WorldWideScience

Sample records for climate change ipcc

  1. Climate change science - beyond IPCC

    International Nuclear Information System (INIS)

    Full text: Full text: The main conclusions of the IPCC Working Group I assessment of the physical science of climate change, from the Fourth IPCC Assessment, will be presented, along with the evidence supporting these conclusions. These conclusions include: Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture; The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] Wm-2; Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level; At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. Palaeo-climatic information supports the interpretation that the warmth of the last half-century is unusual in at least the previous 1,300 years; Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations; Discernible human influences now extend to other aspects of climate, including ocean warming, continental

  2. IPCC underestimates the Sun’s role in climate change

    NARCIS (Netherlands)

    B. van Geel; P.A. Ziegler

    2013-01-01

    For the understanding of current and future climate change it is a basic pre requisite to properly understand the mechanisms, which controlled climate change after the Last Ice Age. According to the IPCC 5th assessment report (in prep.) the Sun has not been a major driver of climate change during th

  3. IPCC's Climate Communication

    DEFF Research Database (Denmark)

    Almlund, Pernille

    The work of IPCC is an important work and contribution to the global discussion and global challenge of climate change. But this work is primarily based on computer modelling, natural science, economic science and as a new perspective a stronger focus on the risk perspective than in earlier IPCC...... reports. This paper is based on a wonder of why the IPCC’s analysis and reports are not, to a higher degree, based on social science and human science. Are these scientific perspectives with many different approaches not important to this global political awareness of climate change? Especially now when...... all the IPCC’s assessment report have concluded that climate changes are human made and recently stated that 97 % of all climate researchers agree in that conclusion. Due to the theoretical work of Michel Callon, Lascoumes and Barthe (2011) and their ANT perspective, climate change can be observed...

  4. Global climate change: An introduction and results from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    OpenAIRE

    Seth, Anji

    2007-01-01

    This presentation gives summary of the results of the Intergovernmental Panel on Climate Change (IPCC) Working Group I (WG1) Fourth Assessment Report (AR4): The physical science basis for climate change. It begins with a history of the theory of global climate change, followed by the important concepts surrounding global climate change: the greenhouse effect and carbon cycle and how the climate has changed throughout the earth's history. It then discusses the IPCC's assessment reports, focusi...

  5. Are the Projections of Future Climate Change Reliable in the IPCC Reports?

    Institute of Scientific and Technical Information of China (English)

    Zongci Zhao

    2011-01-01

    @@ As we know,the projections of future climate change including impacts and strategies in the IPCC Assessment Reports were based on global climate models with scenarios on various human activities.Global climate model simulations provide key inputs for climate change assessments. In this study,the main objective is to analyze if the projections of fu-ture climate change by global climate models are reli-able.Several workshops have been held on this issue,such as the IPCC expert meeting on assessing and combining multi-model climate projections in January of 2010 (presided by the co-chairs of the IPCC WGI and WGII AR5),and the workshop of the combined global climate model group held by NCAR in June of 2010.

  6. IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned

    Science.gov (United States)

    Sokona, Youba

    2014-05-01

    The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.

  7. Climate Change on Twitter: Topics, Communities and Conversations about the 2013 IPCC Working Group 1 Report

    Science.gov (United States)

    Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte

    2014-01-01

    In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report. PMID:24718388

  8. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report.

    Directory of Open Access Journals (Sweden)

    Warren Pearce

    Full Text Available In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report.

  9. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report.

    Science.gov (United States)

    Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte

    2014-01-01

    In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report. PMID:24718388

  10. The Intergovernmental Panel on Climate Change (IPCC) and scientific consensus. How scientists come to say what they say about climate change

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Skodvin, Tora

    1998-12-01

    This document reviews the background, organization and operation of the Intergovernmental Panel on Climate Change (IPCC). It gives some background on climate change in the past and finally discusses what IPCC says about the likely future impact of anthropogenic emission of greenhouse gases. 14 refs., 8 figs.

  11. Evaluation of an IPCC climate report. An analysis of conclusions on the possible regional consequences of climate change

    International Nuclear Information System (INIS)

    This report contains the results of a study of the reliability of the regional chapters (H9-16) of the contribution of Working Group II to the Fourth Climate Report of the IPCC (the sub report on consequences, adaptation and vulnerability). Moreover an assessment was made of the possible consequences of errors for the conclusions in the high level summaries of that report. The Netherlands Environmental Assessment Agency did not detect any errors that may undermine the main conclusions of the scientific UN Climate Panel IPCC of 2007 on the possible future consequences of climate change. However, some of the substantiations of the conclusions lack clarity. To prevent lack of clarity and inaccuracies the IPCC needs to invest more in quality checks.

  12. Climate change. Important findings from the 4. fact finding report of the intergovernmental commission on climate change of the United Nations (IPCC); Klimaaenderung. Wichtige Erkentnisse aus dem 4. Sachstandsbericht des Zwischenstaatlichen Ausschusses fuer Klimaaenderungen der Vereinten Nationen (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Claudia

    2009-12-19

    The Report covers the following topics: 1. anthropogenic climate change - since when do we know about it? 2. IPCC - the intergovernmental commission for climate change. 3. Assignable causes for climate change: changes of incoming solar radiation, changes of the reflected solar radiation, change of the heat radiation lost into space, aerosols, internal variability of the climate system. 4. Historical climate changes in long periods. 5. Development of the greenhouse gases in the atmosphere. 6. Observed climate changes. 7. Projections of future climate changes. 8. Consequences of climate change: consequences of the actual temperature increase, possible future consequences, freshwater resources and their management, ecosystems, agricultural production, coastal regions and low lying areas.

  13. Mitigation of climate change: back to IPCC's fifth report

    International Nuclear Information System (INIS)

    This article provides an overview of current knowledge on climate change mitigation, based on the Intergovernmental Panel on Climate Change (IPCC) Working Group III fifth assessment report. The report emphasizes how little room for manoeuvre there is to meet the target of a global mean surface temperature increase below 2 deg. C, if ambitious policies to reduce greenhouse gases are not implemented by 2020. It also assesses sectoral potentials for emissions reductions and addresses emerging questions, in particular regarding the financing of decarbonization pathways. The report finally highlights the need for integrated policies to take advantage of co-benefits of climate policies (health, energy security, etc.), the evaluation of which is becoming more systematic. (authors)

  14. Changes in climate extremes and their impacts on the natural physical environment: An overview of the IPCC SREX report

    Science.gov (United States)

    Seneviratne, S. I.; Nicholls, N.; Easterling, D.; Goodess, C. M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; Sorteberg, A.; Vera, C.; Zhang, X.

    2012-04-01

    In April 2009, the Intergovernmental Panel on Climate Change (IPCC) decided to prepare a new special report with involvement of the UN International Strategy for Disaster Reduction (ISDR) on the topic "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX, http://ipcc-wg2.gov/SREX/). This special report reviews the scientific literature on past and projected changes in weather and climate extremes, and the relevance of such changes to disaster risk reduction and climate change adaptation. The SREX Summary for Policymakers was approved at an IPCC Plenary session on November 14-18, 2011, and the full report is planned for release in February 2012. This presentation will provide an overview on the structure and contents of the SREX, focusing on Chapter 3: "Changes in climate extremes and their impacts on the natural physical environment" [1]. It will in particular present the main findings of the chapter, including differences between the SREX's conclusions and those of the IPCC Fourth Assessment of 2007, and the implications of this new assessment for disaster risk reduction. Finally, aspects relevant to impacts on the biogeochemical cycles will also be addressed. [1] Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  15. The impact of SciDAC on US climate change research and the IPCC AR4

    International Nuclear Information System (INIS)

    SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change

  16. Methods for interfacing IPCC climate change scenarios with higher resolution watershed management models in the Ethiopian Blue Nile Basin

    Science.gov (United States)

    Easton, Z. M.; MacAlister, C.; Fuka, D. R.

    2013-12-01

    As much as 90% of the Nile River flow that reaches Egypt originates in the Highlands of the Ethiopian Blue Nile Basin. This imbalance in water availability poses a threat to water security in the region, and could be severely impacted by projected climate change. This analysis coupled hydrodynamic/watershed models with the Intergovernmental Panel on Climate Change (IPCC) AR4 climate change scenarios to assess the potential impact on water resources and sediment dynamics. Specific AR4 scenarios include the A1B, B1, B2 and COMMIT, which were used to force the baseline hydrodynamic models calibrated against 1979-2011 streamflow for 20 sub-watersheds in the Tana and Beles basins. Transfer functions were developed to distribute the model parameters from the calibrated sub-watersheds to un-gauged portions of the basins based on a similarity index of hydrologic response units. We analyzed the scenario in two manners: first we ran all of the seven individual Global Circulation Model results in the IPCC AR4 report though our watershed models to asses the potential spread of climate change predictions; then we assessed the mean value produced for each IPCC AR4 scenario to better estimate convergence. Results indicate that the Tana basin is expected to experience an increase in mean annual flow. The Beles basin is predicted to experience a small decrease in mean annual flow. Sediment concentrations in the Tana basin increase proportionally more than the flow increase. Interestingly, and perhaps counter to what might be expected for a decrease in flow in the Beles basin, sediment concentrations increase.

  17. IPCC and other assessments as vehicles for integrating natural and social science research to address human dimensions of climate change

    Science.gov (United States)

    Field, C. B.

    2012-12-01

    IPCC and other assessments address both natural and social science aspects of climate change, but this approach has historically involved relatively little integration across the two sets of disciplines. In a framing that is only slightly oversimplified, past relationships were mostly sequential. From a physical climate perspective, human behavior was a boundary condition setting the trajectory of atmospheric forcing. And from an impacts perspective, changes in the physical climate set the stage upon which humans experienced impacts and made decisions about adaptation and mitigation. Integrated assessment models have been the main locus of research on questions about bi-directional coupling, where the trajectory of the physical climate influences GHG balance related to the need for agricultural land as well as GHG emissions from other activities. In the IPCC AR4 (2007), feedbacks from the natural carbon cycle to climate were a focus, but with little discussion of the potentially important feedbacks from climate-carbon interactions in the human domain. Detailed research and modeling in this area are still in the relatively early stages. For the future, IPCC and other assessments potentially provide a vehicle for new insights about the interaction of natural and social science dimensions of climate change. Several aspects could be interesting. Some of these relate to the decisions that modulate GHG emissions. For example, how does scientific understanding of climate change influence people's interest in mitigation and adaptation? How does it influence their willingness to pay? How are these modulated by regional and global geopolitics? Other potentially interesting aspects relate to interactions between mitigation and adaptation. For example, how does local experience of climate change alter the balance of focus on adaptation and mitigation? Still others relate to the nature of impacts and the role of sustainable development. With an aggress sustainable development

  18. Trends in marine climate change research in the Nordic region since the first IPCC report

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Kokkalis, Alexandros; Bardarson, H.;

    2016-01-01

    Oceans are exposed to anthropogenic climate change shifting marine systems toward potential instabilities. The physical, biological and social implications of such shifts can be assessed within individual scientific disciplines, but can only be fully understood by combining knowledge and expertise...... evaluated the development of climate change related marine science by quantifying trends in number of publications, disciplinarity, and scientific focus of 1362 research articles published between 1990 and 2011. Our analysis showed a faster increase in publications within climate change related marine...... science than in general marine science indicating a growing prioritisation of research with a climate change focus. The composition of scientific disciplines producing climate change related publications, which initially was dominated by physical sciences, shifted toward a distribution with almost even...

  19. IPCC Climate Change 2013: Impacts, Adaptation and Vulnerability: Key findings and lessons learned

    Science.gov (United States)

    Giorgi, Filippo; Field, Christopher; Barros, Vicente

    2014-05-01

    The Working Group II contribution to the Fifth Assessment Report of the Intergivernmental Panel on Climate Change, Impacts, Adaptation and Vulnerability, will be completed and approved in March 2014. It includes two parts, Part A covering Global and Sectoral Aspects, and Part B, covering Regional Aspects. The WGII report spans a very broad range of topics which are approached in a strong interdisciplinary context. It highlights how observed impacts of climate change are now widespread and consequential, particularly for natural systems, and can be observed on all continents and across the oceans. Vulnerability to climate change depends on interactions with non-climatic stressors and inequalities, resulting in highly differential risks associated with climate change. It is also found that adaptation is already occurring across scales and is embedded in many planning processes. Continued sustained warming thrughout the 21st century will exacerbate risks and vulnerabilities across multiple sectors, such as freshwater resources, terrestrial and inland water systems, coastal and marine systems, food production, human health, security and livelihood. The report stresses how risks and vulnerabilities need to be assessed within a multi-stressor and regionally specific context, and can be reduced and managed by adopting climate-resilient pathwyas combining suitable adaptation and mitigation options with synergies and tradeoffs occurring both within and across regions. The Working group II report includes a large number of Chapters (30) and contributors (310 including authors and review editors), with expertise in a broad range of disciplines, from the physical science to the impact and socio-economic sciences. The communication across chapters and disciplines has been a challenge, and will continue to be one as the Global Change problem will increasingly require a fully integrated and holistic approach. Note that text on this abstract is not approved at the time its

  20. Trends in marine climate change research in the Nordic region since the first IPCC report

    NARCIS (Netherlands)

    Pedersen, M.W.; Kokkalis, A.; Bardarson, H.; Bonanomi, S.; Boonstra, W.J.; Butler, W.E.; Diekert, F.K.; Fouzai, N.; Holma, M.; Holt, R.E.; Kvile, K.; Nieminen, E.; Ottosen, K.M.; Richter, A.P.; Rogers, L.A.; Romagnoni, G.; Snickars, M.; Tornroos, A.; Weigel, B.; Whittington, J.D.; Yletyinen, J.; Ferreira, A.S.A.

    2016-01-01

    Oceans are exposed to anthropogenic climate change shifting marine systems toward potential instabilities. The physical, biological and social implications of such shifts can be assessed within individual scientific disciplines, but can only be fully understood by combining knowledge and expertise a

  1. Climate Change Draws World Attention: The 2007 Nobel Peace Award Goes to Gore and IPCC

    Science.gov (United States)

    Bisland, Beverly Milner; Ahmad, Iftikhar

    2008-01-01

    In the fall of 2007, the Nobel Committee awarded their Peace Prize to the Intergovernmental Panel on Climate Change (a scientific intergovernmental body set up by the World Meteorological Organization and by the United Nations Environment Program) and to former Vice-President Al Gore, Jr. The committee praised the United Nations panel for creating…

  2. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  3. The social costs of climate change. The IPCC second assessment report and beyond

    International Nuclear Information System (INIS)

    Climate change is expected to have far-reaching impacts. Earlier studies have estimated an aggregated monetised damage equivalent to 1.5 to 2.0 % of World GDP (for 2 x CO2). According to these estimates, the OECD would face losses equivalent to 1.0 to 1.5 % of GDP, and developing countries 2.0 to 9.0 %. While these figures are preliminary and highly uncertain, recent findings have not, as yet, changed the general picture. As is shown in this paper, estimates that are fully corrected for differences in purchasing power parity do not significantly differ from the initial figures. Newer studies increasingly emphasise adaptation, variability, extreme events, other (non-climate change) stress factors, and the need for integrated assessment of damages. Incorporating these factors has lead to increased differences in estimated impacts between different regions and sectors. Estimates of market impacts in developed countries tended to fall, while non-market impacts have become more important. Marginal damages are more interesting from a policy point of view. Earlier estimates range from about $5 to $125 per tonne of carbon, with most estimates at the lower end of this range. These figures are based on power functions in the level of climate change. The rate of change may be equally important, as are the speed of adaptation, restoration and value adjustment. Furthermore, future vulnerability to climate change will differ from current vulnerability: market impacts could fall (relatively) with economic growth while non-market impacts may rise. 6 tabs., 65 refs

  4. Assessing impact of climate change on season length in Karnataka for IPCC SRES scenarios

    Indian Academy of Sciences (India)

    Aavudai Anandhi

    2010-08-01

    Changes in seasons and season length are an indicator, as well as an effect, of climate change. Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human activities such as agriculture and irrigation. This study investigates the uncertainty of season length in Karnataka state, India, due to the choice of scenarios, season type and number of seasons. Based on the type of season, the monthly sequences of variables (predictors) were selected from datasets of NCEP and Canadian General Circulation Model (CGCM3). Seasonal stratifications were carried out on the selected predictors using K-means clustering technique. The results of cluster analysis revealed increase in average, wet season length in A2, A1B and B1 scenarios towards the end of 21st century. The increase in season length was higher for A2 scenario whereas it was the least for B1 scenario. COMMIT scenario did not show any change in season length. However, no change in average warm and cold season length was observed across the four scenarios considered. The number of seasons was increased from 2 to 5. The results of the analysis revealed that no distinct cluster could be obtained when the number of seasons was increased beyond three.

  5. Mesh climate change data of Japan ver. 2 for climate change impact assessments under IPCC SRES A1B and A2

    International Nuclear Information System (INIS)

    The Intergovernmental Panel on Climate Change (IPCC) published the Fourth Assessment Report (AR4) in 2007 and stated that recent climate change and variation are induced by increases in the atmospheric greenhouse gases (GHG) concentration due to anthropogenic activities. The report includes the results of impact assessments on a wide range of sectors. These assessments have been conducted based on future climate projections, which refer to aspects of the future climate evaluated by Atmosphere-Ocean Coupled General Circulation Models (CGCMs). The projection data used in the AR4 are archived under the Program for Climate Model Diagnosis and Intercomparison (PCMDI) promoted by the U.S. Department of Energy. We interpolated the projection data around Japan and constructed a dataset entitled the 'Mesh climate change data of Japan Ver. 2' for the climate change impact study. Nine projections performed by seven models under the A1B and A2 of the Special Report on Emissions Scenarios (SRES) were implemented for the dataset. They consist of mesh data with a size of 7.5 min in longitude and 5.0 min in latitude, i.e. approximately 10 X 10 km (45 sec in longitude and 30 sec in latitude, approximately 1 x 1 km, for one high-resolution model). The dataset includes five climatic elements, i.e. the daily mean, maximum, and minimum surface air temperatures, daily total precipitation, and daily accumulated shortwave radiation for three periods, 1981-2000, 2046-2065, and 2081-2100. This article describes the details concerning the construction and characteristics of the data

  6. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.

  7. Why We Don't Collaborate in Response to Climate Change: The Knowledge Deficit, Co-Production, and the Future of the IPCC.

    Science.gov (United States)

    Cook, B. R.; Overpeck, J. T.

    2014-12-01

    Scientific knowledge production is based on recognizing and filling knowledge deficits or 'gaps' in understanding, but for climate adaptation and mitigation, the applicability of this approach is questionable. The Intergovernmental Panel on Climate Change (IPCC) mandate is an example of this type of 'gap filling,' in which the elimination of uncertainties is presumed to enable rational decision making for individuals and rational governance for societies. Presumed knowledge deficits, though, are unsuited to controversial problems with social, cultural, and economic dimensions; likewise, communication to educate is an ineffective means of inciting behavioural change. An alternative is needed, particularly given the economic, social, and political scale that action on climate change requires. We review the 'deficit-education framing' and show how it maintains a wedge between those affected and those whose knowledge is required. We then review co-production to show how natural and social scientists, as well as the IPCC, might more effectively proceed.

  8. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scen

  9. Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    Science.gov (United States)

    Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.; Galin, V. Y.; Gohar, L. K.; Ingram, W. J.; Kratz, D. P.; Lefebvre, M.-P.; Li, J.; Marquet, P.; Oinas, V.; Tsushima, Y.; Uchiyama, T.; Zhong, W. Y.

    2006-07-01

    The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

  10. Climate modelling: IPCC gazes into the future

    Science.gov (United States)

    Raper, Sarah

    2012-04-01

    In 2013, the Intergovernmental Panel on Climate Change will report on the next set of future greenhouse-gas emission scenarios, offering a rational alternative pathway for avoiding dangerous climate change.

  11. IPCC. 4. climate assessment report, 2007; GIEC. 4. rapport d'evaluation du climat, 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The mission and challenge of the Intergovernmental panel on climate change (IPCC, GIEC in French) is to evaluate, synthesize and make available the sum of scientific and economic information of the complex domain of climatic change, and in addition to make the results of these works accepted by government representatives of 192 states. This document makes a brief synthesis in three parts of the 4. assessment report of the IPCC: 1 - physical scientific bases of climatic change: characteristic of the phenomenon, greenhouse gas emissions trend, already observed effects, forecasts of climate models; 2 - impacts, adaptations and vulnerabilities of climatic change: types of future impacts, impacts per sector, regional impacts, limits of ecosystems adaptation; 3 - mitigation of climatic changes: past emissions and future trends, possible mitigation actions and cost, possible political levers for emissions abatement. A last part introduces the French researchers involved in IPCC's works. (J.S.)

  12. Possible future climates. The IPCC-scenarios simulated by dialogue

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, J. [KEMA-KES, Arnheim (Netherlands)

    1995-12-31

    Global warming is an environmental problem that increasingly attracts the attention of governments, (inter)national organizations and the general public. Policymakers that want to attack this problem need to understand the causes and effects of all related aspects. For this reason integrated assessment tools are developed that allow policymakers to analyze and evaluate climate change scenarios. Dialogue is such an integrated assessment tool. This article presents the results of Dialogue when the socio-economic parameters of the six well-known IPCC-scenarios, IS92a-f (IPCC 1992) are taken as a point of departure. Using as input, variables as population growth and the energy intensity of an economy, Dialogue goes through a chain of processes and finally determines climatic changes in temperature and precipitation

  13. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment

    Science.gov (United States)

    Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre; Masera, Omar; Moench, Marcus; Schaeffer, Roberto; Seitzinger, Sybil; van der Leeuw, Sander; Ward, Bob; Stern, Nicholas; Hurrell, James; Srivastava, Leena; Morgan, Jennifer; Nobre, Carlos; Sokona, Youba; Cremades, Roger; Roth, Ellinor; Liverman, Diana; Arnott, James

    2014-12-01

    The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitious goals on universal access and equal opportunities for dignified lives are adopted. These grand aspirations for a world population approaching or even exceeding nine billion in 2050 is threatened by substantial global environmental risks and by rising inequality. Research shows that development gains, in both rich and poor nations, can be undermined by social, economic and ecological problems caused by human-induced global environmental change. Climate risks, and associated changes in marine and terrestrial ecosystems that regulate the resilience of the climate system, are at the forefront of these global risks. We, as citizens with a strong engagement in Earth system science and socio-ecological dynamics, share the vision of a more equitable and prosperous future for the world, yet we also see threats to this future from shifts in climate and environmental processes. Without collaborative action now, our shared Earth system may not be able to sustainably support a large proportion of humanity in the decades ahead.

  14. Climate Change and its Impacts on Water Resources and Management of Tarbela Reservoir under IPCC Climate Change Scenarios in Upper Indus Basin, Pakistan

    Science.gov (United States)

    Khan, Firdos; Pilz, Jürgen

    2014-05-01

    Water resources play a vital role in agriculture, energy, industry, households and ecological balance. The main source of water to rivers is the Himalaya-Karakorum-Hindukush (HKH) glaciers and rainfall in Upper Indus Basin (UIB). There is high uncertainty in the availability of water in the rivers due to the variability of the monsoon, Western Disturbances, prolonged droughts and melting of glaciers in the HKH region. Therefore, proper management of water resources is undeniably important. Due to the growing population, urbanization and increased industrialization, the situation is likely to get worse. For the assessment of possible climate change, maximum temperature, minimum temperature and precipitation were investigated and evidence was found in favor of climate change in the region. Due to large differences between historical meteorological data and Regional Climate Model (RCM) simulated data, different statistical techniques were used for bias correction in temperature and precipitation. The hydrological model was calibrated for the period of 1995-2004 and validated for the period of 1990-1994 with almost 90 % efficiencies. After the application of bias correction techniques output of RCM, Providing Regional Climate for Impact Studies (PRECIS) were used as input data to the hydrological model to produce inflow projections at Tarbela reservoir on Indus River. For climate change assessment, the results show that the above mentioned variables have greater increasing trend under A2 scenario compared to B2 scenario. The projections of inflow to Tarbela reservoir show that overall 59.42 % and 34.27 % inflow increasing to Tarbela Reservoir during 2040-2069 under A2 and B2 scenarios will occur, respectively. Highest inflow and comparatively more shortage of water is noted in the 2020s under A2 scenario. Finally, the impacts of changing climate are investigated on the operation of the Tarbela reservoir. The results show that there will be shortage of water in some

  15. Noaa contributions to the 1995 IPCC assessments: A summary of the current and future activities of the intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Contents: introduction -the IPCC and NOAA; NOAA contributions to the IPCC 1995 science assessment; NOAA contributions to the IPCC 1995 impacts, adaptation, and mitigation assessment; NOAA contributions to the 1995 IPCC economics and greenhouse-gas scenario assessment

  16. Uncertainty quantification of US Southwest climate from IPCC projections.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark Bruce Elrick

    2011-01-01

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) made extensive use of coordinated simulations by 18 international modeling groups using a variety of coupled general circulation models (GCMs) with different numerics, algorithms, resolutions, physics models, and parameterizations. These simulations span the 20th century and provide forecasts for various carbon emissions scenarios in the 21st century. All the output from this panoply of models is made available to researchers on an archive maintained by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at LLNL. I have downloaded this data and completed the first steps toward a statistical analysis of these ensembles for the US Southwest. This constitutes the final report for a late start LDRD project. Complete analysis will be the subject of a forthcoming report.

  17. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: Precipitation mean state and seasonal cycle in South America

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Tour 45-55/Etage 4/Case 100, UPMC, Paris Cedex 05 (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2007-02-15

    Evaluating the response of climate to greenhouse gas forcing is a major objective of the climate community, and the use of large ensemble of simulations is considered as a significant step toward that goal. The present paper thus discusses a new methodology based on neural network to mix ensemble of climate model simulations. Our analysis consists of one simulation of seven Atmosphere-Ocean Global Climate Models, which participated in the IPCC Project and provided at least one simulation for the twentieth century (20c3m) and one simulation for each of three SRES scenarios: A2, A1B and B1. Our statistical method based on neural networks and Bayesian statistics computes a transfer function between models and observations. Such a transfer function was then used to project future conditions and to derive what we would call the optimal ensemble combination for twenty-first century climate change projections. Our approach is therefore based on one statement and one hypothesis. The statement is that an optimal ensemble projection should be built by giving larger weights to models, which have more skill in representing present climate conditions. The hypothesis is that our method based on neural network is actually weighting the models that way. While the statement is actually an open question, which answer may vary according to the region or climate signal under study, our results demonstrate that the neural network approach indeed allows to weighting models according to their skills. As such, our method is an improvement of existing Bayesian methods developed to mix ensembles of simulations. However, the general low skill of climate models in simulating precipitation mean climatology implies that the final projection maps (whatever the method used to compute them) may significantly change in the future as models improve. Therefore, the projection results for late twenty-first century conditions are presented as possible projections based on the &apos

  18. Steric Sea Level Change in Twentieth Century Historical Climate Simulation and IPCC-RCP8.5 Scenario Projection: A Comparison of Two Versions of FGOALS Model

    Institute of Scientific and Technical Information of China (English)

    DONG Lu; ZHOU Tianjun

    2013-01-01

    To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC's Representative Concentration Pathway 8.5 (RCP8.5) scenario,the results of two versions of LASG/IAP's Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed.Both models reasonably reproduce the mean dynamic sea level features,with a spatial pattern correlation coefficient of 0.97 with the observation.Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated.The results show that,in the 20th century,negative trends covered most parts of the global ocean.Under the RCP8.5 scenario,global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean.The magnitude of the changes in the 21st century is much larger than that in the 20th century.By the year 2100,the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2),respectively.The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated.In the 20th century,the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run.In contrast,in the 21st century,the thermosteric component,mainly from the upper 1000 m,dominates the steric sea level change in both models under the RCP8.5 scenario.In addition,the steric sea level change in the marginal sea of China is attributed to the thermosteric component.

  19. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment

    OpenAIRE

    Rockstrom, J.; Brasseur, G; Hoskins, B.; Lucht, W.; Schellnhuber, J.; P. Kabat; Nakicenovic, N.; P. Gong; P. Schlosser; Costa, M; Humble, A.; Eyre, N.; Gleick, P.; James, R.; Lucena, A.

    2014-01-01

    The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitio...

  20. Climate change: the necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment

    OpenAIRE

    Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre

    2014-01-01

    The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitio...

  1. Reconstruction of the boundary between climate science and politics: the IPCC in the Japanese mass media, 1988-2007.

    Science.gov (United States)

    Asayama, Shinichiro; Ishii, Atsushi

    2014-02-01

    The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.

  2. The impact of climate change on summer maize phenology in the northwest plain of Shandong province under the IPCC SRES A1B scenario

    International Nuclear Information System (INIS)

    Climate change will affect agricultural production. Combining a climate model and a crop growth model furnishes a good approach for analyzing this effect quantitatively. The purpose of this study is to analyze the effect of climate change on summer maize phenology in northwest Shandong province under the A1B climate scenario using a regional climate model and the CERES-Maize growth model. The results showed that the temperature would increase significantly during the maize growth season in the study region, that the increased temperature would shorten the maize growth stage and result in a potential yield loss using the current cultivar, and that it is critical to breed a heat-resistant and late-maturing cultivar to maintain the yield

  3. Climate in Peril. A popular guide to the latest IPCC reports

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    In 2007 the Intergovernmental Panel on Climate Change (IPCC) shared the Nobel Peace Prize with former US Vice President Al Gore for their work to provide policy makers and the general public around the world with the best possible science base for understanding and combating the increasing threat from climate change. But as the messages from the scientists are becoming increasingly explicit, the gap between the need for action they project and the climate policy the world leaders put in place is steadily increasing. One illustration is the trend in emissions of greenhouse gases. According to the IPCC global emissions would need to peak between 2000 and 2015 in order to limit the global temperature increase to between 2 and 2.4 degrees C compared to pre-industrial times. In 2007, when ideally the emissions should have peaked, the world instead experienced a new record in annual emission increase. For each day we fail to twist development towards a low-carbon society, the damage to the world's ecosystems become more severe, and the costs of mitigation and adaptation increases. The main purpose of this short guide is to help bridging the gap between science and policy and to increase public awareness about the urgency of action to combat climate change and its impacts. This booklet is intended for those who do not have the time - and may not have the scientific expertise - to read the entire Synthesis Report from the IPCC. (Author)

  4. Mudanças na circulação atmosférica sobre a América do Sul para cenários futuros de clima projetados pelos modelos globais do IPCC AR4 Changes in the atmospheric circulation pattern over South America in future climate scenarios derived from the IPCC AR4 model climate simulations

    Directory of Open Access Journals (Sweden)

    María C Valverde

    2010-03-01

    Full Text Available Neste trabalho são analisadas as mudanças no padrão de circulação que possam vir a acontecer no clima da América do Sul (AS, como conseqüência do aumento nas concentrações dos gases de efeito estufa. Para isto utilizam-se cinco modelos globais do IPCC AR4 (CCCMA, GFDL, HadCM3, MIROC e GISS, para o clima do século XX (1961-1990 - 20C3M e para o cenário futuro SRES_A2 (2011-2100. As características em comum que os modelos apresentaram (a exceção do MIROC para as três climatologias futuras (2011-2040, 2041-2070 e 2071-2100, principalmente, no verão e na primavera, foram o deslocamento da baixa continental (associada à baixa do Chaco para o sudoeste da sua posição climatológica (1961-1990, e da Alta da Bolívia para o noroeste. Além disso, os cinco modelos simularam, para o clima presente, uma Alta do Pacífico Sul (APS menos intensa em relação à Reanálise do NCEP, sugerindo menor subsidência sobre a sua região de atuação. Para cenários futuros os modelos GISS e HadCM3 simularam a APS menos intensa. Por outro lado, para a alta do Atlântico Sul, não existiu um consenso nos modelos. Em geral foi simulada mais intensa (a exceção do GISS, sobretudo no outono e no inverno. O modelo HadCM3 simulou a circulação de verão e primavera mais próxima à Reanálise, com uma ZCAS melhor definida, e uma área menor de anomalias negativas de chuva sobre a Amazônia, em relação aos outros modelos. Já para o cenário futuro este modelo modificou seu padrão de chuvas, e anomalias positivas, sobre a costa norte do Peru e Equador, e negativas sobre o Nordeste e leste da Amazônia, foram observadas, associadas a uma APS enfraquecida e deslocada para o sul, o que reforçou a ZCIT do Pacífico sobre 5ºS. Uma diminuição da convergência de umidade sobre a Amazônia também foi observada.In this paper changes in the atmospheric circulation that may occur in the South America (SA as a consequence of climate change were studied for

  5. The Change of North China Climate in Transient Simulations Using the IPCC SRES A2 and B2 Scenarios with a Coupled Atmosphere-Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    BUHE Cholaw(布和朝鲁); Ulrich CUBASCH; LIN Yonghui(林永辉); JI Liren(纪立人)

    2003-01-01

    This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCCSRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-oceancoupled general circulation nodel. In the last three decades of the 21st century, the global warming enlargesthe land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation tobe strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increasessignificantly in North China. It is suggested that the East Asian rainy area would expand northward toNorth China in the last three decades of the 21st century. In addition, the North China precipitationwould increase significantly in September. In July, August, and September, the interannual variability ofthe precipitation enlarges evidently over North China, implying a risk of flooding in the future.

  6. Global Water Cycle Agreement in the Climate Models Assessed in the IPCC AR4

    Science.gov (United States)

    Waliser, D.; Seo, K. -W.; Schubert, S.; Njoku, E.

    2007-01-01

    This study examines the fidelity of the global water cycle in the climate model simulations assessed in the IPCC Fourth Assessment Report. The results demonstrate good model agreement in quantities that have had a robust global observational basis and that are physically unambiguous. The worst agreement occurs for quantities that have both poor observational constraints and whose model representations can be physically ambiguous. In addition, components involving water vapor (frozen water) typically exhibit the best (worst) agreement, and fluxes typically exhibit better agreement than reservoirs. These results are discussed in relation to the importance of obtaining accurate model representation of the water cycle and its role in climate change. Recommendations are also given for facilitating the needed model improvements.

  7. Regional Climate and Streamflow Projections in North America Under IPCC CMIP5 Scenarios

    Science.gov (United States)

    Chang, H. I.; Castro, C. L.; Troch, P. A. A.; Mukherjee, R.

    2014-12-01

    The Colorado River system is the predominant source of water supply for the Southwest U.S. and is already fully allocated, making the region's environmental and economic health particularly sensitive to annual and multi-year streamflow variability. Observed streamflow declines in the Colorado Basin in recent years are likely due to synergistic combination of anthropogenic global warming and natural climate variability, which are creating an overall warmer and more extreme climate. IPCC assessment reports have projected warmer and drier conditions in arid to semi-arid regions (e.g. Solomon et al. 2007). The NAM-related precipitation contributes to substantial Colorado streamflows. Recent climate change studies for the Southwest U.S. region project a dire future, with chronic drought, and substantially reduced Colorado River flows. These regional effects reflect the general observation that climate is being more extreme globally, with areas climatologically favored to be wet getting wetter and areas favored to be dry getting drier (Wang et al. 2012). Multi-scale downscaling modeling experiments are designed using recent IPCC AR5 global climate projections, which incorporate regional climate and hydrologic modeling components. The Weather Research and Forecasting model (WRF) has been selected as the main regional modeling tool; the Variable Infiltration Capacity model (VIC) will be used to generate streamflow projections for the Colorado River Basin. The WRF domain is set up to follow the CORDEX-North America guideline with 25km grid spacing, and VIC model is individually calibrated for upper and lower Colorado River basins in 1/8° resolution. The multi-scale climate and hydrology study aims to characterize how the combination of climate change and natural climate variability is changing cool and warm season precipitation. Further, to preserve the downscaled RCM sensitivity and maintain a reasonable climatology mean based on observed record, a new bias correction

  8. Maynard Participation in Alaska Forum on the Environment Panel Discussion on Increasing Input to the US National Climate Assessment (NCA) and the Intergovernmental Panel on Climate Change (IPCC) Processes from Alaska, with Emphasis on Indigenous Peoples Issues

    Science.gov (United States)

    Maynard, Nancy G.

    2012-01-01

    Dr. Nancy Maynard was invited by the Alaska Forum on the Environment to participate in a Panel Discussion to discuss (1) background about what the US NCA and International IPCC assessments are, (2) the impact the assessments have on policy-making, (3) the process for participation in both assessments, (4) how we can increase participation by Indigenous Peoples such as Native Americans and Alaska Natives, (5) How we can increase historical and current impacts input from Native communities through stories, oral history, "grey" literature, etc. The session will be chaired by Dr. Bull Bennett, a cochair of the US NCA's chapter on "Native and Tribal Lands and Resources" and Dr. Maynard is the other co-chair of that chapter and they will discuss the latest activities under the NCA process relevant to Native Americans and Alaska Natives. Dr. Maynard is also a Lead Author of the "Polar Regions" chapter of the IPCC WG2 (5th Assessment) and she will describes some of the latest approaches by the IPCC to entrain more Indigenous peoples into the IPCC process.

  9. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    Science.gov (United States)

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for

  10. Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas

    Directory of Open Access Journals (Sweden)

    Chang-lin CHEN

    2015-10-01

    Full Text Available Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR, it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM, with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs, was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3 under the International Panel on Climate Change (IPCC-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.

  11. Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas

    Institute of Scientific and Technical Information of China (English)

    Chang-lin CHEN; Jun-cheng ZUO; Mei-xiang CHEN; Zhi-gang GAO; C-K SHUM

    2014-01-01

    Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.

  12. Testing an astronomically based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models

    Science.gov (United States)

    Scafetta, Nicola

    2012-05-01

    We compare the performance of a recently proposed empirical climate model based on astronomical harmonics against all CMIP3 available general circulation climate models (GCM) used by the IPCC (2007) to interpret the 20th century global surface temperature. The proposed astronomical empirical climate model assumes that the climate is resonating with, or synchronized to a set of natural harmonics that, in previous works (Scafetta, 2010b, 2011b), have been associated to the solar system planetary motion, which is mostly determined by Jupiter and Saturn. We show that the GCMs fail to reproduce the major decadal and multidecadal oscillations found in the global surface temperature record from 1850 to 2011. On the contrary, the proposed harmonic model (which herein uses cycles with 9.1, 10-10.5, 20-21, 60-62 year periods) is found to well reconstruct the observed climate oscillations from 1850 to 2011, and it is shown to be able to forecast the climate oscillations from 1950 to 2011 using the data covering the period 1850-1950, and vice versa. The 9.1-year cycle is shown to be likely related to a decadal Soli/Lunar tidal oscillation, while the 10-10.5, 20-21 and 60-62 year cycles are synchronous to solar and heliospheric planetary oscillations. We show that the IPCC GCM's claim that all warming observed from 1970 to 2000 has been anthropogenically induced is erroneous because of the GCM failure in reconstructing the quasi 20-year and 60-year climatic cycles. Finally, we show how the presence of these large natural cycles can be used to correct the IPCC projected anthropogenic warming trend for the 21st century. By combining this corrected trend with the natural cycles, we show that the temperature may not significantly increase during the next 30 years mostly because of the negative phase of the 60-year cycle. If multisecular natural cycles (which according to some authors have significantly contributed to the observed 1700-2010 warming and may contribute to an

  13. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  14. Emissions from tropical hydropower and the IPCC

    International Nuclear Information System (INIS)

    Highlights: • Tropical dams emit greenhouse gases, which are undercounted in IPCC guidelines. • IPCC comparisons with other energy sources undercount hydroelectric emissions. • GHG inventories must fully count emissions as a basis for negotiating national quotas. • The IPCC needs to reassess emissions from dams independent of the hydropower industry. - Abstract: Tropical hydroelectric emissions are undercounted in national inventories of greenhouse gases under the United Nations Framework Convention on Climate Change (UNFCCC), giving them a role in undermining the effectiveness of as-yet undecided emission limits. These emissions are also largely left out of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Renewable Energy Sources and Climate Change Mitigation, and have been excluded from a revision of the IPCC guidelines on wetlands. The role of hydroelectric dams in emissions inventories and in mitigation has been systematically ignored

  15. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  16. Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models Part I: Convective Signals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J; Kiladis, G N; Mapes, B E; Weickmann, K M; Sperber, K R; Lin, W; Wheeler, M; Schubert, S D; Genio, A D; Donner, L J; Emori, S; Gueremy, J; Hourdin, F; Rasch, P J; Roeckner, E; Scinocca, J F

    2005-05-06

    This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden-Julian Oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Inter-governmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model's 20th century climate simulation are analyzed and compared with daily satellite retrieved precipitation. Space-time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves. The variance and propagation of the MJO, defined as the eastward wavenumbers 1-6, 30-70 day mode, are examined in detail. The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal variability. The total intraseasonal (2-128 day) variance of precipitation is too weak in most of the models. About half of the models have signals of convectively coupled equatorial waves, with Kelvin and MRG-EIG waves especially prominent. However, the variances are generally too weak for all wave modes except the EIG wave, and the phase speeds are generally too fast, being scaled to excessively deep equivalent depths. An interesting result is that this scaling is consistent within a given model across modes, in that both the symmetric and antisymmetric modes scale similarly to a certain equivalent depth. Excessively deep equivalent depths suggest that these models may not have a large enough reduction in their ''effective static stability'' due to diabatic heating. The MJO variance approaches the observed value in only two of the 14 models, but is less than half of the observed value in the other 12 models. The ratio between the eastward MJO variance

  17. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  18. Economic and policy issues in climate change

    International Nuclear Information System (INIS)

    Global climate change has emerged as one of today's most challenging and controversial policy issues. In this significant new contribution, a roster of premier scholars examines economic and social aspects of that far-reaching phenomenon. Although the 1997 summit in Kyoto focused world attention on climate, it was just one step in an ongoing process. Research by the U.N.'s Intergovernmental Panel on Climate Change (IPCC) has been ongoing since 1988. An extensive IPCC Working Group report published in 1995 examined the economic and social aspects of climate change. In this new volume, eminent economists assess that IPCC report and address the questions that emerge. William Nordhaus's introduction establishes the context for this book. It provides basic scientific background, reviews the IPCC's activities, and explains the genesis of the project

  19. Energetics of IPCC4AR Climate Models: Energy Balance and Meridional Enthalpy Transports

    CERN Document Server

    Lucarini, Valerio

    2009-01-01

    We consider the climate simulations performed using pre-industrial and SRESA1B scenarios and analyse the outputs of the state-of-the-art models included in IPCC4AR. For control simulations, large energy biases are present for several models both when global climate budgets and when energy budgets of the atmospheric, oceanic, and land subdomains are considered. The energy biases depend on the imperfect closure of the energy cycle in the fluid components of the climate system and on issues in the treatment of phase transitions and heat fluxes over land. Additionally, the consequence of a positive global energy bias, which is what most models feature, is the underestimation of the thermodynamic emission temperature of the planet and of the globally averaged surface temperature. This may help explaining the cold bias of climate models. Models agree on the representation of meridional enthalpy transports in terms of location of the peaks of the total and atmospheric transports, whereas quantitative disagreements o...

  20. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith;

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  1. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond

    Directory of Open Access Journals (Sweden)

    Lisa V. Alexander

    2016-03-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC first attempted a global assessment of long-term changes in temperature and precipitation extremes in its Third Assessment Report in 2001. While data quality and coverage were limited, the report still concluded that heavy precipitation events had increased and that there had been, very likely, a reduction in the frequency of extreme low temperatures and increases in the frequency of extreme high temperatures. That overall assessment had changed little by the time of the IPCC Special Report on Extremes (SREX in 2012 and the IPCC Fifth Assessment Report (AR5 in 2013, but firmer statements could be added and more regional detail was possible. Despite some substantial progress throughout the IPCC Assessments in terms of temperature and precipitation extremes analyses, there remain major gaps particularly regarding data quality and availability, our ability to monitor these events consistently and our ability to apply the complex statistical methods required. Therefore this article focuses on the substantial progress that has taken place in the last decade, in addition to reviewing the new progress since IPCC AR5 while also addressing the challenges that still lie ahead.

  2. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  3. EVIDENCE OF ARCTIC AND ANTARCTIC CHANGES AND THEIR REGULATION OF GLOBAL CLIMATE CHANGE (FURTHER FINDINGS SINCE THE FOURTH IPCC ASSESSMENT REPORT RELEASED)%南极和北极地区变化对全球气候变化的指示和调控作用——第四次IPCC评估报告以来一些新认知

    Institute of Scientific and Technical Information of China (English)

    陈立奇

    2013-01-01

    Changes in the climate of the Arctic and the Antarctic have been of great concern to international scientific and social communities since the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) was released in 2007. Since then, many new findings have been reported from observations and research carried out in the Arctic and Antarctic during the 4th International Polar Year (IPY). There is evidence that rapid changes in the Arctic and Antarctic induced by global warming are occurring in a quantitative and qualitative sense, and Arctic and Antarctic regional changes could be used indicators of global climate change. Declining Arctic sea ice could impact on winter snowfall in much of the Northern Hemisphere, with colder winters and more snow. Projections suggest that summertime Arctic sea ice will disappear by 2040. By 2050, the Antarctic ozone hole will have recovered to the level of the early 1980s, when the production of freon was completely prohibited. With weakening the shielding effect of the ozone hole to the global warming, it will become warmer in Antarctica and East Antarctica, leading to melting of ice sheets and retreating sea ice. Sea level rise will be a serious issue. As sea surface temperature rises the air-sea exchange of CO2 will be enhanced and surface water will take up more C02. This will lead to ocean acidification with important effects on ecological systems and food chains.%政府间气候变化专门委员会(IPCC) 2007年发布了第四次评估报告,全球气候变化问题再次成为一个重要的国际科学和政治议题.2007年以来,通过实施第四次国际极地年行动所获得的成果进一步证明,全球变暖所诱发极区出现的快速变化正在经历由量到质的转变,表明两极变化对全球气候变化起着一种指示和调控作用.一些研究指出:北冰洋会在2040年前后出现夏季无海冰并将引起北半球大范围的持续暴雪的寒冷冬季发生;2050

  4. Testing an astronomically-based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models

    CERN Document Server

    Scafetta, Nicola

    2012-01-01

    We compare the performance of a recently proposed empirical climate model based on astronomical harmonics against all available general circulation climate models (GCM) used by the IPCC (2007) to interpret the 20th century global surface temperature. The proposed model assumes that the climate is resonating with, or synchronized to a set of natural harmonics that have been associated to the solar system planetary motion, mostly determined by Jupiter and Saturn. We show that the GCMs fail to reproduce the major decadal and multidecadal oscillations found in the global surface temperature record from 1850 to 2011. On the contrary, the proposed harmonic model is found to well reconstruct the observed climate oscillations from 1850 to 2011, and it is able to forecast the climate oscillations from 1950 to 2011 using the data covering the period 1850-1950, and vice versa. The 9.1-year cycle is shown to be likely related to a decadal Soli/Lunar tidal oscillation, while the 10-10.5, 20-21 and 60-62 year cycles are sy...

  5. The handshake between the integrated assessment and climate modeling communities: IPCC AR5 as a catalyst for improved networking, collaboration and communication

    Science.gov (United States)

    Hibbard, K. A.; Meehl, G.; Edmonds, J.; Nakićenović, N.; Lamarque, J.; Rose, S.; van Vuuren, D.; Moss, R.; Hurtt, G. C.

    2009-12-01

    In the wake of AR4, it was clear that there needed to be a much more proactive modeling strategy for the climate modeling community. In 2006 a series of conversations were initiated within the global environmental change communities about how to approach a modeling strategy for the next IPCC assessment (AR5). At that time, the idea of developing both a near- and long- term experimental design that addressed questions around carbon cycle diagnostics, Earth system predictability as well as inertia of the climate system were introduced. From these discussions, a joint meeting was held in Aspen, Colorado (Aspen Global Change Institute) that included both the climate and integrated assessment modeling communities as well as representatives from the impacts, adaptation and vulnerability (IAV) research groups. Many activities have been spawned from this initial set of conversations, including the development, for the first time ever, Representative Concentration Pathways (RCPs) which are a set of four radiative forcing pathways, of which three include, for the first time ever in IPCC history, mitigation for stabilization of greenhouse gasses and radiative forcings (mitigation scenarios include two stabilization and one overshoot and decline), a land use/land cover and emissions harmonization between integrated assessment and climate modeling communities as well as the near-term prediction experiment designed to address model skill in predictability, downscaling, extreme events, air quality, etc.. The consensus development of the RCPs provided an initial motivation for closer collaboration between the ESM, IAM and IAV communities towards the development of New Scenarios that were driven by the scientific communities and not the IPCC. These collaborations are leading to greater mutual understanding of modeling paradigms and strengthening ties with integrated assessment, climate and emissions inventory and modeling communities.

  6. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    OpenAIRE

    Michal Belda; Petr Skalák; Aleš Farda; Tomáš Halenka; Michel Déqué; Gabriella Csima; Judit Bartholy; Csaba Torma; Constanta Boroneant; Mihaela Caian; Valery Spiridonov

    2015-01-01

    Regional climate models (RCMs) are important tools used for downscaling climate simulations from global scale models. In project CECILIA, two RCMs were used to provide climate change information for regions of Central and Eastern Europe. Models RegCM and ALADIN-Climate were employed in downscaling global simulations from ECHAM5 and ARPEGE-CLIMAT under IPCC A1B emission scenario in periods 2021–2050 and 2071–2100. Climate change signal present in these simulations is consistent with respective...

  7. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  8. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  9. Regulating Knowledge Monopolies: The Case of the IPCC

    OpenAIRE

    Tol, R.S.J.

    2010-01-01

    The Intergovernmental Panel on Climate Change has a monopoly on the provision of climate policy advice at the international level and a strong market position in national policy advice. This may have been the intention of the founders of the IPCC. I argue that the IPCC has a natural monopoly, as a new entrant would have to invest time and effort over a longer period to perhaps match the reputation, trust, goodwill, and network of the IPCC. The IPCC is a not-for-profit organization, and it is ...

  10. Fifth IPCC Assessment Report Now Out

    Science.gov (United States)

    Kundzewicz, Zbigniew W.

    2014-01-01

    The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is now available. It provides policymakers with an assessment of information on climate change, its impacts and possible response options (adaptation and mitigation). Summaries for policymakers of three reports of IPCC working groups and of the Synthesis Report have now been approved by IPCC plenaries. This present paper reports on the most essential findings in AR5. It briefly informs on the contents of reports of all IPCC working groups. It discusses the physical science findings, therein observed changes (ubiquitous warming, shrinking cryosphere, sea level rise, changes in precipitation and extremes, and biogeochemical cycles). It deals with the drivers of climate change, progress in climate system understanding (evaluation of climate models, quantification of climate system responses), and projections for the future. It reviews impacts, adaptation and vulnerability, including observed changes, key risks, key reasons for concern, sectors and systems, and managing risks and building resilience. Finally, mitigation of climate change is discussed, including greenhouse gas emissions in the past, present and future, and mitigation in sectors. It is hoped that the present article will encourage the readership of this journal to dive into the AR5 report that provides a wealth of useful information.

  11. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  12. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  13. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  14. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  15. Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruosteenoja, K.; Carter, T.R.; Jylhae, K.; Tuomenvirta, H.

    2003-07-01

    Projections of changes in seasonal surface air temperature and precipitation for three 30-year periods during the 21st century in 32 sub-continental scale regions are presented. This information may offer useful guidance on the selection of climate scenarios for regional impact studies. The climate changes have been simulated by seven coupled atmosphere-ocean general circulation models (AOGCMs), the greenhouse gas and aerosol forcing being inferred from the SRES emission scenarios A1F1, A2, B1 and B2. For a majority of the AOGCMs, simulations have only been conducted for scenarios A2 and B2. Projections for other scenarios were then extrapolated from the available runs applying a pattern-scaling technique. In tests, this method proved to be fairly accurate, the correlation between the AOGCM-simulated and the corresponding pattern-scaled response to the A2 scenario for the end of the 21st century being generally {approx} 0.97 - 0.99 for temperature and {approx} 0.9 or higher for precipitation. Projected changes of temperature and precipitation are presented in the form of 384 scatter diagrams. The model-simulated temperature changes were almost invariably statistically significant, i.e., they fell clearly outside the natural multi-decadal variability derived from 1000-year unforced coupled AOGCM simulations. For precipitation, fewer modelled changes were statistically significant, especially in the earliest projection period 2010-2039. Differences in the projections given by various models were substantial, of the same order of magnitude by the end of the century as differences among the responses to separate forcing scenarios. Nevertheless, the surface air temperature increased in all regions and seasons. For precipitation, changes with both sign occurred, but an increase of regional precipitation was more common than a decrease. All models simulate higher precipitation at high latitudes and enhanced summer monsoon precipitation for Southern and Eastern Asia. There

  16. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  17. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  18. Climate Change

    OpenAIRE

    The IJOEM

    2010-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathways could stabilise the global average atmospheric concentration of greenhouse gases (GHG) at 450 ppm, the level which has a 50% chance of keeping the temperature rise to 2 oC? What policies are nee...

  19. Linguistic analysis of IPCC summaries for policymakers and associated coverage

    Science.gov (United States)

    Barkemeyer, Ralf; Dessai, Suraje; Monge-Sanz, Beatriz; Renzi, Barbara Gabriella; Napolitano, Giulio

    2016-03-01

    The Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers (SPM) is the most widely read section of IPCC reports and the main springboard for the communication of its assessment reports. Previous studies have shown that communicating IPCC findings to a variety of scientific and non-scientific audiences presents significant challenges to both the IPCC and the mass media. Here, we employ widely established sentiment analysis tools and readability metrics to explore the extent to which information published by the IPCC differs from the presentation of respective findings in the popular and scientific media between 1990 and 2014. IPCC SPMs clearly stand out in terms of low readability, which has remained relatively constant despite the IPCC’s efforts to consolidate and readjust its communications policy. In contrast, scientific and quality newspaper coverage has become increasingly readable and emotive. Our findings reveal easy gains that could be achieved in making SPMs more accessible for non-scientific audiences.

  20. Climate change negotiations. COP-2 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The Second Conference of the Parties to the UN Framework Convention on Climate Change (COP-2), which met in Geneva during July, 1996, was only a partial success when considered in relation to its avowed aims, gaining acceptance of the Second Assessment Report by IPCC (Intergovernmental Panel on Climate Change), producing an agreed Ministerial Declaration, making real advances towards a protocol, and agreeing Rules of Procedure. This paper describes the main aims of COP-2, consideration of and response to the IPCC`s Second Assessment Report, the COP-2 Ministerial Declaration, some significant statements by individual country delegations at COP-2, lack of progress on Rules of Procedure for the Conference, realization of returning the greenhouse gas emissions in industrialized countries based on the Montreal Protocol, differing views among countries to the Convention on a protocol, prospects for achieving agreement on a legally binding protocol at COP-3 planned for Kyoto, Japan in December, 1997, and recent scientific and technical findings.

  1. Multinational enterprises and climate change strategies

    OpenAIRE

    Kolk, A.; Pinkse, J.

    2012-01-01

    Climate change is often perceived as the most pressing environmental problem of our time, as reflected in the large public, policy, and corporate attention it has received, and the concerns expressed about the (potential) consequences. Particularly due to temperature increases, climate change affects physical and biological systems by changing ecosystems and causing extinction of species, and is expected to have a negative social impact and adversely affect human health (IPCC, 2007). Moreover...

  2. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  3. Communicating uncertainty: lessons learned and suggestions for climate change assessment

    International Nuclear Information System (INIS)

    Assessments of climate change face the task of making information about uncertainty accessible and useful to decision-makers. The literature in behavior economics provides many examples of how people make decisions under conditions of uncertainty relying on inappropriate heuristics, leading to inconsistent and counterproductive choices. Modern risk communication practices recommend a number of methods to overcome these hurdles, which have been recommended for the Intergovernmental Panel on Climate Change (IPCC) assessment reports. This paper evaluates the success of the most recent IPCC approach to uncertainty communication, based on a controlled survey of climate change experts. Evaluating the results from the survey, and from a similar survey recently conducted among university students, the paper suggests that the most recent IPCC approach leaves open the possibility for biased and inconsistent responses to the information. The paper concludes by suggesting ways to improve the approach for future IPCC assessment reports. (authors)

  4. Predicting fire activity in the US over the next 50 years using new IPCC climate projections

    Science.gov (United States)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2012-12-01

    Fire is an integral part of the Earth system with both direct and indirect effects on terrestrial ecosystems, the atmosphere, and human societies (Bowman et al. 2009). Climate conditions regulate fire activities through a variety of ways, e.g., influencing the conditions for ignition and fire spread, changing vegetation growth and decay and thus the accumulation of fuels for combustion (Arora and Boer 2005). Our recent study disclosed the burned area (BA) in US is strongly correlated with potential evaporation (PE), a measurement of climatic dryness derived from National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) climate data (Morton et al. 2012). The correlation varies spatially and temporally. With regard to fire of peak fire seasons, Northwestern US, Great Plains and Alaska have the strongest BA/PE relationship. Using the recently released the Global Fire Emissions Database (GFED) Version 3 (van der Werf et al. 2010), we showed increasing BA in the last decade in most of NCA regions. Longer time series of Monitoring Trends in Burn Severity (MTBS) (Eidenshink et al. 2007) data showed the increasing trends occurred in all NCA regions from 1984 to 2010. This relationship between BA and PE provides us the basis to predict the future fire activities in the projected climate conditions. In this study, we build spatially explicit predictors using the historic PE/BA relationship. PE from 2011 to 2060 is calculated from the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and the historic PE/BA relationship is then used to estimate BA. This study examines the spatial pattern and temporal dynamics of the future US fires driven by new climate predictions for the next 50 years. Reference: Arora, V.K., & Boer, G.J. (2005). Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research-Biogeosciences, 110 Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D

  5. Climate - Understanding climate change in order to act

    International Nuclear Information System (INIS)

    In a first part, the author proposes an overview of considerations about climate change and global warming. He discusses greenhouse gas emissions and their perspectives of evolution (IPCC scenarios, recent assessments, unreachable objectives). He comments and discusses the consequences and effects of climate change and global warming (impact on the biosphere and predictable consequences, the largely unknown issue of oceans). He comments the relationship between warming and meteorological evolutions (what is sure and what is not, what is due to climate change and what is not), and the associated risks and hazards

  6. Is a Breakthrough on Climate Change Governance on the Horizon?

    DEFF Research Database (Denmark)

    Figueroa, Maria Josefina

    The recently released Fifth Assessment report of the IPCC has highlighted again with unprecedented scope and insight the urgency of addressing climate change. The international community has pledged to devise the next international agreement on climate change by 2015, while the EU and in particul...... great challenges for developing a pathway from knowledge to governance and climate action that can lead to an effective global response to climate change.......The recently released Fifth Assessment report of the IPCC has highlighted again with unprecedented scope and insight the urgency of addressing climate change. The international community has pledged to devise the next international agreement on climate change by 2015, while the EU and in particular...... the Scandinavian countries have forged ahead advancing a variety of policies to respond to climate change. Similarly, regions, municipalities, and private actors across the world are also contributing to climate governance. This paper asks whether the world is reaching a tipping point where a breakthrough...

  7. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  8. Uncertain outcomes and climate change policy

    OpenAIRE

    Robert S. Pindyck

    2011-01-01

    Focusing on tail effects, I incorporate distributions for temperature change and its economic impact in an analysis of climate change policy. I estimate the fraction of consumption w*(tau) that society would be willing to sacrifice to ensure that any increase in temperature at a future point is limited to tau. Using information on the distributions for temperature change and economic impact from studies assembled by the IPCC and from "integrated assessment models" (IAMs), I fit displaced gamm...

  9. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  10. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  11. Adaptation to Climate Variability and Change. Methodological Issues

    International Nuclear Information System (INIS)

    The Intergovernmental Panel on Climate Change (IPCC) convened a Workshop on Adaptation to Climate Variability and Change in Costa Rica in 1998 that involved more than 200 expects and incorporated views from many research communities. This paper summarizes the recommendations from the Workshop and profiles the contributions to the advancement of methodologies for adaptation science. 25 refs

  12. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud

    IPCC climate change scenarios, which also consider possible changes in urban population, have been developed. Innovative strategies to land use and spatial planning are proposed that seek synergies between the adaptation to climate change and the need to solve social problems. Furthermore, the book......Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  13. A Comprehensive Modeling Study on Regional Climate Model (RCM Application — Regional Warming Projections in Monthly Resolutions under IPCC A1B Scenario

    Directory of Open Access Journals (Sweden)

    Md. Mujibur Rahman

    2012-10-01

    Full Text Available Some of the major dimensions of climate change include increase in surface temperature, longer spells of droughts in significant portions of the world, associated higher evapotranspiration rates, and so on. It is therefore essential to comprehend the future possible scenario of climate change in terms of global warming. A high resolution limited area Regional Climate Model (RCM can produce reasonably appropriate projections to be used for climate-scenario generation in country-scale. This paper features the development of future surface temperature projections for Bangladesh on monthly resolution for each year from 2011 to 2100 applying Providing Regional Climates for Impacts Studies (PRECIS, and it explains in detail the modeling processes including the model features, domain size selection, bias identification as well as construction of change field for the concerned climatic variable, in this case, surface temperature. PRECIS was run on a 50 km horizontal grid-spacing under the Intergovernmental Panel on Climate Change (IPCC A1B scenario and it was found to perform reasonably well in simulating future surface temperature of Bangladesh. The linear regression between observed and model simulated results of monthly average temperatures, within the 30-year period from 1971 to 2000, gives a high correlation of 0.93. The applied change field in average annual temperature shows only 0.5 °C–1 °C deviation from the observed values over the period from 2005 to 2008. Eventually, from the projected average temperature change during the years 1971–2000, it is apparent that warming in Bangladesh prevails invariably every month, which might eventually result in an average annual increase of 4 °C by the year 2100. Calculated anomalies in country-average annual temperature mostly remain on the positive side throughout the period of 2071–2100 indicating an overall up-shift. Apart from these quantitative analyses of temporal changes of temperature

  14. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  15. Radiative Forcing of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  16. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  17. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  18. Climate change impact on China food security in 2050

    OpenAIRE

    Ye, Liming; Xiong, Wei; Li, Zhengguo; Yang, Peng; Wu, Wenbin; Yang, Guixia; Fu, Yijiang; zou, Jinqiu; Chen, Zhongxin; Van Ranst, Eric; Tang, Huajun

    2013-01-01

    International audience Climate change is now affecting global agriculture and food production worldwide. Nonetheless the direct link between climate change and food security at the national scale is poorly understood. Here we simulated the effect of climate change on food security in China using the CERES crop models and the IPCC SRES A2 and B2 scenarios including CO2 fertilization effect. Models took into account population size, urbanization rate, cropland area, cropping intensity and te...

  19. The climate crisis: An introductory guide to climate change

    Science.gov (United States)

    Trenberth, Kevin E.

    2011-06-01

    Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.

  20. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  1. The changing world of climate change: Oregon leads the states

    International Nuclear Information System (INIS)

    Following on the heels of recent national and international developments in climate change policy, Oregon's open-quote best-of-batch close-quote proceeding has validated the use of CO2 offsets as a cost-effective means of advancing climate change mitigation goals. The proceeding was a first in several respects and represents a record commitment of funds to CO2 mitigation by a private entity. In December 1995, the Intergovernmental Panel on Climate Change (IPCC), issued its Second Assessment Report. The IPCC's conclusion that open-quotes[t]he balance of evidence suggests a discernible human influence on global climateclose quotes fundamentally changed the tenor of the policy debate regarding potential threats associated with global climate change. At the Climate Change Convention's Conference of the Parties (COP) in Geneva in July 1996, most countries, including the United States, advocated adopting the IPCC report as the basis for swift policy movement toward binding international emissions targets. The next COP, in December 1997, is scheduled to be the venue for the signing of a treaty protocol incorporating such targets. Binding targets would have major consequences for power plant operators in the US and around the world. Recent developments in the state of Oregon show the kinds of measures that may become commonplace at the state level in addressing climate change mitigation. First, Oregon recently completed the first administrative proceeding in the US aimed at offsetting the greenhouse gas emissions of a new power plant. Second, a legislatively mandated energy facility siting task force recently recommended that Oregon adopt a carbon dioxide (CO2) standard for new power plant construction and drop use of the open-quotes need for powerclose quotes standard. This article reviews these two policy milestones and their implications for climate change mitigation in the United States

  2. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  3. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  4. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    OpenAIRE

    T.M. CORNEA; Dima, M.; Roca, D.

    2011-01-01

    Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC) [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ...

  5. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  6. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  7. The effect of climate change and natural variability on wind loading values for buildings

    NARCIS (Netherlands)

    Steenbergen, R.D.J.M.; Koster, T.; Geurts, C.P.W.

    2012-01-01

    Since 2006, a number of countries developed reports on climate change following the IPCC 4th assessment reports. For the Netherlands, the Royal Netherlands Meteorological Institute (KNMI) presented four new climate scenarios. Typically, climate change is described in terms of average changes, but mu

  8. Climate change - The Macedonia's First National Communication

    International Nuclear Information System (INIS)

    Climate change impacts, consequences and concerns of the international community; United Nations Framework Convention on Climate Change (UNFCCC). Activities in the Republic of Macedonia, establishing the Climate Change Project Unit within the Ministry of Environment and Physical Planning and the National Climate Change Committee. Preparation of the Macedonia's First National Communications under the United Nations Framework Convention on Climate Change. Analyzing on the thematic areas of the Nationals Communications. The inventory of greenhouse gases(GHG) emissions was prepared according to IPCC Guidelines (IPCC), taking into consideration the three main GHGs:carbondioxide (CO2), methane (CH4), nitrous oxide (N2O). The main sources of CO2 emissions are the electricity production, the production and the transport. GHG abatement analysis and projections of emissions are prepared in accordance to the Macedonian economy and possibilities for development. The analysis of the energy sector is elaborated in a most advanced way, especially regarding the electricity production. According to the IS92a scenario (prepared by IPCC) the average annual temperature in Macedonia could arise for 4,6o C by 2100, and the average summer temperature could arise for 5.1o C. The average sum of precipitation will decrease for 6.3% in 2100, but the most alarming is the sum of precipitation in summer, which could decrease for 2.5%. Venerability assessment and adaptation measures are elaborated in the following sectors: agriculture, forestry, biodiversity, water resources and human health. The National Action Plan sets out the objectives and initial points for undertaking measures, contributing to the reduction of GHG emissions at national level. (Author)

  9. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  10. SATELLITE OBSERVATIONS FOR EDUCATION OF CLIMATE CHANGE

    Directory of Open Access Journals (Sweden)

    ILONA PAJTÓK-TARI

    2011-03-01

    Full Text Available This paper surveys the key statements of the IPCC (2007 Reportbased mainly on the satellite-borne observations to support teaching climatechange and geography by using the potential of this technology. In theIntroduction we briefly specify the potential and the constraints of remote sensing.Next the key climate variables for indicating the changes are surveyed. Snow andsea-ice changes are displayed as examples for these applications. Testing theclimate models is a two-sided task involving satellites, as well. Validation of theability of reconstructing the present climate is the one side of the coin, whereassensitivity of the climate system is another key task, leading to consequences onthe reality of the projected changes. Finally some concluding remarks arecompiled, including a few ideas on the ways how these approaches can be appliedfor education of climate change.

  11. Climate effects of land use changes and anthropogenic impact on surface radiation

    OpenAIRE

    2009-01-01

    The fourth assessment report on climate change (AR4) was released in 2007 and the Intergovernmental Panel of Climate Change (IPCC) derive an increase of 0.74 ± 0.18°C in the 100 year global mean surface temperature linear trend between 1906 – 2005. IPCC state further that “there is very high confidence that the global average net effect of human activities since 1750 has been one of warming” (IPCC, 2007). The observed global warming has occurred during the same period as a considerable increa...

  12. A coming anarchy? : Pathways from climate change to violent conflict in East Africa

    OpenAIRE

    van Baalen, Sebastian; Mobjörk, Malin

    2016-01-01

    The warming of the climate system is unequivocal according to the Intergovernmental Panel on Climate Change (IPCC), and will have a strong impact on the security of humans and states alike. In the past half-century the climate system has changed in unprecedented ways and future climate change and variability will include long-lasting alterations to all components of the climate system. With the warming of the climate system and the recognition of the implications that this has for the availab...

  13. Teasing out the impacts of climate change on agricultural development

    OpenAIRE

    Knox, Jerry W.; Kay, Melvyn G.

    2010-01-01

    plethora of articles, books, and academic papers. Not least are the detailed and extensive publications of the Inter-Governmental Panel on Climate Change (IPCC) which set out in their latest assessment (AR4), the scientific, technical, and socio-economic information relevant for understanding the risks posed by human- induced climate change, and the policy options for dealing with it. Although it is useful to study and identify the specific benefits and risks of a changing c...

  14. Communicating Uncertainties on Climate Change

    Science.gov (United States)

    Planton, S.

    2009-09-01

    The term of uncertainty in common language is confusing since it is related in one of its most usual sense to what cannot be known in advance or what is subject to doubt. Its definition in mathematics is unambiguous but not widely shared. It is thus difficult to communicate on this notion through media to a wide public. From its scientific basis to the impact assessment, climate change issue is subject to a large number of sources of uncertainties. In this case, the definition of the term is close to its mathematical sense, but the diversity of disciplines involved in the analysis process implies a great diversity of approaches of the notion. Faced to this diversity of approaches, the issue of communicating uncertainties on climate change is thus a great challenge. It is also complicated by the diversity of the targets of the communication on climate change, from stakeholders and policy makers to a wide public. We will present the process chosen by the IPCC in order to communicate uncertainties in its assessment reports taking the example of the guidance note to lead authors of the fourth assessment report. Concerning the communication of uncertainties to a wide public, we will give some examples aiming at illustrating how to avoid the above-mentioned ambiguity when dealing with this kind of communication.

  15. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  16. Changes of Atmospheric Water Balance over China under the IPCC SRES A1B Scenario Based on RegCM3 Simulations

    Institute of Scientific and Technical Information of China (English)

    SUN Bo; JIANG Da-Bang

    2012-01-01

    Simulations of the Regional Climate Model Version 3 (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario were employed to investigate possible decadal changes and long-term trends of annual mean atmospheric water balance components over China in the 21st century with reference to the period of 1981-2000. An evaluation showed that RegCM3 can reasonably reproduce annual evapotranspiration, precipitation, and water vapor transport over China, with a better performance for March–June. It was found that the water vapor exchange between the land surface and atmosphere would be significantly intensified in Northwest China by the mid-to late-21st century and that the region would possibly shift to a wetter or drought-mitigated state under global warming. Conversely, the water vapor exchange evidently weakened over the Tibetan Plateau and South-west China by the mid-to late-21st century. In addition, there appears to be a drier state for Northeast China and the middle and lower reaches of the Yangtze River valley by the mid-to late-21st century, with slight mitigation by the end compared with the mid-21st century. The westerly and southwesterly water vapor transport over China generally presents an increasing trend, with increasing diver-gence over the Tibetan Plateau and Northeast China, corresponding to a loss of atmospheric water vapor by water vapor transport.

  17. Climate change impacts on working people : how to develop prevention policies

    OpenAIRE

    Nilsson, Maria; Kjellström, Tord

    2010-01-01

    The evidence on negative consequences from climate change on human health and well-being is growing. The Intergovernmental Panel on Climate Change (IPCC) described climate change as a threat to the climate system that sets the basis for life and human health conditions. The changing climate is expected to affect basic requirements needed to support and sustain human health such as good food, clean water, and unpolluted air, with negative effects that are expected to be unequally distributed.

  18. Invited Editorial: Climate change impacts on working people: how to develop prevention policies

    OpenAIRE

    Nilsson, Maria; Kjellstrom, Tord

    2010-01-01

    The evidence on negative consequences from climate change on human health and well-being is growing. The Intergovernmental Panel on Climate Change (IPCC) described climate change as a threat to the climate system that sets the basis for life and human health conditions. The changing climate is expected to affect basic requirements needed to support and sustain human health such as good food, clean water, and unpolluted air, with negative effects that are expected to be unequally distributed. ...

  19. Urban focus in climate change adaptation and risk reduction

    OpenAIRE

    Wamsler, Christine

    2014-01-01

    Urban communities will face increased risks, such as floods, landslides, heat stress and fires and water scarcity, as a consequence of climate change. The latest IPCC report (AR5) has for the first time devoted a whole chapter to urban areas. The assessment stresses the need to tackle urban risk through more effective adaptation planning.

  20. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  1. Communicating uncertainty in the IPCC's greenhouse gas emissions scenarios

    NARCIS (Netherlands)

    Schenk, Niels J.; Lensink, Sander M.

    2007-01-01

    The issue of climate change required the development of the Special Report on Emission Scenarios (SRES) by the IPCC. The complexity of the subject and the unique science-policy relation resulted in confusion and discussions appeared in popular media like The Economist. This paper reviews scenario li

  2. Climate change and forest ecosystem dynamics

    International Nuclear Information System (INIS)

    Effects of climate change on water relations in forests were studied using several modelling approaches. Of several models tested, the FORGRO model had the highest potential for a reliable estimation of effects of climate change on forests. An evaluation of process-based models of forest growth showed that several models, including FORGRO, were able to produce accurate estimates of carbon and water fluxes at several forest sites of Europe. Responses were in relatively good agreement with the expected responses obtained by experimental studies, and models were able to deal with new conditions and explore the likely effects of climate change. The effect of climate change on forest development was assessed for three forests stands in the Netherlands using a gap model which was made climate sensitive by including the effects of climate change scenario IPCC IS92A on growth (FORGRO results), phenology (FORGRO results), and seed production (regression analysis). Results showed that climate change is likely to cause subtle changes rather than abrupt changes in forest development in the Netherlands, and that forest development on sandy soils in the Netherlands is not likely to be influenced significantly by climate change over the coming 50 years. The impact of climate change on the production, nature and recreation values of forests was studied using a simple economic model, and showed that response are likely to be relatively small during the first century, and are related to the successional status of the forest. Linking of detailed process-based models with gap models enables interpretation of climate change effects beyond a change in tree growth only, and is an important tool for investigating the effects of climate change on the development of mixed forests. The modelling approach presented in this project (process-based growth models -> gap models -> economic model) is a useful tool to support policy decisions in the light of climate change and forests. refs

  3. Five year ahead prediction of Sea Surface Temperature in the Tropical Atlantic: a comparison between IPCC climate models and simple statistical methods

    CERN Document Server

    Laepple, T; Laepple, Thomas; Jewson, Stephen

    2007-01-01

    There is a clear positive correlation between boreal summer tropical Atlantic sea-surface temperature and annual hurricane numbers. This motivates the idea of trying to predict the sea-surface temperature in order to be able to predict future hurricane activity. In previous work we have used simple statistical methods to make 5 year predictions of tropical Atlantic sea surface temperatures for this purpose. We now compare these statistical SST predictions with SST predictions made by an ensemble mean of IPCC climate models.

  4. Costing issues for mitigation and adaptation to climate change: what policy makers need

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Oyuele, R.A. [Ministry of Foreign Affairs of the Argentine Republic, Buenos Aires (Argentina)

    2000-07-01

    As a supreme body on climate change, IPCC (Intergovernmental Panel on Climate Change) discusses related issues in conventions and originates scientific information which are needed by policy makers. This article highlights the problems usually faced by IPCC in originating such information. The author critically assesses the problems faces by climate change policy markers. He suggests that the scientific community should be actively involved in climate change policy formulation rather than providing warning against the risk of climate change. Plain language and clarity in preparing IPCC reports will improve the general understanding of the assessment. The author also points out that proliferation of scenarios is another source of many problems for policy makers. He argues out that the scenarios should be organized and presented according to some order of probability, as there is a tendency to confuse scenarios with forecasting.

  5. “管理极端气候事件和灾害风险特别报告”对我国的启示%The Implications on China' s Disaster Prevention and Mitigation from IPCC Special Report on "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation"

    Institute of Scientific and Technical Information of China (English)

    刘冰; 薛澜

    2012-01-01

    政府间气候变化专门委员会(IPCC)最新发布的"管理极端气候事件和灾害风险促进气候变化适应特别报告决策者摘要(SREX)"从"极端气候事件+脆弱性+暴露程度"的角度剖析了灾害风险的根源,综合考虑了气候、环境、社会经济条件等因素,提出了管理灾害风险和适应气候变化的各种政策选项,对于我国把风险管理纳入应对气候变化行动的整体框架提供了重要的科学依据。本文基于特别报告的主要结论,结合我国防灾减灾工作的实际情况,提出加快社会经济发展、实现社会系统重构、发挥政策协同效应是今后防灾减灾工作的重要着力点。%The newly issued Intergovernmental Panel on Climate Change (IPCC) Special Report: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) analyzes the root of disaster risks from three perspectives of "extreme climate events, vulnerability and exposure". It considers factors such as climatic, environmental and socio - economic conditions, and puts forward various policy options for disaster risk management and climate change adaptation. This report provides scientific evidence for integrating risk management into the action framework of addressing climate change in China. This article provides a synthesis of the main conclusions of the report. Based on the actual situation of China' s disaster prevention and reduction efforts, the article makes several policy recommendations, including 1 ) speeding up socio - economic development, 2) promoting social and institutional innovation and transformation, and 3 ) developing policy synergy across different policy arenas related to disaster prevention and reduction.

  6. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  7. Man-made climate change: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, E. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The first major man-made environmental problem was the soil acidification, caused primarily by the massive industrial emissions of sulphur dioxide. Then came the problem of ozone depletion, caused by the emissions of man-made halocarbons. More recently, the possibility of man-made climate change has received a lot of attention. These three man-made problems are interconnected in fundamental ways and require for their solution interdisciplinary and international approach. Narrowing of the scientific uncertainties connected with the problems mentioned above can be expected through international `Global Change` programmes such as the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP). Periodic assessments of the type produced by the IPCC will clearly be needed. Also in the future such assessments should form the scientific basis for international negotiations and conventions on the climate change issue

  8. Modeling of climate change impacts on agriculture, forestry and fishery

    International Nuclear Information System (INIS)

    Changes in climate affect agriculture, forest and fisheries. This paper examines the climate change impact on crop production, fishery and forestry using state - of - the - art modeling technique. Crop growth model InfoCrop was used to predict the climate change impacts on the yields of rice, wheat and maize in Bangladesh. Historical climate change scenario has little or no negative impacts on rice and wheat yields in Mymensingh and Dinajpur but IPCC climate change scenario has higher negative impacts. There is almost no change in the yields of maize for the historical climate change scenario in the Chittagong, Hill Tracts of but there is a small decrease in the yields of rice and maize for IPCC climate change scenario. A new statistical model to forecast climate change impacts on fishery in the world oceans has been developed. Total climate change impact on fishery in the Indian Ocean is negative and the predictor power is 94.14% for eastern part and 98.59% for the western part. Two models are presented for the mangrove forests of the Sundarbans. To bole volumes of the pioneer, intermediate and climax are simulated for three different logging strategies and the results have been discussed in this paper. (author)

  9. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  10. Climate Change and Water Resources Management: A Federal Perspective

    Science.gov (United States)

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  11. Measuring Engagement with the Potential Consequences of Climate Change

    Science.gov (United States)

    Young, N.; Danielson, R. W.; Lombardi, D.

    2015-12-01

    Across three studies, we investigated engagement with the consequences of climate change. We drew from the conceptual change and risk analysis literatures to find the factors that determine how much people will care about future risks. Questions derived from these factors were then asked about many hypothesized consequences of climate change. These consequences were drawn from an Intergovernmental Panel on Climate Change special report (IPCC, 2012) and, in the third study, additionally from the IPCC AR5 (IPCC, 2014). The first two studies, using undergraduate students, demonstrated that some consequences were indeed considerably more engaging than others. The third study used a more representative sample of American adults, drawn from Amazon Mechanical Turk and used the Global Warming's Six Americas Screening Tool (Maibach, Leiserowitz, Roser-Renouf, Mertz, & Akerlof, 2011) in a large screening survey to find 20 participants in each of the six audiences defined by this tool. These participants were then asked about the potential consequences of climate change. Results again showed that some consequences are considered more engaging than others, and also showed the ways in which members of these six audiences perceive the consequences of climate change differently.

  12. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  13. Anticipated changes in the Nordic seas marine climate

    OpenAIRE

    Furevik, Tore; Drange, Helge; Sorteberg, Asgeir

    2002-01-01

    Possible future changes in the Nordic Seas marine climate are here discussed. The wide range of climate models used in the Intergovernmental Panel on Climate Change predict a global mean temperature increase between 1- 6ºC by the end of this century, with the estimates using the intermediate IPCC B2 scenario being in the range 1.9-3.4ºC. For climate models forced by a 1percent per year CO2 increase only, the so-called CMIP2 integrations, the increase in temperatures is close to 2º...

  14. Certainties and probabilities of the IPCC

    International Nuclear Information System (INIS)

    Based on an analysis of information about the climate evolution, simulations of a global warming and the snow coverage monitoring of Meteo-France, the IPCC presented its certainties and probabilities concerning the greenhouse effect. (A.L.B.)

  15. Mathematics of Climate Change

    OpenAIRE

    Halstadtrø, Ida

    2013-01-01

    Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...

  16. Applying IPCC Representative Concentration Pathway (RCP) land-use projections in a regional assessment of land-use change in the conterminous United States.

    Science.gov (United States)

    Sherba, J.; Sleeter, B. M.

    2015-12-01

    The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) include global land-use change projections for four global emissions scenarios. These projections are potentially useful for driving regional-scale models needed for informing land-use and management interactions. Here, we applied global gridded RCP land-use projections within a regional-scale state-and-transition simulation model (STSM) projecting land-use change in the conterminous United States. First, we cross-walked RCP land-use transition classes to land-use classes more relevant for modeling at the regional scale. Coarse grid RCP land-use transition values were then downscaled to EPA Level III ecoregion boundaries using historical land-use transition data from the USGS Land Cover Trends (LCT) dataset. Downscaled transitions were aggregated to the ecoregion level. Ecoregions were chosen because they represent areas with consistent land-use patterns that have proven useful for studying land-use and management interactions. Ecoregion-level RCP projections were applied in a state-and-transition simulation model (STSM) projecting land-use change between 2005 and 2100 at the 1-km scale. Resulting RCP-based STSM projections were compared to STSM projections created using scenario projections from the Special Report on Emissions Scenarios (SRES) and the USGS LCT dataset. While most land-use trajectories appear plausible, some transitions such as forest harvest are unreasonable in the context of historical land-use patterns and the socio-economic drivers of change outlined for each scenario. This effort provides a method for using the RCP land-use projections in a wide range of regional scale models. However, further investigation is needed into the performance of RCP land-use projections at the regional scale.

  17. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  18. facing the challenges of climate change and food security : the role of research, extension and communication for development

    NARCIS (Netherlands)

    Leeuwis, C.; Hall, A.; Weperen, van W.; Preissing, J.

    2013-01-01

    In line with the Intergovernmental Panel on Climate Change (IPCC) this study defines climate change as any change in climate over time, whether due to natural variability or as a result of human activity. This report is a shortened version of the final study report, produced on request of FAO. The p

  19. Regional Climate Change Hotspots over Africa

    Science.gov (United States)

    Anber, U.; Zakey, A.; Abd El Wahab, M.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation (P % , of present day value ), change in regional surface air temperature interannual variability (T % ,of present day value), change in regional precipitation interannual variability (P % ,of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter

  20. Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)

    Science.gov (United States)

    Manning, M. R.; Swart, R.

    2009-12-01

    Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that

  1. Our Changing Climate

    Science.gov (United States)

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  2. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  3. Investigation of the climate change within Moscow metropolitan area

    Science.gov (United States)

    Varentsov, Mikhail; Trusilova, Kristina; Konstantinov, Pavel; Samsonov, Timofey

    2014-05-01

    As the urbanization continues worldwide more than half of the Earth's population live in the cities (U.N., 2010). Therefore the vulnerability of the urban environment - the living space for millions of people - to the climate change has to be investigated. It is well known that urban features strongly influence the atmospheric boundary layer and determine the microclimatic features of the local environment, such as urban heat island (UHI). Available temperature observations in cities are, however, influenced by the natural climate variations, human-induced climate warming (IPCC, 2007) and in the same time by the growth and structural modification of the urban areas. The relationship between these three factors and their roles in climate changes in the cities are very important for the climatic forecast and requires better understanding. In this study, we made analysis of the air temperature change and urban heat island evolution within Moscow urban area during decades 1970-2010, while this urban area had undergone intensive growth and building modification allowing the population of Moscow to increase from 7 to 12 million people. Analysis was based on the data from several meteorological stations in Moscow region and Moscow city, including meteorological observatory of Lomonosov Moscow State University. Differences in climate change between urban and rural stations, changes of the power and shape of urban heat island and their relationships with changes of building height and density were investigated. Collected data and obtained results are currently to be used for the validation of the regional climate model COSMO-CLM with the purpose to use this model for further more detailed climate research and forecasts for Moscow metropolitan area. References: 1. U.N. (2010), World Urbanization Prospects. The 2009 Revision.Rep., 1-47 pp, United Nations. Department of Economic and Social Affairs. Population Division., New York. 2. IPCC (2007), IPCC Fourth Assessment Report

  4. Climate variations in the Northern Hemisphere based on the use of an atmosphere-ocean IPCC model

    International Nuclear Information System (INIS)

    Forced and natural variability of modelled and observed Atlantic Ocean temperature and Atlantic Meridional Overturning Circulation (AMOC) is studied. In the observations and in a forced climate model run, we find increasing temperature at 1000m in the Atlantic (20N). SVD analysis shows that, for both model data and observations, a high index of North Atlantic Oscillation (NAO) correspond to negative temperature anomaly at 1000m to the north of 55N, although geographical details of temperature anomaly distribution are different for the model and observations. Particular attention has been paid to the influence of the fresh water flux due to the present global warming on the slowing down of the AMOC. It is shown that fresh water flux change is only a secondary cause of reduced AMOC in global warming conditions, while heat flux change is probably the main reason. Finally, it is shown that internal model AMOC variability is positively correlated with the near-surface air temperature in Atlantic-European Arctic sector on a 10-year time scale.

  5. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  6. Environmental health risk assessment and management for global climate change

    Science.gov (United States)

    Carter, P.

    2014-12-01

    This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline

  7. 7th International Seminar on Climate System and Climate Change(ISCS) through the Eyes of a Trainee

    Institute of Scientific and Technical Information of China (English)

    Karen K.Y.Shum

    2010-01-01

    @@ At the invitation of Dr.Dahe Qin,the president of ISCS and the Co-Chair of IPCC WGI,the Hong Kong Observatory has been obliged to participate and benefit from the International Seminar in Beijing,China on 19-30 July 2010.Seminar topics included atmospheric chemistry and climate effects of aerosol biogeochemical cycles,cryosphere and its role in the climate system and climate change,climate models and its application in climate change research,climate change adaptation and mitigation.Data is a common ground for these multi-disciplinary studies around the globe.

  8. Climate change and its linkages with development, equity and sustainability

    International Nuclear Information System (INIS)

    The IPCC Working Groups 2 and 3 (on impacts and adaptation, and on mitigation, respectively) have taken the initiative to organise a number of expert meetings. The main goals of the meetings are: (a) to increase co-ordination among, and inform lead authors about development, equity and sustainability (DES) issues and climate change; and (b) to better place the IPCC Third Assessment Report in the context of DES, through enhanced access to the best available scientific, technical economic and social information from across the world. The rapidly growing economies of Asia will play a key role in determining future climate change policy. Thus, the organisation of the first expert meeting in Colombo, Sri Lanka, under the able guidance of Professor Mohan Munasinghe, is very appropriate. The conference has provided a crucial first step towards broadening the scope of the IPCC reports, by integrating DES issues into climate change response strategies. This Proceedings volume is also important as a key policy-relevant (but not policy-prescriptive) vehicle that will better inform worldwide networks of scientists from different regional, cultural and disciplinary backgrounds, in their pursuit of the best scientific information on the linkages between climate change and sustainable development. refs

  9. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that it is unequivocal that climate change is occurring. One of the largest impacts of climate change is anticipated to be an increase in the severity of extreme events, such as extreme precipitation. Floods caused...... by extreme precipitation pose a threat to human life and cause high economic losses for society. Thus, strategies to adapt to changes in extreme precipitation are currently being developed and established worldwide. Information on the expected changes in extreme precipitation is required for the development...... of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...

  10. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  11. Climate and Global Change

    International Nuclear Information System (INIS)

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  12. The changing climate

    International Nuclear Information System (INIS)

    A historical outline of climate changes is followed by a discussion of the problem of predictability. The main section goes into anthropogenic changes of the local (urban) and global climate, with particular regard to the greenhouse effect and its consequences in terms of human action. The author points out that today's climate problems should be discussed in a subject-centered and objective manner. (KW)

  13. Introduction to the symposium theme : climate change in fragmented landscapes: can we develop spatial adaptation strategies?

    OpenAIRE

    Verboom, J.; Vos, C.C.

    2007-01-01

    The Intergovernmental Panel for Climate Change (IPCC) concluded that by increasing the concentration of greenhouse gasses, man has a discernible influence on climate, and this is expected to be a long-term phenomenon affecting the environment in the forthcoming decades or even centuries. Since climate is a key driving force for ecological processes, climate change is likely to exert considerable impact on ecosystems. Since nature policy worldwide is often based upon policy plans which do not ...

  14. Xylem Variability as a Proxy for Environmental and Climate Change in Corsica During the Past Millennium

    OpenAIRE

    Hetzer, Timo

    2013-01-01

    The Mediterranean region is considered as one of the hotspots of future climate change (IPCC 2007; Christensen et al. 2007). To assess the impacts of climate change in different regions, it is helpful to have a look at the past. Proxies, i.e. data derived from different environmental archives, contain climatic or environmental information from the past. On the island of Corsica in the center of the western Mediterranean basin, high-resolution climate reconstructions for the past millennium ar...

  15. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  16. Greenhouse gas emissions from managed peat soils: is the IPCC reporting guidance realistic?

    Directory of Open Access Journals (Sweden)

    J. Couwenberg

    2011-03-01

    Full Text Available Drainage of peatlands leads to the decomposition of peat, resulting in substantial losses of carbon and nitrogen to the atmosphere. The conservation and restoration of peatlands can provide a major contribution to the mitigation of climate change. Improvements to guidance and capacity for reporting of greenhouse gas emissions from peatlands will be valuable in the context of the current negotiations towards a post-2012 climate agreement. This article evaluates IPCC approaches to greenhouse gas emissions from managed organic (peat soils and presents a summary table comparing IPCC default values with best estimates based on recent literature. Inconsistencies are pointed out with regard to the IPCC definitions of organic soils and climate zones. The 2006 IPCC Guidelines use a definition of organic soil that is not totally consistent with FAO definitions, use climate zones that are not fully compatible, present default CO2 values that are substantially (often an order of magnitude too low, and present a default N2O value for tropical cropland that is also an order of magnitude too low. An update of IPCC default values is desirable. The IPCC Emission Factor Database offers a platform for establishing more accurate emission factors, but so far contains little information about emissions from peat soils.

  17. Climate Change: The Physical Basis and Latest Results

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the...

  18. Climate for change

    International Nuclear Information System (INIS)

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  19. Identification and Categorization of Climate Change Risks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuehong; WU Shaohong; DAI Erfu; LIU Dengwei; YIN Yunhe

    2008-01-01

    The scientific evidence that climate is changing due to greenhouse gas emission is now incontestable,which may put many social,biological,and geophysical systems in the world at risk.In this paper,we first identified main risks induced from or aggravated by climate change.Then we categorized them applying a new risk categorization system brought forward by Renn in a framework of International Risk Governance Council.We proposed that "uncertainty" could be treated as the classification criteria.Based on this,we established a quantitative method with fuzzy set theory,in which "confidence" and "likelihood",the main quantitative terms for expressing uncertainties in IPCC,were used as the feature parameters to construct the fuzzy membership functions of four risk types.According to the maximum principle,most climate change risks identified were classified into the appropriate risk types.In the mean time,given that not all the quantitative terms are available,a qualitative approach was also adopted as a complementary classification method.Finally,we get the preliminary results of climate change risk categorization,which might lay the foundation for the future integrated risk management of climate change.

  20. Projected climate change and the changing biogeography of coastal Mediterranean fishes

    OpenAIRE

    Albouy, C; Guilhaumon, François; Leprieur, F; Lasram, F. B.; Somot, S.; Aznar, R; Velez, Laure; Le Loc'h, François; Mouillot, D.

    2013-01-01

    Aim To forecast the potential effects of climate change in the Mediterranean Sea on the species richness and mean body size of coastal fish assemblages. Location The Mediterranean Sea. Methods Using an ensemble forecasting approach, we used species distribution modelling to project the potential distribution of 288 coastal fish species by the middle and end of the 21st century based on the IPCC A2 scenario implemented with the Mediterranean climatic model NEMOMED8. Results A mean rise of 1.4 ...

  1. Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison

    DEFF Research Database (Denmark)

    Zickfeld, K.; Eby, M.; Weaver, A. J.;

    2013-01-01

    This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1...

  2. Struggle against climate change

    International Nuclear Information System (INIS)

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  3. Equity in Adaptation to Climate Change

    International Nuclear Information System (INIS)

    Most observers agree that equity has become a key condition for the success of a global agreement on climate, and that any deal that would seem inequitable would be doomed to fail. The UNFCCC (United Nations Framework Convention on Climate Change) makes a distinction between developed countries, developing countries, and least advanced countries; as well as between vulnerable countries and particularly vulnerable countries. The first distinction has to do with equity in mitigation efforts, whereas the latter is concerned with equity in the allocation of adaptation funding (Mace 2006). Adaptation itself is poorly defined: the IPCC (Intergovernmental Panel of Climate Change) does not go further than defining it as the adjustment of human or natural systems confronted to a new or changing environment (IPCC 2007). It took a very long time for adaptation to be acknowledged as a key aspect of the fight against global warming. Funding mechanisms were long overdue when they were finally implemented, and remain heavily discussed. A sufficient amount of funding for adaptation appears today as the sine qua non condition for the participation of developing countries to a global deal on climate. This amount has been estimated at US$ 100 billion at least on a yearly basis, including support for mitigation efforts. However, though equity concerns have been placed at the core of the negotiation on mitigation efforts, they have been little addressed in the discussions on adaptation. As a result of this, the criteria that will be used to allocate the adaptation funding remain unclear and vague, which could be detrimental for the negotiation process as a whole. This paper aims to offer a new perspective on this issue, departing from the traditional perspective inspired by retributive justice. (author)

  4. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  5. Societal Vulnerability to Climate Change and Variability

    International Nuclear Information System (INIS)

    Institutions in many wealthy industrialised countries are robust and their societies appear to be relatively well insulated against the impacts of climate variability, economic problems elsewhere and so on. However, many countries are not in this position, and there is a growing group of humanity which is not benefiting from the apparent global adaptive trends. Worst case scenarios reinforce the impact of this uneven distribution of adaptive capacity, both between and within countries. Nevertheless, at the broad global scale human societies are strongly adaptive and not threatened by climate change for many decades. At the local level the picture is quite different and the survival of some populations at their present locations is in doubt. In the absence of abatement, the longer term outlook is highly uncertain. Adaptation research needs to begin with an understanding of social and economic vulnerability. It requires a different approach to the traditional IPCC impacts assessment, as human behaviour, institutional capacity and culture are more important than biophysical impacts. This is consistent with the intellectual history of the IPCC which has gradually embraced an increasing range of disciplines. 32 refs

  6. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  7. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  8. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  9. Global climate change: an unequivocal reality; Cambio climatico global: una realidad inequivoca

    Energy Technology Data Exchange (ETDEWEB)

    Raynal-Villasenor, J.A. [Universidad de las Americas, Puebla, Puebla (Mexico)]. E-mail: josea.raynal@udlap.mx

    2011-10-15

    During several years, a long discussion has taken place over the reality of global climate change phenomenon and, if there is one, what could be its cause. Once the 4th Assessment Report of the Intergovernmental Panel on Climatic Change (IPCC, 2007) - IPCC is part the United Nations Organization (UN) - was published, it was stated that there is a developing global climatic change and that the cause is unequivocally related with the human activity in the planet Earth. In this paper, relevant information is given about the development of global climatic change issues and some actions are mentioned that each human being of this planet can implement to mitigate it, since it has been accepted that it's impossible to stop it. [Spanish] Durante varios anos se ha discutido si existe un cambio climatico global y, si lo hay, cual es su causa. Una vez publicado el 4o. Reporte de Valoracion del Panel Intergubernamental sobre Cambio Climatico (IPCC, 2007) - el IPCC es parte de la Organizacion de las Naciones Unidas (ONU) - se preciso que hay un cambio climatico global en desarrollo y la causa inequivoca que lo esta produciendo es la actividad humana en el planeta Tierra, tambien se hablo en el IPCC de las causas naturales por las cuales el planeta se esta calentando. En el presente articulo, se da informacion relevante al cambio climatico global en desarrollo y se mencionan algunas acciones que cada ser humano de este planeta puede implementar para mitigarlo, ya que es imposible detenerlo.

  10. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  11. Witnesses of climate change

    International Nuclear Information System (INIS)

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  12. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  13. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  14. Implications of and possible responses to climate change

    OpenAIRE

    Kahiluoto, Helena; Rötter, Reimund

    2009-01-01

    Climate change is expected to worsen food insecurity and seriously undermines rural development prospects. It makes it harder to achieve the Millenium Development Goals and ensure a sustainable future beyond 2015. Findings from the recent 4th assessment report of IPCC, Working Group II indicate that already towards 2050 with respect to food crops yield losses between 10 and 30 % can be expected as compared to current conditions in large parts of Africa, including Western, Eastern and southern...

  15. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  16. Climate changes instead of global warming

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2014-01-01

    Full Text Available Air temperature changes on Earth in recent years are the subject of numerous and increasingly interdisciplinary research. In contrast to, conditionally speaking, generally accepted views that these changes are conditioned primarily by anthropogenic activity, more results appear to suggest that it is dominant natural processes about. Whether because of the proven existence of areas in which downtrends are registered or the stagnation of air temperature, as opposed to areas where the increase is determined, in scientific papers, as well as the media, the increasingly present is the use of the term climate changes instead of the global warming. In this paper, we shall try to present arguments for the debate relating to the official view of the IPCC, as well as research indicating the opposite view.

  17. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  18. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  19. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... and to investigate the institutional dynamics new institutional theory is used with an emphasis on examining institutional mechanisms in relation to building legitimacy for action. The concept of mechanisms can help explain how and why constraints on action occur, and the concept of legitimacy is useful to clarify...... entrepreneurs create windows for action through the establishment of local networks. The thesis contributes knowledge on the constraints of the internal integration process in city governments. It provides explanations of why these constraints occur, and how officials seek to overcome them. The thesis provides...

  20. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  1. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  2. The understanding of world climate change; Les connaissances sur le changement climatique mondial

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.

    2008-07-01

    After having recalled that the problem of global warming in relationship with human activities has been studied since the end of the nineteenth century and since then by different scientific programs, the author describes how the IPCC's or Intergovernmental Panel on Climate Change's report is produced. He briefly comments how Earth's temperature is determined and the various natural parameters which influence the climate on Earth. He recalls how the IPCC showed the actual influence of human activities, and which changes have actually been observed

  3. Climate change - global warming

    International Nuclear Information System (INIS)

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  4. A proposed structure for an international convention on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nitze, W.A. (Environmental Law Institute, Washington, DC (USA))

    1990-08-10

    Formal negotiations toward an international convention on climate change will begin shortly after completion of the interim report of the Intergovernmental Panel on Climate Change (IPCC); presentation of the report to the Second World Climate Conference will be this fall. In a 25 May speech responding to greenhouse warming predictions made by the IPCC science working group, Margaret Thatcher said that Britain would reduce the proposed growth of its CO{sub 2} emissions enough to stabilize them at 1990 levels by 2005 if other countries did their part. Yet the United States, Japan, and other countries that emit substantial quantities of greenhouse gases continue to resist potentially expensive emission-reduction targets or control measures, citing continuing uncertainties about the extent, timing, and distribution of future climate change and its economic consequences. Similarly, developing countries are unlikely to agree to emissions targets or control measures that they perceive as impeding their economic development and will almost certainly condition their participation on a commitment by the Organization for Economic Cooperation and Development (OECD) countries to provide additional development assistance. A central task for a climate convention will be to provide the international community with a permanent mechanism for coordinating its efforts to deal with climate change.

  5. Le changement climatique d'origine humaine. Rappel de quelques résultats générauxAnthropogenic climate change: general results

    Science.gov (United States)

    Petit, Michel

    1999-02-01

    The IPCC (International Panel on Climate Change) reports have highlighted major results, which constitute a relevant framework for the specific papers in this issue. Both facts established with large confidence level and models results are presented.

  6. Global climate change and cryospheric evolution in China

    Directory of Open Access Journals (Sweden)

    Qin D.

    2009-02-01

    Full Text Available Major outcomes of Working Group I, IPCC AR4 (2007, as well as the recent understandings from our regional climatic assessments in China were summarized. Changes of cryosphere in China, one of the major components in regional climate system, is specifically reviewed. Under the global/regional warming, all components of cryosphere in China (Tibetan Plateau and surroundings including glaciers, frozen ground (including permafrost and snow cover show rapid decay in the last decades. These changes have big socioeconomic impacts in west China, thus encourages both government and scientists pay more and more attention to this field.

  7. Managing Climate Change Refugia for Climate Adaptation.

    Science.gov (United States)

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  8. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  9. Assessment of awareness regarding climate change in an urban community

    Directory of Open Access Journals (Sweden)

    Harshal T Pandve

    2011-01-01

    Full Text Available Background : Climate change has emerged as one of the most devastating environmental threats. It is essential to assess the awareness regarding climate change in the general population for framing the mitigation activities. Aim: To assess the awareness regarding climate change in an urban community. Settings and Design: Urban field practice area of a medical college in the Pune city. Observational study. Materials and Methods: The cross-sectional survey was conducted in the urban adult population who had given the written consent. A pre-tested questionnaire was used for a face to face interview. Responses were evaluated. Statistical Analysis Used: Proportions, percentage. Results: Total 733 respondents above 18 years of age were included in the present survey. 672 (91.68% respondents commented that global climate is changing. 547 (81.40% respondents opined that human activities are contributing to climate change. 576 (85.71% respondents commented that climate changing based on their personal experiences. Commonest source of information about climate change was television (59.78%. Poor awareness about UNFCC, Kyoto Protocol and IPCC was found. 549 (74.90% respondents commented that deforestation contribute most significantly towards climate change. As per 530 (72.31% respondents water related issues are due to changing climate change. According to 529 (72.17% respondents, direct physical hazards of extreme climatic events are most important health related impact of climate change. According to 478 (65.21% respondents, life style changes (63.3% would be most effective in tackling climate change and for preventing further climate change. Conclusion: The urban general population is aware about changing global climate. Personal efforts are more important in mitigating climate change as per the urban general population. The awareness campaigns regarding mitigation activities are recommended.

  10. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  11. Current Climate Variability & Change

    Science.gov (United States)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  12. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle;

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... during the last 10 000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to severely influence both...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  13. The climatic change

    International Nuclear Information System (INIS)

    In order to take stock on the climatic change situation and initiatives at the beginning of 2006, the INES (National Institute on the Solar Energy) proposes this special document. It presents the Montreal conference of December 2005, realized to reinforced the actions of the international community against the greenhouse gases. The technical decisions decided at this conference are detailed. The document discusses also the causes and consequences of the climatic warming, the intervention sectors and the actions possibilities. (A.L.B.)

  14. The climatic change induced by human activities

    International Nuclear Information System (INIS)

    The climate of the Earth is a changing climate. Along their history many natural climate changes have existed in all time scales. At the present time we use the term climate changes have existed in all time scales. At the present time we use the term climate change in a restricted way, understanding that we have referring to a singular change that has their origin in the modification of the natural composition of the atmosphere. The increase of greenhouse gases from the second half the XVIII century, is due to the human activities of fossil fuels burning to obtain energy and to industrial and agricultural activities needing for the development of a world which population has been duplicated between 1960 and 2000, until overcoming the 6,000 million inhabitants. In particular, the concentrations of carbon dioxide-CO2 have increased in a 34%. The more recent emission scenarios proposed by the IPCC (SRES, 2000) are based on hypothesis about the population evolution, the energy consumption and the word patterns of development, which are grouped in four families dominated as A1, A2, B1 and B2. The answer for these scenarios from a range of climate models results in an increase of the world average surface atmospheric temperature between 1,4 degree centigrade and 5,8 degree centigrade and a corresponding sea level rise understood between 9 cm and 88 cm. The changes in the precipitation patterns show us that could be above to the current one in high and media latitudes and below in subtropical latitudes, with exceptions highly depending of the model used. (Author)

  15. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  16. Climate change at the coast: from global to local

    International Nuclear Information System (INIS)

    The IPCC has recently documented substantial changes in the global heat content of the oceans, salinity, sea level, thermal expansion and biogeochemistry. Over the 21. century anticipated climate related changes include: a rise in sea level of up to 0.6 m or more; increases in sea surface temperatures up to 3 deg. C; an intensification of tropical and extra tropical cyclones; larger extreme waves and storm surges; altered precipitation/ run-off; and ocean acidification. The Tyndall Centre has been exploring how to down-scale the global analysis to the local level within the framework of a coastal simulator. The simulator provides information on possible future states of the coast through the 21. Century under a range of climate and socio-economic futures and shoreline management options. It links models within a nested framework, recognizing three scales: (1) global, (2) regional, and (3) local. The linked models describe a range of processes, including marine climate (waves, surges and mean sea level), sand bank morpho-dynamics, wave transformation, shoreline morpho-dynamics, built environment scenarios, ecosystem change, and erosion and flood risk. Analyses from the simulator reinforce conclusions from IPCC WG2: coasts will be exposed to increasing risks over coming decades due to many compounding climate-change factors; the impact of climate change on coasts will be exacerbated by increasing human induced pressures; the unavoidability of sea-level rise even in the longer-term frequently conflicts with present day human development patterns and trends. (author)

  17. Detection and Attribution of Regional Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  18. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  19. PERSPECTIVE: Climate change: seeking balance in media reports

    Science.gov (United States)

    Huntingford, Chris; Fowler, David

    2008-06-01

    Boykoff and Mansfield (2008), in a recent paper in this journal, provide a detailed analysis of the representation of climate change in the UK tabloid newspapers. They conclude that the representation of this issue in these papers 'diverged from the scientific consensus that humans contribute to climate change'. That is, portrayal of climate change in tabloid newspapers contradicts the conclusions of the fourth Intergovernmental Panel on Climate Change (IPCC) assessment (IPCC 2007). Is it healthy to have the scientific consensus challenged so frequently? But should we worry about systematic misrepresentation of scientific consensus? We believe the answer to both of these questions is yes. To present regular updates on climate change issues in the popular press is important because the changes in behaviour needed to achieve substantial reductions in greenhouse gas emissions require a broad understanding of the basic facts. However, if the majority of readers receive misleading information, it will be difficult to achieve the level of public understanding necessary to make such reductions needed to avoid dangerous climate change (Schellnhuber et al 2006 and references therein). Boykoff and Mansfield (2008) identify a gulf in presentation of the scientific facts and their interpretation on the subject of 'global warming' in tabloid newspapers, when compared to the scientific consensus. What is really sobering is the huge circulation of these papers (see table 1 of Boykoff and Mansfield—many millions per day); even the most important 'landmark' research papers very rarely achieve five hundred plus citations. We find it heartening, therefore, that the area of climate change research does at least have the umbrella of the IPCC. This provides an additional channel through which current research associated with the effects of burning fossil fuels can be presented, and in our personal experience at least, we have found the non-tabloid UK newspapers to report accurately

  20. A model approach to climate change

    International Nuclear Information System (INIS)

    The Earth is warming up, with potentially disastrous consequences. Computer climate models based on physics are our best hope of predicting and managing climate change, as Adam Scaife, Chris Folland and John Mitchell explain. This month scientists from over 60 nations on the Intergovernmental Panel on Climate Change (IPCC) released the first part of their latest report on global warming. In the report the panel concludes that it is very likely that most of the 0.5 deg. C increase in global temperature over the last 50 years is due to man-made emissions of greenhouse gases. And the science suggests that much greater changes are in store: by 2100 anthropogenic global warming could be comparable to the warming of about 6 deg. C since the last ice age. The consequences of global warming could be catastrophic. As the Earth continues to heat up, the frequency of floods and droughts is likely to increase, water supplies and ecosystems will be placed under threat, agricultural practices will have to be changed and millions of people may be displaced as the sea level rises. The global economy could also be severely affected. The scientific consensus is that the observed warming of the Earth during the past half-century is mostly due to human emissions of greenhouse gases. Predicting climate change depends on sophisticated computer models developed over the past 50 years. Climate models are based on the Navier-Stokes equations for fluid flow, which are solved numerically on a grid covering the globe. These models have been very successful in simulating the past climate, giving researchers confidence in their predictions. The most likely value for the global temperature increase by 2100 is in the range 1.4-5.8 deg. C, which could have catastrophic consequences. (U.K.)

  1. Climate Change Policies for the XXIst Century: Mechanisms, Predictions and Recommendations

    CERN Document Server

    Khmelinskii, Igor

    2011-01-01

    Recent experimental works demonstrated that the Anthropogenic Global Warming (AGW) hypothesis, embodied in a series of Intergovernmental Panel on Climate Change (IPCC) global climate models, is erroneous. These works prove that atmospheric carbon dioxide contributes only very moderately to the observed warming, and that there is no climatic catastrophe in the making, independent on whether or not carbon dioxide emissions will be reduced. In view of these developments, we discuss climate predictions for the XXIst century. Based on the solar activity tendencies, a new Little Ice Age is predicted by the middle of this century, with significantly lower global temperatures. We also show that IPCC climate models can't produce any information regarding future climate, due to essential physical phenomena lacking in those, and that the current budget deficit in many EU countries is mainly caused by the policies promoting renewable energies and other AGW-motivated measures. In absence of any predictable adverse climate...

  2. Detection and Attribution of Anthropogenic Climate Change Impacts

    Science.gov (United States)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  3. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...

  4. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  5. Exploring the Linkages between Climate Change and Sustainable Development: A Challenge for Transdisciplinary Research

    Directory of Open Access Journals (Sweden)

    Mohan Munasinghe

    2001-06-01

    Full Text Available In recent years, both sustainable development and climate change have become well known worldwide, and the work of the Intergovernmental Panel on Climate Change (IPCC has also focused on the nexus of these two key topics. The IPCC third assessment report confirms that global mean temperatures will rise 1.5-6 degrees Celsius during the next century. Furthermore, climate change will significantly affect the economic, social, and environmental dimensions of sustainable development, as well as key issues like poverty and equity. Therefore, the IPCC is seeking answers to important questions: how future development patterns will affect climate change; how climate change impacts, adaptation, and mitigation will affect future sustainable development prospects; and how climate change responses might be better integrated into emerging sustainable development strategies. Some key lessons have emerged from these efforts. The IPCC intellectual community has already proved to be quite cohesive and resilient in the face of determined attacks by powerful and well-financed “anti-climate change” lobbies. While addressing sustainable development issues, adaptation and learning within the IPCC have further strengthened the network. First, fresh ideas have been brought in to catalyze change. Transdisciplinary approaches are essential to deal with large-scale, long-term, complex, and interlinked issues like sustainable development and climate change. Second, the disciplinary mix has continued to evolve to meet the challenge. However, crossing disciplinary and cultural boundaries requires sound knowledge of one’s own discipline (especially its limitations, open-mindedness, great patience, and sincere effort on all sides. Third, IPCC internal processes have adjusted to facilitate beneficial changes, while limiting harmful dissension. E-mail has proved to be a powerful, but potentially risky tool. How something is said could be as important as what is said, to

  6. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Science.gov (United States)

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  7. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  8. Climate change velocity underestimates climate change exposure in mountainous regions.

    Science.gov (United States)

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  9. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  10. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  11. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  12. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  13. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  14. Adaptation to climate change

    NARCIS (Netherlands)

    J. Carmin; K. Tierney; E. Chu; L.M. Hunter; J.T. Roberts; L. Shi

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  15. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara

    2014-05-01

    The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  16. Challenges of climate change

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  17. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  18. The role of uncertainty in climate change adaptation strategies — A Danish water management example

    DEFF Research Database (Denmark)

    Refsgaard, J.C.; Arnbjerg-Nielsen, Karsten; Drews, Martin;

    2013-01-01

    be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts......We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could...... are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level...

  19. Report on Climate Change E-mails Exonerates Scientists

    Science.gov (United States)

    Showstack, Randy

    2010-07-01

    A new report commissioned by the University of East Anglia (UEA) has largely exonerated climate scientists from the university's Climatic Research Unit (CRU) who wrote a number of controversial e-mail messages that were made public without authorization in November 2009. Critics have argued that the e-mails indicate that scientists had tampered with scientific data—including data related to land station temperatures and temperature reconstructions from tree ring analysis—subverted the peer review process, misused the Intergovernmental Panel on Climate Change (IPCC) process, and withheld data from critics. At a 7 July news conference to release the “Independent climate change e-mails review,” report chair Muir Russell said, “Climate science is a matter of such global importance that the highest standards of honesty, rigor, and openness are needed in its conduct. On the specific allegations made against the behavior of CRU scientists, we find that their rigor and honesty as scientists are not in doubt.” He continued, “In addition, we do not find that their behavior has prejudiced the balance of advice given to policy makers. In particular, we did not find any evidence of behavior that might undermine the conclusions of the IPCC assessments.” Russell is chair of the Judicial Appointments Board for Scotland and formerly was principal and vice-chancellor of the University of Glasgow, in Scotland.

  20. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  1. Mediterranean climate change and Indian Ocean warming

    International Nuclear Information System (INIS)

    General circulation model (GCM) responses to 20. century changes in sea surface temperatures (SSTs) and greenhouse gases are diagnosed, with emphasis on their relationship to observed regional climate change over the Mediterranean region. A major question is whether the Mediterranean region's drying trend since 1950 can be understood as a consequence of the warming trend in tropical SSTs. We focus on the impact of Indian Ocean warming, which is itself the likely result of increasing greenhouse gases. It is discovered that a strong projection onto the positive polarity of the North Atlantic Oscillation (NAO) index characterizes the atmospheric response structure to the 1950-1999 warming of Indian Ocean SSTs. This influence appears to be robust in so far as it is reproduced in ensembles of experiments using three different GCMs. Both the equilibrium and transient responses to Indian Ocean warming are examined. Under each scenario, the latitude of prevailing mid latitude westerlies shifts poleward during the November-April period. The consequence is a drying of the Mediterranean region, whereas northern Europe and Scandinavia receive increased precipitation in concert with the poleward shift of storminess. The IPCC (TAR) 20. century coupled ocean-atmosphere simulations forced by observed greenhouse gas changes also yield a post-1950 drying trend over the Mediterranean. We argue that this feature of human-induced regional climate change is the outcome of a dynamical feedback, one involving Indian Ocean warming and a requisite adjustment of atmospheric circulation systems to such ocean warming

  2. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  3. An 'agenda for change': Quantifying climate change impacts on natural resource-based economies

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, James; Reid, Hannah; Sahlen, Linda

    2006-10-15

    For climate change adaptation to be beneficial to developing countries, it must begin quickly and this will require domestic political will. The third assessment report of the Intergovernmental Panel on Climate Change (IPCC) made clear that even if the Kyoto Protocol is fully implemented, inertia in climatic systems means that some level of climate change is unavoidable. The countries most vulnerable to CC include many developing nations; while those better-able to adapt and less willing to mitigate are those most guilty of past pollution, including many developed nations.

  4. Delivering Climate Change Science: The Prairie Provinces Chapter of Canada's National Assessment of Climate Change

    Science.gov (United States)

    Sauchyn, D. J.; Byrne, J. M.

    2007-12-01

    Scientific assessments, such as the IPCC reports, are the conventional approach to providing decision makers and the media with authentic scientific information. In November 2007, the Government of Canada released its second National Assessment of Climate Change (NACC): From Impacts to Adaptation: Canada in a Changing Climate 2007. It was two years in the making and a major update from the first national assessment published in 1997. The NACC is a set of products including a synthesis report and series of posters. The main part of the full report is five regional chapters. We describe the preparation and communication of the Prairie Provinces chapter. Two lead authors and twelve contributing authors reviewed and interpreted almost 1000 documents related to climate change impacts, vulnerability and adaptation in our region. The NACC will be widely distributed with the expectation that it will influence public policy and opinion. The NACC Secretariat developed a strategic communications plan to implement effective, targeted activities during the lead-up, release and post launch phases of the national assessment. It ensures the delivery of consistent messages to stakeholders and other target audiences. We discuss the challenges and potential for applying this extensive assessment of climate change to the education of stakeholders and decision makers.

  5. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations

    OpenAIRE

    Rylander, Charlotta; Odland, Jon Ø; Sandanger, Torkjel M.

    2011-01-01

    Background: In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are d...

  6. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations.

    OpenAIRE

    Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2011-01-01

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed ...

  7. Outchasing climate change

    Science.gov (United States)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  8. Exploring the impact of the IPCC Assessment Reports on science

    NARCIS (Netherlands)

    Vasileiadou, E.; Heimeriks, G.J.; Petersen, A.C.

    2011-01-01

    Even though critique to IPCC is certainly not new, the climate controversies of 2009 and 2010 brought this critique again to the fore in public media. The paper contributes to this ongoing debate, and investigates empirically the impact of the four Assessment Reports of the IPCC on scientific public

  9. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  10. Assessing urban adaptive capacity to climate change.

    Science.gov (United States)

    Araya-Muñoz, Dahyann; Metzger, Marc J; Stuart, Neil; Wilson, A Meriwether W; Alvarez, Luis

    2016-12-01

    Despite the growing number of studies focusing on urban vulnerability to climate change, adaptive capacity, which is a key component of the IPCC definition of vulnerability, is rarely assessed quantitatively. We examine the capacity of adaptation in the Concepción Metropolitan Area, Chile. A flexible methodology based on spatial fuzzy modelling was developed to standardise and aggregate, through a stepwise approach, seventeen indicators derived from widely available census statistical data into an adaptive capacity index. The results indicate that all the municipalities in the CMA increased their level of adaptive capacity between 1992 and 2002. However, the relative differences between municipalities did not change significantly over the studied timeframe. Fuzzy overlay allowed us to standardise and to effectively aggregate indicators with differing ranges and granularities of attribute values into an overall index. It also provided a conceptually sound and reproducible means of exploring the interplay of many indicators that individually influence adaptive capacity. Furthermore, it captured the complex, aggregated and continued nature of the adaptive capacity, favouring to deal with gaps of data and knowledge associated with the concept of adaptive capacity. The resulting maps can help identify municipalities where adaptive capacity is weak and identify which components of adaptive capacity need strengthening. Identification of these capacity conditions can stimulate dialogue amongst policymakers and stakeholders regarding how to manage urban areas and how to prioritise resources for urban development in ways that can also improve adaptive capacity and thus reduce vulnerability to climate change.

  11. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica

    OpenAIRE

    Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oreana

    2014-01-01

    The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic ...

  12. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  13. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  14. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  15. Changes in continental Europe water cycle in a changing climate

    Science.gov (United States)

    Rouholahnejad, Elham; Schirmer, Mario; Abbaspour, Karim

    2015-04-01

    Changes in atmospheric water vapor content provide strong evidence that the water cycle is already responding to a warming climate. According to IPCC's last report on Climate Change (AR5), the water cycle is expected to intensify in a warmer climate as the atmosphere can hold more water vapor. This changes the frequency of precipitation extremes, increases evaporation and dry periods, and effects the water redistribution in land. This process is represented by most global climate models (GCMs) by increased summer dryness and winter wetness over large areas of continental mid to high latitudes in the Northern Hemisphere, associated with a reduction in water availability at continental scale. Observing changes in precipitation and evaporation directly and at continental scale is difficult, because most of the exchange of fresh water between the atmosphere and the surface happens the oceans. Long term precipitation records are available only from over the land and there are no measurement of evaporation or redistribution of precipitation over the land area. On the other hand, understanding the extent of climate change effects on various components of the water cycle is of strategic importance for public, private sectors, and policy makers when it comes to fresh water management. In order to better understand the extent of climate change impacts on water resources of continental Europe, we developed a distributed hydrological model of Europe at high spatial and temporal resolution using the Soil and Water Assessment Tool (SWAT). The hydrological model was calibrated for 1970 to 2006 using daily observation of streamflow and nitrate loads from 360 gauging stations across Europe. A vegetation growth routine was added to the model to better simulate evapotranspiration. The model results were calibrated with available agricultural crop yield data from other sources. As of future climate scenarios, we used the ISI-MIP project results which provides bias-corrected climate

  16. Designing Global Climate Change

    Science.gov (United States)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  17. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  18. Economic impacts of climate change

    OpenAIRE

    Tol, Richard S.J.

    2015-01-01

    Climate change will probably have a limited impact on the economy and human welfare in the 21st century. The initial impacts of climate change may well be positive. In the long run, the negative impacts dominate the positive ones. Negative impacts will be substantially greater in poorer, hotter, and lower-lying countries. Poverty reduction complements greenhouse gas emissions reduction as a means to reduce climate change impacts. Climate change may affect the growth rate of the economy and ma...

  19. Greenhouse gas emissions considered responsible for climate change: Environmental indicators

    International Nuclear Information System (INIS)

    This paper concerns the more significant environmental indicators related to the emissions of radiatively and chemically/photochemically active trace gases. Reference is made to the preliminary work of the Intergovernmental Panel on Climate Change (IPCC) and to the proposals made in the framework of the international negotiation on climate change. Aiming to contribute to the definition of a national strategy for the reduction of greenhouse gases emissions, this paper proposes a possible application of the indicators. The calculation of the indicators is based on the emission estimate performed by ENEA (Italian National Agency for Energy, New Technologies and the Environment) for the Report on the State of the Environment edited by the Italian Ministry of the Environment. Finally, the paper suggests an application of such indicators for the international negotiation, in the framework of the Italian proposal for the Convention on climate change

  20. Living with poverty and climate change – a study on vulnerability to climate-related shocks on household level

    DEFF Research Database (Denmark)

    Jakobsen, Kristian Thor

    , especially at high altitudes. As an effect of these increased risks, humanitarian disasters caused by weather-related shocks are likely to increase in both number and severity. In that sense, it is vital to understand how people living in disaster-prone areas are handling such changes, and how the risk......Projections from the Intergovernmental Panel on Climate Change (IPCC) show that likely increases in the frequencies and intensities of extreme weather events are expected to have mostly adverse effects on natural and human systems (IPCC, 2007). Thus, the risk of suffering from an extreme weather...... addressing the environmental risks alone, but instead explores options that could assist households in achieving persistent welfare gains, no matter whether the expected outcomes of climate change in terms of extreme weather events are realized or not. In doing so, this thesis represents an effort...

  1. Health in climate change research from 1990 to 2014: positive trend, but still underperforming

    OpenAIRE

    Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer

    2016-01-01

    Background: Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health.Design: We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 t...

  2. Climate change and natural disasters – integrating science and practice to protect health

    Directory of Open Access Journals (Sweden)

    Rainer Sauerborn

    2012-12-01

    Full Text Available Background: Hydro-meteorological disasters are the focus of this paper. The authors examine, to which extent climate change increases their frequency and intensity. Methods: Review of IPCC-projections of climate-change related extreme weather events and related literature on health effects. Results: Projections show that climate change is likely to increase the frequency, intensity, duration, and spatial distribution of a range of extreme weather events over coming decades. Conclusions: There is a need for strengthened collaboration between climate scientists, the health researchers and policy-makers as well as the disaster community to jointly develop adaptation strategies to protect human.

  3. Climate change, agriculture and poverty

    OpenAIRE

    Hertel, Thomas W.; Rosch, Stephanie D

    2010-01-01

    Although much has been written about climate change and poverty as distinct and complex problems, the link between them has received little attention. Understanding this link is vital for the formulation of effective policy responses to climate change. This paper focuses on agriculture as a primary means by which the impacts of climate change are transmitted to the poor, and as a sector at...

  4. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  5. Forest Biomass for Climate Change Mitigation

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø

    Awareness of elevated CO2 levels in the atmosphere and resulting climate change has increased focus on renewable energy sources during recent decades. Biomass for energy has been predicted to have the greatest potential for CO2 reductions in the short term and the IPCC assumes that the use of bio...... of fossil fuels in silviculture, harvest, transport etc., and due to the fact that most managed forests have a lower carbon stock than unmanaged forests....... on southern Scandinavian sites, managed under different systems both in agriculture and in forests. In addition, the objective is to assess the potential of the poplar plantations to mitigate climate change by using poplar biomass for substitution of fossil fuels in comparison to a traditional product...... orientated beech forest strategy and an unmanaged forest strategy. The studies of the growth potential of poplar showed that, with the right clone selection, stock density, and application of appropriate establishment methods, poplar could produce up to 14 Mg of dry matter ha-1 yr-1 on the best sites...

  6. Twenty first century climate change as simulated by European climate models

    International Nuclear Information System (INIS)

    Full text: Climate change simulation results for seven European state-of-the-art climate models, participating in the European research project ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts), will be presented. Models from Norway, France, Germany, Denmark, and Great Britain, representing a sub-ensemble of the models contributing to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), are included. Climate simulations are conducted with all the models for present-day climate and for future climate under the SRES A1B, A2, and B1 scenarios. The design of the simulations follows the guidelines of the IPCC AR4. The 21st century projections are compared to the corresponding present-day simulations. The ensemble mean global mean near surface temperature rise for the year 2099 compared to the 1961-1990 period amounts to 3.2Kforthe A1B scenario, to 4.1 K for the A2 scenario, and to 2.1 K for the B1 scenario. The spatial patterns of temperature change are robust among the contributing models with the largest temperature increase over the Arctic in boreal winter, stronger warming overland than over ocean, and little warming over the southern oceans. The ensemble mean globally averaged precipitation increases for the three scenarios (5.6%, 5.7%, and 3.8% for scenarios A1B, A2, and B1, respectively). The precipitation signals of the different models display a larger spread than the temperature signals. In general, precipitation increases in the Intertropical Convergence Zone and the mid- to high latitudes (most pronounced during the hemispheric winter) and decreases in the subtropics. Sea-level pressure decreases over the polar regions in all models and all scenarios, which is mainly compensated by a pressure increase in the subtropical highs. These changes imply an intensification of the Southern and Northern Annular Modes

  7. The climatic change

    International Nuclear Information System (INIS)

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  8. Evaluating the use of verbal probability expressions to communicate likelihood information in IPCC reports

    Science.gov (United States)

    Harris, Adam

    2014-05-01

    The Intergovernmental Panel on Climate Change (IPCC) prescribes that the communication of risk and uncertainty information pertaining to scientific reports, model predictions etc. be communicated with a set of 7 likelihood expressions. These range from "Extremely likely" (intended to communicate a likelihood of greater than 99%) through "As likely as not" (33-66%) to "Extremely unlikely" (less than 1%). Psychological research has investigated the degree to which these expressions are interpreted as intended by the IPCC, both within and across cultures. I will present a selection of this research and demonstrate some problems associated with communicating likelihoods in this way, as well as suggesting some potential improvements.

  9. Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate

    OpenAIRE

    F. Landerer; Jungclaus, J.; Marotzke, J.

    2007-01-01

    We use a coupled climate model to evaluate ocean bottom pressure changes in the IPCC-A1B climate scenario. Ocean warming in the 21st and 22nd centuries causes secular oceanic bottom pressure anomalies. The essential feature is a net mass transfer onto shallow shelf areas from the deeper ocean areas, which exhibit negative bottom pressure anomalies. We develop a simple mass redistribution model that explains this mechanism. Regionally, however, distinct patterns of bottom pressure anomalies em...

  10. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  11. Global Income Distribution and Poverty: Implications from the IPCC SRES Scenarios

    OpenAIRE

    Calzadilla, Alvaro

    2010-01-01

    The Special Report on Emissions Scenarios (SRES) has been widely used to analyze climate change impacts, vulnerability and adaptation. The storylines behind these scenarios outline alternative development pathways, which have been the base for climate research and other studies at global, regional and country level. Based on the global income distribution and poverty module (GlobPov), we assess the implication of the IPCC SRES scenarios on global poverty and inequality. We find that global po...

  12. Improving the reliability of fishery predictions under climate change

    DEFF Research Database (Denmark)

    Brander, Keith

    2015-01-01

    The increasing number of publications assessing impacts of climate change on marine ecosystems and fisheries attests to rising scientific and public interest. A selection of recent papers, dealing more with biological than social and economic aspects, is reviewed here, with particular attention...... to the reliability of projections of climate impacts on future fishery yields. The 2014 Intergovernmental Panel on Climate Change (IPCC) report expresses high confidence in projections that mid- and high-latitude fish catch potential will increase by 2050 and medium confidence that low-latitude catch potential...... will decline. These levels of confidence seem unwarranted, since many processes are either absent from or poorly represented in the models used, data are sparse and, unlike terrestrial crop projections, there are no controlled experiments.This review discusses methodological issues that affect our...

  13. NPOESS, Essential Climates Variables and Climate Change

    Science.gov (United States)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  14. Mapping Vulnerability to Climate Change

    OpenAIRE

    Heltberg, Rasmus; Bonch-Osmolovskiy, Misha

    2011-01-01

    This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natura...

  15. Potential impact of climate change on durum wheat cropping in Tunisia

    OpenAIRE

    Lhomme, Jean-Paul; Mougou, R.; Mansour, M

    2009-01-01

    The potential effect of climate change on durum wheat in Tunisia is assessed using a simple crop simulation model and a climate projection for the 2071-2100 period, obtained from the M,t,o-France ARPEGE-Climate atmospheric model run under the IPCC (International Panel on Climate Change) scenario A1B. In the process-oriented crop model, phenology is estimated through thermal time. Water balance is calculated on a daily basis by means of a simple modelling of actual evapotranspiration involving...

  16. Who did write the report of the IPCC Group 3?

    International Nuclear Information System (INIS)

    After having briefly recalled the role of each of the groups of the IPCC, this brief document recalls the role of Group 3 (to define strategies aimed at climate change mitigation) and indicates the number of authors of different nationalities for the report published in April 2014. He analyses how these nationalities are distributed for some specific and important chapters. He outlines and denounces the low representation of France among these authors, and notices that some contents are in contradiction with the French energy policy. Somehow consequently, he also criticizes the way this report considers nuclear energy (mining risks, operational risks, civil-military relationship, nuclear waste control)

  17. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland......) a study on the effects of elevated atmospheric CO2-concentration, warming and drought on the photosynthetic capacity and phenology of C. vulgaris and D. flexuosa in an outdoor climate change experiment on a grassy heathland in Denmark; 4) a study on climate change impacts on the competitive interactions...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  18. Summary for Policymakers IPCC Fourth Assessment Report, WorkingGroup III

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Terry; Bashmakov, Igor; Bernstein, Lenny; Bogner,Jean; Bosch, Peter; Dave, Rutu; Davidson, Ogunlade; Fisher, Brian; Grubb,Michael; Gupta, Sujata; Halsnaes, Kirsten; Heij, Bertjan; Kahn Ribeiro,Suzana; Kobayashi, Shigeki; Levine, Mark; Martino, Daniel; MaseraCerutti, Omar; Metz, Bert; Meyer, Leo; Nabuurs, Gert-Jan; Najam, Adil; Nakicenovic, Nebojsa; Rogner, Hans Holger; Roy, Joyashree; Sathaye,Jayant; Schock, Robert; Shukla, Priyaradshi; Sims, Ralph; Smith, Pete; Swart, Rob; Tirpak, Dennis; Urge-Vorsatz, Diana; Zhou, Dadi

    2007-04-30

    A. Introduction 1. The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on thescientific, technological, environmental, economic and social aspects ofmitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS)and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The following summary is organised into six sections after thisintroduction: - Greenhouse gas (GHG) emission trends, - Mitigation in theshort and medium term, across different economic sectors (until 2030), -Mitigation in the long-term (beyond 2030), - Policies, measures andinstruments to mitigate climate change, - Sustainable development andclimate change mitigation, - Gaps in knowledge. References to thecorresponding chapter sections are indicated at each paragraph in squarebrackets. An explanation of terms, acronyms and chemical symbols used inthis SPM can be found in the glossary to the main report.

  19. Why responses to dramatic climate change are important?

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Mφller

    2011-01-01

    @@ Climate change is proceeding at an unprecedented pace with global temperatures and sea-levels setting new records almost every year (IPCC, 2007).While these changes are worrisome due to effects on all biological systems and hence also on humans, even more problematic changes may be in the waiting, because not only is the climate changing, but it is also becoming more extreme.Extreme temperatures, rainfall, droughts, storms and fires are already becoming more common with severe consequences for humans, their crops and domestic animals and all wild organisms.For example, the severe heat wave in 2003 caused an excess mortality of 2,600 humans in France alone (INSERM, 2003), and primary production was suppressed across Europe (Ciais et al.2004).

  20. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  1. Climate Change and Oil Depletion

    International Nuclear Information System (INIS)

    2 atmospheric content and of the average earth surface temperature are being considered to be interrelated. Carbon dioxide, water vapour and clouds all act as greenhouse forcing agents; cloud cover on account of its high solar reflectivity also acts as a direct cooling agent. Aerosols are of great importance in the processes of cloud formation and in precipitation initiation, thereby affecting the hydrological cycle; they also exhibit radiative forcing properties both direct and indirect, by the way of the clouds, either positive or negative, according to their particular composition. These particular influences are not yet well known and not yet properly incorporated in the simulations of climate scenarios adopted by the IPCC. And uncertainty brackets are still rather large. Notwithstanding, the results of these still incomplete climate scenarios have been taken as enough scientific evidence to decide upon imposing limits to greenhouse gas emissions. The European Union has already approved an European Climate Change Programme and took the political initiative in the Marrakech COP of the UNFCCC in November 2001, to the effect of the implementation of the Kyoto Protocol (1997). This is a political option which, besides setting emissions targets and energy policy terms of reference, also sets emission taxes and opens a new financial market for the trade of emission rights or permits. Evidence for the actual strain put upon the fossil energy supply is rather stronger than the evidence for anthropogenic climate changes. Rather more attention should be drawn to the supply of alternative energy sources, to the development of new energy carriers, to the improvement of technologies of energy conversion and storage as well as to the rationalization and moderation of demand at end use, so that a severe fossil energy supply crises might be avoided. In doing so, environmental and climatic consequences of any kind due to the rising worldwide level of energy demand would be

  2. Including Cities in Projections of Global Climate Change (Invited)

    Science.gov (United States)

    McCarthy, M.; Best, M.; Betts, R.

    2010-12-01

    The impact of land use change through urbanisation has long been recognised as an important driver of localised climate change, resulting from the thermal and aerodynamic properties of the built environment that impact heat, moisture and momentum exchange at the atmosphere-surface interface. Urban areas contain a majority of the global population, and account for approximately 70% of primary energy demand. Therefore urban areas are focal points of vulnerability and exposure to climate change, but also potentially powerful focal points for adaptation and mitigation strategies. Urban areas occupy only a tiny fraction of the available land surface of the globe, and therefore have generally been ignored in the context of global climate change simulation. Rapid advances in recent decades have lead to the development of numerical urban models suitable for coupling to weather prediction and climate models. While the urban micro-climate and greenhouse gas induced climate change operate over very different space and time-scales we should not assume that their evolution will be independent. In this paper we demonstrate the use of an urban land surface exchange scheme nested in Hadley Centre climate models contributing to the fifth assessment report of the IPCC. This has been used to quantify the development of urban heat islands in response to both radiatively forced climate change from greenhouse gas emissions, and local forcing from anthropogenic heat release associated with energy use within the urban environment. Urban citizens will be exposed to the cumulative impacts of urbanisation and climate change trends through the 21st Century, and here we demonstrate that these would be much greater than climate change alone. We also find that those areas of the world expected to undergo large urbanisation over the 21st Century are within climate zones that are among those most sensitive to the nocturnal urban heat island effect.

  3. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought o...

  4. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  5. Climate change, wine, and conservation

    OpenAIRE

    Hannah, L.; Roehrdanz, PR; Ikegami, M; Shepard, AV; Shaw; Tabor, G; Zhi, L; Marquet, PA; Hijmans, RJ

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticul...

  6. Climate change and catchment hydrology

    OpenAIRE

    Murphy, Conor

    2013-01-01

    Climate change is expected to alter catchment hydrology through changes in extremes of flooding and drought. River catchments are complex, dynamic systems and it is important to develop our understanding of how these systems are likely to respond to changes in climate. Work is ongoing in using EC-Earth simulations to further our understanding of how climate change will affect catchment hydrology and flood risk. In Ireland, the importance of this task is emphasised ...

  7. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  8. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K.; Polly J Ericksen; Herrero, Mario; Challinor, Andrew J.

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  9. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  10. Climate change policy position

    International Nuclear Information System (INIS)

    The Canadian Association of Petroleum Producers (CAPP) is a firm believer in the need to take action to mitigate the risks associated with climate change, and that clear government policy is called for. The principles of sustainable development must guide this policy development effort. The initiatives required to address greenhouse gas emissions over both the short and long term must be carefully considered, and it is up to industries to ensure their production efficiency and emission intensity. Promoting improved performance of industries in Canada and developing technology that can be deployed internationally for larger global effects represents Canada's best contribution to progress on greenhouse gas emissions. The increase in energy demand along with increases in population and economic growth have contributed to an increase in greenhouse gas emissions despite improved energy efficiency in industry. Significant damage to the economy will result if Canada is to meet its commitment under the Kyoto Protocol, forcing the country to buy large quantities of foreign credits instead of using those funds for increased research and development. CAPP indicated that an effective plan must be: balanced, equitable, responsible, competitive, focused on technology and innovation, and based on agreements on sectoral plans. Each of these principles were discussed, followed by the fundamentals of approach for upstream oil and gas. The framework for climate change policy was described as well as the elements of a sector plan. CAPP wants to work with all levels of government on an appropriate plan for Canada, that considers our unique circumstances. Canada can play a significant role on the international stage by properly implementing the policy position proposed by the CAPP without unnecessary risks to the economy. refs

  11. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  12. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  13. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  14. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  15. Urban Growth and Climate Change

    OpenAIRE

    Kahn, Matthew E.

    2008-01-01

    Between 1950 and 2030, the share of the world's population that lives in cities is predicted to grow from 30% to 60%. This urbanization has consequences for the likelihood of climate change and for the social costs that climate change will impose on the world's quality of life. This paper examines how urbanization affects greenhouse gas production, and it studies how urbanites in the developed and developing world will adapt to the challenges posed by climate change.

  16. Global warming and climate change

    International Nuclear Information System (INIS)

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  17. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  18. A Common Methodology for Risk Assessment and Mapping of Climate Change Related Hazards—Implications for Climate Change Adaptation Policies

    Directory of Open Access Journals (Sweden)

    Maria Papathoma-Köhle

    2016-02-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC, 2014, suggests that an important increase in frequency and magnitude of hazardous processes related to climate change is to be expected at the global scale. Consequently, it is necessary to improve the level of preparedness and the level of public awareness, to fill institutional gaps, and to improve territorial planning in order to reduce the potentially disastrous impact of natural hazards related to climate change. This paper mainly presents a new framework for risk assessment and mapping which enables countries with limited data sources to assess their risk to climate change related hazards at the local level, in order to reduce potential costs, to develop risk reduction strategies, to harmonize their preparedness efforts with neighboring countries and to deal with trans-boundary risk. The methodology is based on the European Commission’s “Risk Assessment and Mapping Guidelines for Disaster Management” (2010 and considers local restrictions, such as a lack of documentation of historic disastrous events, spatial and other relevant data, offering alternative options for risk assessment, and the production of risk maps. The methodology is based on event tree analysis. It was developed within the European project SEERISK and adapted for a number of climate change-related hazards including floods, heat waves, wildfires, and storms. Additionally, the framework offers the possibility for risk assessment under different future scenarios. The implications for climate change adaptation policy are discussed.

  19. Level of knowledge in the science of climate change: will the climate really change in the 21st century?

    International Nuclear Information System (INIS)

    The Intergovernmental Panel on Climate Change (IPCC) recently stated that mean temperature is not as stable as it used to be, indicating a trend toward global warming. Understanding this phenomena should lead to better decisions concerning reductions of greenhouse gas emissions. It should also make it easier to adapt our socio-economic and environmental activities to a new reality which seems inevitable. The author discussed climate equilibrium by looking at the five sub-systems: atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere. A review of the historical evolution of climate was presented along with an examination of the relationships between greenhouse gases and the recent evolution of climate. The author discussed the uncertainty of scenarios predicting the future of climate change and concluded that climate change is upon us and is likely to intensify in the future. It was emphasized that adaptation to climate change will have to include reductions of greenhouse gas emissions. According to the author, a scenario involving a doubling of carbon dioxide in the atmosphere appears almost unavoidable. 7 refs., 1 tab., 6 figs

  20. Simulating Soil Organic Carbon Stock Changes in Agro-ecosystems using CQESTR, DayCent, and IPCC Tier 1 Methods

    Science.gov (United States)

    Models are often used to quantify how land use change and management impact soil organic carbon (SOC) stocks because it is often not feasible to use direct measuring methods. Because models are simplifications of reality, it is essential to compare model outputs with measured values to evaluate mode...

  1. Soil Moisture-Ecosystem-Climate Interactions in a Changing Climate

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Teuling, A.

    2011-12-01

    Soil moisture is a key variable of the climate system. It constrains plant transpiration and photosynthesis in several regions of the world, with consequent impacts on the water, energy and biogeochemical cycles (e.g. Seneviratne et al. 2010). Moreover it is a storage component for precipitation and radiation anomalies, inducing persistence in the climate system. Finally, it is involved in a number of feedbacks at the local, regional and global scales, and plays a major role in climate-change projections. This presentation will provide an overview on these interactions, based on several recent publications (e.g. Seneviratne et al. 2006, Orlowsky and Seneviratne 2010, Teuling et al. 2010, Hirschi et al. 2011). In particular, it will highlight possible impacts of soil moisture-ecosystem coupling for climate extremes such as heat waves and droughts, and the resulting interconnections between biophysical and biogeochemical feedbacks in the context of climate change. Finally, it will also address recent regional- to global-scale trends in land hydrology and ecosystem functioning, as well as issues and potential avenues for investigating these trends (e.g. Jung et al. 2010, Mueller et al. 2011). References Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Jung, M., et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954. doi:10.1038/nature09396 Mueller, B., S.I. Seneviratne, et al.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230 Orlowsky, B., and S.I. Seneviratne, 2010: Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J. Climate, 23(14), 3918

  2. Demographic aspects of climate change mitigation and adaptation.

    Science.gov (United States)

    Lutz, Wolfgang; Striessnig, Erich

    2015-01-01

    This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.

  3. Climate change - a natural hazard

    Energy Technology Data Exchange (ETDEWEB)

    Kininmonth, William

    2003-07-01

    The impacts of weather and climate extremes (floods, storms, drought, etc) have historically set back development and will continue to do so into the future, especially in developing countries. It is essential to understand how future climate change will be manifest as weather and climate extremes in order to implement policies of sustainable development. The purpose of this article is to demonstrate that natural processes have caused the climate to change and it is unlikely that human influences will dominate the natural processes. Any suggestion that implementation of the Kyoto Protocol will avoid future infrastructure damage, environmental degradation and loss of life from weather and climate extremes is a grand delusion. (Author)

  4. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H J; van Asselt, E D; Madsen, M S;

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling...... was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from...... two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering...

  5. An Interface between Law and Science: The Climate Change Regime

    Science.gov (United States)

    Kuleshov, Y.; Grandbois, M.; Kaniaha, S.

    2012-04-01

    Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific

  6. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  7. Climate change: Some elements from the scientific background and the scientific process; Klimafaglig oppdatering

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H. [Cicero, Oslo (Norway)

    1998-07-01

    The paper reviews the background on mechanisms behind climate variations in the past and man-made climate change and also briefly what is said by the IPCC (Intergovernmental Panel on Climate Change) about the likely future impact of anthropogenic emission of greenhouse gases. The IPCC is presented in some detail. The problem of climate change is not important mainly because of increased global average temperature, but because of a potential variability and instability of the global climate and the local weather. In the past, the climate system has fluctuated strongly and rapidly for natural causes. But the stable climate regime observed after the last ice age is currently perturbed by the large outpouring of greenhouse gases from a variety of human activities. Can the stability of the current climate regime withstand this disturbance? The problem of climate change is riddled with uncertainties, and our main challenge to this situation is to find out how to respond in a rational way. 19 refs., 15 figs.

  8. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  9. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    OpenAIRE

    Heather Keith; David Lindenmayer; Andrew Macintosh; Brendan Mackey

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Con...

  10. Projecting climate change, drought conditions and crop productivity in Turkey

    NARCIS (Netherlands)

    Sen, B.; Topcu, S.; Türkes, M.; Warner, J.F.

    2012-01-01

    This paper focuses on the evaluation of regional climate model simulation for Turkey for the 21st century. A regional climate model, ICTP-RegCM3, with 20 km horizontal resolution, is used to downscale the reference and future climate scenario (IPCC-A2) simulations. Characteristics of droughts as wel

  11. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  12. Lay representations on climate change

    OpenAIRE

    Cabecinhas, Rosa; Lázaro, Alexandra; Carvalho, Anabela

    2006-01-01

    Lay representations on climate change were mapped via the free-word association method in two pilot studies. Participants were asked to generate words associated to “the big problems faced by humankind nowadays” (1st study) and to “climate change” (2nd study). Climate change was not spontaneously evoked by the participants in the first study: pollution was among the top 10 problems, but references to other environmental issues were very low. In the second study, climate change was consid...

  13. The International Climate Change Regime

    Science.gov (United States)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  14. Ground water and climate change

    OpenAIRE

    Taylor, Richard G; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F P

    2013-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the...

  15. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  16. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  17. Pacific Decadal Variability and Central Pacific Warming El Niño in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Di Lorenzo, Emanuele

    2015-02-27

    This research aimed at understanding the dynamics controlling decadal variability in the Pacific Ocean and its interactions with global-scale climate change. The first goal was to assess how the dynamics and statistics of the El Niño Southern Oscillation and the modes of Pacific decadal variability are represented in global climate models used in the IPCC. The second goal was to quantify how decadal dynamics are projected to change under continued greenhouse forcing, and determine their significance in the context of paleo-proxy reconstruction of long-term climate.

  18. Nuclear Energy and Climate Change

    OpenAIRE

    Méritet, Sophie; Zaleski, Pierre

    2009-01-01

    The paper will discuss the possibilities of the development of nuclear energy in the world in the midterm and long term. It will correlate the prospects with the emissions of CO2 and the effects on climate change. In particular it will discuss the problems nuclear energy face to make a large contribution of climate change issue.

  19. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  20. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  1. Congress Assesses Climate Change Paleodata

    Science.gov (United States)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  2. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  3. Climate Change, Growth, and Poverty

    OpenAIRE

    Hull, Katy

    2008-01-01

    Equity emerged as the principal theme during the Poverty Reduction and Economic Management (PREM) week session 'climate change, growth and poverty,' where presenters addressed the distributional consequences of climate change, as well as countries' unequal capacity to cope with the twin challenges of adaptation and mitigation. They highlighted actions to strengthen the global knowledge bas...

  4. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  5. A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data

    NARCIS (Netherlands)

    Claessens, L.F.G.; Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O.; Thornton, P.K.; Herrero, M.

    2012-01-01

    Sub-Saharan Africa (SSA) is predicted to experience considerable negative impacts of climate change. The IPCC Fourth Assessment emphasizes that adaptation strategies are essential. Addressing adaptation in thecontext of small-scale, semi-subsistence agriculture raises special challenges. High data d

  6. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  7. Climate change and marine vertebrates.

    Science.gov (United States)

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  8. A globally coherent fingerprint of climate change impacts across natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Parmesan, C. [University of Texas, Austin (United States). Patterson Laboratories; Yohe, G. [Wesleyan University, Middletown, Connecticut (United States)

    2003-01-02

    Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems. (author)

  9. Climate variability and change

    International Nuclear Information System (INIS)

    When Australia's climate should not be definite barrier to the population reaching 30 million by 2050, it is recognised that our climate has limited the development of the nation over the past 200 years. Indeed in 1911, based on a comparison of the climate and development between the US and Australia. Griffith Taylor predicted that Australia's population would be 19 million at the end of the 20th century, which is a pretty good 90-year forecast. The climate constraint is not only due to much of the country being semi-arid with an annual rainfall below 400 millimetres, but also due to the large year-to-year variability of rainfall across the country

  10. Significant reductions in oil quality and lipid content of oilseed rape (Brassica napus L.) under climate change

    DEFF Research Database (Denmark)

    Namazkar, Shahla; Egsgaard, Helge; Frenck, Georg;

    Despite of the potential importance to food and bioenergy purposes effects from climate change on plant oil quality have hardly been characterized. Worldwide Brassica napus, rapeseed or oilseed rape, is the second largest source of vegetable oil and the predominant oil crop in Europe. We found...... significant changes in oil quality and quantity of cultivars of oilseed rape grown in five future climate scenarios with elevated [CO2], [O3], temperature and combinations hereof (~RCP8.5, IPCC 2013)....

  11. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  12. Development of Climate Change Adaptation Platform using Spatial Information

    Science.gov (United States)

    Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.

    2014-12-01

    Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the

  13. Scientific consensus and climate change: the codification of a global research agenda

    International Nuclear Information System (INIS)

    The 'scientific consensus' which influenced the Framework Convention on Climate Change was carefully drafted by the Intergovernmental Panel on Climate Change (IPCC) between 1988 and 1992. In spite of it, there have been divergent national responses and policy controversy continues. The willingness of States to reduce the emission of greenhouse gases appears to be declining. An explanation for this is proposed which stresses the question of whether the nature of the scientific advice as sought and given bears some responsibility for the weak policy response. Institutional and personality factors in the formulation of IPCC advice are explored, as is the policy model upon which advice was given. It is concluded that this model is intrinsically unable to generate decisive environmental policy, but rather invites the institutions of the natural sciences and macro-economics to endow their research agendas with claims to policy relevance through the production of future 'findings'. (Author)

  14. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  15. Incorporating vegetation dynamics in regional climate change projections over the Mediterranean region

    Science.gov (United States)

    Alo, C. A.; Anagnostou, E. N.

    2009-09-01

    Recent projections of climate change over the Mediterranean region based on general circulation models (e.g. IPCC AR4 GCMs) and regional climate models (e.g. PRUDENCE RCMs) generally show strong warming and pronounced decrease in precipitation, especially in the summer. While the role of vegetation in modulating the regional climate is widely recognized, most, if not all, of these GCM and RCM climate change projections do not account for the response of the dynamic biosphere to potential climate changes. Here, we present preliminary results from ongoing 15-year simulations over the Mediterranean region with a regional climate model (RegCM3) asynchronously coupled to a dynamic vegetation model (CLM-DGVM). Three experiments are performed in order to explore the impact of vegetation feedback on simulated changes in mean climate, climate variability and extreme climatic events (i.e., flood-inducing storms, droughts, heat waves, and extreme winds). This includes 1) a present day climate run with dynamic vegetation, 2) a future climate run with dynamic vegetation, and 3) a future climate run with static vegetation (i.e. vegetation fixed at the present day state). RegCM3 and CLM-DGVM are both run at a horizontal grid spacing of 20 km over a region covering the Mediterranean basin and parts of Central Europe and Northern Africa. Results illustrate the importance of including vegetation feedback in predictions of climate change impacts on Mediterranean climate variability, extreme climatic events and storms.

  16. New climate change report turns up the heat on energy policymakers

    International Nuclear Information System (INIS)

    Any doubts about the role of nuclear power in fighting the damaging effects of climate change should be dispelled once and for all by the latest report from the Intergovernmental Panel on Climate Change (IPCC). The key findings of the IPCC's so-called 'Synthesis Report', published in November 2014, said that if left unchecked, climate change ''will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems''. The Synthesis Report, which brought together the findings of the IPCC's Fifth Assessment Report produced by more than 800 scientists and released over more than one year, noted that multiple mitigation pathways are available that could limit warming to below 2 C relative to pre-industrial levels, all of which would need substantial cuts in emissions reductions over the coming few decades and near-zero emissions of CO2 and other long-lived greenhouse gases (GHGs) by the end of the century. As 2014 draws to a close, perhaps those with the power to effect energy policy change will take time to reflect on the mounting evidence of what is good, and what is not good, in terms of balancing the world's energy needs with the planet's overall health.

  17. Australian climate change impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    Full text: Full text: The IPCC Fourth Assessment Report on impacts, adaptation and vulnerability made the following conclusions about Australia (Hennessy et al., 2007): Regional climate change has occurred. Since 1950, there has been 0.70C warming, with more heat waves, fewer frosts, more rain in north-west Australia, less rain in southern and eastern Australia, an increase in the intensity of Australian droughts and a rise in sea level of about 70 mm. Australia is already experiencing impacts from recent climate change. These are now evident in increasing stresses on water supply and agriculture, changed natural ecosystems, and reduced seasonal snow cover. Some adaptation has already occurred in response to observed climate change. Examples come from sectors such as water, natural ecosystems, agriculture, horticulture and coasts. However, ongoing vulnerability to extreme events is demonstrated by substantial economic losses caused by droughts, floods, fire, tropical cyclones and hail. The climate of the 21st century is virtually certain to be warmer, with changes in extreme events. Heat waves and fires are virtually certain to increase in intensity and frequency. Floods, landslides, droughts and storm surges are very likely to become more frequent and intense, and snow and frost are very likely to become less frequent. Large areas of mainland Australia are likely to have less soil moisture. Potential impacts of climate change are likely to be substantial without further adaptation; As a result of reduced precipitation and increased evaporation, water security problems are projected to intensify by 2030 in southern and eastern Australia; Ongoing coastal development and population growth, in areas such as Cairns and south-east Queensland, are projected to exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding by 2050. Significant loss of biodiversity is projected to occur by 2020 in some ecologically rich

  18. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  19. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J;

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  20. Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Tuan B. Le

    2015-07-01

    Full Text Available Recent studies by the United Nations Environment Programme (UNEP and the Intergovernmental Panel on Climate Change (IPCC indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to project the impact of climate change on the seasonal availability of surface water of the Huong River in Central Vietnam in the twenty-first century through hydrologic simulations driven by climate model projections. To calibrate and validate the hydrologic model, the model was forced by the rain gage-based gridded Asian Precipitation–Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE V1003R1 Monsoon Asia precipitation data along with observed temperature, humidity, wind speed, and solar radiation data from local weather stations. The simulated discharge was compared to observations for the period from 1951 until present. Three Global Climate Models (GCMs ECHAM5-OM, HadCM3 and GFDL-CM2.1 integrated into Long Ashton Research Station-Weather Generator (LARS-WG stochastic weather generator were run for three IPCC–Special Report on Emissions Scenarios (IPCC-SRES emissions scenarios A1B, A2, and B1 to simulate future climate conditions. The hydrologic model simulated the Huong River discharge for each IPCC-SRES scenario. Simulation results under the three GCMs generally indicate an increase in summer and fall river discharge during the twenty-first century in A2 and B1 scenarios. For A1B scenario, HadCM3 and GFDL-CM2.1 models project a decrease in river discharge from present to the 2051–2080 period and then increase until the 2071–2100 period while ECHAM5-OM model produces opposite projection that discharge will increase until the 2051–2080 period and then decrease for the rest of the century. Water management

  1. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers

    International Nuclear Information System (INIS)

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO2 Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  2. Ground water and climate change

    Science.gov (United States)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  3. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit;

    to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  4. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope...

  5. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    Science.gov (United States)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  6. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  7. An overview of BCC climate system model development and application for climate change studies

    Science.gov (United States)

    Wu, Tongwen; Song, Lianchun; Li, Weiping; Wang, Zaizhi; Zhang, Hua; Xin, Xiaoge; Zhang, Yanwu; Zhang, Li; Li, Jianglong; Wu, Fanghua; Liu, Yiming; Zhang, Fang; Shi, Xueli; Chu, Min; Zhang, Jie; Fang, Yongjie; Wang, Fang; Lu, Yixiong; Liu, Xiangwen; Wei, Min; Liu, Qianxia; Zhou, Wenyan; Dong, Min; Zhao, Qigeng; Ji, Jinjun; Li, Laurent; Zhou, Mingyu

    2014-02-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC_CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC_CSM1.1 with coarse resolution (approximately 2.8125°×2.8125°) and BCC_CSM1.1(m) with moderate resolution (approximately 1.125°×1.125°). Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC_CSM model have been contributed to the Coupled Model Intercomparison Project phase five (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections. Simulations of the 20th century climate using BCC_CSM1.1 and BCC_CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed. Both BCC_CSM1.1 and BCC_CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses indicate that the higher resolution in BCC_CSM1.1(m) improves the simulation of mean climate relative to BCC_CSM1.1, particularly on regional scales.

  8. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  9. Climate Change and Climate Variability in the Latin American Region

    Science.gov (United States)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    ; and g) Changing some human diseases distribution and provoking the emergence of new ones. The impact of climate change in Latin America's productive sectors is estimated to be of a 1.3 percent reduction of the region's GDP for a change of 2ºC in global temperature (without consider non market sectors and extremes events). Moreover, if the LA countries continue to follow the business as usual scenario, the wealth of natural resources that have supported economic and socio-cultural development in the region will be further degraded, reducing the regional potential for growth. Urgent measures must be taken to help bring environmental and social considerations from the margins to the decision-making and development strategies. This presentation is part of the revision done for the Latin American (LA) chapter under the IPCC WGII Fourth Assessment Report.

  10. Enhanced warming of the Northwest Atlantic Ocean under climate change

    Science.gov (United States)

    Saba, Vincent S.; Griffies, Stephen M.; Anderson, Whit G.; Winton, Michael; Alexander, Michael A.; Delworth, Thomas L.; Hare, Jonathan A.; Harrison, Matthew J.; Rosati, Anthony; Vecchi, Gabriel A.; Zhang, Rong

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) fifth assessment of projected global and regional ocean temperature change is based on global climate models that have coarse (˜100 km) ocean and atmosphere resolutions. In the Northwest Atlantic, the ensemble of global climate models has a warm bias in sea surface temperature due to a misrepresentation of the Gulf Stream position; thus, existing climate change projections are based on unrealistic regional ocean circulation. Here we compare simulations and an atmospheric CO2 doubling response from four global climate models of varying ocean and atmosphere resolution. We find that the highest resolution climate model (˜10 km ocean, ˜50 km atmosphere) resolves Northwest Atlantic circulation and water mass distribution most accurately. The CO2 doubling response from this model shows that upper-ocean (0-300 m) temperature in the Northwest Atlantic Shelf warms at a rate nearly twice as fast as the coarser models and nearly three times faster than the global average. This enhanced warming is accompanied by an increase in salinity due to a change in water mass distribution that is related to a retreat of the Labrador Current and a northerly shift of the Gulf Stream. Both observations and the climate model demonstrate a robust relationship between a weakening Atlantic Meridional Overturning Circulation (AMOC) and an increase in the proportion of Warm-Temperate Slope Water entering the Northwest Atlantic Shelf. Therefore, prior climate change projections for the Northwest Atlantic may be far too conservative. These results point to the need to improve simulations of basin and regional-scale ocean circulation.

  11. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  12. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  13. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  14. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  15. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  16. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  17. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  18. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  19. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  20. Arctic cities and climate change: climate-induced changes in stability of Russian urban infrastructure built on permafrost

    Science.gov (United States)

    Shiklomanov, Nikolay; Streletskiy, Dmitry; Swales, Timothy

    2014-05-01

    Planned socio-economic development during the Soviet period promoted migration into the Arctic and work force consolidation in urbanized settlements to support mineral resources extraction and transportation industries. These policies have resulted in very high level of urbanization in the Soviet Arctic. Despite the mass migration from the northern regions during the 1990s following the collapse of the Soviet Union and the diminishing government support, the Russian Arctic population remains predominantly urban. In five Russian Administrative regions underlined by permafrost and bordering the Arctic Ocean 66 to 82% (depending on region) of the total population is living in Soviet-era urban communities. The political, economic and demographic changes in the Russian Arctic over the last 20 years are further complicated by climate change which is greatly amplified in the Arctic region. One of the most significant impacts of climate change on arctic urban landscapes is the warming and degradation of permafrost which negatively affects the structural integrity of infrastructure. The majority of structures in the Russian Arctic are built according to the passive principle, which promotes equilibrium between the permafrost thermal regime and infrastructure foundations. This presentation is focused on quantitative assessment of potential changes in stability of Russian urban infrastructure built on permafrost in response to ongoing and future climatic changes using permafrost - geotechnical model forced by GCM-projected climate. To address the uncertainties in GCM projections we have utilized results from 6 models participated in most recent IPCC model inter-comparison project. The analysis was conducted for entire extent of Russian permafrost-affected area and on several representative urban communities. Our results demonstrate that significant observed reduction in urban infrastructure stability throughout the Russian Arctic can be attributed to climatic changes and that

  1. Reservoir Systems in Changing Climate

    Science.gov (United States)

    Lien, W.; Tung, C.; Tai, C.

    2007-12-01

    Climate change may cause more climate variability and further results in more frequent extreme hydrological events which may greatly influence reservoir¡¦s abilities to provide service, such as water supply and flood mitigation, and even danger reservoir¡¦s safety. Some local studies have identified that climate change may cause more flood in wet period and less flow in dry period in Taiwan. To mitigate climate change impacts, more reservoir space, i.e. less storage, may be required to store higher flood in wet periods, while more reservoir storage may be required to supply water for dry periods. The goals to strengthen adaptive capacity of water supply and flood mitigation are conflict under climate change. This study will focus on evaluating the impacts of climate change on reservoir systems. The evaluation procedure includes hydrological models, a reservoir water balance model, and a water supply system dynamics model. The hydrological models are used to simulate reservoir inflows under different climate conditions. Future climate scenarios are derived from several GCMs. Then, the reservoir water balance model is developed to calculate reservoir¡¦s storage and outflows according to the simulated inflows and operational rules. The ability of flood mitigation is also evaluated. At last, those outflows are further input to the system dynamics model to assess whether the goal of water supply can still be met. To mitigate climate change impacts, the implementing adaptation strategies will be suggested with the principles of risk management. Besides, uncertainties of this study will also be analyzed. The Feitsui reservoir system in northern Taiwan is chosen as a case study.

  2. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  3. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip;

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  4. Effect of climate change on temperate forest ecosystems

    NARCIS (Netherlands)

    Brolsma, R.J.

    2010-01-01

    In temperate climates groundwater can have a strong effect on vegetation, because it can influence the spatio-temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. Current IPCC climate projections based on CO2 emission scenarios show a global temperature rise an

  5. A Governing Framework for Climate Change Adaptation in the Built Environment

    Directory of Open Access Journals (Sweden)

    Daniel A. Mazmanian

    2013-12-01

    Full Text Available Developing an approach to governing adaptation to climate change is severely hampered by the dictatorship of the present when the needs of future generations are inadequately represented in current policy making. We posit this problem as a function of the attributes of adaptation policy making, including deep uncertainty and nonstationarity, where past observations are not reliable predictors of future outcomes. Our research links organizational decision-making attributes with adaptation decision making and identifies cases in which adaptation actions cause spillovers, free riding, and distributional impacts. We develop a governing framework for adaptation that we believe will enable policy, planning, and major long-term development decisions to be made appropriately at all levels of government in the face of the deep uncertainty and nonstationarity caused by climate change. Our framework requires that approval of projects with an expected life span of 30 years or more in the built environment include minimum building standards that integrate forecasted climate change impacts from the Intergovernmental Panel on Climate Change (IPCC intermediate scenario. The intermediate IPCC scenario must be downscaled to include local or regional temperature, water availability, sea level rise, susceptibility to forest fires, and human habitation impacts to minimize climate-change risks to the built environment. The minimum standard is systematically updated every six years to facilitate learning by formal and informal organizations. As a minimum standard, the governance framework allows jurisdictions to take stronger actions to increase their climate resilience and thus maintain system flexibility.

  6. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  7. Climate Change Facts: Answers to Common Questions

    Science.gov (United States)

    ... Basics Climate Change Facts: Answers to Common Questions Climate Change Facts: Answers to Common Questions This page ... All Responses Is there a scientific consensus on climate change? The major scientific agencies of the United ...

  8. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  9. Protected areas' role in climate-change mitigation.

    Science.gov (United States)

    Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P

    2016-03-01

    Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100. PMID:26474765

  10. Classifying climate change adaptation frameworks

    Science.gov (United States)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  11. Acting against climate change, the French know-how

    International Nuclear Information System (INIS)

    This publication aims at presenting for international purposes the French public and private know-how in the field of struggle against climate change and of decision-making tools. It first recalls the various international commitments (international mobilisation within the IPCC, United Nations, the United Nations Framework Convention on Climate Change or UNFCCC, the Kyoto protocol) and proposes an overview of the UE policy. The next part outlines the role of France as host of the COP21, and the French policy and its territorial declinations. It proposes an overview of the French global offer to meet climate challenges: a table indicates actions and actors in the fields of diagnosis, elaboration of action plans, monitoring and assessment, labelling, capacity development. An article presents the 'Monitoring, Reporting and Verification' (MRV) principle and the different arrangements, bodies and actors addressing these assessment issues, with a focus of methods of assessments of greenhouse gas emissions (standards and methods have been developed in France and are evoked). Various tools applicable in different sectors are also indicated, and the exportation of abilities regarding energy-climate diagnosis is outlined. The next part addresses methods, tools and publications addressing the diagnosis of consequences of climate change. The structure, content and approach of Territorial Climate Energy Plans (PCET) is presented and commented. The next parts show how French companies are mobilised to reduce their greenhouse gas emissions, give an overview of public and private initiatives for adaptation to climate change, describe how energy-climate approaches are monitored and assessed, comment how French local communities act at an international level through decentralised cooperation, and indicate how French know-how is developed and can be exported in the field of education and training of actors

  12. Modeling impacts of climate change on freshwater availability in Africa

    Science.gov (United States)

    Faramarzi, Monireh; Abbaspour, Karim C.; Ashraf Vaghefi, Saeid; Farzaneh, Mohammad Reza; Zehnder, Alexander J. B.; Srinivasan, Raghavan; Yang, Hong

    2013-02-01

    SummaryThis study analyzes the impact of climate change on freshwater availability in Africa at the subbasin level for the period of 2020-2040. Future climate projections from five global circulation models (GCMs) under the four IPCC emission scenarios were fed into an existing SWAT hydrological model to project the impact on different components of water resources across the African continent. The GCMs have been downscaled based on observed data of Climate Research Unit to represent local climate conditions at 0.5° grid spatial resolution. The results show that for Africa as a whole, the mean total quantity of water resources is likely to increase. For individual subbasins and countries, variations are substantial. Although uncertainties are high in the simulated results, we found that in many regions/countries, most of the climate scenarios projected the same direction of changes in water resources, suggesting a relatively high confidence in the projections. The assessment of the number of dry days and the frequency of their occurrences suggests an increase in the drought events and their duration in the future. Overall, the dry regions have higher uncertainties than the wet regions in the projected impacts on water resources. This poses additional challenge to the agriculture in dry regions where water shortage is already severe while irrigation is expected to become more important to stabilize and increase food production.

  13. Particulate Matter and Health Risk under a Changing Climate: Assessment for Portugal

    Directory of Open Access Journals (Sweden)

    Daniela Dias

    2012-01-01

    Full Text Available The potential impacts of climate-induced changes in air pollution levels and its impacts on population health were investigated. The IPCC scenario (SRES A2 was used to analyse the effects of climate on future PM10 concentrations over Portugal and their impact on short-term population exposure and mortality. The air quality modelling system has been applied with high spatial resolution looking on climate changes at regional scale. To quantify health impacts related to air pollution changes, the WHO methodology for health impact assessment was implemented. The results point to 8% increase of premature mortality attributed to future PM10 levels in Portugal. The pollution episodes with daily average PM10 concentration above the current legislated value (50 μg·m−3 would be responsible for 81% of attributable cases. The absolute number of deaths attributable to PM10 under future climate emphasizes the importance of indirect effects of climate change on human health.

  14. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India

    Indian Academy of Sciences (India)

    K T Senzeba; S Rajkumari; A Bhadra; A Bandyopadhyay

    2016-04-01

    Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios foran eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of ArunachalPradesh with an area of 52 km^2 is selected for the present study with an elevation range of 3143–4946 mabove mean sea level. Satellite images from October to June of the selected hydrological year 2006–2007were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done usingNDSI method. Based on long term meteorological data, temperature and precipitation data of selectedhydrological year are normalized to represent present climatic condition. The projected temperatureand precipitation data are downloaded from NCAR’s GIS data portal for different emission scenarios(SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020,2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired locationby spatially interpolating the gridded data and then by statistical downscaling using linear regression.Snow depletion curves for all projected scenarios are generated for the study area and compared withconventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth fordifferent future years are highest under A1B and lowest under IPCC commitment, whereas A2 andB1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for differentfuture years follows almost the same trend as change in precipitation from present climate under allprojected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snowcover, the total streamflow under projected climatic scenarios in future years will be primarily governedby the change in precipitation and not by change in snowmelt depth. Advancing of depletion curves

  15. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India

    Science.gov (United States)

    Senzeba, K. T.; Rajkumari, S.; Bhadra, A.; Bandyopadhyay, A.

    2016-04-01

    Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios for an eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of Arunachal Pradesh with an area of 52 km2 is selected for the present study with an elevation range of 3143-4946 m above mean sea level. Satellite images from October to June of the selected hydrological year 2006-2007 were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done using NDSI method. Based on long term meteorological data, temperature and precipitation data of selected hydrological year are normalized to represent present climatic condition. The projected temperature and precipitation data are downloaded from NCAR's GIS data portal for different emission scenarios (SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020, 2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired location by spatially interpolating the gridded data and then by statistical downscaling using linear regression. Snow depletion curves for all projected scenarios are generated for the study area and compared with conventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth for different future years are highest under A1B and lowest under IPCC commitment, whereas A2 and B1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for different future years follows almost the same trend as change in precipitation from present climate under all projected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth. Advancing of

  16. Climate Change and Nuclear Power

    International Nuclear Information System (INIS)

    The 1992 United Nations Framework Convention on Climate Change is one of a series of recent agreements through which countries around the world are banding together to meet the challenge of altering the global climate. In 1997, in respond to the growing public pressure and questions on climate change governments adopted the Kyoto Protocol. The 5th Conference of the Parties to the UN Framework Convention on Climate Change (COP5 UNFCCC) was a rather technical and complex conference which focused in particular on the development of a detailed framework for the application of ''flexible mechanisms'' as laid down in the Kyoto Protocol. Young Generation Network as a part of the International Nuclear Forum at COP5 took part in the debate saying that nuclear is the part of the solution. (author)

  17. Projection of future climate changes

    International Nuclear Information System (INIS)

    Climate models provide the opportunity to anticipate how the climate system may change due to anthropogenic activities during the 21. century. Studies are based on numerical simulations that explore the evolution of the mean climate and its variability according to different socio-economic scenarios. We present a selection of results from phase 5 of the Climate model intercomparison project (CMIP5) with an illustrative focus on the two French models that participated to this exercise. We describe the effects of human perturbations upon surface temperature, precipitation, the cryo-sphere, but also extreme weather events and the carbon cycle. Results show a number of robust features, on the amplitude and geographical patterns of the expected changes and on the processes at play in these changes. They also show the limitations of such a prospective exercise and persistent uncertainties on some key aspects. (authors)

  18. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes...... substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. Udgivelsesdato: 2007-Dec......Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  19. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  20. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  1. Confronting climate change

    International Nuclear Information System (INIS)

    Emissions of greenhouse gases (GHGs), especially from energy production and use, and their impact on global climate emerged as a major national issue in the United States during the 1980s. As a result, Congress directed the US Department of Energy (DOE) to ask the National Academy of Sciences and the National Academy of Engineering to assess the current state of research and development (R ampersand D) in the United States in alternative energy sources, and to suggest energy R ampersand D strategies involving roles for both the public and private sectors, should the government want to give priority to stabilizing atmospheric concentrations of GHGs. The findings and recommendations of the Committee on Alternative Energy Research and Development Strategies, appointed by the National Research Council in response to Congress's directive, are provided in this report and summarized in this chapter. The energy R ampersand D strategies and actions recommended by the committee are structured to facilitate prudent and decisive responses by the United States, despite uncertainties regarding the effects of GHGs on global climate. 96 refs., 4 figs., 17 tabs

  2. The Health Effects of Climate Change in the WHO European Region

    Directory of Open Access Journals (Sweden)

    Tanja Wolf

    2015-11-01

    Full Text Available The evidence of observed health effects as well as projections of future health risks from climate variability and climate change is growing. This article summarizes new knowledge on these health risks generated since the IPCC fourth assessment report (AR4 was published in 2007, with a specific focus on the 53 countries comprising the WHO European Region. Many studies on the effects of weather, climate variability, and climate change on health in the European Region have been published since 2007, increasing the level of certainty with regard to already known health threats. Exposures to temperature extremes, floods, storms, and wildfires have effects on cardiovascular and respiratory health. Climate- and weather-related health risks from worsening food and water safety and security, poor air quality, and ultraviolet radiation exposure as well as increasing allergic diseases, vector- and rodent-borne diseases, and other climate-sensitive health outcomes also warrant attention and policy action to protect human health.

  3. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  4. Our response to climate change requires nuclear power

    International Nuclear Information System (INIS)

    Australian politicians and environmental activists who reject nuclear power as the pivotal technology to combat climate change stand compromised before the court of international scientific opinion and informed global realism. The content of their rhetoric on nuclear matters comprises pseudo-science, innuendo and ideological prejudice communicated through the politics of fear and risk. The recent report of the United Nations Intergovernmental Panel on Climate Change (IPCC) calls for urgent major reductions in greenhouse gas emissions, without which the natural feedback mechanisms that control global temperatures might be overwhelmed. It points out that presently human activity produces around 23.6 billion tonnes of carbon dioxide per annum, about one half of which can be absorbed by soil and ocean. However this capacity is being rapidly destroyed by rising soil and ocean surface temperatures. The report points out that if global warming cannot be kept between manageable limits, it could lead to the destruction of the Great Barrier Reef and the Amazon rainforest, and lead to the forced migration of hundreds of millions of people from equatorial regions and the loss of vast tracts of land as ice caps melt and sea levels rise. For many scientists and engineers concerned with energy and environmental issues it is a matter of deep regret that, the IPCC meetings at Kyoto and Paris have not explicitly endorsed the central role, which could be played by nuclear energy in combating greenhouse gas production and climate change. The environmental benefits from switching to nuclear fuels are striking. The IPCC delegates attending Kyoto in 1997 must have known that light and air-conditioning for the modern International Convention Centre were obtained from an electricity grid supplied partly from a network of 54 nuclear power stations. The greenhouse gas emissions saved by the use of this network and the uranium fuel cycle is around 287 million tonnes of carbon dioxide per

  5. Probabilistic forecast for climate change over Northern Eurasia

    Science.gov (United States)

    Sokolov, Andrei; Monier, Erwan; Kicklighter, David; Scott, Jeffrey; Gao, Xiang; Schlosser, Adam

    2013-04-01

    660 ppm of CO2-equivalent stabilization scenarios are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol forcing used in the provide a good approximation for the median, and the lower and upper bound of 90% probability distribution of 21st century climate change. Five member ensembles were carried out for each choice of parameters using different initial conditions. Presented results show strong dependency of simulated changes in precipitation on initial conditions, indicating that multiple simulations a required to isolated forced climate system response from natural variability. Results of the IGSM-CAM simulations are compared with a pattern scaling method that extends the latitudinal projections of the IGSM 2D zonal-mean atmosphere by applying longitudinally resolved patterns from climate model projections archived from exercises carried out for the 4th Assessment Report (AR4) of the IPCC. The IGSM-CAM physically simulates climate change using probability distributions for climate parameters constrained by the observed climate record, but relies on one particular model. On the other hand, the pattern scaling approach produces a meta-ensemble that can be treated as a hybrid frequency distribution (HFD) that integrates the uncertainty in the IGSM ensemble and in the regional patterns of climate change of different climate models. Together, the two approaches provide a comprehensive analysis of possible climate change over Northern Eurasia and its potential impacts.

  6. Vulnerability of mountain glaciers in China to climate change

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Ping; DING Yong-Jian; LIU Shi-Yin; TAN Chun-Ping

    2015-01-01

    Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to improve our understanding of glacial vulnerability to climate change to establish adaptation strategies. A glacial numerical model is developed using spatial principle component analysis (SPCA) supported by remote sensing (RS) and geographical information system (GIS) technologies. The model contains nine factorsdslope, aspect, hillshade, elevation a.s.l., air temperature, precipitation, glacial area change percentage, glacial type and glacial area, describing topography, climate, and glacier characteristics. The vulnerability of glaciers to climate change is evaluated during the period of 1961e2007 on a regional scale, and in the 2030s and 2050s based on projections of air temperature and precipitation changes under the IPCC RCP6.0 scenario and of glacier change in the 21st century. Glacial vulnerability is graded into five levels:potential, light, medial, heavy, and very heavy, using natural breaks classification (NBC). The spatial distribution of glacial vulnerability and its temporal changes in the 21st century for the RCP6.0 scenario are analyzed, and the factors influencing vulnerability are discussed. Results show that mountain glaciers in China are very vulnerable to climate change, and 41.2% of glacial areas fall into the levels of heavy and very heavy vulnerability in the period 1961e2007. This is mainly explained by topographical exposure and the high sensitivity of glaciers to climate change. Trends of glacial vulnerability are projected to decline in the 2030s and 2050s, but a declining trend is still high in some regions. In addition to topographical factors, variation in precipitation in the 2030s and 2050s is found to be crucial.

  7. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  8. Climate change and fuel poverty

    OpenAIRE

    Simon Dresner; Paul Ekins

    2005-01-01

    The research examined the possible effects of rapid climate change on fuel poverty (needing to spend more than 10% of income to maintain a satisfactory level of warmth and other energy services in the home). One particular concern was the prospect that there might be a shutting off of the Gulf Stream, which warms Britain and the rest of north-western Europe. Computer simulations of the climate indicate that shutting down the Gulf Stream would cool England by about 3°C. Climate is not the only...

  9. Predictive Understanding of Seasonal Hydrological Dynamics under Climate and Land Use-Land Cover Change

    Science.gov (United States)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Kumar, P.; Cai, X.; Fraiture, C. D.

    2008-12-01

    Water has always been and will continue to be an important factor in agricultural production and any alteration in the seasonal distribution of water availability due to climate and land use-land cover change (LULCC) will significantly impact the future production. To achieve the ecologic, economic and social objectives of sustainability, physical understanding of the linkages between climatic changes, LULCC and hydrological response is required. Aided by satellite data, modeling and understanding of the interactions between physical processes of the climate system and society, more reliable regional LULCC and climate change projections are now available. However, resulting quantitative projection of changes on the regional scale hydrological components at the seasonal time scale are sparse. This study attempts to quantify the seasonal hydrological response due to projected LULCC and climate change scenario of Intergovernmental Panel on Climate Change (IPCC) in different hydro-climatic regions of the world. The Common Land Model (CLM) is used for global assessment of future hydrologic response with the development of a consistent global GIS based database for the surface boundary conditions and meteorological forcing of the model. Future climate change projections are derived from the IPCC Fourth Assessment Report: Working Group I - The Physical Science Basis. The study is performed over nine river basins selected from Asia, Africa and North America to present the broad climatic and landscape controls on the seasonal hydrological dynamics. Future changes in water availability are quite evident from our results based upon changes in the volume and seasonality of precipitation, runoff and evapotranspiration. Severe water scarcity is projected to occur in certain seasons which may not be known through annual estimates. Knowledge of the projected seasonal hydrological response can be effectively used for developing adaptive management strategies for the sustainability

  10. Reporting the climate change crisis

    OpenAIRE

    Carvalho, Anabela

    2010-01-01

    Climate change is one of the most serious threats that humankind will have to deal with in the coming decades. There is every indication that it will engender a significant upheaval in the climate patterns of the world regions, with corresponding impacts on agriculture, ecosystems and human health. This main entail unpredictable weather events, like storms and tornados, while posing significant risks for human security, destruction of housing and economic structures, and floodi...

  11. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  12. Invasive species and climate change

    Science.gov (United States)

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  13. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  14. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  15. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  16. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  17. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  18. Urban vulnerability and resilience within the context of climate change

    Directory of Open Access Journals (Sweden)

    E. Tromeur

    2012-05-01

    Full Text Available Natural hazards, due to climate change, are particularly damaging in urban areas because of interdependencies of their networks. So, urban resilience has to face up to climate risks. The most impacting phenomenon is the urban heat island (UHI effect. The storage capacity of heat is depending on shapes of buildings, public spaces, spatial organization, transport or even industrial activities. So, adaptive strategies for improving urban climate could be possible in different ways. In the framework of the French project Resilis, this study characterises urban vulnerability and resilience in terms of energy needs of buildings and outside urban comfort according to the IPCC carbon dioxide emission scenarios B2 and A2 for the period 2050–2100 for 10 French cities. The evolutions of four climate indicators in terms of heating and cooling needs and number of hours when the temperature is above 28 °C are then obtained for each city to analyse climate risks and their impacts in urban environment.

  19. Philosophy of climate science part II: modelling climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the second of three parts of an introduction to the philosophy of climate science. In this second part about modelling climate change, the topics of climate modelling, confirmation of climate models, the limits of climate projections, uncertainty and finally model ensembles will be discussed.

  20. Does the weather influence public opinion about climate change?

    Science.gov (United States)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of

  1. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  2. Wildfire Suppression Costs for Canada under a Changing Climate.

    Science.gov (United States)

    Hope, Emily S; McKenney, Daniel W; Pedlar, John H; Stocks, Brian J; Gauthier, Sylvie

    2016-01-01

    Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980-2009) fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC) climate projections. Area burned was modelled as a function of a climate moisture index (CMI), and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs); these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980-2009 period) under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period) under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years) are projected to become commonplace (i.e., occur once every two years or more often) as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses. PMID:27513660

  3. Wildfire Suppression Costs for Canada under a Changing Climate

    Science.gov (United States)

    Stocks, Brian J.; Gauthier, Sylvie

    2016-01-01

    Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980–2009) fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC) climate projections. Area burned was modelled as a function of a climate moisture index (CMI), and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs); these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980–2009 period) under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period) under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years) are projected to become commonplace (i.e., occur once every two years or more often) as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses. PMID:27513660

  4. Avoiding maladaptation to climate change: towards guiding principles

    International Nuclear Information System (INIS)

    The recent publication of the Physical Science Basis volume of IPCC's Fifth Assessment Report reaffirms an already known conclusion: even drastic reductions of global greenhouse gas emissions will be insufficient to avoid some of the impacts of climate change, and is becoming increasingly clear that the temperature increase by the end of the century is likely to exceed the official target of +2 deg. C. Urgent efforts are thus more than ever needed to support socio-ecological systems threatened by climate change, but how to make adaptation happen on the ground remains vague. Consequently, there is a real risk that climate funding may support initiatives that are actually harmful for the socio-ecological systems, i.e. that foster adaptation in the short-term but insidiously affect systems' long-term vulnerability and/or adaptive capacity to climate change. This generally defines 'mal-adaptation', and this paper affirms that avoiding mal-adaptation is a first key concrete step towards adaptation in a broader sense. Focusing on coastal areas at a local scale and with the aim of providing insights to help avoiding mal-adaptation to climate change on the ground, this paper develops eleven practice-oriented guidelines that address the environmental, socio-cultural and economic dimensions of adaptation initiatives (policies, plans, projects). Based upon this, it affirms that the more guidelines an initiative addresses, the lower will be the risk of mal-adaptation. Together, these guidelines and this assumption constitute the 'Assessment framework' for approaching mal-adaptation to climate change at a local level. (author)

  5. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  6. Market Strategies for Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2004-06-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still reflect the political, non-market components. Using empirical information from the largest multinational companies worldwide, this article examines current market responses, focusing on the drivers (threats and opportunities) and the actions being taken by companies to address climate change. It also develops a typology of climate strategies that addresses the market dimensions, covering both the aim (strategic intent) and the degree of cooperation (form of organisation). The aim turns out to be either innovation or compensation, while the organisational arrangements to reach this objective can be oriented at the company level (internal), at companies' own supply chain (vertical) or at cooperation with other companies (competitors or companies in other sectors - horizontal). The typology can assist managers in deciding about the strategic option(s) they want to choose regarding climate change, also based on the insights offered by the paper about the current state of activities of other companies worldwide.

  7. Is the impact of future climate change on hydro-climatic conditions significant? - A climate change study for an Eastern European catchment area.

    Science.gov (United States)

    Pavlik, Dirk; Söhl, Dennis; Bernhofer, Christian

    2014-05-01

    The future change of climatic conditions is, among others, closely linked to future hydrological changes. One important aspect of these issues is the question of future availability of water resources. A changed climatic water balance, as indicator for potential water availability, has far-reaching consequences for the water cycle, hydrological conditions, ecology, water management, the energy business, agriculture and forestry, and for anthropogenic use of the river. We generated regional climate projections via dynamic downscaling for the catchment area of the Western Bug river in the border area of Poland, Belarus, and Ukraine. The hydro-climatic conditions of the past and their projected future changes in the catchment were analyzed based on 2m-temperature, precipitation, potential evaporation and climatic water balance. Up to the end of the century, the used IPCC scenarios B1 and A2 lead to warming for each month in the long-term mean, with highest warming rates in winter. Instead, precipitation does not change in the long-term yearly mean. However, the intra-annual distribution of monthly precipitation sums shifts with an increase in winter and a strong decrease in summer. Combined, this leads to a changed climatic water balance with a stronger deficit in summer and a higher gain in winter. Particular in the south-eastern part of the catchment, the summer deficit cannot be compensated within the annual cycle. It raised the question: are these changes statistically significant and thus robust for use in further impact studies? Using a significance analysis, we found, that climatic changes in temperature, precipitation and potential evaporation and thus the climatic water balance change is most significant for scenario A2 from 2071 to 2100. The temperature changes are significant throughout the year. For the other variables changes are most significant in the late summer months (July, August, and September) and the winter months (December, January, and February

  8. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  9. Seeing the light : adapting to climate change with decentralized renewable energy in developing countries

    International Nuclear Information System (INIS)

    This book presents innovative and sustainable ways to respond to climate change with particular reference to decentralized renewable energy (DRE) projects. It presents the experience of developing DRE projects in five developing countries, Argentina, Bangladesh, Brazil, Senegal and Zimbabwe. The conditions under which these countries can support DRE through the Kyoto Protocol's Clean Development Mechanism were also examined. Some policy recommendations were proposed for more dynamic DRE support for the Kyoto era. The Clean Development Mechanism was examined as a key financial tool for supporting DRE. The Intergovernmental Panel on Climate Change (IPCC) states that the least developed countries are the least equipped with adaptive capacity, and therefore most vulnerable to climate change. The IPCC claims that climate adaptation and sustainable development can be compatible if policies are made to lessen resource pressure, improve environmental risk management and improve the prosperity of the poorest members of society. This book presents a framework for introducing modern energy services through DRE that can stabilize the socio-economics of a developing country. The main implications of rural energy deprivation include deforestation and ecosystem degradation, chronic rural poverty and high vulnerability to the adverse effects of climate change. refs., tabs., figs

  10. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  11. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people. PMID:26920851

  12. Impacts of climate change on erosion of a watershed: Simulation of scenarios

    Directory of Open Access Journals (Sweden)

    Dario Cardoso de Lima

    2011-08-01

    Full Text Available Climate change set to occur in the coming years should have severe effects on erosion process, as factors leading to intensification of the peaks of rainfall and increasing temperature on the entire planet. Several studies have been performed to estimate climate change scenarios. This work was implemented in the Sao Bartolomeu's watershed, in Minas Gerais’ Forest Zone. From the A1B scenario proposed by the Intergovernmental Panel on Climate Change (IPCC, that set a projection for the global mean warming of Earth's surface, sediment production and runoff were estimated using SWAT (Soil and Water Assessment Tool. The simulated scenarios for projected climate changes that could happen in the next 90 years are quite alarming, with soil loss and runoff rates production much higher than those currently found in the cultures analyzed, reaching up to three times more in a critical increase in the rainfall volume and higher peaks of precipitation.

  13. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  14. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  15. Sustain : the climate change challenge

    International Nuclear Information System (INIS)

    This special report on climate change and greenhouse gas emissions focused on widely held current opinions which indicate that average global surface temperatures are increasing. The potential consequences of climate change can include rising sea levels, drought storms, disease, and mass migration of people. While the global climate change theory is widely accepted, the report warns that there are still many uncertainties about how climate change occurs and what processes can offset human-caused emissions. Canada produces about 2 per cent of global greenhouse gas emissions. Carbon dioxide comprises 80 per cent of Canada's total emissions. It is well known that Canadians place a heavy demand on energy to heat and light their homes because of the northern climate, and on transportation fuels to move people, goods and services across vast distances. With the Kyoto Protocol of December 1997, developed countries agreed to legally binding greenhouse gas emission reductions of at least five per cent by 2008 to 2012. Canada agreed to a six per cent reduction below 1990 levels by 2010. Although Canada signed the Kyoto Protocol, it does not intend to ratify it until an implementation strategy has been developed with broad support. The goal is to develop a strategy by 1999. The oil and gas industry has in general improved its efficiency and reduced emissions on a per unit of production basis by installing new equipment and new operating practices that reduce greenhouse gas emissions to the atmosphere, and improve energy efficiency. The industry is conscious of its responsibility, and while not fully in agreement with the environmental doomsayers, it is prepared to take proactive actions now, albeit on a voluntary basis. What the industry wants is a balance between environmental and economic responsibility. Emissions trading' and 'joint implementation' are seen as two important tools to tackle climate change on a global basis. 4 figs

  16. The adaptation to climate change

    International Nuclear Information System (INIS)

    The authors address the issue of adaptation to climate change. They first address the physical aspects related to this issue: scenarios of temperature evolution, main possible impacts. Then, they address the social impacts related to climate risks, and the adaptation strategies which aim at reducing the exposure and vulnerability of human societies, or at increasing their resilience. Some examples of losses of human lives and of economic damages due to recent catastrophes related to climate change are evoked. The authors address the international framework, the emergence of an international regime on climate, the quite recent emergence of adaptation within international negotiations in 2001, the emergence of the idea of a support to developing countries. National and local policies are presented in the next chapter (in the European Union, the Netherlands which are faced with the issue of sea level rise, programs in developing countries) and their limitations are also outlined. The next chapter addresses the adaptation actions performed by private actors (enterprises, households, associations, civil society, and so on) with example of vulnerability, and adaptation opportunities and possibilities in some specific sectors. The last chapter presents a typology of actions of adaptation, indicators of adaptation to climate change, and examples of mistaken adaptation

  17. Climate change scenarios for precipitation and potential evapotranspiration over central Belgium

    Science.gov (United States)

    Baguis, P.; Roulin, E.; Willems, P.; Ntegeka, V.

    2009-05-01

    In this article, we examine climate model estimations for the future climate over central Belgium. Our analysis is focused mainly on two variables: potential evapotranspiration (PET) and precipitation. PET is calculated using the Penman equation with parameters appropriately calibrated for Belgium, based on RCM data from the European project PRUDENCE database. Next, we proceed into estimating the model capacity to reproduce the reference climate for PET and precipitation. The same analysis for precipitation is also performed based on GCM data from the IPCC AR4 database. Then, the climate change signal is evaluated over central Belgium using RCM and GCM simulations based on several SRES scenarios. The RCM simulations show a clear shift in the precipitation pattern with an increase during winter and a decrease during summer. However, the inclusion of another set of SRES scenarios from the GCM simulations leads to a less clear climate change signal.

  18. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  19. Climatic servitude: climate change, business and politics

    International Nuclear Information System (INIS)

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  20. Biogeochemical responses of shallow coastal lagoons to Climate Change

    Science.gov (United States)

    Brito, A.; Newton, A.; Tett, P.; Fernandes, T.

    2009-04-01

    The importance of climate change and global warming in the near future is becoming consensual within the scientific community (e.g. Kerr et al., 2008; Lloret et al., 2008). The surface temperature and sea level have increased during the last few years in the northern hemisphere (IPCC, 2007). Predictions for future changes include an increase of surface temperature and sea level for Europe. Moreover, the global warming phenomenon will also change the hydrological cycle and increase precipitation in northern and central Europe (IPCC, 2007). Sea level rise already threatens to overwhelm some lagoons, such as Venice and Moroccan lagoons (Snoussi et al., 2008). Shallow coastal lagoons are some of the most vulnerable systems that will be impacted by these changes (Eisenreich, 2005). Environmental impacts on coastal lagoons include an increase of water turbidity and therefore light attenuation. If these effects are strong enough, the lighted bottoms of shallow lagoons may loose a significant part of the benthic algal community. These communities are highly productive and are essential to control nutrient dynamics of the system by uptaking large amounts of nutrients both from the water column and from the sediments. A decrease in benthic algal communities and photosynthetic oxygen production will also contribute to increasing the vulnerability of the lagoons to hypoxia and anoxia. The flux of nutrients such as phosphate from the sediments may increase dramatically, further disrupting the nutrient balance and condition and promoting cyanobacterial blooms. Microbial activity is temperature dependent, therefore, the increase of temperature will increase the concentrations of ammonium within sediments. The release of phosphate and silicate will also increase with temperature. Coastal lagoons are valuable ecosystems and may be severely impacted, both ecologically and economically, by global change. Shallow coastal lagoons should be considered as sentinel systems and should be

  1. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  2. Integrated assessment of climate change

    International Nuclear Information System (INIS)

    Many researchers are working on all the separate parts of the climate problem. The objective of integrated assessment is to put the results from this work together in order to look carefully at the big picture so as to: (1) keep a proper sense of perspective about the problem, since climate change will occur in the presence of many other natural and human changes; (2) develop the understanding necessary to support informed decision making by many different key public and private actors around the world; and (3) assure that the type and mix of climate-related research that is undertaken will be as useful as possible to decisions makers in both the near and long term. This paper outlines a set of design guidelines for formulating integrated assessment programs and projects and then outlines some of the current problems and opportunities. Selected points are illustrated by drawing on results from the integrated assessment research now in progress at Carnegie Mellon University

  3. Interactive Simulator for Teaching of Climate Change Risk

    Directory of Open Access Journals (Sweden)

    Antonio Torres Valle

    2015-12-01

    Full Text Available The use of simulators is good practice for teaching or training in the operation of complex processes. This is the case of climate change, the one associated with multiple phenomena that cannot be played as isolated laboratory practices. The experts themselves of the Intergovernmental Panel on Climate Change (IPCC have suggested qualitative indicators tomeasure the components of this risk (hazard, vulnerability and exposure and still, its complexity is remarkable for the multi, inter and transdisciplinary knowledge necessary for evaluation. One of the most important challenges of teaching these topics is the multiplicity of combinations that can occur for a variety of inputs of tax risk factors in each area of the world studied. Therefore, the presentation of an interdependent matrix system that maps the global and regional variables concerning the risks of climate change and a recursive system for evaluation are the basis of the simulator proposed in this paper. The same has been tested with global and regional scenarios, which have been incorporated into computercode developed for the preparation of prewritten didactic exercises and a recommendation for the implementation of new case studies.

  4. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  5. 2007 status of climate changes: synthesis report. Summary for policy-makers; Bilan 2007 des changements climatiques: rapport de synthese. Resume a l'intention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This Synthesis Report is based on the assessment carried out by the three Working Groups of the Intergovernmental Panel on Climate Change (IPCC). It provides an integrated view of climate change as the final part of the IPCC's Fourth Assessment Report (AR4). Topic 1 summarises observed changes in climate and their effects on natural and human systems, regardless of their causes, while topic 2 assesses the causes of the observed changes. Topic 3 presents projections of future climate change and related impacts under different scenarios. Topic 4 discusses adaptation and mitigation options over the next few decades and their interactions with sustainable development. Topic 5 assesses the relationship between adaptation and mitigation on a more conceptual basis and takes a longer-term perspective. Topic 6 summarises the major robust findings and remaining key uncertainties in this assessment.

  6. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  7. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO2 emissions. (Author)

  8. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future. PMID:27300144

  9. Kyoto protocol on climate change

    International Nuclear Information System (INIS)

    This article reports a short overview of main points of Kyoto protocol to United Nations Framework Convention on climate Change and of some options still to be defined, evolutions of Italian emissions with respect to other European countries, check of decree by inter ministerial committee on economic planning on national plan to reduce emissions

  10. Health Effects of Climate Change

    Science.gov (United States)

    ... or insects can increase. Disease vectors such as mosquitoes, ticks, and flies may occur in greater numbers over longer periods during the year, and expand the locations in which they thrive. Climate change also affects air movement and quality by increasing ...

  11. Climate benefits of changing diet

    NARCIS (Netherlands)

    Stehfest, E.; Bouwman, A.F.; Vuuren, van D.P.; Elzen, M.; Kabat, P.

    2009-01-01

    Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in

  12. Symposium on Global Climate Change

    OpenAIRE

    Richard Schmalensee

    1993-01-01

    Global climate change, and policies to slow it or adapt to it, may be among the primary forces shaping the world's economy throughout the next century and beyond. Nonetheless, popular treatments of this issue commonly ignore economics. This introductory essay sketches some of the uncertainties and research questions.

  13. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  14. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  15. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  16. Climate change and related activities

    International Nuclear Information System (INIS)

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change

  17. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  18. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  19. Population, poverty, and climate change

    OpenAIRE

    Das Gupta, Monica

    2013-01-01

    The literature is reviewed on the relationships between population, poverty, and climate change. While developed countries are largely responsible for global warming, the brunt of the fallout will be borne by the developing world, in lower agricultural output, poorer health, and more frequent natural disasters. Carbon emissions in the developed world have leveled off, but are projected to ...

  20. Indigenous Peoples and Climate Change

    Directory of Open Access Journals (Sweden)

    Shelton H. Davis

    2010-05-01

    Full Text Available There has been a growing attention on the need to take into account the effects of global climate change. This is particularly so with respect to the increasing amount of green house gas emissions from the Untied States and Europe affecting poor peoples, especially those in developing countries. In 2003, for example, the experts of several international development agencies, including the World Bank, prepared a special report titled “Poverty and Climate Change: Reducing the Vulnerability of the Poor through Adaptation” (OECD 2003. This report followed the Eighth Session of the Conference of Parties (COP8 to the United Nations Framework Convention on Climate Change (UNFCCC in New Delhi, India in October 2002. It showed that poverty reduction is not only one of the major challenges of the 21st century, but also that climate change is taking place in many developing countries and is increasingly affecting, in a negative fashion, both the economic conditions and the health of poor people and their communities.

  1. Projected Changes in Kppen Climate Types in the 21st Century over China

    Institute of Scientific and Technical Information of China (English)

    SHI Ying; GAO Xue-Jie; WU Jia

    2012-01-01

    Future changes in the climate regimes over China as measured by the Kppen climate classification are reported in this paper. The analysis is based on a high-resolution climate change simulation conducted by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3) driven by the global model of Center for Climate System Research (CCSR)/National Institute for Environment Studies (NIES)/Frontier Research Center for Global Change (FRCGC) MIROC3.2_hires (the Model for Interdisciplinary Research on Climate) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Validation of the model performances is presented first. The results show that RegCM3 reproduces the present-day distribution of the Kppen climate types well. Significant changes of the types are found in the future over China, following the simulated warming and precipitation changes. In southern China, the change is characterized by the replacement of subtropical humid (Cr) by subtropical winter-dry (Cw). A pronounced decrease of the cold climate types is found over China, e.g., tundra (Ft) over the Tibetan Plateau and sub-arctic continental (Ec) over northeast China. The changes are usually greater in the end compared with the middle of the 21st century.

  2. Climate change and biometeorology, the International Society of Biometeorology and its journal: a perspective on the past and a framework for the future

    Science.gov (United States)

    Beggs, Paul John

    2014-01-01

    Anthropogenic climate change is inherently a biometeorological issue. As such, it would be reasonably expected that the International Society of Biometeorology (ISB) and its journal, International Journal of Biometeorology ( IJB), would have had climate change feature prominently in their activities, articles etc., and to therefore have made a substantial and valuable contribution to the science of the issue. This article presents an analysis of climate change science in ISB and IJB. The analysis focusses on climate-change-related publications by ISB Presidents found through searches of Thomson Reuters Web of Science; contributions to the Intergovernmental Panel on Climate Change's (IPCC's) Working Group II (WGII) by ISB Presidents; and climate change-related publications in IJB found through searches of Thomson Reuters Web of Science. The results demonstrate that the ISB, as represented by its recent, current, and future Presidents, is actively engaged in climate change research and the production of scholarly climate change publications. For example, ISB Presidents have contributed as authors to all four IPCC WGII Assessment Reports, with some Presidents having contributed to more than one Assessment Report or several chapters of the one report. Similarly, it is evident that the IJB is increasingly attracting and publishing climate-change-related articles, with such articles generally having greater impact (as indicated by citations) than other IJB articles. Opportunities for the ISB to provide an internal framework for, and showcase, its climate change work are described. Such opportunities, if enacted, would complement the recent creation of two IJB climate change Field Editor positions.

  3. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  4. Plantation forestry in Brazil: the potential impacts of climatic change

    International Nuclear Information System (INIS)

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO2 enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  5. Plantation forestry in Brazil: the potential impacts of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Manaus (Brazil). Dept. of Ecology

    1999-11-01

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO{sub 2} enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  6. Plantation forestry in Brazil: the potential impacts of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Manaus (Brazil). Dept. of Ecology

    1999-07-01

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO{sub 2} enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  7. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  8. Climate Model Intercomparisons: Preparing for the Next Phase

    Science.gov (United States)

    Meehl, Gerald A.; Moss, Richard; Taylor, Karl E.; Eyring, Veronika; Stouffer, Ronald J.; Bony, Sandrine; Stevens, Bjorn

    2014-03-01

    Since 1995, the Coupled Model Intercomparison Project (CMIP) has coordinated climate model experiments involving multiple international modeling teams. Through CMIP, climate modelers and scientists from around the world have analyzed and compared state-of-the-art climate model simulations to gain insights into the processes, mechanisms, and consequences of climate variability and climate change. This has led to a better understanding of past, present, and future climate, and CMIP model experiments have routinely been the basis for future climate change assessments made by the Intergovernmental Panel on Climate Change (IPCC) [e.g., IPCC, 2013, and references therein].

  9. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    Energy Technology Data Exchange (ETDEWEB)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  10. The physiology of mangrove trees with changing climate

    Science.gov (United States)

    Lovelock, Catherine E.; Krauss, Ken W.; Osland, Michael J.; Reef, Ruth; Ball, Marilyn C.; Meinzer, Frederick C.; Niinemets, Ülo

    2016-01-01

    Mangrove forests grow on saline, periodically flooded soils of the tropical and subtropical coasts. The tree species that comprise the mangrove are halophytes that have suites of traits that confer differing levels of tolerance of salinity, aridity, inundation and extremes of temperature. Here we review how climate change and elevated levels of atmospheric CO2 will influence mangrove forests. Tolerance of salinity and inundation in mangroves is associated with the efficient use of water for photosynthetic carbon gain which unpins anticipated gains in productivity with increasing levels of CO2. We review evidence of increases in productivity with increasing CO2, finding that enhancements in growth appear to be similar to trees in non-mangrove habitats and that gains in productivity with elevated CO2 are likely due to changes in biomass allocation. High levels of trait plasticity are observed in some mangrove species, which potentially facilitates their responses to climate change. Trait plasticity is associated with broad tolerance of salinity, aridity, low temperatures and nutrient availability. Because low temperatures and aridity place strong limits on mangrove growth at the edge of their current distribution, increasing temperatures over time and changing rainfall patterns are likely to have an important influence on the distribution of mangroves. We provide a global analysis based on plant traits and IPCC scenarios of changing temperature and aridity that indicates substantial global potential for mangrove expansion.

  11. Quantifying loss and damage from anthropogenic climate change - Bridging the gap between two research communities

    Science.gov (United States)

    Otto, F. E. L.

    2015-12-01

    The science of attribution of meteorological events to anthropogenic causes has for the first time been included in the latest assessment of the Physical Science Basis of the Climate, (WGI), of the Fifth IPCC Assessment Report AR5 (Stocker et al., 2013). At the same time there is a very rapidly growing body of literature on climate change and its impact on economy, society and environment but apart from very few exemptions no link is made to the causes of these changes. Observed changes in hydrological variables, agriculture, biodiversity and the built environment have been attributed to a changing climate, whether these changes are the result of natural variability or external forcings (Cramer et al., 2014). While the research community represented in WGI assesses whether, and to what extent, recent extreme weather events can be attributed to anthropogenic emissions of greenhouse gases and aerosols, the research community of impact specialists asks how climatic changes lead to different impacts largely independent of the causes of such changes. This distinction becomes potentially very relevant with respect to the 2013 established the Warsaw International Mechanism (WIM) to address loss and damage from the impacts of climate change in developing countries under the UNFCCC climate change negotiations. Currently there is no discussion what consists of loss and damage and the reasons for this inexistence of a definition are not primarily scientific but political however, the absence of a definition could potentially lead to absurd consequences if funds in the context of loss and damage would be redistributed, as e.g. suggested, for all low risk high impact events. Here we present the implications of discussed definitions of loss and damage (Huggel et al. 2015) and how scientific evidence could be included. Cramer et al. (2014) Detection and Attribution of Observed Impacts. In: Climate Change 2014: Impacts, Adaptation and Vulnerability Contribution of WG 2 to AR5 of

  12. Cloud feedback on climate change and variability

    Science.gov (United States)

    Zhou, C.; Dessler, A. E.; Yang, P.

    2014-12-01

    Cloud feedback on climate change and variability follow similar mechanism in climate models, and the magnitude of cloud feedback on climate change and variability are well correlated among models. Therefore, the cloud feedback on short-term climate fluctuations correlates with the equilibrium climate sensitivity in climate models. Using this correlation and the observed short-term climate feedback, we infer a climate sensitivity of ~2.9K. The cloud response to inter-annual surface warming is generally consistent in observations and climate models, except for the tropical boundary-layer low clouds.

  13. The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa

    Science.gov (United States)

    Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach

  14. Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity.

    Directory of Open Access Journals (Sweden)

    Veronika Braunisch

    Full Text Available Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1 how species' occurrence is explained by climate, landscape, and vegetation, (2 to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3 whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated

  15. A multistage crucible of revision and approval shapes IPCC policymaker summaries.

    Science.gov (United States)

    Mach, Katharine J; Freeman, Patrick T; Mastrandrea, Michael D; Field, Christopher B

    2016-08-01

    Intergovernmental Panel on Climate Change (IPCC) member governments approve each report's summary for policymakers (SPM) by consensus, discussing and agreeing on each sentence in a plenary session with scientist authors. A defining feature of IPCC assessment, the governmental approval process builds joint ownership of current knowledge by scientists and governments. The resulting SPM revisions have been extensively discussed in anecdotes, interviews, and perspectives, but they have not been comprehensively analyzed. We provide an in-depth evaluation of IPCC SPM revisions, establishing an evidential basis for understanding their nature. Revisions associated with governmental review and approval generally expand SPMs, with SPM text growing by 17 to 53% across recent assessment reports. Cases of high political sensitivity and failure to reach consensus are notable exceptions, resulting in SPM contractions. In contrast to recent claims, we find that IPCC SPMs are as readable, for multiple metrics of reading ease, as other professionally edited assessment summaries. Across reading-ease metrics, some SPMs become more readable through governmental review and approval, whereas others do not. In an SPM examined through the entire revision process, most revisions associated with governmental review and approval occurred before the start of the government-approval plenary session. These author revisions emphasize clarity, scientific rigor, and explanation. In contrast, the subsequent plenary revisions place greater emphasis especially on policy relevance, comprehensiveness of examples, and nuances of expert judgment. Overall, the value added by the IPCC process emerges in a multistage crucible of revision and approval, as individuals together navigate complex science-policy terrain. PMID:27532046

  16. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  17. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  18. The ACPI Climate Change Simulations

    International Nuclear Information System (INIS)

    The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data from these runs were saved at 6-hourly intervals (hourly for certain critical fields) to support the ACPI objective of accurately modeling hydrological cycles over the western U.S. It is shown that the initialization to 1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3-8C over northern high-latitudes by the end of the 21st century, and 1-2C over the oceans. This is generally within ±0.1C of model runs without the 1995 ocean initialization. The exception is in the Antarctic circumpolar ocean where surface air temperature is cooler in the ACPI run; however the ensemble scatter is large in this region. Although the difference in climate at the end of the 21st century is minimal between the ACPI runs and traditionally spun up runs, it might be larger for CGCMs with higher climate sensitivity or larger ocean drifts. Our results suggest that the effect of small errors in the oceans (such as those associated with climate drifts) on CGCM-simulated climate changes for the next 50-100 years may be negligible

  19. Ocean Physicochemistry versus Climate Change

    OpenAIRE

    Góralski, Bogdan

    2014-01-01

    It is the dwindling ocean productivity which leaves dissolved carbon dioxide in the seawater. Its solubility is diminished by the rise in ocean water temperature (by one degree Celsius since 1910, according to IPCC). Excess carbon dioxide is emitted into the atmosphere, while its growing concentration in seawater leads to ocean acidification. Ocean acidification leading to lowering pH of surface ocean water remains an unsolved problem of science. My today’s lecture will mark an attempt at ...

  20. Climate change in the Iberian Upwelling System: a numerical study using GCM downscaling

    Science.gov (United States)

    Cordeiro Pires, Ana; Nolasco, Rita; Rocha, Alfredo; Ramos, Alexandre M.; Dubert, Jesus

    2016-07-01

    The present work aims at evaluating the impacts of a climate change scenario on the hydrography and dynamics of the Iberian Upwelling System. Using regional ocean model configurations, the study domain is forced with three different sets of surface fields: a climatological dataset to provide the control run; a dataset obtained from averaging several global climate models (GCM) that integrate the Intergovernmental Panel for Climate Change (IPCC) models used in climate scenarios, for the same period as the climatological dataset; and this same dataset but for a future period, retrieved from the IPCC A2 climate scenario. After ascertaining that the ocean run forced with the GCM dataset for the present compared reasonably well with the climatologically forced run, the results for the future run (relative to the respective present run) show a general temperature increase (from +0.5 to +3 °C) and salinity decrease (from -0.1 to -0.3), particularly in the upper 100-200 m, although these differences depend strongly on season and distance to the coast. There is also strengthening of the SST cross-shore gradient associated to upwelling, which causes narrowing and shallowing of the upwelling jet. This effect is contrary to the meridional wind stress intensification that is also observed, which would tend to strengthen the upwelling jet.

  1. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  2. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach

    NARCIS (Netherlands)

    Bannink, A.; Schijndel, van M.W.; Dijkstra, J.

    2011-01-01

    The protocol for the National Inventory of agricultural greenhouse gas emissions in The Netherlands includes a dynamic and mechanistic model of animal digestion and fermentation as an Intergovernmental Panel on Climate Change (IPCC) Tier 3 approach to estimate enteric CH4 emission by dairy cows. The

  3. The land-use projections and resulting emissions in the IPCC SRES scenarios as simulated by the IMAGE 2.2 model

    NARCIS (Netherlands)

    Strengers, B.; Leemans, R.; Eickhout, B.; Vries, de B.; Bouwman, L.

    2004-01-01

    The Intergovernmental Panel on Climate Change (IPCC) developed a new series of emission scenarios (SRES). Six global models were used to develop SRES but most focused primarily on energy and industry related emissions. Land-use emissions were only covered by three models, where IMAGE included the mo

  4. The Urban Climate Change Research Network (UCCRN) Second Assessment Report on Climate Change and Cities (ARC3-2), and the UCCRN Hubs

    Science.gov (United States)

    Rosenzweig, C.; Ali Ibrahim, S.

    2015-12-01

    The objective of this session is to foster a dialogue between experts working on global-scale, climate change and cities assessments in order to simultaneously present state-of-the-art knowledge on how cities are responding to climate change and to define emerging opportunities and challenges to the effective placement of this knowledge in the hands of local stakeholders and decision-makers. We will present the UCCRN and the Second UCCRN Assessment Report on Climate Change and Cities (ARC3-2), the second in an ongoing series of global, interdisciplinary, cross-regional, science-based assessments to address climate risks, adaptation, mitigation, and policy mechanisms relevant to cities. This is an especially important time to examine these issues. Cities continue to act as world leaders in climate action. Several major climate change assessment efforts are in full swing, at a crucial stage where significant opportunities for the co-production of knowledge between researchers and stakeholders exist. The IPCC AR5 Working Group II and III Reports have placed unprecedented attention on cities and urbanization and their connection to the issue of climate change. Concurrently several major, explicitly city-focused efforts have emerged from the Urban Climate Change Research Network (UCCRN), ICLEI, the Durban Adaptation Charter (DAC), C40, Future Earth, and the Urbanization and Global Environmental Change (UGEC) Project, among others. The underlying rationale for the discussion will be to identify methods and approaches to further foster the development and dissemination of new climate change knowledge and information that will be useful for cities, especially in small and medium-sized cities and in the developing country context where the demand is particularly acute. Participants will leave this session with: · The latest scientific data and state-of-the-knowledge on how cities are responding to climate change · Emerging opportunities and challenges to the effective

  5. 1000 years of climate change

    Science.gov (United States)

    Keller, C.

    Solar activity has been observed to vary on decadal and centennial time scales. Recent evidence (Bond, 2002) points to a major semi-periodic variation of approximately 1,500 yrs. For this reason, and because high resolution proxy records are limited to the past thousand years or so, assessing the role of the sun's variability on climate change over this time f ame has received much attention. A pressingr application of these assessments is the attempt to separate the role of the sun from that of various anthropogenic forcings in the past century and a half. This separation is complicated by the possible existence of natural variability other than solar, and by the fact that the time-dependence of solar and anthropogenic forcings is very similar over the past hundred years or so. It has been generally assumed that solar forcing is direct, i.e. changes in sun's irradiance. However, evidence has been put forth suggesting that there exist various additional indirect forcings that could be as large as or even exceed direct forcing (modulation of cosmic ray - induced cloudiness, UV- induced stratospheric ozone change s, or oscillator -driven changes in the Pacific Ocean). Were such forcings to be large, they could account for nearly all 20th Century warming, relegating anthropogenic effects to a minor role. Determination of climate change over the last thousand years offers perhaps the best way to assess the magnitude of total solar forcing, thus allowing its comparison with that of anthropogenic sources. Perhaps the best proxy records for climate variation in the past 1,000 yrs have been variations in temperat ure sensitive tree rings (Briffa and Osborne, 2002). A paucity of such records in the Southern Hemisphere has largely limited climate change determinations to the subtropical NH. Two problems with tree rings are that the rings respond to temperature differently with the age of the tree, and record largely the warm, growing season only. It appears that both these

  6. Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling Technologies (ESG-CET)

    Energy Technology Data Exchange (ETDEWEB)

    Ananthakrishnan, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bernholdt, D. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bharathi, S. [Univ. of Southern California, Marina del Ray, CA (United States); Brown, D. [National Center Atmospheric Research, Boulder, CO (United States); Chen, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chervenak, A. L. [Univ. of Southern California, Marina del Ray, CA (United States); Cinquini, L. [National Center Atmospheric Research, Boulder, CO (United States); Drach, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. [Argonne National Lab. (ANL), Argonne, IL (United States); Fox, P. [National Center Atmospheric Research, Boulder, CO (United States); Fraser, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Halliday, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hankin, S. [National Oceanic and Atmospheric Administration (PMEL), Seattle, WA (United States); Jones, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kesselman, C. [Univ. of Southern California, Marina del Ray, CA (United States); Middleton, J. E. [National Center Atmospheric Research, Boulder, CO (United States); Schwidder, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schweitzer, R. [National Oceanic and Atmospheric Administration (PMEL), Seattle, WA (United States); Schuler, R. [Univ. of Southern California, Marina del Ray, CA (United States); Shoshani, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siebenlist, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Sim, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Strand, W. G. [National Center Atmospheric Research, Boulder, CO (United States); Wilhelmi, N. [National Center Atmospheric Research, Boulder, CO (United States); Su, M. [Univ. of Southern California, Marina del Ray, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2007-07-13

    The recent release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) has generated significant media attention. Much has been said about the U.S. role in this report, which included significant support from the Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) and other Department of Energy (DOE) programs for climate model development and the production execution of simulations. The SciDAC-supported Earth System Grid Center for Enabling Technologies (ESG-CET) also played a major role in the IPCC AR4: all of the simulation data that went into the report was made available to climate scientists worldwide exclusively via the ESG-CET. At the same time as the IPCC AR4 database was being developed, the National Center for Atmospheric Research (NCAR), a leading U.S. climate science laboratory and a ESG participant, began publishing model runs from the Community Climate System Model (CCSM), and its predecessor the Parallel Coupled Model (PCM) through ESG. In aggregate, ESG-CET provides seamless access to over 250 terabytes of distributed climate simulation data to over 6,000 registered users worldwide, who have taken delivery of more than 280 terabytes from the archive. Not only does this represent a substantial advance in scientific knowledge, it is also a major step forward in how we conduct the research process on a global scale. Moving forward, the next IPCC assessment report, AR5, will demand multi-site metadata federation for data discovery and cross-domain identity management for single signon of users in a more diverse federation enterprise environment. Towards this aim, ESG is leading the effort in the climate community towards standardization of material for the global federation of metadata, security, and data services required to standardize, analyze, and access data worldwide.

  7. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  8. Federated Quality Control Procedure for CMIP5 / IPCC-AR5 Data

    Science.gov (United States)

    Stockhause, M.; Höck, H.; Kurtz, M.; Lautenschlager, M.; Toussaint, F.

    2012-04-01

    The International Panel on Climate Change (IPCC) aims to advance the knowledge of climate change and climate variability. The results collected within the Climate Model Intercomparison Project No. 5 (CMIP5) are intended to underlie the coming fifth assessment report (IPCC-AR5). In comparison with the CMIP3 (IPCC-AR4) three main improvements have been implemented in the data infrastructure: Decentral data storage on local data nodes of the Earth System Grid (ESG, http://pcmdi3.llnl.gov/esgcet) and replication of the most important data (relevant for IPCC-AR5) among the three primary CMIP5 archive centers, PCMDI (Program for Climate Model Diagnosis and Intercomparison), BADC (British Atmospheric Data Centre), and WDCC (World Data Center for Climate) at DKRZ. Detailed descriptions of numerical climate models and the simulations using the CIM (Common Information Model) developed by METAFOR (http://metaforclimate.eu). Data curation was improved by introducing a versioning concept and a quality assessment process providing a uniform identification of datasets as well as a persistent identifier DOI (Digital Object Identifier) for data citation in scientific publications (http://cmip5qc.wdc-climate.de). The quality control (QC) concept was developed on the background of the existing federated data infrastructure of the ESG and the external metadata source. For this reason as well as for sharing the work load of the quality checks a federated / distributed quality control procedure was developed, consisting of: a QC repository for QC result and information storage and exchange within the QC process, a QC checker tool, and a QC service package to support QC repository storage, QC result analyses, QC information access for QC managers as well as for data users. For CMIP5 the quality control procedure consists of three quality levels. With increasing quality level the checks are performed more centralized: QC level 1 Separate technical QC checks on data (CMOR2, ESG conformance

  9. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  10. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E

    2015-07-02

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  11. Significant reductions in oil quality and lipid content of oilseed rape (Brassica napus L.) under climate change

    OpenAIRE

    Namazkar, Shahla; Egsgaard, Helge; Frenck, Georg; Terkelsen, Thilde; Ingvordsen, Cathrine Heinz; Bagger Jørgensen, Rikke

    2015-01-01

    Despite of the potential importance to food and bioenergy purposes effects from climate change on plant oil quality have hardly been characterized. Worldwide Brassica napus, rapeseed or oilseed rape, is the second largest source of vegetable oil and the predominant oil crop in Europe. We found significant changes in oil quality and quantity of cultivars of oilseed rape grown in five future climate scenarios with elevated [CO2], [O3], temperature and combinations hereof (~RCP8.5, IPCC 2013).

  12. Climatic change and security stakes

    International Nuclear Information System (INIS)

    This paper explores the relationships between climate change and security. Potential threats from climate change, as a unique source of stress or together with other factors, to human security are first examined. Some of the most explicit examples illustrate this section: food security, water availability, vulnerability to extreme events and vulnerability of small islands States and coastal zones. By questioning the basic needs of some populations or at least aggravating their precariousness, such risks to human security could also raise global security concerns, which we examine in turn, along four directions: rural exodus with an impoverishment of displaced populations, local conflicts for the use of natural resources, diplomatic tensions and international conflicts, and propagation to initially-unaffected regions through migratory flows. (authors)

  13. Making sense of climate change

    International Nuclear Information System (INIS)

    Climate change has always occurred naturally but at a pace to which the earth has adapted well. Now, due to human activities like energy utilization and waste disposal, the earth is heating up much faster than earlier. Ecosystems, water resources, food sources, health, and human settlements are getting adversely affected. Floods and droughts are increasing, glaciers are melting, and disease is spreading. The problem is serious and it is time to act. Global consensus has been agreements; mitigation initiatives have been undertaken; hopes are up. The aim of this book is to raise the awareness of secondary school students about climate change and its impacts while enhancing their understanding of global responses. It includes a chapter specific to Indian conditions. Lucidly written and illustrated with anecdotes and visuals, this handbook will catalyse young minds into greater awareness, concern, and, hopefully, remedial action on this global threat

  14. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  15. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    OpenAIRE

    Kanchan Joshi; Preeti Chaturvedi

    2013-01-01

    Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  16. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  17. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review. PMID:22435190

  18. Poverty Traps and Climate Change

    OpenAIRE

    Tol, Richard S.J.

    2011-01-01

    We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro level, technological progress is slow because of decreasing returns to scale in agriculture. With high populatio...

  19. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models are given

  20. Challenges and Possibilities in Climate Change Education

    Science.gov (United States)

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  1. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  2. Past and Current Climate Change

    Science.gov (United States)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  3. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  4. Climate change, environment and allergy.

    Science.gov (United States)

    Behrendt, Heidrun; Ring, Johannes

    2012-01-01

    Climate change with global warming is a physicometeorological fact that, among other aspects, will also affect human health. Apart from cardiovascular and infectious diseases, allergies seem to be at the forefront of the sequelae of climate change. By increasing temperature and concomitant increased CO(2) concentration, plant growth is affected in various ways leading to prolonged pollination periods in the northern hemisphere, as well as to the appearance of neophytes with allergenic properties, e.g. Ambrosia artemisiifolia (ragweed), in Central Europe. Because of the effects of environmental pollutants, which do not only act as irritants to skin and mucous membranes, allergen carriers such as pollen can be altered in the atmosphere and release allergens leading to allergen-containing aerosols in the ambient air. Pollen has been shown not only to be an allergen carrier, but also to release highly active lipid mediators (pollen-associated lipid mediators), which have proinflammatory and immunomodulating effects enhancing the initiation of allergy. Through the effects of climate change in the future, plant growth may be influenced in a way that more, new and altered pollens are produced, which may affect humans. PMID:22433365

  5. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  6. Accounting for Climate Change: Introduction

    International Nuclear Information System (INIS)

    The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is high on both political and scientific agendas internationally. As increasing international concern and cooperation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The approaches to addressing uncertainty introduced in this article attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Authors of the accompanying articles use detailed uncertainty analyses to enforce the current structure of the emission trading system and attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. Assessment of uncertainty can help improve inventories and manage risk. Through recognizing the importance of, identifying and quantifying uncertainties, great strides can be made in the process of Accounting for Climate Change

  7. Sustainable development and climatic change

    International Nuclear Information System (INIS)

    The relationships between the fight against climatic change and the objective of sustainable development have acquired an historical perspective: the Framework Convention of 1992, the Kyoto Protocol and the Bonn-Marrakech Accords. The Convention demonstrates that we must strive for economic growth and sustainable development to allow developing countries to better face the problems associated with climatic change. In the Kyoto Protocol, the commitments agreed upon by northern countries were presented as implicating a group of policies that promote sustainable development. The author discussed the challenges, the contradictions, and the means available to fight against climatic change since Rio. The author begins by expressing the hope that the Kyoto Protocol will be ratified at the Johannesburg Summit, since Russia is moving forward, despite the withdrawal of the United States. Scientists seem to agree that global warming is occurring due to the increase in greenhouse gases in the atmosphere. There are two major difficulties encountered in attempting to stabilize the levels of greenhouse gases: (1) are the countries that emit the most gases in a position to alter their activities in an effort to reduce emissions? and (2) will developing countries be able to avoid the pitfalls that led developed countries to emit greenhouse gases in enormous quantities?

  8. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  9. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  10. Lack of Climate Expertise Among Climate Change Educators

    Science.gov (United States)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  11. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies USDA Climate Hubs Through this ...

  12. The response of runoff and sediment loading in the Apalachicola River, Florida to climate and land use land cover change

    Science.gov (United States)

    Hovenga, Paige A.; Wang, Dingbao; Medeiros, Stephen C.; Hagen, Scott C.; Alizad, Karim

    2016-05-01

    The response of runoff and sediment loading in the Apalachicola River under projected climate change scenarios and land use land cover (LULC) change is evaluated. A hydrologic model using the Soil and Water Assessment Tool was developed for the Apalachicola region to simulate daily runoff and sediment load under present (circa 2000) and future conditions (2100) to understand how parameters respond over a seasonal time frame to changes in climate, LULC, and coupled climate/LULC. The Long Ashton Research Station-Weather Generator was used to downscale temperature and precipitation from three general circulation models, each under Intergovernmental Panel on Climate Change (IPCC) carbon emission scenarios A2, A1B, and B1. Projected 2100 LULC data provided by the United States Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center was incorporated for each corresponding IPCC scenario. Results indicate that climate change may induce seasonal shifts to both runoff and sediment loading. Changes in LULC showed that more sediment load was associated with increased agriculture and urban areas and decreased forested regions. A nonlinear response for both runoff and sediment loading was observed by coupling climate and LULC change, suggesting that both should be incorporated into hydrologic models when studying the future conditions. The outcomes from this research can be used to better guide management practices and mitigation strategies.

  13. Hubbert's Peak, The Coal Question, and Climate Change

    Science.gov (United States)

    Rutledge, D.

    2008-12-01

    The United Nations Intergovernmental Panel on Climate Change (IPCC) makes projections in terms of scenarios that include estimates of oil, gas, and coal production. These scenarios are defined in the Special Report on Emissions Scenarios or SRES (Nakicenovic et al., 2000). It is striking how different these scenarios are. For example, total oil production from 2005 to 2100 in the scenarios varies by 5:1 (Appendix SRES Version 1.1). Because production in some of the scenarios has not peaked by 2100, this ratio would be comparable to 10:1 if the years after 2100 were considered. The IPCC says "... the resultant 40 SRES scenarios together encompass the current range of uncertainties of future GHG [greenhouse gas] emissions arising from different characteristics of these models ..." (Nakicenovic et al., 2000, Summary for Policy Makers). This uncertainty is important for climate modeling, because it is larger than the likely range for the temperature sensitivity, which the IPCC gives as 2.3:1 (Gerard Meehl et al., 2007, the Fourth Assessment Report, Chapter 10, Global Climate Projections, p. 799). The uncertainty indicates that we could improve climate modeling if we could make a better estimate of future oil, gas, and coal production. We start by considering the two major fossil-fuel regions with substantial exhaustion, US oil and British coal. It turns out that simple normal and logistic curve fits to the cumulative production for these regions give quite stable projections for the ultimate production. By ultimate production, we mean total production, past and future. For US oil, the range for the fits for the ultimate is 1.15:1 (225- 258 billion barrels) for the period starting in 1956, when King Hubbert made his prediction of the peak year of US oil production. For UK coal, the range is 1.26:1 for the period starting in 1905, at the time of a Royal Commission on coal supplies. We extend this approach to find fits for world oil and gas production, and by a regional

  14. Assessment of long-term effects of climate change on biodiversity and vulnerability of terrestrial ecosystems

    International Nuclear Information System (INIS)

    The aim of this project was to analyze the effects of climatic change on plant species diversity and ecosystem functioning. The direct effects of climatic change on plant species diversity are analyzed using a species based probabilistic Model (EUROMOVE) that relates the probability of occurrence of ca 1400 European plant species to climatic variables as the mean temperature of the coldest month, the effective temperature sum, the annual precipitation, the annual potential and actual evapotranspiration, the length of the growing season, and the mean growing season temperature. The indirect effects of raised C02 levels and increased temperatures on ecosystem functioning and the consequences of these indirect effects for plant diversity are analyzed by combining a mechanistic simulation model (NUCOM) with regression models. NUCOM predicts the effects of environmental changes on dominant plant species composition and ecosystem variables. The predicted ecosystem variables are linked to plant species diversity of subordinate species by regression models, using Ellenberg indices for N availability, soil acidity, soil moisture, and light intensity. With these two approaches, the consequences of climatic change scenarios (IPCC Baseline A, IPCC Stabilization 450) and N deposition scenarios (reduced, constant) are analyzed for Europe (EUROMOVE) and part of the Netherlands (NUCOM). The results showed that the direct effects of climatic change may have large impact on plant species diversity and distribution. The indirect effects of climatic change on plant diversity appeared minor but effects of changes in soil moisture are not included. Other environmental changes like eutrofication and human impact have large effect on ecosystem variables and plant species diversity. Reductions in nitrogen emission have a positive effect but take time to become apparent. 49 refs

  15. Framing adaptation: three aspects for climate change risk management

    International Nuclear Information System (INIS)

    Full text: Substantial resources are being allocated to adaptation research and implementation. To use these resources wisely, framing the context within which adaptation decisions are made is critical. Three aspects are: Methods for assessing how much climate change to adapt to by when; Understanding the dynamic between different conceptual models for framing adaptation based on: a. Damages increasing proportionally with change, or b. Ricardian models that require adjustments to attain the 'new normal'; Adopting staged management strategies that depend on system status, which may range from business-as-usual to critical. General adaptation requirements and planning horizons need to have already been identified in scoping studies. Planning horizons include both operational and aspirational targets. Incremental adaptation can be informed by an aspirational goal far off into the future, but is undertaken through a shorter term operational approach. The need to anticipate long-term outcomes in advance is most relevant to measures that require large initial planning and investment, those with long lifetimes, or those where potential damages are irreversible and unacceptable. Five major sources of climate change uncertainty are relevant to assessing how much climate change to adapt to by when: ongoing climate variability and rate of change; past and future commitments to climate change; regional climate change projections; climate sensitivity; greenhouse gas emission scenarios and radiative forcing. These factors combine with different levels of importance depending on the relevant planning horizon. Short-term adaptation is most sensitive to the first and second factors, and long-term adaptation to the last three factors. These factors can be assessed within a probabilistic framework. Two conceptual models dominate assessments designed to inform adaptation. The IPCC Third and Fourth Assessment Reports clearly show that a great many risks increase proportionally with

  16. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  17. Frogs and climate change in South Africa

    OpenAIRE

    Minter, Leslie Rory

    2011-01-01

    This article explores the relationship between frog declines and climate change, discusses the possible impact of climate change on the South African frog fauna, and highlights the necessity for increased research and monitoring of our frog populations.

  18. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Science.gov (United States)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  19. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  20. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    Science.gov (United States)

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction.

  1. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate ?

    OpenAIRE

    Merino, G.; Barange, M.; Blanchard, J. L.; Harle, J.; Holmes, R.; Allen, I; Allison, E.H.; Badjeck, M.C.; Dulvy, N. K.; Holt, J.; Jennings, S.; Mullon, Christian; Rodwell, L. D.

    2012-01-01

    Expansion in the world's human population and economic development will increase future demand for fish products. As global fisheries yield is constrained by ecosystems productivity and management effectiveness, per capita fish consumption can only be maintained or increased if aquaculture makes an increasing contribution to the volume and stability of global fish supplies. Here, we use predictions of changes in global and regional climate (according to IPCC emissions scenario A1B), marine ec...

  2. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  3. A review of uncertainty visualization within the IPCC reports

    Science.gov (United States)

    Nocke, Thomas; Reusser, Dominik; Wrobel, Markus

    2015-04-01

    Results derived from climate model simulations confront non-expert users with a variety of uncertainties. This gives rise to the challenge that the scientific information must be communicated such that it can be easily understood, however, the complexity of the science behind is still incorporated. With respect to the assessment reports of the IPCC, the situation is even more complicated, because heterogeneous sources and multiple types of uncertainties need to be compiled together. Within this work, we systematically (1) analyzed the visual representation of uncertainties in the IPCC AR4 and AR5 reports, and (2) executed a questionnaire to evaluate how different user groups such as decision-makers and teachers understand these uncertainty visualizations. Within the first step, we classified visual uncertainty metaphors for spatial, temporal and abstract representations. As a result, we clearly identified a high complexity of the IPCC visualizations compared to standard presentation graphics, sometimes even integrating two or more uncertainty classes / measures together with the "certain" (mean) information. Further we identified complex written uncertainty explanations within image captions even within the "summary reports for policy makers". In the second step, based on these observations, we designed a questionnaire to investigate how non-climate experts understand these visual representations of uncertainties, how visual uncertainty coding might hinder the perception of the "non-uncertain" data, and if alternatives for certain IPCC visualizations exist. Within the talk/poster, we will present first results from this questionnaire. Summarizing, we identified a clear trend towards complex images within the latest IPCC reports, with a tendency to incorporate as much as possible information into the visual representations, resulting in proprietary, non-standard graphic representations that are not necessarily easy to comprehend on one glimpse. We conclude that

  4. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  5. Changes in drought risk with climate change

    International Nuclear Information System (INIS)

    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  6. Climate change and managing water crisis: Pakistan's perspective.

    Science.gov (United States)

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    Climate change is a global phenomenon manifested mainly through global warming. The International Panel on Climate Change (IPCC) has reported its negative consequences on natural resources, anthropogenic activities, and natural disasters. The El Nino and La Nina have affected hydrologic regimes and ecosystems. It has been observed that the average temperature in 1995 was 0.4°C higher than that in 1895. By the end of the 21st century, 10% of the area of Bangladesh is likely to be submerged by the sea. Most of the islands of Pacific Ocean will disappear. A major part of Maldives will be submerged. The sea level is expected to rise by 30-150 cm. Extreme events such as floods, cyclones, tsunamis, and droughts have become regular phenomena in many parts of the world. Other adverse impacts are proliferation of water-borne diseases, sea water intrusion, salinization of coastal areas, loss of biodiversity, eco-degradation of watersheds and global glacial decline, and haphazard snow melts/thaws. In turn, these factors have serious effect on water resources. Pakistan is confronting similar climate change. Meteorological data reveal that winter temperatures are rising and summers are getting cooler. Temperature is expected to increase by 0.9°C and 1.5°C by years 2020 and 2050, respectively. Water resources in Pakistan are affected by climate change as it impacts the behavior of glaciers, rainfall patterns, greenhouse gas emissions, recurrence of extreme events such as floods and droughts. Severe floods have occurred in the years 1950, 1956, 1957, 1973, 1976, 1978, 1988, 1992, 2010, 2011, and 2012. Pakistan has faced the worst-ever droughts during the period from 1998 to 2004. Pakistan has surface water potential of 140 million acre feet (MAF) and underground water reserve of 56 MAF. It is one of the most water-stressed countries in the world. The per capita annual availability of water has reduced from 5140 m3 in 1950 to 1000 m3 now. It is fast approaching towards water

  7. Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change - Abstract for decision-makers

    International Nuclear Information System (INIS)

    The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive assessment of the physical science basis of climate change. It builds upon the Working Group I contribution to the IPCC's Fourth Assessment Report in 2007 and incorporates subsequent new findings from the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, as well as from research published in the extensive scientific and technical literature. The assessment considers new evidence of past, present and projected future climate change based on many independent scientific analyses from observations of the climate system, paleo-climate archives, theoretical studies of climate processes and simulations using climate models. During the process of scoping and approving the outline of its Fifth Assessment Report, the IPCC focussed on those aspects of the current understanding of the science of climate change that were judged to be most relevant to policy-makers. In this report, Working Group I has extended coverage of future climate change compared to earlier reports by assessing near-term projections and predictability as well as long-term projections and irreversibility in two separate chapters. Following the decisions made by the Panel during the scoping and outline approval, a set of new scenarios, the Representative Concentration Pathways, are used across all three Working Groups for projections of climate change over the 21. century. The coverage of regional information in the Working Group I report is expanded by specifically assessing climate phenomena such as monsoon systems and their relevance to future climate change in the regions. The Working Group I Report is an assessment, not a review or a text book of climate science, and is based on the published scientific and technical literature available up to 15 March 2013. Underlying all aspects of the report is a

  8. Climate change mitigation policies in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinaviciute, I.

    2003-09-01

    The Lithuanian climate change policy has to be considered in the framework of the Convention on Climate Change. The National Strategy for Implementation of Convention was the first step in evaluating the country's impact on climate change, adapting to the Convention and foreseeing the means and measures for climate change mitigation. The paper introduces main issues related to climate change mitigation policy in Lithuania. It presents an analysis of greenhouse gas emission trends in Lithuania and surveys institutional organizations as well as stakeholder associations related to climate change issues and their role in climate policy making. The main Lithuanian international environmental obligation and Lithuanian governmental climate change mitigation policy in the energy sector are presented as well. (Author)

  9. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  10. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, Sabine

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  11. As climate changes, so do glaciers

    OpenAIRE

    Lowell, Thomas V.

    2000-01-01

    Understanding abrupt climate changes requires detailed spatial/temporal records of such changes, and to make these records, we need rapidly responding, geographically widespread climate trackers. Glacial systems are such trackers, and recent additions to the stratigraphic record show overall synchronous response of glacial systems to climate change reflecting global atmosphere conditions.

  12. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  13. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks

    Science.gov (United States)

    Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart, III; Yi, S.; Thompson, Catharine Copass

    2009-01-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat

  14. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.

    Science.gov (United States)

    Euskirchen, E S; McGuire, A D; Chapin, F S; Yi, S; Thompson, C C

    2009-06-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003-2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 +/- 0.23 W x m(-2) x 10 yr(-1) [mean +/- SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (-5.1 +/- 1.6 d/10 yr) resulted in much greater regional heat

  15. Uncertainty in climate change and its impacts on the United States

    Science.gov (United States)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Gao, X.; Schlosser, C. A.

    2012-12-01

    Simulations of climate change that support work by impact modelers must take into account multiple dimensions of uncertainty, from uncertainty in emissions scenarios to uncertainty in the climate response and including structural uncertainty arising from differences in climate models. In order to investigate uncertainty in climate change over the United States, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has implemented a two-pronged approach that revolves around the Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. Since the IGSM includes a human activity model, it is possible to analyze uncertainties in emissions resulting from uncertainties intrinsic to the economic model, from parametric uncertainty to uncertainty in future climate policies. Another major feature is the flexibility to vary key climate parameters controlling the climate response: climate sensitivity, net aerosol forcing and ocean heat uptake rate. On the one hand, the MIT IGSM-CAM framework links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM), with new modules developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. On the other hand, a pattern scaling method extends the latitudinal projections of the IGSM 2D zonal-mean atmosphere by applying longitudinally resolved patterns from observations, and from climate-model projections archived from exercises carried out for the 4th Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The IGSM-CAM physically simulates changes in both mean climate and extreme events, but relies on one particular model, while the pattern scaling approach allows spatial patterns of different climate models to be considered, but cannot

  16. Climate change, migration and health.

    Science.gov (United States)

    Carballo, Manuel

    2008-01-01

    In summary, climate change of the magnitude that is now being talked about promises to invoke major changes in the nature of the world we live in. From an agricultural and food production perspective new challenges are already emerging and many countries, regional organizations and international agencies are ill-prepared to deal with them. From the perspective of the forced emergence of new diseases. There may also be complex struggles for scarce resources including land, water, food and housing. To what extent these will translate into social and political instability is not clear, but the potential for instability within and between countries should not be under-estimated; nor should the scarcity of selected commodities. Understanding these complex dynamics and planning for them in timely and comprehensive ways is essential. Preparedness by governments, the international community and the private sector, will help accommodate some of the changes that are already taking place and many others which are still to materialize. PMID:18795506

  17. U.S. Global Climate Change Impacts Overview

    Science.gov (United States)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  18. Patterns of authorship in the IPCC Working Group III report

    Science.gov (United States)

    Corbera, Esteve; Calvet-Mir, Laura; Hughes, Hannah; Paterson, Matthew

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has completed its Fifth Assessment Report (AR5). Here, we explore the social scientific networks informing Working Group III (WGIII) assessment of mitigation for the AR5. Identifying authors’ institutional pathways, we highlight the persistence and extent of North-South inequalities in the authorship of the report, revealing the dominance of US and UK institutions as training sites for WGIII authors. Examining patterns of co-authorship between WGIII authors, we identify the unevenness in co-authoring relations, with a small number of authors co-writing regularly and indicative of an epistemic community’s influence over the IPCC’s definition of mitigation. These co-authoring networks follow regional patterns, with significant EU-BRICS collaboration and authors from the US relatively insular. From a disciplinary perspective, economists, engineers, physicists and natural scientists remain central to the process, with insignificant participation of scholars from the humanities. The shared training and career paths made apparent through our analysis suggest that the idea that broader geographic participation may lead to a wider range of viewpoints and cultural understandings of climate change mitigation may not be as sound as previously thought.

  19. Climate change and nuclear power

    International Nuclear Information System (INIS)

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  20. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.