider Caribbean can keep pace with a rapid rate of sea level rise. Thus, particles and nutrients from destabilized coastlines could be mobilized and impact benthic habitats of southern Florida. Uncertainties in regional geomorphology and coastal current changes under higher sea levels make this prediction tentative without further research. The 2060 higher temperature scenario would compromise Florida's coral reefs that are already degraded. We suggest that a new paradigm is needed for resource management under climate change that manages coastlines for resilience to marine transgression and promotes active ecosystem management. In the case of the Everglades, greater freshwater flows could maximize mangrove peat accumulation, stabilize coastlines, and limit saltwater intrusion, while specific coral species may require propagation. Further, we suggest that regional climate drivers and oceanographic processes be incorporated into Everglades and South Florida management plans, as they are likely to impact coastal ecosystems, interior freshwater wetlands and urban coastlines over the next few decades.

  17. On the relative importance of the climate change factors along the river Scheldt considering climate scenarios for upstream inland and downstream coastal (mean sea level and surge) boundary conditions

    Science.gov (United States)

    Ntegeka, V.; Willems, P.; Monbaliu, J.

    2012-04-01

    To improve on the efficacy of flood risk mitigation measures, it is essential to investigate the relative importance of the future impact pressures. This is more so in areas which are found to be hot spots for flooding. One such area was identified in the Scheldt region located in Belgium. The Dendermonde area is a place where both the downstream coastal and the upstream river flow boundary conditions interact and jointly control the flood risk. Downstream of this area, the coastal level changes include both the sea level rise and storm surge changes due to climate change impacts on the wind climate over the North Atlantic and North Sea region. Upstream of the Dendermonde area lies the Dender river which introduces an extra pressure on the Dendermonde area. Against this back drop, impact analysis was performed using a hydrodynamic model that accounts for such changes. The climate data for future scenarios were extracted from the climate databases PRUDENCE (http://prudence.dmi.dk), ENSEMBLES (http://www.ensembles-eu.org/), IPCC AR4 (www-pcmdi.llnl.gov/ipcc/about_ipcc.php) and CERA (CLM from MPI-M/MaD). Future changes were derived from the large ensemble set of climate model runs and their effects simulated in the hydrodynamic model based on statistically processed climate change scenarios of sea level rise, SLP change and related storm surge changes and upstream runoff due to changes in rainfall and potential evapotranspiration. Changes in SLP were transferred to changes in storm surges at the Scheldt mouth (at Vlissingen) based on a correlation model between the SLP at the Baltic Sea and the storm surge level. This model was derived after analysis of SLP composite maps and SLP-surge correlation maps for days where the surge exceeds given thresholds (for different return periods). Correlations between the inland (rainfall, runoff) and coastal climatic changes were considered. The impact analysis to analyze the importance of the pressures for the Dendermonde area was

  18. Changes in C-N metabolism under elevated CO2 and temperature in Indian mustard (Brassica juncea L.): an adaptation strategy under climate change scenario.

    Science.gov (United States)

    Seth, Chandra Shekhar; Misra, Virendra

    2014-11-01

    The present study was performed to investigate the possible role of carbon (C) and nitrogen (N) metabolism in adaptation of Indian mustard (Brassica juncea L.) growing under ambient (370 ± 15 ppm) and elevated CO2 (700 ± 15 ppm), and jointly in elevated CO2 and temperature (30/22 °C for day/night). The key enzymes responsible for C-N metabolism were studied in different samples of Brassica juncea L. collected from ambient (AMB), elevated (ELE) and ELExT growth conditions. Total percent amount of C and N in leaves were particularly estimated to establish a clear understanding of aforesaid metabolism in plant adaptation. Furthermore, key morphological and physiological parameters such as plant height, leaf area index, dry biomass, net photosynthetic rate, stomatal conductance, transpiration, total protein and chlorophyll contents were also studied in relation to C/N metabolism. The results indicated that the C-metabolizing enzymes, such as (ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, NAD-malic enzyme, NADP-malic enzyme and citrate synthase) and the N-metabolizing enzymes, such as (aspartate amino transferase, glutamine synthetase, nitrate reductase and nitrite reductase) showed significantly (P ELE > ELExT > AMB growth conditions. This is also evident by significant (P < 0.05) increase in percent contents of C and N in leaves as per said order. These findings suggested that improved performance of C-N metabolism could be a possible approach for CO2 assimilation and adaptation in Brassica juncea L. against elevated CO2 and temperature prevailing in climate change scenarios. PMID:25246072

  19. Climate change - global warming

    International Nuclear Information System (INIS)

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  20. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics.

    Science.gov (United States)

    Whitehead, P G; Barbour, E; Futter, M N; Sarkar, S; Rodda, H; Caesar, J; Butterfield, D; Jin, L; Sinha, R; Nicholls, R; Salehin, M

    2015-06-01

    The potential impacts of climate change and socio-economic change on flow and water quality in rivers worldwide is a key area of interest. The Ganges-Brahmaputra-Meghna (GBM) is one of the largest river basins in the world serving a population of over 650 million, and is of vital concern to India and Bangladesh as it provides fresh water for people, agriculture, industry, conservation and for the delta system downstream. This paper seeks to assess future changes in flow and water quality utilising a modelling approach as a means of assessment in a very complex system. The INCA-N model has been applied to the Ganges, Brahmaputra and Meghna river systems to simulate flow and water quality along the rivers under a range of future climate conditions. Three model realisations of the Met Office Hadley Centre global and regional climate models were selected from 17 perturbed model runs to evaluate a range of potential futures in climate. In addition, the models have also been evaluated using socio-economic scenarios, comprising (1) a business as usual future, (2) a more sustainable future, and (3) a less sustainable future. Model results for the 2050s and the 2090s indicate a significant increase in monsoon flows under the future climates, with enhanced flood potential. Low flows are predicted to fall with extended drought periods, which could have impacts on water and sediment supply, irrigated agriculture and saline intrusion. In contrast, the socio-economic changes had relatively little impact on flows, except under the low flow regimes where increased irrigation could further reduce water availability. However, should large scale water transfers upstream of Bangladesh be constructed, these have the potential to reduce flows and divert water away from the delta region depending on the volume and timing of the transfers. This could have significant implications for the delta in terms of saline intrusion, water supply, agriculture and maintaining crucial ecosystems such

  1. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States: Comparison of Two Scenarios

    OpenAIRE

    Lane, Diana R.; Richard C. Ready; Buddemeier, Robert W.; Martinich, Jeremy A.; Kate Cardamone Shouse; Cameron W Wobus

    2013-01-01

    The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a "business as usual" (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full...

  2. Climate impacts of deforestation/land-use changes in Central South America in the PRECIS regional climate model: mean precipitation and temperature response to present and future deforestation scenarios.

    Science.gov (United States)

    Canziani, Pablo O; Carbajal Benitez, Gerardo

    2012-01-01

    Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961-2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960-2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia. PMID:22645487

  3. Climate Impacts of Deforestation/Land-Use Changes in Central South America in the PRECIS Regional Climate Model: Mean Precipitation and Temperature Response to Present and Future Deforestation Scenarios

    Directory of Open Access Journals (Sweden)

    Pablo O. Canziani

    2012-01-01

    Full Text Available Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961–2000 (40-year runs, potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960–2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia.

  4. Prediction of climate change impacts on Alpine discharge regimes under A2 and B2 SRES emission scenarios for two future time periods (2020-2049, 2070-2099)

    OpenAIRE

    Horton, P; B. Schaefli; Hingray, B.; Mezghani, A.; Musy, A.

    2005-01-01

    The present work analyzes the climate change impacts on the runoff regimes of mountainous catchments in the Swiss Alps having current glaciation rates between 0 and 50 %. The hydrological response of 11 catchments to a given climate scenario is simulated through a conceptual, reservoir-based precipitation-runoff transformation model called GSM-SOCONT (Schaefli, 2005). For the glacierized catchments, the glacier surface corresponding to this future scenario is updated through a conceptual glac...

  5. Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by multi-RCP scenarios of HadGEM2-AO

    Science.gov (United States)

    Cha, Dong-Hyun; Lee, Dong-Kyou; Jin, Chun-Sil; Kim, Gayoung; Choi, Yonghan; Suh, Myoung-Seok; Ahn, Joong-Bae; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    In this study, the regional climate of the Korean Peninsula (KP) was dynamically downscaled using a high-resolution regional climate model (RCM) forced by multi- representative concentration pathways (RCP) scenarios of HadGEM2-AO, and changes in summer precipitation were investigated. Through the evaluation of the present climate, the RCM reasonably reproduced long-term climatology of summer precipitation over the KP, and captured the sub-seasonal evolution of Changma rain-band. In future projections, all RCP experiments using different RCP radiative forcings (i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 runs) simulated an increased summer precipitation over the KP. However, there were some differences in changing rates of summer precipitation among the RCP experiments. Future increases in summer precipitation were affected by future changes in moisture convergence and surface evaporation. Changing ranges in moisture convergences among RCP experiments were significantly larger than those in surface evaporation. This indicates that the uncertainty of changes in summer precipitation is related to the projection of the monsoon circulation, which determines the moisture convergence field through horizontal advection. Changes in the sub-seasonal evolution of Changma rain-band were inconsistent among RCP experiments. However, all experiments showed that Changma rain-band was enhanced during late June to early July, but it was weakened after mid-July due to the expansion of the western North Pacific subtropical high. These results indicate that precipitation intensity related to Changma rain-band will be increased, but its duration will be reduced in the future.

  6. Future changes in summer precipitation in regional climate simulations over the Korean peninsula forced by multi-RCP scenarios of HadGEM2-AO

    Science.gov (United States)

    Cha, Dong-Hyun; Lee, Dong-Kyou; Jin, Chun-Sil; Kim, Gayoung; Choi, Yonghan; Suh, Myoung-Seok; Ahn, Joong-Bae; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    In this study, the regional climate of the Korean Peninsula (KP) was dynamically downscaled using a high-resolution regional climate model (RCM) forced by multi- representative concentration pathways (RCP) scenarios of HadGEM2-AO, and changes in summer precipitation were investigated. Through the evaluation of the present climate, the RCM reasonably reproduced long-term climatology of summer precipitation over the KP, and captured the sub-seasonal evolution of Changma rain-band. In future projections, all RCP experiments using different RCP radiative forcings (i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 runs) simulated an increased summer precipitation over the KP. However, there were some differences in changing rates of summer precipitation among the RCP experiments. Future increases in summer precipitation were affected by future changes in moisture convergence and surface evaporation. Changing ranges in moisture convergences among RCP experiments were significantly larger than those in surface evaporation. This indicates that the uncertainty of changes in summer precipitation is related to the projection of the monsoon circulation, which determines the moisture convergence field through horizontal advection. Changes in the sub-seasonal evolution of Changma rain-band were inconsistent among RCP experiments. However, all experiments showed that Changma rain-band was enhanced during late June to early July, but it was weakened after mid-July due to the expansion of the western North Pacific subtropical high. These results indicate that precipitation intensity related to Changma rain-band will be increased, but its duration will be reduced in the future.

  7. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  8. Climate change

    International Nuclear Information System (INIS)

    The indicators in this bulletin are part of a national set of environmental indicators designed to provide a profile of the state of Canada's environment and measure progress towards sustainable development. A review of potential impacts on Canada shows that such changes would have wide-ranging implications for its economic sectors, social well-being including human health, and ecological systems. This document looks at the natural state of greenhouse gases which help regulate the Earth's climate. Then it looks at human influence and what is being done about it. The document then examines some indicators: Carbon dioxide emissions from fossil fuel use; global atmospheric concentrations of greenhouse gases; and global and Canadian temperature variations

  9. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... to estimate the impact of individual climate stressors on road infrastructure in Mozambique. Through these models, stressor–response functions are introduced that quantify the cost impact of a specific stressor based on the intensity of the stressor and the type of infrastructure it is affecting. Utilizing...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...

  10. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mouri, Goro, E-mail: mouri@rainbow.iis.u-tokyo.ac.jp

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  11. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    International Nuclear Information System (INIS)

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  12. Climatic scenarios for the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kalvová, J.; Nemešová, Ivana

    Budapešť : Eötvös Lorand University, 1995, s. 41-49. - (963 463 042 1). [Workshop on regional climate change in Central-East Europe. Budapešť (HU), 28.11.1994-30.11.1994] Grant ostatní: EPA (CZ-US) Czech Republic`s Country Study Keywords : climate change

  13. Socio-economic Scenarios in Climate Assessments (IC11). Synthesis

    International Nuclear Information System (INIS)

    It is widely recognised that projections of social and economic futures are circumscribed by irreducible uncertainties and ignorance. A common analytical response is to develop scenarios that map a range of alternative possible outcomes. The application of scenarios in climate assessments in the Netherlands was investigated in this report, focusing on the use of the socio-economic scenarios 'Welvaart en Leefomgeving' (WLO - The Future of the Dutch Built Environment). This research was carried out within the Climate Changes Spatial Planning (CcSP) programme. WLO scenarios have been applied in climate assessment studies. WLO generates figures and data that are useful. Nevertheless we encountered several CcSP projects that did not apply any socio-economic scenarios, whilst this seemed necessary based on their objectives. In general, climate assessments make little sense if socio-economic developments are not taken into account. Interestingly, some of the studies that did apply socio-economic scenarios, picked only one or two of the scenarios generated by WLO. From a theoretical point of view this selective 'shopping' may lead to a tunnel vision, because it is impossible to estimate which scenario is more probable than the others. At the other hand it is often impractical to explore all four scenarios. The time horizon of WLO was in several cases too short for climate assessments. As it is probable that the structure of society has changed significantly by 2040, it is difficult to quantitatively support the storylines as was done in WLO, because many model assumptions are not correct anymore. Possibly it is better to take a backcasting approach for the second half of the century for the purpose of the CcSP programme. The two case studies described in this report provide examples of good practice that are likely to be useful in future projects that deal with scenarios. In addition, this study produced an interactive website (www.climatescenarios.nl) that provides key

  14. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  15. Analysis of Regional Climate Changes adjusted Future Urban Growth Scenarios and possibility of the future air quality prediction in Seoul Metropolitan Area (SMA), Korea

    Science.gov (United States)

    Kim, H.; Kim, Y.; Jeong, J.

    2012-12-01

    Land-use changes give effects to physical properties such as albedo, moisture availability and roughness length in the atmosphere, but future urban growth has not been considered widely to predict the future regional climate change because it is hard to predict the future land-use changes. In this study, we used the urban growth model called SLEUTH (Slope, Land-use, Excluded, Urban, Transportation, Hill-shade) based on Cellular Automata (CA) technique to predict the future land-use (especially, urban growth) changes. Seoul Metropolitan Area (SMA), the research area in this study, is the most explosively developed region in the Korean peninsula due to the continuous industrialization since 1970s. SLEUTH was calibrated to know the pattern and process of the urban growth and expansion in SMA with historical data for 35 years (1975-2000) provided from WAter Management Information System (WAMIS) in Korea and then future urban growth was projected out to 2050 assuming three different scenarios: (1) historical trends of urban growth (SC1), (2) future urban policy and plan (SC2), (3) ecological protection and growth (SC3). We used the FNL data of NCEP/NCAR for one month, Oct. in 2005 to evaluate the performance of the WRF on the long-term climate simulation and compared results of WRF with the ASOS/AWS (Automated Surface Observing Systems and Automated Weather System) observation data of the Korea Meteorology Administration. Based on the accuracy of the model, we performed various numerical experiments by the urban growth scenarios using the 6 hourly data of ECHAM5/OM-1 A1B scenarios generated by Max-Plank Institute for Meteorology in Hamburg, Germany on Oct. for 5 years (2046-2050), respectively. The difference of urban ratio under various urban growth scenarios in SMA consequently caused the spatial distributions of temperature to change, the average temperature to increase in the urban area. PBL height with a maximum of about 200m also appeared locally in newly

  16. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise

    OpenAIRE

    Meinshausen, M.; A. Levermann; J. Schewe

    2010-01-01

    We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of possible future greenhouse gas (G...

  17. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise

    OpenAIRE

    J. Schewe; A. Levermann; Meinshausen, M.

    2011-01-01

    We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse ga...

  18. Projection of global climate change scenarios onto the Hawaiian Islands: Estimating the characteristics of rainfall for the 21st century

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project will build on existing experience with statistical downscaling methods to derive comprehensive estimates of the future rainfall changes over the...

  19. Adaptation to the climatic change in Germany. Regional scenarios and national challenges; Anpassung an Klimaaenderungen in Deutschland. Regionale Szenarien und nationale Aufgaben

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-10-15

    The report describes the observed climatic change based on the examples of extreme rainfall and Elbe flood in August 2002, and the extreme heat-wave summer 2003. The expected consequences of the climatic change in Germany require adaptations with respect to flood prevention and control measures, forestry and heat-wave warning systems. The competence center ''climatic change consequences and adaptation'' was established within the Federal Environmental Agency.

  20. Air Quality and Climate Change

    International Nuclear Information System (INIS)

    Climate change and air quality are closely related: through the policy measures implemented to mitigate these major environmental threats but also through the geophysical processes that drive them. We designed, developed and implemented a comprehensive regional air quality and climate modeling System to investigate future air quality in Europe taking into account the combined pressure of future climate change and long range transport. Using the prospective scenarios of the last generation of pathways for both climate change (emissions of well mixed greenhouse gases) and air pollutants, we can provide a quantitative view into the possible future air quality in Europe. We find that ozone pollution will decrease substantially under the most stringent scenario but the efforts of the air quality legislation will be adversely compensated by the penalty of global warming and long range transport for the business as usual scenario. For particulate matter, the projected reduction of emissions efficiently reduces exposure levels. (authors)

  1. Energy and Climate Scenarios: Before and After Copenhagen

    International Nuclear Information System (INIS)

    Following on from his contribution to the special number 'Energy Prospects and Greenhouse Effect' (Futuribles 315, January 2006), which gave an account of the main foresight scenarios played out on the stabilization of greenhouse gas emissions, Patrick Criqui (with Constantin Ilasca) shows here how scenarios in this area have evolved since 2007. Though the long-favoured approach consisted in starting out from global targets for the reduction of greenhouse gas emissions, set at international conferences, and building national policy scenarios around them (the so-called 'top-down' approach), the rapid economic growth of the emerging countries (particularly China) and the return of the USA to international climate change negotiations have altered the state of play. Since the Copenhagen Agreement of late 2009, it would seem, then, more logical, argue Patrick Criqui and Constantin Ilasca, to start from policies and targets set out at the national level in developing scenarios on global climate change (the so-called 'bottom-up' approach). Criqui and Ilasca lay out this paradigm change in detail. For example, they present the forward view of greenhouse gas emissions as it looked before Copenhagen, based mainly on assessments of the costs associated with the mitigation policies required to limit climate warming. They then analyse various so-called 'post-carbon' transitional scenarios (which are supposed to sound the death-knell of the era of massive CO2 emissions), combining climate policy, energy sustainability and modes of economic development. Lastly, they show the turnabout that has been developing since the Copenhagen Agreement and the now manifest tension between ambitious global objectives (limiting global warming to 2 deg. C up to 2100) and national realities leading to more limited commitments (particularly in the emerging economies) - a new context which might give rise to new families of scenarios, incorporating this sacrificing of global well-being on the altar

  2. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    DEFF Research Database (Denmark)

    Pancic, Marina; Hansen, Per Juel; Tammilehto, Anna;

    2015-01-01

    Abstract. The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8...... C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and...... therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by 20–50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among...

  3. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  4. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  5. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  6. The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios

    International Nuclear Information System (INIS)

    This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any. Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive. - Highlights: • The impact of low carbon energy technology on abatement cost is considered. • Nuclear has the largest impact among technologies considered. • Cost has higher impact than efficiency for biomass technologies. • Biomass technologies generally have larger impacts than carbon capture. • Biomass technologies are more valuable in low GDP, high population scenarios

  7. Possible future climates. The IPCC-scenarios simulated by dialogue

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, J. [KEMA-KES, Arnheim (Netherlands)

    1995-12-31

    Global warming is an environmental problem that increasingly attracts the attention of governments, (inter)national organizations and the general public. Policymakers that want to attack this problem need to understand the causes and effects of all related aspects. For this reason integrated assessment tools are developed that allow policymakers to analyze and evaluate climate change scenarios. Dialogue is such an integrated assessment tool. This article presents the results of Dialogue when the socio-economic parameters of the six well-known IPCC-scenarios, IS92a-f (IPCC 1992) are taken as a point of departure. Using as input, variables as population growth and the energy intensity of an economy, Dialogue goes through a chain of processes and finally determines climatic changes in temperature and precipitation

  8. Global climate-oriented transportation scenarios

    International Nuclear Information System (INIS)

    This paper develops scenarios whereby CO2 emissions from the transportation sector are eliminated worldwide by the end of this century. Data concerning the energy intensity and utilization of different passenger and freight transportation modes in 2005, and per capita income, in 10 different socio-economic regions of the world are combined with scenarios of population and per capita GDP to generate scenarios of future transportation energy demand. The impact of various technical options (improvements in the energy intensity of all transportation modes, changes in the proportions of vehicles with different drive trains, and a shift to biomass or hydrogen for the non-electricity energy requirements) and behavioural options (a shift to less energy-intensive LDV market segments, a reduction in total passenger-km of travel per capita, and an increase in the share of less energy-intensive passenger and freight modes of transport) is assessed. To eliminate transportation fossil fuel emissions within this century while limiting the demand for electricity, biofuels or hydrogen to manageable levels requires the simultaneous application of all the technical and behavioural measures considered here, with improvements in vehicle efficiencies and a shift to plug-in hybrid and battery-electric drive trains for light duty vehicles being the most important measures. - Highlights: ► Scenarios are developed whereby transportation CO2 emissions reach zero by 2100. ► These scenarios address concerns about peak oil and global warming. ► A comprehensive mix of technical and behavioural changes is considered in 10 world regions. ► Efficiency improvements and a shift to plug-in hybrid vehicles are the most important measures

  9. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    are now ques-tioning this. Measurements as dykes will changes or cut off the spatial and func-tional coherence between the city structure and the sea. Questions regarding the status and the appropriation of these ‘new’ adaptive func-tions in landscapes and open urban spaces by ordinary people must...

  10. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD

    OpenAIRE

    A. Schmittner; Oschlies, Andreas; H. D. Matthews; E. D. Galbraith

    2008-01-01

    A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year...

  11. Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results

    OpenAIRE

    Salzmann, N.; Noetzli, J.; C. Hauck; Gruber, S.; M. Hoelzle; Haeberli, W.

    2007-01-01

    Climate change can have severe impacts on the high-mountain cryosphere, such as instabilities in rock walls induced by thawing permafrost. Relating climate change scenarios produced from global climate models (GCMs) and regional climate models (RCMs) to complex high-mountain environments is a challenging task. The qualitative and quantitative impact of changes in climatic conditions on local to microscale ground surface temperature (GST) and the ground thermal regime is not readily apparent. ...

  12. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  13. Climate changes your business

    International Nuclear Information System (INIS)

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  14. The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Barron, Robert W.; McJeon, Haewon C.

    2015-05-01

    This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any. Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.

  15. Scenario development and assessment of the potential impacts of climate and market changes on crops in Europe : Assessing the adaptive capacity of agriculture in the Netherlands to the impacts of climate change under different market and policy scenarios (AgriAdapt project)

    OpenAIRE

    Ewert, F.; Angulo, C.; Rumbaur, C.; Lock, R; Enders, A.; Adenauer, M.; Heckelei, T.; Ittersum, van, M.K.; Wolf, J; Rötter, R.

    2011-01-01

    The Netherlands are an important producer and exporter of agricultural products. Changes in climate, markets and policies may have a large impact on the agricultural sector and farmers will need to adapt to these changes. Sector and policy documents have, so far, insufficiently considered the impacts of climate change and increased climate variability on the sector.

  16. Links between atmospheric circulation and surface air temperature in climate models in control climate and future scenarios

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    Bern: Swiss Climate Research, 2011, s. 84-85. [International NCCR Climate Summer School "Climate Change, Extremes and Ecosystem Services" /10./. Grindelwald (CH), 04.09.2001-09.09.2011] R&D Projects: GA ČR GAP209/10/2265 Institutional research plan: CEZ:AV0Z30420517 Keywords : regional climate models * air temperature * atmospheric circulation * future climate change scenarios Subject RIV: DG - Athmosphere Sciences, Meteorology

  17. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  18. Useful global-change scenarios: current issues and challenges

    International Nuclear Information System (INIS)

    Scenarios are increasingly used to inform global-change debates, but their connection to decisions has been weak and indirect. This reflects the greater number and variety of potential users and scenario needs, relative to other decision domains where scenario use is more established. Global-change scenario needs include common elements, e.g., model-generated projections of emissions and climate change, needed by many users but in different ways and with different assumptions. For these common elements, the limited ability to engage diverse global-change users in scenario development requires extreme transparency in communicating underlying reasoning and assumptions, including probability judgments. Other scenario needs are specific to users, requiring a decentralized network of scenario and assessment organizations to disseminate and interpret common elements and add elements requiring local context or expertise. Such an approach will make global-change scenarios more useful for decisions, but not less controversial. Despite predictable attacks, scenario-based reasoning is necessary for responsible global-change decisions because decision-relevant uncertainties cannot be specified scientifically. The purpose of scenarios is not to avoid speculation, but to make the required speculation more disciplined, more anchored in relevant scientific knowledge when available, and more transparent.

  19. RCPs 情景下长白山区气候变化预估分析%Projection of climate change in Changbai Mountain under RCPs scenarios

    Institute of Scientific and Technical Information of China (English)

    于秀晶; 刘玉英; 杜尧东; 韦小丽

    2015-01-01

    利用全球模式(BCC_CSM1.1)驱动区域气候模式 RegCM4,模拟分析了 RCP 4.5和 RCP 8.5温室气体排放情景下未来2010—2099年长白山区的气候变化特征。结果表明:RegCM4模式对长白山区气候特征具有较好的模拟能力,未来 RCPs情景下长白山区气温明显升高。与参照时段(1986—2005年)相比,RCP 4.5和 RCP 8.5情景下长白山区的年平均气温在21世纪20年代分别增加了0.7℃和1.0℃,21世纪50年代年平均气温分别增加了1.6℃和2.2℃,21世纪80年代年平均气温分别增加了1.9℃和3.8℃。RCP 4.5和 RCP 8.5情景下,未来长白山区降水均呈略增多的趋势,21世纪20年代降水分别增加了6.5%和2.8%,21世纪50年代降水分别增加了6.6%和7.9%,21世纪80年代降水分别增加了11.0%和6.7%。此外,两种排放情景下未来长白山区日平均气温的统计特征发生改变,偏度系数的负值减小,峰度系数的负值增加,说明未来高温事件发生的可能性增加;同时,中雨以上级别降水的发生频率增加,说明未来极端降水事件发生的可能性增加。%Change trends of temperature and precipitation during 2010-2099 in Changbai Mountain area under RCPs scenarios were analyzed based on projections over China simulated by a RegCM4 (a high resolution regional climate model)that was driven by a GCM (BCC_CSM1.1)in its boundary.The results show that the RegCM4 can well simulate local climate characteristics,judging from comparisons of the simulation with in situ observation. The projected temperature is in a significantly increasing trend in Changbai Mountain area under RCPS scenarios. Compared to that in the reference period (1986-2005 ),annual average temperature will increase by 0.7 ℃and 1.0 ℃ in 2020s,1.6 ℃ and 2.2 ℃ in 2050s,1.9 ℃ and 3.8 ℃ in 2080s under RCP 4.5 and RCP 8.5 scenarios respectively.The projected precipitation in most areas of Changbai

  20. Prediction of abundance of ants according to climate change scenarios RCP 4.5 and 8.5 in South Korea

    OpenAIRE

    Tae-Sung Kwon; Cheol Min Lee

    2015-01-01

    In order to identify change of ant distribution expected due to climate change in South Korea, data on ants collected from 344 forest sites were used to predict change of abundance of ant species. In distribution of abundance along temperature gradient, 16 species displayed the patterns expected from normal distribution. For these species, abundance in temperature zones was used to link with temperature changes and predict the abundance. Temperature changes were based on Representative Concen...

  1. Development and Application of Future Climate Scenarios for Natural Resource Management in Southwestern Colorado

    Science.gov (United States)

    Rangwala, I.; Rondeau, R.; Wyborn, C.; Clifford, K. R.; Travis, W.

    2015-12-01

    Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change in the context of uncertainty. To provide such information, we developed climate scenarios, in form of narratives and quantitative information, of future climate change and its impacts in southwestern Colorado. This information was intended to provide detailed insights into the range of changes that natural resource managers may face in the future. The scenarios were developed in an iterative process through interactions among the ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal likelihood as another scenario. We quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. Here, we discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We also discuss the process by which these scenarios get used, and provide an assessment of their effectiveness and users' feedbacks that could inform the future development of these tools and processes. This research involvement and collaboration occurred, in part, as a result of the PACE Fellowship Program that is associated with NOAA Climate Program Office and the U.S. CLIVAR community.

  2. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  3. Climate Change and Forests

    International Nuclear Information System (INIS)

    The causes for climatic change in the period between 3000 and 1250 BC was different from what present scenario portends. After industrialization, temperatures has arisen by 0.5 degrees centigrade every 100 years since factories started to spew out smoke. Over the last two centuries, the concentration of Carbon Dioxide in the atmosphere has increased by more than 25% from about 275ppm in the 18th Century to more than 350ppm at the present time while the current level is expected to double by the year 2050. The increase in Carbon Dioxide and together with other greenhouse gases in the atmosphere will trap the sun's radiation causing the mean global temperatures to rise by between 1 degree and 5 degrees centigrade by 2050. The climatic change affects forestry in many ways for instance, temperatures determines the rate at which enzymes catalyze biochemical reactions while solar radiation provide the energy which drive light reactions in photosynthesis. On the other hand, water which is a component of climate is a universal solvent which enables plants to transport nutrients through the transpirational stream, and similarly transport photosynthates from the leave to all parts of the plants. It is a raw material for photosynthesis and important for maintaining turgidity, which is important for growth

  4. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  5. Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling

    NARCIS (Netherlands)

    Kanellopoulos, A.; Reidsma, P.; Wolf, J.; Ittersum, van M.K.

    2014-01-01

    Future farming systems are challenged to adapt to the changing socio-economic and bio-physical environment in order to remain competitive and to meet the increasing requirements for food and fibres. The scientific challenge is to evaluate the consequences of predefined scenarios, identify current “b

  6. Rural community in the Mediterranean Region in 2030: Projections and future scenarios. Climate Change and Social Change / Comunidades rurales de la región mediterránea en 2030: proyecciones y escenarios futuros. Cambio climático y cambio social

    OpenAIRE

    Nadia Martínez Espinar; Lazaros Xenidis; Andrea Prokova

    2009-01-01

    Summary: This article is the result of a work carried out during the Seminar of Ecological Orientation that the Institute of Social Ecology of Viena (IFF) prepares every year. Under the topic “Climate Change and Social Change”, the participants were motivated to recreate future scenarios where the climate change would be a reality. Our choice was a rural community in the Mediterranean region. Taking into account the consequences of the Climate Change, we were interested in comparing two diffe...

  7. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  8. Global trade and climate policy scenarios. Impact on Finland

    Energy Technology Data Exchange (ETDEWEB)

    Honkatukia, J.; Kaitila, V.; Kotilainen, M.; Niemi, J.

    2012-09-15

    In this study we use the dynamic version of the GTAP model to analyse the effects of global trade policy changes and their interaction with different global climate policy regimes from Finland's point of view, and in particular, implications for Finnish export sectors. Scenarios explore further trade liberalisation as well as effects of higher-than-current tariffs on world markets. As a complementary dimension we analyse the impact of a global climate agreement that will lead to an additional improvement in energy efficiency and impose limitations to GHG emissions. We find a general trend towards a greater weight of services sector in Finland's total exports volume, whilst the share of traditionally important heavy industry and electronics industries declines. These trends are amplified by further trade liberalisation and slowed down by new barriers for trade. The global coverage of climate policy is particularly significant for energy-intensive industries. (orig.)

  9. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  10. The role of renewable energy in climate stabilization: results from the EMF27 scenarios

    OpenAIRE

    Luderer, Gunnar; Krey, Volker; Calvin, Katherine; Merrick, James; Mima, Silvana; Pietzcker, Robert; Van Vliet, Jasper; Wada, Kenichi

    2013-01-01

    This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the ...

  11. Climate change: a primer

    OpenAIRE

    Khanna, Dr. Perminder; Aneja, Reenu

    2011-01-01

    Abstract Climate has inherent variability manifesting in gradual changes in temperature, precipitation and sea-level rise. The paper entitled “Climate Change: A Primer” attempts to analyse the policy response and adaptation to the need to address climate change at the international and domestic level both. Intense variations in climate would increase the risk of abrupt and non-linear changes in the ecosystem, impacting their function, biodiversity and productivity. The policy initiations and ...

  12. Climate and Change

    OpenAIRE

    Roger S. Pulwarty

    2011-01-01

    A presentation about the basics of climate change - the science, the impacts, and the consequences. The focus is on water and the Caribbean in particular but the information is general. It includes information about climate change mitigation and climate change adaptation.

  13. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    OpenAIRE

    Michal Belda; Petr Skalák; Aleš Farda; Tomáš Halenka; Michel Déqué; Gabriella Csima; Judit Bartholy; Csaba Torma; Constanta Boroneant; Mihaela Caian; Valery Spiridonov

    2015-01-01

    Regional climate models (RCMs) are important tools used for downscaling climate simulations from global scale models. In project CECILIA, two RCMs were used to provide climate change information for regions of Central and Eastern Europe. Models RegCM and ALADIN-Climate were employed in downscaling global simulations from ECHAM5 and ARPEGE-CLIMAT under IPCC A1B emission scenario in periods 2021–2050 and 2071–2100. Climate change signal present in these simulations is consistent with respective...

  14. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  15. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  16. Indications of climatic change

    International Nuclear Information System (INIS)

    The earth's annual mean global temperature increased by around 0,6 C during the 20 century, with wide regional differences. Even if solar activity has played some part in the mean temperature rise and some greenhouse gases are present naturally in the atmosphere, enhancing of the greenhouse effect due to the human activities is responsible for a large and increasing part of the observed warming. The work of the Intergovernmental Panel on Climate Change confirms the future increase under all scenarios. Depending on the efforts made by mankind to limit greenhouse gases emissions, the global mean temperature in 2100 could be between 1,4 and 5,8 C higher than in 2000. (A.L.B.)

  17. Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4.5 scenario

    Science.gov (United States)

    Sun, Z.; Jia, S. F.; Lv, A. F.; Yang, K. J.; Svensson, J.; Gao, Y. C.

    2015-10-01

    This paper advances understanding of the impacts of climate change on crops in China by moving from ex-post analysis to forecasting, and by demonstrating how the effects of climate change will affect the growth period and the planting boundaries of winter wheat. Using a multiple regression model based on agricultural meteorological observations and the IPCC AR5 GCMs simulations, we find that the sowing date of winter wheat in the base period, 2040s and 2070s, shows a gradually delayed trend from north to south and the growth period of winter wheat in China will be shortened under climate change. The simulation results also show that (i) the north planting boundaries of winter wheat in China will likely move northward and expand westward in the future, while the south planting boundary will rise and spread in south Hainan and Taiwan; and (ii) the Xinjiang Uygur Autonomous Region and the Inner Mongolia Autonomous Region will have the largest increases in planting areas in 2040s and 2070s. Our simulation implies that Xinjiang and Inner Mongolia are more sensitive to climate change than other regions in China and priority should be given to design adaptation strategies for winter wheat planting for these provinces.

  18. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  19. Nordic co-operation regarding regionalized climate scenarios

    International Nuclear Information System (INIS)

    The article presents some of the experiments and preliminary results of the Nordic Ensemble of Climate Scenarios which is a joint effort between RegClim, Sweclim (Sweden) and DCC (the Danish Climate Centre) regarding the dynamic reduction of global climate scenarios in Scandinavia. The global warming, radiation enhancements and greenhouse gas concentrations have been studied for periods from pre industrial time till the year 2080. Plans for future studies are mentioned

  20. Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results

    Science.gov (United States)

    Salzmann, Nadine; NöTzli, Jeannette; Hauck, Christian; Gruber, Stephan; Hoelzle, Martin; Haeberli, Wilfried

    2007-06-01

    Climate change can have severe impacts on the high-mountain cryosphere, such as instabilities in rock walls induced by thawing permafrost. Relating climate change scenarios produced from global climate models (GCMs) and regional climate models (RCMs) to complex high-mountain environments is a challenging task. The qualitative and quantitative impact of changes in climatic conditions on local to microscale ground surface temperature (GST) and the ground thermal regime is not readily apparent. This study assesses a possible range of changes in the GST (ΔGST) in complex mountain topography. To account for uncertainties associated with RCM output, a set of 12 different scenario climate time series (including 10 RCM-based and 2 incremental scenarios) was applied to the topography and energy balance (TEBAL) model to simulate average ΔGST for 36 different topographic situations. Variability of the simulated ΔGST is related primarily to the emission scenarios, the RCM, and the approach used to apply RCM results to the impact model. In terms of topography, significant influence on GST simulation was shown by aspect because it modifies the received amount of solar radiation at the surface. North faces showed higher sensitivity to the applied climate scenarios, while uncertainties are higher for south faces. On the basis of the results of this study, use of RCM-based scenarios is recommended for mountain permafrost impact studies, as opposed to incremental scenarios.

  1. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  2. Projection of future climate changes

    International Nuclear Information System (INIS)

    Climate models provide the opportunity to anticipate how the climate system may change due to anthropogenic activities during the 21. century. Studies are based on numerical simulations that explore the evolution of the mean climate and its variability according to different socio-economic scenarios. We present a selection of results from phase 5 of the Climate model intercomparison project (CMIP5) with an illustrative focus on the two French models that participated to this exercise. We describe the effects of human perturbations upon surface temperature, precipitation, the cryo-sphere, but also extreme weather events and the carbon cycle. Results show a number of robust features, on the amplitude and geographical patterns of the expected changes and on the processes at play in these changes. They also show the limitations of such a prospective exercise and persistent uncertainties on some key aspects. (authors)

  3. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and glob