WorldWideScience

Sample records for climate change regime

  1. The International Climate Change Regime

    Science.gov (United States)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  2. The transnational regime complex for climate change

    OpenAIRE

    Kenneth W Abbott

    2012-01-01

    In climate change, as in other areas, recent years have produced a ‘Cambrian explosion’ of transnational institutions, standards, financing arrangements, and programs. As a result, climate governance has become complex, fragmented, and decentralized, operating without central coordination. Most studies of climate governance focus on inter­state institutions. In contrast, I map a different realm of climate change governance: the diverse array of transnational schemes. I analyze this emerging s...

  3. How will climate change modify river flow regimes in Europe?

    Directory of Open Access Journals (Sweden)

    C. Schneider

    2013-01-01

    Full Text Available Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising temperatures, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate present-day natural flow regimes and future flow regimes under climate change, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s are carried out on a 5' × 5' European grid. To address uncertainty, bias-corrected climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on the European scale, climate change can be expected to modify flow regimes remarkably. This is especially the case in the Mediterranean (due to drier conditions with reduced precipitation across the year and in the boreal climate zone (due to reduced snowmelt, increased precipitation, and strong temperature rises. In the temperate climate zone, impacts increase from oceanic to continental. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both high and low flows. Flow magnitudes, in turn, will be

  4. How will climate change modify river flow regimes in Europe?

    Directory of Open Access Journals (Sweden)

    C. Schneider

    2012-08-01

    Full Text Available Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising evapotranspiration rates, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate natural and modified flow regimes, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s are carried out on a 5' × 5' European grid. To address uncertainty, climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on European scale, climate change can be expected to modify flow regimes significantly. This is especially the case in the Mediterranean climate zone (due to drier conditions with reduced precipitation across the year and in the continental climate zone (due to reduced snowmelt and drier summers. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both, high and low flows. While low flow magnitudes are likely to be stronger influenced in the Mediterranean climate, high flow magnitudes will be mainly altered in snow climates with warmer summers. At the end

  5. Potential Effects of Climate Change on Mixed Severity Fire Regimes

    OpenAIRE

    Halofsky, Jessica; Peterson, Dave L.

    2009-01-01

    The frequency, severity, and extent of wildfire are strongly related to climate, and increasing temperatures with climate change will likely lead to changes in fire regimes in many types of ecosystems. Increased spring and summer temperatures with climate change will result in relatively early snowmelt, lower summer soil and fuel moisture, and longer fire seasons in the West. These conditions will lead to increased fire frequency and extent. Higher temperatures may also interact with vegetati...

  6. Climate change and future fire regimes: Examples from California

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as

  7. Climate Change and Future Fire Regimes: Examples from California

    Directory of Open Access Journals (Sweden)

    Jon E. Keeley

    2016-08-01

    Full Text Available Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation

  8. An Interface between Law and Science: The Climate Change Regime

    Science.gov (United States)

    Kuleshov, Y.; Grandbois, M.; Kaniaha, S.

    2012-04-01

    Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific

  9. International regime formation: Ozone depletion and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs.

  10. Hydrological regime modifications induced by climate change in Mediterranean area

    Science.gov (United States)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Valerio Noto, Leonardo

    2015-04-01

    The knowledge of river flow regimes has a capital importance for a variety of practical applications, in water resource management, including optimal and sustainable use. Hydrological regime is highly dependent on climatic factors, among which the most important is surely the precipitation, in terms of frequency, seasonal distribution and intensity of rainfall events. The streamflow frequency regime of river basins are often summarized by flow duration curves (FDCs), that offer a simple and comprehensive graphical view of the overall historical variability associated with streamflow, and characterize the ability of the basin to provide flows of various magnitudes. Climate change is likely to lead shifts in the hydrological regime, and, consequently, in the FDCs. Staring from this premise, the primary objective of the present study is to explore the effects of potential climate changes on the hydrological regime of some small Mediterranean basins. To this aim it is here used a recent hydrological model, the ModABa model (MODel for Annual flow duration curves assessment in ephemeral small BAsins), for the probabilistic characterization of the daily streamflows in small catchments. The model has been calibrated and successively validated in a unique small catchment, where it has shown a satisfactory accuracy in reproducing the empirical FDC starting from easily derivable parameters arising from basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. Thus, this work also represents a first attempt to apply the ModABa to basins different from that used for its preliminary design in order to testing its generality. Different case studies are selected within the Sicily region; the model is first calibrated at the sites and then forced by future climatic scenarios, highlighting the principal differences emerging from the current scenario and future FDCs. The future climate scenarios are generated using

  11. Changes in Soil Temperature Regimes under Regional Climate Change

    Science.gov (United States)

    Millar, S. W.

    2013-12-01

    Soil temperatures can provide a smoothed record of regional changes in atmospheric conditions due to soil thermal properties that reduce the annual air and surface temperature amplitude. In areas with seasonal snow cover, however, its insulating effect isolates the soil thermal regime from winter air temperatures. Under changing regional climate patterns, snow cover extent, depth and duration are decreasing. The net effect is thus an expected winter cooling of soil temperature. However, the extent to which this might be mitigated by warmer summer conditions, and changing soil moisture remains to be seen. To examine the relative strength of a cold-season cooling signal versus enhanced summer warming, a network of soil temperature loggers has recorded hourly soil temperatures over the period 2005-2013 within a single watershed experiencing 'lake effect snow'. Elevations range from 168 m to 612 m, on Silurian and Ordovician shale, limestone, and sandstone that have been heavily glaciated. Most of the sites are located on NY Department of Environmental Conservation land in mixed, hardwood and spruce forests. At six sites in varied topographic and land-use setting, two ONSET HOBO Outdoor 4 channel soil temperature loggers are deployed in order to reduce concerns of data reliability and systematic logger drift. Five sites also record air temperature using HOBO Pro Series Temperature loggers at three sites and HOBO Weather Stations at two. Soil temperature data are recorded at hourly intervals at depths of 2-, 5-, 10-, and 25-cm. Several other sites have been operationalized over the 8 year period, but have been tampered with, damaged, stolen, or have failed. These partial records are included to provide greater geographic representation of changing conditions where possible. Data indicate decreasing winter soil temperatures in specific land-use and topographic settings. Only one site, located in a dense spruce plantation, experiences soil freezing within the top 5 cm

  12. Implications of climate change on flow regime affecting Atlantic salmon

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The UKCIP02 climate change scenarios (2070–2100 suggest that the UK climate will become warmer (an overall increase of 2.5–3°C, with temperature increases being greater in the summer and autumn than in the spring and winter seasons. In terms of precipitation, winters are expected to become wetter and summers drier throughout the UK. The effect of changes in the future climate on flow regimes are investigated for the Atlantic salmon, Salmo salar, in a case study in an upland UK river. Using a hydraulic modelling approach, flows simulated across the catchment are assessed in terms of hydraulic characteristics (discharge per metre width, flow depths, flow velocities and Froude number. These, compared with suitable characteristics published in the literature for various life stages of Atlantic salmon, enable assessment of habitat suitability. Climate change factors have been applied to meteorological observations in the Eden catchment (north-west England and effects on the flow regime have been investigated using the SHETRAN hydrological modelling system. High flows are predicted to increase by up to 1.5%; yet, a greater impact is predicted from decreasing low flows (e.g. a Q95 at the outlet of the study catchment may decrease to a Q85 flow. Reliability, Resilience and Vulnerability (RRV analysis provides a statistical indication of the extent and effect of such changes on flows. Results show that future climate will decrease the percentage time the ideal minimum physical habitat requirements will be met. In the case of suitable flow depth for spawning activity at the outlet of the catchment, the percentage time may decrease from 100% under current conditions to 94% in the future. Such changes will have implications for the species under the Habitats Directive and for catchment ecological flow management strategies.

  13. The organization of global negotiations: constructing the climate change regime

    Energy Technology Data Exchange (ETDEWEB)

    Depledge, Joanna

    2005-02-15

    The basic assumption of this book is that the organization of a negotiation process matters. The global negotiations on climate change involve over 180 countries and innumerable observers and other participants, addressing enormously complex and economically vital issues with conflicting agendas. For the UN to create an effective and well-supported international regime has required enormous and very skilful organization: factors such as the role of the Chair, the choice of negotiating arenas, the rules for the conduct of business and the approach of negotiating texts are usually taken for granted, and rarely attract attention until something goes wrong. This book explores how the negotiations were organized to produce the Kyoto Protocol to the Climate Change Convention and the subsequent Bonn Agreements and Marrakesh Accords. The author draws out the lessons and implications for other intricate and far-reaching negotiations, not all of which have succeeded so far, such as the WTO trade negotiations at Seattle and Cancun. (Author)

  14. Smoke consequences of new wildfire regimes driven by climate change

    Science.gov (United States)

    McKenzie, Donald; Shankar, Uma; Keane, Robert E.; Stavros, E. Natasha; Heilman, Warren E.; Fox, Douglas G.; Riebau, Allen C.

    2014-02-01

    Smoke from wildfires has adverse biological and social consequences, and various lines of evidence suggest that smoke from wildfires in the future may be more intense and widespread, demanding that methods be developed to address its effects on people, ecosystems, and the atmosphere. In this paper, we present the essential ingredients of a modeling system for projecting smoke consequences in a rapidly warming climate that is expected to change wildfire regimes significantly. We describe each component of the system, offer suggestions for the elements of a modeling agenda, and provide some general guidelines for making choices among potential components. We address a prospective audience of researchers whom we expect to be fluent already in building some or many of these components, so we neither prescribe nor advocate particular models or software. Instead, our intent is to highlight fruitful ways of thinking about the task as a whole and its components, while providing substantial, if not exhaustive, documentation from the primary literature as reference. This paper provides a guide to the complexities of smoke modeling under climate change, and a research agenda for developing a modeling system that is equal to the task while being feasible with current resources.

  15. Iterative functionalism and climate management regimes: From intergovernmental panel on climate change to intergovernmental negotiating committee

    International Nuclear Information System (INIS)

    This paper contends that an iterative ''functionalist'' regime -- comprised of international organizations that monitor the global climate and perform scientific and policy research on prevention, mitigation, and adaptation strategies for response to possible global warming -- has developed over the past decade. A common global effort by scientists, diplomats, and others to negotiate a framework convention that would reduce emissions of carbon dioxide and other ''greenhouse gases'' has been brought about by this regime. Individuals that participate in this regime are engaged in several cooperative activities including: (1) international research on the causes and consequences of global change; (2) global environmental monitoring and standard-setting for analyses of climate data; and (3) negotiating a framework convention that places limits on greenhouse gas emissions by countries. The implications of this iterative approach for successful implementation of a treaty to forestall global climate change are discussed

  16. Iterative functionalism and climate management regimes: From intergovernmental panel on climate change to intergovernmental negotiating committee

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L. (Oak Ridge National Lab., TN (United States) Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center)

    1992-01-01

    This paper contends that an iterative functionalist'' regime -- comprised of international organizations that monitor the global climate and perform scientific and policy research on prevention, mitigation, and adaptation strategies for response to possible global warming -- has developed over the past decade. A common global effort by scientists, diplomats, and others to negotiate a framework convention that would reduce emissions of carbon dioxide and other greenhouse gases'' has been brought about by this regime. Individuals that participate in this regime are engaged in several cooperative activities including: (1) international research on the causes and consequences of global change; (2) global environmental monitoring and standard-setting for analyses of climate data; and (3) negotiating a framework convention that places limits on greenhouse gas emissions by countries. The implications of this iterative approach for successful implementation of a treaty to forestall global climate change are discussed.

  17. Iterative functionalism and climate management regimes: From intergovernmental panel on climate change to intergovernmental negotiating committee

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

    1992-06-01

    This paper contends that an iterative ``functionalist`` regime -- comprised of international organizations that monitor the global climate and perform scientific and policy research on prevention, mitigation, and adaptation strategies for response to possible global warming -- has developed over the past decade. A common global effort by scientists, diplomats, and others to negotiate a framework convention that would reduce emissions of carbon dioxide and other ``greenhouse gases`` has been brought about by this regime. Individuals that participate in this regime are engaged in several cooperative activities including: (1) international research on the causes and consequences of global change; (2) global environmental monitoring and standard-setting for analyses of climate data; and (3) negotiating a framework convention that places limits on greenhouse gas emissions by countries. The implications of this iterative approach for successful implementation of a treaty to forestall global climate change are discussed.

  18. The role of nuclear energy in Lithuania under various post-Kyoto climate change mitigation regimes

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia [Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas (Lithuania)], E-mail: dalia@mail.lei.lt

    2008-07-15

    The article aims to evaluate the potential role of nuclear energy in Lithuania under various post-Kyoto climate change mitigation regimes. Seeking to achieve this target the analysis of possible energy sector development scenarios in Lithuania was performed and CO{sub 2} emission projections for these scenarios were developed. The analysis of post-Kyoto climate change mitigation architectures was performed and the requirements of these possible climate change mitigation regimes for greenhouse gas (GHG) emission reduction in Lithuania were assessed. Based on these assessments the potential role of new nuclear power in Lithuania was identified under various future climate change mitigation regimes.

  19. The palaeolimnological record of regime shifts in lakes in response to climate change

    OpenAIRE

    Randsalu Wendrup, Linda

    2013-01-01

    Regime shifts in lake ecosystems can occur in response to both abrupt and continuous climate change, and the imprints they leave in palaeolimnological records allow us to investigate and better understand patterns and processes governing ecological changes on geological time scales. This thesis aims at investigating palaeolimnological records of regime shifts in lakes during the Holocene to explore how lake ecosystems responded to climate changes and anthropogenic activities and to identify t...

  20. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  1. Analysis of possible impacts of climate change on the hydrological regimes of different regions in Germany

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2009-08-01

    Full Text Available In this study, the impact of climate change scenarios on the hydrological regimes of five different regions in Germany is investigated. These regions (Northwest Germany, Northeast Germany and East German basins, upper and lower Rhine, pre-Alps differ with respect to present climate and projected climate change. The physically based SVAT-model SIMULAT is applied to theoretical soil columns based on combinations of land use, soil texture and groundwater depth to quantify climate change effects on the hydrological regime. Observed climate, measured at climate stations of the German Weather Service (1991–2007, is used for comparison with climate projections (2071–2100 generated by the regional scale climate model WETTREG.

    While all climate scenarios implicate an increase in precipitation in winter, a decrease in precipitation in summer and an increase in temperature, the simulated impacts on the hydrological regime are regionally different. In the Rhine region and in Northwest Germany, an increase in the annual runoff and groundwater recharge is simulated despite the increase in temperature and potential evapotranspiration. In the Eastern part of Germany and the pre-Alps, annual runoff and groundwater recharge will decrease. Due to dry conditions in summer, the soil moisture deficit will increase (in Northeast Germany and the East German basins in particular or remain constant (Rhine region. In all regions the seasonal variability in runoff and soil moisture status will increase. Despite regional warming actual evapotranspiration will decrease in most regions except in areas with shallow groundwater tables and the lower Rhine. Although the study is limited by the fact that only one climate model was used to drive one hydrologic model, the study shows that the hydrological regime will be affected by climate change. The direction of the expected changes seems to be obvious as well as the necessity of the adaptation of future water

  2. Climate change effects on lowland stream flood regimes and riparian rich fen vegetation communities in Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Baattrup-Pedersen, Annette; Andersen, Hans Estrup;

    2016-01-01

    There is growing awareness that an intensification of the hydrological cycle associated with climate change in many parts of the world will have profound implications for river ecosystem structure and functions. In the present study we link an ensemble of regional climate model projections...... to a hydrological model with the aim to predict climate driven changes in flooding regimes in lowland riparian areas. Our specific aims were to 1) predict effects of climate change on flood frequencies and magnitudes in riparian areas by using an ensemble of six climate models and 2) combine the obtained...... predictions with the distribution of rich fen communities to explore whether these are likely to be subjected to increased flooding by a climate change induced increase in river runoff. We found that all regional climate models in the ensemble showed increases in mean annual runoff and that the increase...

  3. Regime change?

    International Nuclear Information System (INIS)

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  4. Changes in hydrological regime under changed climate and forest conditions in mountainous basins in Slovakia

    Science.gov (United States)

    Hlavcova, Kamila; Roncak, Peter; Maliarikova, Marcela; Latkova, Tamara; Korbelova, Lenka

    2016-04-01

    The impacts of land use and climate change on hydrological regime have been an important field of research in recent decades, especially with respect to runoff formation. Land use directly impacts basic hydrological processes, such as evapotranspiration, infiltration and runoff. The study focuses on estimating impact of land use and climate changes on runoff generation in selected mountainous basins in Slovakia. Changes in land use were represented by changes in forest distribution and composition induced by changed climate. Two climate scenarios of the daily air temperatures, specific air humidity and precipitation (KNMI A1B and MPI A1B) regionally downscaled for the territory of Slovakia until the time horizon of 2075 were applied. For simulations of runoff and other components of hydrological balance under changed conditions a distributed rainfall-runoff model was used. The simulations were done with an emphasis on the parameterization of the land cover properties (spatially distributed model parameters) and calibration of global parameters of the hydrological model in changed conditions. The outcomes of the runoff simulations indicate that changes in the long-term mean monthly discharges are expected. During the winter and early spring periods, an increase in the long-term mean monthly runoff could be assumed. The period of an increase in runoff could occur from November/December to February/April. This increase could be caused by an increase in air temperature and a shift in the snow melting period from the spring months to the winter period. The period of a decrease in runoff could occur from March/April to September/November. The increase in winter runoff and the decrease in summer runoff are expected to be more extreme for the later time horizons.

  5. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    Science.gov (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  6. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community.

    Science.gov (United States)

    Alatalo, Juha M; Jägerbrand, Annika K; Molau, Ulf

    2016-02-18

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  7. Climate change effects on the hydrological regime of small non-perennial river basins.

    Science.gov (United States)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Noto, Leonardo V

    2016-01-15

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  8. Climate change impact on thermal and oxygen regime of shallow lakes

    Directory of Open Access Journals (Sweden)

    Georgiy Kirillin

    2012-02-01

    Full Text Available Among the numerous processes that govern the functioning of a lake ecosystem, the regime of dissolved oxygen (DO is of primary importance. The DO content is strongly affected by the temperature regime, mixing conditions and by the duration of the ice-covered period. These are formed due to atmospheric forcing and are, therefore, subject to variations in regional climate. Despite the large amount of data revealing the physical effect on the biological and chemical regimes in lakes, there is still insufficient understanding, both qualitative and quantitative, of how a lake ecosystem would be affected by changes in the lake temperature and mixing conditions due to changes in the atmospheric forcing. Below, the study of shallow lakes’ response to climatic changes using the coupled FLake–FLakeEco modelling system is presented. The results obtained reveal the extreme vulnerability of the lakes’ ecosystems to changes in atmospheric forcing. In ‘future’ climate the permanent existence of potentially dangerous anaerobic zones in shallow lakes is expected. The projected decreased oxygen concentrations are caused by: (1 the reduced oxygen flux from the atmosphere to the lakes due to increased temperature; and (2 strengthened density stratification of the water columns which would prevent aeration of the near-bottom layers.

  9. Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes

    Science.gov (United States)

    Boer, Matthias M.; Bowman, David M. J. S.; Murphy, Brett P.; Cary, Geoffrey J.; Cochrane, Mark A.; Fensham, Roderick J.; Krawchuk, Meg A.; Price, Owen F.; Resco De Dios, Víctor; Williams, Richard J.; Bradstock, Ross A.

    2016-06-01

    Most studies of climate change effects on fire regimes assume a gradual reorganization of pyrogeographic patterns and have not considered the potential for transformational changes in the climate-vegetation-fire relationships underlying continental-scale fire regimes. Here, we model current fire activity levels in Australia as a function of mean annual actual evapotranspiration (E) and potential evapotranspiration (E 0), as proxies for fuel productivity and fuel drying potential. We distinguish two domains in E,{E}0 space according to the dominant constraint on fire activity being either fuel productivity (PL-type fire) or fuel dryness (DL-type fire) and show that the affinity to these domains is related to fuel type. We propose to assess the potential for transformational shifts in fire type from the difference in the affinity to either domain under a baseline climate and projected future climate. Under the projected climate changes potential for a transformational shift from DL- to PL-type fire was predicted for mesic savanna woodland in the north and for eucalypt forests in coastal areas of the south-west and along the Continental Divide in the south-east of the continent. Potential for a shift from PL- to DL-type fire was predicted for a narrow zone of eucalypt savanna woodland in the north-east.

  10. The EU-China Partnership on Climat Change: Bilateralism Begetting Multilateralism in Promoting a Climate Change Regime?

    OpenAIRE

    Romano, Giulia

    2010-01-01

    On 5 September 2005, during the 8th EU-China Summit held in Beijing, the European Union and China signed an agreement to establish a bilateral Partnership on Climate Change. The two parties pledged to strengthen the dialogue on climate change policies, exchange views on key issues in climate change negotiations and develop concrete action to tackle climate change by carrying out specific cooperative projects. By presenting an analysis of the outcomes of this bilateral initiativ...

  11. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    Science.gov (United States)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  12. Bridging interest, classification and technology gaps in the climate change regime

    International Nuclear Information System (INIS)

    The climate change regime is affected by a major credibility gap; there is a gap between what countries have been stating that they are willing to do and what they actually do. This is visible not just in the inability of the developed countries to stabilise their emissions at 1990 levels by the year 2000 as provided for in the United Nations Framework Convention on Climate Change (FCCC), but by the general reluctance of all countries to ratify the Kyoto Protocol to the Convention (KPFCCC). This research postulates that this credibility gap is affected further by three other types of gaps: 1) the interest gap; 2) the classification gap; and 3) the technology gap. The purpose of this research is thus to identify ways and means to promote industrial transformation in developing countries as a method to address the climate change problem. The title of this project is: Bridging Gaps - Enhancing Domestic and International Technological Collaboration to Enable the Adoption of Climate Relevant Technologies and Practices (CT and Ps) and thereby Foster Participation and Implementation of the Climate Convention (FCCC) by Developing Countries (DCs). In order to enhance technology co-operation, we believe that graduation profiles are needed at the international level and stakeholder involvement at both the national and international levels. refs

  13. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    Science.gov (United States)

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales.

  14. Climate Change Impacts on Runoff Regimes at a River Basin Scale in Central Vietnam

    Directory of Open Access Journals (Sweden)

    Do Hoai Nam

    2012-01-01

    Full Text Available Global warming has resulted in significant variability of global climate especially with regard to variation in temperature and precipitation. As a result, it is expected that river flow regimes will be accordingly varied. This study presents a preliminary projection of medium-term and long-term runoff variation caused by climate change at a river basin scale. The large scale precipitation projection at the middle and the end of the 21st century under the A1B scenario simulated by the CGCM model (MRI & JMA, 300 km resolution is statistically downscaled to a basin scale and then used as input for the super-tank model for runoff analysis at the upper Thu Bon River basin in Central Vietnam. Results show that by the middle and the end of this century annual rainfall will increase slightly; together with a rising temperature, potential evapotranspiration is also projected to increase as well. The total annual runoff, as a result, is found to be not distinctly varied relative to the baseline period 1981 - 2000; however, the runoff will decrease in the dry season and increase in the rainy season. The results also indicate the delay tendency of the high river flow period, shifting from Sep-Dec at present to Oct-Jan in the future. The present study demonstrates potential impacts of climate change on streamflow regimes in attempts to propose appropriate adaptation measures and responses at the river basin scales.

  15. The Bali Firewall and Member States’ Future Obligations within the Climate Change Regime

    Directory of Open Access Journals (Sweden)

    Christopher Smith

    2010-12-01

    Full Text Available At the 13th Conference of the Parties to the United Nations Framework Convention on Climate Change, held in Bali in 2007, the COP decided to launch a process to reach an agreed outcome at its 15th session held in Copenhagen in 2009. This decision, known as the Bali Action Plan, contains two subparagraphs that set out broadly the parameters within which future possible legal obligations pertaining to developed and developing nations regarding the mitigation of climate change are to be addressed as part of this process as per the decision. The purpose of addressing these obligations is to enable the implementation of the Convention, so the subparagraphs should have a basis in the Convention. One subparagraph deals with future possible legal obligations pertaining to developed country Parties and the other deals with those pertaining to developing country Parties. The content of each subparagraph differs and therefore a fundamental difference in the future possible legal obligations pertaining to developed and developing country Parties is pre-defined within the Bali Action Plan. This difference, as it is perceived by most developing country Parties, has become known colloquially as the Bali firewall. This article will set out the content of the pre-defined sets of parameters and investigate the basis for this content, and difference in content in relation to the other, in the provisions and principles set out in the Convention. It will then conclude on the validity of the Bali firewall in terms of the content of the Convention. Additionally it will analyse whether the ‘outcome’ of the 15th Conference of the Parties falls in line with the future legal obligations of member states within the climate regime as perceived by most developing country Parties in terms of the Bali firewall. Lastly it will analyse member states’ future legal obligations within the climate change regime in the context of the overall objective of the Convention and the

  16. Climate change impacts on the fluvial regime in a Mediterranean mountainous area.

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    The water flow regime in Mediterranean basins is greatly influenced by the high variability of the meteorological patterns, with recurrent drought periods, and the heterogeneity of both terrain physical properties and land uses. These aspects together with the simultaneous demands of water resources for human consumption, irrigation and energy production make it crucial to have a continuous flow series on control points along the river network. In the current context of Global Warming, mountainous semiarid watersheds, where Mediterranean and alpine climates coexist, constitute singular places to evaluate its effects on the river flow regime. Sierra Nevada Mountain area (SN) (southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is a clear example of snow regions in a semiarid environment. Due to its special climate conditions, SN is part of the global climate change observatories network. The aim of this work is to estimate the influence of climate change on the flow regime over several control points along the main channel of the Guadalfeo River (in the South face of SN), by means of analysing the observed trends and focusing in the occurrence of drought period and extreme flood events. For this, the flow regime at three selected points in the river was simulated by using WiMMed, a physically-based hydrological model developed for Mediterranean regions, which includes flow routing calculations. The model was calibrated and validated from observations at a gauge station point, from which the flow series were obtained at upstream. Precipitation and temperature datasets from the reference period (1960-2000) and two different scenarios (A2, B1) for a future period (2046-2100) proposed by the Fourth Assessment Report of IPCC (Intergovernmental Panel on Climate Change) were used as forcing meteorological variables. The comparison was performed over different flow indicator variables: 1) annual mean daily flow; 2) annual maximum daily flow; 3) annual number

  17. Climate change impacts on the fluvial regime in a Mediterranean mountainous area.

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    The water flow regime in Mediterranean basins is greatly influenced by the high variability of the meteorological patterns, with recurrent drought periods, and the heterogeneity of both terrain physical properties and land uses. These aspects together with the simultaneous demands of water resources for human consumption, irrigation and energy production make it crucial to have a continuous flow series on control points along the river network. In the current context of Global Warming, mountainous semiarid watersheds, where Mediterranean and alpine climates coexist, constitute singular places to evaluate its effects on the river flow regime. Sierra Nevada Mountain area (SN) (southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is a clear example of snow regions in a semiarid environment. Due to its special climate conditions, SN is part of the global climate change observatories network. The aim of this work is to estimate the influence of climate change on the flow regime over several control points along the main channel of the Guadalfeo River (in the South face of SN), by means of analysing the observed trends and focusing in the occurrence of drought period and extreme flood events. For this, the flow regime at three selected points in the river was simulated by using WiMMed, a physically-based hydrological model developed for Mediterranean regions, which includes flow routing calculations. The model was calibrated and validated from observations at a gauge station point, from which the flow series were obtained at upstream. Precipitation and temperature datasets from the reference period (1960-2000) and two different scenarios (A2, B1) for a future period (2046-2100) proposed by the Fourth Assessment Report of IPCC (Intergovernmental Panel on Climate Change) were used as forcing meteorological variables. The comparison was performed over different flow indicator variables: 1) annual mean daily flow; 2) annual maximum daily flow; 3) annual number

  18. The nuclear test-ban verification regime: An untapped source for climate change monitoring

    International Nuclear Information System (INIS)

    The benefits of a global ban on nuclear testing for international security and for protecting human health and the environment from radioactive fallout are obvious. The relevance of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) for climate change research may not, however, be evident at first glance. The CTBT bans all nuclear explosions on Earth. To monitor compliance with the Treaty, the CTBTO Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), is establishing a verification regime capable of detecting clandestine nuclear tests. As the only international body operating its own system of monitoring stations that literally spans the globe, the CTBTO is in a unique position to contribute to the UN's efforts in the area of climate knowledge.

  19. Response of Step-pool Mountain Channels to Wildfire Under Changing Climate-fire Regimes

    Science.gov (United States)

    Chin, A.; O'Dowd, A. P.; Storesund, R.; Parker, A.; Roberts-Niemann, C.

    2013-12-01

    The western U.S. is becoming more susceptible to wildfire, even though wildfires have occurred throughout history and pre-history. Warming climates leading to drier conditions have increased the occurrence of wildfires. Fire suppression policies throughout the twentieth century have also allowed fuel loads to build and increased the potential for larger and more frequent fires. These trends have growing impacts on human society, as evidenced in increasing number of structures destroyed and related costs of firefighting and resulting damages. Besides the first-order effects of wildfire, such as burned vegetation and reduced infiltration capacities, changing climate-fire regimes have significant indirect effects on hydrologic and geomorphologic responses. This contribution explores how these changes affect the stability and functioning of step-pool mountain streams in the context of landscape evolution. Step-pool systems are stable features adjusted to the prevailing flow and channel morphology, serving important functions of energy dissipation in high-energy environments. Steps and pools are also important ecologically, as they provide diverse habitats for sensitive organisms. Whereas step-pool channels are typically restructured by flows with recurrence intervals often exceeding 50 years, these flows are reached more frequently under changing climate-fire regimes. Following the Waldo Canyon Fire of June/July 2012, one of several recent wildfires that spread along the Colorado Front Range, we track the stability, destruction, and re-development of step-pool systems in two basins in Pike National Forest using terrestrial LiDAR scanning and surveys of longitudinal profiles and cross sections. We document how the first geomorphologically significant event on 1 July 2013 obliterated the step-pool structure in Williams Canyon, widened river channels and lowered channel beds by as much as one meter. Changes in ecological character accompanied the conversion of channel

  20. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    Science.gov (United States)

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change

  1. Sensitivity of lake ice regimes to climate change in the nordic region

    Directory of Open Access Journals (Sweden)

    S. Gebre

    2013-03-01

    Full Text Available A one-dimensional process-based multi-year lake ice model, MyLake, was used to simulate lake ice phenology and annual maximum lake ice thickness for the Nordic region comprising Fennoscandia and the Baltic countries. The model was first tested and validated using observational meteorological forcing on a candidate lake (Lake Atnsjøen and using downscaled ERA-40 reanalysis data set. To simulate ice conditions for the contemporary period of 1961–2000, the model was driven by gridded meteorological forcings from ERA-40 global reanalysis data downscaled to a 25 km resolution using the Rossby Center Regional Climate Model (RCA. The model was then forced with two future climate scenarios from the RCA driven by two different GCMs based on the SRES A1B emissions scenario. The two climate scenarios correspond to two future time periods namely the 2050s (2041–2070 and the 2080s (2071–2100. To take into account the influence of lake morphometry, simulations were carried out for four different hypothetical lake depths (5 m, 10 m, 20 m, 40 m placed at each of the 3708 grid cells. Based on a comparison of the mean predictions in the future 30 yr periods with the control (1961–1990 period, ice cover durations in the region will be shortened by 1 to 11 weeks in 2041–2070, and 3 to 14 weeks in 2071–2100. Annual maximum lake ice thickness, on the other hand, will be reduced by a margin of up to 60 cm by 2041–2070 and up to 70 cm by 2071–2100. The simulated changes in lake ice characteristics revealed that the changes are less dependent on lake depths though there are slight differences. The results of this study provide a~regional perspective of anticipated changes in lake ice regimes due to climate warming across the study area by the middle and end of this century.

  2. Projected Impact of Climate Change on Hydrological Regimes in the Philippines

    Science.gov (United States)

    Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.

    2016-01-01

    The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908

  3. Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes.

    Directory of Open Access Journals (Sweden)

    Rui P Rivaes

    Full Text Available Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.

  4. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change

    Science.gov (United States)

    Wang, Le; Guo, Shenglian; Hong, Xingjun; Liu, Dedi; Xiong, Lihua

    2016-09-01

    Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downscale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010‒2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.

  5. Effects of climate change on fire and spruce budworm disturbance regimes and consequences on forest biomass production in eastern Canada

    International Nuclear Information System (INIS)

    The dynamics of spruce budworm (SBW) outbreaks and wildfires are expected to change as climatic change progresses. The effects of an altered, combined interaction between SBW and fire may be of greater importance than the individual effect of either on forest biomass production. The objectives of this study are to define current fire and SBW regimes in eastern Canada and relate the characteristics of each regime based upon climate model outputs for 2050 and 2100. The study also attempts to evaluate the impact of predicted changes in SBW and fire disturbance regimes on forest dynamics. The methodology used in the study included data from the Canadian Large Fire Database and historical records of SBW outbreaks. Spatial and environmental variables were presented along with climate models. The analysis was conducted using constrained ordination techniques, and canonical correspondence and redundancy analysis. Projected disturbance regimes were presented for both fire and SBW. The effects of the regimes on biomass productivity were also examined, using a Landscape Disturbance Simulator (LAD). It was concluded that this model will help evaluate the consequences of changes imposed by climatic change on both disturbances individually, as well as their interaction. 10 refs., 1 tab., 2 figs

  6. 2050 Scenarios for Long-Haul Tourism in the Evolving Global Climate Change Regime

    Directory of Open Access Journals (Sweden)

    Jako Volschenk

    2012-12-01

    Full Text Available Tourism and its “midwife”, aviation, are transnational sectors exposed to global uncertainties. This scenario-building exercise considers a specific subset of these uncertainties, namely the impact of the evolving global climate change regime on long-haul tourism (LHT, with a 2050 horizon. The basic problematique is that unconstrained growth in aviation emissions will not be compatible with 2050 climate stabilisation goals, and that the stringency and timing of public policy interventions could have far-reaching impacts — either on the market for future growth of LHT, or the natural ecosystem on which tourism depends. Following an intuitive-logic approach to scenario-building, three meta-level scenarios that can be regarded as “possible” futures for the evolution of LHT are described. Two of these, i.e., the “grim reaper” and the “fallen angel” scenarios, are undesirable. The “green lantern” scenario represents the desired future. Long-haul tourist destinations should heed the early warning signals identified in the scenario narratives, and contribute towards realising the desired future. They should further guard against being passive victims if the feared scenarios materialise, by adapting, repositioning early upon reading the signposts, hedging against risks, and seizing new opportunities.

  7. The robustness of flood insurance regimes given changing risk resulting from climate change

    Directory of Open Access Journals (Sweden)

    Jessica Lamond

    2014-01-01

    Full Text Available The changing risk of flooding associated with climate change presents different challenges for the different flood insurance market models in use around the world, which vary in respect of consumer structure and their risk transfer mechanism. A review of international models has been undertaken against three broad criteria for the functioning and sustainability of a flood insurance scheme: knowing the nature of the insurable risk; the availability of an insurable population; and the presence of a solvent insurer. The solvency of insurance markets appears strong, partly because insurers and reinsurers can choose to exclude markets which would give rise to insolvency or can diversify their portfolios to include offsetting perils. Changing risk may threaten solvency if increasing risk is not recognised and adjusted for but insurability of flood risk may be facilitated by the use of market based and hybrid schemes offering greater diversification and more flexibility. While encouragement of mitigation is in theory boosted by risk based pricing, availability and affordability of insurance may be negatively impacted. This threatens the sustainability of an insurable population, therefore the inclusion of the state in partnership is beneficial in ensuring continuity of cover, addressing equity issues and incentivising mitigation.

  8. Re-Examining the Relationship between Tillage Regime and Global Climate Change

    Science.gov (United States)

    Hammons, Sarah K.

    2009-01-01

    It is known that anthropogenic greenhouse gas emissions are a major contributor to global climate change and that reducing our emissions will stem its acceleration (Baker et al., 2007). Aside from emission reductions, another method for stemming global climate change is to reduce the levels of greenhouse gases already in the atmosphere by storing…

  9. Accommodating human values in the climate regime

    Directory of Open Access Journals (Sweden)

    Rosalind Cook

    2008-12-01

    Full Text Available The climate regime addresses one of the most important challenges facing humankind today. However, while the environmental and economic sides of the problem are well represented, it lacks the inclusion of social and human aspects. The human rights regime, in contrast, is a regime which has been established precisely to implement human values. This article ex-plains the problems of climate change in terms of human values and argues that some proce-dures from the human rights regime offer possibilities for improvement. It is submitted that through the inclusion of human rights instruments, such as individual communication, pro-gressive realisation and authoritative interpretation, the inclusion of human values into the climate regime will be facilitated. This article presents these instruments and discusses their potential for inclusion in the climate regime.

  10. The key role of dry days in changing regional climate and precipitation regimes

    Science.gov (United States)

    Polade, Suraj D.; Pierce, David W.; Cayan, Daniel R.; Gershunov, Alexander; Dettinger, Michael D.

    2014-03-01

    Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change in number of dry days dominates the annual changes in precipitation and accounts for a large part of the change in interannual precipitation variability.

  11. The key role of dry days in changing regional climate and precipitation regimes.

    Science.gov (United States)

    Polade, Suraj D; Pierce, David W; Cayan, Daniel R; Gershunov, Alexander; Dettinger, Michael D

    2014-01-01

    Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change in number of dry days dominates the annual changes in precipitation and accounts for a large part of the change in interannual precipitation variability. PMID:24621567

  12. Repositioning urban governments? Energy efficiency and Australia’s changing climate and energy governance regimes.

    OpenAIRE

    McGuirk, Pauline; Dowling, Robyn; Bulkeley, Harriet

    2014-01-01

    Urban local governments are important players in climate governance, and their roles are evolving. This review traces the changing nexus of Australia’s climate policy, energy policy and energy efficiency imperatives and its repositioning of urban local governments. We characterise the ways urban local governments’ capacities and capabilities are being mobilised in light of a changing multi-level political opportunity structure around energy efficiency. The shifts we observe not only extend lo...

  13. Assessing the Impact of Climate Change on the Flood Regime in France

    Science.gov (United States)

    Sauquet, E.; Vidal, J.; Perrin, C.; Bourgin, P.; Chauveau, M.; Chazot, S.

    2012-12-01

    Changes in river flows are associated with different types of uncertainties, due to an imperfect knowledge of both future climate and rainfall-runoff processes. Due to computational constraints, impact and adaptation studies unfortunately cannot always afford to perform a detailed analysis of all these uncertainties. In that case, the modelling efforts have to focus on the most relevant source of uncertainty in order to provide the best estimate of the overall uncertainty. As part of the national Explore2070 project, the present study thus aims at assessing the hierarchy of uncertainties in changes on river flow extremes at the scale of France. Amongst all possible sources of uncertainties, two are here considered: (1) the uncertainty in General Circulation Model (GCM) configuration, with 7 different models that adequately sample the range of changes as projected by the GCMs used in the IPCC AR4 over France, and (2) the uncertainty in hydrological model structure, with 2 quite different models: GR4J (Perrin et al., 2003), a lumped conceptual model, and Isba-Modcou (Habets et al., 2008), a suite of a land surface scheme and a distributed hydrogeological model. The hydrological models have been run at more than 1500 locations in France over the 1961-1990 baseline period with forcings from both the Safran near-surface atmospheric reanalysis (Vidal et al., 2010) and the GCM control runs downscaled with a weather type method (Boé et al., 2006), and over the 2046-2065 period with forcings from all downscaled GCM runs under the A1B emissions scenario. Single station flood frequency analyses were performed on 405 locations with observed discharges. Using Hosking and Wallis heterogeneity measures homogeneous regions were defined. Regional flood frequency analysis has been performed. Changes in homogeneity and changes in regional growth curvehave been examined. The analysis has accounted for the performance of the two hydrological models to quantify the confidence in future

  14. Predicting ecological regime shift under climate change:New modelling techniques and potential of molecular-based approaches

    Institute of Scientific and Technical Information of China (English)

    Richard STAFFORD; V.Anne SMITH; Dirk HUSMEIER; Thomas GRIMA; Barbara-ann GUINN

    2013-01-01

    Ecological regime shift is the rapid transition from one stable community structure to another,often ecologically inferior,stable community.Such regime shifts are especially common in shallow marine communities,such as the transition of kelp forests to algal turfs that harbour far lower biodiversity.Stable regimes in communities are a result of balanced interactions between species,and predicting new regimes therefore requires an evaluation of new species interactions,as well as the resilience of the ‘stable' position.While computational optimisation techniques can predict new potential regimes,predicting the most likely community state of the various options produced is currently educated guess work.In this study we integrate a stable regime optimisation approach with a Bayesian network used to infer prior knowledge of the likely stress of climate change (or,in practice,any other disturbance) on each component species of a representative rocky shore community model.Combining the results,by calculating the product of the match between resilient computational predictions and the posterior probabilities of the Bayesian network,gives a refined set of model predictors,and demonstrates the use of the process in determining community changes,as might occur through processes such as climate change.To inform Bayesian priors,we conduct a review of molecular approaches applied to the analysis of the transcriptome of rocky shore organisms,and show how such an approach could be linked to measureable stress variables in the field.Hence species-specific microarrays could be designed as biomarkers of in situ stress,and used to inform predictive modelling approaches such as those described here.

  15. Predicting ecological regime shift under climate change: New modelling techniques and potential of molecular-based approaches

    Directory of Open Access Journals (Sweden)

    Richard STAFFORD, V. Anne SMITH, Dirk HUSMEIER, Thomas GRIMA, Barbara-ann GUINN

    2013-06-01

    Full Text Available Ecological regime shift is the rapid transition from one stable community structure to another, often ecologically inferior, stable community. Such regime shifts are especially common in shallow marine communities, such as the transition of kelp forests to algal turfs that harbour far lower biodiversity. Stable regimes in communities are a result of balanced interactions between species, and predicting new regimes therefore requires an evaluation of new species interactions, as well as the resilience of the ‘stable’ position. While computational optimisation techniques can predict new potential regimes, predicting the most likely community state of the various options produced is currently educated guess work. In this study we integrate a stable regime optimisation approach with a Bayesian network used to infer prior knowledge of the likely stress of climate change (or, in practice, any other disturbance on each component species of a representative rocky shore community model. Combining the results, by calculating the product of the match between resilient computational predictions and the posterior probabilities of the Bayesian network, gives a refined set of model predictors, and demonstrates the use of the process in determining community changes, as might occur through processes such as climate change. To inform Bayesian priors, we conduct a review of molecular approaches applied to the analysis of the transcriptome of rocky shore organisms, and show how such an approach could be linked to measureable stress variables in the field. Hence species-specific microarrays could be designed as biomarkers of in situ stress, and used to inform predictive modelling approaches such as those described here [Current Zoology 59 (3: 403–417, 2013].

  16. Workshop in political institutions - institutional analysis and global climate change: Design principles for robust international regimes

    International Nuclear Information System (INIS)

    Scientific evidence suggests that human activities have a significant effect on the world's climate. Political pressures are growing to establish political institutions at the global level that would help manage the social and economic consequences of climate change. Disagreements remain about the magnitude of these effects, as well as the regional distribution of the detrimental consequences of climate change. In this paper we do not wish to enter into the complexities of these technical debates. Instead, we wish to challenge a seemingly widespread consensus about the nature of the political response appropriate to this global dilemma. Specifically, we question the extent to which the open-quotes answerclose quotes can be said to reside primarily in the establishment of the new global institutions likely to emerge from the first open-quotes Earth Summitclose quotes - the United Nations (UN) Conference on Environment and Development - scheduled for June of 1992 in Rio de Janeiro

  17. Effects of climate change on three flow regime-related ecosystem services in a highly-regulated Alpine river

    Science.gov (United States)

    Carolli, Mauro; Zolezzi, Guido; Geneletti, Davide; Majone, Bruno; Bellin, Alberto

    2016-04-01

    River systems provide several flow regime-related ecosystem services (ES) to society. The flow regime of several Alpine rivers is often regulated by hydropower production, which represents one of the most relevant ES in the area. Climate change is expected to modify the flow regime of rivers, with possible relevant consequences on the suitability of related ES. In this work we applied an approach aimed at evaluating the variations of ES under different flow regime conditions and consequently, the possibility to quantify the effects of different climate change scenarios on river ecosystem services. The case-study is the Noce River, a gravel-bed river in the Italian Alps (Trentino, North East Italy) which hydrological regime is subject to daily alterations of flow regime (hydropeaking) induced by the management of large hydropower plants. Here we considered three ES indicators: habitat for adult marble trout as representative for habitat provisioning service, rafting for recreational services, and small hydropower production as provisioning service. In particular, we evaluated the daily variations of these indicators under three different operating scenarios: a reference scenarios (REF, from 1970 to 2000) and two future scenarios (from 2040 to 2070), with (FUT) and without (FUT CC) the inclusion of the required minimum environmental flow (minimum vital flow) recently implemented in the regional water resources policy. For each scenario, four climate models have been applied (see Majone et al., 2016). Future scenarios indicate a modification of the flow regime, with a direct effect on the suitability of related ES. The effects on ES differ according with climate models and management scenarios: as a general result and considering the comparison with respect to the reference period, the applied models predict a temporal shift from late to early summer in the rafting suitability, a decrease of the suitability for trout in spring months and an increase of the suitability

  18. Tools for Assessing the Impacts of Climate Variability and Change on Wildfire Regimes in Forests

    Directory of Open Access Journals (Sweden)

    Hety Herawati

    2015-04-01

    Full Text Available Fire is an intrinsic element of many forest ecosystems; it shapes their ecological processes, determines species composition and influences landscape structure. However, wildfires may: have undesirable effects on biodiversity and vegetation coverage; produce carbon emissions to the atmosphere; release smoke affecting human health; and cause loss of lives and property. There have been increasing concerns about the potential impacts of climate variability and change on forest fires. Climate change can alter factors that influence the occurrence of fire ignitions, fuel availability and fuel flammability. This review paper aims to identify tools and methods used for gathering information about the impacts of climate variability and change on forest fires, forest fuels and the probability of fires. Tools to assess the impacts of climate variability and change on forest fires include: remote sensing, dynamic global vegetation and landscape models, integrated fire-vegetation models, fire danger rating systems, empirical models and fire behavior models. This review outlines each tool in terms of its characteristics, spatial and temporal resolution, limitations and applicability of the results. To enhance and improve tool performance, each must be continuously tested in all types of forest ecosystems.

  19. Current climate change effects on the ground thermal regime in Central Yakutia

    Institute of Scientific and Technical Information of China (English)

    Stepan Varlamov; Yuri Skachkov; Pavel Skryabin

    2014-01-01

    The-evolution-of-ground-thermal-state-has-been-studied-to-assess-impacts-of-current-climatic-warming-on-permafrost-in-Central-Yakutia.-The-analysis-of-long-term-data-of-regional-weather-stations-has-revealed-one-of-the-highest-increasing-trends-in-mean-annual-air-temperature-in-northern-Russia.-A-forecast-of-surface-air-temperature-fluctuations-has-been-made-by-applying-a-frequency-analysis-method.-Monitoring-of-ground-thermal-conditions-allows-us-to-identify-inter-annual-and-long-term-variability-among-a-wide-range-of-natural-conditions.-Experimental-research-has-indicated-a-long-term-dynamics-of-ground-thermal-state-evolution:-ground-temperatures-at-the-depth-of-zero-annual-amplitude-and-seasonally-thawed-layer-depth.-Long-term-variability-of-thaw-depth-shows-near-zero-to-weak-positive-trends-in-small-valleys-in-contrast-to-weak-negative-trends-on-slopes.-With-significant-climatic-warming,-the-thermal-state-of-near-surface-layers-of-permafrost-demonstrates-steadiness.-Anthropogenic-impacts-on-ground-thermal-regime-in-various-terrain-types-have-been-qualitatively-evaluated.-Clear-cutting,-ground-cover-stripping,-and-post-fire-deforestation-in-inter-alas-type-terrains-result-in-a-significant-increase-of-temperature-and-seasonal-ground-thaw-depth,-as-well-as-adverse-cryogenic-processes.-The-dynamics-of-mean-annual-ground-temperature-in-slash-and-burn-sites-have-been-evaluated-in-reference-to-stages-of-successive-vegetation-recovery.

  20. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    Science.gov (United States)

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  1. Forest legacies, climate change, altered disturbance regimes, invasive species and water

    Science.gov (United States)

    Stohlgren, T.; Jarnevich, C.; Kumar, S.

    2007-01-01

    The factors that must be considered in seeking to predict changes in water availability has been examined. These factors are the following: forest legacies including logging, mining, agriculture, grazing, elimination of large carnivores, human-caused wildfire, and pollution; climate change and stream flow; altered disturbances such as frequency intensity and pattern of wildfires and insect outbreaks as well as flood control; lastly, invasive species like forest pests and pathogens. An integrated approach quantifying the current and past condition trends can be combined with spatial and temporal modeling to develop future change in forest structures and water supply. The key is a combination of geographic information system technologies with climate and land use scenarios, while preventing and minimizing the effects of harmful invasive species.

  2. VEGETATION MEDIATED THE IMPACTS OF POSTGLACIAL CLIMATIC CHANGE ON FIRE REGIMES IN THE SOUTHCENTRAL BROOKS RANGE, ALASKA

    Energy Technology Data Exchange (ETDEWEB)

    Higuera, P E; Brubaker, L B; Anderson, P M; Hu, F S; Brown, T A

    2008-10-28

    We examine direct and indirect impacts of millennial-scale climatic change on fire regimes in the southcentral Brooks Range, Alaska, using four lake-sediment records and existing paleoclimate interpretations. New techniques are introduced to identify charcoal peaks semi-objectively and detect statistical differences in fire regimes. Peaks in charcoal accumulation rates (CHARs) provide estimates of fire return intervals (FRIs) which are compared between vegetation zones described by fossil pollen and stomata. Climatic warming from ca 15-9 ka BP (calendar years before CE 1950) coincides with shifts in vegetation from herb tundra to shrub tundra to deciduous woodlands, all novel species assemblages relative to modern vegetation. Two sites cover this period and show increased CHARs and decreased FRIs with the transition from herb to shrub tundra ca 13.3-14.3 ka BP. Short FRIs in the Betula-dominated shrub tundra (mean [m] FRI 144 yr; 95% CI 119-170) primarily reflect the effects of flammable, continuous fuels on the fire regime. FRIs increased significantly with the transition to Populus-dominated deciduous woodlands ca 10.5 ka BP (mFRI 251 yr [158-352]), despite evidence of warmer- and drier-than-present summers. We attribute reduced fire activity under these conditions to low flammability of deciduous fuels. Three sites record the mid to late Holocene, when cooler and moister conditions allowed Picea glauca forest-tundra and P. mariana boreal forests to establish ca 8 and 5.5 ka BP. Forest-tundra FRIs did not differ significantly from the previous period (mFRIs range from 131-238 yr), but FRIs decreased with the transition to boreal forest (mFRI 145 yr [129-163]). Overall, fire-regime shifts in the study area showed greater correspondence with vegetation characteristics than with inferred climate, and we conclude that vegetation mediated the impacts of millennial-scale climatic change on fire regimes by modifying landscape flammability. Our findings emphasize the

  3. CLIMATE AND LULC CHANGE SCENARIOS TO STUDY ITS IMPACT ON HYDROLOGICAL REGIME

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2012-07-01

    Full Text Available Climate change, whether as a natural cycle variability and/or due to anthropogenic reasons, is affecting and likely to further affect the water resources, which is a vital necessity for existence of life form. The predicted intensification of hydrological cycle would change all of its constituents both in time and space domain. This is a long term phenomenon and the necessity is to understand the intensity of the effects on various aspects of water resources by way of scientific studies backed by the available field data. Therefore, in the present study, the impact of climate and land use land cover change on entire India under different assumed plausible hypothetical scenarios has been studied. These scenarios were developed by increasing; temperature by 1, 2 and 30C; rainfall by 5, 10 and 15%; and then the combination of both. To carry out this analysis, variable infiltration capacity (VIC semi-distributed macroscale hydrological model has been investigated. It was found that slight change in climate may pose huge difference on hydrological cycle and its component.

  4. A study of climate change impacts on hydrologic regime of the Vogršček accumulation (SW Slovenia

    Directory of Open Access Journals (Sweden)

    Branka Trček

    2005-12-01

    Full Text Available Climate change impacts on hydrologic regime of the Vogršček accumulation (Vipava valley were studied for a decade period 1995-2004. During this time water capture from the accumulation has been increased. Although a pumping did not influence the accumulationlevel a lot, it oscillated much different during single halves of the decade. The results indicated that this could result from a decrease of effective precipitation amounts, which recharge the accumulation, from changes of their distribution, as well as from an increasedfrequency of extreme dry periods and extreme precipitation events during the second decade half.

  5. Redefining thermal regimes to design reserves for coral reefs in the face of climate change.

    Directory of Open Access Journals (Sweden)

    Iliana Chollett

    Full Text Available Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1 recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2 using the best proxy for acclimatization currently available; (3 including information from several bleaching events, which frequency is likely to increase in the future; (4 assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress.

  6. Redefining thermal regimes to design reserves for coral reefs in the face of climate change.

    Science.gov (United States)

    Chollett, Iliana; Enríquez, Susana; Mumby, Peter J

    2014-01-01

    Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1) recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2) using the best proxy for acclimatization currently available; (3) including information from several bleaching events, which frequency is likely to increase in the future; (4) assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress.

  7. Great Lakes' regional climate regimes

    Science.gov (United States)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  8. Should flood regimes change in a warming climate? The role of antecedent moisture conditions

    Science.gov (United States)

    Woldemeskel, Fitsum; Sharma, Ashish

    2016-07-01

    Assessing changes to flooding is important for designing new and redesigning existing infrastructure to withstand future climates. While there is speculation that floods are likely to intensify in the future, this question is often difficult to assess due to inadequate records on streamflow extremes. An alternate way of determining possible extreme flooding is through assessment of the two key factors that lead to the intensification of floods: the intensification of causative rainfall and changes in the wetness conditions prior to rainfall. This study assesses global changes in the antecedent wetness prior to extreme rainfall. Our results indicate a significant increase in the antecedent moisture in Australia and Africa over the last century; however, there was also a decrease in Eurasia and insignificant change in North America. Given the nature of changes found in this study, any future flood assessment for global warming conditions should take into account antecedent moisture conditions.

  9. Detailed predictions of climate induced changes in the thermal and flow regimes in mountain streams of the Iberian Peninsula

    Science.gov (United States)

    Santiago, José M.; Muñoz-Mas, Rafael; García de Jalón, Diego; Solana, Joaquín; Alonso, Carlos; Martínez-Capel, Francisco; Ribalaygua, Jaime; Pórtoles, Javier; Monjo, Robert

    2016-04-01

    Streamflow and temperature regimes are well-known to influence on the availability of suitable physical habitat for instream biological communities. General Circulation Models (GCMs) have predicted significant changes in timing and geographic distribution of precipitation and atmospheric temperature for the ongoing century. However, differences in these predictions may arise when focusing on different spatial and temporal scales. Therefore, to perform substantiated mitigation and management actions detailed scales are necessary to adequately forecast the consequent thermal and flow regimes. Regional predictions are relatively abundant but detailed ones, both spatially and temporally, are still scarce. The present study aimed at predicting the effects of climate change on the thermal and flow regime in the Iberian Peninsula, refining the resolution of previous studies. For this purpose, the study encompassed 28 sites at eight different mountain rivers and streams in the central part of the Iberian Peninsula (Spain). The daily flow was modelled using different daily, monthly and quarterly lags of the historical precipitation and temperature time series. These precipitation-runoff models were developed by means of M5 model trees. On the other hand water temperature was modelled at similar time scale by means of nonlinear regression from dedicated site-specific data. The developed models were used to simulate the temperature and flow regime under two Representative Concentration Pathway (RCPs) climate change scenarios (RCP 4.5 and RCP 8.5) until the end of the present century by considering nine different GCMs, which were pertinently downscaled. The precipitation-runoff models achieved high accuracy (NSE>0.7), especially in regards of the low flows of the historical series. Results concomitantly forecasted flow reductions between 7 and 17 % (RCP4.5) and between 8 and 49% (RCP8.5) of the annual average in the most cases, being variable the magnitude and timing at each

  10. Climate-physics-chemistry-biology: connected changes in the Black Sea regimes.

    Science.gov (United States)

    Pakhomova, Svetlana; Silkin, Vladimir; Podymov, Oleg; Chasovnikov, Valery

    2016-04-01

    /P ratio, 16 diatoms dominate in the system. The years 2006 and 2012, years with coldest winters and intensive vertical mixing, were characterized by a very high concentration of phosphorus and a low N/P ratio during most of the year, especially in 2012. This followed by massive boom of coccolithophores during these years. Years 2007 and 2008 showed an opposite situation - a low phosphorus concentration, high N/P ratio and diatoms as dominant species only. Thereby during the last decade in the NE Black Sea the main forcing is climate that determines the hydrophysical regime, vertical mixing, that affected the hydrochemical regime, the supply of nutrients to the surface layer, that controls the hydrobiological regime, the structure of phytoplankton community.

  11. Impacts of a changing climate on a century of extreme flood regime of northwest Australia

    Directory of Open Access Journals (Sweden)

    A. Rouillard

    2014-10-01

    to be most significant. Here, we sought to identify the main hydroclimatic determinants of the strongly episodic flood regime of a large catchment in the semi-arid, subtropical northwest of Australia and to establish the background of hydrologic variability for the region over the last century. We used a monthly sequence of satellite images to quantify surface water expression on the Fortescue Marsh, the largest water feature of inland northwest Australia, from 1988 to 2012. We used this sequence together with instrumental rainfall data to build a multiple linear model and reconstruct monthly history of floods and droughts since 1912. We found that severe and intense regional rainfall events, as well as the sequence of recharge events both within and between years, determine surface water expression on the floodplain (i.e., total rainfall, number of rain days and carried-over inundated area; R2adj = 0.79; p value ERMSP = 56 km2. The most severe inundation (~1000 km2 over the last century was recorded in 2000. The Fortescue Marsh was completely dry for 32% of all years, for periods of up to four consecutive years. Extremely wet years (seven of the 100 years caused the Marsh to remain inundated for up to 12 months; only 25% of years (9% of all months had floods of greater than 300 km2. Duration, severity and frequency of inundations between 1999 and 2006 were above average and unprecedented when compared to the last century. While there is high inter-annual variability in the system, changes to the flooding regime over the last 20 years suggest that the wetland will become more persistent in response to increased frequency and intensity of extreme rainfall events for the region, which in turn will likely impact on the structure and functioning of this highly specialized ecosystem.

  12. Summary report for Tetlin National Wildlife Refuge: Projected vegetation and fire regime response to future climate change in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project is part of a statewide model analysis of future vegetation and fire regimer esponse to projected future climate. This document provides a summary of...

  13. Modeling hydrological regimes of lakes under climate change conditions using heat-water balance method by Budyko

    Science.gov (United States)

    Lemeshko, Natalia; Eitzinger, Josef; Kubu, Gerhard

    2013-04-01

    Global climate change will lead to increasing air temperatures over the next decades and is expected at least to be 1-2°C above the pre-industrial values in near future. Close relationships between the physical processes in the atmosphere and the surface of the planet cause not only temperature changes, but also changes in other parameters of the climate system including hydrosphere. In this context the investigations of a possible change in moisture regime with global warming are very important for assessment of the future changes in the hydrological cycle. A steady-state hydrological model has been developed for evaluation of the changes in climate and hydrological parameters with the progress of global warming. This model is based on the heat-water balance method by M. Budyko and paleoclimatic scenarios. The Budyko's heat-water balance method is based on the combined solution of energy and water balance equations, as well as two empirical dependences: the evaporation rate on soil water content and the surface runoff on precipitation and soil moisture. This method is a universal one as it was developed using empirical data of different climates, including specific humid and arid ones. The method allows to calculate the mean monthly values of evaporation, runoff and water content of the active soil layer (1 m) using data on mean monthly values of surface air temperature, air humidity, precipitation, cloudiness, surface albedo and solar radiation, both for the actual climatic conditions, and for climatic conditions different from the present ones. Some additional assumptions have been made to adapt the method for scenarios of climate change. The paleoclimate scenarios are considered to a certain extent as analogs of future climates. The scenarios used consist of regional deviation from actual climate of annual precipitation, winter and summer air temperatures for Holocene optimum (6-5 KA B.P.) and Last Interglacial (about 125 KA B.P.), which correspond to global

  14. Emission Certificate Trade and Costs under Regional Burden-Sharing Regimes for a 2˚C Climate Change Control Target

    NARCIS (Netherlands)

    T. Kober; B.C.C. van der Zwaan; H. Rösler

    2014-01-01

    In this article we explore regional burden-sharing regimes for the allocation of greenhouse gas emission reduction obligations needed to reach a 2°C long-term global climate change control target by performing an integrated energy-economy-climate assessment with the bottom-up TIAM-ECN model. Our mai

  15. Bringing the material back in: US responses to the global climate change regime

    International Nuclear Information System (INIS)

    Since environmental sociology was born as a sub-discipline of sociology, its proponents have encouraged sociological research that incorporates environmental factors. After a quarter of a century, however, sociological research continues to overlook the role of environmental factors - even when the object of the research is to understand an environmental issue. This paper analyzes the role of environmental factors to understand the ways that natural resource interests have been translated into political outcome in the form of American responses to the potential regulation of greenhouse gases. Incorporating data about natural resource use and national decision-making both before and after the Bush Administration's decision to pull out of negotiations for the Kyoto Protocol, this paper concludes that comprehending fully political decisions about global climate change in the United States requires that we recognize the conjoint constitution between policy-making and the environmental factors that are affected by such policies. More broadly, this research supports the notion that, in order to understand social phenomena more fully, sociologists must recommit to bringing environmental factors into social research. (author)

  16. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    Science.gov (United States)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    Among the major challenges in anticipating Arctic changes are “surprises” stemming from changes in system components that have remained relatively stable in the historic record. Tundra burning is potentially one such component. We conducted charcoal analysis of lake sediments from several tundra regions to evaluate the uniqueness of recent tundra fires, and examined potential climatic controls of Alaskan tundra fires from CE 1950-2009. A striking example of tundra burning is the 2007 Anaktuvuk River (AR) Fire, an unusually large fire in the tundra of the Alaskan Arctic. This fire doubled the area burned north of 68 oN in that region since record keeping began in 1950. Analysis of lake-sediment cores reveals peak values of charcoal accumulation corresponding to the AR Fire in 2007, with no evidence of other fire events in that area throughout the past five millennia. However, a number of tundra fires, including one as large as the AR Fire, have occurred over the past 60 years in western Alaska, where average summer temperatures are substantially higher than the AR area. In addition, charcoal analysis of lake sediments from interior and northwestern Alaska suggests that during certain periods of the Late Glacial and Holocene, tundra fire frequencies were as high as those of the modern boreal forests. These records along with the AR and historic fires demonstrate that tundra ecosystems support diverse fire regimes and can burn frequently. Reconciling these dramatic differences in tundra fire regimes requires knowledge of climate-fire relationships. Atmospheric reanalysis suggests that the AR Fire was favored by exceptionally warm/dry weather conditions in summer and early autumn. Boosted regression tree modeling shows that warm, dry summer conditions can explain up to 95% of the inter-annual variability in tundra area burned throughout Alaska over the past 60 years and that the response of tundra burning to climatic warming is non-linear. Additionally, tundra area

  17. Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Black, Robert X.

    2014-11-24

    The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) Pacific–North American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the eastern US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is that CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also

  18. Quantification of Multiple Climate Change and Human Activity Impact Factors on Flood Regimes in the Pearl River Delta of China

    Directory of Open Access Journals (Sweden)

    Yihan Tang

    2016-01-01

    Full Text Available Coastal flood regimes have been irreversibly altered by both climate change and human activities. This paper aims to quantify the impacts of multiple factors on delta flood. The Pearl River Delta (PRD, with dense river network and population, is one of the most developed coastal areas in China. The recorded extreme water level (m.s.l. in flood season has been heavily interfered with by varied income flood flow, sea-level rise, and dredged riverbeds. A methodology, composed of a numerical model and the index R, has been developed to quantify the impacts of these driving factors in the the PRD. Results show that the flood level varied 4.29%–53.49% from the change of fluvial discharge, 3.35%–38.73% from riverbed dredging, and 0.12%–16.81% from sea-level rise. The variation of flood flow apparently takes the most effect and sea-level rise the least. In particular, dense river network intensifies the impact of income flood change and sea-level rise. Findings from this study help understand the causes of the the PRD flood regimes and provide theoretical support for flood protection in the delta region.

  19. THE VARIABILITY OF RAINFALL REGIME, INDUCED BY CLIMATE CHANGES, IN DOLJ COUNTY AND IT IMPACT ON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    MIREA ADRIAN

    2016-03-01

    Full Text Available Climate change is now widely recognized as an actual fact: temperatures are rising, rainfall patterns are changing, glaciers and snow melts, and average global sea level rises. We expect these changes to continue and extreme weather conditions that lead to risks like floods and droughts to become more frequent and increase their intensity. Drought and phenomena associated with it, namely aridization (lowering excessive groundwater level and desertification (reduced area of ground covered by vegetation and a considerable depletion and soil erosion represents, after pollution, the second largest problem facing humanity, currently affecting all regions of the globe. In Dolj County, the area between Calafat-Poiana Mare-Sadova-Bechet- Dăbuleni and the Danube, covering about 104 600 hectares, represents the most typical aspect of semi-arid zone with accents of aridity and even desertification in Romania, the phenomenon being favored by the presence of sandy soils. In Dolj County, there may be seen an important manifestation of climate change on the rainfall regime: increasing linear trend especially in the northern part of the county compared to the extreme south of the country, where atmospheric circulation interaction with local relief conditions,often causes diminishing rainfall.

  20. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  1. Impact of climate change on soil thermal and moisture regimes in Serbia: An analysis with data from regional climate simulations under SRES-A1B.

    Science.gov (United States)

    Mihailović, D T; Drešković, N; Arsenić, I; Ćirić, V; Djurdjević, V; Mimić, G; Pap, I; Balaž, I

    2016-11-15

    We considered temporal and spatial variations to the thermal and moisture regimes of the most common RSGs (Reference Soil Groups) in Serbia under the A1B scenario for the 2021-2050 and 2071-2100 periods, with respect to the 1961-1990 period. We utilized dynamically downscaled global climate simulations from the ECHAM5 model using the coupled regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model). We analysed the soil temperature and moisture time series using simple statistics and a Kolmogorov complexity (KC) analysis. The corresponding metrics were calculated for 150 sites. In the future, warmer and drier regimes can be expected for all RSGs in Serbia. The calculated soil temperature and moisture variations include increases in the mean annual soil temperature (up to 3.8°C) and decreases in the mean annual soil moisture (up to 11.3%). Based on the KC values, the soils in Serbia are classified with respect to climate change impacts as (1) less sensitive (Vertisols, Umbrisols and Dystric Cambisols) or (2) more sensitive (Chernozems, Eutric Cambisols and Planosols).

  2. Impact of climate change on soil thermal and moisture regimes in Serbia: An analysis with data from regional climate simulations under SRES-A1B.

    Science.gov (United States)

    Mihailović, D T; Drešković, N; Arsenić, I; Ćirić, V; Djurdjević, V; Mimić, G; Pap, I; Balaž, I

    2016-11-15

    We considered temporal and spatial variations to the thermal and moisture regimes of the most common RSGs (Reference Soil Groups) in Serbia under the A1B scenario for the 2021-2050 and 2071-2100 periods, with respect to the 1961-1990 period. We utilized dynamically downscaled global climate simulations from the ECHAM5 model using the coupled regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model). We analysed the soil temperature and moisture time series using simple statistics and a Kolmogorov complexity (KC) analysis. The corresponding metrics were calculated for 150 sites. In the future, warmer and drier regimes can be expected for all RSGs in Serbia. The calculated soil temperature and moisture variations include increases in the mean annual soil temperature (up to 3.8°C) and decreases in the mean annual soil moisture (up to 11.3%). Based on the KC values, the soils in Serbia are classified with respect to climate change impacts as (1) less sensitive (Vertisols, Umbrisols and Dystric Cambisols) or (2) more sensitive (Chernozems, Eutric Cambisols and Planosols). PMID:27473773

  3. Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change

    Science.gov (United States)

    Ruelland, D.; Ardoin-Bardin, S.; Collet, L.; Roucou, P.

    2012-03-01

    SummaryThis paper assesses the future variability of water resources in the short, medium and long terms over a large Sudano-Sahelian catchment in West Africa. Flow simulations were performed with a daily conceptual model. A period of nearly 50 years (1952-2000) was chosen to capture long-term hydro-climatic variability. Calibration and validation were performed on the basis of a multi-objective function that aggregates a variety of goodness-of-fit indices. The climate models HadCM3 and MPI-M under SRES-A2 were used to provide future climate scenarios over the catchment. Outputs from these models were used to generate daily rainfall and temperature series for the 21st century according to: (i) the unbias and delta methods application and (ii) spatial and temporal downscaling. A temperature-based formula was used to calculate present and future potential evapotranspiration (PET). The daily rainfall and PET series were introduced into the calibrated and validated hydrological model to simulate future discharge. The model correctly reproduces the observed discharge at the basin outlet. The Nash-Sutcliffe efficiency criterion is over 89% for both calibration and validation periods, and the volume error between simulation and observation is close to null for the overall considered period. With regard to future climate, the results show clear trends of reduced rainfall over the catchment. This rainfall deficit, together with a continuing increase in potential evapotranspiration, suggests that runoff from the basin could be substantially reduced, especially in the long term (60-65%), compared to the 1961-1990 reference period. As a result, the long-term hydrological simulations show that the catchment discharge could decrease to the same levels as those observed during the severe drought of the 1980s.

  4. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  5. Changes in the rainfall-streamflow regimes related to climate change in a small catchment in Northern Italy

    Science.gov (United States)

    Pieri, Linda; Rondini, Davide; Ventura, Francesca

    2016-05-01

    Climate change has become an important issue for scientific community, for its numerous impacts, especially on agriculture and environment. To shed light on this phenomenon, long data-sets of meteorological data as well as temperature and rainfall extreme events are needed, since they are important climate variability indicators. In a small semi-agricultural catchment of the Italian Apennines, drained by the Centonara Stream, weather data have been monitored for 30 years (1986-2015). Here, their trend was identified with Mann-Kendall test, and the temperature and precipitation extremes were characterized by means of specific indices. Data were analyzed at event, daily, seasonal, and annual bases. In addition, to understand implications of rainfall patterns on catchment hydrological response, a total of 388 rainfall-streamflow events (recorded during 1994-2009) were analyzed. Results showed a significant increase of temperature (minimum (Tn), mean (Tm), and maximum (Tx)), both at annual and seasonal base, except for Winter, with an annual mean increase of 0.08, 0.09, and 0.13 °C year-1 for Tn, Tm, and Tx, respectively. Annual rainfall data showed a positive trend for the number of wet days, but not in the quantity. In Winter, the rainfall amount and the number of wet days increased. The annual number of rainfall extreme events (P > 20.2 mm and D > 18.3 h) significantly increased, especially in spring and autumn. The rainfall-streamflow relationship suggested that the flow response of the Centonara Stream depends mainly on the rainfall amount. So, since the number of extreme events (P > 20.2 mm) is increasing in spring and autumn, an increase of events with high streamflow in these seasons may occur.

  6. Using ethnographic, landscape history and climate data to identify smallholder adaptation strategies to tidal regime changes in the Amazon Estuary

    Science.gov (United States)

    Vogt, N. D.; Fernandes, K. D.; Pinedo-Vasquez, M.

    2013-12-01

    Although climate change is predicted to negatively impact production of smallholder farmers in tropical estuaries, how changes in the local climate will impact tidal dynamics specifically relevant to the Amazon River estuarine populations is not clear. We argue that using ethnographic and landscape history data can improve the linkages between climate studies and changes in tidal patterns relevant to local populations. Survey data collected from local elders describe spatial and temporal variations in the local hydro-climatic conditions over recent decades and how farmers are adapting their resource-use patterns to these changes. We also analyze how they adapt resource-use system to unpredictable events. The ethnographic and landscape history information are then used to guide climate studies by identifying how to aggregate climate and tidal data to seasons of production relevant to the study population. Climate studies often aggregate data into astronomical seasons not taking into account local production calendars, which may mask long term trends or patterns of extreme events underway that affect local production. The climate deviations are then correlated to large-scale forcings, such as the El Niño Southern Oscillation (ENSO), to verify whether seasonal climate forecast can be used to predict events to which local populations are most vulnerable. We have applied this approach to identify and analyze extremes changes in the local climate regimens in the Amazon Estuary in both north and south channels using over 40 years of river heightand precipitation data. We present the most significant changes underway, climate drivers of them, and discuss how smallholder farmers are able to adapt to the challenges and opportunities produced by ongoing changes in the local hydro-climatic patterns.

  7. Accommodating human values in the climate regime

    NARCIS (Netherlands)

    Cook, Rosalind; Tauschinsky, Eljalill

    2008-01-01

    The climate regime addresses one of the most important challenges facing humankind today. However, while the environmental and economic sides of the problem are well represented, it lacks the inclusion of social and human aspects. The human rights regime, in contrast, is a regime which has been esta

  8. The mountain pine beetle in western North America: Management challenges in an era of altered disturbance regimes and changing climate

    International Nuclear Information System (INIS)

    .3 times as much susceptible pine in BC in 1990 compared to 1910. In addition to an abundance of suitable hosts, climatic conditions have steadily improved for MPB populations in recent years. Historically, the extent and severity of epidemics have been limited by insufficient summer temperature accumulation and/or minimum winter temperatures below a critical mortality threshold. By comparing the annual occurrence of infestations against maps of the historic distribution of climatically suitable habitats derived from a model of climatic suitability for MPB and past weather records, it has been shown that during the past three decades relevant climatic conditions have improved over large portions of BC. More importantly, as a consequence of changing climate, populations have expanded into formerly climatically unsuitable habitats, especially toward higher elevations and more were climatically unavailable despite the presence of susceptible host trees. Knowledge of the basic population processes associated with MPB is essential for effective management. Where conditions have changed allowing reproduction to outweigh mortality, populations will erupt unless a sufficient amount of additional mortality is introduced. Given that beetles spend the vast majority of their life cycle beneath the bark of trees, the only existing means of adding mortality involves destroying or processing infested trees before beetles can complete their life cycle and fly to new hosts. The relevance of this tactic, however, is dependent upon the size of the beetle population and its potential rate of increase. Once mountain pine beetle populations escape the endemic phase, the rate of increase (R) at the landscape level has historically been between 2- and 8-fold yearly. To maintain a static population, a proportion in each year equivalent to 1-1/R must be removed (i.e. 50 to 87.5% of infested trees). Thus, when populations are scattered and confined to individual stands they are amenable to direct

  9. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  10. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  11. Potential evolution of the Seine River flood regime under climate change; Evolution potentielle du regime des crues de la Seine sous changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Ducharne, A.; Habets, F.; Gascoin, S.; Oudin, L. [UMR Sisyphe, UMR 7619 CNRS/UPMC, 75 - Paris (France); Sauquet, E. [Cemagref, UR Hydrologie-Hydraulique, 69 - Lyon (France); Hachour, A.; Viennot, P. [Centre de Geosciences, MINES ParisTech, 77 - Fontainebleau (France); Deque, M.; Martin, E. [CNRM, Meteo-France, 31 - Toulouse (France); Page, Ch.; Terray, L. [CERFACS, Sciences de l' Univers, URA 1875 CERFACS/CNRS, 31 - Toulouse (France); Thiery, D. [BRGM, Service Eau, 45 - Orleans (France)

    2011-02-15

    We regionalized 12 different scenarios of anthropogenic climate change in the Seine River basin, which were used as input to 5 different hydrological models. The resulting hydrological scenarios all agree on a marked depletion of the water resources during the 21. century, with an annual mean decrease in both water table level and river discharge. At the seasonal scale, the reduction of river flow is more marked on low than on high flows, the decrease of which is also less robust. The response of extreme flows is even more contrasted, and the QJXA10 high-flow quantile (annual daily maximum with an average return period of 10 years) would not change significantly during the 21. century. Our results also suggest that the 100-year flood, extrapolated using the Gradex method, would remain of the same order of magnitude as today. (authors)

  12. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  13. The impacts of climate change and environmental management policies on the trophic regimes in the Mediterranean Sea: Scenario analyses

    Science.gov (United States)

    Lazzari, P.; Mattia, G.; Solidoro, C.; Salon, S.; Crise, A.; Zavatarelli, M.; Oddo, P.; Vichi, M.

    2014-07-01

    The impacts of climate change and environmental management policies on the Mediterranean Sea were analyzed in multi-annual simulations of carbon cycling in a planktonic ecosystem model. The modeling system is based on a high-resolution coupled physical-biogeochemical ocean model that is off-line and forced by medium-resolution global climate simulations and by estimates of continental and river inputs of freshwater and nutrients. The simulations span the periods 1990-2000 and 2090-2100, assuming the IPCC SRES A1B scenario of climatic change at the end of the century. The effects of three different options on land use, mediated through rivers, are also considered. All scenarios indicate that the increase in temperature fuels an increase in metabolic rates. The gross primary production increases approximately 5% over the present-day figures, but the changes in productivity rates are compensated by augmented community respiration rates, so the net community production is stable with respect to present-day figures. The 21st century simulations are characterized by a reduction in the system biomass and by an enhanced accumulation of semi-labile dissolved organic matter. The largest changes in organic carbon production occur close to rivers, where the influence of changes in future nutrient is higher.

  14. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  15. Ecological Regime Shifts in Lake Kälksjön, Sweden, in Response to Abrupt Climate Change Around the 8.2 ka Cooling Event

    DEFF Research Database (Denmark)

    Randsalu-Wendrup, L.; Conley, D.J.; Snowball, I.;

    2012-01-01

    periphytic to planktonic diatom dominance over a 250-year period and a gradual diversification of the periphytic community that spanned c. 150 years. Rapid climate warming following the 8.2 ka event likely caused these changes and both regime shifts are examples of externally driven abrupt ecological change......A detailed diatom record from Lake Ka¨ lksjo¨ n, westcentral Sweden, reveals two periods of abrupt ecological change correlative with the 8.2 ka cooling event. Using a combination of abrupt step changes and piece-wise linear regressions, the diatom data were analyzed for change points over time...... increase in nutrient supply to the lake. The second event was characterized by a substantial shift within the planktonic diatom community from taxa indicative of colder conditions to those indicating warm over 5–10 years at c. 7850 cal. y BP. This event was superimposed on a successive change from...

  16. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management

    Science.gov (United States)

    Whitlock, C.; Shafer, S.L.; Marlon, J.

    2003-01-01

    Fire is an important part of the disturbance regimes of northwestern US forests and its role in maintaining and altering forest vegetation is evident in the paleoecological record of the region. Long-term reconstructions of Holocene fire regimes, provided by the analysis of charcoal, pollen, and other fire proxies in a network of lake records, indicate that the Pacific Northwest and summer-dry regions of the northern Rocky Mountains experienced their highest fire activity in the early Holocene (11,000-7000 years ago) and during the Medieval Warm Period (ca. 1000 years ago) when drought conditions were more severe than today. In contrast, in summer-wet areas of the northern Rocky Mountains, the period of highest fire activity was registered in the last 7000 years when dry woodland vegetation developed. When synthesized across the entire northwestern US, the paleoecological record reveals that past and present fire regimes are strongly controlled by climate changes occurring on multiple time scales. The scarcity of fires in the 20th century in some northwestern US ecosystems may be the result of successful fire suppression policies, but in wetter forests this absence is consistent with long-term fire regime patterns. In addition, simulations of potential future climate and vegetation indicate that future fire conditions in some parts of the northwestern US could be more severe than they are today. The Holocene record of periods of intensified summer drought is used to assess the nature of future fire-climate-vegetation linkages in the region. ?? 2003 Elsevier Science B.V. All rights reserved.

  17. Landscape response to climate change: quantifying a regime shift in transport processes at the onset of re-organization

    Science.gov (United States)

    Singh, Arvind; Tejedor, Alejandro; Densmore, Alexander; Foufoula-Georgiou, Efi

    2016-04-01

    Quantifying the ways in which landscapes are reorganized under changing allogenic forcing, including changes in the patterns, rates, and processes of erosion and deposition, is still an open question. Data at the time scales and resolutions required to undertake such a question are typically not available for real landscapes, making physical experiments attractive and powerful means for studying the dynamics of landscape evolution. To this aim, we capitalize on a series of controlled laboratory experiments conducted at the St. Anthony Falls laboratory at the University of Minnesota. The eXperimental Landscape Evolution (XLE) facility consists of an erosion box (0.5 x 0.5 x 0.3 m3) wherein two main variables can be controlled: uplift rate and rainfall intensity. Topographic data were collected at a temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (under constant uplift and precipitation rate), and during the transient state following an increase in the precipitation rate by a factor of 5. In order to quantify the changes observed during the onset of reorganization in the transient state, we perform a connectivity and clustering analysis of the erosional and depositional events, showing strikingly different spatial patterns on landscape evolution under steady-state (SS) and transient-state (TS) conditions, even when the time under SS is renormalized to match the total volume of eroded and deposited sediment in TS. Our results suggest a regime shift in the behavior of transport processes within the fluvial regime of the landscape, from supply-limited to transport-limited, during the onset of the TS. Results on the evolution of the spatial patterns of erosional and depositional events when the time advances within the TS are also discussed.

  18. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  19. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  20. Climate Change

    OpenAIRE

    The IJOEM

    2010-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathways could stabilise the global average atmospheric concentration of greenhouse gases (GHG) at 450 ppm, the level which has a 50% chance of keeping the temperature rise to 2 oC? What policies are nee...

  1. Using Clustering to Establish Climate Regimes from PCM Output

    Science.gov (United States)

    Oglesby, Robert; Arnold, James E. (Technical Monitor); Hoffman, Forrest; Hargrove, W. W.; Erickson, D.

    2002-01-01

    A multivariate statistical clustering technique--based on the k-means algorithm of Hartigan has been used to extract patterns of climatological significance from 200 years of general circulation model (GCM) output. Originally developed and implemented on a Beowulf-style parallel computer constructed by Hoffman and Hargrove from surplus commodity desktop PCs, the high performance parallel clustering algorithm was previously applied to the derivation of ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the conterminous U.S. at a resolution of 1 sq km. Now applied both across space and through time, the clustering technique yields temporally-varying climate regimes predicted by transient runs of the Parallel Climate Model (PCM). Using a business-as-usual (BAU) scenario and clustering four fields of significance to the global water cycle (surface temperature, precipitation, soil moisture, and snow depth) from 1871 through 2098, the authors' analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The patterns of cluster changes have been analyzed to understand the predicted variability in the water cycle on global and continental scales. In addition, representative climate regimes were determined by taking three 10-year averages of the fields 100 years apart for northern hemisphere winter (December, January, and February) and summer (June, July, and August). The result is global maps of typical seasonal climate regimes for 100 years in the past, for the present, and for 100 years into the future. Using three-dimensional data or phase space representations of these climate regimes (i.e., the cluster centroids), the authors demonstrate the portion of this phase space occupied by the land surface at all points in space and time

  2. Using Clustering to Establish Climate Regimes from PCM Output

    Science.gov (United States)

    Hoffman, F.; Oglesby, R.; Hargrove, W. W.; Erickson, D.

    2002-12-01

    A multivariate statistical clustering technique--based on the k-means algorithm of Hartigan--has been used to extract patterns of climatological significance from 200 years of general circulation model (GCM) output. Originally developed and implemented on a Beowulf-style parallel computer constructed by Hoffman and Hargrove from surplus commodity desktop PCs, the high performance parallel clustering algorithm was previously applied to the derivation of ecoregions from map stacks of 9 and 25 geophysical conditions or variables for the conterminous U.S. at a resolution of 1 sq km. Now applied both across space and through time, the clustering technique yields temporally-varying climate regimes predicted by transient runs of the Parallel Climate Model (PCM). Using a business-as-usual (BAU) scenario and clustering four fields of significance to the global water cycle (surface temperature, precipitation, soil moisture, and snow depth) from 1871 through 2098, the authors' analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The patterns of cluster changes have been analyzed to understand the predicted variability in the water cycle on global and continental scales. In addition, representative climate regimes were determined by taking three 10-year averages of the fields 100 years apart for northern hemisphere winter (December, January, and February) and summer (June, July, and August). The result is global maps of typical seasonal climate regimes for 100 years in the past, for the present, and for 100 years into the future. Using three-dimensional data or phase space representations of these climate regimes (i.e., the cluster centroids), the authors demonstrate the portion of this phase space occupied by the land surface at all points in space and

  3. Substituting HCFC-22 for HFC-410A: an environmental impact trade-off between the ozone depletion and climate change regimes

    Science.gov (United States)

    Wang, Z.; Fang, X.; Zhang, J.

    2015-12-01

    After the phase-out of hydrochlorofluorocarbons (HCFCs) as ozone-depleting substances pursuant to the requirements of the Montreal Protocol, hydrofluorocarbons (HFCs) are worldwide used as substitutes although the bulk of them are potent greenhouse gases (GHGs). Therefore, the alternation may bring side effect on global climate change. The trade-off of its environmental impacts between the ozone depletion and climate change regimes necessitates a quantification of the past and future consumption and emissions of both the original HCFCs and their alternative HFCs. Now a dilemma arise in China's RAC industry that HCFC-22, which has an ozone-depleting potential (ODP) of 0.055, has been replaced by HFC-410A, which is a blended potent GHG from respective 50% HFC-32 and HFC-125 with a global warming potential (GWP) of 1923.5. Here, we present our results of estimates of consumption and emissions of HCFC-22 and HFC-410A from 1994 to 2050. Historic emissions of HCFC-22 contributed to global total HCFCs by 4.0% (3.0%-5.6%) ODP-weighted. Projection under a baseline scenario shows future accumulative emissions of HFC-410A make up 5.9%-11.0% of global GWP-weighted HFCs emissions, and its annual contribution to national overall CO2 emissions can be 5.5% in 2050. This makes HCFC-22 and HFC-410A emissions of significant importance in ozone depletion and climate change regimes. Two mitigation scenarios were set to assess the mitigation performance under the North America Proposal and an accelerated schedule. In practice of international environmental agreement, "alternative to alternative" should be developed to avoid regrettable alternations.

  4. The international climate regime: towards consolidation collapse

    International Nuclear Information System (INIS)

    This article deals with the different modalities that exist to manage a problem of collective action in the field of climate negotiation. It uses two concepts of the International Political Economy (IPE): the concept of International Regime (IR) and the concept of Hegemony and / or Leadership. The course the international negotiation has taken between 1992 (Rio Convention) and march 2001 (the US rejection of the Kyoto Protocol of 1997) leads us, first, to question the conditions of existence as well as the viability of a non-hegemonic International Regime (Part One). Then, we discuss the perspectives for the 'post - Kyoto' era. After having examined the preferences of the three most active actors in the negotiation (USA, Europe, G77 + China) combined with the leadership capacities they possess, we identify three scenarios for the future: i) anarchy, ii) an international regime under the American hegemony, iii) an international regime under the European leadership (Part Two). (author)

  5. One Health, One World—The Intersecting Legal Regimes of Trade, Climate Change, Food Security, Humanitarian Crises, and Migration

    Directory of Open Access Journals (Sweden)

    Kelli K. Garcia

    2012-04-01

    Full Text Available Today’s global health challenges require a multi-sectoral approach in which health is a fundamental value within global governance and international law. “One Health, One World” provides a unified, harmonious vision of global health governance that supports the wellbeing of humans and animals living in a clean and temperate environment. This article focuses on five legal regimes—trade law, food security law, environmental law, humanitarian law, and refugee law—that play a pivotal role in influencing health outcomes and are integral to achieving the One Health, One World vision. International trade, for example, opens markets not only to life-saving products such as vaccines, medicines, and medical equipment, but also to life-threatening products such as tobacco and asbestos. If strengthened and enforced, environmental law can decrease air and water pollution, major causes of death and disability. World hunger has been exacerbated by the global economic crisis and climate change, increasing the urgency for international law to enhance food security. Humanitarian law must similarly be strengthened to protect civilians adequately as the nature of warfare continues to change. Refugee law plays a pivotal role in protecting the health of deeply vulnerable people who lack food, shelter, and social stability. Higher standards and more effective compliance are necessary for international law to realize its full potential to safeguard the world's population.

  6. A Review of the Detection Methods for Climate Regime Shifts

    Directory of Open Access Journals (Sweden)

    Qunqun Liu

    2016-01-01

    Full Text Available An abrupt climate change means that the climate system shifts from a steady state to another steady state. Study on the phenomenon and theory of the abrupt climate change is a new research field of modern climatology, and it is of great significance for the prediction of future climate change. The climate regime shift is one of the most common forms of abrupt climate change, which mainly refers to the statistical significant changes on the variable of climate system at one time scale. These detection methods can be roughly divided into five categories based on different types of abrupt changes, namely, abrupt mean value change, abrupt variance change, abrupt frequency change, abrupt probability density change, and the multivariable analysis. The main research progress of abrupt climate change detection methods is reviewed. What is more, some actual applications of those methods in observational data are provided. With the development of nonlinear science, many new methods have been presented for detecting an abrupt dynamic change in recent years, which is useful supplement for the abrupt change detection methods.

  7. Asian Aspirations for Climate Regime Beyond 2012

    International Nuclear Information System (INIS)

    This report is based on the second round of 'The Asia-Pacific Consultations on Climate Regime Beyond 2012' in 2006 to further advance the frank exchange of opinions of policy makers, academics, and the private sector on specific issues of high priority to the region. These include: energy security and development, Clean Development Mechanism (CDM), technology development and transfer, and adaptation. This report presents a summary of what has been learnt through the current consultations, interviews, and questionnaire surveys with policy makers and climate policy researchers across the region

  8. Pending the adoption of an international climate agreement An overview of the energy-climate regime

    OpenAIRE

    Selosse, Sandrine; Maïzi, Nadia

    2015-01-01

    After a large awareness and decades of negotiations, a historic climate agreement is waiting to be adopted by all 195 parties at the UNFCCC, in December during the 2015 Paris Climate Change Conference (COP 21), in order to provide an answer to the climate issue. We analyze a combination of scenarios to discuss the energy-climate regime inherited from the past negotiations and what can be expected for the future decarbonated system.

  9. Projection of climate change and its impact on the hydrological regimes of the Vistula and the Odra watersheds as the two major river basins in Poland.

    Science.gov (United States)

    Piniewski, Mikołaj; Mezghani, Abdelkader; Szcześniak, Mateusz; Berezowski, Tomasz; Kardel, Ignacy; Okruszko, Tomasz; Dobler, Andreas; Kundzewicz, Zbigniew

    2016-04-01

    Water resources management and associated hydrological risks require a reliable characterisation of hydrological behaviour under historical and future climate conditions. Even under the historical climate conditions, it is difficult to estimate the natural variability of hydrological regimes. We propose high-resolution simulations of natural daily streamflow for the period 1951-2013 in a dense network of river reaches of the transboundary Vistula and Odra basins occupying 313,000 km2, using SWAT model. The SWAT model is calibrated on a gridded daily (minimum and maximum) temperature and precipitation dataset (5 km resolution) developed, for this purpose, for the entire study area based on kriging technique (DOI 10.4121/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07). After validating the SWAT model in reproducing key observed hydrological features in a set of 80 relatively unimpaired sub-catchments, nine hydrological projections are produced where gridded meteorological variables as inputs in SWAT are replaced with meteorological variables from nine GCM-RCM runs projected to the year 2100 for RCP 4.5 provided within the EURO-CORDEX experiment. We will first present a comparison of the performance of the hydrological SWAT model driven by GCM-RCM runs for the historical period using both bias-corrected and raw GCM-RCM output variables. A particular interest will be on how well reproduced are meteorological extremes. Then, we will present the ability of the combined simulation approach to reproduce reliable change of key hydrological variables and especially extreme floods at different spatial scales of the catchments. Finally, hydrological projections under future climate conditions and their impacts on the Odra and Vistula river basins are analysed and discussed. Acknowledgements. Support of the project CHASE-PL (Climate change impact assessment for selected sectors in Poland) of the Polish-Norwegian Research Programme is gratefully acknowledged.

  10. One Health, One World—The Intersecting Legal Regimes of Trade, Climate Change, Food Security, Humanitarian Crises, and Migration

    OpenAIRE

    Kelli K. Garcia; Gostin, Lawrence O.

    2012-01-01

    Today’s global health challenges require a multi-sectoral approach in which health is a fundamental value within global governance and international law. “One Health, One World†provides a unified, harmonious vision of global health governance that supports the wellbeing of humans and animals living in a clean and temperate environment. This article focuses on five legal regimes—trade law, food security law, environmental law, humanitarian law, and refugee law—that play a pivotal rol...

  11. Impact of a changed inundation regime caused by climate change and floodplain rehabilitation on population viability of earthworms in a lower River Rhine floodplain.

    Science.gov (United States)

    Thonon, Ivo; Klok, Chris

    2007-01-01

    River floodplains are dynamic and fertile ecosystems where soil invertebrates such as earthworms can reach high population densities. Earthworms are an important food source for a wide range of organisms including species under conservation such as badgers. Flooding, however, reduces earthworm numbers. Populations recover from cocoons that survive floods. If the period between two floods is too short such that cocoons cannot develop into reproductive adults, populations cannot sustain themselves. Both climate change and floodplain rehabilitation change the flooding frequency affecting earthworm populations. The present paper estimates the influence of climate change and floodplain rehabilitation on the viability of earthworm populations in a Dutch floodplain; the Afferdensche and Deestsche Waarden along the River Waal. This floodplain will be part of major river rehabilitation plans of the Dutch government. In those plans, the floodplain will experience the construction of a secondary channel and the removal of part of its minor embankment. To estimate the impact of these plans and climate change, we used a dataset of daily discharges for 1900-2003 for the River Rhine at the Dutch-German border. We perturbed this dataset to obtain two new datasets under climate change scenarios for 2050 and 2100. From the original and two projected datasets we derived the frequency distributions for the annual periods without inundations for the studied floodplain. We subsequently compared the duration of these inundation-free (dry) periods with the maturation age distribution for L. rubellus as derived from a Dynamic Energy Budget model. This comparison yielded in which parts of our study area and under which climate conditions the populations would still be viable, be able to adapt or become extinct. The results show that climate change has almost no adverse effect on earthworm viability. This is because climate change reduces the flooding frequency during the earthworms growing

  12. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  13. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  14. The Paris Agreement 2015: turning point for the international climate regime

    OpenAIRE

    Dröge, Susanne

    2016-01-01

    At the Paris climate summit in December 2015 the 196 parties to the United Nations Framework Convention on Climate Change (UNFCCC) established a new international climate policy regime from 2020 onwards. The Paris Agreement includes how to proceed with protecting the climate (mitigation), how to adapt to climate change (adaptation), and how to handle potential loss and damage, technology transfer and climate finance. The Nationally Determined Contributions (NDCs) are recognised internationall...

  15. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland......) a study on the effects of elevated atmospheric CO2-concentration, warming and drought on the photosynthetic capacity and phenology of C. vulgaris and D. flexuosa in an outdoor climate change experiment on a grassy heathland in Denmark; 4) a study on climate change impacts on the competitive interactions...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  16. Climate-driven regime shift of a temperate marine ecosystem.

    Science.gov (United States)

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-01

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. PMID:27387951

  17. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  18. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  19. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  20. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  1. The Great Lakes' regional climate regimes

    Science.gov (United States)

    Sugiyama, Noriyuki

    For the last couple of decades, the Great Lakes have undergone rapid surface warming. In particular, the magnitude of the summer surface-warming trends of the Great Lakes have been much greater than those of surrounding land (Austin and Colman, 2007). Among the Great Lakes, the deepest Lake Superior exhibited the strongest warming trend in its annual, as well as summer surface water temperature. We find that many aspects of this behavior can be explained in terms of the tendency of deep lakes to exhibit multiple regimes characterized, under the same seasonally varying forcing, by the warmer and colder seasonal cycles exhibiting different amounts of wintertime lake-ice cover and corresponding changes in the summertime lake-surface temperatures. In this thesis, we address the problem of the Great Lakes' warming using one-dimensional lake modeling to interpret diverse observations of the recent lake behavior. (Abstract shortened by ProQuest.).

  2. Building a municipal food policy regime in Minneapolis: implications for urban climate governance

    OpenAIRE

    Jane E Shey; David Belis

    2013-01-01

    With this paper we analyze Minneapolis’s urban food policy regime and attempt to make a case for applying urban regime theory (URT) to study climate change governance at the municipal level. In 2008 Minneapolis launched Homegrown Minneapolis, a multiple stakeholder initiative bringing together local government actors, businesses, and NGOs to build a sustainable and local food system. As the link between food systems and climate change is increasingly acknowledged in the literature, the analys...

  3. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  4. North Andean environmental and climatic change at orbital to submillennial time-scales: vegetation, waterlevels and sedimentary regimes from Lake Fúquene from 284 to 130 ka

    NARCIS (Netherlands)

    R.G. Bogotá-A; H. Hooghiemstra; J.C. Berrio

    2016-01-01

    We present a record of environmental and climatic changes in the northern Andes during the penultimate interglacial-glacial cycle based on integrated information from pollen and grain size distributions (GSDs). The record reflects the 58.33-26.21 m interval of a new sediment core from Lake Fúquene (

  5. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  6. Permafrozen temperature regime affected by climate variability

    International Nuclear Information System (INIS)

    The paper reports on the numerical-analytical solution for the problem of periodically constant heat exchange in permafrost. There are no initial conditions and the task at issue is based upon the soil conductive heat exchange simulation. In addition, at thawing or freezing, the parameters of water/ice transition, geothermal temperature gradient and the snow cover impact upon the soil heat transition to outer ground have also been taken into account. This solution is governed by the following characteristics: annual air temperature change; winter precipitation accumulation; thermo-physical soil properties either in thawed or in frozen state. Considering the adduced solution the following parameters can be determined: the soil temperature at zero year amplitude level; the frost penetration lower boundary depth; and others. The calculated data are presented and compared with the results of previous field tests. The influence of the quantitative characteristics, such as variable climate and winter precipitation accumulation, upon the soil temperature pattern will be shown; in particular, the frost penetration lower boundary depth is varied by yearly average temperature increase or decrease. The regions where one-two degree yearly average temperature increases result in total permafrost disappearance have been located

  7. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  8. Mathematics of Climate Change

    OpenAIRE

    Halstadtrø, Ida

    2013-01-01

    Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...

  9. Siberian Lena River hydrologic regime and recent change

    Science.gov (United States)

    Yang, Daqing; Kane, Douglas L.; Hinzman, Larry D.; Zhang, Xuebin; Zhang, Tingjun; Ye, Hengchun

    2002-12-01

    The long-term (1935-1999) monthly records of temperature, precipitation, stream flow, river ice thickness, and active layer depth have been analyzed in this study to examine Lena River hydrologic regime and recent change. Remarkable hydrologic changes have been identified in this study. During the cold season (October-April), significant increases (25-90%) in stream flow and decrease in river ice thickness have been found due to warming in Siberia. In the snowmelt period (May-June), strong warming in spring leads to an advance of snowmelt season into late May and results in a lower daily maximum discharge in June. During summer months (July-September) the changes in stream flow hydrology are less significant in comparison to those for winter and spring seasons. A slight stream flow increase is discovered for both July and August, mainly owing to precipitation increase in May and June. Discharge in September has a slight downward trend due to precipitation decrease and temperature increase in August. The magnitudes of changes in stream flow and river ice thickness identified in this study are large enough to alter the hydrologic regime. Investigation into the hydrologic response of the Lena River to climate change and variation reveals strong linkages of stream flow with temperature and precipitation. We therefore believe that Lena River hydrologic regime changes are mainly the consequence of recent climate warming over Siberia and also closely related to changes in permafrost condition.

  10. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  11. Our Changing Climate

    Science.gov (United States)

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  12. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  13. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  14. Climate and Global Change

    International Nuclear Information System (INIS)

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  15. The changing climate

    International Nuclear Information System (INIS)

    A historical outline of climate changes is followed by a discussion of the problem of predictability. The main section goes into anthropogenic changes of the local (urban) and global climate, with particular regard to the greenhouse effect and its consequences in terms of human action. The author points out that today's climate problems should be discussed in a subject-centered and objective manner. (KW)

  16. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  17. Climate for change

    International Nuclear Information System (INIS)

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  18. Struggle against climate change

    International Nuclear Information System (INIS)

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  19. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  20. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  1. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  2. The adaptation to climate change

    International Nuclear Information System (INIS)

    The authors address the issue of adaptation to climate change. They first address the physical aspects related to this issue: scenarios of temperature evolution, main possible impacts. Then, they address the social impacts related to climate risks, and the adaptation strategies which aim at reducing the exposure and vulnerability of human societies, or at increasing their resilience. Some examples of losses of human lives and of economic damages due to recent catastrophes related to climate change are evoked. The authors address the international framework, the emergence of an international regime on climate, the quite recent emergence of adaptation within international negotiations in 2001, the emergence of the idea of a support to developing countries. National and local policies are presented in the next chapter (in the European Union, the Netherlands which are faced with the issue of sea level rise, programs in developing countries) and their limitations are also outlined. The next chapter addresses the adaptation actions performed by private actors (enterprises, households, associations, civil society, and so on) with example of vulnerability, and adaptation opportunities and possibilities in some specific sectors. The last chapter presents a typology of actions of adaptation, indicators of adaptation to climate change, and examples of mistaken adaptation

  3. Oceans, microbes, and global climate change

    OpenAIRE

    Danovaro, Roberto

    2016-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine life and on microbial components. Prokaryotes (Bacteria and Archaea), viruses and other microbial life forms are impacted by ...

  4. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  5. Witnesses of climate change

    International Nuclear Information System (INIS)

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  6. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  7. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  8. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  9. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  10. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  11. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... and to investigate the institutional dynamics new institutional theory is used with an emphasis on examining institutional mechanisms in relation to building legitimacy for action. The concept of mechanisms can help explain how and why constraints on action occur, and the concept of legitimacy is useful to clarify...... entrepreneurs create windows for action through the establishment of local networks. The thesis contributes knowledge on the constraints of the internal integration process in city governments. It provides explanations of why these constraints occur, and how officials seek to overcome them. The thesis provides...

  12. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  13. Climate change and related activities

    International Nuclear Information System (INIS)

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change

  14. A Novel Method for Analyzing and Interpreting GCM Results Using Clustered Climate Regimes

    Science.gov (United States)

    Hoffman, F. M.; Hargrove, W. W.; Erickson, D. J.; Oglesby, R. J.

    2003-12-01

    A high-performance parallel clustering algorithm has been developed for analyzing and comparing climate model results and long time series climate measurements. Designed to identify biases and detect trends in disparate climate change data sets, this tool combines and simplifies large temporally-varying data sets from atmospheric measurements to multi-century climate model output. Clustering is a statistical procedure which provides an objective method for grouping multivariate conditions into a set of states or regimes within a given level of statistical tolerance. The groups or clusters--statistically defined across space and through time--possess centroids which represent the synoptic conditions of observations or model results contained in each state no matter when or where they occurred. The clustering technique was applied to five business-as-usual (BAU) scenarios from the Parallel Climate Model (PCM). Three fields of significance (surface temperature, precipitation, and soil moisture) were clustered from 2000 through 2098. Our analysis shows an increase in spatial area occupied by the cluster or climate regime which typifies desert regions (i.e., an increase in desertification) and a decrease in the spatial area occupied by the climate regime typifying winter-time high latitude perma-frost regions. The same analysis subsequently applied to the ensemble as a whole demonstrates the consistency and variability of trends from each ensemble member. The patterns of cluster changes can be used to show predicted variability in climate on global and continental scales. Novel three-dimensional phase space representations of these climate regimes show the portion of this phase space occupied by the land surface at all points in space and time. Any single spot on the globe will exist in one of these climate regimes at any single point in time, and by incrementing time, that same spot will trace out a trajectory or orbit among these climate regimes in phase space. When a

  15. On the Integration of Carbon Capture and Storage into the International Climate Regime

    OpenAIRE

    Bode, Sven; Jung, Martina

    2004-01-01

    As GHG emissions did not decline as anticipated early of the 1990ties Carbon Capture and Storage (CCS) recently gained more and more attention as a climate change mitigation option. However, CO2 suppressed in geological reservoirs is likely to lead to future releases of the CO2 stored. This ?non-permanence? must be considered if an environmentally sound policy is desired. Against this background, the present article analyses a potential integration of CCS in the international climate regime. ...

  16. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    Science.gov (United States)

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  17. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    Directory of Open Access Journals (Sweden)

    Sabine B Rumpf

    Full Text Available The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  18. Climate change - global warming

    International Nuclear Information System (INIS)

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  19. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  20. Adaptative water management and policy learning in a changing climate: a formal comparative analysis of eight water management regimes in Europe, Africa and Asia

    NARCIS (Netherlands)

    Huntjens, P.M.J.M.; Pahl-Wostl, C.; Rihoux, B.; Schlüter, M.; Flachner, Z.; Neto, S.; Koskova, R.; Dickens, Ch.; Nabide Kiti, I.

    2011-01-01

    This article provides an evidence-based and policy-relevant contribution to understanding the phenomenon of policy learning and its structural constraints in the field of river basin management, in particular related to coping with current and future climatic hazards such as floods and droughts. Thi

  1. Managing Climate Change Refugia for Climate Adaptation.

    Science.gov (United States)

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  2. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  3. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  4. Current Climate Variability & Change

    Science.gov (United States)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  5. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle;

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... during the last 10 000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to severely influence both...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  6. The climatic change

    International Nuclear Information System (INIS)

    In order to take stock on the climatic change situation and initiatives at the beginning of 2006, the INES (National Institute on the Solar Energy) proposes this special document. It presents the Montreal conference of December 2005, realized to reinforced the actions of the international community against the greenhouse gases. The technical decisions decided at this conference are detailed. The document discusses also the causes and consequences of the climatic warming, the intervention sectors and the actions possibilities. (A.L.B.)

  7. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  8. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  9. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...

  10. Crop based climate regimes for energy saving in greenhouse cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, O.

    2003-06-16

    Sustainability is one of the major aims in greenhouse horticulture. According to agreements between the Dutch grower association and the government, energy consumption and the use of chemical biocides have to be reduced. More advanced greenhouse technique is being developed to reach the target to decrease the energy efficiency-index by 65% between 1980 and 2010. However, this could also be achieved with existing technology by using more advanced climate regimes. The present thesis aimed at that, through designing and analysing climate regimes while employing existing climate control possibilities. Theoretical temperature and humidity regimes were designed to decrease energy consumption and a photosynthesis maximisation procedure was implemented to maximise growth. The basis for a crop gross photosynthesis model for control purposes was created. Crop photosynthesis models were evaluated at conditions expected to occur with more sustainable climate regimes. It was shown with experimental evidence that theoretical assumptions on the temperature - CO2 effects in a crop that are based on theoretically models scaling up leaf photosynthesis to the crop level are valid and that simplified existing models could be applied up to 28C. With higher temperatures new designs are needed and this can probably be achieved with an improved stomata-resistance model. The well known temperature integration principle was modified with two nested time-frames (24-hour and six days) and a temperature dose-response function. In a year round tomato cultivation, energy consumption was predicted to decrease with up to 9 % compared to regular temperature integration. The potential for energy saving with temperature integration is limited by humidity control when as usual fixed set points are maintained, because it counteracts temperature integration. Vents open at lower temperatures and heating is switched on at higher temperatures than required for optimal effects of temperature integration. A

  11. Climate change and developing country interests

    DEFF Research Database (Denmark)

    Arndt, Channing; Chinowsky, Paul; Fant, Charles;

    We consider the interplay of climate change impacts, global mitigation policies, and the interests of developing countries to 2050. Focusing on Malawi, Mozambique, and Zambia, we employ a structural approach to biophysical and economic modeling that incorporates climate uncertainty and allows...... for rigorous comparison of climate, biophysical, and economic outcomes across global mitigation regimes. We find that effective global mitigation policies generate two sources of benefit. First, less distorted climate outcomes result in typically more favourable economic outcomes. Second, successful global...... developing countries in effective global mitigation policies, even in the relatively near term, with the likelihood of much larger benefits post 2050....

  12. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  13. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  14. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  15. Climate change velocity underestimates climate change exposure in mountainous regions.

    Science.gov (United States)

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  16. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  17. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  18. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  19. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  20. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  1. Adaptation to climate change

    NARCIS (Netherlands)

    J. Carmin; K. Tierney; E. Chu; L.M. Hunter; J.T. Roberts; L. Shi

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  2. Which way forward : issues in developing an effective climate regime after 2012

    International Nuclear Information System (INIS)

    This book proposed that a post-2012 climate regime will need to balance the needs of all countries while aiming to prevent the potentially serious economic and social consequences of the impacts of climate change. Four elements were presented to support the emergence of an internationally acceptable approach: (1) the need to ensure sustainable economic development; (2) the effective development and penetration of clean technologies; (3) the establishment of an effective international carbon market over the long term; and (4) the integration of adaptation in development and natural resource management decision-making. A series of discussion papers were presented which reviewed options on how best to create an effective and inclusive international climate regime that will achieve large reductions in global emissions and equitably reflect the diverse circumstances of countries while promoting sustainable economic development. The first paper highlighted some of the characteristics of an international policy framework for cooperatively engaging the best tools of the scientific and policy communities to address challenges over the long and short term. The second paper examined how a post-2012 global climate regime could promote the development, deployment and diffusion of the appropriate technologies expected to play a critical role in mitigating and adapting to climate change. The third paper examined market-based approaches to enable cost-effective reductions and increase the feasibility of achieving long-term reductions as well as the promotion and development of low carbon energy technologies. The final paper examined research and policy developments relevant to determining how a future regime could support a long-term, integrated approach to addressing adaptation to climate change by all countries. refs., tabs., figs

  3. River Restoration for a Changing Climate

    Science.gov (United States)

    Beechie, T. J.; Pollock, M. M.; Pess, G. R.; Roni, P.

    2012-12-01

    Future climate scenarios suggest that riverine habitats will be significantly altered in the next few decades, forcing managers to ask whether and how river restoration activities should be altered to accommodate climate change. Obvious questions include: Will climate change alter river flow and temperature enough to reduce action effectiveness? What types of restoration actions are more likely to remain effective in a climate altered future? To help address these questions, we reviewed literature on habitat restoration actions and river processes to determine the degree to which different restoration actions are likely to either ameliorate a climate effect or increase habitat diversity and resilience. Key findings are that restoring floodplain connectivity and re-aggrading incised channels ameliorate both stream flow and temperature changes and increase lateral connectivity, whereas restoring in-stream flows can ameliorate decreases in low flows as well as stream temperature increases. Other restoration actions (e.g., reducing sediment supply, in-stream rehabilitation) are much less likely to ameliorate climate change effects. In general, actions that restore watershed and ecosystem processes are most likely to be robust to climate change effects because they allow river channels and riverine ecosystems to evolve in response to shifting stream flow and temperature regimes. We offer a decision support process to illustrate how to evaluate whether a project design should be altered to accommodate climate change effects, and show examples of restoration actions that are likely to be resilient to a changing climate.

  4. Comparison of different climate regimes: the impact of broadening participation

    International Nuclear Information System (INIS)

    So-far, most climate mitigation studies look at climate policy strategies in a so-called first-best world, i.e. using the least expensive emission reduction options in all world regions and sectors. To explore the impact of limited participation of countries, we have run a set of scenarios that explore the impact of introducing a carbon tax in OECD, the BRIC countries (Brazil Russia, India and China) and the rest of the world. The results show that carbon taxes can effectively reduce greenhouse gas emissions. However, if low greenhouse gas concentration levels are to be achieved, early participation (in some form) of large developing countries is important to increase reduction potential. It should be noted that global carbon taxes (without additional assumptions) lead to relatively high costs in low-income regions. Cap-and-trade regimes have more flexibility to create a comparable distribution of costs amongst countries.

  5. Challenges of climate change

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  6. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  7. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  8. Outchasing climate change

    Science.gov (United States)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  9. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  10. Climate change and Africa : the normative framework of the African Union / Daniel Mirisho Pallangyo

    OpenAIRE

    Pallangyo, Daniel Mirisho

    2013-01-01

    There is enough evidence on how climate change consequences will adversely affect Africa despite the fact that it is the continent that has least contributed to the problem. The international climate change regime recognises Africa's vulnerability to climate change and provides for special treatment under the United Nations Framework Convention on Climate Change (the UNFCCC). Thus, the international climate change regime presents an opportunity for African countries to adapt an...

  11. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  12. Climate change and shareholder value

    International Nuclear Information System (INIS)

    During 2005, the Carbon Trust worked with Cairneagle Associates to develop a methodology for analysing shareholder value at risk from climate change. The model developed offers a robust, replicable, top-down approach to analysing such value at risk. In addition to a company's own energy linked ('direct' and electricity linked 'indirect') carbon emissions, it looks further along the value chain and considers broader potential risk. In calculating the financial impact, the analysis quantifies the potential impact on profits, using the shape of the business in 2004, but applying a potential 2013 emissions regulatory regime. 2013 was chosen as the first year after the end of the 2008-2012 Kyoto compliance period (which also equates to Phase Two in the EU Emissions Trading Scheme). A major uncertainty is to what extent countries not currently regulated by the Kyoto Protocol (particularly the USA, India and China) will be brought into committed emission reduction targets from 2013. 2013 therefore represents the earliest year under this uncertain, but likely tougher, regulatory regime. However, although this report focuses on 2013, it needs to be recognised that, for many sectors, financial impacts will be seen significantly before this time. Ten 'case study companies' have been studied, from a range of sectors. In some cases, the 'case study company' analysed is strictly linked to a single company within that sector. In others, just a single corporate division has been reviewed, and in others yet again, characteristics from several companies have been combined to produce a more representative example. In order to enable analysis on a strictly like-for-like basis, the research has been based entirely upon public sources of information. This analysis illustrates what a determined shareholder (or other onlooker) could derive about value at risk from climate change, based upon what companies disclose today. A summary of the analysis for each sector case study is given, with

  13. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  14. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  15. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.

    Directory of Open Access Journals (Sweden)

    Arnaud Auber

    Full Text Available Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation.

  16. Climate Trends and Farmers’ Perceptions of Climate Change in Zambia

    OpenAIRE

    Brian P. Mulenga; Wineman, Ayala

    2014-01-01

    In Zambia like in many other developing countries, the agricultural sector is highly dependent on rain-fed production and therefore vulnerable to weather shocks. Maize is the primary staple crop in Zambia, and is widely grown by smallholder farmers throughout the country, with a dual cassava-maize regime found only in the northern region. Among the smallholder farmers almost all production is rain-fed with very few farmers using mechanized irrigation. Climate change therefore has the potentia...

  17. Designing Global Climate Change

    Science.gov (United States)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  18. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  19. Economic impacts of climate change

    OpenAIRE

    Tol, Richard S.J.

    2015-01-01

    Climate change will probably have a limited impact on the economy and human welfare in the 21st century. The initial impacts of climate change may well be positive. In the long run, the negative impacts dominate the positive ones. Negative impacts will be substantially greater in poorer, hotter, and lower-lying countries. Poverty reduction complements greenhouse gas emissions reduction as a means to reduce climate change impacts. Climate change may affect the growth rate of the economy and ma...

  20. The Kyoto protocol: assessment and perspectives. Towards a new regime up to the climate stake

    International Nuclear Information System (INIS)

    This report proposes an analysis within the context of transition of the climate regime from the 'before-2012' regime to the 'post-2020' regime. It first gives an overview of international stakes and context (lack of ambition for climate policy, perspective of an international agreement from 2020). Then, the authors recall the history and achievements of the Kyoto protocol which is the basis of the present climate policy regime. They propose an assessment of actions performed by countries during the first period of the protocol, and focus on the present climate regime elements which are to be safeguarded. They analyse the weaknesses of the present regime, and propose possible improvements for the future post-2020 climate regime

  1. The climate regime before and after Copenhagen: science, policy, and the two-degrees target

    International Nuclear Information System (INIS)

    The article discusses the political results of the Copenhagen Conference and evolutions in the international climate arena including geopolitical shifts, new issues on the agenda and a changing cartography of the main actors. As recent attacks on the climate regime concern both its political governance and the peculiar relationship between science and politics that developed through its main institutions (IPCC and the Conference of the Parties), we retrace in a first part the construction of the climate arena and in a second part the framing of the problem between climate science, expertise, and politics. Drawing on this historical sketch, we suggest the years 2000 were characterized by a convergence of top-down approaches in climate expertise and policies, structuring action and discourse around quantified reduction targets, temperature and concentration thresholds, and carbon budgets. The bottom-up character of the voluntary reduction commitments in the Copenhagen Accord is a serious setback to this approach. A central figure in this context is the threshold of 'dangerous warming' of two degrees. The Copenhagen Accord - endorsed in the Cancun compromise - elevates this figure to an official target of the U.N. negotiation process, thereby accentuating the tension between a newly assumed 'Real politic' and an alarming expertise. The article analyzes the construction of the two-degrees target and the role it plays in the climate regime. We conclude by discussing several contributions to the Post-Copenhagen debate. (authors)

  2. Climate change, agriculture and poverty

    OpenAIRE

    Hertel, Thomas W.; Rosch, Stephanie D

    2010-01-01

    Although much has been written about climate change and poverty as distinct and complex problems, the link between them has received little attention. Understanding this link is vital for the formulation of effective policy responses to climate change. This paper focuses on agriculture as a primary means by which the impacts of climate change are transmitted to the poor, and as a sector at...

  3. Global patterns of change in discharge regimes for 2100

    Directory of Open Access Journals (Sweden)

    F. C. Sperna Weiland

    2012-04-01

    Full Text Available This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B and control experiment 20C3M are used to drive the global hydrological model PCR-GLOBWB. This reveals in which regions of the world changes in hydrology can be detected that have a high likelihood and are consistent amongst the ensemble of GCMs. New compared to existing studies is: (1 the comparison of spatial patterns of regime changes and (2 the quantification of notable consistent changes calculated relative to the GCM specific natural variability. The resulting consistency maps indicate in which regions the likelihood of hydrological change is large.

    Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases strongly for most African rivers, the Murray and the Danube while discharge of monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.

  4. Global patterns of change in discharge regimes for 2100

    Directory of Open Access Journals (Sweden)

    F. C. Sperna Weiland

    2011-12-01

    Full Text Available This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B, and control experiment 20C3M are used to drive the global hydrological model PCR-GLOBWB. We reveal in which regions of the world changes in hydrology can be detected that are significant and consistent amongst the ensemble of GCMs. New compared to existing studies is: (1 the comparison of spatial patterns of regime changes and (2 the quantification of consistent significant change calculatesd relative to both the natural variability and the inter-model spread. The resulting consistency maps indicate in which regions likelihood of hydrological change is large.

    Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases are large for most African rivers, the Murray and the Danube. While discharge of Monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.

  5. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  6. Enforcing the climate regime: Game theory and the Marrakesh Accords

    International Nuclear Information System (INIS)

    The article reviews basic insights about compliance and ''hard'' enforcement that can be derived from various non-cooperative equilibrium concepts and evaluates the Marrakesh Accords in light of these insights. Five different notions of equilibrium are considered - the Nash equilibrium, the sub game perfect equilibrium, the re negotiation proof equilibrium, the coalition proof equilibrium and the perfect Bayesian equilibrium. These various types of equilibrium have number of implications for effective enforcement: 1. Consequences of non-compliance should be more than proportionate. 2. To be credible punishment needs to take place in the Pareto frontier, rather than by reversion to some suboptimal state. 3. An effective enforcement system must be able to curb collective as well as individual incentives to cheat. 4. A fully transparent enforcement regime could in fact turn out to be detrimental for compliance levels. It is concluded that constructing an effective system for ''hard'' enforcement of the Kyoto Protocol is a formidable task that has only partially been accomplished by the Marrakesh Accords. A possible explanation is that the design of a compliance system for the climate regime involved a careful balancing of the desire to minimise non-compliance against other important considerations. (Author)

  7. Enforcing the climate regime: Game theory and the Marrakesh Accords

    Energy Technology Data Exchange (ETDEWEB)

    Hovi, Jon

    2002-07-01

    The article reviews basic insights about compliance and ''hard'' enforcement that can be derived from various non-cooperative equilibrium concepts and evaluates the Marrakesh Accords in light of these insights. Five different notions of equilibrium are considered - the Nash equilibrium, the sub game perfect equilibrium, the re negotiation proof equilibrium, the coalition proof equilibrium and the perfect Bayesian equilibrium. These various types of equilibrium have number of implications for effective enforcement: 1. Consequences of non-compliance should be more than proportionate. 2. To be credible punishment needs to take place in the Pareto frontier, rather than by reversion to some suboptimal state. 3. An effective enforcement system must be able to curb collective as well as individual incentives to cheat. 4. A fully transparent enforcement regime could in fact turn out to be detrimental for compliance levels. It is concluded that constructing an effective system for ''hard'' enforcement of the Kyoto Protocol is a formidable task that has only partially been accomplished by the Marrakesh Accords. A possible explanation is that the design of a compliance system for the climate regime involved a careful balancing of the desire to minimise non-compliance against other important considerations. (Author)

  8. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  9. The climatic change

    International Nuclear Information System (INIS)

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  10. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  11. NPOESS, Essential Climates Variables and Climate Change

    Science.gov (United States)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  12. Mapping Vulnerability to Climate Change

    OpenAIRE

    Heltberg, Rasmus; Bonch-Osmolovskiy, Misha

    2011-01-01

    This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natura...

  13. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  14. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought o...

  15. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  16. Climate change, wine, and conservation

    OpenAIRE

    Hannah, L.; Roehrdanz, PR; Ikegami, M; Shepard, AV; Shaw; Tabor, G; Zhi, L; Marquet, PA; Hijmans, RJ

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticul...

  17. Climate change and catchment hydrology

    OpenAIRE

    Murphy, Conor

    2013-01-01

    Climate change is expected to alter catchment hydrology through changes in extremes of flooding and drought. River catchments are complex, dynamic systems and it is important to develop our understanding of how these systems are likely to respond to changes in climate. Work is ongoing in using EC-Earth simulations to further our understanding of how climate change will affect catchment hydrology and flood risk. In Ireland, the importance of this task is emphasised ...

  18. Ecosystem regime change inferred from the distribution of trace metals in Lake Erie sediments

    OpenAIRE

    Fasong Yuan; Richard Depew; Cheryl Soltis-Muth

    2014-01-01

    Many freshwater and coastal marine ecosystems across the world may have undergone an ecosystem regime change due to a combination of rising anthropogenic disturbances and regional climate change. Such a change in aquatic ecosystems is commonly seen as shifts in algal species. But considerably less detail is known about the eutrophication history in terms of changes in algal productivity, particularly for a large lake with a great deal of spatial variability. Here we present an analysis of tra...

  19. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K.; Polly J Ericksen; Herrero, Mario; Challinor, Andrew J.

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  20. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith;

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  1. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  2. Climate change policy position

    International Nuclear Information System (INIS)

    The Canadian Association of Petroleum Producers (CAPP) is a firm believer in the need to take action to mitigate the risks associated with climate change, and that clear government policy is called for. The principles of sustainable development must guide this policy development effort. The initiatives required to address greenhouse gas emissions over both the short and long term must be carefully considered, and it is up to industries to ensure their production efficiency and emission intensity. Promoting improved performance of industries in Canada and developing technology that can be deployed internationally for larger global effects represents Canada's best contribution to progress on greenhouse gas emissions. The increase in energy demand along with increases in population and economic growth have contributed to an increase in greenhouse gas emissions despite improved energy efficiency in industry. Significant damage to the economy will result if Canada is to meet its commitment under the Kyoto Protocol, forcing the country to buy large quantities of foreign credits instead of using those funds for increased research and development. CAPP indicated that an effective plan must be: balanced, equitable, responsible, competitive, focused on technology and innovation, and based on agreements on sectoral plans. Each of these principles were discussed, followed by the fundamentals of approach for upstream oil and gas. The framework for climate change policy was described as well as the elements of a sector plan. CAPP wants to work with all levels of government on an appropriate plan for Canada, that considers our unique circumstances. Canada can play a significant role on the international stage by properly implementing the policy position proposed by the CAPP without unnecessary risks to the economy. refs

  3. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  4. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  5. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  6. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  7. Challenges in bias correcting climate change simulations

    Science.gov (United States)

    Maraun, Douglas; Shepherd, Ted; Zappa, Giuseppe; Gutierrez, Jose; Widmann, Martin; Hagemann, Stefan; Richter, Ingo; Soares, Pedro; Mearns, Linda

    2016-04-01

    Biases in climate model simulations - if these are directly used as input for impact models - will introduce further biases in subsequent impact simulations. In response to this issue, so-called bias correction methods have been developed to post-process climate model output. These methods are now widely used and a crucial component in the generation of high resolution climate change projections. Bias correction is conceptually similar to model output statistics, which has been successfully used for several decades in numerical weather prediction. Yet in climate science, some authors outrightly dismiss any form of bias correction. Starting from this seeming contradiction, we highlight differences between the two contexts and infer consequences and limitations for the applicability of bias correction to climate change projections. We first show that cross validation approaches successfully used to evaluate weather forecasts are fundamentally insufficient to evaluate climate change bias correction. We further demonstrate that different types of model mismatches with observations require different solutions, and some may not sensibly be mitigated. In particular we consider the influence of large-scale circulation biases, biases in the persistence of weather regimes, and regional biases caused by an insufficient representation of the flow-topography interaction. We conclude with a list of recommendations and suggestions for future research to reduce, to post-process, and to cope with climate model biases.

  8. Urban Growth and Climate Change

    OpenAIRE

    Kahn, Matthew E.

    2008-01-01

    Between 1950 and 2030, the share of the world's population that lives in cities is predicted to grow from 30% to 60%. This urbanization has consequences for the likelihood of climate change and for the social costs that climate change will impose on the world's quality of life. This paper examines how urbanization affects greenhouse gas production, and it studies how urbanites in the developed and developing world will adapt to the challenges posed by climate change.

  9. Global warming and climate change

    International Nuclear Information System (INIS)

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  10. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  11. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  12. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  13. Climate change - a natural hazard

    Energy Technology Data Exchange (ETDEWEB)

    Kininmonth, William

    2003-07-01

    The impacts of weather and climate extremes (floods, storms, drought, etc) have historically set back development and will continue to do so into the future, especially in developing countries. It is essential to understand how future climate change will be manifest as weather and climate extremes in order to implement policies of sustainable development. The purpose of this article is to demonstrate that natural processes have caused the climate to change and it is unlikely that human influences will dominate the natural processes. Any suggestion that implementation of the Kyoto Protocol will avoid future infrastructure damage, environmental degradation and loss of life from weather and climate extremes is a grand delusion. (Author)

  14. Portfolio conservation of metapopulations under climate change.

    Science.gov (United States)

    Anderson, Sean C; Moore, Jonathan W; McClure, Michelle M; Dulvy, Nicholas K; Cooper, Andrew B

    2015-03-01

    Climate change is likely to lead to increasing population variability and extinction risk. Theoretically, greater population diversity should buffer against rising climate variability, and this theory is often invoked as a reason for greater conservation. However, this has rarely been quantified. Here we show how a portfolio approach to managing population diversity can inform metapopulation conservation priorities in a changing world. We develop a salmon metapopulation model in which productivity is driven by spatially distributed thermal tolerance and patterns of short- and long-term climate change. We then implement spatial conservation scenarios that control population carrying capacities and evaluate the metapopulation portfolios as a financial manager might: along axes of conservation risk and return. We show that preserving a diversity of thermal tolerances minimizes risk, given environmental stochasticity, and ensures persistence, given long-term environmental change. When the thermal tolerances of populations are unknown, doubling the number of populations conserved may nearly halve expected metapopulation variability. However, this reduction in variability can come at the expense of long-term persistence if climate change increasingly restricts available habitat, forcing ecological managers to balance society's desire for short-term stability and long-term viability. Our findings suggest the importance of conserving the processes that promote thermal-tolerance diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and demonstrate that diverse natural portfolios may be critical for metapopulation conservation in the face of increasing climate variability and change.

  15. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  16. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  17. Analysis of Future Streamflow Regimes under Global Change Scenarios in Central Chile for Ecosystem Sustainability

    Science.gov (United States)

    Henriquez Dole, L. E.; Gironas, J. A.; Vicuna, S.

    2015-12-01

    Given the critical role of the streamflow regime for ecosystem sustainability, modeling long term effects of climate change and land use change on streamflow is important to predict possible impacts in stream ecosystems. Because flow duration curves are largely used to characterize the streamflow regime and define indices of ecosystem health, they were used to represent and analyze in this study the stream regime in the Maipo River Basin in Central Chile. Water and Environmental Assessment and Planning (WEAP) model and the Plant Growth Model (PGM) were used to simulate water distribution, consumption in rural areas and stream flows on a weekly basis. Historical data (1990-2014), future land use scenarios (2030/2050) and climate change scenarios were included in the process. Historical data show a declining trend in flows mainly by unprecedented climatic conditions, increasing interest among users on future streamflow scenarios. In the future, under an expected decline in water availability coupled with changes in crop water demand, water users will be forced to adapt by changing water allocation rules. Such adaptation actions would in turns affect the streamflow regime. Future scenarios for streamflow regime show dramatic changes in water availability and temporal distribution. Annual weekly mean flows can reduce in 19% in the worst scenario and increase in 3.3% in the best of them, and variability in streamflow increases nearly 90% in all scenarios under evaluation. The occurrence of maximum and minimum monthly flows changes, as June instead of July becomes the driest month, and December instead of January becomes the month with maximum flows. Overall, results show that under future scenarios streamflow is affected and altered by water allocation rules to satisfy water demands, and thus decisions will need to consider the streamflow regime (and habitat) in order to be sustainable.

  18. The influence of snow cover thickness on the thermal regime of Tete Rousse Glacier (Mont Blanc range, 3200 m a.s.l.) : consequences for outburst flood hazards and glacier response to climate change

    OpenAIRE

    Gilbert, A.; Vincent, C.; Wagnon, Patrick; E. Thibert; A. Rabatel

    2012-01-01

    Tete Rousse Glacier (French Alps) was responsible for an outburst flood in 1892 that devastated the village of St Gervais-Le Fayet close to Chamonix, causing 175 fatalities. Changes in the hydrothermal configuration of the glacier are suspected to be the cause of this catastrophic outburst flood. In 2010, geophysical surveys of this glacier revealed a subglacial lake that was subsequently drained artificially. The processes controlling the thermal regime of the glacier have been investigated ...

  19. Lay representations on climate change

    OpenAIRE

    Cabecinhas, Rosa; Lázaro, Alexandra; Carvalho, Anabela

    2006-01-01

    Lay representations on climate change were mapped via the free-word association method in two pilot studies. Participants were asked to generate words associated to “the big problems faced by humankind nowadays” (1st study) and to “climate change” (2nd study). Climate change was not spontaneously evoked by the participants in the first study: pollution was among the top 10 problems, but references to other environmental issues were very low. In the second study, climate change was consid...

  20. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  1. Ground water and climate change

    OpenAIRE

    Taylor, Richard G; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F P

    2013-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the...

  2. A spatio-temporal analysis of landscape dynamics under changing environmental regimes in southern African savannas

    Science.gov (United States)

    Bunting, Erin L.

    The United Nations and Intergovernmental Panel on Climate Change (IPCC) deem many regions of southern Africa as vulnerable landscapes due to changing climatic regimes, ecological condition, and low adaptive capacity. The savanna ecosystems of southern Africa are of great ecological importance due to the high biodiversity they sustain, their high level of productivity, and the great role they play in the global carbon cycle. Given the dependence of humans on the lands it is essential to explore landscape level trends in patterns and processes in an effort to inform management practices. Even if climate change mitigation strategies were put in place, this is still a region heavily dependent on rain-fed agriculture and tourism of the biological diverse lands. Therefore analysis of climate variability, both interannual and intra-annual, and the changing role it plays on the landscape is critical. This body of research analyzes the role of climate variability and climate on environmental condition and socio-economic development via research on (1) spatial and temporal vegetation patterns, (2) the underlying processes that influence savanna ecosystem resilience, (3) local perception of risk to livelihood development, and (4) potential consequences of climate change on vegetation patterns. As a whole this demonstrates the key role that climate plays on savanna landscapes, which would be highly beneficial when developing conservation or mitigation strategies. Increased climate variability is occurring, but what is still open to debate is the resilience of savanna landscape and vulnerability of socio-economic development.

  3. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  4. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    Science.gov (United States)

    Goyenola, G.; Meerhoff, M.; Teixeira-de Mello, F.; González-Bergonzoni, I.; Graeber, D.; Fosalba, C.; Vidal, N.; Mazzeo, N.; Ovesen, N. B.; Jeppesen, E.; Kronvang, B.

    2015-10-01

    Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate phosphorus export from diffuse sources in streams in Uruguay streams, mostly as a consequence of higher variability in flow regime (higher flashiness). Contrarily, we found a higher contribution of dissolved P in flashy streams. We did not find a notably poorer performance of the low-frequency sampling program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams and overestimation of P in flashy streams. Based on our findings, we suggest that the evaluation and use of more accurate monitoring methods, such as automatized flow-proportional water samplers and automatized bankside analyzers, should be prioritized whenever logistically possible. However, it seems particularly relevant in currently flashy systems and also in systems where climate change predictions suggest an increase in stream flashiness.

  5. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  6. Nuclear Energy and Climate Change

    OpenAIRE

    Méritet, Sophie; Zaleski, Pierre

    2009-01-01

    The paper will discuss the possibilities of the development of nuclear energy in the world in the midterm and long term. It will correlate the prospects with the emissions of CO2 and the effects on climate change. In particular it will discuss the problems nuclear energy face to make a large contribution of climate change issue.

  7. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  8. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  9. Congress Assesses Climate Change Paleodata

    Science.gov (United States)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  10. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  11. Climate Change, Growth, and Poverty

    OpenAIRE

    Hull, Katy

    2008-01-01

    Equity emerged as the principal theme during the Poverty Reduction and Economic Management (PREM) week session 'climate change, growth and poverty,' where presenters addressed the distributional consequences of climate change, as well as countries' unequal capacity to cope with the twin challenges of adaptation and mitigation. They highlighted actions to strengthen the global knowledge bas...

  12. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  13. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  14. Climate change policies and international trade

    International Nuclear Information System (INIS)

    This report examines the potential impacts of international climate change agreements on international trade and trade flows, and on the options, or lack of options, to take legal action, for example within the framework of the World Trade Organization (WTO), to mitigate unwanted side-effects of such international agreements. In particular, the study addresses the following three questions: (1) what are the impacts of existing and potential climate change agreements on the external trade positions of participating countries, non-participating countries and energy exporting countries?; (2) how do specific economic instruments of climate change policy (joint implementation, tradable emission permits, or charges) affect international trade and how do they relate to the Kyoto protocol? (3) which trade measures (trade restricting or trade enhancing) could be implemented in relation to international climate change agreements to mitigate or compensate for unwanted side-effects? By providing an overview of the legal and policy aspects of the climate change regime, this report seeks to shed an analytical light on the key issues that international negotiators are to address. Legal aspects between climate change policies and trade policies are examined in the context of three scenarios: 'full ratification', 'partial ratification', and 'non-ratification, but national measures'. Each of these scenarios give rise to potential trade conflicts. The report examines Computable General Equilibrium (CGE) models that are used for the economic evaluation of climate change policies and uses one such model: the Global Trade Analysis Project (GTAP) 'E' model for its own analysis. The report assesses consequences of different policy scenarios for international trade, economic welfare and for the global environment. It also looks at specific industry impacts and discusses ways to mitigate unwanted side-effects. refs

  15. Climate change and marine vertebrates.

    Science.gov (United States)

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  16. Climate variability and change

    International Nuclear Information System (INIS)

    When Australia's climate should not be definite barrier to the population reaching 30 million by 2050, it is recognised that our climate has limited the development of the nation over the past 200 years. Indeed in 1911, based on a comparison of the climate and development between the US and Australia. Griffith Taylor predicted that Australia's population would be 19 million at the end of the 20th century, which is a pretty good 90-year forecast. The climate constraint is not only due to much of the country being semi-arid with an annual rainfall below 400 millimetres, but also due to the large year-to-year variability of rainfall across the country

  17. Considerations on nonproliferation regime meeting in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Hiroyoshi; Kikuchi, Masahiro [Nuclear Material Control Center, Tokyo (Japan)

    1994-12-31

    This paper summarizes the past history of worldwide nonproliferation regime, then proposes the future improvements on the regime. Present worldwide nonproliferation regime have been formulated during the cold war era. Therefore, the structure and measures of the regime were heavily influenced by the features of cold war era. Though the cold war was over, still new international order does not seem to be on the horizon, we need to review the present regime and to improve the regime compatible to new world situation. Generally speaking, the nonproliferation regime have gained moderate success so far. We could point out the following features as a kind of success: (1) No increase of overt Nuclear Weapon State (NWS), (2) All five NWSs have finally participated to the NPT, (3) South Africa has destroyed its nuclear weapons and became Non-Nuclear Weapon State (NNWS), (4) Successful conclusions of some regional arrangements, such as Tlatelolco, Ralotonga, and (5) Strengthening of export control on sensitive items. On the other hand, we recognize the following points as the failures of the regime. (6) India, Pakistan and Israel reject to join the NPT, (7) Existence of some violation against NPT regime, i.e. Iraqi case and DPRK case, (8) Insufficient effective measures against brain drain problem, (9) Risk exists for the long term extension of NPT, and (10) Insufficient flexibility to meet changing boundary conditions. We would propose the various measures for strengthening to meet changing boundary conditions, as follows: (11) Measures to be taken along with future civil use of Plutonium, (12) Strengthening and rationalizing international safeguards, (13) Countermeasures for emerging new types of nuclear proliferation, (14) Strengthening nuclear material control in NWS, (15) Measures to be taken for nuclear material from dismantled nuclear weapons, and (16) Nuclear disarmament. (author).

  18. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  19. Impact of climate fluctuations on the spring runoff regime with regard to rivers in Lithuania

    Directory of Open Access Journals (Sweden)

    Bagdžiūnaitė-Litvinaitienė Lina

    2015-06-01

    Full Text Available The article describes the impact of fluctuations in climatic factors on hydrological processes. The analysis of climate and hydrology covers two periods, the first up to 1996 and the second from 1981 to 2012. Study object includes 22 river basins situated on the eastern coast of the Baltic Sea: 1000 km2, up to 10 000 km2 and bigger. The study involved Mann–Kendall, Spearman's and linear regression tests. Causal relationships, as criteria that may fundamentally change the runoff regime set up by climatic factors, were established by evaluating the size of the river basin and assessing the spread of sediments, lakes, swamps and forests in the river basin. The analysis of data from the last thirty years disclosed that, with reference to the previously obtained information, floods in lakes became substantially reduced. Nevertheless, within the winter period of recent years, temperatures prevented lakes from acting as water reservoirs. The paper examined and defined the impact of sediments on variations in the runoff regime. For the period of the last thirty years, cut-off dates, i.e. flood start, crest and end, have advanced.

  20. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  1. Integrating climate change adaptation into forest management

    Energy Technology Data Exchange (ETDEWEB)

    Spittlehouse, D.L. [British Columbia Ministry of Forestry, Victoria, BC (Canada)

    2005-10-01

    Although forest management decisions are often based on the assumption that the climate will remain relatively stable throughout a forest's life-time, the prospect of future climate change has challenged current decision-making processes. This paper reviewed challenges currently impeding responses to climate change and presented suggestions for integrating adaptation strategies into forest management. Adaptive actions reduce the risks of climate change by preparing for adverse effects and capitalizing on the benefits. However, the importance of forest ecosystems to society means that the direction and timing of adaptation should be carefully managed. Uncertainty in the magnitude and timing of future climate change is a significant challenge. In addition, different ecosystems are vulnerable to different aspects of change, and an important component of adaptation will be the balancing of different values. The size of the forested land base in most of Canada will mean that much of the forest will have to adjust to climatic changes without human intervention. Seed planning zones, reforestation standards and hydrologic and wildlife management guidelines are designed for the current climate regime, and there are currently no regulatory requirements for adaptation strategies. Societal adaptation will be a major component of any forest management adaptation strategy, and demands on forest resources will need to be revised. Adaptation to reduce the vulnerability of resources such as water quality and quantity and biological conservation will become high priorities in some areas. It was suggested that the adaptation of culverts, bridges and roads should be incorporated into an infrastructure replacement cycle. Areas for preservation where the future climate will become suitable for species whose current range is threatened by climate change should be identified. Adapting the forest through reforestation after disturbances such as harvest or fire was recommended. Other

  2. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  3. Global hydrological droughts in the 21st century under a changing hydrological regime

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2014-06-01

    Full Text Available Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five GCMs and four emission scenarios (RCPs, from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%, compared to the substantial increase when the VTM is applied (11.7 to 20%. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime, has a substantial influence on future hydrological drought characteristics.

  4. Global hydrological droughts in the 21st century under a changing hydrological regime

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2015-01-01

    Full Text Available Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five global circulation models (GCMs and four emission scenarios (representative concentration pathways, RCPs, from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow-dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%, compared to the substantial increase when the VTM is applied (11.7 to 20%. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a

  5. Change of secondary water regime of Paks NPP. Change of secondary water regime at Unit 2

    International Nuclear Information System (INIS)

    The installation of high pH water regime during the 17th cycle of Unit 2 aimed to decrease the amount of transportation inlet of erosion-corrosion products (magnitude) in feedwater to SGs. The resolution of OAH-NBI permitting the installation ordained to make an evaluation of the process. The main conclusions and results are discussed. The high pH water regime proved to be adequate in the case of Unit 2 as well, similarly to Units 3, 4 and 1. (R.P.)

  6. Regime shifts limit the predictability of land-system change

    DEFF Research Database (Denmark)

    Müller, Daniel; Sun, Zhanli; Vongvisouk, Thoumthone;

    2014-01-01

    (China, Laos, Vietnam and Indonesia). The results show how sudden events and gradual changes in underlying drivers caused rapid, surprising and widespread land-system changes, including shifts to different regimes in China, Vietnam and Indonesia, whereas land systems in Laos remained stable in the study...

  7. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  8. Climate change and energy: The implications for the Spanish case

    International Nuclear Information System (INIS)

    This paper examines the mutual implications between the climate change problem and the actual energy-at-a-crossroads situation of the unsustainable world energy model. The implications for the Spanish case are studied as a case example. The paper provides a brief review of the scientific evidence on climate change, analyzes the causes of the present energy dilemma and characterizes the problem to be addressed. The principal challenge for the future climate regime is to identify the nature and level of commitment that will provide sufficient incentives for all countries, with such a diversity of interests. The paper also exposes the most plausible framework for the future climate regime, the basic components of such a regime, the role to be played by the major stake holders and some guidelines for future negotiations. (Author)

  9. Challenges in Modeling Regional Climate Change (Invited)

    Science.gov (United States)

    Leung, L.

    2013-12-01

    Precipitation, soil moisture, and runoff are vital to ecosystems and human activities. Predicting changes in the space-time characteristics of these water cycle processes has been a longstanding challenge in climate modeling. Different modeling approaches have been developed to allow high resolution to be achieved using available computing resources. Although high resolution is necessary to better resolve regional forcing and processes, improvements in simulating water cycle response are difficult to demonstrate and climate models have so far shown irreducible sensitivity to model resolution, dynamical framework, and physics parameterizations that confounds reliable predictions of regional climate change. Additionally, regional climate responds to both regional and global forcing but predicting changes in regional and global forcing such as related to land use/land cover and aerosol requires improved understanding and modeling of the dynamics of human-earth system interactions. Furthermore, regional response and regional forcing may be related through complex interactions that are dependent on the regional climate regimes, making decisions on regional mitigation and adaptation more challenging. Examples of the aforementioned challenges from on-going research and possible future directions will be discussed.

  10. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.; Wang, Minghuai; Ghan, Steven J.; Ding, A.; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, U.; Ferrachat, S.; Takeamura, Toshihiko; Gettelman, A.; Morrison, H.; Lee, Y. H.; Shindell, D. T.; Partridge, Daniel; Stier, P.; Kipling, Z.; Fu, Congbin

    2016-03-04

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascend (ω500 < -25 hPa/d) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. 42" It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm/d) contributes the most to the total aerosol indirect forcing (from 64% to nearly 100%). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  11. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  12. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J;

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  13. Ground water and climate change

    Science.gov (United States)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  14. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit;

    to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  15. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope...

  16. Subtropical Low Cloud Response to a Warmer Climate in an Superparameterized Climate Model: Part I. Regime Sorting and Physical Mechanisms

    Directory of Open Access Journals (Sweden)

    Peter N Blossey

    2009-07-01

    Full Text Available The subtropical low cloud response to a climate with SST uniformly warmed by 2 K is analyzed in the SP- CAM superparameterized climate model, in which each grid column is replaced by a two-dimensional cloud-resolving model (CRM. Intriguingly, SP-CAM shows substantial low cloud increases over the subtropical oceans in the warmer climate. The paper aims to understand the mechanism for these increases. The subtropical low cloud increase is analyzed by sorting grid-column months of the climate model into composite cloud regimes using percentile ranges of lower tropospheric stability (LTS. LTS is observed to be well correlated to subtropical low cloud amount and boundary layer vertical structure. The low cloud increase in SP-CAM is attributed to boundary-layer destabilization due to increased clear-sky radiative cooling in the warmer climate. This drives more shallow cumulus convection and a moister boundary layer, inducing cloud increases and further increasing the radiative cooling. The boundary layer depth does not change substantially, due to compensation between increased radiative cooling (which promotes more turbulent mixing and boundary-layer deepening and slight strengthening of the boundary-layer top inversion (which inhibits turbulent entrainment and promotes a shallower boundary layer. The widespread changes in low clouds do not appear to be driven by changes in mean subsidence.
    In a companion paper we use column-mode CRM simulations based on LTS-composite profiles to further study the low cloud response mechanisms and to explore the sensitivity of low cloud response to grid resolution in SP-CAM.

  17. Carbon capture and storage projects under the climate policy regime: The case of Halten CO2

    OpenAIRE

    Torvanger, Asbjørn; Rypdal, Kristin; Tjernshaugen, Andreas

    2007-01-01

    The report discusses institutional and policy issues associated with implementation of a planned carbon capture and storage plant in Mid-Norway under the international and national climate policy regime.

  18. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  19. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  20. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  1. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  2. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  3. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  4. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  5. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  6. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  7. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  8. Regime shifts in the Sahara and Sahel: interactions between ecological and climatic systems in northern Africa

    NARCIS (Netherlands)

    Foley, J.A.; Coe, M.T.; Scheffer, M.; Wang, G.L.

    2003-01-01

    The Sahara and Sahel regions of northern Africa have complex environmental histories punctuated by sudden and dramatic "regime shifts" in climate and ecological conditions. Here we review the current understanding of the causes and consequences of two environmental regime shifts in the Sahara and Sa

  9. Reservoir Systems in Changing Climate

    Science.gov (United States)

    Lien, W.; Tung, C.; Tai, C.

    2007-12-01

    Climate change may cause more climate variability and further results in more frequent extreme hydrological events which may greatly influence reservoir¡¦s abilities to provide service, such as water supply and flood mitigation, and even danger reservoir¡¦s safety. Some local studies have identified that climate change may cause more flood in wet period and less flow in dry period in Taiwan. To mitigate climate change impacts, more reservoir space, i.e. less storage, may be required to store higher flood in wet periods, while more reservoir storage may be required to supply water for dry periods. The goals to strengthen adaptive capacity of water supply and flood mitigation are conflict under climate change. This study will focus on evaluating the impacts of climate change on reservoir systems. The evaluation procedure includes hydrological models, a reservoir water balance model, and a water supply system dynamics model. The hydrological models are used to simulate reservoir inflows under different climate conditions. Future climate scenarios are derived from several GCMs. Then, the reservoir water balance model is developed to calculate reservoir¡¦s storage and outflows according to the simulated inflows and operational rules. The ability of flood mitigation is also evaluated. At last, those outflows are further input to the system dynamics model to assess whether the goal of water supply can still be met. To mitigate climate change impacts, the implementing adaptation strategies will be suggested with the principles of risk management. Besides, uncertainties of this study will also be analyzed. The Feitsui reservoir system in northern Taiwan is chosen as a case study.

  10. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  11. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip;

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  12. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  13. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  14. Climate Change Facts: Answers to Common Questions

    Science.gov (United States)

    ... Basics Climate Change Facts: Answers to Common Questions Climate Change Facts: Answers to Common Questions This page ... All Responses Is there a scientific consensus on climate change? The major scientific agencies of the United ...

  15. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  16. Climatic changes: explicative guide of international agreements

    International Nuclear Information System (INIS)

    The following themes of the negotiation in the United Nations Convention framework, on the climatic changes and the kyoto protocol are taken into account: the observation, the information communication, the policies and the measures, the developing countries, the flexibility mechanisms, the soils utilizations and the regime evolution. For each theme the document recalls quickly how the theme is detailed in the Convention and in the Protocol, it presents then the decisions and the adopted rules and defines the agreements contain, in terms of challenges and implication in the protocol implementation. (A.L.B.)

  17. Classifying climate change adaptation frameworks

    Science.gov (United States)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  18. Climate Change and Nuclear Power

    International Nuclear Information System (INIS)

    The 1992 United Nations Framework Convention on Climate Change is one of a series of recent agreements through which countries around the world are banding together to meet the challenge of altering the global climate. In 1997, in respond to the growing public pressure and questions on climate change governments adopted the Kyoto Protocol. The 5th Conference of the Parties to the UN Framework Convention on Climate Change (COP5 UNFCCC) was a rather technical and complex conference which focused in particular on the development of a detailed framework for the application of ''flexible mechanisms'' as laid down in the Kyoto Protocol. Young Generation Network as a part of the International Nuclear Forum at COP5 took part in the debate saying that nuclear is the part of the solution. (author)

  19. Projection of future climate changes

    International Nuclear Information System (INIS)

    Climate models provide the opportunity to anticipate how the climate system may change due to anthropogenic activities during the 21. century. Studies are based on numerical simulations that explore the evolution of the mean climate and its variability according to different socio-economic scenarios. We present a selection of results from phase 5 of the Climate model intercomparison project (CMIP5) with an illustrative focus on the two French models that participated to this exercise. We describe the effects of human perturbations upon surface temperature, precipitation, the cryo-sphere, but also extreme weather events and the carbon cycle. Results show a number of robust features, on the amplitude and geographical patterns of the expected changes and on the processes at play in these changes. They also show the limitations of such a prospective exercise and persistent uncertainties on some key aspects. (authors)

  20. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes...... substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. Udgivelsesdato: 2007-Dec......Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  1. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  2. The international climate regime: towards consolidation collapse; Le regime international pour le climat: vers la consolidation ou l'effondrement?

    Energy Technology Data Exchange (ETDEWEB)

    Berthaud, P. [Universite Pierre Mendes France, 38 - Grenoble (France); Cavard, D.; Criqui, P. [Lab. d' Economie de la Protection et de l' Integration International, Departement Energie et Politiques de l' Environnement (EPE/LEPII), CNRS/UPMF, 38 - Saint-Martin d' Heres (France)

    2003-10-01

    This article deals with the different modalities that exist to manage a problem of collective action in the field of climate negotiation. It uses two concepts of the International Political Economy (IPE): the concept of International Regime (IR) and the concept of Hegemony and / or Leadership. The course the international negotiation has taken between 1992 (Rio Convention) and march 2001 (the US rejection of the Kyoto Protocol of 1997) leads us, first, to question the conditions of existence as well as the viability of a non-hegemonic International Regime (Part One). Then, we discuss the perspectives for the 'post - Kyoto' era. After having examined the preferences of the three most active actors in the negotiation (USA, Europe, G77 + China) combined with the leadership capacities they possess, we identify three scenarios for the future: i) anarchy, ii) an international regime under the American hegemony, iii) an international regime under the European leadership (Part Two). (author)

  3. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  4. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  5. Impact of Climate Change in Nigeria

    Directory of Open Access Journals (Sweden)

    N.B. Ikenweiwe

    2011-01-01

    Full Text Available Climate change is an adverse environmental phenomenon that is causing enormous concern all over the world. It refers to some anomalies in the climate system that is a result of human activities. These anomalies include increase in the concentration of GHGs, HFCs and CFCs in earth’s atmosphere, which will ultimately leadto global warming. In fact, global warming has already begun, as earth’s temperature has risen between 0.4 and 0.8°C in the last 100 years. Nigeria is one of the world’s most densely populated countries with a population of 180 million people, half of which are considered to be in abject poverty. Nigeria is recognized as beingvulnerable to climate change. Climate change and global warming if left unchecked will cause adverse effects on livelihoods in Nigeria, such as crop production, livestock production, fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods which devastate farmlands wouldoccur, increase in temperature and humidity which increases pest and disease would occur and other natural disasters like floods, ocean and storm surges, which not only damage Nigerians’ livelihood but also cause harm to life and property, would occur. The paper provides a strong starting point and a useful guide for furtherinvestigations and solution finding projects, both at the local and international levels which focus on more specific issues like public health, food security, energy, adaptations and barriers to them.

  6. Confronting climate change

    International Nuclear Information System (INIS)

    Emissions of greenhouse gases (GHGs), especially from energy production and use, and their impact on global climate emerged as a major national issue in the United States during the 1980s. As a result, Congress directed the US Department of Energy (DOE) to ask the National Academy of Sciences and the National Academy of Engineering to assess the current state of research and development (R ampersand D) in the United States in alternative energy sources, and to suggest energy R ampersand D strategies involving roles for both the public and private sectors, should the government want to give priority to stabilizing atmospheric concentrations of GHGs. The findings and recommendations of the Committee on Alternative Energy Research and Development Strategies, appointed by the National Research Council in response to Congress's directive, are provided in this report and summarized in this chapter. The energy R ampersand D strategies and actions recommended by the committee are structured to facilitate prudent and decisive responses by the United States, despite uncertainties regarding the effects of GHGs on global climate. 96 refs., 4 figs., 17 tabs

  7. Tropical wild-land fires and global changes: Prehistoric evidence, present fire regimes, and future trends

    International Nuclear Information System (INIS)

    In this chapter the effects of tropical fires and fire regimes are predicted from suggested paleo-fire information and knowledge of current tropical fire ecology. Models indicating deforestation, greenhouse effect, and global climate changes are discussed. The negative impacts of fires will need to be countered by integrated fire management systems. Forest or vegetation management strategies which consider a global perspective in environmental policies will be needed

  8. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  9. Tracking of climatic niche boundaries under recent climate change.

    Science.gov (United States)

    La Sorte, Frank A; Jetz, Walter

    2012-07-01

    1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation

  10. Tracking of climatic niche boundaries under recent climate change.

    Science.gov (United States)

    La Sorte, Frank A; Jetz, Walter

    2012-07-01

    1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation

  11. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  12. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  13. Climate change and fuel poverty

    OpenAIRE

    Simon Dresner; Paul Ekins

    2005-01-01

    The research examined the possible effects of rapid climate change on fuel poverty (needing to spend more than 10% of income to maintain a satisfactory level of warmth and other energy services in the home). One particular concern was the prospect that there might be a shutting off of the Gulf Stream, which warms Britain and the rest of north-western Europe. Computer simulations of the climate indicate that shutting down the Gulf Stream would cool England by about 3°C. Climate is not the only...

  14. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhoff, Marianna; Teixeira-de Mello, Franco;

    2015-01-01

    and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We...... phosphorus export from diffuse sources in streams in Uruguay streams, mostly as a consequence of higher variability in flow regime (higher flashiness). Contrarily, we found a higher contribution of dissolved P in flashy streams. We did not find a notably poorer performance of the low-frequency sampling...

  15. Reporting the climate change crisis

    OpenAIRE

    Carvalho, Anabela

    2010-01-01

    Climate change is one of the most serious threats that humankind will have to deal with in the coming decades. There is every indication that it will engender a significant upheaval in the climate patterns of the world regions, with corresponding impacts on agriculture, ecosystems and human health. This main entail unpredictable weather events, like storms and tornados, while posing significant risks for human security, destruction of housing and economic structures, and floodi...

  16. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  17. Invasive species and climate change

    Science.gov (United States)

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  18. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  19. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  20. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  1. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  2. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  3. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    OpenAIRE

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; Gettelman, Andrew; Morrison, Hugh; Lee, Yunha; Shindell, Drew T.; Partridge, Daniel G.

    2016-01-01

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (...

  4. Philosophy of climate science part II: modelling climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the second of three parts of an introduction to the philosophy of climate science. In this second part about modelling climate change, the topics of climate modelling, confirmation of climate models, the limits of climate projections, uncertainty and finally model ensembles will be discussed.

  5. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  6. Market Strategies for Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2004-06-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still reflect the political, non-market components. Using empirical information from the largest multinational companies worldwide, this article examines current market responses, focusing on the drivers (threats and opportunities) and the actions being taken by companies to address climate change. It also develops a typology of climate strategies that addresses the market dimensions, covering both the aim (strategic intent) and the degree of cooperation (form of organisation). The aim turns out to be either innovation or compensation, while the organisational arrangements to reach this objective can be oriented at the company level (internal), at companies' own supply chain (vertical) or at cooperation with other companies (competitors or companies in other sectors - horizontal). The typology can assist managers in deciding about the strategic option(s) they want to choose regarding climate change, also based on the insights offered by the paper about the current state of activities of other companies worldwide.

  7. Indonesian National Policy on Adaptation and Mitigation of Climate Change

    Directory of Open Access Journals (Sweden)

    Wahyu Yun Santoso

    2015-12-01

    Full Text Available From its arousal, the issue of climate change or global warming has become a distinct global trend setter in multidisciplinary discussion, including in the law perspective. Within legal discourse, the issue of climate change developed rapidly into several aspect, not only about adaptation nor mitigation, especially since the plurality of moral conviction relevant to the climate change facts. As a global matter, each country has the responsibility to adapt and mitigate with its own character and policy. This normative research aims to explore and describe in brief the Indonesian national policy in climate change adaptation and mitigation. Gradually, the contribution of Indonesia is getting firm and solid to the climate change regime, especially after the Bali Action Plan 2007.

  8. The legitimacy of leadership in international climate change negotiations.

    Science.gov (United States)

    Karlsson, Christer; Hjerpe, Mattias; Parker, Charles; Linner, Bjorn-Ola

    2012-01-01

    Leadeship is an essential ingredient in reaching international agreements and overcoming the collective action problems associated with responding to climate change. In this study, we aim at answering two questions that are crucial for understanding the legitimacy of leadership in international climate change negotiations. Based on the responses of the three consecutive surveys distributed at COPs 14-16, we seek first to chart which actors are actually recognized as leaders by climate change negotiation participants. Second, we aim to explain what motivates COP participants to support different actors as leaders. Both these questions are indeed crucial for understanding the role, importance, and legitimacy of leadership in the international climate change regime. Our results show that the leadership landscape in this issue area is fragmented, with no one clear-cut leader, and strongly suggest that it is imperative for any actor seeking recognition as climate change leader to be perceived as being devoted to promoting the common good.

  9. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  10. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  11. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people. PMID:26920851

  12. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  13. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  14. Sustain : the climate change challenge

    International Nuclear Information System (INIS)

    This special report on climate change and greenhouse gas emissions focused on widely held current opinions which indicate that average global surface temperatures are increasing. The potential consequences of climate change can include rising sea levels, drought storms, disease, and mass migration of people. While the global climate change theory is widely accepted, the report warns that there are still many uncertainties about how climate change occurs and what processes can offset human-caused emissions. Canada produces about 2 per cent of global greenhouse gas emissions. Carbon dioxide comprises 80 per cent of Canada's total emissions. It is well known that Canadians place a heavy demand on energy to heat and light their homes because of the northern climate, and on transportation fuels to move people, goods and services across vast distances. With the Kyoto Protocol of December 1997, developed countries agreed to legally binding greenhouse gas emission reductions of at least five per cent by 2008 to 2012. Canada agreed to a six per cent reduction below 1990 levels by 2010. Although Canada signed the Kyoto Protocol, it does not intend to ratify it until an implementation strategy has been developed with broad support. The goal is to develop a strategy by 1999. The oil and gas industry has in general improved its efficiency and reduced emissions on a per unit of production basis by installing new equipment and new operating practices that reduce greenhouse gas emissions to the atmosphere, and improve energy efficiency. The industry is conscious of its responsibility, and while not fully in agreement with the environmental doomsayers, it is prepared to take proactive actions now, albeit on a voluntary basis. What the industry wants is a balance between environmental and economic responsibility. Emissions trading' and 'joint implementation' are seen as two important tools to tackle climate change on a global basis. 4 figs

  15. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  16. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  17. Climatic servitude: climate change, business and politics

    International Nuclear Information System (INIS)

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  18. A major reorganization of Asian climate regime by the early Miocene

    Directory of Open Access Journals (Sweden)

    Z. T. Guo

    2008-05-01

    Full Text Available The global climate system has experienced a series of drastic changes during the Cenozoic. These include the climate transformation in Asia, from a zonal pattern to a monsoon-dominant pattern, the disappearance of subtropical aridity related to a planetary circulation system and the onset of inland deserts in central Asia. Despite of the major advances in the last two decades in characterizing and understanding these climate phenomena, disagreements persist relative to the timing, behaviors and underlying causes.

    This paper addresses these issues mainly based on two lines of evidence. Firstly, we newly collected the available Cenozoic geological indicators of environment in China to compile the paleoenvironmental maps of ten intervals with a more detailed examination within the Oligocene and Miocene. In confirming the earlier observation that a zonal climate pattern was transformed into a monsoonal one, the new maps within the Miocene indicate that this major change was achieved by the early Miocene, roughly consistent with the onset of loess deposition in China. Although a monsoon-like regime would have existed in the Eocene, it was restricted in the tropical-subtropical regions. The observed latitudinal oscillations of the climate zones during the Paleogene are likely attributable to the imbalanced evolution of polar ice-sheets between the two hemispheres.

    Secondly, we examine the relevant depositional and soil-forming processes of the Miocene loess-soil sequences to determine the circulation characteristics with special emphasis given to the early Miocene. Continuous eolian deposition in the middle reaches of the Yellow River since the early Miocene firmly indicates the formation of inland deserts, which has been constantly maintained in the past 22 Ma. Inter-section grain-size gradients indicate northerly dust-carrying winds and source location, as is regarded as the main criteria of the Asian winter monsoon

  19. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  20. Integrated assessment of climate change

    International Nuclear Information System (INIS)

    Many researchers are working on all the separate parts of the climate problem. The objective of integrated assessment is to put the results from this work together in order to look carefully at the big picture so as to: (1) keep a proper sense of perspective about the problem, since climate change will occur in the presence of many other natural and human changes; (2) develop the understanding necessary to support informed decision making by many different key public and private actors around the world; and (3) assure that the type and mix of climate-related research that is undertaken will be as useful as possible to decisions makers in both the near and long term. This paper outlines a set of design guidelines for formulating integrated assessment programs and projects and then outlines some of the current problems and opportunities. Selected points are illustrated by drawing on results from the integrated assessment research now in progress at Carnegie Mellon University

  1. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): evidence of a recent regime shift?

    DEFF Research Database (Denmark)

    Tomczak, Maciej Tomasz; Dinesen, Grete E.; Hoffmann, Erik;

    2012-01-01

    An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is an eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west and...... further showed the regime shift to be driven by a combination of anthropogenic pressures and possible interplay with climatic disturbance......An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is an eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west......), jellyfish, common shore crab, starfish and blue mussels. We interpret this change as a regime shift that showed a similar temporal pattern to regime shifts identified in adjacent seas. The observed changes in trophic interactions and food web reorganisation suggested a non-linear regime shift. The analyses...

  2. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  3. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO2 emissions. (Author)

  4. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future. PMID:27300144

  5. Kyoto protocol on climate change

    International Nuclear Information System (INIS)

    This article reports a short overview of main points of Kyoto protocol to United Nations Framework Convention on climate Change and of some options still to be defined, evolutions of Italian emissions with respect to other European countries, check of decree by inter ministerial committee on economic planning on national plan to reduce emissions

  6. Health Effects of Climate Change

    Science.gov (United States)

    ... or insects can increase. Disease vectors such as mosquitoes, ticks, and flies may occur in greater numbers over longer periods during the year, and expand the locations in which they thrive. Climate change also affects air movement and quality by increasing ...

  7. Climate benefits of changing diet

    NARCIS (Netherlands)

    Stehfest, E.; Bouwman, A.F.; Vuuren, van D.P.; Elzen, M.; Kabat, P.

    2009-01-01

    Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in

  8. Symposium on Global Climate Change

    OpenAIRE

    Richard Schmalensee

    1993-01-01

    Global climate change, and policies to slow it or adapt to it, may be among the primary forces shaping the world's economy throughout the next century and beyond. Nonetheless, popular treatments of this issue commonly ignore economics. This introductory essay sketches some of the uncertainties and research questions.

  9. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  10. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  11. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  12. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  13. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  14. Population, poverty, and climate change

    OpenAIRE

    Das Gupta, Monica

    2013-01-01

    The literature is reviewed on the relationships between population, poverty, and climate change. While developed countries are largely responsible for global warming, the brunt of the fallout will be borne by the developing world, in lower agricultural output, poorer health, and more frequent natural disasters. Carbon emissions in the developed world have leveled off, but are projected to ...

  15. Indigenous Peoples and Climate Change

    Directory of Open Access Journals (Sweden)

    Shelton H. Davis

    2010-05-01

    Full Text Available There has been a growing attention on the need to take into account the effects of global climate change. This is particularly so with respect to the increasing amount of green house gas emissions from the Untied States and Europe affecting poor peoples, especially those in developing countries. In 2003, for example, the experts of several international development agencies, including the World Bank, prepared a special report titled “Poverty and Climate Change: Reducing the Vulnerability of the Poor through Adaptation” (OECD 2003. This report followed the Eighth Session of the Conference of Parties (COP8 to the United Nations Framework Convention on Climate Change (UNFCCC in New Delhi, India in October 2002. It showed that poverty reduction is not only one of the major challenges of the 21st century, but also that climate change is taking place in many developing countries and is increasingly affecting, in a negative fashion, both the economic conditions and the health of poor people and their communities.

  16. Critical list: the 100 nations most vulnerable to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Jessica [London School of Economics (United Kingdom); Huq, Saleemul

    2007-12-15

    Well over a billion people in 100 countries face a bleak future. In these, the nations most vulnerable to climate change, resilience has already been eroded by entrenched poverty, degraded or threatened environments and other problems. The harsher, more frequent natural disasters that are predicted could tip them over the edge into chronic famine or forced migration. Yet these are also the countries that have contributed least to climate change. It is vital that their voices and views be heard in the negotiations to determine the post-Kyoto climate regime. Equally importantly, the countries emitting the most greenhouse gases must redress the balance by establishing robust mitigation programmes and by supporting adaptation.

  17. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  18. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  19. Mekong River flow and hydrological extremes under climate change

    Directory of Open Access Journals (Sweden)

    L. P. Hoang

    2015-11-01

    Full Text Available Climate change poses critical threats to water related safety and sustainability in the Mekong River basin. Hydrological impact signals derived from CMIP3 climate change scenarios, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the most recent CMIP5 climate change scenarios. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high flow and low flow conditions. Similar to earlier CMIP3-based assessments, the hydrological cycle also intensifies in the CMIP5 climate change scenarios. The scenarios ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location. Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. We further found that extremely high flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risk in the basin. The implications of climate change induced hydrological changes are critical and thus require special attention in climate change adaptation and disaster-risk reduction.

  20. The greenhouse effect and global climate change

    International Nuclear Information System (INIS)

    The ongoing increase in the concentration of infrared-absorbing gases in the atmosphere is already causing and will continue to cause a growing unbalance in the radiation budget of the earth, and consequent warming of the lower atmosphere and earth surface. This climate phenomenon is the manifestation of the greenhouse or blanketing effect of absorbing gases (also known as ''greenhouse gases'') in the earth atmosphere. The main chemical species responsible for the build-up of the greenhouse effect are carbon dioxide, methane and chlorofluorocarbons (CFCs) or freons. Despite new regulatory efforts made by governments to slow down the emission of these gases, the combined atmospheric burden could be equivalent to doubling the pre-industrial concentration of carbon dioxide (2xCO2) by the middle of next century. The global warming of the earth surface would eventually reach about 4 deg. C if the 2xCO2 concentration then was maintained constant for a long period. As it is, the transient response of climate to an increasing greenhouse effect is delayed by 50 to 100 years. For this reason, we observe now a much smaller climate warming than would occur for climate equilibrium with the present atmospheric composition, i.e. 125% the pre-industrial concentration of CO2. Impacts of this phenomenon will range from disturbances of the existing hydrological regime of the planet to rise of the global mean sea-level. A warmer atmosphere means more rain but also faster evaporation: consequences in terms of the availability of water resources are unclear at temperate and high latitudes, but an aggravation of aridity in sub-tropical latitudes is probable. Sea-level rise may reach 50 cm by 2100. In general, the rate of climate warming when the climate system starts responding to the greenhouse effect could be 0.3 deg. C per decade, far exceeding the ability of natural ecosystems to adapt effectively to the change. (author). 5 refs, 2 figs

  1. The Evaluation of Climate Change Risks

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2012-11-01

    Full Text Available Nowadays, it is acknowledged that climatic changes represent a serious threat for the environment and, so, this problem has been approached at numerous conferences, conventions and summits. The climate is strongly influenced by the changes in the atmospheric concentrations of certain gases that hold the solar radiations on the Earth’s surface (the greenhouse effect. The water vapors and the carbon dioxide (CO2 present in the atmosphere have always generated a natural greenhouse effect, without which the Earth surface would be 33o C lower than it is today. Other greenhouse gases are: methane (CH4, nitrogen protoxide (N2O, and the halogenated compounds such as chlorofluorocarbons (CFCs. During the last hundred years, man’s activity has led to the increase of the atmospheric concentration of the greenhouse gases and of other pollutants, its consequence being the increase of the average global temperature. Although it has not been calculated exactly how much of this warming can be attributed to the greenhouse gases, there is evidence that human activity contributes to global warming. The main causes leading to the accentuation of the greenhouse effect are the burning of the fossil fuels, deforestations, cement production, waste disposal, refrigeration etc. The climatic changes triggered by the greenhouse gases will have consequences that have already made themselves visible, causing: the increase of the sea level and the possible flooding of the low areas; the melting of the icecap; the modification of the precipitations regime, with consequences like the increase of the floods and droughts frequency; changes in the occurrence of climatic extremes, especially in the occurrence of the high, extreme temperatures. All these will have a direct impact on ecosystems, health, some key economic sectors such as agriculture and on water resources.

  2. Economy of climatic change. From mitigation to adaptation policies

    International Nuclear Information System (INIS)

    Climate change adaptation policies are the subject of this thesis. It has been showed that the United Nations Framework Convention on Climate Change (1992) and the response strategies construction are characteristic of a pollutionist approach. This approach led to envision the question of climate change as a classic pollution and environment issue. As a result, this approach has generated a double bias to the disadvantage of adaptation compared to mitigation policies: adaptation has been confined in a secondary and marginal role in climate policies structuring, and with an inoperative conceptual and methodological framework for its implementation. The thesis proposes a deconstruction of this climate change conceptualization. Moreover, the major limits that characterize mitigation policies call into question the predominance given to them in climate policies construction. The 'pollutionist' approach deconstruction allows at first to show that adaptation policies definition and operationalization need to go beyond (i) the standard analytic framework of climate policies and, (ii) the climate change conceptualization as a classic pollution and environment management issue. The thesis then argues that adaptation has to be integrated in development promoting policies, which means that adaptation needs to be conceptualized no longer as an ad hoc management of pollution effects issue, but as a development issue. Whether in the proper context of adaptation policies, or more largely of climate policies, the thesis leaves open the questions of the viability, but also of the organization and financing modalities, of a climate regime which fits within development promoting. (author)

  3. Crop coefficients for winter wheat in a sub-humid climate regime

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel;

    2008-01-01

    coefficients for a winter wheat crop growing under standard conditions, i.e. not short of water and growing under optimal agronomic conditions, were estimated for a cold sub-humid climate regime. One of the two methods used to estimate ET from a reference crop required net radiation (Rn) as input. Two sets of...... standard deviations ranging from 0.13 to 0.23 for both years. These values exceed values used in some sub-humid climate regime studies, but agree well with values from the international literature....

  4. Hydroclimatogical Changes and Impacts on Seasonal Regimes of African Equatorial Rivers

    Science.gov (United States)

    Mahe, G. M.

    2015-12-01

    In recent decades, changes in the pattern of hydroclimatogical cycle have been observed with impacts on seasonal regimes of African equatorial rivers. This communication reports on studies carried out for a set of river basins in equatorial Africa, tributaries of the Atlantic Gulf of Guinea: the Ogooue River in Gabon, the Kouilou River in Congo, and the basins of South Cameroon. These rivers are compared to the Congo River. A new monthly gridded rainfall dataset, and streamflow from selected rivers where used in the analysis. The observed changes include changes in seasonal pattern of rainfall and changes in monthly streamflow regimes. The study shows a decrease of rainfall in the southern hemisphere during February to May since the end of the 80s, while the decrease is much more limited in the Northern hemisphere. For the equatorial rivers, the March-June flood decreased steadily between the 70s and 80s, in correlation with a slight decrease of the rainfall between March and June, while the October-December flood showed no change. This trend was confirmed during the 2000s for the Ogooue River from updated times series, including a shift of the maximum in April instead of May. Locally, the dry season (July-September) disappeared on the coastal basin of the Kienke River at Kribi in Cameroon. It seems that these two months of July and August have become part of a 'single' large rainy season instead of separating the former two rainy seasons. A slight decrease in seasonal rainfall together with a small change in the intra-seasonal rainfall distribution, most probably led to one of the biggest change in hydrological regimes in Equatorial Africa, which could be a clue to understanding climate change in the region. This rainfall change is different for the Congo River which large basins integrates various climatic forcings.

  5. Cloud feedback on climate change and variability

    Science.gov (United States)

    Zhou, C.; Dessler, A. E.; Yang, P.

    2014-12-01

    Cloud feedback on climate change and variability follow similar mechanism in climate models, and the magnitude of cloud feedback on climate change and variability are well correlated among models. Therefore, the cloud feedback on short-term climate fluctuations correlates with the equilibrium climate sensitivity in climate models. Using this correlation and the observed short-term climate feedback, we infer a climate sensitivity of ~2.9K. The cloud response to inter-annual surface warming is generally consistent in observations and climate models, except for the tropical boundary-layer low clouds.

  6. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  7. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  8. Simulation of landscape disturbances and the effect of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.L.

    1993-01-29

    The purpose of this research is to understand how changes in climate may affect the structure of landscapes that are subject to periodic disturbances. A general model useful for examining the linkage between climatic change and landscape change has been developed. The model makes use of synoptic climatic data, a geographical information system (GRASS), field data on the location of disturbance patches, simulation code written in the SIMSCRIPT language, and a set of landscape structure analysis programs written specifically for this research project. A simplified version of the model, lacking the climatic driver, has been used to analyze how changes in disturbance regimes (in this case settlement and fire suppression) affect landscape change. Landscape change lagged in its response to changes in the disturbance regime, but the lags differed depending upon the character of the change and the particular measure considered. The model will now be modified for use in a specific setting to analyze the effects of changes in climate on the structure of flood-disturbed patches along the Animas River, Colorado.

  9. Simulation of landscape disturbances and the effect of climatic change

    International Nuclear Information System (INIS)

    The purpose of this research is to understand how changes in climate may affect the structure of landscapes that are subject to periodic disturbances. A general model useful for examining the linkage between climatic change and landscape change has been developed. The model makes use of synoptic climatic data, a geographical information system (GRASS), field data on the location of disturbance patches, simulation code written in the SIMSCRIPT language, and a set of landscape structure analysis programs written specifically for this research project. A simplified version of the model, lacking the climatic driver, has been used to analyze how changes in disturbance regimes (in this case settlement and fire suppression) affect landscape change. Landscape change lagged in its response to changes in the disturbance regime, but the lags differed depending upon the character of the change and the particular measure considered. The model will now be modified for use in a specific setting to analyze the effects of changes in climate on the structure of flood-disturbed patches along the Animas River, Colorado

  10. The ACPI Climate Change Simulations

    International Nuclear Information System (INIS)

    The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data from these runs were saved at 6-hourly intervals (hourly for certain critical fields) to support the ACPI objective of accurately modeling hydrological cycles over the western U.S. It is shown that the initialization to 1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3-8C over northern high-latitudes by the end of the 21st century, and 1-2C over the oceans. This is generally within ±0.1C of model runs without the 1995 ocean initialization. The exception is in the Antarctic circumpolar ocean where surface air temperature is cooler in the ACPI run; however the ensemble scatter is large in this region. Although the difference in climate at the end of the 21st century is minimal between the ACPI runs and traditionally spun up runs, it might be larger for CGCMs with higher climate sensitivity or larger ocean drifts. Our results suggest that the effect of small errors in the oceans (such as those associated with climate drifts) on CGCM-simulated climate changes for the next 50-100 years may be negligible

  11. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  12. 1000 years of climate change

    Science.gov (United States)

    Keller, C.

    Solar activity has been observed to vary on decadal and centennial time scales. Recent evidence (Bond, 2002) points to a major semi-periodic variation of approximately 1,500 yrs. For this reason, and because high resolution proxy records are limited to the past thousand years or so, assessing the role of the sun's variability on climate change over this time f ame has received much attention. A pressingr application of these assessments is the attempt to separate the role of the sun from that of various anthropogenic forcings in the past century and a half. This separation is complicated by the possible existence of natural variability other than solar, and by the fact that the time-dependence of solar and anthropogenic forcings is very similar over the past hundred years or so. It has been generally assumed that solar forcing is direct, i.e. changes in sun's irradiance. However, evidence has been put forth suggesting that there exist various additional indirect forcings that could be as large as or even exceed direct forcing (modulation of cosmic ray - induced cloudiness, UV- induced stratospheric ozone change s, or oscillator -driven changes in the Pacific Ocean). Were such forcings to be large, they could account for nearly all 20th Century warming, relegating anthropogenic effects to a minor role. Determination of climate change over the last thousand years offers perhaps the best way to assess the magnitude of total solar forcing, thus allowing its comparison with that of anthropogenic sources. Perhaps the best proxy records for climate variation in the past 1,000 yrs have been variations in temperat ure sensitive tree rings (Briffa and Osborne, 2002). A paucity of such records in the Southern Hemisphere has largely limited climate change determinations to the subtropical NH. Two problems with tree rings are that the rings respond to temperature differently with the age of the tree, and record largely the warm, growing season only. It appears that both these

  13. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  14. Mekong River flow and hydrological extremes under climate change

    Science.gov (United States)

    Phi Hoang, Long; Lauri, Hannu; Kummu, Matti; Koponen, Jorma; van Vliet, Michelle T. H.; Supit, Iwan; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2016-07-01

    Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high-flow and low-flow conditions). In general, the Mekong's hydrological cycle intensifies under future climate change. The scenario's ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location). Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. The scenario's ensemble, however, shows reduced uncertainties in climate projection and hydrological impacts compared to earlier CMIP3-based assessments. We further found that extremely high-flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risks in the basin. Climate-change-induced hydrological changes will have important implications for safety, economic development, and ecosystem dynamics and thus require special attention in climate change adaptation and water management.

  15. Climate change science - beyond IPCC

    International Nuclear Information System (INIS)

    Full text: Full text: The main conclusions of the IPCC Working Group I assessment of the physical science of climate change, from the Fourth IPCC Assessment, will be presented, along with the evidence supporting these conclusions. These conclusions include: Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture; The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] Wm-2; Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level; At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. Palaeo-climatic information supports the interpretation that the warmth of the last half-century is unusual in at least the previous 1,300 years; Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations; Discernible human influences now extend to other aspects of climate, including ocean warming, continental

  16. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  17. State-dependence of climate sensitivity: attractor constraints and palaeoclimate regimes

    CERN Document Server

    von der Heydt, Anna S

    2016-01-01

    Equilibrium climate sensitivity is a frequently used measure to predict long-term climate change. However, both climate models and observational data suggest a rather large uncertainty on climate sensitivity (CS). The reasons for this include: the climate has a strong internal variability on many time scales, it is subject to a non-stationary forcing and it is, on many timescales, out of equilibrium with the changes in the radiative forcing. Palaeo records of past climate variations give insight into how the climate system responds to various forcings although care must be taken of the slow feedback processes before comparing palaeo CS estimates with model estimates. In addition, the fast feedback processes can change their relative strength and time scales over time. Consequently, another reason for the large uncertainty on palaeo climate sensitivity may be the fact that it is strongly state-dependent. Using a conceptual climate model, we explore how CS can be estimated from unperturbed and perturbed model t...

  18. Climatic change and security stakes

    International Nuclear Information System (INIS)

    This paper explores the relationships between climate change and security. Potential threats from climate change, as a unique source of stress or together with other factors, to human security are first examined. Some of the most explicit examples illustrate this section: food security, water availability, vulnerability to extreme events and vulnerability of small islands States and coastal zones. By questioning the basic needs of some populations or at least aggravating their precariousness, such risks to human security could also raise global security concerns, which we examine in turn, along four directions: rural exodus with an impoverishment of displaced populations, local conflicts for the use of natural resources, diplomatic tensions and international conflicts, and propagation to initially-unaffected regions through migratory flows. (authors)

  19. Radiative Forcing of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  20. Making sense of climate change

    International Nuclear Information System (INIS)

    Climate change has always occurred naturally but at a pace to which the earth has adapted well. Now, due to human activities like energy utilization and waste disposal, the earth is heating up much faster than earlier. Ecosystems, water resources, food sources, health, and human settlements are getting adversely affected. Floods and droughts are increasing, glaciers are melting, and disease is spreading. The problem is serious and it is time to act. Global consensus has been agreements; mitigation initiatives have been undertaken; hopes are up. The aim of this book is to raise the awareness of secondary school students about climate change and its impacts while enhancing their understanding of global responses. It includes a chapter specific to Indian conditions. Lucidly written and illustrated with anecdotes and visuals, this handbook will catalyse young minds into greater awareness, concern, and, hopefully, remedial action on this global threat

  1. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  2. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    OpenAIRE

    Kanchan Joshi; Preeti Chaturvedi

    2013-01-01

    Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  3. Effects Of Land Cover Change On The Hydrologic Regime Of Kabompo River Basin, Zambia

    Science.gov (United States)

    Kampata, J. M.; Rientjes, T. H. M.; Timmermans, J.

    2013-12-01

    Over the past decades, the Kabompo River Basin in Zambia is affected by deforestation and land degradation as a consequence of intensified agriculture and mining. Changes presumably have affected the hydrological catchment behaviour and related seasonal flow regimes. Impact assessments are unknown for the basin. In this study multi-decadal time series of rainfall and stream flow were evaluated by trend analysis, change point detection methods and analysis on high and low flow exceedance probabilities. Results are combined with satellite based land cover observations for 1984, 1994, 2001 and 2009. Unsupervised classification of the Landsat images indicate pronounced land cover changes. Preliminary results of this study show that i) precipitation time series are not directly affected by climate change and ii) changes in stream flow can be linked to changes in land cover.

  4. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  5. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review. PMID:22435190

  6. Poverty Traps and Climate Change

    OpenAIRE

    Tol, Richard S.J.

    2011-01-01

    We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro level, technological progress is slow because of decreasing returns to scale in agriculture. With high populatio...

  7. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models are given

  8. Challenges and Possibilities in Climate Change Education

    Science.gov (United States)

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  9. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  10. Communicating Uncertainties on Climate Change

    Science.gov (United States)

    Planton, S.

    2009-09-01

    The term of uncertainty in common language is confusing since it is related in one of its most usual sense to what cannot be known in advance or what is subject to doubt. Its definition in mathematics is unambiguous but not widely shared. It is thus difficult to communicate on this notion through media to a wide public. From its scientific basis to the impact assessment, climate change issue is subject to a large number of sources of uncertainties. In this case, the definition of the term is close to its mathematical sense, but the diversity of disciplines involved in the analysis process implies a great diversity of approaches of the notion. Faced to this diversity of approaches, the issue of communicating uncertainties on climate change is thus a great challenge. It is also complicated by the diversity of the targets of the communication on climate change, from stakeholders and policy makers to a wide public. We will present the process chosen by the IPCC in order to communicate uncertainties in its assessment reports taking the example of the guidance note to lead authors of the fourth assessment report. Concerning the communication of uncertainties to a wide public, we will give some examples aiming at illustrating how to avoid the above-mentioned ambiguity when dealing with this kind of communication.

  11. Past and Current Climate Change

    Science.gov (United States)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  12. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  13. Climate change, environment and allergy.

    Science.gov (United States)

    Behrendt, Heidrun; Ring, Johannes

    2012-01-01

    Climate change with global warming is a physicometeorological fact that, among other aspects, will also affect human health. Apart from cardiovascular and infectious diseases, allergies seem to be at the forefront of the sequelae of climate change. By increasing temperature and concomitant increased CO(2) concentration, plant growth is affected in various ways leading to prolonged pollination periods in the northern hemisphere, as well as to the appearance of neophytes with allergenic properties, e.g. Ambrosia artemisiifolia (ragweed), in Central Europe. Because of the effects of environmental pollutants, which do not only act as irritants to skin and mucous membranes, allergen carriers such as pollen can be altered in the atmosphere and release allergens leading to allergen-containing aerosols in the ambient air. Pollen has been shown not only to be an allergen carrier, but also to release highly active lipid mediators (pollen-associated lipid mediators), which have proinflammatory and immunomodulating effects enhancing the initiation of allergy. Through the effects of climate change in the future, plant growth may be influenced in a way that more, new and altered pollens are produced, which may affect humans. PMID:22433365

  14. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  15. Accounting for Climate Change: Introduction

    International Nuclear Information System (INIS)

    The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is high on both political and scientific agendas internationally. As increasing international concern and cooperation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The approaches to addressing uncertainty introduced in this article attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Authors of the accompanying articles use detailed uncertainty analyses to enforce the current structure of the emission trading system and attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. Assessment of uncertainty can help improve inventories and manage risk. Through recognizing the importance of, identifying and quantifying uncertainties, great strides can be made in the process of Accounting for Climate Change

  16. Sustainable development and climatic change

    International Nuclear Information System (INIS)

    The relationships between the fight against climatic change and the objective of sustainable development have acquired an historical perspective: the Framework Convention of 1992, the Kyoto Protocol and the Bonn-Marrakech Accords. The Convention demonstrates that we must strive for economic growth and sustainable development to allow developing countries to better face the problems associated with climatic change. In the Kyoto Protocol, the commitments agreed upon by northern countries were presented as implicating a group of policies that promote sustainable development. The author discussed the challenges, the contradictions, and the means available to fight against climatic change since Rio. The author begins by expressing the hope that the Kyoto Protocol will be ratified at the Johannesburg Summit, since Russia is moving forward, despite the withdrawal of the United States. Scientists seem to agree that global warming is occurring due to the increase in greenhouse gases in the atmosphere. There are two major difficulties encountered in attempting to stabilize the levels of greenhouse gases: (1) are the countries that emit the most gases in a position to alter their activities in an effort to reduce emissions? and (2) will developing countries be able to avoid the pitfalls that led developed countries to emit greenhouse gases in enormous quantities?

  17. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  18. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    Science.gov (United States)

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm. PMID:24424082

  19. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  20. Lack of Climate Expertise Among Climate Change Educators

    Science.gov (United States)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  1. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies USDA Climate Hubs Through this ...

  2. Ecosystem vulnerability to climate change in the southeastern United States

    Science.gov (United States)

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-08-11

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  3. Ecosystem vulnerability to climate change in the southeastern United States

    Science.gov (United States)

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-01-01

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  4. Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, U.S.A.

    Science.gov (United States)

    Elliott, Grant P

    2012-07-01

    Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad

  5. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  6. Culprits, climate change and coping strategies in Africa

    International Nuclear Information System (INIS)

    In sub-Saharan Africa, populations are predominantly rural, dependent on rain-fed agriculture for subsistence and livelihoods. Poor families are ill -equipped to respond to changing patterns and the shorter growing season caused by warmer days and nights. Key climate change scenarios in the region are presented like shifting rainfall regimes, droughts, etc with the attendant impact on agricultural output. Coping strategies have been presented which can be replicated in other parts of the world with similar challenges. Keywords: climate change, Nigeria, Africa, rainfall, coping strategies

  7. Climate change effects on forests: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. [Argonne National Lab., IL (United States); LeBlanc, D. [Ball State Univ., Muncie, IN (United States). Dept. of Biology

    1996-02-01

    While current projections of future climate change associated with increases in atmospheric greenhouse gases have a high degree of uncertainty, the potential effects of climate change on forests are of increasing concern. A number of studies based on forest simulation models predict substantial temperatures associated with increasing atmospheric carbon dioxide concentrations. However, the structure of these computer models may cause them to overemphasize the role of climate in controlling tree growth and mortality. We propose that forest simulation models be reformulated with more realistic representations of growth responses to temperature, moisture, mortality, and dispersal. We believe that only when these models more accurately reflect the physiological bases of the responses of tree species to climate variables can they be used to simulate responses of forests to rapid changes in climate. We argue that direct forest responses to climate change projected by such a reformulated model may be less traumatic and more gradual than those projected by current models. However, the indirect effects of climate change on forests, mediated by alterations of disturbance regimes or the actions of pests and pathogens, may accelerate climate-induced change in forests, and they deserve further study and inclusion within forest simulation models.

  8. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Hydropower is the leading source of electrical production in many countries. It is a clean and renewable source and certainly will continue to play an important role in the future energy supply. However, the effects of climate change on this valuable resource remain questionable. In order to identify the potential initiatives that the hydropower industry may undertake, it is important to determine the current state of knowledge of the impacts of climate change on hydrological variables at regional and local scales. Usually, the following steps are taken. First, general circulation models (GCMs) are used to simulate future climate under assumed greenhouse gas emission scenarios. Then, different techniques (statistical downscaling/regional climate models) are applied to downscale the GCM outputs to the appropriate scales of hydrological models. Finally, hydrologic models are employed to simulate the effects of climate change at regional and local scales. Outputs from these models serve as inputs to water management models that give more details about hydropower production. In the present study, realized by OURANOS upon the request of CEATI, a critical review of the methods used to determine impact of climate change on water resources and hydropower generation is carried out. The major results from recent studies worldwide are reported and future scientific actions to better understand climate change impacts on the hydrological regime are identified. The study is expected to provide direction for the hydropower industry to mitigate the impacts of climate change. (author)

  9. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  10. Frogs and climate change in South Africa

    OpenAIRE

    Minter, Leslie Rory

    2011-01-01

    This article explores the relationship between frog declines and climate change, discusses the possible impact of climate change on the South African frog fauna, and highlights the necessity for increased research and monitoring of our frog populations.

  11. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Science.gov (United States)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  12. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  13. Management Under Anarchy. The International Politics of Climate Change

    International Nuclear Information System (INIS)

    This article analyzes climate change from the perspective of international politics. In the anarchy of the international system, various cooperation problems have stalled the formation of an effective climate regime at the international level. Obstacles occur at three stages of regime formation: the bargaining stage, the transition stage, and the implementation stage. The importance of the transition stage of cooperation, which takes place between the signing of an agreement and its entry into force, has been overlooked by international relations scholars and is particularly important in the climate case. The article assesses the possibility of applying 'adaptive management' principles to climate change as a partial response to these political obstacles. While such an approach has significant appeal given the uncertainty surrounding the human-climate interface, its experimental, top-down characteristics are not politically feasible at the international level. I recommend certain modifications of existing institutions and practices to improve international information sharing and facilitate efficient learning. These changes would serve to promote a decentralized and passive - and thus politically viable - version of adaptive management, an effective approach to dealing with climate change at the global level

  14. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  15. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  16. Global streamflow and thermal habitats of freshwater fishes under climate change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Ludwig, F.; Kabat, P.

    2013-01-01

    Climate change will affect future flow and thermal regimes of rivers. This will directly affect freshwater habitats and ecosystem health. In particular fish species, which are strongly adapted to a certain level of flow variability will be sensitive to future changes in flow regime. In addition, all

  17. Changes in drought risk with climate change

    International Nuclear Information System (INIS)

    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  18. Increased sensitivity to climate change in disturbed ecosystems

    OpenAIRE

    Kröel-Dulay, G.; Ransijn, J.; I. K. Schmidt; Beier, C.; De Angelis, P.; G. de Dato; Dukes, J.S.; Emmett, B.; Estiarte, M; Garadnai, J.; Kongstad, J; Kovacs Lang, E.; Larsen, K. S.; Liberati, D.; R. Ogaya

    2015-01-01

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experim...

  19. Climate change mitigation policies in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinaviciute, I.

    2003-09-01

    The Lithuanian climate change policy has to be considered in the framework of the Convention on Climate Change. The National Strategy for Implementation of Convention was the first step in evaluating the country's impact on climate change, adapting to the Convention and foreseeing the means and measures for climate change mitigation. The paper introduces main issues related to climate change mitigation policy in Lithuania. It presents an analysis of greenhouse gas emission trends in Lithuania and surveys institutional organizations as well as stakeholder associations related to climate change issues and their role in climate policy making. The main Lithuanian international environmental obligation and Lithuanian governmental climate change mitigation policy in the energy sector are presented as well. (Author)

  20. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  1. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, Sabine

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  2. As climate changes, so do glaciers

    OpenAIRE

    Lowell, Thomas V.

    2000-01-01

    Understanding abrupt climate changes requires detailed spatial/temporal records of such changes, and to make these records, we need rapidly responding, geographically widespread climate trackers. Glacial systems are such trackers, and recent additions to the stratigraphic record show overall synchronous response of glacial systems to climate change reflecting global atmosphere conditions.

  3. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  4. The isotope hydrology of Quaternary climate change.

    Science.gov (United States)

    Darling, W G

    2011-04-01

    Understanding the links between climate change and human migration and culture is an important theme in Quaternary archaeology. While oxygen and hydrogen stable isotopes in high-latitude ice cores provide the ultimate detailed record of palaeoclimate extending back to the Middle Pleistocene, groundwater can act as a climate archive for areas at lower latitudes, permitting a degree of calibration for proxy records such as lake sediments, bones, and organic matter. Not only can oxygen and hydrogen stable isotopes be measured on waters, but the temperature of recharge can be calculated from the amount of the atmospheric noble gases neon, argon, krypton, and xenon in solution, while residence time can be estimated from the decay of the radioisotopes carbon-14, chlorine-36, and krypton-81 over timescales comparable to the ice core record. The Pleistocene-Holocene transition is well characterised in aquifers worldwide, and it is apparent that isotope-temperature relationships of the present day are not necessarily transferable to past climatic regimes, with important implications for the interpretation of proxy isotope data. Groundwaters dating back to one million years, i.e., to beyond the Middle Pleistocene, are only found in major aquifer basins and information is relatively sparse and of low resolution. Speleothem fluid inclusions offer a way of considerably increasing this resolution, but both speleothem formation and large-scale groundwater recharge requires humid conditions, which may be relatively infrequent for areas currently experiencing arid climates. Both types of record therefore require caution in their interpretation when considering a particular archaeological context.

  5. Evolutionary potential and adaptation of Banksia attenuata (Proteaceae) to climate and fire regime in southwestern Australia, a global biodiversity hotspot

    Science.gov (United States)

    He, Tianhua; D’Agui, Haylee; Lim, Sim Lin; Enright, Neal J.; Luo, Yiqi

    2016-05-01

    Substantial climate changes are evident across Australia, with declining rainfall and rising temperature in conjunction with frequent fires. Considerable species loss and range contractions have been predicted; however, our understanding of how genetic variation may promote adaptation in response to climate change remains uncertain. Here we characterized candidate genes associated with rainfall gradients, temperatures, and fire intervals through environmental association analysis. We found that overall population adaptive genetic variation was significantly affected by shortened fire intervals, whereas declining rainfall and rising temperature did not have a detectable influence. Candidate SNPs associated with rainfall and high temperature were diverse, whereas SNPs associated with specific fire intervals were mainly fixed in one allele. Gene annotation further revealed four genes with functions in stress tolerance, the regulation of stomatal opening and closure, energy use, and morphogenesis with adaptation to climate and fire intervals. B. attenuata may tolerate further changes in rainfall and temperature through evolutionary adaptations based on their adaptive genetic variation. However, the capacity to survive future climate change may be compromised by changes in the fire regime.

  6. Climate change, migration and health.

    Science.gov (United States)

    Carballo, Manuel

    2008-01-01

    In summary, climate change of the magnitude that is now being talked about promises to invoke major changes in the nature of the world we live in. From an agricultural and food production perspective new challenges are already emerging and many countries, regional organizations and international agencies are ill-prepared to deal with them. From the perspective of the forced emergence of new diseases. There may also be complex struggles for scarce resources including land, water, food and housing. To what extent these will translate into social and political instability is not clear, but the potential for instability within and between countries should not be under-estimated; nor should the scarcity of selected commodities. Understanding these complex dynamics and planning for them in timely and comprehensive ways is essential. Preparedness by governments, the international community and the private sector, will help accommodate some of the changes that are already taking place and many others which are still to materialize. PMID:18795506

  7. Climate change and nuclear power

    International Nuclear Information System (INIS)

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  8. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  9. Global climate change : greenhouse effect

    OpenAIRE

    Attard, David

    1992-01-01

    One of the main problems caused by climate change is the greenhouse effect. Human activities emit so-called greenhouse gases into the atmosphere, such as carbon dioxide which is produced through fossil fuel burning. These gases absorb the earth‘s radiation, forcing the earth‘s temperature, like that of in greenhouse, to rise. Global warming would lead to a rise in the global mean sea-level due to thermal expansion of the waters, and glaciers will melt at a fast rate, as will the Greenland ice...

  10. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  11. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  12. Scientific aspects of climate change

    International Nuclear Information System (INIS)

    For the last 35 years, the average temperature of the planet has been steadily increasing- Are the greenhouse gases emitted by human beings the cause? What will the consequences be? What can we do? The fourth report of the intergovernmental Panel on Climate change tries to answer these questions. There are clear signs of thawing that primary affect Greenland and the Antarctic, but there are still many doubts what the consequences will be throughout the century. In any case, it seems obvious that, if greenhouse gas emissions are not substantially reduced very soon, the rising temperature trend and its associated consequences will persist beyond the 21st century. (Author)

  13. Energy transition or incremental change? Green policy agendas and the adaptability of the urban energy regime in Los Angeles

    International Nuclear Information System (INIS)

    Drawing on recent research in urban policy studies and social studies of technology, this paper examines the capability of urban energy regimes in adapting to environmental policy pressures. Focusing on the case of the City of Los Angeles, we critically analyze the transformative capacity of the city's recent energy and climate policies and the innovation patterns of its urban infrastructure regime. This case study suggests that despite considerable success in switching from coal to renewable energies, the patterns of sociotechnical change in Los Angeles still tend to supplement and sustain the existing regime. Sociotechnical change in Los Angeles tends to unfold incrementally through adjustments within the established patterns of the existing regime. - Highlights: • Theory-guided case study on the transition of the urban energy regime in Los Angeles. • Evaluation of the transformative capacity of environmental policies. • Assessment of the adaptability and innovation patterns of urban infrastructure regimes. • The policy changes have sustained the existing regime and unfold incrementally

  14. Romania within the Context of Climatic Changes

    OpenAIRE

    Dragoş, Raluca; Dragoş, Gheorghe-Viorel

    2011-01-01

    Under the circumstances of the menacing climatic changes upon both environment and social-economic framework, the United Nations Framework Convention on Climate Change (UNFCCC) has established its main objective “achieving stabilization of gas concentrations within climatic system”. Due to the fact that the main cause of the climatic changes derives from the exhausted gases resulting in the greenhouse effect, measures, targets and programs of reducing greenhouse effects gases will be esta...

  15. Climate Change and Corporate Environmental Responsibility

    OpenAIRE

    Dewan Mahboob HOSSAIN; Chowdhury, M. Jahangir Alam

    2012-01-01

    Climate change, as an international environmental issue, is getting a lot of attention. The negative effects of climate change have become one of the most talked about issues among Governments, scientists, environmentalists and others. It is said that business activities are affecting the climate negatively. In order to minimize the negative effects of climate change, the activities of the businesses should be controlled and encouraged to perform in a socially responsible manner. The article ...

  16. The challenges of communicating climate change

    Directory of Open Access Journals (Sweden)

    Emiliano Feresin

    2009-06-01

    Full Text Available The climate change issue has become increasingly present in our society in the last decade and central also to communication studies. In the e-book “Communicating Climate Change: Discourses, Mediations and Perceptions”, edited by Anabela Carvalho, various scholars investigate how climate change challenges communication by looking at three main aspects: the discourses of a variety of social actors on climate change; the reconstruction of those discourses in the media; the citizens’ perceptions, understandings and attitudes in relation to climate change.

  17. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  18. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.;

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  19. Rapid adaptation to climate change.

    Science.gov (United States)

    Hancock, Angela M

    2016-08-01

    In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations. PMID:27463237

  20. Enhancing urban infrastructure investment planning practices for a changing climate.

    Science.gov (United States)

    He, J; Valeo, C; Bouchart, F J C

    2006-01-01

    Climate change raises many concerns for urban water management because of the effects on all aspects of the hydrological cycle. Urban water infrastructure has traditionally been designed using historical observations and assuming stationary climatic conditions. The capability of this infrastructure, whether for storm-water drainage, or water supply, may be over- or under-designed for future climatic conditions. In particular, changes in the frequency and intensity of extreme rainfall events will have the most acute effect on storm-water drainage systems. Therefore, it is necessary to take future climatic conditions into consideration in engineering designs in order to enhance water infrastructure investment planning practices in a long time horizon. This paper provides the initial results of a study that is examining ways to enhance urban infrastructure investment planning practices against changes in hydrologic regimes for a changing climate. Design storms and intensity-duration-frequency curves that are used in the engineering design of storm-water drainage systems are developed under future climatic conditions by empirically adjusting the general circulation model output, and using the Gumbel distribution and the Chicago method. Simulations are then performed on an existing storm-water drainage system from NE Calgary to investigate the resiliency of the system under climate change.

  1. Climate Change Adaptation in the Water Sector

    NARCIS (Netherlands)

    Ludwig, F.; Kabat, P.; Schaik, van H.; Valk, van der M.

    2009-01-01

    Today’s climate variability already has a large impact on water supply and protection. Millions of people are affected every year by droughts and floods. Future climate change is likely to make things worse. Many people within the water sector are aware that climate change is affecting water resourc

  2. Contributions of Psychology to Limiting Climate Change

    Science.gov (United States)

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  3. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  4. Science Teachers' Perspectives about Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  5. Climate change and the ethics of discounting

    NARCIS (Netherlands)

    M.D. Davidson

    2015-01-01

    Climate policy-making requires a balancing, however rudimentary, of the costs of reducing greenhouse gas emissions against the benefits of reduced risks of climate change. Since those creating and those facing the risks of climate change belong to different generations, striking the balance is preem

  6. Climate Change and Poverty : An Analytical Framework

    OpenAIRE

    Hallegatte, Stephane; Bangalore, Mook; Bonzanigo, Laura; Fay, Marianne; Narloch, Ulf; Rozenberg, Julie; Vogt-Schilb, Adrien

    2014-01-01

    Climate change and climate policies will affect poverty reduction efforts through direct and immediate impacts on the poor and by affecting factors that condition poverty reduction, such as economic growth. This paper explores this relation between climate change and policies and poverty outcomes by examining three questions: the (static) impact on poor people's livelihood and well-being; ...

  7. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered. PMID:23185568

  8. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  9. Climate change: believing and seeing implies adapting.

    Directory of Open Access Journals (Sweden)

    Kristina Blennow

    Full Text Available Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01 to 0.81 (SD ± 0.03 for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008 to 0.91 (SD ± 0.02. We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  10. Assessment and Comparison of TMPA Satellite Precipitation Products in Varying Climatic and Topographic Regimes in Morocco

    Directory of Open Access Journals (Sweden)

    Adam Milewski

    2015-05-01

    Full Text Available TRMM Multi-satellite Precipitation Analysis (TMPA satellite precipitation products have been utilized to quantify, forecast, or understand precipitation patterns, climate change, hydrologic models, and drought in numerous scientific investigations. The TMPA products recently went through a series of algorithm developments to enhance the accuracy and reliability of high-quality precipitation measurements, particularly in low rainfall environments and complex terrain. In this study, we evaluated four TMPA products (3B42: V6, V7temp, V7, RTV7 against 125 rain gauges in Northern Morocco to assess the accuracy of TMPA products in various regimes, examine the performance metrics of new algorithm developments, and assess the impact of the processing error in 2012. Results show that the research products outperform the real-time products in all environments within Morocco, and the newest algorithm development (3B42 V7 outperforms the previous version (V6, particularly in low rainfall and high-elevation environments. TMPA products continue to overestimate precipitation in arid environments and underestimate it in high-elevation areas. Lastly, the temporary processing error resulted in little bias except in arid environments. These results corroborate findings from previous studies, provide scientific data for the Middle East, highlight the difficulty of using TMPA products in varying conditions, and present preliminary research for future algorithm development for the GPM mission.

  11. Rethinking climate change as a security threat

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, Corinne

    2011-10-15

    Once upon a time climate change was a strictly environment and development issue. Today it has become a matter of national and international security. Efforts to link climate change with violent conflict may not be based on solid evidence, but they have certainly captured the attention of governments. They have played a vital role in raising the much-needed awareness of climate change as an issue that deserves global action. But at what cost? Focusing on climate change as a security threat alone risks devolving humanitarian responsibilities to the military, ignoring key challenges and losing sight of those climate-vulnerable communities that stand most in need of protection.

  12. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy)

    Science.gov (United States)

    Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M.

    2008-06-01

    A high-resolution sedimentary charcoal record from Lago dell'Accesa in southern Tuscany reveals numerous changes in fire regime over the last 11.6 kyr cal. BP and provides one of the longest gap-free series from Italy and the Mediterranean region. Charcoal analyses are coupled with gamma density measurements, organic-content analyses, and pollen counts to provide data about sedimentation and vegetation history. A comparison between fire frequency and lake-level reconstructions from the same site is used to address the centennial variability of fire regimes and its linkage to hydrological processes. Our data reveal strong relationships among climate, fire, vegetation, and land-use and attest to the paramount importance of fire in Mediterranean ecosystems. The mean fire interval (MFI) for the entire Holocene was estimated to be 150 yr, with a minimum around 80 yr and a maximum around 450 yr. Between 11.6 and 3.6 kyr cal. BP, up to eight high-frequency fire phases lasting 300-500 yr generally occurred during shifts towards low lake-level stands (ca 11,300, 10,700, 9500, 8700, 7600, 6200, 5300, 3400, 1800 and 1350 cal. yr BP). Therefore, we assume that most of these shifts were triggered by drier climatic conditions and especially a dry summer season that promoted ignition and biomass burning. At the beginning of the Holocene, high climate seasonality favoured fire expansion in this region, as in many other ecosystems of the northern and southern hemispheres. Human impact affected fire regimes and especially fire frequencies since the Neolithic (ca 8000-4000 cal. yr BP). Burning as a consequence of anthropogenic activities became more frequent after the onset of the Bronze Age (ca 3800-3600 cal. yr BP) and appear to be synchronous with the development of settlements in the region, slash-and-burn agriculture, animal husbandry, and mineral exploitation. The anthropogenic phases with maximum fire activity corresponded to greater sensitivity of the vegetation and triggered

  13. Pacific Islands Climate Change Virtual Library

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virtual Library provides access to web based climate variability and climate change information and tools relevant to the Pacific Islands including case...

  14. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  15. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  16. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  17. Stability in ecosystem functioning across a climatic threshold and contrasting forest regimes.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Jeffers

    Full Text Available Classical ecological theory predicts that changes in the availability of essential resources such as nitrogen should lead to changes in plant community composition due to differences in species-specific nutrient requirements. What remains unknown, however, is the extent to which climate change will alter the relationship between plant communities and the nitrogen cycle. During intervals of climate change, do changes in nitrogen cycling lead to vegetation change or do changes in community composition alter the nitrogen dynamics? We used long-term ecological data to determine the role of nitrogen availability in changes of forest species composition under a rapidly changing climate during the early Holocene (16k to 8k cal. yrs. BP. A statistical computational analysis of ecological data spanning 8,000 years showed that secondary succession from a coniferous to deciduous forest occurred independently of changes in the nitrogen cycle. As oak replaced pine under a warming climate, nitrogen cycling rates increased. Interestingly, the mechanism by which the species interacted with nitrogen remained stable across this threshold change in climate and in the dominant tree species. This suggests that changes in tree population density over successional time scales are not driven by nitrogen availability. Thus, current models of forest succession that incorporate the effects of available nitrogen may be over-estimating tree population responses to changes in this resource, which may result in biased predictions of future forest dynamics under climate warming.

  18. Economic Consequences Of Climate Change

    Science.gov (United States)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  19. Climate change adaptation strategies for resource management and conservation planning.

    Science.gov (United States)

    Lawler, Joshua J

    2009-04-01

    Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.

  20. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  1. Making Cities Resilient to Climate Change

    OpenAIRE

    Dulal, Hari Bansha

    2016-01-01

    Urbanization is truly a global phenomenon. Starting at 39% in 1980, the urbanization level rose to 52% in 2011. Ongoing rapid urbanization has led to increase in urban greenhouse gas (GHG) emissions. Urban climate change risks have also increased with more low-income urban dwellers living in climate sensitive locations. Despite increased emissions, including GHGs and heightened climate change vulnerability, climate mitigation and adaptation actions are rare in the cities of developing countri...

  2. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  3. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  4. Forests and climate change - lessons from insects

    OpenAIRE

    Battisti A

    2008-01-01

    The climate change may indirectly affects the forest ecosystems through the activity of phytophagous insects. The climate change has been claimed to be responsible of the range expansion northward and upward of several insect species of northern temperate forests, as well as of changes in the seasonal phenology. Several papers have dealt with the prediction of the most likely consequences of the climate change on the phytophagous insects, including some of the most important forest pests. Inc...

  5. Climatic change: possible impacts on human health

    OpenAIRE

    Beniston, Martin

    2005-01-01

    This paper addresses a number of problems relating climatic change and human health. Following an introduction that outlines the over-arching issues, a short summary is given on climatic change and its anthropogenic causes. The rest of the paper then focuses on the direct and indirect impacts of global climatic change on health. Direct effects comprise changes in the hygrothermal stress response of humans, atmospheric pollution, water quality and availability; indirect effects include the pot...

  6. Covering Climate Change in Wikipedia

    Science.gov (United States)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  7. Climate change mitigation and electrification

    International Nuclear Information System (INIS)

    An increasing number of mitigation scenarios with deep cuts in greenhouse gas emissions have focused on expanded use of demand-side electric technologies, including battery electric vehicles, plug-in hybrid vehicles, and heat pumps. Here we review such “electricity scenarios” to explore commonalities and differences. Newer scenarios are produced by various interests, ranging from environmental organizations to industry to an international organization, and represent a variety of carbon-free power generation technologies on the supply side. The reviewed studies reveal that the electrification rate, defined here as the ratio of electricity to final energy demand, rises in baseline scenarios, and that its increase is accelerated under climate policy. The prospect of electrification differs from sector to sector, and is the most robust for the buildings sector. The degree of transport electrification differs among studies because of different treatment and assumptions about technology. Industry does not show an appreciable change in the electrification rate. Relative to a baseline scenario, an increase in the electrification rate often implies an increase in electricity demand but does not guarantee it. - Highlights: ► Until recently few mitigation scenarios paid attention to electrification. ► Recent scenarios show an increasing focus on demand-side electric technologies. ► They are represented by various interests. ► Level of electrification increases with stringency of climate policy. ► Prospect of electrification differs across sectors.

  8. Coevolution of soil and vegetation in the South Eastern Australian uplands with variable climate and fire regimes

    Science.gov (United States)

    Inbar, Assaf; Petter, Nyman; Patrick, Lane; Gary, Sheridan

    2016-04-01

    The south east Australian forested uplands are characterized by complex and inter-correlated spatial patterns in forest types, soil depths and fire regimes, even within areas with similar sedimentary geology and catenary position. The ecohydrology of these system-state combinations varies markedly, and is difficult to predict. Here we present preliminary results from a soil and vegetation co-evolutionary framework that represents the key feedbacks that have resulted in the current quasi-equilibrium system states of standing biomass, soil depth and fire frequency. The model is based on a modification of an existing mechanistic model, and includes an ecohydrological engine that drives a vegetation dynamics and a geomorphic submodels. Five sites with similar parent material and slope along a rainfall gradient and opposing aspects were chosen to test the model outputs: soil depth and above-ground biomass. In three of the sites, microclimate conditions were extensively monitored in a clear ridge-top (Open), and North and South facing aspects. The data was used to calibrate and test the ecohydrology modelling according to landscape position. Geomorphic processes that control soil depth were modeled using existing transport functions which varied with climate and forest type, and fire regime was set to be a function of biomass state and water deficit. In the next step, the model will have the potential to be incorporated into a 2D landscape evolution model in order to route sediment and water in a dynamic landscape. Using this model allows us to explore how, and in what rate, did each of the different systems evolve into their current state, and what is the unique and combined part of climate and fire regimes in the coevolution process, and predict the response of the current systems to change in a changing climate.

  9. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    OpenAIRE

    Michal Belda; Petr Skalák; Aleš Farda; Tomáš Halenka; Michel Déqué; Gabriella Csima; Judit Bartholy; Csaba Torma; Constanta Boroneant; Mihaela Caian; Valery Spiridonov

    2015-01-01

    Regional climate models (RCMs) are important tools used for downscaling climate simulations from global scale models. In project CECILIA, two RCMs were used to provide climate change information for regions of Central and Eastern Europe. Models RegCM and ALADIN-Climate were employed in downscaling global simulations from ECHAM5 and ARPEGE-CLIMAT under IPCC A1B emission scenario in periods 2021–2050 and 2071–2100. Climate change signal present in these simulations is consistent with respective...

  10. Climate change and ice hazards in the Beaufort Sea

    OpenAIRE

    Barber, D. G.; McCullough, G.; Babb, D.; Komarov, A.S.; L. M. Candlish; Lukovich, J.V.; Asplin, M.; S. Prinsenberg; Dmitrenko, I.; S. Rysgaard

    2014-01-01

    Abstract Recent reductions in the summer extent of sea ice have focused the world’s attention on the effects of climate change. Increased CO2-derived global warming is rapidly shrinking the Arctic multi-year ice pack. This shift in ice regimes allows for increasing development opportunities for large oil and gas deposits known to occur throughout the Arctic. Here we show that hazardous ice features remain a threat to stationary and mobile infrastructure in the southern Beaufort Sea. With the ...

  11. Abrupt climate change:Debate or action

    Institute of Scientific and Technical Information of China (English)

    CHENG Hai

    2004-01-01

    Global abrupt climate changes have been documented by various climate records, including ice cores,ocean sediment cores, lake sediment cores, cave deposits,loess deposits and pollen records. The climate system prefers to be in one of two stable states, i.e. interstadial or stadial conditions, but not in between. The transition between two states has an abrupt character. Abrupt climate changes are,in general, synchronous in the northern hemisphere and tropical regions. The timescale for abrupt climate changes can be as short as a decade. As the impacts may be potentially serious, we need to take actions such as reducing CO2emissions to the atmosphere.

  12. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, J.-C.; Olesen, Jørgen E;

    2009-01-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular...... interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change...

  13. Ecosystem regime change inferred from the distribution of trace metals in Lake Erie sediments.

    Science.gov (United States)

    Yuan, Fasong; Depew, Richard; Soltis-Muth, Cheryl

    2014-01-01

    Many freshwater and coastal marine ecosystems across the world may have undergone an ecosystem regime change due to a combination of rising anthropogenic disturbances and regional climate change. Such a change in aquatic ecosystems is commonly seen as shifts in algal species. But considerably less detail is known about the eutrophication history in terms of changes in algal productivity, particularly for a large lake with a great deal of spatial variability. Here we present an analysis of trace metals (Cu, Ni, Cd, and Pb) on a sediment core recovered from Lake Erie, off the Vermilion coast of northern Ohio, USA, to reconstruct the eutrophication history of the lake over the past 210 years. Following a slow eutrophication during European settlement, Lake Erie experienced a period of accelerated eutrophication, leading to an ecosystem regime transition into a eutrophic lake state in 1950. Our results suggested that the lake's biological productivity has ever since maintained fairly high even though a significant input reduction was realized from rigorous nutrient abatements that began as early as in 1969. This work underscored the role of in-lake biogeochemical cycling in nutrient dynamics of this already eutrophic lake.

  14. Climate, karst, and critters—A multidisciplinary evaluation of karst species vulnerability to climate change

    Science.gov (United States)

    Mahler, B. J.; Musgrove, M.; Long, A. J.; Stamm, J. F.; Poteet, M. F.; Symstad, A.

    2015-12-01

    The complex hydrologic regimes of karst aquifers respond rapidly to the effects of climate change, and unique biological communities associated with karst are sensitive to hydrologic changes. To explore how climate change might affect karst-dependent species, we coupled a climate-change model, a hydrologic model, and a vulnerability assessment tool to evaluate projected hydrologic change and vulnerability of selected species at sites in the karstic Edwards aquifer (Texas) and Madison aquifer (South Dakota). The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate from 2011 to 2050 at a 36-km grid spacing for 3 weather stations near the study sites. Daily climate projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI). RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, superposing the quick- and slow-flow responses that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to assess the vulnerability of a species. An upward trend in temperature was projected at all three weather stations; there was a trend (downward) in precipitation only for the Texas weather station. A downward trend in mean annual spring flow or groundwater level was projected for the three Edwards sites, but there was no significant trend for the two Madison sites. Of 16 Edwards aquifer species evaluated, 10 were scored as highly or moderately vulnerable under the projected climate change scenario. In contrast, all 8 Madison aquifer species evaluated were scored as moderately vulnerable, stable, or intermediate between the two. The inclusion of hydrologic projections in the vulnerability assessment was essential for interpreting the effects of climate change on aquatic species of conservation concern such as endemic salamanders.

  15. Climate change and forest ecosystem dynamics

    International Nuclear Information System (INIS)

    Effects of climate change on water relations in forests were studied using several modelling approaches. Of several models tested, the FORGRO model had the highest potential for a reliable estimation of effects of climate change on forests. An evaluation of process-based models of forest growth showed that several models, including FORGRO, were able to produce accurate estimates of carbon and water fluxes at several forest sites of Europe. Responses were in relatively good agreement with the expected responses obtained by experimental studies, and models were able to deal with new conditions and explore the likely effects of climate change. The effect of climate change on forest development was assessed for three forests stands in the Netherlands using a gap model which was made climate sensitive by including the effects of climate change scenario IPCC IS92A on growth (FORGRO results), phenology (FORGRO results), and seed production (regression analysis). Results showed that climate change is likely to cause subtle changes rather than abrupt changes in forest development in the Netherlands, and that forest development on sandy soils in the Netherlands is not likely to be influenced significantly by climate change over the coming 50 years. The impact of climate change on the production, nature and recreation values of forests was studied using a simple economic model, and showed that response are likely to be relatively small during the first century, and are related to the successional status of the forest. Linking of detailed process-based models with gap models enables interpretation of climate change effects beyond a change in tree growth only, and is an important tool for investigating the effects of climate change on the development of mixed forests. The modelling approach presented in this project (process-based growth models -> gap models -> economic model) is a useful tool to support policy decisions in the light of climate change and forests. refs

  16. Active Learning about Climate Change

    OpenAIRE

    Hwang, I.C.; Tol, R.S.J.; Hofkes, M.W.

    2013-01-01

    We develop a climate-economy model with active learning. We consider three ways of active learning: improved observations, adding observations from the past and improved theory from climate research. From the model, we find that the decision maker invests a significant amount of money in climate research. Expenditures to increase the rate of learning are far greater than the current level of expenditure on climate research, as it helps in taking improved decisions. The optimal carbon tax for ...

  17. Wealth reallocation and sustainability under climate change

    Science.gov (United States)

    Fenichel, Eli P.; Levin, Simon A.; McCay, Bonnie; St. Martin, Kevin; Abbott, Joshua K.; Pinsky, Malin L.

    2016-03-01

    Climate change is often described as the greatest environmental challenge of our time. In addition, a changing climate can reallocate natural capital, change the value of all forms of capital and lead to mass redistribution of wealth. Here we explain how the inclusive wealth framework provides a means to measure shifts in the amounts and distribution of wealth induced by climate change. Biophysical effects on prices, pre-existing institutions and socio-ecological changes related to shifts in climate cause wealth to change in ways not correlated with biophysical changes. This implies that sustainable development in the face of climate change requires a coherent approach that integrates biophysical and social measurement. Inclusive wealth provides a measure that indicates sustainability and has the added benefit of providing an organizational framework for integrating the multiple disciplines studying global change.

  18. The power of advice: experts in Chinese climate change politics

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbeke, Jost

    2010-07-01

    This study examines the role of experts in Chinas climate change policy. With the beginning of the UNFCCC process, many semi-official institutes and universities emerged, dealing with the scientific, economic and political aspects of climate change. The major argument presented here is that experts are important actors in Chinese climate change politics, and that they have been underestimated in research on China. This analysis has two aims: first, applying a science, policy interface model from regime theory, it examines the political impact of various research organizations during different stages of the policy-making process. In the second step, analysis turns to the causes behind the degree of impact. These include the relevance of administrative links, the quality of knowledge, and personal ties. The results show that, in particular, semi-official institutes and certain universities can have a very high impact on political action.(auth)

  19. Climate change and ice hazards in the Beaufort Sea

    DEFF Research Database (Denmark)

    Barber, D. G.; McCullough, G.; Babb, D.;

    2014-01-01

    Recent reductions in the summer extent of sea ice have focused the world’s attention on the effects of climate change. Increased CO2-derived global warming is rapidly shrinking the Arctic multi-year ice pack. This shift in ice regimes allows for increasing development opportunities for large oil...... will be a much more complex task than modeling average ice circulation. Given the observed reduction in sea ice extent and thickness this rather counterintuitive situation, associated with a warming climate, poses significant hazards to Arctic marine oil and gas development and marine transportation. Accurate...

  20. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting......This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  1. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  2. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:26504134

  3. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo;

    a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...... on population size and range of the polar bear, for example, are scarce, whereas data on the pollen season are extensive. Each indicator is evaluated using a number of quality criteria, including sensitivity to climate change, policy relevance and methodology. Although the indicator framework presented here has......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...

  4. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud

    IPCC climate change scenarios, which also consider possible changes in urban population, have been developed. Innovative strategies to land use and spatial planning are proposed that seek synergies between the adaptation to climate change and the need to solve social problems. Furthermore, the book......Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  5. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  6. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects. PMID:26580230

  7. Adaptation to climate change in the Ontario public health sector

    Directory of Open Access Journals (Sweden)

    Paterson Jaclyn A

    2012-06-01

    Full Text Available Abstract Background Climate change is among the major challenges for health this century, and adaptation to manage adverse health outcomes will be unavoidable. The risks in Ontario – Canada’s most populous province – include increasing temperatures, more frequent and intense extreme weather events, and alterations to precipitation regimes. Socio-economic-demographic patterns could magnify the implications climate change has for Ontario, including the presence of rapidly growing vulnerable populations, exacerbation of warming trends by heat-islands in large urban areas, and connectedness to global transportation networks. This study examines climate change adaptation in the public health sector in Ontario using information from interviews with government officials. Methods Fifty-three semi-structured interviews were conducted, four with provincial and federal health officials and 49 with actors in public health and health relevant sectors at the municipal level. We identify adaptation efforts, barriers and opportunities for current and future intervention. Results Results indicate recognition that climate change will affect the health of Ontarians. Health officials are concerned about how a changing climate could exacerbate existing health issues or create new health burdens, specifically extreme heat (71%, severe weather (68% and poor air-quality (57%. Adaptation is currently taking the form of mainstreaming climate change into existing public health programs. While adaptive progress has relied on local leadership, federal support, political will, and inter-agency efforts, a lack of resources constrains the sustainability of long-term adaptation programs and the acquisition of data necessary to support effective policies. Conclusions This study provides a snapshot of climate change adaptation and needs in the public health sector in Ontario. Public health departments will need to capitalize on opportunities to integrate climate change into

  8. Mental health effects of climate change

    OpenAIRE

    Susanta Kumar Padhy; Sidharth Sarkar; Mahima Panigrahi; Surender Paul

    2015-01-01

    We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more numb...

  9. The Economic Impact of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2008-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  10. The Economic Effects of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2009-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  11. Ukraine's Participation In Solving Climate Change Problems

    OpenAIRE

    Irina Dubovich; Mariana Bulgakova

    2011-01-01

    Attention is paid to some problems of climate change. The main international agreements on climate change are overviewed. Ukraine's participation in solving global problems of climate change is described. Ukraine's statement about plans to reduce greenhouse gas emissions is analyzed. Characteristic of environmental political and legal prerequisites for the need to create a general agreement on environmental security of the planet – World Environmental Constitution is provided.

  12. Gender mainstreaming and EU climate change policy

    OpenAIRE

    Allwood, Gill

    2014-01-01

    This article uses feminist institutionalism to examine how gender mainstreaming has been sidelined in European Union (EU) climate change policy. It finds that, with a few exceptions largely emanating from the European Parliament's Committee on Women's Rights and Gender Equality, EU responses to climate change are gender-blind. This is despite the Treaty obligations to gender mainstream policy in all areas and despite the intersections between climate change and development policy, which is re...

  13. Challenges of Climate Change and Bioenergy

    OpenAIRE

    Jahangir, Daniyal

    2008-01-01

    Atmospheric concentration of the Green House Gases, Carbon Dioxide, Methane and Nitrous Oxide has increased largely since Industrial Revolution. Continued GHG emissions at or above current rates would cause further warming and induce many changes in global climate system. Climate changes will lead to more intense and longer droughts, water scarcity and many other problems then have been observed. For these reasons concept of development of bioenergy came into existance for climate change miti...

  14. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies Through this initiative, USDA will ...

  15. Climate Change and European Union Member Economies

    OpenAIRE

    Margaux Tharin; Alina Gabriela Brezoi; Livia–Irina Olaru

    2010-01-01

    Climate change affects us all both global and personal level. In recent years, we have seen an increase in extreme weather phenomena such as floods, droughts, tornadoes, increased shoreline erosion seas and oceans. The phenomenon of climate change that changed the globe is an irreversible process. Due to extreme weather events to human civilization began to be in danger.

  16. Gender angle to the climate change negotiations

    NARCIS (Netherlands)

    Wamukonya, Njeri; Skutsch, Margaret

    2002-01-01

    The South is likely to suffer more from climate change than the North due to its already vulnerable situation and lack of the necessary resources to adapt to change. But do the interests of men and of women differ as regards climate change and does this have a South-North dimension? This paper attem

  17. Fostering Hope in Climate Change Educators

    Science.gov (United States)

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  18. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  19. Climate variability and climate change in Mexico: A review

    OpenAIRE

    E. Jáuregui

    1997-01-01

    A review of research on climate variability, fluctuations and climate change in Mexico is presented. Earlier approaches include different time scales from paleoclimatic to historical and instrumental. The nature and causes of variability in Mexico have been attributed to large-scale southward/northward shifts of the mid-latitude major circulation and more recently to the ENSO cycle. Global greenhouse warming has become a major environmental issue and has spawned a large number of climate-chan...

  20. Applied climate-change analysis: the climate wizard tool.

    Directory of Open Access Journals (Sweden)

    Evan H Girvetz

    Full Text Available BACKGROUND: Although the message of "global climate change" is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. METHODOLOGY/PRINCIPAL FINDINGS: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951-2002 occurred in northern hemisphere countries (especially during January-April, but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50 degrees N during February-March to 10 degrees N during August-September. Precipitation decreases occurred most commonly in countries between 0-20 degrees N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs for 2070-2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. CONCLUSIONS/SIGNIFICANCE: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally