WorldWideScience

Sample records for climate change nutrient

  1. Agricultural nutrient loadings to the freshwater environment: the role of climate change and socioeconomic change

    Science.gov (United States)

    Xie, Hua; Ringler, Claudia

    2017-10-01

    Human activities, in particular agricultural production, interfere with natural cycles of nutrient elements, nitrogen (N) and phosphorus (P), leading to growing concerns about water quality degradation related to excessive nutrient loadings. Increases in agricultural production in response to population growth and wealth generation further increase risks associated with nutrient pollution. This paper presents results from projections of nutrient exports from global agricultural crop and pasture systems to the water environment generated using a process-based modeling approach. Brazil, China, India and the United States account for more than half of estimated global N and P loadings in the base year. Each country boasts large agriculture centers where high calculated loading values are found. Rapid growth in global agricultural nutrient loadings is projected. Growth of agricultural pollution loading is fastest in the group of low-income developing countries and loading growth rates also vary substantially with climate change scenario. Counter measures need to be taken to address the environmental risks associated with the projected rapid increase of agricultural nutrient loadings.

  2. Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate

    Science.gov (United States)

    Chang, Chung-Te; Wang, Lih-Jih; Huang, Chuan, Jr.; Liu, Chiung-Pin; Wang, Chiao-Ping; Lin, Neng-Huei; Wang, Lixin; Lin, Teng-Chiu

    2017-05-01

    Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. However, based on a close examination of recent literature, we argue that the role of hydrological control particularly precipitation on nutrient budgets is significantly underestimated in subtropical and tropical forests, hindering our predictions of future forest nutrient status under a changing climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient input and output data in precipitation and streamwater from a subtropical forested watershed in Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and subtropics. The results showed that monthly input and output of all ions and budgets (output - input) of most ions were positively correlated with precipitation quantity and there was a surprisingly greater net ion export during the wet growing season, indicating strong precipitation control on the nutrient budget. The strong precipitation control is also supported by the divergence of acidic precipitation and near neutral acidity of streamwater, with the former being independent from precipitation quantity but the latter being positively related to precipitation quantity. An additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the globe showed a strong correlation between precipitation quantity and nutrient output-input budget, indicating that strong precipitation control is ubiquitous at the global scale and is particularly important in the humid tropical and subtropical forests. Our results imply that climate change could directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern and amount.

  3. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.

    Science.gov (United States)

    Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad

    2016-04-01

    Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nutrient loadings from urban catchments under climate change scenarios: case studies in Stockholm, Sweden.

    Science.gov (United States)

    Wu, Jiechen; Malmström, Maria E

    2015-06-15

    Anthropogenic nutrient emissions and associated eutrophication of urban lakes are a global problem. Future changes in temperature and precipitation may influence nutrient loadings in lake catchments. A coupling method, where the Generalized Watershed Loading Functions method was tested in combination with source quantification in a Substance Flow Analysis structure, was suggested to investigate diffuse nutrient sources and pathways and climate change effects on the loadings to streamflow in urban catchments. This method may, with an acceptable level of uncertainty, be applied to urban catchments for first-hand estimations of nutrient loadings in the projected future and to highlight the need for further study and monitoring. Five lake catchments in Stockholm, Sweden (Råcksta Träsk, Judarn, Trekanten, Långsjön and Laduviken) were employed as case studies and potential climate change effects were explored by comparing loading scenarios in two periods (2000-2009 and 2021-2030). For the selected cases, the dominant diffuse sources of nutrients to urban streamflow were found to be background atmospheric concentration and vehicular traffic. The major pathways of the nitrogen loading were suggested to be from both developed areas and natural areas in the control period, while phosphorus was indicated to be largely transported through surface runoff from natural areas. Furthermore, for nitrogen, a modest redistribution of loadings from surface runoff and stormwater between seasons and an increase in the annual loading were suggested for the projected future climate scenarios as compared to the control period. The model was, due to poor monitoring data availability, only able to set an upper limit to nutrient transport by groundwater both in the control period and the future scenarios. However, for nitrogen, groundwater appeared to be the pathway most sensitive to climate change, with a considerable increase and seasonal redistribution of loadings. For phosphorus

  5. Impacts of climate change on nutrient cycling in semi-arid and arid ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Belnap, J. [National Biological Survey, Moab, UT (United States)

    1995-09-01

    Effective precipitation is a major factor in determining nutrient pathways in different ecosystems. Soil flora and fauna play a critical role in nutrient cycles of all ecosystems. Temperature, timing, and amounts of precipitation affect population composition, activity levels, biomass, and recovery rates from disturbance. Changes in these variables can result in very different inputs and outputs for different nutrients. As a result, areas with less effective precipitation have very different nutrient cycles than more mesic zones. Climate change, therefore, can profoundly affect the nutrient cycles of ecosystems. Nitrogen cycles may be especially sensitive to changes in temperature and to timing and amounts of precipitation. Rainfall contains varying amounts of nitrogen compounds. Changes in amounts of rainfall will change amounts of nitrogen available to these systems. Because rainfall is limited in semi-arid and regions, these systems tend to be more dependent on microbial populations for nitrogen input. Consequently, understanding the effects of climate change on these organisms is critical in understanding the overall effect on ecosystems.

  6. Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea.

    Science.gov (United States)

    Huttunen, Inese; Lehtonen, Heikki; Huttunen, Markus; Piirainen, Vanamo; Korppoo, Marie; Veijalainen, Noora; Viitasalo, Markku; Vehviläinen, Bertel

    2015-10-01

    Climate change is expected to increase annual and especially winter runoff, shorten the snow cover period and therefore increase both nutrient leaching from agricultural areas and natural background leaching in the Baltic Sea catchment. We estimated the effects of climate change and possible future scenarios of agricultural changes on the phosphorus and nitrogen loading to the Baltic Sea from Finnish catchments. In the agricultural scenarios we assumed that the prices of agricultural products are among the primary drivers in the adaptation to climate change, as they affect the level of fertilization and the production intensity and volume and, hence, the modeled changes in gross nutrient loading from agricultural land. Optimal adaptation may increase production while supporting appropriate use of fertilization, resulting in low nutrient balance in the fields. However, a less optimal adaptation may result in higher nutrient balance and increased leaching. The changes in nutrient loading to the Baltic Sea were predicted by taking into account the agricultural scenarios in a nutrient loading model for Finnish catchments (VEMALA), which simulates runoff, nutrient processes, leaching and transport on land, in rivers and in lakes. We thus integrated the effects of climate change in the agricultural sector, nutrient loading in fields, natural background loading, hydrology and nutrient transport and retention processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ecosystem response to nutrient loading and climate changes: a case study for the Black Sea

    Science.gov (United States)

    Staneva, J.; Kourafalou, V.; Tsiaras, K.

    2003-04-01

    The present study employs coupling between physical and biogeochemical numerical models and provides an extensive analysis on the response of the ecosystem in the northwestern Black Sea to nutrient loads and climatic changes. The work is part of the EU Project DANUBS (NUtrient management of the Danube basin and its impact on the Black Sea). The physical models are a one-dimensional mixed layered model and a three-dimensional, primitive equation hydrodynamic model. The Biogeochemical model is based on the European Ecosystem Model (ERSEM). The model consists of five modules: (1) primary producers, (2) microbial loop, (3) mesozooplankton, (4) benthic nutrients, and (5) benthic biology. The ecosystem in ERSEM is subdivided into three functional types: producers (phytoplankton), decomposers (pelagic and benthic bacteria) and consumers (zooplankton and zoobenthos). We address here the impact of meteorological forcing, as well as the impact of vertical stratification on the functioning of the biological system. The evolution of the mixed layer, as well as the response of the biological system to variability in the physical conditions and to the nutrient discharge from the Danube River are described in detail. The numerical simulations illustrate the basic physical and biological dynamics of the upper ocean. The results from the simulation of the seasonal cycle of the lower trophic levels are presented. Important climatological features for the Black Sea, such as the formation and advection of low-salinity waters associated with the Danube River plume, the cold intermediate water formation, the evolution of the seasonal pycnocline and the annual cycle of the mixed layer depth are discussed. A hierarchy of model scenarios has been developed to study the impact, which nutrient reduction has on the coastal marine system. The model predictions indicate that the biological system is very sensitive to the changes in nutrient concentrations, as well as to C:N:P:Si ratios.

  8. Nutrients in estuaries - An overview and the potential impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Statham, Peter J., E-mail: pjs@noc.soton.ac.uk

    2012-09-15

    The fate and cycling of macronutrients introduced into estuaries depend upon a range of interlinked processes. Hydrodynamics and morphology in combination with freshwater inflow control the freshwater flushing time, and the timescale for biogeochemical processes to operate that include microbial activity, particle-dissolved phase interactions, and benthic exchanges. In some systems atmospheric inputs and exchanges with coastal waters can also be important. Climate change will affect nutrient inputs and behaviour through modifications to temperature, wind patterns, the hydrological cycle, and sea level rise. Resulting impacts include: 1) inundation of freshwater systems 2) changes in stratification, flushing times and phytoplankton productivity 3) increased coastal storm activity 4) changes in species and ecosystem function. A combination of continuing high inputs of nutrients through human activity and climate change is anticipated to lead to enhanced eutrophication in the future. The most obvious impacts of increasing global temperature will be in sub-arctic systems where permafrost zones will be reduced in combination with enhanced inputs from glacial systems. Improved process understanding in several key areas including cycling of organic N and P, benthic exchanges, resuspension, impact of bio-irrigation, particle interactions, submarine groundwater discharges, and rates and magnitude of bacterially-driven recycling processes, is needed. Development of high frequency in situ nutrient analysis systems will provide data to improve predictive models that need to incorporate a wider variety of key factors, although the complexity of estuarine systems makes such modelling a challenge. However, overall a more holistic approach is needed to effectively understand, predict and manage the impact of macronutrients on estuaries. -- Highlights: Black-Right-Pointing-Pointer Estuarine macronutrient behaviour defined by both physical and biogeochemical processes. Black

  9. Cogs in the endless machine: Lakes, climate change and nutrient cycles: A review

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Brian, E-mail: brmoss@liverpool.ac.uk

    2012-09-15

    Lakes have, rather grandly, been described as sentinels, integrators and regulators of climate change (). Lakes are also part of the continuum of the water cycle, cogs in a machine that processes water and elements dissolved and suspended in myriad forms. Assessing the changes in the functioning of the cogs and the machine with respect to these substances as climate changes is clearly important, but difficult. Many other human-induced influences, not least eutrophication, that impact on catchment areas and consequently on lakes, have generally complicated the recording of recent change in sediment records and modern sets of data. The least confounded evidence comes from remote lakes in mountain and polar regions and suggests effects of warming that include mobilisation of ions and increased amounts of phosphorus. A cottage industry has arisen in deduction and prediction of the future effects of climate change on lakes, but the results are very general and precision is marred not only by confounding influences but by the complexity of the lake system and the infinite variety of possible future scenarios. A common conclusion, however, is that warming will increase the intensity of symptoms of eutrophication. Direct experimentation, though expensive and still unusual and confined to shallow lake and wetland systems is perhaps the most reliable approach. Results suggest increased symptoms of eutrophication, and changes in ecosystem structure, but in some respects are different from those deduced from comparisons along latitudinal gradients or by inference from knowledge of lake behaviour. Experiments have shown marked increases in community respiration compared with gross photosynthesis in mesocosm systems and it may be that the most significant churnings of these cogs in the earth-air-water machine will be in their influence on the carbon cycle, with possibly large positive feedback effects on warming. -- Highlights: Black-Right-Pointing-Pointer Climate change has had

  10. Impacts of climate and land use changes on regional nutrient export in the South Saskatchewan River catchment

    Science.gov (United States)

    Morales-Marin, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2016-12-01

    Climate and land use changes modify the physical functioning of river catchments and, in particular, influence the transport of nutrients from land to water. In large-scale catchments, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms the largest river system in western Canada. In the past years changes in the land use and new industrial developments in the SSR area have heightened serious concerns about the future of water quality in the catchment and downstream waters. Agricultural activities have increased the supply of manure and fertilizer for cropping. Oil and gas exploitation has also increased the risk of surface water and groundwater contamination. The rapid population growth not only leads to increments in water consumption and wastewater, but in the construction of roads, railways and the expansion of new urban developments that impose hydraulic controls on the catchment hydrology and therefore the sediment and nutrient transport. Consequences of the actual anthropogenic changes have been notorious in reservoirs where algal blooms and signs of eutrophication have become common during certain times of the year. Although environmental agencies are constantly improving the mechanisms to reduce nutrient export into the river and ensure safe water quality standards, further research is needed in order to identify major nutrient sources and quantify nutrient export and also, to assess how nutrients are going to vary as a result of future climate and land use change scenarios. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality regionally, in order to describe spatial and temporal patterns to identify those factors and processes that affect water

  11. An integrated modelling methodology to study the impacts of nutrients on coastal aquatic ecosystems in the context of climate change

    Science.gov (United States)

    Pesce, Marco; Critto, Andrea; Torresan, Silvia; Santini, Monia; Giubilato, Elisa; Pizzol, Lisa; Mercogliano, Paola; Zirino, Alberto; Wei, Ouyang; Marcomini, Antonio

    2017-04-01

    It has been recognized that the increase of atmospheric greenhouse gases (GHG) due to anthropogenic activities is causing changes in Earth's climate. Global mean temperatures are expected to rise by 0.3 to 4.8 °C by the end of the 21st century, and the water cycle to alter because of changes in global atmospheric moisture. Coastal waterbodies such as estuaries, bays and lagoons together with the ecological and socio-economic services they provide, could be among those most affected by the ongoing changes on climate. Because of their position at the land-sea interface, they are subjected to the combined changes in the physico-chemical processes of atmosphere, upstream land and coastal waters. Particularly, climate change is expected to alter phytoplankton communities by changing their climate and environmental drivers, such as temperature, precipitation, wind, solar radiation and nutrient loadings, and to exacerbate the symptoms of eutrophication events, such as hypoxia, harmful algal blooms (HAB) and loss of habitat. A better understanding of the links between climate-related drivers and phytoplankton is therefore necessary for predicting climate change impacts on aquatic ecosystems. In this context, the integration of climate scenarios and environmental models can become a valuable tool for the investigation and prediction of phytoplankton ecosystem dynamics under climate change conditions. In the last decade, the effects of climate change on the environmental distribution of nutrients and the resulting effects on aquatic ecosystems encouraged the conduction of modeling studies at a catchment scale, even though mainly are related to lake ecosystem. The further development of integrated modeling approaches and their application to other types of waterbodies such as coastal waters can be a useful contribution to increase the availability of management tools for ecological conservation and adaptation policies. Here we present the case study of the Zero river basin

  12. Winter climate change, plant traits and nutrient and carbon cycling in cold biomes

    NARCIS (Netherlands)

    Cornelissen, J.H.C.; Makoto, K.

    2014-01-01

    It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation-soil feedbacks. One fruitful avenue for studying such

  13. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099

    Energy Technology Data Exchange (ETDEWEB)

    Meier, H.E.M.; Hordoir, R.; Andersson, H.C.; Dieterich, C.; Hoeglund, A.; Schimanke, S. [Swedish Meteorological and Hydrological Institute, Department of Research and Development, Norrkoeping (Sweden); Eilola, K. [Swedish Meteorological and Hydrological Institute, Department of Research and Development, Vaestra Froelunda (Sweden); Gustafsson, B.G. [Stockholm University, Stockholm Resilience Centre, Baltic Nest Institute, Stockholm (Sweden)

    2012-11-15

    The combined future impacts of climate change and industrial and agricultural practices in the Baltic Sea catchment on the Baltic Sea ecosystem were assessed. For this purpose 16 transient simulations for 1961-2099 using a coupled physical-biogeochemical model of the Baltic Sea were performed. Four climate scenarios were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Baltic Sea Action Plan (BSAP). Annual and seasonal mean changes of climate parameters and ecological quality indicators describing the environmental status of the Baltic Sea like bottom oxygen, nutrient and phytoplankton concentrations and Secchi depths were studied. Assuming present-day nutrient concentrations in the rivers, nutrient loads from land increase during the twenty first century in all investigated scenario simulations due to increased volume flows caused by increased net precipitation in the Baltic catchment area. In addition, remineralization rates increase due to increased water temperatures causing enhanced nutrient flows from the sediments. Cause-and-effect studies suggest that both processes may play an important role for the biogeochemistry of eutrophicated seas in future climate partly counteracting nutrient load reduction efforts like the BSAP. (orig.)

  14. Historical and projected changes in carbon and nutrient exports to the Gulf of Mexico as resulted from climate change and land use: 1850-2099

    Science.gov (United States)

    Tao, B.; Tian, H.; Yang, Q.; Lu, C.; Ren, W.; Yang, J.; Pan, S.; Lohrenz, S. E.; Cai, W.

    2012-12-01

    The transport of nutrients from terrestrial ecosystems to the coastal ocean represents a globally significant carbon flux and a critical biogeochemical linkage between land and coastal ecosystems. As one of the most productive agricultural regions in the world, the Mississippi River basin has experienced profound changes in climate and land use over the past century, fueled by food demand and growing population, and is likely to undergo further rapid development in the coming decades. These changes have greatly influenced carbon and nitrogen exports from land to the Gulf of Mexico (GOM). However, most existing associated studies in this region focused on either terrestrial or aquatic ecosystems separately and overlooked linkage between them, therefore potentially hinder the sustainability of ecosystems and efforts to mitigate and adapt to future environmental change. In this study, we used an integrated ecosystem model (Dynamic Land Ecosystem Model, DLEM) and new-developed gridded climate and land use/cover data as well as other ancillary data to assess historical changes in nutrient exports from Mississippi River basin to the GOM in responses to climate change and land use change during 1850-2010 and predict future changes through 2099 by off-line coupling with general circulation models (GCMs). We specifically quantified spatial patterns and interannual variations of carbon and nutrient exports (TOC, DOC, DIC, DIN, TON and TN, etc.) in responses to climate change and land use. The results indicated that carbon exports exhibited a significant inter-annual variations and land use change, characterized by crop expansion, has substantially increased nutrient exports in the study area. Based on different simulation experiments, our results further demonstrated how management practices (irrigation, nitrogen fertilizer application), the distribution of croplands, and patterns of climate can influence the biogeochemical cycles of carbon and nutrient exports.

  15. Dynamic response of land use and river nutrient concentration to long-term climatic changes.

    Science.gov (United States)

    Bussi, Gianbattista; Janes, Victoria; Whitehead, Paul G; Dadson, Simon J; Holman, Ian P

    2017-07-15

    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    Science.gov (United States)

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  17. Modelling the phytoplankton dynamics in a nutrient-rich solar saltern pond: predicting the impact of restoration and climate change.

    Science.gov (United States)

    Khemakhem, Hajer; Elloumi, Jannet; Ayadi, Habib; Aleya, Lotfi; Moussa, Mahmoud

    2013-12-01

    An ecological model for the solar saltern of Sfax (Tunisia) was established and validated by comparing simulation results to observed data relative to horizontal distributions of temperature, nutrients and phytoplankton biomass. Sensitivity analysis was performed in order to assess the influence of the main ecological model parameters. First applied at the saltern's pond A1, the model was calibrated with field data measured over 4 years of study (from 2000 to 2003), which allowed an evaluation of parameters such as maximum growth rate of phytoplankton, optimal growth temperature and constant of half saturation for P/N assimilation by phytoplankton. Simulation results showed that the model allowed us to predict realistic phytoplankton variations of the study area, though we were unable to accurately reproduce the nutrient variation. The model was then applied to simulations of the impact of changes in phytoplankton biomass through scenarios such as hypothetic climate changes and saltern restoration.

  18. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review.

    Science.gov (United States)

    Moss, Brian

    2012-09-15

    Lakes have, rather grandly, been described as sentinels, integrators and regulators of climate change (Williamson et al., Limnol. Oceanogr. 2009; 54: 2273-82). Lakes are also part of the continuum of the water cycle, cogs in a machine that processes water and elements dissolved and suspended in myriad forms. Assessing the changes in the functioning of the cogs and the machine with respect to these substances as climate changes is clearly important, but difficult. Many other human-induced influences, not least eutrophication, that impact on catchment areas and consequently on lakes, have generally complicated the recording of recent change in sediment records and modern sets of data. The least confounded evidence comes from remote lakes in mountain and polar regions and suggests effects of warming that include mobilisation of ions and increased amounts of phosphorus. A cottage industry has arisen in deduction and prediction of the future effects of climate change on lakes, but the results are very general and precision is marred not only by confounding influences but by the complexity of the lake system and the infinite variety of possible future scenarios. A common conclusion, however, is that warming will increase the intensity of symptoms of eutrophication. Direct experimentation, though expensive and still unusual and confined to shallow lake and wetland systems is perhaps the most reliable approach. Results suggest increased symptoms of eutrophication, and changes in ecosystem structure, but in some respects are different from those deduced from comparisons along latitudinal gradients or by inference from knowledge of lake behaviour. Experiments have shown marked increases in community respiration compared with gross photosynthesis in mesocosm systems and it may be that the most significant churnings of these cogs in the earth-air-water machine will be in their influence on the carbon cycle, with possibly large positive feedback effects on warming. Copyright

  19. Nutrient cycling and N{sub 2}O emissions in a changing climate: the subsurface water system role

    Energy Technology Data Exchange (ETDEWEB)

    Destouni, Georgia; Darracq, Amelie, E-mail: georgia.destouni@natgeo.su.s [Department of Physical Geography and Quaternary Geology, Stockholm University, SE-10691 Stockholm (Sweden)

    2009-09-15

    This study has quantified the subsurface (groundwater, soil, sediment) water system role for hydrological nitrogen (N) and phosphorus (P) loading to the coast and agricultural N{sub 2}O emissions to the atmosphere in a changing climate. Results for different climate and hydrological model scenarios in the Swedish Norrstroem drainage basin show that the subsurface water system may largely control a long-term increase in the coastal nutrient loading, in particular for P, irrespectively of the realized future climate change scenario and our uncertainty about it and its water flow effects. The results also indicate an important subsurface water system role for current atmospheric N{sub 2}O emissions from agriculture, and an even greater role for future ones. The current N{sub 2}O-N emissions from agriculture are quantified to be about 0.05 g m{sup -2} yr{sup -1} over the basin surface area, or 3% of the direct N mass application on the agricultural land. These results are consistent with recent global emission estimates, and show how the latter can be reconciled with previous, considerably smaller subsystem emission estimates made by the IPCC (Intergovernmental Panel on Climate Change).

  20. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change.

    Directory of Open Access Journals (Sweden)

    Filip Svensson

    Full Text Available Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how "body size" (cells and colonies and motility change along temperature (2-26°C and salinity (0.5-7.8 gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size. Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels.

  1. Climate change and agricultural development: adapting Polish agriculture to reduce future nutrient loads in a coastal watershed.

    Science.gov (United States)

    Piniewski, Mikołaj; Kardel, Ignacy; Giełczewski, Marek; Marcinkowski, Paweł; Okruszko, Tomasz

    2014-09-01

    Currently, there is a major concern about the future of nutrient loads discharged into the Baltic Sea from Polish rivers because they are main contributors to its eutrophication. To date, no watershed-scale studies have properly addressed this issue. This paper fills this gap by using a scenario-modeling framework applied in the Reda watershed, a small (482 km²) agricultural coastal area in northern Poland. We used the SWAT model to quantify the effects of future climate, land cover, and management changes under multiple scenarios up to the 2050s. The combined effect of climate and land use change on N-NO3 and P-PO4 loads is an increase by 20-60 and 24-31 %, respectively, depending on the intensity of future agricultural usage. Using a scenario that assumes a major shift toward a more intensive agriculture following the Danish model would bring significantly higher crop yields but cause a great deterioration of water quality. Using vegetative cover in winter and spring (VC) would be a very efficient way to reduce future P-PO4 loads so that they are lower than levels observed at present. However, even the best combination of measures (VC, buffer zones, reduced fertilization, and constructed wetlands) would not help to remediate heavily increased N-NO3 loads due to climate change and agricultural intensification.

  2. Nutrient reduction and climate change cause a potential shift from pelagic to benthic pathways in a eutrophic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Blenckner, T.; Stenseth, N.C.

    2012-01-01

    for the occurrence of regime shifts and the relative importance of multiple drivers, e.g., climate change, eutrophication and commercial fishing on ecosystem dynamics and trophic pathways. Using multivariate statistics and nonlinear regression on a comprehensive data set, covering abiotic factors and biotic......The degree to which marine ecosystems may support the pelagic or benthic food chain has been shown to vary across natural and anthropogenic gradients for e.g., in temperature and nutrient availability. Moreover, such external forcing may not only affect the flux of organic matter but could trigger...... large and abrupt changes, i.e., trophic cascades and ecological regime shifts, which once having occurred may prove potentially irreversible. In this study, we investigate the state and regulatory pathways of the Kattegat; a eutrophied and heavily exploited marine ecosystem, specifically testing...

  3. Climatic Change,

    Science.gov (United States)

    diagnoses of the mechanisms of both past and possible future climatic changes , an activity which has underscored the need for more complete...documentation of both recent instrumentally observed climatic changes and of those inferred from historical and paleoclimatic sources.

  4. Green technology for keeping soil-water-nutrient fluxes on cultivated steep land and climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Effiom Oku

    2014-06-01

    Full Text Available Use of vetiver as a green technology can address African farmers’ ecological problems through protecting farmlands on steep lands. In addition, it offers the opportunity to integrate smallholders into the green economy as it sequesters carbon, keep water and nutrient fluxes within the system, sustain high crop yield with climate change adaptation potentials. This is particularly important as more slopes are converted to agricultural lands due to increase in population density and poverty. Thus, the study investigated the optimal strip width for increases in soil productivity and farmers’ preferences for space. The study planted maize and cassava in between vetiver field structures (VFS installed on the contour at 5, 15 , 25 m apart and compared it with Farmers’ Practice (FP on a 45 % slope and quantified the amount of soil displaced, water and plant nutrient losses and crop yields. Vetiver installed at 5 m surface interval spacing significantly enhanced carbon sequestration indicating potentials for GHGs mitigation and reduced N, P, Ca, Mg, Na and K losses when compared with FP. Vetiver allowed only 7 % rainfall lost as against 29 % on FP this demonstrates the climate change adaptation potentials of vetiver. Soil displaced under FP was 68 times higher than the soil loss tolerance limit of 12 t ha-1 yr-1 whereas under VFS at 5, 15 and 25 m it was 2½, 13 and 12 times higher. Maize grain yield were 35, 23 and 24 % higher on the VFS field at 5, 15 and 25 m respectively when compared to FP. The corresponding values for cassava fresh tuber were 43, 32 and 29 % higher. Unlike other technologies, vetiver grass contributes to the livelihood of the farmers by providing raw material for house thatching, handicrafts and fodder for livestock during lean seasons.

  5. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  6. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  7. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  8. Climate Change

    Science.gov (United States)

    ... and water. More extreme weather events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  9. A quantitative assessment of the contributions of climatic indicators to changes in nutrients and oxygen levels in a shallow reservoir in China

    Science.gov (United States)

    Zhang, Chen; Zhang, Wenna; Liu, Hanan; Gao, Xueping; Huang, Yixuan

    2017-06-01

    Climate change has an indirect effect on water quality in freshwater ecosystems, but it is difficult to assess the contribution of climate change to the complex system. This study explored to what extent climatic indicators (air temperature, wind speed, and rainfall) influence nutrients and oxygen levels in a shallow reservoir, Yuqiao Reservoir, China. The study comprises three parts—describing the temporal trends of climatic indicators and water quality parameters during the period 1992-2011, analyzing the potential impacts of climate on water quality, and finally developing a quantitative assessment to evaluate how climatic factors govern nutrient levels in the reservoir. Our analyses showed that the reservoir experienced substantial cold periods (1992-2001) followed by a warm period (2002-2011). The results showed that increasing air temperature in spring, autumn, and winter and increasing annual wind speed decrease total phosphorus (TP) concentration in the reservoir in spring, summer, and winter. According to the quantitative assessment, the increase in air temperature in spring and winter had a larger contribution to the decrease in TP concentration (47.2 and 64.1%), compared with the influence from decreased wind speed and rainfall. The field data suggest that nutrients decline due to enhanced uptake by macrophytes in years when spring was warmer and the macrophytes started to grow earlier in the season. The increasing wind speed and air temperature in spring also significantly contribute to the increase in dissolved oxygen concentration. This study helps managers to foresee how potential future climate change might influence water quality in similar lake ecosystems.

  10. Climate Change and Agricultural Development: Adapting Polish Agriculture to Reduce Future Nutrient Loads in a Coastal Watershed

    OpenAIRE

    Piniewski, Mikołaj; Kardel, Ignacy; Giełczewski, Marek; Marcinkowski, Paweł; Okruszko, Tomasz

    2013-01-01

    Currently, there is a major concern about the future of nutrient loads discharged into the Baltic Sea from Polish rivers because they are main contributors to its eutrophication. To date, no watershed-scale studies have properly addressed this issue. This paper fills this gap by using a scenario-modeling framework applied in the Reda watershed, a small (482 km2) agricultural coastal area in northern Poland. We used the SWAT model to quantify the effects of future climate, land cover, and mana...

  11. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  12. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  13. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Science.gov (United States)

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  14. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... doesn’t become place, and thus not experienced as a common good. Many Danish towns are situated by the sea; this has historically supported a strong spatial, functional and economically identity of the cities, with which people have identified. Effects of globalization processes and a rising sea level...

  15. Acclimation of tree function and structure to climate change and implications to forest carbon and nutrient balances

    Energy Technology Data Exchange (ETDEWEB)

    Hari, P.; Nissinen, A.; Berninger, F. [Helsinki Univ. (Finland). Dept. of Forest Ecology] [and others

    1996-12-31

    Before large-scale anthropogenetic emissions the environmental factors have been rather stable for thousands of years, varying yearly, seasonally and daily in rather regular manners around some mean values. In this century the emissions of CO{sub 2}, sulphur and nitrogen from society to atmosphere are changing both atmospheric and soil environment at rates not experienced before. The fluxes to soil affect the contents of plant available nutrients and solubility of toxic compounds in the forest soil. Additionally, the chemical state of soil environment is coupled to tree growth, litter production and nutrient uptake as well as to the activity of biological organisms in soil, which decompose litter and release nutrients from it. Trees have developed effective regulation systems to cope with the environment during the evolution. The resulting acclimations improve the functioning of the trees if the environmental factors remain within their range of variation during the evolution. Outside the range the results of the regulation are unpredictable. The acclimative changes caused by the action of the regulation system may considerably change the response of trees to present environmental change. The analysis of the effects of present environmental change on forests requires simultaneous treatment of the atmosphere, forest soils and trees. Each of these components is dominated by its own features. The analyze of material and energy fluxes connect them to each other. The aim of this research is to analyse changes in the forest soils and reactions of trees to changes in the atmosphere and forest soils under a common theoretical framework, enabling combination of the obtained results into a holistic analysis of the response of forests to the present environmental change

  16. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed

    Directory of Open Access Journals (Sweden)

    Luke K. Cousino

    2015-09-01

    New hydrological insights for the region: Moderate climate change scenarios reduced annual flow (up to −24% and sediment (up to −26% yields, while a more extreme scenario showed smaller flow reductions (up to −10% and an increase in sediment (up to +11%. No-till practices had a negligible effect on flow but produced 16% lower average sediment loads than scenarios using current watershed conditions. At high implementation rates, no-till practices could offset any future increases in annual sediment loads, but they may have varied seasonal success. Regardless of future climate change intensity, increased remediation efforts will likely be necessary to significantly reduce HABs in Lake Erie's WB.

  17. Assessing the Impacts of Climate and Land Use Change on Streamflow and Nutrient Loading in the Arroyo Colorado Watershed in Southern Texas

    Science.gov (United States)

    Osidele, O.; Sun, A.; Green, R.

    2011-12-01

    , streamflow and nutrient loading simulations for the Arroyo Colorado Watershed are based on the application of the Soil and Water Assessment Tool (SWAT) model driven by projected future climatic conditions generated from five global circulation models under three greenhouse gas emission scenarios. Land use change data are incorporated based on various remote sensing earth observation products including NASA's Moderate Resolution Imaging Spectroradiometer datasets and Landsat images in the multiagency National Land Cover Database. Population change and urbanization are considered in terms of changes in permitted wastewater treatment discharges. The findings of this study indicate that hydrological models like SWAT are useful tools for evaluating the watershed impacts from global climate change scenarios. In developing climate adaption plans, such models should include significant interactions among various local water management systems driven by population growth and urbanization in communities, and site-specific agricultural water use.

  18. Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland.

    NARCIS (Netherlands)

    Aerts, R.; Cornelissen, J.H.C.; van Logtestijn, R.S.P; Callaghan, T.V.

    2007-01-01

    Nutrient resorption from senescing plant tissues is an important determinant of the fitness of plant populations in nutrient-poor ecosystems, because it makes plants less dependent on current nutrient uptake. Moreover, it can have significant "afterlife" effects through its impact on litter

  19. Impacts of decline harvest of country food on nutrient intake among Inuit in Arctic Canada: impact of climate change and possible adaptation plan

    Directory of Open Access Journals (Sweden)

    Renata Rosol

    2016-07-01

    Full Text Available Background: The pervasive food insecurity and the diet transition away from local, nutrient-rich country foods present a public health challenge among Inuit living in the Canadian Arctic. While environmental factors such as climate change decreased the accessibility and availability of many country food species, new species were introduced into regions where they were previously unavailable. An adaptation such as turning to alternate country food species can be a viable solution to substitute for the nutrients provided by the declined food species. The objective of this study was to estimate the impact on nutrient intake using hypothetical scenarios that current commonly harvested country foods were reduced by 50%, and were replaced with alternate or new species. Methods: Data collected during the 2007–2008 Inuit Health Survey from 36 Canadian Arctic communities spanning Nunavut, the Inuvialuit Settlement Region and Nunatsiavut were used. Results: A 50% decline in consumption of fish, whale, ringed seals and birds (the food that was reported to be in decline resulted in a significant decrease in essential nutrient intake. Possible substitute foods were identified but some nutrients such as zinc and especially vitamin D were most often found lacking in the alternative diet. Conclusions: If the alternative species are not available or feasible, more expensive and less nutritionally dense store-bought foods may be sought. Given the superior quality of country foods and their association with food security, and Inuit cultural health and personal identity, developing skills and awareness for adaptation, promoting regional sharing networks, forming a co-management agency and continuing nutritional monitoring may potentially preserve the nutritional integrity of Inuit diet, and in turn their health and cultural survival.

  20. Detection and Attribution of Regional Land-Use and Climate Change Signatures in River Nutrient Time-Series Using Dynamic Factor Analysis

    Science.gov (United States)

    Aguilera, R.; Marcé, R.; Sabater, S.

    2014-12-01

    The scientific community concurs that the rate and the intensity of the current environmental changes have been accelerated by anthropogenic activities. Mediterranean freshwater systems are particularly vulnerable to such changes due to their inherent climate-dependent hydrological variability. We aimed to detect common patterns in monthly nutrient concentration time-series (1980-2011) from 50 sampling stations across a Mediterranean river basin, and to attribute their spatiotemporal variability to environmental factors at the basin and regional scales. Dynamic Factor Analysis (DFA) provided the methodological framework to extract underlying common patterns in nutrient time-series with missing observations, a commonly encountered problem in environmental databases. Most importantly, DFA guaranteed the explicit consideration of the inextricable link between temporal and spatial patterns of change necessary to investigate the drivers and processes that shape them. Using complementary methods such as frequency and trend analyses, we sought to further characterize the extracted patterns and identify the drivers behind their variability across time and space. The extracted nitrate concentration patterns described a large proportion of the observed variability at the basin scale. Cycles of 2.5 and 3.5 years identified in nitrate concentration patterns were linked to climatic oscillations. The seasonality of nitrate patterns was either driven by hydrological or phenological processes, depending on the geographical location of the monitoring point. Land uses linked to fertilizer application further modulated the increasing and decreasing nitrate trends scattered across the basin. Conversely, phosphate concentration patterns did not fully describe the behavior of all monitoring points included in the analysis. Nevertheless, decreasing phosphate trends observed across space and time coincided with changes in land-use management practices in the study basin.

  1. Nutrient density of beverages in relation to climate impact

    Directory of Open Access Journals (Sweden)

    Annika Smedman

    2010-08-01

    Full Text Available The food chain contributes to a substantial part of greenhouse gas (GHG emissions and growing evidence points to the urgent need to reduce GHGs emissions worldwide. Among suggestions were proposals to alter food consumption patterns by replacing animal foods with more plant-based foods. However, the nutritional dimensions of changing consumption patterns to lower GHG emissions still remains relatively unexplored. This study is the first to estimate the composite nutrient density, expressed as percentage of Nordic Nutrition Recommendations (NNR for 21 essential nutrients, in relation to cost in GHG emissions of the production from a life cycle perspective, expressed in grams of CO2-equivalents, using an index called the Nutrient Density to Climate Impact (NDCI index. The NDCI index was calculated for milk, soft drink, orange juice, beer, wine, bottled carbonated water, soy drink, and oat drink. Due to low-nutrient density, the NDCI index was 0 for carbonated water, soft drink, and beer and below 0.1 for red wine and oat drink. The NDCI index was similar for orange juice (0.28 and soy drink (0.25. Due to a very high-nutrient density, the NDCI index for milk was substantially higher (0.54 than for the other beverages. Future discussion on how changes in food consumption patterns might help avert climate change need to take both GHG emission and nutrient density of foods and beverages into account.

  2. Agriculture: Climate Change

    Science.gov (United States)

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  3. CLIMATIC CHANGE AND CLIMATE CONTROL,

    Science.gov (United States)

    The heat balance method together with certain other methods of theoretical climatology for investigating the laws of natural climatic changes and for determining the possibility of controlling such changes is discussed.

  4. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  5. Organic Farming and Climate Change

    OpenAIRE

    Niggli, Urs; Schmid, Heinz; Fliessbach, Andreas

    2008-01-01

    This publication concludes that organic agriculture has much to offer in both mitigation of climate change through its emphasis on closed nutrient cycles and is a particularly resilient and productive system for adaptation strategies. It also raises the issue of whether organic agriculture should be eligible for carbon credits under voluntary carbon offsetting markets and the Clean Development Mechanism.

  6. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  7. Influences of historical and projected changes in climate and land management practices on nutrient fluxes in the Mississippi River Basin, 1948-2100

    Science.gov (United States)

    Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.

    2016-12-01

    Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.

  8. Interactive effects of climate change with nutrients, mercury, and freshwater acidification on key taxa in the North Atlantic Landscape Conservation Cooperative region

    Science.gov (United States)

    Pinkney, Alfred E.; Driscoll, Charles T.; Evers, David C.; Hooper, Michael J.; Horan, Jeffrey; Jones, Jess W.; Lazarus, Rebecca S.; Marshall, Harold G.; Milliken, Andrew; Rattner, Barnett A.; Schmerfeld, John J.; Sparling, Donald W.

    2015-01-01

    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public–private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC region-specific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena—freshwater acidification and eutrophication. We also prepared taxa case studies on GCC- and GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region's estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures

  9. Interactive effects of climate change with nutrients, mercury, and freshwater acidification on key taxa in the North Atlantic Landscape Conservation Cooperative region.

    Science.gov (United States)

    Pinkney, Alfred E; Driscoll, Charles T; Evers, David C; Hooper, Michael J; Horan, Jeffrey; Jones, Jess W; Lazarus, Rebecca S; Marshall, Harold G; Milliken, Andrew; Rattner, Barnett A; Schmerfeld, John; Sparling, Donald W

    2015-07-01

    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public-private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC region-specific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena-freshwater acidification and eutrophication. We also prepared taxa case studies on GCC- and GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region's estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and

  10. Seasonal climate manipulations result in species-specific changes in Leaf nutrient levels and isotopic composition in a sub-arctic bog.

    NARCIS (Netherlands)

    Aerts, R.; Callaghan, T.V.; Dorrepaal, E.; van Logtestijn, R.S.P; Cornelissen, J.H.C.

    2009-01-01

    Climate change in cold biomes not only involves higher summer temperatures, but also warmer springs and more winter precipitation. So far, little is known about species responses to these seasonal components of climate change. 2. We experimentally manipulated spring and summer temperatures and

  11. Climate Change and Health

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Climate change and health Fact sheet Updated July 2017 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  12. Climate change: a primer

    OpenAIRE

    Khanna, Dr. Perminder; Aneja, Reenu

    2011-01-01

    Abstract Climate has inherent variability manifesting in gradual changes in temperature, precipitation and sea-level rise. The paper entitled “Climate Change: A Primer” attempts to analyse the policy response and adaptation to the need to address climate change at the international and domestic level both. Intense variations in climate would increase the risk of abrupt and non-linear changes in the ecosystem, impacting their function, biodiversity and productivity. The policy initiations and ...

  13. Climate Change Adaptation Approaches

    Science.gov (United States)

    2011-05-11

    US Army Corps of Engineers BUILDING STRONG® Climate Change Adaptation Approaches Presented at the E2S2 Symposium May 11th, 2011 New Orleans, LA...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Climate Change Adaptation Approaches 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...10/09).  One of the four priorities is to maintain readiness in the face of climate change .  Addressing Climate Change Risk and Vulnerability: a

  14. Contrasting responses between vegetation and soil microbial biomass and nutrient pools may exacerbate the detrimental impacts of climate change in a semiarid shrubland ecosystem

    Science.gov (United States)

    Querejeta, José Ignacio; León-Sánchez, Lupe; Nicolás, Emilio; Prieto, Iván; Ondoño, Sara; Maestre, Fernando; García-Izquierdo, Carlos

    2017-04-01

    We conducted a 4-year manipulative experiment in a semiarid shrubland in Southeastern Spain in which we simulated the warmer and drier climate conditions forecasted for the Mediterranean Region. We evaluated the effects of warming (W), rainfall reduction (RR) and their combination (W+RR) on the performance of a native plant community, with a focus on six coexisting shrub species. Warming (W and W+RR treatments) consistently decreased net photosynthesis rates and water use efficiency across species throughout the study. Shoot dry biomass production was strongly decreased by the three climate manipulation treatments in all the target species. Leaf nutrient (N, P, K, Fe, Zn, Cu) concentrations and pool sizes in foliage were consistently decreased by warming across species, indicating reduced plant nutrient uptake and status. Plant survival rate at the end of the 4 yr. study period was also drastically decreased by experimental warming. In contrast to the strong detrimental effects of warming on plant performance, microbial biomass in rhizosphere soil increased in response to warming. However, despite increased soil microbial biomass, the activity and/or production efficiency of key microbial extracellular enzymes for soil nutrient cycling (phosphatase, urease, glycine-aminopeptidase) were significantly decreased by warming, suggesting slowed N and P mobilization and cycling rates and increased microbial immobilization, especially in the W+RR treatment. Overall, the data indicate that a warmer and drier climate could shift the competitive balance between plants and soil microbes, thereby exacerbating nutrient limitation of photosynthesis and water use efficiency, with detrimental feedback effects on vegetation productivity and cover in this dryland ecosystem.

  15. Climate Change Law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan

    2016-01-01

    This book brings together over seventy fifty authors for a comprehensive examination of the emerging global regime of climate change law. Despite the relative youth of climate change law, we can already begin to see the outlines of legal regimes addressing climate change mitigation and adaptation

  16. Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900–2050

    NARCIS (Netherlands)

    Vries, de W.; Posch, M.

    2011-01-01

    We modelled the combined effects of past and expected future changes in climate and nitrogen deposition on tree carbon sequestration by European forests for the period 1900–2050. Two scenarios for deposition (current legislation and maximum technically feasible reductions) and two climate scenarios

  17. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  18. UnLoadC3: Ensembles of climate change projections for two river catchment areas in Austria - Contributions to an overall uncertainty assessment framework for the modelling of water quantity and nutrient transport

    Science.gov (United States)

    Matulla, Christoph; Hollosi, Brigitta; Schulz, Karsten; Schürz, Christoph; Mehdi, Bano; Ertl, Thomas; Pressl, Alexander

    2017-04-01

    The objective of UnLoadC3 is to examine the impacts of uncertainty - inherent in data and modelling - on projections of water flow and nutrient transport within two selected river catchment areas (Schwechat and Raab in Austria) under climate change conditions. To access future climate change, ensembles of climate projections from the EURO-CORDEX initiative - given on grids with a 12 km spacing - have been used. These ensembles have been driven by two RCPs (RCP4.5 and RCP8.5) used within the Fifth Assessment Report of the IPCC. In order to provide climate change projections on the required impact scales, statistical downscaling techniques as well as bias correction methods have been applied. Climate variables, such as minimum, maximum, mean temperature and precipitation totals given on a daily base were analyzed. This local scale daily information is entered into the water quality model SWAT, which simulates water balance, pertaining sediment- and nutrient-transport processes across the two considered river watersheds.

  19. Climate change assessments

    Science.gov (United States)

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  20. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  1. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  2. Climate Change and Vietnam

    Science.gov (United States)

    2013-11-01

    projects (the majority of them in South and South East Asia); focusing in Vietnam on climate change planning and carbon sequestration markets . 33...enhancement for dairy cattle. 21 In the parallel line of effort, MNRE’s priorities for adaptation programs are agriculture, forestry, coastal zone management...Climate change assistance,” AusAID, 13 June 2013, accessed 15 October 2013, http://www.ausaid.gov.au. 33 IFAD, “ Planning for Climate Change in

  3. Chatham Islands Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-15

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  4. Communicating Urban Climate Change

    Science.gov (United States)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  5. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  6. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  7. Climate Change Dossier

    NARCIS (Netherlands)

    Albers, R.A.W.

    2010-01-01

    Climate change is one of the great issues of our time. It is a complex, multi-facetted issue concerning flooding, energy efficiency, CO2 storage and sustainable energy, among others. TNO is actively involved in the issue, undertaking many studies relating to various aspects. The climate is changing;

  8. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  9. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  10. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  11. Long Term Large Scale river nutrient changes across the UK

    Science.gov (United States)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as

  12. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  13. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition.

    Science.gov (United States)

    Mills, Benjamin J W; Batterman, Sarah A; Field, Katie J

    2018-02-05

    Fossil evidence from the Rhynie chert indicates that early land plants, which evolved in a high-CO2 atmosphere during the Palaeozoic Era, hosted diverse fungal symbionts. It is hypothesized that the rise of early non-vascular land plants, and the later evolution of roots and vasculature, drove the long-term shift towards a high-oxygen, low CO2 climate that eventually permitted the evolution of mammals and, ultimately, humans. However, very little is known about the productivity of the early terrestrial biosphere, which depended on the acquisition of the limiting nutrient phosphorus via fungal symbiosis. Recent laboratory experiments have shown that plant-fungal symbiotic function is specific to fungal identity, with carbon-for-phosphorus exchange being either enhanced or suppressed under superambient CO2 By incorporating these experimental findings into a biogeochemical model, we show that the differences in these symbiotic nutrient acquisition strategies could greatly alter the plant-driven changes to climate, allowing drawdown of CO2 to glacial levels, and altering the nature of the rise of oxygen. We conclude that an accurate depiction of plant-fungal symbiotic systems, informed by high-CO2 experiments, is key to resolving the question of how the first terrestrial ecosystems altered our planet.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  14. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  15. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  16. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other

  17. Creationism & Climate Change (Invited)

    Science.gov (United States)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  18. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  19. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  20. Global climate change

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  1. Global Climatic Change.

    Science.gov (United States)

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  2. Climate Change Adaptation Training

    Science.gov (United States)

    A list of on-line training modules to help local government officials and those interested in water management issues better understand how the changing climate affects the services and resources they care about

  3. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  4. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  5. Climate change and cities

    Energy Technology Data Exchange (ETDEWEB)

    Satterthwaite, David

    2006-10-15

    What is done, or not done, in cities in relation to climate change over the next 5-10 years will affect hundreds of millions of people, because their lives and livelihoods are at risk from global warming. What is done in cities will also have a major influence on whether the escalating risks for the whole planet will be reduced or eliminated. Climate change needs to be considered in all development plans and investments - local, regional, national and international. Urban growth must be made more climate-resilient and help reduce, rather than increase, greenhouse gas emissions. This will not be done by the market; it can only be done by governments.

  6. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  7. Complex response of the forest nitrogen cycle to climate change

    OpenAIRE

    Bernal, Susana; Hedin, L. O.; Likens, G. E.; Gerber, S; Buso, D.

    2012-01-01

    Climate exerts a powerful influence on biological processes, but the effects of climate change on ecosystem nutrient flux and cycling are poorly resolved. Although rare, long-term records offer a unique opportunity to disentangle effects of climate from other anthropogenic influences. Here, we examine the longest and most complete record of watershed nutrient and climate dynamics available worldwide, which was collected at the Hubbard Brook Experimental Forest in the northeastern United State...

  8. Observed climate change hotspots

    Science.gov (United States)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  9. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  10. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    tested in 1157 lakes across the continental United States. The results show that mean annual algal biomass generally increased with annual temperature. Greater increase was found in lakes with more nutrients. Mean annual algal biomass generally decreased with annual total precipitation. In both the "low" and the "high" greenhouse-gas emission scenarios, mean annual algal biomass in lakes generally increased with climate change, and greater increases are predicted from the high emission scenario.

  11. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...

  12. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  13. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  14. Climate change impacts: birds

    NARCIS (Netherlands)

    Tomotani, B.M.; Ramakers, J.J.C.; Gienapp, P.

    2016-01-01

    Climate change can affect populations and species in various ways. Rising temperatures can shift geographical distributions and lead to (phenotypic or genetic) changes in traits, mostly phenology, which may affect demography. Most of these effects are well documented in birds. For example, the

  15. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  16. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  17. Comparing Measures of Fine Root Uptake by Mature Trees: Applications for Determining the Potential Impacts of Climate Change-Induced Soil Freezing on Nutrient Uptake by Sugar Maple and Red Spruce

    Science.gov (United States)

    Socci, A. M.; Templer, P. H.

    2008-12-01

    Forests of the northeastern United States are predicted to experience a decrease in the depth and duration of snow pack due to global climate change. Even when coupled with milder winter temperatures, the loss of forest floor insulation can increase soil freezing depth and duration during the winter months. Soil frost leads to increased root mortality and soil nitrate leaching in stands dominated by sugar maple, a dominant tree species of northern hardwood forests. Greater nitrogen losses may be due to reduced nitrogen uptake by plant roots. As nitrogen is an essential nutrient for trees, changes in nitrogen uptake by fine roots may have implications for forest productivity and carbon storage. To test the impact of increased soil freezing on fine root uptake of nutrients from the soil, we established a snow removal experiment in sugar maple and red spruce dominated forests at the Hubbard Brook Experimental Forest in New Hampshire, USA. In the first year of this study, we measured uptake of ammonium (NH4+) and nitrate (NO3-) by fine roots of sugar maple and red spruce during the early (May), peak (July), and late (September) growing season. Individuals of sugar maple were located on paired plots (n=4 reference and snow-removal plots, n= 3 individuals per plot) and sampled for rates of nutrient uptake prior to snow removal. We used both an in situ intact root uptake measurement known as "nitrogen depletion", and an ex situ excised root measurement. Individuals of red spruce (n=1 reference and snow-removal plot, n=3 individuals per plot) were sampled after one winter of snow removal, also using one in situ and one ex situ method of measuring fine root uptake of nutrients. Individuals of sugar maple took up significantly more NH4+ than NO3- during the early growing season, but there was no significant difference between forms of nitrogen taken up during the peak growing season. Individuals of red spruce took up significantly more NH4+ than NO3- during both the early

  18. Climate change and schools

    NARCIS (Netherlands)

    Sheffield, Perry E.; Uijttewaal, Simone A.M.; Stewart, James; Galvez, Maida P.

    2017-01-01

    The changing climate is creating additional challenges in maintaining a healthy school environment in the United States (US) where over 50 million people, mostly children, spend approximately a third of their waking hours. Chronic low prioritization of funds and resources to support environmental

  19. Biodiversity and Climate Change

    African Journals Online (AJOL)

    NWUuser

    preventing and mitigating the impacts of climate change and biodiversity loss. As should be evident from the above very brief survey of the content of the book, it is vast in its substantive breadth and rich in its diversity of approach and perspective. This is naturally one of its strength but as with many books comprising.

  20. CLIMATE CHANGE ADAPTATION

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    The most vulnerable populations are those with few resources to cope with climate change impacts such as desertification, soil ... Canada's International Development Research Centre (IDRC) is one of the world's leading institutions in the generation and application of new knowledge to meet the challenges of international ...

  1. Adaptation to climate change

    NARCIS (Netherlands)

    Carmin, J.; Tierney, K.; Chu, E.; Hunter, L.M.; Roberts, J.T.; Shi, L.; Dunlap, R.E.; Brulle, R.J.

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the

  2. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  3. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  4. Climate change reference guide

    Science.gov (United States)

    2009-01-01

    At the heart of climate change is the greenhouse effect, in which molecules of various gases trap heat in Earths atmosphere and keep it warm enough to support life. Carbon dioxide and other greenhouse gases (GHGs) are an important part of Ea...

  5. Marine viruses and global climate change.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'anno, Antonio; Fuhrman, Jed A; Middelburg, Jack J; Noble, Rachel T; Suttle, Curtis A

    2011-11-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Challenges of climate change

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  7. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  8. Hantaviruses and climate change.

    Science.gov (United States)

    Klempa, B

    2009-06-01

    Most hantaviruses are rodent-borne emerging viruses. They cause two significant human diseases, haemorrhagic fever with renal syndrome in Asia and Europe, and hantavirus cardiopulmonary syndrome in the Americas. Very recently, several novel hantaviruses with unknown pathogenic potential have been identified in Africa and in a variety of insectivores (shrews and a mole). Because there is very limited information available on the possible impact of climate change on all of these highly dangerous pathogens, it is timely to review this aspect of their epidemiology. It can reasonably be concluded that climate change should influence hantaviruses through impacts on the hantavirus reservoir host populations. We can anticipate changes in the size and frequency of hantavirus outbreaks, the spectrum of hantavirus species and geographical distribution (mediated by changes in population densities), and species composition and geographical distribution of their reservoir hosts. The early effects of global warming have already been observed in different geographical areas of Europe. Elevated average temperatures in West-Central Europe have been associated with more frequent Puumala hantavirus outbreaks, through high seed production (mast year) and high bank vole densities. On the other hand, warm winters in Scandinavia have led to a decline in vole populations as a result of the missing protective snow cover. Additional effects can be caused by increased intensity and frequency of extreme climatic events, or by changes in human behaviour leading to higher risk of human virus exposure. Regardless of the extent of climate change, it is difficult to predict the impact on hantavirus survival, emergence and epidemiology. Nevertheless, hantaviruses will undoubtedly remain a significant public health threat for several decades to come.

  9. Smithsonian climate change exhibits

    Science.gov (United States)

    Kumar, Mohi

    2006-05-01

    Two new museum exhibits, ``Arctic: A Friend Acting Strangely'' and ``Atmosphere: Change is in the Air'' opened 15 April at the Smithsonian Institution's National Museum of Natural History in Washington, D.C., in partnership with the U.S. National Oceanic and Atmospheric Administration, NASA, and the U.S. National Science Foundation. In ``Arctic: A Friend Acting Strangely,'' anecdotes from indigenous polar people reveal how climate changes have affected life within the last 50 years. For example, as permafrost melts and sea ice shrinks, plant distributions and animal migration patterns are changing, severely affecting culture.

  10. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    The science of climate change often gets lost behind the political debate. It presents those of us who teach physical science both the responsibility and the opportunity to teach both the science and, as importantly, the process of science to our students and the general public. Part of the problem is that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making teaching it to science-averse students and general audiences even more challenging. Also, in our times when every action and statement is suspected of having a political motivation, teaching the process of science - data gathering and analysis, hypothesis testing and peer review - as our way of keeping science as truthful as possible so that the conclusions are more than just another opinion presents as great a challenge as teaching the science itself. I have been teaching a course in Global Climate since 2000, have taught elderhostel courses twice, and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to teach this important topic to share how we approach both the science and the politics of this issue.

  11. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  12. Assessing the impacts of climate change on discharge and nutrient losses from a karstic agricultural sub-basin in the Upper Chesapeake Bay watershed

    Science.gov (United States)

    The health of the Chesapeake Bay Basin ecosystem, which lies within the heavily populated Northeastern United States, relies on reducing nutrient loading to the Chesapeake Bay by the 2025 TMDL deadline and on into the future. Doing so requires evaluating the impact of current agricultural management...

  13. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  14. Key interactions between nutrient limitation and climatic factors in temperate forests : a synthesis of the sugar maple literature

    Energy Technology Data Exchange (ETDEWEB)

    St Clair, S.B. [Brigham Young Univ., Provo, UT (United States). Dept. of Plant and Wildlife Sciences; Sharpe, W.E. [Pennsylvania State Univ., University Park, PA (United States). Inst. of the Environment; Lynch, J.P. [Pennsylvania State Univ., University Park, PA (United States). Intercollege Program in Ecology

    2008-03-15

    Climatic conditions influence how forest tree species acquire nutrient resources, and can interact with foliar nutrient status via leaf physiology. Nutrient limitations can reduce the growth stimulating effects of elevated carbon dioxide (CO{sub 2}). This paper presented a synthesis of current understandings of sugar maple responses to mineral stress in relation to the context of climate changes in forest environments. The aim of the study was to provide a framework for understanding how sensitivity to shifts in climate conditions can influence forest function. Sugar maple responses to nutrient deficiencies and metal toxicities were considered separately for nitrogen (N); calcium (Ca); Magnesium (Mg); potassium (K); phosphorus (P); manganese (Mn); aluminum (Al); and iron, copper, and zinc. Biotic and abiotic factors modulating nutrient acquisition and utilization were also considered. The chemical properties of precipitation on the nutrient status of sugar maples was examined, as well as influences related to temperature, ozone levels, and elevated CO{sub 2}. Underlying ion imbalances were also studied. Results of the study suggested that mineral stress has been overlooked among the variables that may influence terrestrial ecosystem function under future global climate change scenarios. Continued analysis of nutrient-climate interactions are needed to model how forest function and structure may change under future climate conditions. 151 refs., 1 tab., 5 figs.

  15. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  16. Market strategies for climate change

    NARCIS (Netherlands)

    Kolk, A.; Pinkse, J.M.

    2004-01-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still

  17. Adapting Agriculture to Climate Change

    National Research Council Canada - National Science Library

    S. Mark Howden; Jean-François Soussana; Francesco N. Tubiello; Netra Chhetri; Michael Dunlop; Holger Meinke

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently...

  18. Climate change and child health.

    Science.gov (United States)

    Seal, Arnab; Vasudevan, Chakrapani

    2011-12-01

    Postindustrial human activity has contributed to rising atmospheric levels of greenhouse gases causing global warming and climate change. The adverse effects of climate change affect children disproportionately, especially in the developing world. Urgent action is necessary to mitigate the causes and adapt to the negative effects of climate change. Paediatricians have an important role in managing the effects of climate change on children and promoting sustainable development.

  19. Lay rationalities of climate change

    OpenAIRE

    Alves,Fátima; Caeiro, Sandra; Azeiteiro, Ulisses

    2014-01-01

    In this special issue we were also interested in revealing the level of concepts and the level of social action, trying to contribute to the answer of questions like: How local populations explain, interpret and deal with climate change? What are the individual and collective actions in response to climate change? How do populations deal with Climate Change mitigation (risk perception and risk-mitigating)? What is the available traditional knowledge about Climate Change? How does the cu...

  20. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  1. Designing Global Climate Change

    Science.gov (United States)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  2. Understanding recent climate change.

    Science.gov (United States)

    Serreze, Mark C

    2010-02-01

    The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most.

  3. MAINSTREAMING CLIMATE CHANGE ADAPTATION INTO ...

    African Journals Online (AJOL)

    2017-10-02

    Oct 2, 2017 ... need to mainstream climate change adaptation into development planning at the national and sub-national levels ... and the risks associated with climate change will become more severe over time. In .... sustainable natural resource management, but broader policies relating to climate change are yet to be ...

  4. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come

  5. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  6. Population and climate change.

    Science.gov (United States)

    Cohen, Joel E

    2010-06-01

    To review, the four broad dimensions of any complex human problem, including climate change, are the human population, economics, culture, and environment. These dimensions interact with one another in all directions and on many time-scales. From 2010 to 2050, the human population is likely to grow bigger, more slowly, older, and more urban. It is projected that by 2050 more than 2.6 billion people (almost 94% of global urban growth) will be added to the urban population in today's developing countries. That works out to 1.26 million additional urban people in today's developing countries every week from 2010 to 2050. Humans alter the climate by emitting greenhouse gases, by altering planetary albedo, and by altering atmospheric components. Between 1900 and 2000, humans' emissions of carbon into the atmosphere increased fifteenfold, while the numbers of people increased less than fourfold. Population growth alone, with constant rates of emissions per person, could not account for the increase in the carbon emissions to the atmosphere. The world economy grew sixteenfold in the twentieth century, accompanied by enormous increases in the burning of gas, oil, and coal. In the last quarter of the twentieth century, population grew much faster in developing countries than in high-income countries, and, compared with population growth, the growth of carbon emissions to the atmosphere was even faster in developing countries than in high-income countries. The ratio of emissions-to-population growth rates was 2.8 in developing countries compared with 1.6 in high-income countries. Emissions of CO2 and other greenhouse gases are influenced by the sizes and density of settlements, the sizes of households, and the ages of householders. Between 2010 and 2050, these demographic factors are anticipated to change substantially. Therefore demography will play a substantial role in the dynamics of climate changes. Climate changes affect many aspects of the living environment

  7. Breeding crops for improved mineral nutrition under climate change conditions.

    Science.gov (United States)

    Pilbeam, David J

    2015-06-01

    Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Climate Change and National Security

    Science.gov (United States)

    2013-02-01

    does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a. REPORT Climate Change and National...Security 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Does climate change constitute a national security threat to the United States? What is climate ...resources for an in-depth discussion on national security and climate change . 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES

  9. Interdisciplinarity, Climate, and Change

    Science.gov (United States)

    Pulwarty, R. S.

    2016-12-01

    Interdisciplinarity has become synonymous with all things progressive about research and education. This is so not simply because of a philosophical belief in the heterogeneity of knowledge but because of the scientific and social complexities of problems of major concern. The increased demand for improved climate knowledge and information has increased pressure to support planning under changing rates of extremes event occurrence, is well-documented. The application of useful climate data, information and knowledge requires multiple networks and information services infrastructure that support planning and implementation. As widely quoted, Pasteur's quadrant is a label given to a class of scientific research methodologies that seeks fundamental understanding of scientific problems and, simultaneously, to benefit society-what Stokes called "use-inspired research". Innovation, in this context, has been defined as "the process by which individuals and organizations generate new ideas and put them into practice". A growing number of research institutes and programs have begun developing a cadre of professionals focused on integrating basic and applied research in areas such as climate risk assessment and adaptation. There are now several examples of where researchers and teams have crafted examples that include affected communities. In this presentation we will outline the lessons from several efforts including the PACE program, the RISAs, NIDIS, the Climate Services Information System and other interdisciplinary service-oriented efforts in which the author has been involved. Some early lessons include the need to: Recognize that key concerns of social innovation go beyond the projections of climate and other global changes to embrace multiple methods Continue to train scientists of all stripes of disciplinary norms, but higher education should also prepare students who plan to seek careers outside of academia by increasing flexibility in graduate training programs

  10. The Ecological consequences of global climate change

    National Research Council Canada - National Science Library

    Woodward, F. I

    1992-01-01

    ... & land use - modeling potential responses of vegetation to global climate change - effects of climatic change on population dynamics of crop pests - responses of soils to climate change - predicting...

  11. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  12. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  13. Climate Changes around the world

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, J.

    2009-07-01

    This presentation addresses several important aspects of the climate changes that are occurring around the globe. the causes of climate change are first reviewed, with illustrations of orbital oscillations, the atmospheric greenhouse effect, and aerosol effects. Observed changes in climate are next reviewed, both thought many millenia and during the past century. Distinctions are made between global warming and regional changes in temperature and precipitation. Changes in the frequency of weather extremes, including heat waves and tropical storms, are also discussed. (Author)

  14. Armillaria Pathogenesis under Climate Changes

    Directory of Open Access Journals (Sweden)

    Katarzyna Kubiak

    2017-03-01

    Full Text Available Climate changes influencing forest ecosystems include increased air temperatures and CO2 concentrations as well as droughts and decreased water availability. These changes in turn effect changes in species composition of both host plants and pathogens. In the case of Armillaria, climate changes cause an increase in the activity of individual species and modify the growth of rhizomorphs, increasing the susceptibility of trees. The relationship between climate changes and the biotic elements of Armillaria disease are discussed in overview.

  15. Climate Change and Mental Health.

    Science.gov (United States)

    Trombley, Janna; Chalupka, Stephanie; Anderko, Laura

    2017-04-01

    : Climate change is an enormous challenge for our communities, our country, and our world. Recently much attention has been paid to the physical impacts of climate change, including extreme heat events, droughts, extreme storms, and rising sea levels. However, much less attention has been paid to the psychological impacts. This article examines the likely psychological impacts of climate change, including anxiety, stress, and depression; increases in violence and aggression; and loss of community identity. Nurses can play a vital role in local and regional climate strategies by preparing their patients, health care facilities, and communities to effectively address the anticipated mental health impacts of climate change.

  16. Health Effects of Climate Change

    Science.gov (United States)

    ... is known about the actual and potential human health impacts of climate change, many effects are speculative and targeted research efforts ... extensive research needs, particularly regarding adaptive responses to climate ... Examples of key research needs include: Identifying health ...

  17. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  18. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial......) a study on the effects of elevated atmospheric CO2-concentration, warming and drought on the photosynthetic capacity and phenology of C. vulgaris and D. flexuosa in an outdoor climate change experiment on a grassy heathland in Denmark; 4) a study on climate change impacts on the competitive interactions...

  19. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K; Ericksen, Polly J.; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  20. Climate change and marine life.

    Science.gov (United States)

    Richardson, Anthony J; Brown, Christopher J; Brander, Keith; Bruno, John F; Buckley, Lauren; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Holding, Johnna; Kappel, Carrie V; Kiessling, Wolfgang; Moore, Pippa J; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Schoeman, David S; Schwing, Frank; Sydeman, William J; Poloczanska, Elvira S

    2012-12-23

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change.

  1. A change of climate

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A.

    2005-06-01

    Improvements in our understanding of climate change over the past decade are discussed. The main change has been that all the people, including business and industry leaders, municipalities and even national governments have moved beyond denial, and everyone acknowledges that we have to tread more lightly on the planet if we are to survive. The need is for stabilizing the climate by finding clean, and preferably renewable, sources of energy -- wind, solar, tidal or geothermal energy - possibly delivered as electricity through hydrogen fuel cells. Harnessing waste products from burning fossil fuels and using them for something productive is another way to achieve the cuts in pollution that is the greatest challenge humanity is likely ever to face. Supplementing the main article is a series of vignettes focusing on environmental innovations over the past decade, issues that have stagnated during the same period, and issues on which significant progress may be achieved during the coming decade. Growing organic foods, greening garbage, promoting sustainable use of boreal forests, replacing gasoline-driven vehicles with hybrids, are some of the areas where progress has been made during the past ten years, whereas toxic ingredients in foods, inadequate treatment of domestic and industrial waste, collapse of the cod fishery in Newfoundland and toxic tailings dotting the Canadian landscape, are some of the areas which suffered from benign neglect over the same period. Increased application of nano technology to food production, although not without dangers as yet dimly understood, innovative waste management programs, including putting the responsibility for disposal on the shoulders of the producer to provide greater incentive for reuse and recycling, managing marine resources for sustainable use, and applying ecosystem principles to industrial manufacturing processes, are some of the issues expected to be on the forefront of environmental concerns during the next decade.

  2. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  3. Quantifying the effects of interacting nutrient cycles on terrestrial biosphere dynamics and their climate feedbacks (QUINCY)

    Science.gov (United States)

    Zaehle, Sönke; Caldararu, Silvia; Eder, Lucia; Engel, Jan; Kern, Melanie; Schrumpf, Marion; Weber, Enrico

    2017-04-01

    Nutrient availability plays a pivotal role in the response of terrestrial ecosystems to increasing atmospheric CO2 and climate change. The first generation of global nutrient-carbon cycle models shows strongly diverging estimates of the nutrient effect, resulting from lacking integration of ecosystem observations and fundamental uncertainties in the representation of governing processes. The two fundamental areas in which advances in modelling are required at i)the effects of nutrient availability on plant photosynthesis and respiration by explicitly taking the energy requirement of nutrient acquisition into account, and ii) the effects of vegetation-soil interactions, namely rhizosphere processes, on plant nutrient availability and soil C turnover. Here we present the methodology and first results of the QUINCY project, which addresses these important issues by an approach encompassing experimentation and model development. In particular, we outline a novel modelling approach to systematically link carbon, nutrient and water flows within the framework of a general land surface model at time-scales of minutes to decades, and illustrate, how (new) experimental data can (better) constrain this novel model.

  4. Climate and soil-age constraints on nutrient uplift by plants.

    Science.gov (United States)

    Porder, S.; Chadwick, O. A.

    2007-12-01

    We analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 28 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (10, 170, and 350 ky) each of which crosses a precipitation gradient from plant nutrient uplift where nutrient cations and phosphorus are retained in upper horizons as a result of plant activity. The gradients also elucidate several abiotic constraints on plant- driven retention of nutrients. At the dry sites (plant slow the loss of nutrient (e.g. potassium) vs. non-nutrient (e.g. sodium) cations, but the effect is small because of low plant cover and productivity. At intermediate rainfall (750 - 1300 mm yr-1) plants substantially enrich both nutrient cations and P in the upper soils, an effect that increases with flow age. In contrast, at high rainfall (>1500 mm yr-1), the effect of plants on nutrient distributions diminishes with soil age and is largely absent after 350 ky of soil development. Unlike the major plant macronutrients, the distribution of the transition metals iron (Fe) and aluminum (Al) is driven more by chemical reactions than by plant uptake. Dry sites exhibit very little movement of either element, even after 350 ky of soil development. However at high rainfall the older flows show substantial Al and Fe translocations, and wet sites on all three flows have increased Al on soil exchange sites. These transition metals are key constituents of the secondary minerals that strongly influence the availability of cations and P to plants. The loss of Fe and Al is highly correlated with the loss of P in the older and wetter sites, and increased Al on exchange sites limits the availability of nutrient cations to plants. Thus redox driven redistribution of Fe and acid solublization of Al place a further abiotic constraint on nutrient retention by plants.

  5. Military Adaptation to Climate Change

    Science.gov (United States)

    2011-05-01

    of Defense United States of America Environment, Energy Security and Sustainability Symposium (May 9-12, 2011) Military Adaptation to Climate Change ...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Military Adaptation to Climate Change 5a. CONTRACT NUMBER... climate change . …” Remarks at the Halifax International Security Forum, Halifax, Nova Scotia Nov 2009 2010 Quadrennial Defense Review For the first

  6. Towards Applying Climate Change Adaptation

    OpenAIRE

    Schmidt-Thomé, Philipp

    2017-01-01

    Climate change adaptation has been growing in importance since the beginning of the 21st century. Historically adaptation, not to climate change but to extreme events, was deeply rooted in many societies and their land-use structures. With industrialization, and especially the increase in globalization since the 1990’s the importance of appropriate adaptation has slowly decreased, leading to increased exposure and risks of human settlements in areas potentially affected by climate change impa...

  7. Climate Change and Future World

    Science.gov (United States)

    2013-03-01

    have more capabilities to cope with and adapt to 12 adverse climatic changes ; in contrast, societies that already present elements of instability...higher than the global mean. The entire area is already affected by a lack of water. Climatic changes will further aggravate this situation in the years...trends67: Due to climatic changes , European countries are expected to experience higher temperatures than the global mean, especially in northern Europe

  8. Floods in a changing climate

    Science.gov (United States)

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  9. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  10. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  11. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  12. Global Climate Change and Children's Health.

    Science.gov (United States)

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge. Copyright © 2015 by the American Academy of Pediatrics.

  13. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  14. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  15. Climate Change and Collective Violence.

    Science.gov (United States)

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and (c) by addressing underlying risk factors for collective violence, such as poverty and socioeconomic disparities.

  16. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  17. Changes in climate and changing climate regions in Slovakia

    Directory of Open Access Journals (Sweden)

    Labudová Lívia

    2015-09-01

    Full Text Available In the context of climate change, scientists discuss the relevant reference periods for the assessment of changes in climate. Recently, many studies have been published comparing recent conditions with the last reference period 1961–1990. In this paper, the trends of annual, seasonal and monthly average air temperature, as well as annual, seasonal and monthly precipitation totals in Slovakia, are presented to point out changes which will probably show up in the next reference period 1991–2020. In the second part of paper, changes in the climate regions in Slovakia are analysed, comparing spatial distributions in the period 1961–1990 and in the period 1961–2010.

  18. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  19. Climate indices of Iran under climate change

    Directory of Open Access Journals (Sweden)

    alireza kochaki

    2009-06-01

    Full Text Available Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the effects of climate change on these variables based on pre-determined scenarios was evaluated. The results showed that averaged over all stations, mean temperature increase for spring in the year 2025 and 2050 will be 3.1 and 3.9, for summer 3.8 and 4.7, for autumn 2.3 and 3 and for winter 2.0 and 2.4 ºC, respectively. This increase will be more pronounced from North to the South and from East to the West parts of the country. Mean decrease in autumn rainfall for the target years of 2025 and 2050 will be 8 and 11 percent, respectively. This decrease is negligible for summer months. Length of dry season for the years 2025 and 2050 will be increased, respectively up to 214 and 223 days due to combined effects of increased temperature and decreased rainfall.

  20. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  1. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  2. Runoff and nutrient losses during winter periods in cold climates--requirements to nutrient simulation models.

    Science.gov (United States)

    Deelstra, Johannes; Kvaernø, Sigrun H; Granlund, Kirsti; Sileika, Antanas Sigitas; Gaigalis, Kazimieras; Kyllmar, Katarina; Vagstad, Nils

    2009-03-01

    Large areas in Europe may experience frozen soils during winter periods which pose special challenges to modelling. Extensive data are collected in small agricultural catchments in Nordic and Baltic countries. An analysis on measurements, carried out in four small agricultural catchments has shown that a considerable amount of the yearly nutrient loss occurs during the freezing period. A freezing period was defined as the time period indicated by the maximum and minimum points on the cumulative degree-day curve. On average 6-32% of the yearly runoff was generated during this period while N-loss varied from 5-35% and P loss varied from 3-33%. The results indicate that infiltration into frozen soils might occur during the freezing period and that the runoff generating processes, at least during a considerable part of the freezing period, are rather similar compared to the processes outside the freezing period. Freeze-thaw cycles affect the infiltration capacity and aggregate stability, thereby the erosion and nutrient losses. The Norwegian catchment had a high P loss during the freezing period compared to the other catchments, most likely caused by catchment characteristics such as slope, soil types, tillage methods and fertiliser application. It is proposed to use data, collected on small agricultural dominated catchments, in the calibration and validation of watershed management models and to take into account runoff and nutrient loss processes which are representative for cold climates, thereby obtaining reliable results.

  3. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  4. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  5. Climatic changes and effect on wild sheep habitat

    Science.gov (United States)

    Pfeifer, Edwin L.; Heimer, Wayne; Roffler, Gretchen; Valdez, Raul; Gahl, Megan

    2012-01-01

    Wild sheep are sensitive to environmental change and may be an effective indicator species of climate change in arctic and high mountain ecosystems. To understand the effects of climatic changes on Dall sheep habitat, U.S. Geological Survey scientists have been studying selected areas in Alaska since 2007. The research focus is on forage quality, nutrient levels, and changes resulting from warming or cooling climate trends. Preliminary results indicate significant changes in Dall sheep diet accompanying vegetation changes and upslope retreat of glaciers.

  6. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  7. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC...

  8. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  9. Climate change and dead zones.

    Science.gov (United States)

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.

  10. Forest disturbances under climate change

    Science.gov (United States)

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-06-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

  11. Forest disturbances under climate change

    Science.gov (United States)

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-01-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests. PMID:28861124

  12. Adapting agriculture to climate change.

    Science.gov (United States)

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  13. Volcanic activity and climatic changes.

    Science.gov (United States)

    Bryson, R A; Goodman, B M

    1980-03-07

    Radiocarbon dates of volcanic activity suggest variations that appear to be related to climatic changes. Historical eruption records also show variations on the scale of years to centuries. These records can be combined with simple climatic models to estimate the impact of various volcanic activity levels. From this analysis it appears that climatic prediction in the range of 2 years to many decades requires broad-scale volcanic activity prediction. Statistical analysis of the volcanic record suggests that some predictability is possible.

  14. Vegetation zones in changing climate

    Science.gov (United States)

    Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava

    2017-04-01

    Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area

  15. Diverse views on climate change

    Science.gov (United States)

    Garrett, Timothy; Dubey, Manvendra; Schwartz, Stephen

    2012-04-01

    Third Santa Fe Conference on Global and Regional Climate Change; Santa Fe, New Mexico, 30 October to 4 November 2011 At the Third Santa Fe Conference on Global and Regional Climate Change, hosted by the Los Alamos National Laboratory's Center for Nonlinear Studies, researchers offered some of the latest thinking on how to observe and model the driving forces as well as the impacts of regional and global climate change, climate system responses, and societal impacts. It was the third in a series of conferences held at 5-year intervals. More than 140 climate science experts from the United States and foreign universities and research centers attended the conference, held at the La Fonda Hotel in historic downtown Santa Fe. The conference program included more than 80 invited and contributed oral presentations and about 30 posters. The oral sessions were grouped by topic into sessions of four or five talks, with discussion occurring at the end of each session

  16. Seasonal changes of nutrient levels and nutrient resorption in ...

    African Journals Online (AJOL)

    In this study, seasonal changes in nitrogen (N) and phosphorus (P) concentrations, N:P ratio and total phenolic concentration in A. marina leaves during senescence were studied. Avicennia marina leaves had high N and P concentrations but the seasonal pattern of N concentration was different from that of P concentration.

  17. Climate Change, Fuels, and Wildfire

    Science.gov (United States)

    2011-11-29

    Climate Change , Fuels, and Wildfire November 29, 2011 Partners in Environmental Technology Technical Symposium & Workshop SERDP|ESTCP Anthony...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Climate Change , Fuels, and Wildfire 5a. CONTRACT...drivers of fire activity in very diverse ecosystems in California and the Northern Rockies, and summarize how climate change may affect these. In order to

  18. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  19. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane, and sev......Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  20. Climate change, wine, and conservation.

    Science.gov (United States)

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

  1. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  2. Securitisation of climate change

    NARCIS (Netherlands)

    Warner, Jeroen; Boas, Ingrid

    2017-01-01

    The present contribution focuses on the 'selling' of the 'climate crisis' to intended key audiences, both in the international domain and at home. We look into the mechanics of crisis framing, the audience, and the resonance that the frame had, as well as development over time in two cases: the UK

  3. Climate Change and Conceptual Change

    Science.gov (United States)

    Clark, David J.

    2013-01-01

    Global Warming ("GW") is easily one of the most pressing concerns of our time, and its solution will come about only through a change in human behavior. Compared to the residents of most other nations worldwide, Americans report lower acceptance of the realities of GW. In order to address this concern in a free society, U.S. residents…

  4. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models....... enables the relative importance of the different factors (i.e. degree of climate change, assets value, discount rate etc.) to be determined, thus influencing the overall output of the assessment.......Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...

  5. Psychology: Climate change hits home

    Science.gov (United States)

    Weber, Elke U.

    2011-04-01

    Engaging the public with climate change has proved difficult, in part because they see the problem as remote. New evidence suggests that direct experience of one anticipated impact -- flooding -- increases people's concern and willingness to save energy.

  6. Climate Change Negotiations Unscrambling Acronyms

    Indian Academy of Sciences (India)

    1992: UN Framework Convention on Climate Change (UNFCCC) in Rio. Common but differentiated responsibility (Annex I vs. non-Annex 1); Industrialized countries to bear full incremental costs of adjustment by developing countries ...

  7. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  8. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  9. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  10. VTrans climate change action plan

    Science.gov (United States)

    2008-06-01

    VTrans is working closely with other state agencies, including the Agency of Natural Resources (ANR) to review and implement the transportation-related recommendations from the 2007 Governors Commission on Climate Change (GCCC) final report. The r...

  11. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  12. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  13. Public price of climate change

    OpenAIRE

    Kutasi, Gábor

    2013-01-01

    Aim of the paper: The purpose is to gather the practices and to model the impacts of climate change on fiscal spending and revenues, responsibilities and opportunities, balance and debt related to climate change (CC). Methodology of the paper: The methodology will distinguish fiscal cost of mitigation and adaptation, besides direct and indirect costs. It will also introduce cost benefit analyses to evaluate the propensity of policy makers for action or passivity. Several scenarios will be...

  14. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope....... The study suggests initiatives which could facilitate coping. In addition to providing disaster relief and strengthening technical coping capacity, more efforts could be directed at spreading risk and revitalising livelihoods....

  15. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  16. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  17. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes...... substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. Udgivelsesdato: 2007-Dec......Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  18. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit

    The global event World Wide Views on Global Warming (WWV), initiated by the Danish Board of Technology (DBT), took place on September 26, 2009, and was an innovative attempt to gather a united citizen voice on a global scale. As such the WWV is one of the most recent experiments with new ways...... to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  19. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  20. Biodiversity redistribution under climate change

    DEFF Research Database (Denmark)

    Pecl, Gretta T.; Bastos, Miguel; Bell, Johann D.

    2017-01-01

    Distributions of Earth’s species are changing at accelerating rates, increasingly driven by humanmediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence...... that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered...... by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals....

  1. Climate change. Accelerating extinction risk from climate change.

    Science.gov (United States)

    Urban, Mark C

    2015-05-01

    Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions. Copyright © 2015, American Association for the Advancement of Science.

  2. Effects of climate and nutrient load on the water quality of shallow lakes assessed through ensemble runs by PCLake

    NARCIS (Netherlands)

    Nielsen, Anders; Trolle, Dennis; Bjerring, Rikke; Sondergaard, Martin; Olesen, Jorgen E.; Janse, Jan H.; Mooij, Wolf M.; Jeppesen, Erik

    2014-01-01

    Complex ecological models are used to predict the consequences of anticipated future changes in climate and nutrient loading for lake water quality. These models may, however, suffer from nonuniqueness in that various sets of model parameter values may yield equally satisfactory representations of

  3. Indigenous health and climate change.

    Science.gov (United States)

    Ford, James D

    2012-07-01

    Indigenous populations have been identified as vulnerable to climate change. This framing, however, is detached from the diverse geographies of how people experience, understand, and respond to climate-related health outcomes, and overlooks nonclimatic determinants. I reviewed research on indigenous health and climate change to capture place-based dimensions of vulnerability and broader determining factors. Studies focused primarily on Australia and the Arctic, and indicated significant adaptive capacity, with active responses to climate-related health risks. However, nonclimatic stresses including poverty, land dispossession, globalization, and associated sociocultural transitions challenge this adaptability. Addressing geographic gaps in existing studies alongside greater focus on indigenous conceptualizations on and approaches to health, examination of global-local interactions shaping local vulnerability, enhanced surveillance, and an evaluation of policy support opportunities are key foci for future research.

  4. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  5. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  6. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  7. Climate Change and Fish Availability

    Science.gov (United States)

    Teng, Paul P. S.; Lassa, Jonatan; Caballero-Anthony, Mely

    Human consumption of fish has been trending upwards in the past decades and this is projected to continue. The main sources of fish are from wild fisheries (marine and freshwater) and aquaculture. Climate change is anticipated to affect the availability of fish through its effect on these two sources as well as on supply chain processes such as storage, transport, processing and retail. Climate change is known to result in warmer and more acid oceans. Ocean acidification due to higher CO2 concentration levels at sea modifies the distribution of phytoplankton and zooplankton to affect wild, capture fisheries. Higher temperature causes warm-water coral reefs to respond with species replacement and bleaching, leading to coral cover loss and habitat loss. Global changes in climatic systems may also cause fish invasion, extinction and turnover. While this may be catastrophic for small scale fish farming in poor tropical communities, there are also potential effects on animal protein supply shifts at local and global scales with food security consequences. This paper discusses the potential impacts of climate change on fisheries and aquaculture in the Asian Pacific region, with special emphasis on Southeast Asia. The key question to be addressed is “What are the impacts of global climate change on global fish harvests and what does it mean to the availability of fish?”

  8. Climate change and respiratory health.

    Science.gov (United States)

    Gerardi, Daniel A; Kellerman, Roy A

    2014-10-01

    To discuss the nature of climate change and both its immediate and long-term effects on human respiratory health. This review is based on information from a presentation of the American College of Chest Physicians course on Occupational and Environmental Lung Disease held in Toronto, Canada, June 2013. It is supplemented by a PubMed search for climate change, global warming, respiratory tract diseases, and respiratory health. It is also supplemented by a search of Web sites including the Environmental Protection Agency, National Oceanic and Atmospheric Administration, World Meteorological Association, National Snow and Ice Data Center, Carbon Dioxide Information Analysis Center, Inter-Governmental Panel on Climate Change, and the World Health Organization. Health effects of climate change include an increase in the prevalence of certain respiratory diseases, exacerbations of chronic lung disease, premature mortality, allergic responses, and declines in lung function. Climate change, mediated by greenhouse gases, causes adverse health effects to the most vulnerable patient populations-the elderly, children, and those in distressed socioeconomic strata.

  9. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  10. Western water and climate change

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northernmost West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent.

  11. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  12. Which climatic modeling to assess climate change impacts on vineyards?

    OpenAIRE

    Quenol, Herve; Garcia De Cortazar Atauri, Inaki; Bois, Benjamin; Sturman, Andrew; Bonnardot, Valerie; Le Roux, Renan

    2017-01-01

    The impact of climatic change on viticulture is significant: main phenological stages appear earlier, wine characteristics are changing, ... This clearly illustrates the point that the adaptation of viticulture to climate change is crucial and should be based on simulations of future climate. Several types of models exist and are used to represent viticultural climates at various scales. In this paper, we propose a review of different types of climate models (methodology and uncertainties) an...

  13. Market Strategies for Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2004-06-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still reflect the political, non-market components. Using empirical information from the largest multinational companies worldwide, this article examines current market responses, focusing on the drivers (threats and opportunities) and the actions being taken by companies to address climate change. It also develops a typology of climate strategies that addresses the market dimensions, covering both the aim (strategic intent) and the degree of cooperation (form of organisation). The aim turns out to be either innovation or compensation, while the organisational arrangements to reach this objective can be oriented at the company level (internal), at companies' own supply chain (vertical) or at cooperation with other companies (competitors or companies in other sectors - horizontal). The typology can assist managers in deciding about the strategic option(s) they want to choose regarding climate change, also based on the insights offered by the paper about the current state of activities of other companies worldwide.

  14. Climate Change | Page 16 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate Change. Language English. Read more about African Climate Change Fellowship Program - Phase II. Language English. Read more about Water Security in Periurban South Asia : Adapting to Climate Change and Urbanization. Language English. Read more about Knowledge Sharing for Climate Change ...

  15. Climate Change | Page 16 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Climate Change and Water Adaptation Options. Language English. Read more about Building Capacity to Adapt to Climate Change in Southeast Asia. Language English. Read more about African Climate Change Fellowship ...

  16. Adapting Indian Agriculture to Global Climate Change

    Indian Academy of Sciences (India)

    Adapting Indian Agriculture to Global Climate Change · Climate Change: Generic Implications for Agriculture · Controlled environment facilities at IARI used for evaluating model performance in future climate change scenarios · Slide 4 · Slide 5 · Global studies indicate considerable impact of climate change in tropics.

  17. Climate Change Adaptation Plan

    Science.gov (United States)

    2014-06-01

    www.ccawwg.us/ docs/Short-Term_Water_Management_Decisions_Final_3_ Jan_2013.pdf Short MD, Peirson WL, Peters GL, Cox RJ. Managing adaptation of urban water...Reduction ER: Ecosystem Restoration H: Hydrop wer G: gul t ry RC: Recreation EM: Emergency Management W: Water Supply + Changes in stormwater runoff N...USACE is taking to manage these risks and vulnerabilities. This Plan contains a description of programs, policies, and plans USACE has already put in

  18. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    Michael Madukwe

    CO2 sequestration in the soil and careful management of nutrients and hence, the reduction of N2O emissions from soils. For climate change adaptation, OF systems have a strong potential for building resilient food systems through farm diversification and building soil fertility with organic matter. In developing countries, OF ...

  19. A history of climate change

    DEFF Research Database (Denmark)

    Hastrup, Kirsten Blinkenberg

    2016-01-01

    , and to the new intellectual challenges that both natural and social scientists are facing in relation to the current climatic changes. These challenges are discussed through the case of the Inughuit with whom the author has worked over many years. Departing from their dire situation in the 19th century, when......This article presents a small community of High Arctic hunters (the Inughuit in North West Greenland) who have always had to negotiate climatic changes with great impact on their living conditions. This points us toward the natural-social entanglements implied in the notion of the Anthropocene...

  20. [Air quality and climate change].

    Science.gov (United States)

    Loft, Steffen

    2009-10-26

    Air quality, health and climate change are closely connected. Ozone depends on temperature and the greenhouse gas methane from cattle and biomass. Pollen presence depends on temperature and CO2. The effect of climate change on particulate air pollution is complex, but the likely net effect is greater health risks. Reduction of greenhouse-gas emissions by reduced livestock production and use of combustion for energy production, transport and heating will also improve air quality. Energy savings in buildings and use of CO2 neutral fuels should not deteriorate indoor and outdoor air quality.

  1. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    It has been a world priority for more than a decade to reduc greenhouse gas emissions within the frame of the Kyoto Protocol. However, since the Kyoto Protocol it has proved difficult to reach an international consensus at the Conference of the Parties on the continuation of a global agreement...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  2. Public Engagement on Climate Change

    Science.gov (United States)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically

  3. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-12-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  4. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  5. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  6. The origin of climate changes.

    Science.gov (United States)

    Delecluse, P

    2008-08-01

    Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world.

  7. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  8. Modelling the Impact from Combined Changes on Riverine Nutrients Across Sweden

    Science.gov (United States)

    Hirpa, Y. H.; Capell, R.; Lindstrom, G.; Strömqvist, J.; Arheimer, B.

    2014-12-01

    Swedish authorities currently explore how the next generation of environmental objectives for 2050 should be formulated taking into account climate change, changes in land use and deposition of pollutants. To provide scientific support, we have modelled a suite of combined scenarios to predict the non-linear dynamics of riverine nutrients, using a national multi-basin model system for Sweden, called 'S-HYPE'. The model is process-based and the set-up covers more than 450 000 km2 and produces daily values of nutrient concentration and water discharge in 37 000 catchments. Net nutrient fluxes from large catchments in modified landscapes are influenced by land use characteristics but also by landscape composition, e.g. occurrence of lakes on the main stream network or connectivity of nutrient source areas to the stream network. This is accounted for in the model concept. Forestry management changes were investigated for potential conflicts with national environmental protection goals. The scenarios included three forestry management scenarios, three down-scaled climate change projections based on Hadley and Echam GCMs, and one nitrogen deposition scenario. The aim was to evaluate basin-wide impacts on TN and TP fluxes as well as feedbacks between the respective scenarios. Combined scenarios were thus modelled. Results indicate a low impact of changes in forestry management and atmospheric deposition for both concentrations and loads; whereas changes in water balance dynamics through changes in climate forcing can lead to regionally strong changes in nutrient concentrations and fluxes. The impact assessment through a chain of multiple scenarios and the various numerical models involved, accumulate a considerable uncertainty. While a formal assessment of overall uncertainties is difficult for the chosen approach, we discuss the modeled impacts in the light of expectable uncertainties resulting from scenario assumption choices and limitations in the model framework.

  9. A Lesson on Climate Change.

    Science.gov (United States)

    Lewis, Jim

    This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

  10. Population, Poverty, and Climate Change

    OpenAIRE

    Das Gupta, Monica

    2013-01-01

    The literature is reviewed on the relationships between population, poverty, and climate change. While developed countries are largely responsible for global warming, the brunt of the fallout will be borne by the developing world, in lower agricultural output, poorer health, and more frequent natural disasters. Carbon emissions in the developed world have leveled off, but are projected to ...

  11. Biome redistribution under climate change

    Science.gov (United States)

    Dominique Bachelet; Ronald P. Neilson

    2000-01-01

    General warming in the Northern Hemisphere has been recorded since the end of the 1800s following the Little Ice Age. Records of glacier retreat during the last 100 years over the entire globe independently confirmed the recorded trend in global temperature rise. Several studies have illustrated various responses to this climate forcing, i.e., the recorded changes in...

  12. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  13. Regional Highlights of Climate Change

    Science.gov (United States)

    David L. Peterson; J.M. Wolken; Teresa Hollingsworth; Christian Giardina; J.S. Littell; Linda Joyce; Chris Swanston; Stephen Handler; Lindsey Rustad; Steve McNulty

    2014-01-01

    Climatic extremes, ecological disturbance, and their interactions are expected to have major effects on ecosystems and social systems in most regions of the United States in the coming decades. In Alaska, where the largest temperature increases have occurred, permafrost is melting, carbon is being released, and fire regimes are changing, leading to a...

  14. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  15. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  16. Is climate change human induced?

    African Journals Online (AJOL)

    user

    India is considered highly vulnerable to climate change, not only because of high ... Central Plateau, the Western and Eastern Ghats and the oceans surrounding the .... shares border with China (Tibet) in the North and Nepal in the East and ...

  17. Climate benefits of changing diet

    NARCIS (Netherlands)

    Stehfest, E.; Bouwman, A.F.; Vuuren, van D.P.; Elzen, M.; Kabat, P.

    2009-01-01

    Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in

  18. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  19. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy of…

  20. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  1. Research for climate change adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    Climate change is being felt globally, particularly in developing countries, with impacts in the form of more frequent and severe flooding, extreme weather, desertification, and rising sea levels, amongst others. These impacts are ulti- mately affecting water availability, food security, and livelihoods for millions of vulnerable ...

  2. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  3. Solar Changes and Climate Changes. (Invited)

    Science.gov (United States)

    Feynman, J.

    2009-12-01

    During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.

  4. Climate Change | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    The online catalogue systematizes practical climate change adaptation solutions arising from an expansive body of work generated by the IDRC Climate Change Adaptation in Africa and Climate Change and Water programs. Since 2006, IDRC has funded more than 100 climate and water related projects, contributing more ...

  5. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  6. Age-related changes in nutrient utilization by companion animals.

    Science.gov (United States)

    Fahey, George C; Barry, Kathleen A; Swanson, Kelly S

    2008-01-01

    As companion animals age and pass through various life stages from in utero to the geriatric state, nutrient requirements change along with the manner in which nutrients are utilized by the various organ systems in the body. From the regulatory perspective, recognized life stages include maintenance, growth, and gestation/lactation. Other important life stages include in utero, the neonate, and the senior/geriatric state. Age affects digestive physiological properties, too, and factors such as gut microbiota, digestive hormones, gut morphology, gut immunity, and nutrient digestibility are modified as the animal becomes older. Each of the nutrients is affected in some manner by age, some more than others. Genomic biology offers promise in helping elucidate in greater detail how nutrient utilization is affected by age of the dog and cat.

  7. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  8. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between...... climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...

  9. Climate Change and the Delta

    Directory of Open Access Journals (Sweden)

    Michael Dettinger

    2016-10-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss3art5Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR during the 20th century was about 22 cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of of climate change on Delta ecosystems may be profound, the end results are difficult to predict

  10. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  11. A common-sense climate index: is climate changing noticeably?

    Science.gov (United States)

    Hansen, J; Sato, M; Glascoe, J; Ruedy, R

    1998-04-14

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  12. A common-sense climate index: is climate changing noticeably?

    Science.gov (United States)

    Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R.

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  13. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  14. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  15. Climate project screening tool: an aid for climate change adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  16. Tajikistan : Overview of Climate Change Activities

    OpenAIRE

    World Bank

    2013-01-01

    This overview of climate change activities in Tajikistan is part of a series of country notes for five Central Asian countries that summarize climate portfolio of the major development partners in a number of climate-sensitive sectors, namely energy, agriculture, forestry and natural resources, water, health, and transport. Recognizing the nature and significance of climate change contribu...

  17. Hydrological consequences of the climatic changes

    OpenAIRE

    Balek, Jaroslav

    2006-01-01

    The climatic variability and climate changes in the geological history of Earth are correlated with the environmental development. A special attention is paid to the impact of changing climate on the water resources and hydrological cycle. Possible impact of man's activities on the climatic variability is also discussed. Can the regulation of such activities slow down or bring to a stop the forthcoming climate change? A comparison of data from the Holocene period and from modern history indic...

  18. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  19. Radiative Forcing of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  20. Climate change and forest resilience

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Duncan; Vermeulen, Sonja

    2006-10-15

    Significant global climate change is inevitable. Tree species have a limited capacity to tolerate climate change or migrate through natural or artificial means. We do not know enough about the comparative resilience of forest-based, agricultural, marine or fresh water ecosystems. But it is clear that biodiverse forest ecosystems are under threat. And the threat extends beyond forests themselves. An estimated 60 million indigenous people are heavily dependent on the world's rainforests. Some 350 million people live in or close to dense forests and rely on them for subsistence or income. A further 1.2 billion people in developing countries depend on trees on farm to generate food or cash.

  1. Climate change: the science, impacts and solutions

    National Research Council Canada - National Science Library

    Pittock, A. Barrie

    2009-01-01

    ... Library of Australia Cataloguing-in-Publication entry Pittock, A. Barrie, 1938- Climate change : the science, impacts and solutions / A. Barrie Pittock. 2nd ed. 9780643094840 (pbk.) Includes index. Bibliography. Climatic changes - Government policy. Climatic changes - Risk assessment. Global environmental change. Greenhouse effect, Atmospheric. ...

  2. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  3. Poverty Traps and Climate Change

    OpenAIRE

    TOL, RICHARD S. J.

    2011-01-01

    PUBLISHED We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro level, technological progress is slow because of decreasing returns to scale in agriculture. With h...

  4. Consumption, Happiness, and Climate Change

    OpenAIRE

    Cohen, Mark A.; Vandenbergh, Michael P.

    2008-01-01

    In this article, we explore the implications of this literature for understanding the relationship between climate change policies and consumption. We identify a number of ways in which accounting for the implications of the new happiness literature could lead to laws and policies that influence consumption in ways that increase the prospects for reducing greenhouse gas emissions in developed and developing countries. We do not examine every nuance of the growing happiness literature, but we ...

  5. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  6. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  7. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  8. Climate change, environment and allergy.

    Science.gov (United States)

    Behrendt, Heidrun; Ring, Johannes

    2012-01-01

    Climate change with global warming is a physicometeorological fact that, among other aspects, will also affect human health. Apart from cardiovascular and infectious diseases, allergies seem to be at the forefront of the sequelae of climate change. By increasing temperature and concomitant increased CO(2) concentration, plant growth is affected in various ways leading to prolonged pollination periods in the northern hemisphere, as well as to the appearance of neophytes with allergenic properties, e.g. Ambrosia artemisiifolia (ragweed), in Central Europe. Because of the effects of environmental pollutants, which do not only act as irritants to skin and mucous membranes, allergen carriers such as pollen can be altered in the atmosphere and release allergens leading to allergen-containing aerosols in the ambient air. Pollen has been shown not only to be an allergen carrier, but also to release highly active lipid mediators (pollen-associated lipid mediators), which have proinflammatory and immunomodulating effects enhancing the initiation of allergy. Through the effects of climate change in the future, plant growth may be influenced in a way that more, new and altered pollens are produced, which may affect humans. Copyright © 2012 S. Karger AG, Basel.

  9. Communicating Uncertainties on Climate Change

    Science.gov (United States)

    Planton, S.

    2009-09-01

    The term of uncertainty in common language is confusing since it is related in one of its most usual sense to what cannot be known in advance or what is subject to doubt. Its definition in mathematics is unambiguous but not widely shared. It is thus difficult to communicate on this notion through media to a wide public. From its scientific basis to the impact assessment, climate change issue is subject to a large number of sources of uncertainties. In this case, the definition of the term is close to its mathematical sense, but the diversity of disciplines involved in the analysis process implies a great diversity of approaches of the notion. Faced to this diversity of approaches, the issue of communicating uncertainties on climate change is thus a great challenge. It is also complicated by the diversity of the targets of the communication on climate change, from stakeholders and policy makers to a wide public. We will present the process chosen by the IPCC in order to communicate uncertainties in its assessment reports taking the example of the guidance note to lead authors of the fourth assessment report. Concerning the communication of uncertainties to a wide public, we will give some examples aiming at illustrating how to avoid the above-mentioned ambiguity when dealing with this kind of communication.

  10. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  11. Mushroom fruiting and climate change.

    Science.gov (United States)

    Kauserud, Håvard; Stige, Leif Christian; Vik, Jon Olav; Okland, Rune H; Høiland, Klaus; Stenseth, Nils Chr

    2008-03-11

    Many species of fungi produce ephemeral autumnal fruiting bodies to spread and multiply. Despite their attraction for mushroom pickers and their economic importance, little is known about the phenology of fruiting bodies. Using approximately 34,500 dated herbarium records we analyzed changes in the autumnal fruiting date of mushrooms in Norway over the period 1940-2006. We show that the time of fruiting has changed considerably over this time period, with an average delay in fruiting since 1980 of 12.9 days. The changes differ strongly between species and groups of species. Early-fruiting species have experienced a stronger delay than late fruiters, resulting in a more compressed fruiting season. There is also a geographic trend of earlier fruiting in the northern and more continental parts of Norway than in more southern and oceanic parts. Incorporating monthly precipitation and temperature variables into the analyses provides indications that increasing temperatures during autumn and winter months bring about significant delay of fruiting both in the same year and in the subsequent year. The recent changes in autumnal mushroom phenology coincide with the extension of the growing season caused by global climate change and are likely to continue under the current climate change scenario.

  12. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate

    NARCIS (Netherlands)

    Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D.

    2012-01-01

    Climate change scenarios predict that rivers, lakes, and reservoirs will experience increased temperatures, more intense and longer periods of thermal stratification, modified hydrology, and altered nutrient loading. These environmental drivers will have substantial effects on freshwater

  13. Breaking the climate change communication deadlock

    Science.gov (United States)

    Corner, Adam; Groves, Christopher

    2014-09-01

    Climate change communication is trapped between the norms that govern scientific practice and the need to engage the public. Overcoming this tension requires new societal institutions where the science and politics of climate change can co-exist.

  14. Climate Change Effects on Groundwater Resources

    National Research Council Canada - National Science Library

    C P Kumar; Surjeet Singh

    2015-01-01

    .... It poses uncertainties to the supply and management of water resources. Although climate change has been widely recognized, research on the effects of climate change on groundwater system is relatively limited...

  15. learning for Climate Change adaptation among Selected ...

    African Journals Online (AJOL)

    understood the causes and effects of climate change as well as the content structure of learning ... climatic changes (Ministry of Tourism, Environment and Natural Resources [MTENR], 2010). ...... on India, Japan and other Eastern countries.

  16. Climate change and the Great Basin

    Science.gov (United States)

    Jeanne C. Chambers

    2008-01-01

    Climate change is expected to have significant impacts on the Great Basin by the mid-21st century. The following provides an overview of past and projected climate change for the globe and for the region.

  17. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    ... Search Contact Us Share Transportation, Air Pollution, and Climate Change Accomplishments & Successes View successes from the Clean Air ... and engines that cause harmful health effects and climate change. Overview of air pollution from transportation Carbon Pollution ...

  18. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  19. Himalayan Alpine Vegetation, Climate Change and Mitigation

    National Research Council Canada - National Science Library

    Jan Salick; Suresh K. Ghimire; Zhendong Fang; Sangay Dema; Katie M. Konchar

    2014-01-01

    ...), China to document the effects of climate change on alpine plants and peoples. Data show that Himalayan alpine plants respond to environmental and climate change variables including elevation, precipitation, and biogeography...

  20. Climate Change | Page 23 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Strengthening Local Agricultural Innovation Systems in Tanzania and Malawi. Language English. Read more about African Climate Change Fellowship. Language English. Read more about Adaptation aux changements ...

  1. Climate Change, Indoor Environment and Health

    Science.gov (United States)

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  2. Protecting Your Forest from Climate Change

    Science.gov (United States)

    Steven McNulty

    2009-01-01

    Climate change is already impacting our forests and the situation is ongoing. As a landowner, there are management tools that you can use to help reduce the likelihood that climate change will cause serious harm to your forest.

  3. Wildlife conservation in a changing climate

    National Research Council Canada - National Science Library

    Doak, Daniel F; Brodie, Jedediah F; Post, Eric S

    2012-01-01

    Bringing together leaders in the fields of climate change ecology, wildlife population dynamics, and environmental policy, this title examines the impacts of climate change on populations of terrestrial vertebrates...

  4. Understanding climate change: science, policy, and practice

    National Research Council Canada - National Science Library

    Burch, Sarah L; Harris, Sara E

    2014-01-01

    ..., and enabling climate change governance. The authors examine the connections between climate change and other pressing issues, such as human health, poverty, and other environmental problems, and they explore the ways that sustainable...

  5. Climate change indicators in the United States

    Science.gov (United States)

    2010-04-01

    The U.S. Environmental Protection Agency (EPA) has published this report, Climate Change Indicators in the United States, to help readers interpret a set of important indicators to better understand climate change. The report presents 24 indicators, ...

  6. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  7. Global Climate Change: Threat Multiplier for AFRICOM?

    National Research Council Canada - National Science Library

    Yackle, Terri A

    2007-01-01

    .... Whatever the catalyst for this abrupt climate change, stability for Africa hinges upon mitigating the effects of global climate change to prevent future conflicts such as Darfur, and the instability...

  8. Frogs and climate change in South Africa

    OpenAIRE

    Minter, Leslie Rory

    2011-01-01

    This article explores the relationship between frog declines and climate change, discusses the possible impact of climate change on the South African frog fauna, and highlights the necessity for increased research and monitoring of our frog populations.

  9. CLICHE: Education Games for Climate Change Countermeasures

    Directory of Open Access Journals (Sweden)

    Fajar As'ari

    2017-10-01

    In this paper will discuss about education games: CLICHE. Game which explain concisely the cause and some action to minimizing climate change cause through digital game play that will has impact to lessening the climate change effects.

  10. Climate variability and vulnerability to climate change: a review.

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-11-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. © 2014 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  11. Climate change, society issues and sustainable agriculture

    OpenAIRE

    Lichtfouse, Eric

    2009-01-01

    Despite its prediction 100 years ago by scientists studying CO2, man-made climate change has been officially recognised only in 2007 by the Nobel prize committee. Climate changes since the industrial revolution have already deeply impacted ecosystems. I report major impacts of climate change on waters, terrestrial ecosystems, agriculture, and economy in Europe. The lesson of the climate change story is that humans do not learn from scientists until it really hurts. Furthermore, all society is...

  12. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  13. Terrestrial ecosystems and climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, W.R. (Oak Ridge National Lab., TN (USA)); Schimel, D.S. (Colorado State Univ., Fort Collins, CO (USA). Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  14. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  15. Learning for Climate Change Adaptation among Selected ...

    African Journals Online (AJOL)

    This research was aimed at surveying perceptions of climate change and educational themes that would be contextually relevant for climate change adaptation. It locates within the United Nations' Educational, Scientific and Cultural Organization's (UNESCO's) Balaclava recommendations on Climate Change Education for ...

  16. Climate Change | Page 5 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Climate Change and Saltwater Intrusion along the Eastern Mediterranean: Socioeconomic Vulnerability. Language English. Read more about Agricultural Productivity and Climate Change in Arid and Semiarid Kenya. Language ...

  17. Climate Change | Page 32 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    As cities expand, climate change compounds the stress on poor communities already struggling with unplanned growth and few municipal services. Water access and sanitation are critical, as climate change affects the availability and quality of water. Researchers supported by IDRC's Climate Change and Water program ...

  18. An adaptive strategy to climate change

    International Development Research Centre (IDRC) Digital Library (Canada)

    rsamir

    September 2008, Montpellier, France. IPCC (Intergovernmental Panel on Climate Change), 2007. IPCC Fourth Assessment Report: Climate Change. Switzerland. Mantovani, F., 2008. Climate Change and Water in the Arab World. The World Bank, Middle East and North Africa RegionSustainable Development Group.

  19. Climate Change and Water Adaptation Options | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The impacts of climate change are increasing in their severity around the world. At greatest risk: vulnerable communities in developing countries. This project aims to share the practical climate change adaptation solutions arising from IDRC-funded research. IDRC, climate change, and water adaptation Since 2006, IDRC ...

  20. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  1. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, S.

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  2. Climate Change | Page 12 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Using Demand Side Management to Adapt to Water Scarcity and Climate Change in the Saiss Basin (Morocco). Language English. Read more about Knowledge Sharing for Climate Change Adaptation in Africa. Language English.

  3. Climate Change Ignorance: An Unacceptable Legacy

    Science.gov (United States)

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  4. Climate change response framework overview: Chapter 1

    Science.gov (United States)

    Chris Swanston; Maria Janowiak; Patricia. Butler

    2012-01-01

    Managers currently face the immense challenge of anticipating the effects of climate change on forest ecosystems and then developing and applying management responses for adapting forests to future conditions. The Climate Change Response Framework (CCRF) is a highly collaborative approach to helping land managers understand the potential effects of climate change on...

  5. ACCESSING THE GLOCALITY OF CLIMATE CHANGE: A ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    change's phenomena, problem of the ontologies of climate change's phenomena and problem of the logics of climate ..... policy. Realism is conflict-oriented and state- centered, dismissing law and morality”. In this regard the contribution of Anthony Giddens titled. The Politics of Climate Change is one of the dominant logic ...

  6. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other r...

  7. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  8. Global climate change and life on earth

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, R.L. (ed.)

    1991-01-01

    The main theme of the conference was the consequence for life of the greenhouse effect and global climate change. Information on climate change is integrated with information on overpopulation, air pollution, ozone depletion species extinction, and habitat destruction. Descriptions are given of global climate change and the environmental changes that may be associated with it. The evidence for climate change is presented and general circulation models are described. Information provided by the GCMs to predict what the consequences may be, is used. The final chapters deal with the direct impacts of climate change on human beings and on policy response that are needed to stabilize the concentration of greenhouse gases in the atmosphere.

  9. Psychological research and global climate change

    Science.gov (United States)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  10. Changes in drought risk with climate change

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, B.; Porteous, A.; Wratt, D.; Hollis, M.

    2005-05-15

    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  11. Physiological ecology meets climate change.

    Science.gov (United States)

    Bozinovic, Francisco; Pörtner, Hans-Otto

    2015-03-01

    In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms.

  12. A common-sense climate index: Is climate changing noticeably?

    OpenAIRE

    Hansen, James; Sato, Makiko; Glascoe, Jay; Ruedy, Reto

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is st...

  13. Climate change: linking traditional and scientific knowledge

    National Research Council Canada - National Science Library

    Riewe, R. R. (Roderick R.); Oakes, Jill E. (Jill Elizabeth)

    2006-01-01

    This book includes papers written by over 50 community experts and scientists addressing theoretical concerns, knowledge transfer, adapting to climate change, implications of changing weather, water...

  14. Can beaches survive climate change?

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick W.

    2017-01-01

    Anthropogenic climate change is driving sea level rise, leading to numerous impacts on the coastal zone, such as increased coastal flooding, beach erosion, cliff failure, saltwater intrusion in aquifers, and groundwater inundation. Many beaches around the world are currently experiencing chronic erosion as a result of gradual, present-day rates of sea level rise (about 3 mm/year) and human-driven restrictions in sand supply (e.g., harbor dredging and river damming). Accelerated sea level rise threatens to worsen coastal erosion and challenge the very existence of natural beaches throughout the world. Understanding and predicting the rates of sea level rise and coastal erosion depends on integrating data on natural systems with computer simulations. Although many computer modeling approaches are available to simulate shoreline change, few are capable of making reliable long-term predictions needed for full adaption or to enhance resilience. Recent advancements have allowed convincing decadal to centennial-scale predictions of shoreline evolution. For example, along 500 km of the Southern California coast, a new model featuring data assimilation predicts that up to 67% of beaches may completely erode by 2100 without large-scale human interventions. In spite of recent advancements, coastal evolution models must continue to improve in their theoretical framework, quantification of accuracy and uncertainty, computational efficiency, predictive capability, and integration with observed data, in order to meet the scientific and engineering challenges produced by a changing climate.

  15. Can beaches survive climate change?

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick

    2017-04-01

    Anthropogenic climate change is driving sea level rise, leading to numerous impacts on the coastal zone, such as increased coastal flooding, beach erosion, cliff failure, saltwater intrusion in aquifers, and groundwater inundation. Many beaches around the world are currently experiencing chronic erosion as a result of gradual, present-day rates of sea level rise (about 3 mm/year) and human-driven restrictions in sand supply (e.g., harbor dredging and river damming). Accelerated sea level rise threatens to worsen coastal erosion and challenge the very existence of natural beaches throughout the world. Understanding and predicting the rates of sea level rise and coastal erosion depends on integrating data on natural systems with computer simulations. Although many computer modeling approaches are available to simulate shoreline change, few are capable of making reliable long-term predictions needed for full adaption or to enhance resilience. Recent advancements have allowed convincing decadal to centennial-scale predictions of shoreline evolution. For example, along 500 km of the Southern California coast, a new model featuring data assimilation predicts that up to 67% of beaches may completely erode by 2100 without large-scale human interventions. In spite of recent advancements, coastal evolution models must continue to improve in their theoretical framework, quantification of accuracy and uncertainty, computational efficiency, predictive capability, and integration with observed data, in order to meet the scientific and engineering challenges produced by a changing climate.

  16. Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driven by human activity

    Science.gov (United States)

    Béthoux, Jean P.; Morin, Pascal; Ruiz-Pino, Diana P.

    Over the last few decades, the Mediterranean ecosystem has experienced changes in biodiversity due to climatic and environmental change or to accidental inputs of exotic species. But the plankton community, which is the base of the food chain and remains only partly described, is also probably experiencing a drastic change. Observed changes in nutrient concentrations and ratios in the deep waters of the western Mediterranean, as well as differences between the eastern and western Mediterranean, suggest that shifts have occurred in the relative distribution of nutrients and therefore probably phytoplankton species over the whole sea. A shift from a diatom-dominated ecosystem to a non-siliceous one (as already observed in some coastal areas, with increasing algal blooms and eutrophication events) may involve the whole Mediterranean Sea and have consequences for fishery and tourism activities.

  17. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  18. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  19. Groundwater and climate change research scoping study

    OpenAIRE

    Jackson, C.R.; Cheetham, M.; Guha, P.

    2006-01-01

    This scoping study has reviewed much of the published literature in the field of climate change and groundwater research. Whilst it is not exhaustive with regard to groundwater quality issues, most of the published literature relating to climate change and groundwater resources, particularly in the UK, is covered. Further work is required to identify current research needs relating to the effects of climate change on groundwater quality. The study of the effects of climate chan...

  20. The challenges of communicating climate change

    Directory of Open Access Journals (Sweden)

    Emiliano Feresin

    2009-06-01

    Full Text Available The climate change issue has become increasingly present in our society in the last decade and central also to communication studies. In the e-book “Communicating Climate Change: Discourses, Mediations and Perceptions”, edited by Anabela Carvalho, various scholars investigate how climate change challenges communication by looking at three main aspects: the discourses of a variety of social actors on climate change; the reconstruction of those discourses in the media; the citizens’ perceptions, understandings and attitudes in relation to climate change.

  1. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  2. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo

    are occurring concurrently and on multiple scales. Important signs of climate change include: pollen and growing seasons beginning earlier; fish stocks shifting northwards; bird populations adapting to a changing climate; sensitive natural phenomena such as palsa mires declining in distribution; and polar bears......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...... a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...

  3. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  4. Future climate and land uses effects on flow and nutrient loads of a Mediterranean catchment in South Australia.

    Science.gov (United States)

    Shrestha, Manoj K; Recknagel, Friedrich; Frizenschaf, Jacqueline; Meyer, Wayne

    2017-07-15

    Mediterranean catchments experience already high seasonal variability alternating between dry and wet periods, and are more vulnerable to future climate and land use changes. Quantification of catchment response under future changes is particularly crucial for better water resources management. This study assessed the combined effects of future climate and land use changes on water yield, total nitrogen (TN) and total phosphorus (TP) loads of the Mediterranean Onkaparinga catchment in South Australia by means of the eco-hydrological model SWAT. Six different global climate models (GCMs) under two representative concentration pathways (RCPs) and a hypothetical land use change were used for future simulations. The climate models suggested a high degree of uncertainty, varying seasonally, in both flow and nutrient loads; however, a decreasing trend was observed. Average monthly TN and TP load decreased up to -55% and -56% respectively and were found to be dependent on flow magnitude. The annual and seasonal water yield and nutrient loads may only slightly be affected by envisaged land uses, but significantly altered by intermediate and high emission scenarios, predominantly during the spring season. The combined scenarios indicated the possibility of declining flow in future but nutrient enrichment in summer months, originating mainly from the land use scenario, that may elevate the risk of algal blooms in downstream drinking water reservoir. Hence, careful planning of future water resources in a Mediterranean catchment requires the assessment of combined effects of multiple climate models and land use scenarios on both water quantity and quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. On climate change and economic growth

    NARCIS (Netherlands)

    Frankhauser, S.; Tol, R.S.J.

    2005-01-01

    The economic impact of climate change is usually measured as the extent to which the climate of a given period affects social welfare in that period. This static approach ignores the dynamic effects through which climate change may affect economic growth and hence future welfare. In this paper we

  6. Climate Change Adaptation in the Water Sector

    NARCIS (Netherlands)

    Ludwig, F.; Kabat, P.; Schaik, van H.; Valk, van der M.

    2009-01-01

    Today’s climate variability already has a large impact on water supply and protection. Millions of people are affected every year by droughts and floods. Future climate change is likely to make things worse. Many people within the water sector are aware that climate change is affecting water

  7. Climate change and cashew (Anacardium occidentale L ...

    African Journals Online (AJOL)

    217 RESULTS ... 2Integrated Soil and Crop Management Research Unit, Laboratory of Soil Sciences, School of Science and. Technic of Crop ... This study aimed at analyzing the perceptions of cashew producers of the climate change, climate change effect on ... Benin are the most vulnerable to climate risks: drought, late and ...

  8. Climate change – a critical emerging issue

    CSIR Research Space (South Africa)

    Archer van Garderen, Emma RM

    2010-01-01

    Full Text Available Science on observed trends in climate and projected future climate change has evolved substantially in the last few years. Different sub-regions of South Africa have shown, and are likely to continue to show, distinct climate changes. Surface air...

  9. Kingdom of Morocco : Climate Change Strategy Notes

    OpenAIRE

    World Bank

    2013-01-01

    This volume contains the individual reports produced under the World Bank program of economic and sector work (P-ESW) on supporting Morocco's climate change strategy. In 2008 the Government of Morocco asked the Bank's analytical and technical assistance on the policy implications of climate change. An initial policy note outlining the main drivers of climate vulnerability, as well as the r...

  10. Climate change and poverty -- an analytical framework

    OpenAIRE

    Hallegatte, Stephane; Bangalore, Mook; Bonzanigo, Laura; Fay, Marianne; Narloch, Ulf; Rozenberg, Julie; Vogt-Schilb, Adrien

    2014-01-01

    Climate change and climate policies will affect poverty reduction efforts through direct and immediate impacts on the poor and by affecting factors that condition poverty reduction, such as economic growth. This paper explores this relation between climate change and policies and poverty outcomes by examining three questions: the (static) impact on poor people's livelihood and well-being; ...

  11. Turning points in climate change adaptation

    NARCIS (Netherlands)

    Werners, Saskia Elisabeth; Slobbe, van Erik; Bölscher, Tobias; Oost, Albert; Pfenninger, Stefan; Trombi, Giacomo; Bindi, Marco; Moriondo, Marco

    2015-01-01

    Concerned decision makers increasingly pose questions as to whether current management practices are able to cope with climate change and increased climate variability. This signifies a shift in the framing of climate change from asking what its potential impacts are to asking whether it induces

  12. Turning points in climate change adaptation

    NARCIS (Netherlands)

    Werners, Saskia Elisabeth; van Slobbe, Erik; Bölscher, Tobias; Oost, Albert; Pfenninger, Stefan; Trombi, Giacomo; Bindi, Marco; Moriondo, Marco

    2015-01-01

    Concerned decision makers increasingly pose questions as to whether current management practices are able to cope with climate change and increased climate variability. This signifies a shift in the framing of climate change from asking what its potential impacts are to asking whether it induces

  13. Science Teachers' Perspectives about Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  14. Contributions of Psychology to Limiting Climate Change

    Science.gov (United States)

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  15. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  16. Climate change and the ethics of discounting

    NARCIS (Netherlands)

    Davidson, M.D.

    2015-01-01

    Climate policy-making requires a balancing, however rudimentary, of the costs of reducing greenhouse gas emissions against the benefits of reduced risks of climate change. Since those creating and those facing the risks of climate change belong to different generations, striking the balance is

  17. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  18. Climate change: believing and seeing implies adapting.

    Directory of Open Access Journals (Sweden)

    Kristina Blennow

    Full Text Available Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01 to 0.81 (SD ± 0.03 for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008 to 0.91 (SD ± 0.02. We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  19. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    Science.gov (United States)

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  20. Rethinking climate change as a security threat

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, Corinne

    2011-10-15

    Once upon a time climate change was a strictly environment and development issue. Today it has become a matter of national and international security. Efforts to link climate change with violent conflict may not be based on solid evidence, but they have certainly captured the attention of governments. They have played a vital role in raising the much-needed awareness of climate change as an issue that deserves global action. But at what cost? Focusing on climate change as a security threat alone risks devolving humanitarian responsibilities to the military, ignoring key challenges and losing sight of those climate-vulnerable communities that stand most in need of protection.

  1. Factsheet: Climate Change and Harmful Algal Blooms

    Science.gov (United States)

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  2. Climate change and the microbiology of the Antarctic Peninsula region.

    Science.gov (United States)

    Pearce, David A

    2008-01-01

    Antarctic terrestrial ecosystems are cold, dry, low nutrient environments, with large temperature fluctuations and paradoxically low levels of water availability. These extreme environments are dominated by microorganisms (viruses, archaea, eubacteria, fungi and microsporidia, alveolata, stmramenopila, rhodophyta, green algae and protists), which can either tolerate or are adapted to exploit unfavourable growth conditions. However, climate change is altering the growth environment in Antarctica, and so selection pressures on these microorganisms are changing which, in turn, might affect microbial activity in key processes such as biogeochemical cycling. Although the direct effect of a change in, for example, temperature, is known for very few Antarctic microorganisms, molecular techniques (to monitor population structure) and genomic techniques (to identify specific gene function) are starting to give us an insight into what the potential effects of climate change might be at the cellular level. The key to how microorganisms respond to such change depends upon the rate and magnitude of the change along with the physiological capability of microorganisms to adapt or tolerate those changes. Here we will examine a number of case studies in which the effects of factors such as temperature, nutrient availability, grazing, salinity, seasonal cycle and carbon dioxide concentration have each been demonstrated to affect bacterial community structure in polar and alpine ecosystems. The results suggest that the spatial distribution of genetic variation and, hence, comparative rates of evolution, colonization and extinction are particularly important when considering the response of microbial communities to climate change.

  3. Optical Changes in a Eutrophic Estuary During Reduced Nutrient Loadings

    DEFF Research Database (Denmark)

    Pedersen, Troels Møller; Sand-Jensen, Kaj; Markager, Stiig

    2014-01-01

    Loss of water clarity is one of the consequences of coastal eutrophication. Efforts have therefore been made to reduce external nutrient loadings of coastal waters. This paper documents improvements to water clarity between 1985 and 2008–2009 at four stations in the microtidal estuary Roskilde...... Fjord and find significant relationships to freshwater nutrient loadings. The paper then investigates to which extent changes in phytoplankton biomass (chlorophyll a (Chl a)), non-algal particulate organic matter (POM*), and residual attenuation in the water (K b), respectively, can account...... to 74 % in 1985 to 78 to 85 % in 2008–2009. Overall, efforts to reduce nutrient loading and improve water clarity appeared to have had a larger impact on POM* than on Chl a and colored dissolved organic matter concentrations in the estuary, which can account for the decrease in the scatter...

  4. Climate Change | Page 34 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    global warming” appeared in headlines, Canada's International Development Research Centre (IDRC) was supporting research on climate change. We recognized, early on, that a warming climate threatens not just the physical environment, ...

  5. Pacific Islands Climate Change Virtual Library

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virtual Library provides access to web based climate variability and climate change information and tools relevant to the Pacific Islands including case studies,...

  6. Climate Change | Page 35 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    global warming” appeared in headlines, Canada's International Development Research Centre (IDRC) was supporting research on climate change. We recognized, early on, that a warming climate threatens not just the physical environment, ...

  7. Climate Change: Science and Policy Implications

    National Research Council Canada - National Science Library

    Leggett, Jane A

    2007-01-01

    .... During the 20th Century, some areas became wetter while others experienced more drought. Most climate scientists conclude that humans have induced a large part of the climate change since the 1970s...

  8. Sigtuna Think Piece 2 Climate Capabilities and Climate Change ...

    African Journals Online (AJOL)

    This think piece introduces the views of Amartya Sen, Martha Nussbaum and others on the capabilities approach to climate change ethics research. Furthermore, it suggests that the capabilities approach can help climate change research in identifying if, and if so which, intrinsic values of people's wellbeing are vulnerable ...

  9. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    Kjærgaard, Peter C.

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  10. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  11. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  12. Changing perceptions of hunger on a high nutrient density diet

    OpenAIRE

    Glaser Dale; Sarter Barbara; Fuhrman Joel; Acocella Steve

    2010-01-01

    Abstract Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrie...

  13. Climate Change and Children's Health: A Commentary.

    Science.gov (United States)

    Stanley, Fiona; Farrant, Brad

    2015-10-15

    This commentary describes the likely impacts on children's health and wellbeing from climate change, based on the solid science of environmental child health. It describes likely climate change scenarios, why children are more vulnerable than older people to these changes, and what to expect in terms of diseases (e.g., infections, asthma) and problems (e.g., malnutrition, mental illness). The common antecedents of climate change and other detrimental changes to our society mean that in combatting them (such as excessive consumption and greed), we may not only reduce the harmful effects of climate change but also work towards a better society overall-one that values its children and their futures.

  14. Cenozoic climate change influences mammalian evolutionary dynamics

    OpenAIRE

    Figueirido, Borja; Janis, Christine M.; Pérez-Claros, Juan A.; Renzi, Miquel de; Palmqvist, Paul

    2011-01-01

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. T...

  15. Changes of Extreme Climate Events in Latvia

    OpenAIRE

    Avotniece, Z; Klavins, M; Rodinovs, V

    2012-01-01

    Extreme climate events are increasingly recognized as a threat to human health, agriculture, forestry and other sectors. To assess the occurrence and impacts of extreme climate events, we have investigated the changes of indexes characterizing positive and negative temperature extremes and extreme precipitation as well as the spatial heterogeneity of extreme climate events in Latvia. Trend analysis of long–term changes in the frequency of extreme climate events demonst...

  16. Economic Consequences Of Climate Change

    Science.gov (United States)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  17. Climate Change and Health: Nurses as Drivers of Climate Action

    Directory of Open Access Journals (Sweden)

    Cara Cook

    2018-02-01

    Full Text Available Changes to Earth’s climate are occurring globally at unprecedented rates with significant impacts to human and population health, including increased likelihood of mental health illnesses, food and water insecurity, insect-borne and heat-related illnesses, and respiratory diseases. Those in the health sector are seeing the challenges patients and community members are experiencing as a result of current and projected climate threats. Health professionals, including nurses, have an opportunity to lead the charge to significantly improve society’s response to climate change and foster the strategies needed to promote health. This article highlights the current work of the Alliance of Nurses for Healthy Environments, a national nursing organization focused solely on environmental health concerns, in inspiring and empowering nurses across the country to engage in action to reduce their climate impact, move climate solutions forward, and improve the ability of health care institutions and communities to respond to the health impacts of climate change.

  18. Climate change effects for phenological processes

    OpenAIRE

    Lilla Dede

    2010-01-01

    Climate change may shift dates of phenological phase of plants. We can even demonstrate changes in plant growth due to climate change by model simulations. Earth warming will accelerate appearance of the phenological phases earlier. However, not only temperature can affect on that, but some other meteorological factors as well.The theoretical implications of climate change is the main goal of the present work using strategic modeling and a 140 years long temperature data set. Analysis of the ...

  19. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    Science.gov (United States)

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  20. Covering Climate Change in Wikipedia

    Science.gov (United States)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  1. Feframing Climate Change for Environmental Health.

    Science.gov (United States)

    Weems, Caitlin; Subramaniam, Prithwi Raj

    2017-04-01

    Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.

  2. Climate change and forest ecosystem dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meer, P.J.; Kramer, K. [Alterra, Wageningen (Netherlands); Van Wijk, M. [IBED, University of Amsterdam UvA, Amsterdam (Netherlands)

    2001-07-01

    Effects of climate change on water relations in forests were studied using several modelling approaches. Of several models tested, the FORGRO model had the highest potential for a reliable estimation of effects of climate change on forests. An evaluation of process-based models of forest growth showed that several models, including FORGRO, were able to produce accurate estimates of carbon and water fluxes at several forest sites of Europe. Responses were in relatively good agreement with the expected responses obtained by experimental studies, and models were able to deal with new conditions and explore the likely effects of climate change. The effect of climate change on forest development was assessed for three forests stands in the Netherlands using a gap model which was made climate sensitive by including the effects of climate change scenario IPCC IS92A on growth (FORGRO results), phenology (FORGRO results), and seed production (regression analysis). Results showed that climate change is likely to cause subtle changes rather than abrupt changes in forest development in the Netherlands, and that forest development on sandy soils in the Netherlands is not likely to be influenced significantly by climate change over the coming 50 years. The impact of climate change on the production, nature and recreation values of forests was studied using a simple economic model, and showed that response are likely to be relatively small during the first century, and are related to the successional status of the forest. Linking of detailed process-based models with gap models enables interpretation of climate change effects beyond a change in tree growth only, and is an important tool for investigating the effects of climate change on the development of mixed forests. The modelling approach presented in this project (process-based growth models -> gap models -> economic model) is a useful tool to support policy decisions in the light of climate change and forests. refs.

  3. The economics of abrupt climate change.

    Science.gov (United States)

    Perrings, Charles

    2003-09-15

    The US National Research Council defines abrupt climate change as a change of state that is sufficiently rapid and sufficiently widespread in its effects that economies are unprepared or incapable of adapting. This may be too restrictive a definition, but abrupt climate change does have implications for the choice between the main response options: mitigation (which reduces the risks of climate change) and adaptation (which reduces the costs of climate change). The paper argues that by (i) increasing the costs of change and the potential growth of consumption, and (ii) reducing the time to change, abrupt climate change favours mitigation over adaptation. Furthermore, because the implications of change are fundamentally uncertain and potentially very high, it favours a precautionary approach in which mitigation buys time for learning. Adaptation-oriented decision tools, such as scenario planning, are inappropriate in these circumstances. Hence learning implies the use of probabilistic models that include socioeconomic feedbacks.

  4. Climate change threatens European conservation areas

    Science.gov (United States)

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (Pareas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  5. Climate change through a poverty lens

    Science.gov (United States)

    Hallegatte, Stephane; Rozenberg, Julie

    2017-04-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  6. India's National Action Plan on Climate Change.

    Science.gov (United States)

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  7. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  8. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Science.gov (United States)

    Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e...

  9. U.S. Climate Change Technology Program: Strategic Plan

    National Research Council Canada - National Science Library

    2006-01-01

    .... climate change research and development activities. Under this new structure, climate change science and climate-related technology research programs are integrated to an extent not seen previously...

  10. Global Climate Change Pilot Course Project

    Science.gov (United States)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  11. Characterising loss and damage from climate change

    OpenAIRE

    James, Rachel; Otto, Friedericke; Parker, Hannah; Boyd, Emily; Cornforth, Rosalind; Mitchell, Daniel; Allen, Myles

    2014-01-01

    Policy-makers are creating mechanisms to help developing countries cope with loss and damage from climate change, but the negotiations are largely neglecting scientific questions about what the impacts of climate change actually are.\\ud \\ud Mitigation efforts have failed to prevent the continued increase of anthropogenic greenhouse gas (GHG) emissions. Adaptation is now unlikely to be sufficient to prevent negative impacts from current and future climate change1. In this context, vulnerable n...

  12. Anticipating Climate Change Impacts on Army Installations

    Science.gov (United States)

    2011-10-01

    ER D C SR -1 1- 1 Anticipating Climate Change Impacts on Army Installations Co ns tr uc tio n En gi ne er in g R es ea rc h La bo...distribution is unlimited. ERDC SR-11-1 October 2011 Anticipating Climate Change Impacts on Army Installations Robert C. Lozar, Matthew D...Abstract Military installations must be maintained and managed to provide appropriate training and testing opportunities. As climate changes

  13. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Zanuttigh, Barbara; Andersen, Thomas Lykke

    2014-01-01

    Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, Coastal Risk...... Management in a Changing Climate provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...

  14. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  15. Applied climate-change analysis: the climate wizard tool.

    Science.gov (United States)

    Girvetz, Evan H; Zganjar, Chris; Raber, George T; Maurer, Edwin P; Kareiva, Peter; Lawler, Joshua J

    2009-12-15

    Although the message of "global climate change" is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951-2002 occurred in northern hemisphere countries (especially during January-April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50 degrees N during February-March to 10 degrees N during August-September. Precipitation decreases occurred most commonly in countries between 0-20 degrees N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs) for 2070-2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally-specific analyses of climate change. Moreover, Climate Wizard is not a static product, but

  16. Climate Change | Page 2 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Climate leadership program: Building Africa's resilience through research, policy and practice. Language English. Read more about Climate adaptive action plans to manage heat stress in Indian cities. Language English.

  17. Connectivity planning to address climate change

    Science.gov (United States)

    Tristan A. Nuñez; Joshua J. Lawler; Brad H. McRae; D. John Pierce; Meade B. Krosby; Darren M. Kavanagh; Peter H. Singleton; Joshua J. Tewksbury

    2013-01-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad...

  18. Effects of climatic variability and change

    Science.gov (United States)

    Michael G. Ryan; James M. Vose

    2012-01-01

    Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of projecting the response of forests to changing climate, elevated atmospheric carbon dioxide (CO2)...

  19. Climate Change | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate Change. Language English. Read more about Strengthen the use of scientific evidence to inform climate policy, negotiations and implementation in Latin America. Language English. Read more about Strengthen scientific evidence and its use to inform policy, negotiations and climate implementation in Africa.

  20. Gender angle to the climate change negotiations

    NARCIS (Netherlands)

    Wamukonya, Njeri; Skutsch, Margaret

    2002-01-01

    The South is likely to suffer more from climate change than the North due to its already vulnerable situation and lack of the necessary resources to adapt to change. But do the interests of men and of women differ as regards climate change and does this have a South-North dimension? This paper

  1. Climate change vulnerability assessment in Georgia

    Science.gov (United States)

    Binita KC; J. Marshall Shepherd; Cassandra Johnson Gaither

    2015-01-01

    Climate change is occurring in the Southeastern United States, and one manifestation is changes in frequency and intensity of extreme events. A vulnerability assessment is performed in the state of Georgia (United States) at the county level from 1975 to 2012 in decadal increments. Climate change vulnerability is typically measured as a function of exposure to physical...

  2. learning for Climate Change adaptation among Selected ...

    African Journals Online (AJOL)

    education to clarify what may or may not cause climate change. Some respondents mistook the effects of climate change for its causes, citing increased rainfall, flooding and increased temperature as causes, when, in reality, they are the effects of such change. These outcomes are similar to earlier research findings of Fumo ...

  3. Climate Change and European Union Member Economies

    OpenAIRE

    Margaux Tharin; Alina Gabriela Brezoi; Livia–Irina Olaru

    2010-01-01

    Climate change affects us all both global and personal level. In recent years, we have seen an increase in extreme weather phenomena such as floods, droughts, tornadoes, increased shoreline erosion seas and oceans. The phenomenon of climate change that changed the globe is an irreversible process. Due to extreme weather events to human civilization began to be in danger.

  4. Climate and land use interactively affect lake phytoplankton nutrient limitation status.

    Science.gov (United States)

    Hayes, Nicole M; Vanni, Michael J; Horgan, Martin J; Renwick, William H

    2015-02-01

    Climate-change models predict more frequent and intense summer droughts for many areas, including the midwestern United States. Precipitation quantity and intensity in turn drive the rates and ratios at which nitrogen (N) and phosphorus (P) are exported from watersheds into lakes, but these rates and ratios are also modulated by watershed land use. This led us to ask the question, is the effect of precipitation on phytoplankton nutrient limitation dependent on watershed land use? Across 42 lakes, we found that phytoplankton in lakes in agricultural landscapes were usually P limited but shifted to strong N limitation under increased drought intensity, and that droughts promoted N-fixing cyanobacteria. In contrast, phytoplankton in lakes with forested watersheds were consistently N limited, regardless of drought status. This climate-land use interaction suggests that droughts may increase the incidence of N limitation in agriculturally impacted lakes. N limitation would likely impair valuable ecosystem services such as drinking water, fisheries, and recreation by promoting the occurrence and severity of cyanobacterial blooms.

  5. Adaptation in climate change hotspots: Change under way in Africa ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-01-26

    Jan 26, 2015 ... The Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) aims to build the resilience of poor people to climate change in three climate change “hot spots”: basins, deltas, and semi-arid regions. In each of these areas, large numbers of poor people depend on climate sensitive sectors for ...

  6. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  7. Greenhouse governance: addressing climate change in America

    National Research Council Canada - National Science Library

    Rabe, Barry George

    2010-01-01

    .... Issues examined include public perceptions and economic effects of climate change and policies to mitigate it, renewable electricity standards, vehicle fuel economy standards, cap-and-trade regimes...

  8. Road Infrastructure and Climate Change in Vietnam

    Directory of Open Access Journals (Sweden)

    Paul S. Chinowsky

    2015-05-01

    Full Text Available Climate change is a potential threat to Vietnam’s development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam by evaluating the potential impact of changes from stressors, including: sea level rise, precipitation, temperature and flooding. Across 56 climate scenarios, the mean additional cost of maintaining the same road network through 2050 amount to US$10.5 billion. The potential scale of these impacts establishes climate change adaptation as an important component of planning and policy in the current and near future.

  9. The psychological distance of climate change.

    Science.gov (United States)

    Spence, Alexa; Poortinga, Wouter; Pidgeon, Nick

    2012-06-01

    Avoiding dangerous climate change is one of the most urgent social risk issues we face today and understanding related public perceptions is critical to engaging the public with the major societal transformations required to combat climate change. Analyses of public perceptions have indicated that climate change is perceived as distant on a number of different dimensions. However, to date there has been no in-depth exploration of the psychological distance of climate change. This study uses a nationally representative British sample in order to systematically explore and characterize each of the four theorized dimensions of psychological distance--temporal, social, and geographical distance, and uncertainty--in relation to climate change. We examine how each of these different aspects of psychological distance relate to each other as well as to concerns about climate change and sustainable behavior intentions. Results indicate that climate change is both psychologically distant and proximal in relation to different dimensions. Lower psychological distance was generally associated with higher levels of concern, although perceived impacts on developing countries, as an indicator of social distance, was also significantly related to preparedness to act on climate change. Our findings clearly point to the utility of risk communication techniques designed to reduce psychological distance. However, highlighting the potentially very serious distant impacts of climate change may also be useful in promoting sustainable behavior, even among those already concerned. © 2011 Society for Risk Analysis.

  10. Answering the Oregon challenge : climate change

    Science.gov (United States)

    2009-01-13

    This paper outlines Gov. Kulongoski's agenda concerning the issue of climate change. It addresses several key topics: greenhouse gas reduction, energy efficiency, renewable energy, and sustainable transportation.

  11. Mesocosms Reveal Ecological Surprises from Climate Change

    National Research Council Canada - National Science Library

    Fordham, Damien A

    2015-01-01

    .... Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions...

  12. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  13. Sphagnum modifies climate-change impacts on subarctic vascular bog plants.

    NARCIS (Netherlands)

    Dorrepaal, E.; Aerts, R.; Cornelissen, J.H.C.; van Logtestijn, R.S.P; Callaghan, T.V.

    2006-01-01

    1. Vascular plant growth forms in northern peatlands differ in their strategies to cope with the harsh climate, low nutrient availability and progressively increasing height of the Sphagnum carpet in which they grow. Climate change may therefore affect growth forms differentially, both directly and

  14. The response of soil processes to climate change

    DEFF Research Database (Denmark)

    Emmett, B.A.; Beier, C.; Estiarte, M.

    2004-01-01

    Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out...... the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%-19% increases of soil respiration in response to warming and decreases of 3%-29% in response...... to drought were observed. Across the environmental gradient and below soil temperatures of 20degreesC at a depth of 5-10 cm, a mean Q(10) of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q(10), values were observed in Spain and the UK and were therefore...

  15. Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate?

    OpenAIRE

    Clavero Pineda, Miguel; Villero, Daniel; Brotons, Lluís

    2011-01-01

    Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average lat...

  16. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.

    2009-01-01

    countries. It is concluded that although many useful steps have been taken in the direction of ensuring adequate adaptation in developing countries, much work still remains to fully understand the drivers of past adaptation efforts, the need for future adaptation, and how to mainstream climate into general......Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...

  17. Impacts of Climate Variability and Climate Change on the Mangrove ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Impacts of Climate Variability and Climate Change on the Mangrove Ecosystem in Tumbes, Peru. The mangrove ecosystem of Tumbes plays a pivotal role in providing protection against tides, winds and storm surges, and habitat for a number of fish species. The native coastal communities of Tumbes rely on artisanal ...

  18. Fat-tailed risk about climate change and climate policy

    NARCIS (Netherlands)

    Hwang, I.C.; Tol, R.S.J.; Hofkes, M.

    2016-01-01

    This paper investigates the role of emissions control in welfare maximization under fat-tailed risk about climate change. We provide a classification of fat tails and discuss the effect of fat-tailed risk on climate policy. One of the main findings is that emissions control may prevent the "strong"

  19. Lessons on Climate Sensitivity From Past Climate Changes

    NARCIS (Netherlands)

    Heydt, von der Anna S.; Dijkstra, Henk A.; Wal, van de Roderik S.W.; Bathiany, Sebastian

    2016-01-01

    Over the last decade, our understanding of climate sensitivity has improved considerably. The climate system shows variability on many timescales, is subject to non-stationary forcing and it is most likely out of equilibrium with the changes in the radiative forcing. Slow and fast feedbacks

  20. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  1. Climate Change Education for General Education Faculty

    Science.gov (United States)

    Ozbay, G.; Fox-Lykens, R.; Fuoco, M. J.; Phalen, L.; Harcourt, P.; Veron, D. E.; Rogers, M.; Merrill, J.

    2016-12-01

    As MADE-CLEAR scientists, our ultimate goal is to inform the public about climate change through education. Education will provide citizens with important tools for adapting and coping against climate change through the understanding of the cause and effects of climate change, and the role they play in counteracting these effects. MADE-CLEAR is connecting educators with resources such as lesson plans and hands-on activities so they can easily incorporate climate change into their curriculum. This past year Delaware State University held workshops for Chemistry and Math faculty to provide information and resources to help integrate climate change education into their classes. We presented them with information on climate change and demonstrated several laboratory activities that would be applicable to their classes. Such activities included a sea level rise graphing exercise, ocean acidification pH demonstration, ocean acidification's effect on organism's demonstration, carbon dioxide variability and heat trapping gas simulation. The goals of the workshops are to implement a multidisciplinary approach in climate change education. Workshops are prepared hands-on heavy followed by the lectures and video resources. Pre- and post-workshop assessment questions on the workshop contents are provided to monitor faculty understanding of the climate change content. In doing so, we aim to improve climate literacy in our higher education students.

  2. Intraspecific Genetic dynamics under Climate Change

    DEFF Research Database (Denmark)

    Florez Rodriguez, Alexander

    Climate change has a deep influence on the maintenance and generation of global biodiversity. Past contractions, expansions and shifts in species’ ranges drove to changes in species genetic diversity. Noteworthy, the interaction among: climate change, range, population size and extinction is often...... with an important ‘baseline’ of present patterns of genetic diversity, laying the groundwork needed to predict the impacts of future climate change on global genetic and biodiversity...... across large spatial scales and over long-term climatic changes. I have found that in overall species’ populations are genetically less diverse than they were during the Late Pleistocene, and also that the rapidity of climate change plays an important role in the changes in intraspecific genetic...

  3. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Share Feedback Climate Solutions Changing Climate Is Affecting Agriculture in the U.S. The changing climate presents real ... impacts over the coming years: Climate Change and Agriculture in the United States: Effects and Adaptation (PDF, ...

  4. Changing Atmospheric Acidity and the Oceanic Solubility of Nutrients

    Science.gov (United States)

    Baker, Alex; Sarin, Manmohan; Duce, Robert; Jickells, Tim; Kanakidou, Maria; Myriokefalitakis, Stelios; Ito, Akinori; Turner, David; Mahowald, Natalie; Middag, Rob; Guieu, Cecile; Gao, Yuan; Croot, Peter; Shelley, Rachel; Perron, Morgane

    2017-04-01

    The atmospheric deposition of nutrients to the ocean is known to play a significant role in the marine carbon cycle. The impact of such deposition is dependent on the identity of the nutrient in question (e.g., N, P, Fe, Co, Zn, Ni, Cd), the location of the deposition, and the bioavailability of the deposited nutrient. Bioavailability is largely governed by the chemical speciation of a nutrient and, in general, insoluble species are not bioavailable. For Fe and P (and perhaps the other nutrient trace metals) solubility increases during transport through the atmosphere. The causes of this increase are complex, but interactions of aerosol particles with acids appears to play a significant role. Emissions of acidic (SO2 and NOx) and alkaline (NH3) gases have increased significantly since the Industrial Revolution, with a net increase in atmospheric acidity. This implies that Fe and P solubility may also have increased over this time period, potentially resulting in increased marine productivity. More recently, pollution controls have decreased emissions of SO2 from some regions and further reductions in SO2 and NOx are likely in the future. Emissions of NH3 are much more difficult to control however, and are projected to stabilise or increase slightly to the end of this century. Future anthropogenic emissions are thus likely to change the acidity of the atmosphere downwind of major urban / industrial centres, with potential consequences for the supply of soluble nutrients to the ocean. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, is convening a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current scientific information on the solubility of aerosol-associated key biogeochemical elements, the biogeochemical controls on aerosol solubility, and the pH sensitivity of those controls; to consider the likely changes in solubility of

  5. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    Science.gov (United States)

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  6. Undocumented migration in response to climate change.

    Science.gov (United States)

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  7. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, Jens-Christian; Olesen, Jørgen E

    2009-01-01

    interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change......More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5–7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular......; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference...

  8. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, J.-C.; Olesen, Jørgen E

    2009-01-01

    interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change......More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular......; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference...

  9. Exposure to climate and climate change in Mexico

    Directory of Open Access Journals (Sweden)

    Alejandro Monterroso

    2015-05-01

    Full Text Available An index with the potential to integrate different climate hazards into a single parameter is required to guide preventive decision making. We integrated in a single index the degree of exposure to climate that the nation's municipalities have. We selected this spatial scale because the municipality is the basic unit of administrative and economic planning; consequently, this is the scale at which policies of adaptation to climate change must be fostered. We conceptualized exposure as the sum of historic extreme events, the degree of ecosystem conservation and current climate and its future scenarios. This approach allowed us to create a climate hazard exposure index at the municipality scale integrating past and present. Maps of this index can be constructed to serve as a medium of risk communication and to aid policy design. We used information from eighteen variables to statistically standardize and compute the hazard exposure index by applying empirical formulae. We found that actually, out of ten Mexicans, three live in flood-prone zones, three may suffer the passage of tropical cyclones, five reside in drought zones and two live in extreme drought regions. Additionally, hailstorms affect five out of ten Mexicans, while eight out of ten are affected by frosts. Incorporating climate change, in the future more municipalities and a higher population will live in high exposure. Because understanding exposure is a necessary prerequisite to understanding vulnerability, knowledge of the spatial distribution of exposure should be useful for reducing the identified climate hazard exposure and vulnerability to climate change.

  10. Observations: Oceanic climate change and sea level

    Digital Repository Service at National Institute of Oceanography (India)

    Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.; Gulev, S.; Hanawa, K.; LeQuere, C.; Levitus, S.; Nojiri, Y.; Shum, C.K.; Talley, L.D.; Unnikrishnan, A.S.

    stream_size 245375 stream_content_type text/plain stream_name Climate_Change_2007_Chapter_5_387.pdf.txt stream_source_info Climate_Change_2007_Chapter_5_387.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... Support Unit, IPCC Working Group I Zhenlin Chen China Meteorological Administration Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Published for the Intergovernmental Panel on Climate...

  11. Local governing of climate change in Denmark

    DEFF Research Database (Denmark)

    Berthou, Sara Kristine Gløjmar; Ebbesen, Betina Vind

    2016-01-01

    This paper is concerned with the ways in which Danish municipalities seek to mitigate climate change through a range of governance strategies. Through the analysis of ten municipal climate plans using the framework of Mitchell Dean, as well as extensive ethnographic fieldwork in two municipalities......, this paper explores how local climate change mitigation is shaped by particular rationalities and technologies of government, and thus seeks to illustrate how the strategies set out in the plans construe climate change mitigation from a certain perspective, thereby rendering some solutions more likely than...

  12. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  13. Climate change and the permafrost carbon feedback

    Science.gov (United States)

    Schuur, E.A.G.; McGuire, A. David; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, Susan M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  14. Global climate change and children's health.

    Science.gov (United States)

    Shea, Katherine M

    2007-11-01

    There is a broad scientific consensus that the global climate is warming, the process is accelerating, and that human activities are very likely (>90% probability) the main cause. This warming will have effects on ecosystems and human health, many of them adverse. Children will experience both the direct and indirect effects of climate change. Actions taken by individuals, communities, businesses, and governments will affect the magnitude and rate of global climate change and resultant health impacts. This technical report reviews the nature of the global problem and anticipated health effects on children and supports the recommendations in the accompanying policy statement on climate change and children's health.

  15. Climate Change - Global Risks, Challenges & Decisions

    DEFF Research Database (Denmark)

    Richardson, Katherine; Steffen, Will; Schellnhuber, Hans J.

    , are influencing the climate in ways that threaten the well-being and continued development of human society. If humanity is to learn from history and to limit these threats, the time has come for stronger control of the human activities that are changing the fundamental conditions for life on Earth. To decide...... on effective control measures, an understanding of how human activities are changing the climate, and of the implications of unchecked climate change, needs to be widespread among world and national leaders, as well as in the public. The purpose of this report is to provide, for a broad range of audiences......, an update of the newest understanding of climate change caused by human activities, the social and environmental implications of this change, and the options available for society to respond to the challenges posed by climate change. This understanding is communicated through six key messages.  The United...

  16. Climate change risks for African agriculture.

    Science.gov (United States)

    Müller, Christoph; Cramer, Wolfgang; Hare, William L; Lotze-Campen, Hermann

    2011-03-15

    The Intergovernmental Panel on Climate Change (IPCC) assessment of major risks for African agriculture and food security caused by climate change during coming decades is confirmed by a review of more recent climate change impact assessments (14 quantitative, six qualitative). Projected impacts relative to current production levels range from -100% to +168% in econometric, from -84% to +62% in process-based, and from -57% to +30% in statistical assessments. Despite large uncertainty, there are several robust conclusions from published literature for policy makers and research agendas: agriculture everywhere in Africa runs some risk to be negatively affected by climate change; existing cropping systems and infrastructure will have to change to meet future demand. With respect to growing population and the threat of negative climate change impacts, science will now have to show if and how agricultural production in Africa can be significantly improved.

  17. How Will Climate Change Affect Globalization?

    DEFF Research Database (Denmark)

    Dilyard, John Raymond; Bals, Lydia; Zhuplev, Anatoly

    2011-01-01

    Whether it is caused totally by human activity, the Earth’s own natural cycles, or a combination of the two, climate change is a fact. Some changes – melting polar ice, thawing of the tundra, increasing average temperature – already are being felt, and others will manifest themselves in the next...... few decades. Because climate change itself will have a profound effect on where food is grown, what food is grown, and where people live, and because addressing the impact climate change have an effect on the way resources – natural, human, corporate, financial – are accessed and mobilized......, it will effect globalization. Businesses, if they want to be sustained, will have to adjust to climate change. This panel will examine two topics within which the relationship between climate change and globalization can be assessed - the sourcing of resources and services when the location of those resources...

  18. Climate Change Effects Overwintering of Insects

    DEFF Research Database (Denmark)

    Vukasinovic, Dragana

    Climate change is modifying winter conditions rapidly and predicting species’ reactions to global warming has been the “the holy grail” of climate sciences, especially for managed systems, like agro-ecosystems. Intuitively, increased winter temperatures should release insects from coldinduced...... of a rapid, contemporary evolution, optimal formeasuring species response under constant selection pressure, including organismal physiology.Thus, the methodological approach applied in this study, could prove a valuable tool for improving predictability of field population dynamics during climate change....

  19. Too Much Riding on Climate Change?

    OpenAIRE

    Guerra, Erick

    2010-01-01

    Over the last decade and a half, climate change and its impacts have become increasingly important to local, regional, national and international public policy debates. Since settlement patterns, built form, and transportation contribute significantly to climate-changing greenhouse gas (GHG) emissions, urban planners are taking a lead in promoting compact, transit, and walk friendly urban development to lower carbon dioxide and other GHG emissions. This paper argues that focusing on climate c...

  20. Compensating for climate change loss and damage

    OpenAIRE

    Page, Edward; Heyward, Clare

    2016-01-01

    With the adoption of the Warsaw International Mechanism in 2013, the international community recognised that anthropogenic climate change will result in a range of adverse effects despite policies of mitigation and adaptation. Addressing these climatic ‘losses and damages’ is now a key dimension of international climate change negotiations. This article presents a normative framework for thinking about loss and damage designed to inform, and give meaning to, these negotiations. It argues that...

  1. Climate change in Myanmar: impacts and adaptation

    OpenAIRE

    Slagle, John T.

    2014-01-01

    Approved for public release; distribution is unlimited Myanmar is a Least Developed Nation, according to the UN, and therefore is highly vulnerable to the negative effects of a changing climate. To assess the relationship between Myanmar and climate change, this thesis analyzes projected impacts on the nation and its people, the current state of adaptation, and how Myanmar’s government has prepared. Projected impacts are viewed through the lens of the most recent IPCC reports and climate m...

  2. The Consequential Challenges of Climate Change

    Science.gov (United States)

    2011-03-22

    Implications of Global Climate Change to 2030. The NIA study leveraged outside climate research, working with modelers and experts from the U.S...poverty, with an estimated 50,000 families migrating from rural to urban areas in 2010.53 In Iraq, more than 70% of the underground aqueducts have dried...categories of recommendations, modeled closely around the Navy’s Climate Change Roadmap framework, but modified to reflect a whole of government and

  3. Global climate change and US agriculture

    Science.gov (United States)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  4. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  5. Dengue in a changing climate.

    Science.gov (United States)

    Ebi, Kristie L; Nealon, Joshua

    2016-11-01

    Dengue is the world's most important arboviral disease in terms of number of people affected. Over the past 50 years, incidence increased 30-fold: there were approximately 390 million infections in 2010. Globalization, trade, travel, demographic trends, and warming temperatures are associated with the recent spread of the primary vectors Aedes aegypti and Aedes albopictus and of dengue. Overall, models project that new geographic areas along the fringe of current geographic ranges for Aedes will become environmentally suitable for the mosquito's lifecycle, and for dengue transmission. Many endemic countries where dengue is likely to spread further have underdeveloped health systems, increasing the substantial challenges of disease prevention and control. Control focuses on management of Aedes, although these efforts have typically had limited effectiveness in preventing outbreaks. New prevention and control efforts are needed to counter the potential consequences of climate change on the geographic range and incidence of dengue, including novel methods of vector control and dengue vaccines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  7. Man-Made Climatic Changes

    Science.gov (United States)

    Landsberg, Helmut E.

    1970-01-01

    Reviews environmental studies which show that national climatic fluctuations vary over a wide range. Solar radiation, earth temperatures, precipitation, atmospheric gases and suspended particulates are discussed in relation to urban and extraurban effects. Local weather modifications and attempts at climate control by man seem to have substantial…

  8. Changing perceptions of hunger on a high nutrient density diet

    Science.gov (United States)

    2010-01-01

    Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location) when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Results Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. Conclusions A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides benefits for long-term health

  9. Changing perceptions of hunger on a high nutrient density diet

    Directory of Open Access Journals (Sweden)

    Glaser Dale

    2010-11-01

    Full Text Available Abstract Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Results Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. Conclusions A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides

  10. Changing perceptions of hunger on a high nutrient density diet.

    Science.gov (United States)

    Fuhrman, Joel; Sarter, Barbara; Glaser, Dale; Acocella, Steve

    2010-11-07

    People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location) when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides benefits for long-term health as well as weight loss. Because our

  11. Environmental impacts of climate change adaptation

    NARCIS (Netherlands)

    Enriquez-de-Salamanca, Alvaro; Diaz Sierra, R.; Martin-Aranda, Rosa; Ferreira Dos Santos, M.J.

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship

  12. Divergence of species responses to climate change

    Science.gov (United States)

    Songlin Fei; Johanna M. Desprez; Kevin M. Potter; Insu Jo; Jonathan A. Knott; Christopher M. Oswalt

    2017-01-01

    Climate change can have profound impacts on biodiversity and the sustainability of many ecosystems. Various studies have investigated the impacts of climate change, but large-scale, trait-specific impactsare less understood.Weanalyze abundance data over time for 86 tree species/groups across the eastern United States spanning the last three decades. We show that more...

  13. Climate change adaptation | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-07

    Jan 7, 2011 ... IDRC was funding research on human adaptation to climate change and variability long before the term “global warming” began to dominate the world's headlines. This is because climate change is not just an environmental problem: it also threatens development. The most vulnerable populations are ...

  14. Climate change and corn susceptibility to mycotoxins

    Science.gov (United States)

    Maize is an essential part of the world’s grain supply, but climate change has the potential to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce food security and safety. While rising atmospheric [CO2] is a driving force of climate change, our understanding of how elevated ...

  15. Climate Change | Page 13 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Read more about Reducing the Risk of Water Pollution in Vulnerable Coastal Communities of Cartagena, Colombia: Responding to Climate Change. Language English. Read more about Inland Aquaculture and Adaptation to Climate Change in Northern Thailand. Language English. Read more about Adaptation à ...

  16. Climate Change | Page 13 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Read more about Reducing the Risk of Water Pollution in Vulnerable Coastal Communities of Cartagena, Colombia: Responding to Climate Change. Language English. Read more about Adaptation to Climate Change in two Rural Communities on the Plains and in the Mountains of Morocco. Language English. Read more ...

  17. AGRICULTURAL VULNERABILITY TO CLIMATE CHANGE IN ...

    African Journals Online (AJOL)

    victoria

    2015-02-21

    Feb 21, 2015 ... Climate change poses a serious danger to livelihoods and food security as well as ..... climate change since it will enhance their ability to adopt innovations and technologies. [11, 30 .... Sci. and Tech., 2010; 4 (6): 371-381. 5.

  18. Climate Change: Global Risks, Challenges and Decisions

    NARCIS (Netherlands)

    Richardson, K.; Steffen, W.; Liverman, D.; Barker, T.; Jotzo, F.; Kammen, D.M.; Leemans, R.; Lenton, T.M.; Munasinghe, M.; Osman-Elasha, B.; Schellnhuber, H.J.; Stern, N.; Vogel, C.; Waever, O.

    2011-01-01

    Providing an up-to-date synthesis of knowledge relevant to the climate change issue, this book ranges from the basic science documenting the need for policy action to the technologies, economic instruments and political strategies that can be employed in response to climate change. Ethical and

  19. Climate change: Update on international negotiations

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, L. [Dept. of Energy, Washington, DC (United States). Office of Policy

    1997-12-31

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  20. African Climate Change Fellowship | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant will foster indigenous capacity to advance and apply scientific knowledge to climate change adaptation by supporting the pilot phase of the African Climate Change Fellowship program. The program will provide about 58 early-to-mid-career African professionals and researchers with policy, doctoral, post-doctoral ...

  1. AGRICULTURAL VULNERABILITY TO CLIMATE CHANGE IN ...

    African Journals Online (AJOL)

    victoria

    Climate change poses a serious danger to livelihoods and food security as well as enhancing risks and vulnerabilities through the increased incidence of environmental disaster and intense weather events [1]. The impacts of climate change basically may be restricted in nature but also with economy-wide implications [2].

  2. A history of international climate change policy

    NARCIS (Netherlands)

    Gupta, J.

    2010-01-01

    This article presents an overview of the history of international climate change policy over the last 30 years, divided into five periods. It examines the pre-1990 period, the period leading up to the adoption of the Climate Change Convention, the period of the Kyoto Protocol until US withdrawal,

  3. Strengthening Economic Skills and Climate Change Adaptive ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    It builds on the results obtained from the project, Strengthening the Capacity to Adapt to Climate Change in Rural Bénin (104142). ... un développement intégré durable (IDID), to enhance the adaptive capacity of local communities in order to mitigate the negative effects of climate change on food security and rural poverty.

  4. The Poverty Impacts of Climate Change

    OpenAIRE

    Emmanuel Skoufias; Mariano Rabassa; Sergio Olivieri; Milan Brahmbhatt

    2011-01-01

    Over the last century, the world has seen a sustained decline in the proportion of people living in poverty. However, there is an increasing concern that climate change could slow or possibly even reverse poverty reduction progress. Given the complexities involved in analyzing climate change impacts on poverty, different approaches can be helpful; this note surveys the results of recent re...

  5. Climate Change | Page 17 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate Change. Language English. Read more about Adaptation aux changements climatiques grâce à une gestion améliorée des bassins versants dans le bassin du Tensift, au Maroc. Language French. Read more about Climate Change and Water Adaptation Options. Language English. Read more about Building ...

  6. Climate Change | Page 22 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Enhancing Adaptation to Climate Change among Pastoralists in Northern Kenya. Language English. Read more about Autonomy and Community Management of Protected Areas in Neuquen and Araucania (Argentina and Chile).

  7. Climate Change | Page 20 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Community Based Adaptation to Climate Change in Africa. Language English. Read more about Prefabricated Engineered Bamboo Housing for East Africa. Language English. Read more about Maisons préfabriquées en bambou ...

  8. African Religion, Climate Change and Knowledge Systems

    NARCIS (Netherlands)

    Tarusarira, Joram

    2017-01-01

    This article argues that as humanity is now changing the composition of the atmosphere at a rate that is very exceptional on the geological time scale, resulting in global warming, humans must deal with climate change holistically, including the often overlooked religion factor. Human-caused climate

  9. Tajikistan : Key Priorities for Climate Change Adaptation

    OpenAIRE

    Barbone, Luca; Reva, Anna; Zaidi, Salman

    2010-01-01

    How should Tajikistan adapt to ongoing and future climate change, in particular given the many pressing development challenges it currently faces? The paper argues that for developing countries like Tajikistan, faster economic and social development is the best possible defense against climate change. It presents some key findings from a recent nationally representative household survey to...

  10. The Strategic Threat of Inevitable Climate Change

    Science.gov (United States)

    2013-03-01

    CO2), methane (CH4), nitrous oxide (N2O) and the halocarbons (a group of gases containing fluorine, chlorine and bromine)33 According to the IPCC’s...GHG concentrations,” for more see Intergovernmental Panel on Climate Change, “Climate Change 2007: Synthesis Report,” Cambridge University Press

  11. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.

  12. International business and global climate change

    NARCIS (Netherlands)

    Pinkse, J.; Kolk, A.

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and

  13. Climate Change | Page 33 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Language English. Could decentralized renewable energy technologies for water services help poor communities in developing countries better adapt to climate change? Could they promote equitable access under increasingly uncertain conditions? Read more about Water, energy, and climate change: what's the link?

  14. Mass balance gradients and climatic change

    NARCIS (Netherlands)

    Oerlemans, J.; Hoogendoorn, N.C.

    1989-01-01

    It is generally assumed that the mass-balance gradient on glaciers is more or less conserved under climatic change. In studies of the dynamic response of glaciers to climatic change, one of the following assumptions is normally made: (i) the mass-balance perturbation is independent of altitude

  15. Climate Change | Page 17 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about CapaSIDS : Capacity Building and Knowledge on Sustainable Responses to Climate Change in Small Island States. Language English. Read more about CapaSIDS : renforcement des capacités et production de connaissances ...

  16. Climate Change | Page 25 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate Change. Language English. Read more about Resilience and the African Smallholder : Enhancing the Capacity of Communities to Adapt to Climate Change. Language English. Read more about Renforcement de trois organisations de producteurs agricoles périurbains en Amérique latine. Language French.

  17. Climate Change in Urban Communities | Urban ...

    Science.gov (United States)

    2017-04-10

    Climate Change in Urban Communities is a PowerPoint presentation designed to inform urban residents about the impact of climate change, why it's a problem for their communities, and how individual actions can help make a difference as well as save people money.

  18. Western forest, fire risk, and climate change

    Science.gov (United States)

    Valerie Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  19. Western forests, fire risk, and climate change.

    Science.gov (United States)

    Valerie. Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  20. The response of glaciers to climate change

    NARCIS (Netherlands)

    Klok, Elisabeth Jantina

    2003-01-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the

  1. Climate Change | Page 11 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Urban-Rural Interdependence and the Impact of Climate Change in Malawi and Tanzania. Language English. Read more about La gestion de l'eau dans les milieux urbains et ruraux, élément fondamental des villes qui savent ...

  2. Singapore Students' Misconceptions of Climate Change

    Science.gov (United States)

    Chang, Chew-Hung; Pascua, Liberty

    2016-01-01

    Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…

  3. Climate change consequences for the indoor environment

    NARCIS (Netherlands)

    Ariës, M.B.C.; Bluyssen, P.M.

    2009-01-01

    Scientists warn us about climate change and its effects on the outdoor environment. These effects can have significant consequences for the indoor environment, also in the Netherlands. Climate changes will affect different aspects of the indoor environment as well as the stakeholders of that indoor

  4. Climate Change | Page 10 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Mobilizing Private Sector Investment in Adaptation to Climate Change. Language English. Read more about Adaptation, eau et résilience dans l'Himalaya. Language French. Read more about Programme de bourses de recherche ...

  5. Challenging conflicting discourses of climate change

    NARCIS (Netherlands)

    Fleming, Aysha; Vanclay, Frank; Hiller, Claire; Wilson, Stephen

    2014-01-01

    The influence of language on communication about climate change is well recognised, but this understanding is under-utilised by those seeking to increase uptake of action for climate change. We discuss the terms, discourse, resistance, and agency, to assist in developing ways to progress social

  6. Climate Change Floodplains and California Adaption Possibilities

    Science.gov (United States)

    Anderson, M. L.

    2008-12-01

    California is currently revisiting its floodplain management practices. Part of this effort will include the development of adaptation strategies for incorporating climate change into floodplain protection levels. This presentation will review expected impacts of climate change on floodplains and will examine how those impacts could be incorporated into floodplain protection estimates and the planning process.

  7. European climate change policy beyond 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    There is an increasing scientific consensus that human activities do trigger climate changes. Actual forecasts predict temperature increases that are likely to be beyond the adaptation potential of ecosystems. These considerations play a major role in shaping public opinion and the media landscape, culminating in the view that Europe needs to play a leading role in combating climate change.

  8. Climate Change Adaptation in Africa | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    African Governments have already acknowledged the urgent need to address climate change through regional initiatives. This grant will support the establishment of a program on vulnerability and adaptation to climate change in Africa. The program will be directed by an advisory board consisting of donor representatives ...

  9. Vulnerability and Adaptation to Climate Change : Agricultural ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    10 juin 2007 ... Vulnerability and Adaptation to Climate Change : Agricultural Systems in Madagascar. Madagascar has completed its national plan of action for adapting to climate change. Several actors and decision-makers - agricultural policymakers, regional rural development managers, emergency services ...

  10. Adaptation to climate change by organizations

    NARCIS (Netherlands)

    Berkhout, F.G.H.

    2012-01-01

    Organizations will be central actors in societal adaptation to climate variability and change. But highly simplified assumptions are often made about the response of organizations to the stimulus of perceived or experienced climate change. This paper reviews recent literature, arguing that three

  11. Enchytraeidae (Oligochaeta) in a changing climate

    DEFF Research Database (Denmark)

    Maraldo, Kristine

    The background for this thesis was to investigate the effect of climate change (increased CO2, temperature and prolonged drought) on field communities of enchytraeids dominated by the species Cognettia sphagnetorum. In the short-term, enchytraeids appear to be unaffected by the climate change when...

  12. The United States and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, P.; Viguier, L.

    2002-07-01

    This book analyzes the reasons why the USA consider the Kyoto protocol as an unsuitable tool for the threat represented by the climatic change. The authors give also a first appraisal of the plan proposed by the President Bush administration in February 2002 'Clear skies and global climate change'. (J.S.)

  13. Climate Change | Page 14 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Adaptation aux changements climatiques dans les zones périurbaines de l'Asie du Sud-Est. Language French. Read more about Adapting to Climate Change in Peri-Urban Southeast Asia. Language English. Read more about ...

  14. Climate Change | Page 4 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Language English. Read more about Climate Change Adaptation Research and Capacity Development in Ghana. Language English. Read more about Strengthening Economic Skills and Climate Change Adaptive Capacity in Bénin. Language English. Read more about Sociocultural Adaptation of Caboclos Communities ...

  15. Climate Change | Page 7 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate Change. Language English. Read more about Adaptation aux changements climatiques des bassins versants en cours d'urbanisation. Language French. Read more about Adapting to Climate Change in Urbanizing Watersheds. Language English. Read more about Établissement d'une gouvernance efficace de ...

  16. Climate Change | Page 9 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Transfert de la responsabilité du Programme d'économie environnementale pour l'Asie du Sud-Est (EEPSEA). Language French. Read more about The African Climate Change Fellowship Program Phase III. Language English.

  17. Climate Change | Page 23 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Strengthening Local Agricultural Innovation Systems in Tanzania and Malawi. Language English. Read more about African Climate Change Fellowship. Language English. Read more about Resilience and the African Smallholder ...

  18. Global Climate Change: National Security Implications

    National Research Council Canada - National Science Library

    Pumphrey, Carolyn

    2008-01-01

    .... But this notion was generally scoffed at. Over the course of the 20th century, the scientific community gradually came to terms with this theory and began to regard climate change even rapid climate change as more than a distant possibility...

  19. The Psychological Impacts of Global Climate Change

    Science.gov (United States)

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  20. Vulnerability and Adaptation to Climate Change : Agricultural ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... on the factors affecting vulnerability to climate change on the whole island of Madagascar;; to better understand existing and possible adaptation strategies;; to explore various intervention strategies under different scenarios; and; to reinforce national capacity in analysis of climate change vulnerability and adaptation.

  1. Climate Change, Innovation, and Information and Communication ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate change has the potential to exacerbate development challenges affecting the world's poorest and most vulnerable populations. Information and communication technologies (ICTs) could play a role in helping communities adapt to the impact of climate change in terms of awareness raising, information sharing, early ...

  2. Impact of Climate Change on India's Monsoonal Climate: Present ...

    Indian Academy of Sciences (India)

    Expected Future Changes in Rainfall and Temperature over India under IPCC SRES A1B GHG Scenarios · Expected Future Change in Monsoon Rainfall and Annual Surface Temp for 2020's, 2050's and 2080's · Likely Future Paradox of Monsoon-ENSO Links · High-Resolution Regional Climate Change Scenarios.

  3. Dominant visual frames in climate change news stories: implications for formative evaluation in climate change campaigns

    National Research Council Canada - National Science Library

    Rebich-Hespanha, Stacy; Rice, Ronald E

    2016-01-01

    ..., science and climate change communication, and the role of formative evaluation in communication campaigns in general and climate change campaigns in particular. We then describe dominant climate change visual frames identified through previous research, suggest possible considerations in formative evaluation of each dominant frame, and outlin...

  4. Gender equality and climate Change: Why consider gender equality when taking action on climate change?

    OpenAIRE

    Canadian International Development Agency (CIDA)

    2008-01-01

    Metadata only record This document created by CIDA answers the question: why should we consider gender when talking about climate change. Recognizing men and women's different responsibilities, roles, and economic power is to understand gender specific vulnerabilities to climate change. Climate change impacts food security, water and other resources shortages, and health.

  5. Adapting to the impacts of climate change

    National Research Council Canada - National Science Library

    America's Climate Choices: Panel on Adapting to the Impacts of Climate Change; National Research Council; Board on Atmospheric Sciences & Climate; Division on Earth and Life Studies; National Research Council

    2010-01-01

    "Across the United States, impacts of climate change are already evident. Heat waves have become more frequent and intense, cold extremes have become less frequent, and patterns of rainfall are likely changing...

  6. A Climate Change Adaptation Strategy for Management of ...

    Science.gov (United States)

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coa

  7. Climate change or land use dynamics: do we know what climate change indicators indicate?

    Directory of Open Access Journals (Sweden)

    Miguel Clavero

    Full Text Available Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i environmental temperature; and ii three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization, all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.

  8. The Climate Change Challenge for Land Professionals

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    such as sea level rise and environmental degradation through global positioning infrastructures and data interpretation and presentation; • Implementing climate change adaptation and mitigation measures into land administration systems and systems for disaster risk management. This paper provides an overall...... understanding of the climate change challenge and looks at land governance as a key means of contributing to climate change adaptation as well disaster risk prevention and management. More specifically the paper looks at identifying the role of land professionals in addressing the climate change challenge...... in the wider context of sustainable land governance. The linkage between climate change adaptation and sustainable development should be self-evident but is not well understood by the public in general. Land professionals should take a leading role in explaining this linkage to the wider public. This should...

  9. Creating Effective Dialogue Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  10. Water access, water scarcity, and climate change.

    Science.gov (United States)

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  11. Climate change in EIA - Inspiration from practice

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2013-01-01

    Climate change integration has been a topic of much interest in the field of impact assessment for a period, and thus far quite some emphasis has been put on discussions of purpose, relevance and overall approaches in both Environmental Impact Assessment of projects (EIA) and Strategic...... Environmental Assessments of plans and programmes (SEA). However, EIAs and SEAs are already being made, which integrate climate change, and for some aspects this practice has evolved over a long period. This paper seeks to explore this practice and find inspiration from the work with climate change already...... taking place. For exploring the praxis of integrating climate change in practice a document study of 100 Danish EIA reports is carried out. From these reports, statistics and examples are drawn. The study shows an emphasis on integration of climate change mitigation, using various quantitative tools...

  12. Constructing Legitimacy for Climate Change Planning

    DEFF Research Database (Denmark)

    Cashmore, Matthew Asa; Wejs, Anja

    2014-01-01

    Within the literature, climate change mitigation and adaptation at the local level is in- creasingly portrayed as a new, discrete field of spatial planning research and practice. This article examines in detail the situated institutionalisation of this emerging field in local government...... of climate change planning and how legitimacy is, in turn, affected by the interplay between agency and structure. The analytical foregrounding of the concept of legitimacy is concluded to generate ‘thicker’, more nuanced insights into why climate change planning practices take particular forms in specific......) in relation to the institutionalisation of climate change planning with- in local government may be more complex than has been suggested much of the litera- ture. The predominance of cultural-cognitive over normative legitimacy also has im- portant implications for how discourses on climate change planning...

  13. Mesocosms Reveal Ecological Surprises from Climate Change.

    Directory of Open Access Journals (Sweden)

    Damien A Fordham

    2015-12-01

    Full Text Available Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  14. Global Climate Change and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    EK Shuman

    2010-12-01

    Full Text Available Climate change is occurring as a result of warming of the earth’s atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  15. EUROPEAN UNION POLICIES FOR CLIMATE CHANGE MITIGATION

    Directory of Open Access Journals (Sweden)

    Paul Canter

    2017-07-01

    Full Text Available Climate change is one of the most important challenges that humanity faces in the 21st century, and for the European Union, combating this phenomenon represents an important element, which is reflected both in the actions carried out in recent years, domestically and internationally, as well as in the EU policy on climate change. Within the EU, regulations were adopted, that demonstrate the importance that the Union confers to the limitation of this phenomenon, stressing at the same time the need for an integrated policy framework to ensure the security for potential investors and a coordinated approach between Member States. This paper will present recent developments for the most important policies to combat and mitigate climate change in the European Union, starting with "20-20-20" objectives, which are to be met through the package "Energy-Climate Change", continuing with 2030 and 2050 timeframes, and finally presenting the main lines of action to combat climate change.

  16. Pleistocene atmospheric CO2 change linked to Southern Ocean nutrient utilization

    Science.gov (United States)

    Ziegler, M.; Diz, P.; Hall, I. R.; Zahn, R.

    2011-12-01

    Biological uptake of CO2 by the ocean and its subsequent storage in the abyss is intimately linked with the global carbon cycle and constitutes a significant climatic force1. The Southern Ocean is a particularly important region because its wind-driven upwelling regime brings CO2 laden abyssal waters to the surface that exchange CO2 with the atmosphere. The Subantarctic Zone (SAZ) is a CO2 sink and also drives global primary productivity as unutilized nutrients, advected with surface waters from the south, are exported via Subantarctic Mode Water (SAMW) as preformed nutrients to the low latitudes where they fuel the biological pump in upwelling areas. Recent model estimates suggest that up to 40 ppm of the total 100 ppm atmospheric pCO2 reduction during the last ice age were driven by increased nutrient utilization in the SAZ and associated feedbacks on the deep ocean alkalinity. Micro-nutrient fertilization by iron (Fe), contained in the airborne dust flux to the SAZ, is considered to be the prime factor that stimulated this elevated photosynthetic activity thus enhancing nutrient utilization. We present a millennial-scale record of the vertical stable carbon isotope gradient between subsurface and deep water (Δδ13C) in the SAZ spanning the past 350,000 years. The Δδ13C gradient, derived from planktonic and benthic foraminifera, reflects the efficiency of biological pump and is highly correlated (rxy = -0.67 with 95% confidence interval [0.63; 0.71], n=874) with the record of dust flux preserved in Antarctic ice cores6. This strongly suggests that nutrient utilization in the SAZ was dynamically coupled to dust-induced Fe fertilization across both glacial-interglacial and faster millennial timescales. In concert with ventilation changes of the deep Southern Ocean this drove ocean-atmosphere CO2 exchange and, ultimately, atmospheric pCO2 variability during the late Pleistocene.

  17. Land use, climate and transport of nutrients: evidence emerging from the Lake Vico Case Study [corrected].

    Science.gov (United States)

    Recanatesi, F; Ripa, M N; Leone, A; Perini, Luigi; Luigi, Perini; Salvati, Luca; Luca, Salvati

    2013-08-01

    Soil erosion is a Europe-wide problem, causing both loss of soil fertility and pollution due to nutrient transport into water bodies. This process is particularly important in the Mediterranean area, where the climate, characterised by long periods of drought followed by intense precipitation, favours soil erosion. Research carried out in this field has amply described this process, showing that climate and land use/land cover (LU/LC) are the two main factors regulating this phenomenon. However, the interaction between these factors is complex and experimental research is needed to understand the nutrient loads deriving from different land uses. This paper shows the results of a long-term monitoring project carried out in the Lake Vico basin (central Italy), using high resolution data and runoff samples to determine the phosphorus (P) export from four different LU/LC classes resulting from the same climatic event. The results highlight the fundamental role that LU/LC plays in terms of phosphorus load. Furthermore, the results appear to indicate that the maximum rainfall registered for 30' (I 30, max), rather than the total quantity of precipitation, has the greatest effect on levels of erosion, and consequently on the migration of nutrients rather than the total quantity of precipitation can affect on erosion and therefore the migration of nutrients. These data could contribute to scientific planning support for land management choices aimed at controlling water pollution from non-point pollution sources.

  18. Linkages between climate change and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Noreen; Morlot, Jan Corfee [OECD, Paris (France); Davidson, Ogunlade [Energy and Development Research Centre (EDRC), Cape Town (ZA)] [and others

    2002-09-01

    Climate change does not yet feature prominently within the environmental or economic policy agendas of developing countries. Yet evidence shows that some of the most adverse effects of climate change will be in developing countries, where populations are most vulnerable and least likely to easily adapt to climate change, and that climate change will affect the potential for development in these countries. Some synergies already exist between climate change policies and the sustainable development agenda in developing countries, such as energy efficiency, renewable energy, transport and sustainable land-use policies. Despite limited attention from policy-makers to date, climate change policies could have significant ancillary benefits for the local environment. The reverse is also true as local and national policies to address congestion, air quality, access to energy services and energy diversity may also limit GHG emissions. Nevertheless there could be significant trade-offs associated with deeper levels of mitigation in some countries, for example where developing countries are dependent on indigenous coal and may be required to switch to cleaner yet more expensive fuels to limit emissions. The distributional impacts of such policies are an important determinant of their feasibility and need to be considered up-front. It follows that future agreements on mitigation and adaptation under the convention will need to recognise the diverse situations of developing countries with respect to their level of economic development, their vulnerability to climate change and their ability to adapt or mitigate. Recognition of how climate change is likely to influence other development priorities may be a first step toward building cost-effective strategies and integrated, institutional capacity in developing countries to respond to climate change. Opportunities may also exist in developing countries to use regional economic organisations to assist in the design of integrated

  19. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    Science.gov (United States)

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  20. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.