WorldWideScience

Sample records for climate change information

  1. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  2. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  3. Climate Change Conceptual Change: Scientific Information Can Transform Attitudes.

    Science.gov (United States)

    Ranney, Michael Andrew; Clark, Dav

    2016-01-01

    Of this article's seven experiments, the first five demonstrate that virtually no Americans know the basic global warming mechanism. Fortunately, Experiments 2-5 found that 2-45 min of physical-chemical climate instruction durably increased such understandings. This mechanistic learning, or merely receiving seven highly germane statistical facts (Experiment 6), also increased climate-change acceptance-across the liberal-conservative spectrum. However, Experiment 7's misleading statistics decreased such acceptance (and dramatically, knowledge-confidence). These readily available attitudinal and conceptual changes through scientific information disconfirm what we term "stasis theory"--which some researchers and many laypeople varyingly maintain. Stasis theory subsumes the claim that informing people (particularly Americans) about climate science may be largely futile or even counterproductive--a view that appears historically naïve, suffers from range restrictions (e.g., near-zero mechanistic knowledge), and/or misinterprets some polarization and (noncausal) correlational data. Our studies evidenced no polarizations. Finally, we introduce HowGlobalWarmingWorks.org--a website designed to directly enhance public "climate-change cognition."

  4. Geographical Information Systems, Urban Forestry and Climate Change: A Review

    Directory of Open Access Journals (Sweden)

    O.S. Eludoyin

    2012-06-01

    Full Text Available The paper unfolds the use of urban forestry in controlling climate change and presents the use Geographical Information System (GIS as an adequate and efficient modern tool for analyzing and mapping the forest inventories for use in ameliorating the scourge of climate change in the society. The paper concludes that a holistic approach which involves the integrating urban forestry, GIS and elements of climate will go a long way to assist in saving the livelihood of mankind from being seriously affected by climate change. More so, adequate awareness should be given on the roles of urban forestry and GIS in reducing climate change. In addition, continual assessment of landuse and land cover should be done in order to detect the percentage change of urban forest resources over time with the use of GIS and remote sensing.

  5. Climate Change: Making the Best Use of Scientific Information

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Climate science regularly makes headlines in the media, usually after an extreme weather event or a disaster, or in the wake of campaigns by think tanks about the science of climate change. In this presentation, I discuss four specific challenges that are posed to climate scientist when communicating with the public: (i) The widening gap between the scientific literacy of the public and the communication literacy of the scientists; (ii), the multiplicity of scientific information conduits; (iii), information of, and under, uncertainty; and (iv), the requirement to be precise without using technical language. It turns out that these challenges are quite generic to science communication. Climate scientists have learned from the regular international assessments they perform under the auspices of the Intergovernmental Panel on Climate Change and have accumulated a collective experience of more than 20 years. In this presentation I discuss the most important lessons learned from this experience and their relevant...

  6. Development of Climate Change Adaptation Platform using Spatial Information

    Science.gov (United States)

    Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.

    2014-12-01

    Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the

  7. The issue: Innovation, information technology and climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-06

    This position paper by the Information Technology Association of Canada (ITAC) outlines the information technology community's position vis-a-vis the Federal Government's 'Climate Change Plan for Canada'. In general, the ITAC is in favour of the Government's plan, however, it asserts that the Plan falls short by not acknowledging the significant contributions that present and emerging information and communications technologies can make to the achievements of Canadian climate change goals. In this regard the paper draws attention to, and explains the significance of the actual and potential contributions made to climate change efforts by teleconferencing, video-conferencing, telecommuting, electronic commerce, and smart buildings technologies. 4 refs.

  8. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    Science.gov (United States)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  9. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    development in 2010 and is likely to manage the system after 2011. The European Commission in its Communication in 2009 on disaster risk prevention also calls for improving and better sharing of data on disasters, disaster risk mapping and disaster risk management, in the context of the EU civil protection mechanism. Such information might also be linked to the planned EU Clearinghouse on climate change adaptation. The activities of EEA on climate change impacts, vulnerability and adaptation (including disaster risk reduction) include indicators of the impacts of climate change; a regularly updated overview of national assessments and adaptation plans on the EEA web site and specific focused reports, e.g. on adaptation to the challenges of changing water resources in the Alps (2009) and on analysis of past trends in natural disasters (due in 2010) and regular expert meetings and workshops with EEA member countries. The ECAC presentation will include the latest developments in the EU Clearinghouse on adaptation and progress in relevant EEA activities.

  10. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  11. Climate Change Information Dashboards for Water Resource Managers

    Science.gov (United States)

    Buja, Lawrence

    2016-04-01

    It is in the context of its application that one needs to determine if climate information is of high quality and ultimately useful. Therefore, it is important that the intersection between data providers and data consumers is structured in form of an iterative and collaborative exchange where science and application viewpoints can be brought together. A traditional "loading dock"-style hand-off of data fails to optimally inform decisions. It is now broadly recognized that a collaborative, open exchange is better suited to generate credible and salient products and knowledge that can be more confidently used in decisions. But in order for this exchange to be successful in practice, it needs to be sufficiently efficient to actually facilitate an exploratory process that is inherently iterative to determine the most informative products. It also requires a transparent approach that is easily understood and communicated. We will present prototypes of Climate Information Dashboards that collect on a single page to integrate a suite of key climate information for resource managers. The content of dashboards is based on standardized products that can be assembled to meet specific needs. They were co-designed with the water resource managers and are tailored to selected management and decision topics. The visualizations are tuned to quickly provide the basic information, yet below individual diagnostics are more detailed analyses that can be consulted. These dashboards offer a flexible way to connect decision-makers to climate model output. Conversely, such dashboards can also be applied to inform model development by providing insight into a suite of key characteristics of model performance that have been identified as critical by a sector.

  12. Communicating Climate Change to Visitors of Informal Science Environments

    Science.gov (United States)

    Koepfler, Jes A.; Heimlich, Joe E.; Yocco, Victor S.

    2010-01-01

    This article reports findings on visitors' preferences for content presentation of a future global warming and climate change exhibit. The study was conducted with two groups: one from the Marian Koshland Science Museum of the National Academy of Sciences in Washington, DC, and the other at the Center of Science and Industry in Columbus, Ohio. The…

  13. Climate Change and Technical Progress: Impact of Informational Constraints

    OpenAIRE

    Bondarev, Anton; Clemens, Christiane; Greiner, Alfred

    2013-01-01

    In this paper we analyse a growth model that includes environmental and economic variables as well as technological progress under different informational constraints on the behavior of economic agents. To simulate the informationally constrained economy, we make use of the non-linear model predictive control technique. We compare models with exogenous and endogenous technical change as well as directed and undirected endogenous technical change under different informational structures. We sh...

  14. Antarctica and Global Environmental Change - Lessons from the Past Inform Climate Change Policy Today

    Science.gov (United States)

    Dunbar, R. B.; Scientific Team Of Odp Drilling Leg 318; Andrill Science Team

    2011-12-01

    Antarctic's continental ice, sea ice, and the broader Southern Ocean form a coupled and complex climate system that interacts in important yet poorly understood ways with the low and mid-latitudes. Because of its unusual sovereignty status and the fact that there is no indigenous human population, information about climate change in Antarctica penetrates the policy world less readily than findings from other regions. Yet, Antarctica's potential to impact climate change globally is disproportionately large. Vulnerable portions of the ice sheet may contribute up to 3 to 5 meters of sea level rise in the coming centuries, including significant amounts within the next 50 years. Loss of sea ice and other changes in the Southern Ocean may reduce oceanic uptake of excess atmospheric carbon dioxide, exacerbating global warming worldwide. Antarctica's impact on the Southern Hemisphere wind field is now well-established, contributing to ongoing decadal-scale perturbations in continental precipitation as well as major reorganizations of Southern Ocean food chains. Recent scientific drilling programs in the Ross Sea and off Wilkes Land, Antarctica, provide valuable insights into past climatic and biogeochemical change in Antarctica, insights of great relevance to international and national climate change policy. In this paper, we discuss polar amplification, sea level variability coupled to Antarctic ice volume, and response timescales as seen through the lens of past climate change. One key result emerging from multiple drilling programs is recognition of unanticipated dynamism in the Antarctic ice sheet during portions of the Pliocene (at a time with pCO2 levels equivalent to those anticipated late this century) as well as during "super-interglacials" of the Pleistocene. Evidence for substantially warmer ocean temperatures and reduced sea ice cover at these times suggests that polar amplification of natural climate variability, even under scenarios of relative small amounts

  15. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  16. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  17. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  18. "What sceptics believe": The effects of information and deliberation on climate change scepticism.

    Science.gov (United States)

    Hobson, Kersty; Niemeyer, Simon

    2013-05-01

    Scepticism about climate change now appears a pervasive social phenomenon. Research to date has examined the different forms that scepticism can take, from outright denial to general uncertainty. Less is known about what climate sceptics value and believe beyond their climate change doubt, as well as how "entrenched" such beliefs are. In response, this paper discusses research into public reactions to projected climate change in the Australian Capital Region. Using Q Methodology and qualitative data, it outlines five discourses of scepticism and explores the impact regional-scale climate scenarios and a deliberative forum had on these discourses. Results show that both forms of intervention stimulate "discourse migration" amongst research participants. However, migrations are rarely sustained, and sceptical positions are infrequently dispelled outright, suggesting the relationship between climate scepticism, broader beliefs, and the methods used to inform and debate about climate change, are pivotal to comprehending and addressing this issue. PMID:23833106

  19. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  20. Information and communication technology and climate change adaptation: Evidence from selected mining companies in South Africa

    OpenAIRE

    Bartholomew I. Aleke; Godwell Nhamo

    2016-01-01

    The mining sector is a significant contributor to the gross domestic product of many global economies. Given the increasing trends in climate-induced disasters and the growing desire to find lasting solutions, information and communication technology (ICT) has been introduced into the climate change adaptation mix. Climate change-induced extreme weather events such as flooding, drought, excessive fog, and cyclones have compounded the environmental challenges faced by the mining sector. T...

  1. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  2. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  3. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  4. Climate Change

    OpenAIRE

    The IJOEM

    2010-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathways could stabilise the global average atmospheric concentration of greenhouse gases (GHG) at 450 ppm, the level which has a 50% chance of keeping the temperature rise to 2 oC? What policies are nee...

  5. Trust and Mistrust when Students Read Multiple Information Sources about Climate Change

    Science.gov (United States)

    Braten, Ivar; Stromso, Helge I.; Salmeron, Ladislao

    2011-01-01

    The present study investigated how undergraduates judged the trustworthiness of different information sources that they read about climate change. Results showed that participants (N = 128) judged information from textbook and official documents to be more trustworthy than information from newspapers and a commercial agent. Moreover, participants…

  6. Disturbing Information and Denial in the Classroom and Beyond: Climate Change, Emotions and Everyday Life

    Science.gov (United States)

    Norgaard, K. M.

    2015-12-01

    Global warming is the most significant environmental issue of our time, yet public response in Western nations has been meager. Why have so few taken any action? Most studies of public response to climate change have focused on information deficit approaches. Many in the general public and environmental community have presumed that the public's failure to engage is a function of lack of concern about climate change. Instead, using interviews and ethnographic research on how knowledge of climate change is experienced in everyday life I describe "the social organization of climate denial" and discuss how it impacts classroom learning and the broader social understanding of climate change. Disturbing emotions of guilt, helplessness and fear of the future arose when people were confronted with the idea of climate change. People then normalized these disturbing emotions by changing the subject of conversations, shifting their attention elsewhere, telling jokes, and drawing on stock social discourses that deflected responsibility to others. The difficulty people have in making sense of climate change is in direct relation to the social world around them. This research suggests that educational strategies in the classroom and for the general public that consider and target the social, cultural and political aspects of the meaning of climate change will be most effective (in addition to factors that affect individual cognition).

  7. Informing climate change adaptation in the Northeast and Midwest United States: The role of Climate Science Centers

    Science.gov (United States)

    Bryan, A. M.; Morelli, T. L.

    2015-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information and tools that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change. The NE CSC partners with other federal agencies, universities, and NGOs to facilitate stakeholder interaction and delivery of scientific products. For example, NE CSC researchers have partnered with the National Park Service to help managers at Acadia National Park adapt their infrastructure, operations, and ecosystems to rising seas and more extreme events. In collaboration with the tribal College of Menominee Nation and Michigan State University, the NE CSC is working with indigenous communities in Michigan and Wisconsin to co-develop knowledge of how to preserve their natural and cultural values in the face of climate change. Recently, in its largest collaborative initiative to date, the NE CSC led a cross-institutional effort to produce a comprehensive synthesis of climate change, its impacts on wildlife and their habitats, and available adaptation strategies across the entire Northeast and Midwest region; the resulting document was used by wildlife managers in 22 states to revise their Wildlife Action Plans (WAPs). Additionally, the NE CSC is working with the Wildlife Conservation Society to help inform moose conservation management. Other research efforts include hydrological modeling to inform culvert sizing under greater rainfall intensity, forest and landscape modeling to inform tree planting that mitigates the spread of invasive species, species and habitat modeling to help identify suitable locations for wildlife refugia. In addition, experimental research is being conducted to improve our understanding of how species such as brook trout are responding to climate change. Interacting with stakeholders during all phases of

  8. 78 FR 58343 - Information Collection Activities: Visitor Perceptions of Climate Change in U.S. National Parks

    Science.gov (United States)

    2013-09-23

    ... National Park Service Information Collection Activities: Visitor Perceptions of Climate Change in U.S... reference Information Collection 1024-NEW, Visitor Perceptions of Climate Change in U.S. National Parks in.... II. Data OMB Control Number: XXXX-New. Title: Visitor Perceptions of Climate Change in US...

  9. Perceived behavioural control and the role of information on climate change in increasing sustainable travel

    OpenAIRE

    Howarth, C.; Waterson, B.J.; McDonald, M

    2010-01-01

    This paper investigates the extent to which information on climate change can influence travel behaviour. Travel behaviour on the aggregate level is unsustainable; in light of increasing awareness on climate change, the need to substantially reduce emissions from the transport sector is growing. The status of travel behaviour has grown both in terms of its potential to fill the gaps left by technological and political progress as well as the potential longevity and transferability of its impa...

  10. Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers

    Science.gov (United States)

    Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.

    2013-12-01

    Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the

  11. Information and communication technology and climate change adaptation: Evidence from selected mining companies in South Africa

    Directory of Open Access Journals (Sweden)

    Bartholomew I. Aleke

    2016-03-01

    Full Text Available The mining sector is a significant contributor to the gross domestic product of many global economies. Given the increasing trends in climate-induced disasters and the growing desire to find lasting solutions, information and communication technology (ICT has been introduced into the climate change adaptation mix. Climate change-induced extreme weather events such as flooding, drought, excessive fog, and cyclones have compounded the environmental challenges faced by the mining sector. This article presents the adoption of ICT innovation as part of the adaptation strategies towards reducing the mining sector’s vulnerability and exposure to climate change disaster risks. Document analysis and systematic literature review were adopted as the methodology. Findings from the study reflect how ICT intervention orchestrated changes in communication patterns which are tailored towards the reduction in climate change vulnerability and exposure. The research concludes with a proposition that ICT intervention must be part of the bigger and ongoing climate change adaptation agenda in the mining sector.Keywords: ICT; climate change; disaster risk reduction; mining; adaptation; South Africa

  12. Ignorance or bias? Evaluating the ideological and informational drivers of communication gaps about climate change.

    Science.gov (United States)

    Nisbet, Erik C; Cooper, Kathryn E; Ellithorpe, Morgan

    2015-04-01

    Does the relationship between media use and learning about climate change depend more on audiences' scientific literacy on their ideological biases? To answer this question, we evaluate both the knowledge gap and belief gap hypotheses as they relate to climate change. Results indicate belief gaps for news and entertainment content and a knowledge gap for edutainment content. Climate change knowledge among conservatives decreased with greater attention to political news, but increased with greater attention to science news. TV entertainment was associated with a significant decrease in knowledge about climate change among liberals to similar levels as conservatives. Edutainment was associated with a widening gap in knowledge based on respondents' scientific literacy. Implications for informal learning about controversial science through the media are discussed. PMID:25161166

  13. Who trusts scientists for information about climate change? Nuclear power? Vaccines?

    Science.gov (United States)

    Hamilton, L.

    2015-12-01

    US public acceptance/rejection of science on the topic of climate change has become highly polarized, with a demographic profile well established through survey research. Trust in scientists for information about climate change tends to increase with education, decrease with age, and is higher among self-identified liberals and moderates than among conservatives. Demographic profiles of people who do or do not trust scientists regarding other disputed topics are less well established. Some observers have argued that certain domains such as vaccines, nuclear power or genetically modified organisms (GMOs) could present a mirror image of climate change, with liberals instead of conservatives disproportionately rejecting science on that topic. Evidence for this mirror-image hypothesis has been mainly anecdotal, however. Here we test it systematically using statewide survey data on more than 1200 interviews, comparing five similarly worded questions that ask respondents whether they trust, don't trust, or are unsure about scientists as a source of information about ... climate change, vaccines, evolution, nuclear power safety, or GMOs. Climate change proves to be the most polarized of these topics, but all five exhibit roughly similar age, education and ideological effects -- contrary to the mirror-image hypothesis. The common patterns across five science domains, chosen for their hypothetical contrasts, map out an unexpectedly cohesive picture of who trusts scientists for information, and who does not. Implications of these survey results for public outreach and science communication are explored.

  14. Informing about Climate Change and Invasive Species: How the Presentation of Information Affects Perception of Risk, Emotions, and Learning

    Science.gov (United States)

    Otieno, Christine; Spada, Hans; Liebler, Katharina; Ludemann, Thomas; Deil, Ulrich; Renkl, Alexander

    2014-01-01

    Environmental issues such as climate change are becoming ever more important in today's societies and politics. Information is spread by the media, for example, via the Internet or information brochures, employing different representational styles (e.g. sensational vs. neutral styles, emphasis of human vs. natural causes). We investigated the…

  15. Climate change information supporting adaptation in forestry and agriculture - results and challenges

    Science.gov (United States)

    Gálos, Borbála; Czimber, Kornél; Gribovszki, Zoltán; Bidló, András; Csáki, Péter; Kalicz, Péter; Haensler, Andreas; Jacob, Daniela; Mátyás, Csaba

    2015-04-01

    Recurrent droughts of the last decades have led to severe impacts in forestry and agriculture in the sensitive and vulnerable low-elevation regions of Southeast Europe. Observed impacts are very likely to occur with increasing probability under projected climate conditions throughout the 21st century. In order to suggest options for adaptation and mitigation, a GIS-based Decision Support System is under development in the frame of the joint EU-national research project "Agroclimate". Impact assessments and adaptation support services are based on the simulation results of 12 regional climate models (www.ensembles-eu.org) using the A1B emission scenario until 2100. The development of the Decision Support System requires the balancing of available climatic information and required data for research and economically relevant projection needs of the end users. Here, concrete examples of the development process will be shown for the stepwise analysis and comparison of the followings: 1. Provided climate services: • projected tendencies of temperature and precipitation means and extremes until the end of the 21st century, spread of the simulation results. 2. Required information for climate impact research: • types and characteristics of climate input data, • methods and functions for deriving possible climate change impacts in forestry and agriculture (e.g. on species distribution, growth, production, yield, soil water retention, ground water table, runoff, erosion, evapotranspiration and other ecosystem services and soil properties). 3. Required climate information from the end users' side for developing adaption strategies in the affected sectors: • types of climate indicators, • possible range of the expected impacts (in magnitude and probability). 4. Gaps between climate services and the needs of impact researchers and end users (e.g. spatial and temporal scales, interpretation techniques). Experiences of supporting climate change adaptation in forestry

  16. The Effect of Information Provision on Public Consensus about Climate Change.

    Science.gov (United States)

    Deryugina, Tatyana; Shurchkov, Olga

    2016-01-01

    Despite over 20 years of research and scientific consensus on the topic, climate change continues to be a politically polarizing issue. We conducted a survey experiment to test whether providing the public with information on the exact extent of scientific agreement about the occurrence and causes of climate change affects respondents' own beliefs and bridges the divide between conservatives and liberals. First, we show that the public significantly underestimated the extent of the scientific consensus. We then find that those given concrete information about scientists' views were more likely to report believing that climate change was already underway and that it was caused by humans. However, their beliefs about the necessity of making policy decisions and their willingness to donate money to combat climate change were not affected. Information provision affected liberals, moderates, and conservatives similarly, implying that the gap in beliefs between liberals and conservatives is not likely to be bridged by information treatments similar to the one we study. Finally, we conducted a 6-month follow-up with respondents to see if the treatment effect persisted; the results were statistically inconclusive.

  17. Climate Change Education: Quantitatively Assessing the Impact of a Botanical Garden as an Informal Learning Environment

    Science.gov (United States)

    Sellmann, Daniela; Bogner, Franz X.

    2013-01-01

    Although informal learning environments have been studied extensively, ours is one of the first studies to quantitatively assess the impact of learning in botanical gardens on students' cognitive achievement. We observed a group of 10th graders participating in a one-day educational intervention on climate change implemented in a botanical…

  18. Towards Quantifying Robust Uncertainty Information for Climate Change Decision-making

    Science.gov (United States)

    Forest, C. E.; Libardoni, A. G.; Tsai, C. Y.; Sokolov, A. P.; Monier, E.; Sriver, R. L.; Keller, K.

    2015-12-01

    The expected future impacts of climate change can be a manageable problem provided the risks to society can be properly assessed. Given our current understanding of both the climate system and the related decision problems, we strive to develop tools that can assess these risks and provide robust strategies given possible futures. In this talk, we will present two examples from recent work ranging from global to regional scales to highlight these issues. Typically, we begin by assessing the probability of events without information on impacts specifically, however, recent developments allow us to address the risk management problem directly. In the first example, we discuss recent advances in quantifying probability distributions for equilibrium climate sensitivity (ECS). A comprehensive examination of factors all contributing to the total uncertainty in ECS can include updates to estimates of observed climate changes (oceanic, atmospheric, and surface records), improved understanding of radiative forcing and internal variability, revised statistical calibration methods, and overall longer records. In a second example, we contrast the assessment of probabilistic information for global scale climate change with that for regional changes. The relative importance of model structural uncertainty, uncertainty in future forcing, and the role of internal variability will be compared within the context of the decision making problem. In both cases, robust estimates of uncertainty are desired and needed… but surprises happen. Incorporating these basic issues into robust decision making frameworks is a long-term research goal with near-term implications.

  19. GAIA: Fusing Information to Prepare for the Effects of Climate Change

    Science.gov (United States)

    Toigo, A. D.; Pikas, C. K.; Paxton, L. J.; Babin, S. M.; Schaefer, R. K.; Simpkins, S.; Swartz, W. H.; Weiss, M.

    2010-12-01

    Defining and understanding the security challenges of global climate change requires the merging of data, models, and approaches from disparate areas of the geosciences, but it also requires merging social, economic, cultural, and behavioral data and models. More importantly, to develop, get approval for, and implement responses and adaptations requires an in-depth understanding of political decision-making, decision support, and collaboration among scientists, decision makers, and stakeholders. The Johns Hopkins University Applied Physics Laboratory (APL) is creating a virtual organization, GAIA (Global Assimilation of Information for Action), to develop and demonstrate an extensible framework for identifying and acting on critical challenges in key global climate change impact areas. GAIA will establish APL as the institution for the exchange of assessments, needs, and impacts on aspects of the global climate change problem among government organizations, NGOs and scientists. This presentation will introduce the GAIA project and our primary activities in the first year.

  20. The Impacts of Climate Change on Poverty in 2030 and the Potential from Rapid, Inclusive, and Climate-Informed Development

    OpenAIRE

    Rozenberg, Julie; Hallegatte, Stephane

    2015-01-01

    The impacts of climate change on poverty depend on the magnitude of climate change, but also on demographic and socioeconomic trends. An analysis of hundreds of baseline scenarios for future economic development in the absence of climate change in 92 countries shows that the drivers of poverty eradication differ across countries. Two representative scenarios are selected from these hundred...

  1. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  2. Is this what you need? Direct feedback help climate change information exchange

    Science.gov (United States)

    Bachelet, D. M.; Brown, M.; Gough, M.; Basin, D.

    2015-12-01

    The combination of projected climate change and land use adds uncertainty to the long-term effectiveness of current management strategies. Managers need reliable information to adjust their strategies as population density increases. However they are currently overwhelmed by the diversity of available information and the multiplicity of sources. CBI's goal is to centralize and package effectively the usable information for land managers and for the general public in order to increase awareness and promote preparation for the challenges ahead. We are designing conservation planning atlases in Data Basin for a number of landscape conservation cooperatives to address this need. We are adding some user-friendly tools to specifically serve the available climate projections and land use data in a meaningful way. By working closely with a group of managers, our goal is to understand how consideration of these projections figures into the decision-making process and refine the ways we can deliver relevant metrics. We have been holding interviews to gather information and critical feedback on existing climate-related web pages and tools, providing us with benchmarks for improvement. As it turned out, the student-manager dialogue added a component of climate change education and awareness of available tools to the project. Through an iterative process we plan to continue this exchange and address the variety of issues managers continually have to face to maintain healthy ecosystems.

  3. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    Science.gov (United States)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  4. Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers

    Science.gov (United States)

    Niyogi, D.; Andresen, J.

    2011-12-01

    Corn and soybean production contributes over $100 billion annually to the U.S. economy, most of which comes from the intensely cultivated corn-belt region of the Midwest. Successful crop production in this region is highly dependent on favorable temperatures and appropriate precipitation patters, making this industry vulnerable to changes in climate patterns. Though predictive models are constantly improving, there are gaps in our understanding of how different management practices can be used to help farmers adapt to changes in climate while maintaining economic viability. Furthermore, currently available tools and models are not meeting producers' needs, and little is known about the types of information they would like to access. Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers is an integrated research and extension project that seeks to improve the resilience and profitability of farms in the North Central Region amid variable climate change through the development and dissemination of improved decision support tools, resource materials, and training. The goal is to work closely with producers to help them make better long-term plans on what, when and where to plant, and also how to manage crops for maximum yields and minimum environmental damage. The U2U team is composed of a uniquely qualified group of climatologists, crop modelers, agronomists, economists, and social scientists from 10 partner universities across the Midwest. Over the span of 5 years, collaborators will complete tasks associated with 5 objectives that will enhance the usability of climate information for the agricultural community and lead to more sustainable farming operations. First the team will produce research on the biophysical and economic impacts of different climate scenarios on corn and soybean yields in the North Central Region (objective 1) and conduct complementary research to understand how producers and advisors are

  5. The limits of scientific information for informing forest policy decisions under changing climate

    Science.gov (United States)

    McLachlan, J. S.

    2011-12-01

    The distribution of tree species is largely determined by climate, with important consequences for ecosystem function, biodiversity, and the human economy. In the past, conflicts about priority among these various goods have produced persistent debate about forest policy and management. Despite this history of conflict, there has been general agreement on the framework for the debate: Our benchmark for assessing human impact is generally some historical condition (in the New World, this is often pre-European settlement). Wilderness is to be managed with minimal human intervention. Native species are preferred over non-natives. And regional landscapes can be effectively partitioned into independent jurisdictions with different management priorities. Each of these principles was always somewhat mythical, but the dynamics of broad scale species range shifts under climate change make all of them untenable in the future. Managed relocation (MR, or assisted migration) is a controversial proposal partly because it demands scientific answers that we do not have: Are trees naturally capable of shifting their ranges as fast as climate will force them? Will deliberate introductions of species beyond their native ranges have adverse impacts on the receiving ecosystem? What are appropriate targets for hydrologic or fire management under novel no-analog climates? However, these demands on science mask a more fundamental concern: the ethical framework underlying existing forest policy is unsupported in the context of long-term non-stationary environmental trends. Whether or not we conclude that MR is a useful policy option, debate about MR is useful because it forces us to place the global change ecology agenda in a larger ethical debate about our goals when managing novel ecosystems.

  6. Using the New Scenarios Framework to Inform Climate Change Adaptation Policy in Finland

    Science.gov (United States)

    Carter, T. R.

    2013-12-01

    In 2005, Finland was among the first countries in the world to develop a national climate change adaptation strategy (Marttila et al., 2005). This included a characterization of future changes in climate and socioeconomic conditions using scenarios based on the IPCC Special Report on Emissions Scenarios (SRES - IPCC, 2000). Following a government evaluation of the strategy, completion of a national adaptation research programme, and in light of the recent European Union adaptation strategy, the Finnish strategy is now under revision. As part of this revision process, the New Scenario Framework (Moss et al., 2010) is being used to guide the mapping of future conditions in Finland out to the end of the 21st century. Future Finnish climate is being analysed using the CMIP5 climate model simulations (Taylor et al., 2012), including downscaled information based on regional climate model projections in the EURO-CORDEX project (Vautard et al., 2013). All projections are forced by the Representative Concentration Pathways (RCPs - van Vuuren et al., 2011). Socioeconomic scenarios are also being developed by outlining alternative pathways that reflect national social, economic, environmental and planning goals. These are designed according to the Shared Socioeconomic Pathway (SSP) framework of challenges to adaptation and mitigation (Kriegler et al., 2012). Work is in progress to characterize these pathways, mainly qualitatively, for different sectors in Finland. Preliminary results of the conceptual scenario development phase will be presented in this session. These initial ideas will be exchanged with representatives of ministries, regional government and key stakeholder groups. The eventual form and number of scenarios that appear in the revised strategy will be determined following a formal review of the draft document to be prepared in 2014. Future work could include quantification of scenarios, possibly mapping them onto the specific SSP worlds. This would then provide

  7. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  8. Informal networks and resilience to climate change impacts: A collective approach to index insurance

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    rely on to manage risks related to fluctuations in income flows is risk-sharing in informal networks. An informal network is an ideal way of managing idiosyncratic shocks, but once such shocks become covariate and affect whole communities, as is the case with most climate change impacts, informal......This article contributes to the understanding of how to proceed with the development of index-insurance in order to reach extended population coverage with the insurance. The approach is applied to an example from a region in Tanzania. One of the main coping strategies that resource-poor households...... networks become insufficient since the majority of risk-sharers will be affected by the shock at the same time. This paper proposes a collective approach to index-insurance in which the members of an informal network will be insured as one insurance taker. The paper raises a conceptual argument...

  9. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  10. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  11. Climate Informed Economic Instruments to Enhance Urban Water Supply Resilience to Hydroclimatological Variability and Change

    Science.gov (United States)

    Brown, C.; Carriquiry, M.; Souza Filho, F. A.

    2006-12-01

    Hydroclimatological variability presents acute challenges to urban water supply providers. The impact is often most severe in developing nations where hydrologic and climate variability can be very high, water demand is unmet and increasing, and the financial resources to mitigate the social effects of that variability are limited. Furthermore, existing urban water systems face a reduced solution space, constrained by competing and conflicting interests, such as irrigation demand, recreation and hydropower production, and new (relative to system design) demands to satisfy environmental flow requirements. These constraints magnify the impacts of hydroclimatic variability and increase the vulnerability of urban areas to climate change. The high economic and social costs of structural responses to hydrologic variability, such as groundwater utilization and the construction or expansion of dams, create a need for innovative alternatives. Advances in hydrologic and climate forecasting, and the increasing sophistication and acceptance of incentive-based mechanisms for achieving economically efficient water allocation offer potential for improving the resilience of existing water systems to the challenge of variable supply. This presentation will explore the performance of a system of climate informed economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on water-sensitive stakeholders. The system is comprised of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Contract and insurance parameters are linked to forecasts and the evolution of seasonal precipitation and streamflow and designed for financial and political viability. A simulation of system performance is presented based on ongoing work in Metro Manila, Philippines. The

  12. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    OpenAIRE

    Johnson, Johanna E.; Holbrook, Neil J.

    2014-01-01

    The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temper...

  13. Periglacial shallow lakes offer information about climate change. Preliminary results, King George Island

    International Nuclear Information System (INIS)

    South Shetland Islands (northern Antarctic Peninsula) represent one of the worlds areas most affected by the retreat of glaciers due to global warming. As pointed by Ingolfsson, during the last 100 years the climatic development in the western Antarctic Peninsula region has moved from a relatively cold regime to an increasingly warm regime. A large number of evidences indicate that melt water and sediment transport have increased during the past 50 years.The King George Island (KGI) ice cap, its high sensitivity to climate changes, thermal regime, ablation rates, distribution, etc. and its relation with the relative sea level, have been deeply studied and this behavior is generally extensive to the South Shetland Islands ice caps. However, there are not many recent dating studies in this area. Radiometric dating is the main way to quantify (retrospectively) the rates of various geo-hydro environmental processes of interest and further work is necessary to constrain timescales of these processes affected by recent climate changes. The few available dating studies of lacustrine sediments are restricted to lakes of sufficient size and depth, which are not widespread and have a very uneven spatial distribution. On the other hand, there are many small shallow peri glacial lagoons having a better spatial distribution, especially with respect to the fronts of receding glaciers. These lagoons are typically discarded for recent dating studies, due to a number of technical reasons. In this paper, for the first time, we present the preliminary results of a recent radiometric dating (210Pb and 137Cs) from a peri glacial shallow lagoon on Fildes Peninsula (KGI) and discuss the results in the context of the local geology and climatic conditions during the last century.The lagoon is located near the Collins Glacier retreat border and the results indicates that besides the upper sediment layers may be frozen during winter time, the stratigraphic information is still preserved and

  14. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  15. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  16. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  17. 76 FR 16443 - Proposed Information Collection: Strengthening the Scientific Understanding of Climate Change...

    Science.gov (United States)

    2011-03-23

    ... Climate Change Impacts on Freshwater Resources of the United States AGENCY: United States Geological... draft report to Congress titled ``Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States.'' The draft report reviews key issues related...

  18. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  19. Natural hazards and climate change in Dhaka: future trends, social adaptation and informal dynamics

    Science.gov (United States)

    Thiele-Eich, I.; Aßheuer, T.; Simmer, C.; Braun, B.

    2009-04-01

    Similar to many megacities in the world, Dhaka is regularly threatened by natural hazards. Risks associated with floods and cyclones in particular are expected to increase in the years to come because of global climate change and rapid urbanization. Greater Dhaka is expected to grow from 13.5 million inhabitants in 2007 to 22 million inhabitants by 2025. The vast majority of this growth will take place in informal settlements. Due to the setting of Greater Dhaka in a deltaic plain, the sprawl of slums is primarily taking place in wetlands, swamps and other flood-prone areas. Slum dwellers and informal businesses are vulnerable, but have somehow learned to cope with seasonal floods and developed specific adaptation strategies. An increase of precipitation extremes and tropical cyclones, however, would put considerable stress on the adaptability of the social and economic system. DhakaHazard, a joint research project of the Department of Meteorology at the University of Bonn and the Department of Geography at the University of Cologne, takes up these issues in an interdisciplinary approach. The project, which begun in November 2008, aims to achieve two main objectives: To link analyses of informal social and economic adaptation strategies to models on future climate change and weather extremes. To estimate more accurately the future frequency and magnitude of weather extremes and floods which are crucial for the future adaptability of informal systems. To fulfill these objectives, scientists at the Meteorological Institute are studying the evolution of natural hazards in Bangladesh, while researchers at the Department of Geography are undertaking the task of assessing these hazards from a social point of view. More specifically, the meteorologists are identifying global and regional weather conditions resulting in flooding of the Greater Dhaka region, while possible variations in flood-inducing weather patterns are analyzed by evaluating their frequency and magnitude

  20. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith;

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  1. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    Directory of Open Access Journals (Sweden)

    Johanna E. Johnson

    2014-01-01

    Full Text Available The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temperatures, ocean chemistry, ocean circulation, sea level, rainfall, and storm patterns continue to change this century. In particular, keystone species that form the foundation of marine habitats, such as coral reefs, kelp beds, and temperate rocky reefs, are projected to pass thresholds with subsequent implications for communities and ecosystems. This review synthesises recent science in this field: the observed impacts and responses of marine ecosystems to climate change, ecological thresholds of change, and strategies for marine conservation to promote adaptation. Increasing observations of climate-related impacts on Australia’s marine ecosystems—both temperate and tropical—are making adaptive management more important than ever before. Our increased understanding of the impacts and responses of marine ecosystems to climate change provides a focus for “no-regrets” adaptations that can be implemented now and refined as knowledge improves.

  2. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  3. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  4. Information systems in a changing climate: Early warnings and drought risk management

    Directory of Open Access Journals (Sweden)

    Roger S. Pulwarty

    2014-06-01

    Full Text Available Drought is among the most damaging, and least understood, of all “natural” hazards. Although some droughts last a single season and affect only small areas, the instrumental and paleoclimate records show that droughts have sometimes continued for decades and have impacted millions of square kilometers in North America, West Africa, and East Asia. To cross the spectrum of potential drivers and impacts, drought information systems have multiple sub-systems which include an integrated risk assessment, communication and decision support system of which early warning is a central component and output. An early warning system is much more than a forecast – it is a linked risk information (including people׳s perception of risk and communication system that actively engages communities involved in preparedness. There are numerous drought systems warning systems being implemented at different scales of governance. We draw on the lessons of over 21 drought early warning systems around the world, in both developing and developed countries and at regional, national and community levels. The successes illustrate that effective early warning depends upon a multi-sectoral and interdisciplinary collaboration among all concerned actors at each stage in the warning process from monitoring to response and evaluation. However, the links between the community-based approach and the national and global EWSs are relatively weak. Using the rich experience of information systems across the globe, this paper identifies pathways for knowledge management and action at the relevant scales for decision-making in response to a changing climate.

  5. Testing the Value of Information of Climate Change Indicators that use Earth Observations

    Science.gov (United States)

    Kenney, M. A.

    2012-12-01

    . Such a result would mean that the indicator has a negative value of information. Granted the value of information depends on the intended audience(s), with some groups being able to understand and want more technically sophisticated and detailed information presented as an indicator. However, if the goal of an indicator is to provide information to a wide range of groups, it is essential to assure that these groups have a correct understanding of the indicator, its assumptions, and the ability to use the indicator (as presented or modified) for decision-making contexts. In this talk, I will present the preliminary results of a study that is testing the value of information of a range of climate change indicators, and I will focus on indicators that use earth observations. Such results contribute to a richer understanding of the value of information of indicators, and can shape the development of both individual indicators and systems of indicators, such as the development of the indicator system for the U.S. Global Change Research Program, National Climate Assessment.

  6. NPOESS, Essential Climates Variables and Climate Change

    Science.gov (United States)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  7. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  8. Regulatory and information support for evaluation of biological productivity of Ukrainian forests and climate change

    Science.gov (United States)

    Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan

    2013-04-01

    Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted

  9. Designing Global Climate Change

    Science.gov (United States)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  10. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  11. Mathematics of Climate Change

    OpenAIRE

    Halstadtrø, Ida

    2013-01-01

    Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...

  12. The Importance of Consensus Information in Acceptance of Climate Change (Invited)

    Science.gov (United States)

    Cook, J.; Lewandowsky, S.

    2013-12-01

    In recent years, public perception of the scientific consensus on human-caused global warming has been disturbingly low, in contrast to the overwhelming level of agreement among climate scientists and in peer-reviewed research. The misperception is partly cultural, with a significant link between perceived consensus and political ideology, and partly informational with all cultural groups exhibiting the misperception to varying degrees. This universal 'consensus gap' is in large part due to a persistent and focused misinformation campaign casting doubt on the consensus, dating back as early as the 1980s. Opponents of climate action have long recognized that perception of scientific consensus is linked to support for climate policy, a link only acknowledged by social scientists in the last few years. How do we counter the all-too-effective misinformation campaign? Psychological research tells us that a crucial aspect of effective refutations is an alternative narrative. In this case, an important counter-narrative to the consensus story is the strategy to perpetuate the impression of ongoing scientific debate. I will also present recent research into the effect that consensus information has on climate beliefs of Australians and Americans. For both groups, the consensus message significantly increased beliefs about human-caused global warming and outperformed interventions that feature evidence or scientists' expertise. For the Australian sample, consensus information partially neutralised the biasing influence of ideology. However, for Americans, a backfire effect (reduced climate belief) was observed for a small minority holding strong conservative views. A psychological model employing Bayesian Networks indicates that a key element to the backfire effect is conspiratorial thinking, consistent with other research finding a link between rejection of climate science and conspiratorial ideation. Thus when presented to a general audience, consensus information has an

  13. Providing Decision-Relevant Information for a State Climate Change Action Plan

    Science.gov (United States)

    Wake, C.; Frades, M.; Hurtt, G. C.; Magnusson, M.; Gittell, R.; Skoglund, C.; Morin, J.

    2008-12-01

    Carbon Solutions New England (CSNE), a public-private partnership formed to promote collective action to achieve a low carbon society, has been working with the Governor appointed New Hampshire Climate Change Policy Task Force (NHCCTF) to support the development of a state Climate Change Action Plan. CSNE's role has been to quantify the potential carbon emissions reduction, implementation costs, and cost savings at three distinct time periods (2012, 2025, 2050) for a range of strategies identified by the Task Force. These strategies were developed for several sectors (transportation and land use, electricity generation and use, building energy use, and agriculture, forestry, and waste).New Hampshire's existing and projected economic and population growth are well above the regional average, creating additional challenges for the state to meet regional emission reduction targets. However, by pursuing an ambitious suite of renewable energy and energy efficiency strategies, New Hampshire may be able to continue growing while reducing emissions at a rate close to 3% per year up to 2025. This suite includes efficiency improvements in new and existing buildings, a renewable portfolio standard for electricity generation, avoiding forested land conversion, fuel economy gains in new vehicles, and a reduction in vehicle miles traveled. Most (over 80%) of these emission reduction strategies are projected to provide net economic savings in 2025.A collaborative and iterative process was developed among the key partners in the project. The foundation for the project's success included: a diverse analysis team with leadership that was committed to the project, an open source analysis approach, weekly meetings and frequent communication among the partners, interim reporting of analysis, and an established and trusting relationship among the partners, in part due to collaboration on previous projects.To develop decision-relevant information for the Task Force, CSNE addressed

  14. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  15. Our Changing Climate

    Science.gov (United States)

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  16. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  17. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  18. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  19. Climate and Global Change

    International Nuclear Information System (INIS)

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  20. The changing climate

    International Nuclear Information System (INIS)

    A historical outline of climate changes is followed by a discussion of the problem of predictability. The main section goes into anthropogenic changes of the local (urban) and global climate, with particular regard to the greenhouse effect and its consequences in terms of human action. The author points out that today's climate problems should be discussed in a subject-centered and objective manner. (KW)

  1. The economic value of drought information for water management under climate change: a case study in the Ebro basin

    Directory of Open Access Journals (Sweden)

    S. Quiroga

    2011-03-01

    Full Text Available Drought events in the Mediterranean are likely to increase in frequency, duration and intensity due to climate change, thereby affecting crop production. Information about drought is valuable for river basin authorities and the farmers affected by their decisions. The economic value of this information and the resulting decisions are of interest to these two stakeholder groups and to the information providers. Understanding the dynamics of extreme events, including droughts, in future climate scenarios for the Mediterranean is being improved continuously. This paper analyses the economic value of information on drought events taking into account the risk aversion of water managers. We consider the effects of drought management plans on rice production in the Ebro river basin. This enables us to compute the willingness to compensate the river basin authority for more accurate information allowing for better decision-making. If runoff is reduced, river basin planners can consider the reduction of water allocation for irrigation in order to eliminate the risk of water scarcity. Alternately, river basin planners may decide to maintain water allocation and accept a reduction of water supply reliability, leaving farmers exposed to drought events. These two alternatives offer different risk levels for crop production and farmers' incomes which determine the value of this information to the river basin authority. The information is relevant for the revision of River Basin Management Plans of the Water Framework Directive (WFD within the context of climate change.

  2. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  3. Providing more informative projections of climate change impact on plant distribution in a mountain environment

    Science.gov (United States)

    Randin, C.; Engler, R.; Pearman, P.; Vittoz, P.; Guisan, A.

    2007-12-01

    Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In this study, we developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, we assessed the effect of scale on predictor variables and geographic projections of SDM. We also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, we used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, we showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe B1 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the

  4. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  5. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    Science.gov (United States)

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  6. Climate for change

    International Nuclear Information System (INIS)

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  7. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  8. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J;

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  9. Struggle against climate change

    International Nuclear Information System (INIS)

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  10. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  11. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  12. Interagency collaboration in the Rocky Mountains and Great Plains: Federal-university climate service networks for producing actionable information for climate change adaptation

    Science.gov (United States)

    Ray, A. J.; McNie, E.; Averyt, K.; Morisette, J. T.; Derner, J. D.; Ojima, D. S.; Dilling, L.; Barsugli, J. J.

    2014-12-01

    Several federal agencies in north-central United States are each working to develop and disseminate useful climate information to enhance resilience to climate change. This talk will discuss how the U.S. Geological Survey (USGS) the North Central Climate Science Center, the National Oceanic and Atmospheric Administration Western Water Assessment RISA, and the U.S. Department of Agriculture Climate Hub, are building and managing a collaborative research and climate-service network in the Rocky Mountains and Great Plains. This presentation will describe the evolution of the interagency collaboration and the partnership with universities to build a climate service network. Such collaboration takes time and intention and must include the right people and organizations to effectively bridge the gap between use-inspired research and application. In particular, we will discuss a focus on the Upper Missouri Basin, developing research to meet needs in a basin that has had relatively less attention on risks of climate change and adaptation to those risks. Each organization has its own mission, stakeholders, and priorities, but there are many commonalities and potential synergies. Together, these organizations, and their agency scientists and university partners, are fostering cross-agency collaboration at the regional scale to optimize efficient allocation of resources while simultaneously enabling information to be generated at a scale that is relevant to decision makers. By each organization knowing the others needs and priorities, there are opportunities to craft research agendas and strategies for providing services that take advantage of the strengths and skills of the different organizations. University partners are key components of each organization, and of the collaboration, who bring in expertise beyond that in the agencies, in particular connections to social scientists, extension services.

  13. Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Iain Brown

    2015-11-01

    Full Text Available Risk assessment can potentially provide an objective framework to synthesise and prioritise climate change risks to inform adaptation policy. However, there are significant challenges in the application of comparative risk assessment procedures to climate change, particularly for the natural environment. These challenges are evaluated with particular reference to the first statutory Climate Change Risk Assessment (CCRA and evidence review procedures used to guide policy for the UK government. More progress was achieved on risk identification, screening and prioritisation compared to risk quantification. This was due to the inherent complexity and interdependence of ecological risks and their interaction with socio-economic drivers as well as a climate change. Robust strategies to manage risk were identified as those that coordinate organisational resources to enhance ecosystem resilience, and to accommodate inevitable change, rather than to meet specific species or habitats targets. The assessment also highlighted subjective and contextual components of risk appraisal including ethical issues regarding the level of human intervention in the natural environment and the proposed outcomes of any intervention. This suggests that goals for risk assessment need to be more clearly explicated and assumptions on tolerable risk declared as a primer for further dialogue on expectations for managed outcomes. Ecosystem-based adaptation may mean that traditional habitats and species conservation goals and existing regulatory frameworks no longer provide the best guide for long-term risk management thereby challenging the viability of some existing practices.

  14. Assessing fit, interplay, and scale: Aligning governance and information for improved water management in a changing climate

    Science.gov (United States)

    Kirchhoff, C.; Dilling, L.

    2011-12-01

    Water managers have long experienced the challenges of managing water resources in a variable climate. However, climate change has the potential to reshape the experiential landscape by, for example, increasing the intensity and duration of droughts, shifting precipitation timing and amounts, and changing sea levels. Given the uncertainty in evaluating potential climate risks as well as future water availability and water demands, scholars suggest water managers employ more flexible and adaptive science-based management to manage uncertainty (NRC 2009). While such an approach is appropriate, for adaptive science-based management to be effective both governance and information must be concordant across three measures: fit, interplay and scale (Young 2002)(Note 1). Our research relies on interviews of state water managers and related experts (n=50) and documentary analysis in five U.S. states to understand the drivers and constraints to improving water resource planning and decision-making in a changing climate using an assessment of fit, interplay and scale as an evaluative framework. We apply this framework to assess and compare how water managers plan and respond to current or anticipated water resource challenges within each state. We hypothesize that better alignment between the data and management framework and the water resource problem improves water managers' facility to understand (via available, relevant, timely information) and respond appropriately (through institutional response mechanisms). In addition, better alignment between governance mechanisms (between the scope of the problem and identified appropriate responses) improves water management. Moreover, because many of the management challenges analyzed in this study concern present day issues with scarcity brought on by a combination of growth and drought, better alignment of fit, interplay, and scale today will enable and prepare water managers to be more successful in adapting to climate change

  15. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  16. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  17. Knowledge, Information, and Views of Climate Change: An Examination of Coastal Stakeholders along the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    James W. Stoutenborough

    2015-11-01

    Full Text Available The ability to understand complex issues is essential to adequately evaluate risk and policy alternatives. Stakeholders are more likely to understand and influence these issues. While stakeholders that specialize in coastal regions have many issues that demand their attention, there are a few that potentially affect everyone within this community. We utilize in-depth interviews to examine climate change attitudes, and the influence of knowledge, information, and institutions within a sample of stakeholders along the Gulf Coast in Florida, Texas, and Louisiana. Our analysis is the first to reveal that institutional forces may influence climate change attitudes for members of that institution. Furthermore, we learn that different sources of information directly influence these attitudes.

  18. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  19. Witnesses of climate change

    International Nuclear Information System (INIS)

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  20. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  1. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  2. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  3. Hands-on Approach to Prepare Specialists in Climate Changes Modeling and Analysis Using an Information-Computational Web-GIS Portal "Climate"

    Science.gov (United States)

    Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.

    2014-12-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern

  4. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  5. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  6. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... and to investigate the institutional dynamics new institutional theory is used with an emphasis on examining institutional mechanisms in relation to building legitimacy for action. The concept of mechanisms can help explain how and why constraints on action occur, and the concept of legitimacy is useful to clarify...... entrepreneurs create windows for action through the establishment of local networks. The thesis contributes knowledge on the constraints of the internal integration process in city governments. It provides explanations of why these constraints occur, and how officials seek to overcome them. The thesis provides...

  7. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  8. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  9. Climate change - global warming

    International Nuclear Information System (INIS)

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  10. Information Warfare and New Organizational Landscapes: An Inquiry into the ExxonMobil–Greenpeace Dispute over Climate Change

    OpenAIRE

    Mackay, Brad; Munro, I.

    2012-01-01

    A defining characteristic of the emergence of new organizational landscapes is that information is not just being used as a tool by organizations, as it is more usually understood, but also as a weapon in a ‘war of position’. As organizations seek to influence public perception over such emotive issues as climate change, conflict at the ideation level can give rise to information warfare campaigns. In this article, we analyse the ways in which ExxonMobil and Greenpeace employ distinctive info...

  11. Pacific Islands Climate Change Virtual Library

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virtual Library provides access to web based climate variability and climate change information and tools relevant to the Pacific Islands including case...

  12. Managing and Mitigating the Health Risks of Climate Change: Calling for Evidence-Informed Policy and Action

    Science.gov (United States)

    Tong, Shilu; Confalonieri, Ulisses; Ebi, Kristie; Olsen, Jorn

    2016-01-01

    Summary: Climate change affects many natural and social systems and processes that are essential for life. It disrupts the Earth’s life-support systems that underpin the world’s capacity to supply adequate food and fresh water, and it disturbs the eco-physical buffering against natural disasters. Epidemiologists need to develop and improve research and monitoring programs to better understand the scale and immediacy of the threat of climate change to human health and to act within a much larger and more comprehensive framework. To address one of the greatest environmental issues of our lifetime, the scientific and policy-making communities should work together to formulate evidence-informed public policy to mitigate greenhouse gas emissions and adapt to its inevitable impacts in this generation and, more importantly, in future generations to come. PMID:27689449

  13. Managing Climate Change Refugia for Climate Adaptation.

    Science.gov (United States)

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  14. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  15. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  16. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  17. Current Climate Variability & Change

    Science.gov (United States)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  18. Through a mirror, darkly-using climate change information for land management

    Energy Technology Data Exchange (ETDEWEB)

    Slater, T.F. [Bureau of Land Management, Salt Lake City, UT (United States)

    1995-09-01

    The writer Bruce Hutchison uses the phrase: {open_quotes}The land, always the land!{close_quotes} The land is a common denominator linking the ages. But the {open_quotes}land{close_quotes} in the broadest sense is a vast collection of natural components, events, and interconnections. It is complex, only partially understood, and ever-changing. Our ultimate challenge at this time is to SEE, as we look into the mirror of time. Regardless of the shadows of uncertainty, we must peer hopefully into the mirror to make meaningful connections between the past, the present, and the future. This is not easy. Traditional resource planning has been based on the short-term focus of today and tomorrow. That focus is beginning to change through a concept now popularized as {open_quotes}ecosystem management.{close_quotes} BLM recently has begun applying this concept in the formulation of the Eastern Utah Ecosystem Planning Initiative that is intended to give expanded dimensions to the planning and management of public land resources. These dimensions will give more attention to spatial (regional) and temporal (long-term) expectations. This paper investigates the theoretical and practical problems in linking the past to the future, using as the example the new planning initiative for Eastern Utah. It provides insights which may be applied to land-use planning and management, through new perspectives regarding changing climate and ecosystem patterns.

  19. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle;

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... during the last 10 000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to severely influence both...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  20. Tracking Middle Grades Climate Data to Inform School Change. REL West Research Digest

    Science.gov (United States)

    Regional Educational Laboratory West, 2015

    2015-01-01

    A growing body of research shows that positive school climate is a key lever for students' academic and social development and success. This research digest shows how an alliance of California schools and districts, school climate experts, and state education agency personnel have teamed up to use school climate data to drive a continuous cycle of…

  1. The climatic change

    International Nuclear Information System (INIS)

    In order to take stock on the climatic change situation and initiatives at the beginning of 2006, the INES (National Institute on the Solar Energy) proposes this special document. It presents the Montreal conference of December 2005, realized to reinforced the actions of the international community against the greenhouse gases. The technical decisions decided at this conference are detailed. The document discusses also the causes and consequences of the climatic warming, the intervention sectors and the actions possibilities. (A.L.B.)

  2. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  3. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    Science.gov (United States)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  4. Fostering Hope in Climate Change Educators

    Science.gov (United States)

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  5. Classifying climate change adaptation frameworks

    Science.gov (United States)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  6. Analysis of the Role of Information and Communication Technologies (ICTs) in Climate Change Awareness in Seke and Murewa Districts of Zimbabwe

    DEFF Research Database (Denmark)

    Muchie, Mammo; Mudombi, Shakespear

    The paper provides an analysis of the role of Information and Communication Technologies (ICTs) in contributing to climate change awareness in rural areas namely Seke and Murewa districts in Zimbabwe. The literature review showed that for successful adaptation and mitigation by individuals...... the potential to reach a wider audience including even those with no access to extension. Of importance is to package the climate and climate change information in an appropriate form, language and time and ensure it is credible, legitimate, and salient as highlighted by various authors. The paper is based...... on primary data whereby both quantitative and qualitative data collection methods were employed. The study found out that the majority of respondents are aware of climate change. Though there are many different sources of information, ICTs were found to significantly influence climate change awareness. ICTs...

  7. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  8. Science Teachers' Perspectives about Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  9. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    OpenAIRE

    Michal Belda; Petr Skalák; Aleš Farda; Tomáš Halenka; Michel Déqué; Gabriella Csima; Judit Bartholy; Csaba Torma; Constanta Boroneant; Mihaela Caian; Valery Spiridonov

    2015-01-01

    Regional climate models (RCMs) are important tools used for downscaling climate simulations from global scale models. In project CECILIA, two RCMs were used to provide climate change information for regions of Central and Eastern Europe. Models RegCM and ALADIN-Climate were employed in downscaling global simulations from ECHAM5 and ARPEGE-CLIMAT under IPCC A1B emission scenario in periods 2021–2050 and 2071–2100. Climate change signal present in these simulations is consistent with respective...

  10. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...

  11. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  12. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  13. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  14. Climate change velocity underestimates climate change exposure in mountainous regions.

    Science.gov (United States)

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  15. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  16. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  17. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  18. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  19. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  20. Adaptation to climate change

    NARCIS (Netherlands)

    J. Carmin; K. Tierney; E. Chu; L.M. Hunter; J.T. Roberts; L. Shi

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  1. Challenges of climate change

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  2. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  3. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  4. Market Strategies for Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2004-06-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still reflect the political, non-market components. Using empirical information from the largest multinational companies worldwide, this article examines current market responses, focusing on the drivers (threats and opportunities) and the actions being taken by companies to address climate change. It also develops a typology of climate strategies that addresses the market dimensions, covering both the aim (strategic intent) and the degree of cooperation (form of organisation). The aim turns out to be either innovation or compensation, while the organisational arrangements to reach this objective can be oriented at the company level (internal), at companies' own supply chain (vertical) or at cooperation with other companies (competitors or companies in other sectors - horizontal). The typology can assist managers in deciding about the strategic option(s) they want to choose regarding climate change, also based on the insights offered by the paper about the current state of activities of other companies worldwide.

  5. Integrated assessment of climate change

    International Nuclear Information System (INIS)

    Many researchers are working on all the separate parts of the climate problem. The objective of integrated assessment is to put the results from this work together in order to look carefully at the big picture so as to: (1) keep a proper sense of perspective about the problem, since climate change will occur in the presence of many other natural and human changes; (2) develop the understanding necessary to support informed decision making by many different key public and private actors around the world; and (3) assure that the type and mix of climate-related research that is undertaken will be as useful as possible to decisions makers in both the near and long term. This paper outlines a set of design guidelines for formulating integrated assessment programs and projects and then outlines some of the current problems and opportunities. Selected points are illustrated by drawing on results from the integrated assessment research now in progress at Carnegie Mellon University

  6. Climate variability and change and their potential health effects in small island states: information for adaptation planning in the health sector.

    Science.gov (United States)

    Ebi, Kristie L; Lewis, Nancy D; Corvalan, Carlos

    2006-12-01

    Small island states are likely the countries most vulnerable to climate variability and longterm climate change. Climate models suggest that small island states will experience warmer temperatures and changes in rainfall, soil moisture budgets, prevailing winds (speed and direction), and patterns of wave action. El Niño events likely will strengthen shortterm and interannual climate variations. In addition, global mean sea level is projected to increase by 0.09-0.88 m by 2100, with variable effects on regional and local sea level. To better understand the potential human health consequences of these projected changes, a series of workshops and a conference organized by the World Health Organization, in partnership with the World Meteorological Organization and the United Nations Environment Programme, addressed the following issues: the current distribution and burden of climate-sensitive diseases in small island states, the potential future health impacts of climate variability and change, the interventions currently used to reduce the burden of climate-sensitive diseases, additional interventions that are needed to adapt to current and future health impacts, and the health implications of climate variability and change in other sectors. Information on these issues is synthesized and key recommendations are identified for improving the capacity of the health sector to anticipate and prepare for climate variability and change in small island states.

  7. Outchasing climate change

    Science.gov (United States)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  8. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  9. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  10. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  11. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  12. Economic impacts of climate change

    OpenAIRE

    Tol, Richard S.J.

    2015-01-01

    Climate change will probably have a limited impact on the economy and human welfare in the 21st century. The initial impacts of climate change may well be positive. In the long run, the negative impacts dominate the positive ones. Negative impacts will be substantially greater in poorer, hotter, and lower-lying countries. Poverty reduction complements greenhouse gas emissions reduction as a means to reduce climate change impacts. Climate change may affect the growth rate of the economy and ma...

  13. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  14. Climate change, agriculture and poverty

    OpenAIRE

    Hertel, Thomas W.; Rosch, Stephanie D

    2010-01-01

    Although much has been written about climate change and poverty as distinct and complex problems, the link between them has received little attention. Understanding this link is vital for the formulation of effective policy responses to climate change. This paper focuses on agriculture as a primary means by which the impacts of climate change are transmitted to the poor, and as a sector at...

  15. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  16. The climatic change

    International Nuclear Information System (INIS)

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  17. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Directory of Open Access Journals (Sweden)

    Georgina G Gurney

    Full Text Available Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general

  18. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Science.gov (United States)

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  19. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using geographical information system and CLIMEX

    Directory of Open Access Journals (Sweden)

    Hassan M. Khormi

    2014-05-01

    Full Text Available We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2 published by the Intergovernmental Panel on Climate Change. We compared today’s climate situation with two arbitrarily chosen future time points (2030 and 2070 to see the impact on the worldwide distribution of A. aegypti. The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future.

  20. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  1. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  2. Mapping Vulnerability to Climate Change

    OpenAIRE

    Heltberg, Rasmus; Bonch-Osmolovskiy, Misha

    2011-01-01

    This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natura...

  3. Actionable Science in Practice: Co-Producing Climate Change Information for Water Utility Vulnerability Assessments. Four Case Studies from the Water Utility Climate Alliance

    Science.gov (United States)

    Kaatz, L.; Behar, D. H.; Fleming, P.; Asefa, T.; Heyn, K.; Brooks, K.; Cohn, A.

    2015-12-01

    The Piloting Utility Modeling Applications (PUMA) project featured four water utilities - New York, Tampa Bay, Seattle, and Portland - from the Water Utility Climate Alliance (WUCA) who worked in collaboration with local climate science consortiums to hand-pick or develop locally appropriate tools, projections, and approaches to understand the impact of climate change on drinking water supplies. These utilities pursued customized approaches based on specific utility needs and learned important lessons in conducting assessments that may be of interest to the wider adaptation community. In addition, these projects are examples of succesfull environments in which utility managers worked collaboratively and iteratively with climate scientists to understand both utility concerns and the ability or limitations of today's climate science to respond to those concerns. Broader lessons that cut across the pilots are presented in a closing chapter.

  4. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland......) a study on the effects of elevated atmospheric CO2-concentration, warming and drought on the photosynthetic capacity and phenology of C. vulgaris and D. flexuosa in an outdoor climate change experiment on a grassy heathland in Denmark; 4) a study on climate change impacts on the competitive interactions...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  5. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  6. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  7. Integrating Climate Change Scenarios and Co-developed Policy Scenarios to Inform Coastal Adaptation: Results from a Tillamook County, Oregon Knowledge to Action Network

    Science.gov (United States)

    Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.

    2014-12-01

    Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The

  8. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  9. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought o...

  10. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  11. Climate change, wine, and conservation

    OpenAIRE

    Hannah, L.; Roehrdanz, PR; Ikegami, M; Shepard, AV; Shaw; Tabor, G; Zhi, L; Marquet, PA; Hijmans, RJ

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticul...

  12. Climate change and catchment hydrology

    OpenAIRE

    Murphy, Conor

    2013-01-01

    Climate change is expected to alter catchment hydrology through changes in extremes of flooding and drought. River catchments are complex, dynamic systems and it is important to develop our understanding of how these systems are likely to respond to changes in climate. Work is ongoing in using EC-Earth simulations to further our understanding of how climate change will affect catchment hydrology and flood risk. In Ireland, the importance of this task is emphasised ...

  13. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K.; Polly J Ericksen; Herrero, Mario; Challinor, Andrew J.

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  14. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  15. Applied climate-change analysis: the climate wizard tool.

    Directory of Open Access Journals (Sweden)

    Evan H Girvetz

    Full Text Available BACKGROUND: Although the message of "global climate change" is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. METHODOLOGY/PRINCIPAL FINDINGS: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951-2002 occurred in northern hemisphere countries (especially during January-April, but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50 degrees N during February-March to 10 degrees N during August-September. Precipitation decreases occurred most commonly in countries between 0-20 degrees N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs for 2070-2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. CONCLUSIONS/SIGNIFICANCE: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally

  16. Climate change policy position

    International Nuclear Information System (INIS)

    The Canadian Association of Petroleum Producers (CAPP) is a firm believer in the need to take action to mitigate the risks associated with climate change, and that clear government policy is called for. The principles of sustainable development must guide this policy development effort. The initiatives required to address greenhouse gas emissions over both the short and long term must be carefully considered, and it is up to industries to ensure their production efficiency and emission intensity. Promoting improved performance of industries in Canada and developing technology that can be deployed internationally for larger global effects represents Canada's best contribution to progress on greenhouse gas emissions. The increase in energy demand along with increases in population and economic growth have contributed to an increase in greenhouse gas emissions despite improved energy efficiency in industry. Significant damage to the economy will result if Canada is to meet its commitment under the Kyoto Protocol, forcing the country to buy large quantities of foreign credits instead of using those funds for increased research and development. CAPP indicated that an effective plan must be: balanced, equitable, responsible, competitive, focused on technology and innovation, and based on agreements on sectoral plans. Each of these principles were discussed, followed by the fundamentals of approach for upstream oil and gas. The framework for climate change policy was described as well as the elements of a sector plan. CAPP wants to work with all levels of government on an appropriate plan for Canada, that considers our unique circumstances. Canada can play a significant role on the international stage by properly implementing the policy position proposed by the CAPP without unnecessary risks to the economy. refs

  17. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  18. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  19. Undocumented migration in response to climate change

    Science.gov (United States)

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  20. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  1. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  2. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  3. Analysis of the Role of Information and Communication Technologies (ICTs) in Climate Change Awareness in Seke and Murewa Districts of Zimbabwe

    OpenAIRE

    Muchie, Mammo; Mudombi, Shakespear

    2011-01-01

    The paper provides an analysis of the role of Information and Communication Technologies (ICTs) in contributing to climate change awareness in rural areas namely Seke and Murewa districts in Zimbabwe. The literature review showed that for successful adaptation and mitigation by individuals and communities, information and knowledge about the nature of the problem, its causes, its effects and possible solutions, are a prerequiste. Agricultural communities can get information from the tradition...

  4. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  5. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  6. Climate change science - beyond IPCC

    International Nuclear Information System (INIS)

    Full text: Full text: The main conclusions of the IPCC Working Group I assessment of the physical science of climate change, from the Fourth IPCC Assessment, will be presented, along with the evidence supporting these conclusions. These conclusions include: Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture; The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] Wm-2; Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level; At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. Palaeo-climatic information supports the interpretation that the warmth of the last half-century is unusual in at least the previous 1,300 years; Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations; Discernible human influences now extend to other aspects of climate, including ocean warming, continental

  7. Urban Growth and Climate Change

    OpenAIRE

    Kahn, Matthew E.

    2008-01-01

    Between 1950 and 2030, the share of the world's population that lives in cities is predicted to grow from 30% to 60%. This urbanization has consequences for the likelihood of climate change and for the social costs that climate change will impose on the world's quality of life. This paper examines how urbanization affects greenhouse gas production, and it studies how urbanites in the developed and developing world will adapt to the challenges posed by climate change.

  8. Global warming and climate change

    International Nuclear Information System (INIS)

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  9. Changes in drought risk with climate change

    International Nuclear Information System (INIS)

    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  10. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  11. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  12. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  13. Diagnosis Earth: The Climate Change Debate

    Science.gov (United States)

    Anderegg, William R. L.

    2010-01-01

    In the scrum of popular and political discourse on global warming, the scholarship of climate science is often left sitting on the sideline. Yet understanding the science and the scientists presents the best chance of developing an informed opinion about climate change. Confusion about the science, misunderstanding of risk assessment and…

  14. Climate Change in New York State Updating the 2011 ClimAID Climate Risk Information Supplement to NYSERDA Report 11-18 (Responding to Climate Change in New York State)

    Science.gov (United States)

    Horton, Radley M.; Bader, Daniel A.; Rosenzweig, Cynthia; DeGaetano, Arthur T.; Solecki, William

    2014-01-01

    In its 2013-2014 Fifth Assessment Report (AR5), the Intergovernmental Panel on Climate Change (IPCC) states that there is a greater than 95 percent chance that rising global average temperatures, observed since the mid-20th century, are primarily due to human activities. As had been predicted in the 1800s, the principal driver of climate change over the past century has been increasing levels of atmospheric greenhouse gases associated with fossil-fuel combustion, changing land-use practices, and other human activities. Atmospheric concentrations of the greenhouse gas carbon dioxide are now approximately 40 percent higher than in preindustrial times. Concentrations of other important greenhouse gases, including methane and nitrous oxide, have increased rapidly as well.

  15. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  16. Climate change - a natural hazard

    Energy Technology Data Exchange (ETDEWEB)

    Kininmonth, William

    2003-07-01

    The impacts of weather and climate extremes (floods, storms, drought, etc) have historically set back development and will continue to do so into the future, especially in developing countries. It is essential to understand how future climate change will be manifest as weather and climate extremes in order to implement policies of sustainable development. The purpose of this article is to demonstrate that natural processes have caused the climate to change and it is unlikely that human influences will dominate the natural processes. Any suggestion that implementation of the Kyoto Protocol will avoid future infrastructure damage, environmental degradation and loss of life from weather and climate extremes is a grand delusion. (Author)

  17. Mitigating climate change: The Philippine case

    International Nuclear Information System (INIS)

    The Government of the Philippines signed the UN Framework Convention on Climate change on June 12, 1992 and the Philippine Congress ratified it in 1994. The Philippine Government has also subsequently created the Inter-Agency Committee on Climate Change (IACCC). The GOP is currently preparing the Philippine Country Study to address climate change. The first phase of the work was financed by a grant from the US Country Studies Program which is led by the US Department of Energy. The Study includes the following elements: a) development of a National Inventory of GHG emission and Sinks; b) vulnerability assessment and evaluation of adaptations of coastal resources; c) identification of alternative programs and measures to promote mitigation and/or adaptation to climate change; d) public information and education campaign; and e) development of the National Action Plan on Climate Change. (au)

  18. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  19. Future Climate Change Index for Greenland Evaluated through Pattern Scaling and CMIP5 - Enhanced and Utilized Climate Information from One RCM Simulation.

    Science.gov (United States)

    Olesen, Martin; Hesselbjerg Christensen, Jens; Boberg, Fredrik; Stendel, Martin

    2016-04-01

    Climate change affects the Greenlandic society both advantageously and disadvantageously. Changes in temperature and precipitation patterns may result in changes in a number of derived society related climate indices, such as the length of growing season or the number of annual dry days or a combination of the two - indices of substantial importance to society in a climate adaptation context. Detailed climate indices require high resolution downscaling. We have carried out a very high resolution (5 km) simulation with the regional climate model HIRHAM5, forced by the global model EC-Earth. Evaluation of RCM output is usually done with an ensemble downscaled output with multiple RCM's and GCM's. Here we have introduced and tested a new technique; a translation of the robustness of an ensemble of GCM models from CMIP5 into the specific index from the HIRHAM5 downscaling through a correlation between absolute temperatures and its corresponding index values from the HIRHAM5 output. The procedure is basically conducted in three steps: First, the correlation between temperature and a given index for the HIRHAM5 simulation by a best fit to a second order polynomial is identified. Then, the standard deviation from the CMIP5 simulations is introduced to show the corresponding standard deviation of the index from the HIRHAM5 run. And finally, a bias correction based on observations as well as the CMIP5 ensemble is calculated. Results based on selected societal relevant indices with focus on for the future climate in Greenland calculated for the rcp4.5 and rcp8.5 scenarios will be presented.

  20. Lay representations on climate change

    OpenAIRE

    Cabecinhas, Rosa; Lázaro, Alexandra; Carvalho, Anabela

    2006-01-01

    Lay representations on climate change were mapped via the free-word association method in two pilot studies. Participants were asked to generate words associated to “the big problems faced by humankind nowadays” (1st study) and to “climate change” (2nd study). Climate change was not spontaneously evoked by the participants in the first study: pollution was among the top 10 problems, but references to other environmental issues were very low. In the second study, climate change was consid...

  1. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  2. The International Climate Change Regime

    Science.gov (United States)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  3. Ground water and climate change

    OpenAIRE

    Taylor, Richard G; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F P

    2013-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the...

  4. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  5. CIRUN: Climate Information Responding to User Needs

    Science.gov (United States)

    Busalacchi, A. J.

    2009-12-01

    The Earth System will experience real climate change over the next 50 years, exceeding the scope of natural climate variability. A paramount question facing society is how to adapt to this certainty of climate variability and change. In response, OSTP and NOAA are considering how comprehensive climate services would best inform decisions about adaptation. Similarly, NASA is considering the optimal configuration of the next generation of Earth, environmental, and climate observations to be deployed over the coming 10-20 years. Moreover, much of the added-value information for specific climate-related decisions will be provided by private, academic and non-governmental organizations. In this context, over the past several years the University of Maryland has established the CIRUN (Climate Information: Responding to User Needs) initiative to identify the nature of national needs for climate information and services from a decision support perspective. To date, CIRUN has brought together decisionmakers in a number of sectors to help understand their perspectives on climate with the goal of improving the usefulness of climate information, observations and prediction products to specific user communities. CIRUN began with a major workshop in October 2007 that convened 430 participants in agriculture, parks and recreation, terrestrial ecosystems, insurance/investment, energy, national security, state/local/municipal, water, human health, commerce and manufacturing, transportation, and coastal/marine sectors. Plenary speakers such as Norman Augustine, R. James Woolsey, James Mahoney, and former Senator Joseph Tydings, breakout panel sessions, and participants provided input based on the following: - How would you characterize the exposure or vulnerability to climate variability or change impacting your organization? - Does climate variability and/or change currently factor into your organization's objectives or operations? - Are any of your existing plans being affected by

  6. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  7. Nuclear Energy and Climate Change

    OpenAIRE

    Méritet, Sophie; Zaleski, Pierre

    2009-01-01

    The paper will discuss the possibilities of the development of nuclear energy in the world in the midterm and long term. It will correlate the prospects with the emissions of CO2 and the effects on climate change. In particular it will discuss the problems nuclear energy face to make a large contribution of climate change issue.

  8. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  9. Congress Assesses Climate Change Paleodata

    Science.gov (United States)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  10. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  11. Climate Change, Growth, and Poverty

    OpenAIRE

    Hull, Katy

    2008-01-01

    Equity emerged as the principal theme during the Poverty Reduction and Economic Management (PREM) week session 'climate change, growth and poverty,' where presenters addressed the distributional consequences of climate change, as well as countries' unequal capacity to cope with the twin challenges of adaptation and mitigation. They highlighted actions to strengthen the global knowledge bas...

  12. What Is Climate Change? (Environmental Health Student Portal)

    Science.gov (United States)

    ... climate change, which can seriously affect our: Health Economy Crops Water resources Coastlines Energy usage Wildlife Outdoor ... A Student's Guide to Global Climate Change (U.S. Environmental Protection Agency) - Information about causes, detrimental global impact ...

  13. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  14. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  15. Climate change and marine vertebrates.

    Science.gov (United States)

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  16. Climate change and nuclear power

    International Nuclear Information System (INIS)

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  17. Climate variability and change

    International Nuclear Information System (INIS)

    When Australia's climate should not be definite barrier to the population reaching 30 million by 2050, it is recognised that our climate has limited the development of the nation over the past 200 years. Indeed in 1911, based on a comparison of the climate and development between the US and Australia. Griffith Taylor predicted that Australia's population would be 19 million at the end of the 20th century, which is a pretty good 90-year forecast. The climate constraint is not only due to much of the country being semi-arid with an annual rainfall below 400 millimetres, but also due to the large year-to-year variability of rainfall across the country

  18. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  19. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  20. Influence of Climate Changes on Health (Review).

    Science.gov (United States)

    Pop-Jordanova, Nada; Grigorova, Evgenija

    2015-01-01

    Although climate changes are one of the most serious public health risks for all nations, it appears that the medical society in the East European countries is not too much concerned. The aim of this paper is to point out the main treats on health provoked by climate changes. The literature review was the source of information. Based on the PubMed where in 2015 more than 65,000 papers were dedicated to different aspects of the influence of the climate changes on the human health, as well as 3,500 articles for the pediatric population, we present a review of the main health risks. Especially, the impact of the climate changes on the children's health is overviewed. In separate parts, the thermal stress, extreme weather events, changes of infection's pattern, how to measure health risks as well as some mitigation measures are discussed. PMID:27442405

  1. Is Information Enough? User Responses to Seasonal Climate Forecasts in Southern Africa. Report to the World Bank, AFTE1-ENVGC. Adaptation to Climate Change and Variability in Sub{sub S}aharan Africa, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Karen; Sygna, Linda; Naess, Lars Otto; Kingamkono, Robert; Hochobeb, Ben

    2000-05-01

    Since the mid-1980s, long-lead climate forecasts have been developed and used to predict the onset of El Nino events and their impact on climate variability. This report discusses user responses to seasonal climate forecasts in southern Africa, with an emphasis on small-scale farmers in Namibia and Tanzania. The study examines how farmers received and used the forecasts in the agricultural season of 1997/1998. It also summarises a workshop on user responses to seasonal forecasts in southern Africa. Comparison of case studies across south Africa revealed differences in forecast dissemination strategies and in the capacity to respond to extreme events. However, improving these strategies and the capacity to respond to the forecasts would yield net profit to agriculture in southern Africa. In anticipation of potential changes in the frequency or magnitude of extreme events associated with global climate change, there clearly is a need for improved seasonal forecasts and improved information dissemination.

  2. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  3. Information report presented by the Commission of European Affairs about the international negotiations relative to climate change - No. 2391

    International Nuclear Information System (INIS)

    The conclusion put forward by scientists is clear-cut and alarming: the current efforts to limit the increase in global temperature to 2 deg. C are insufficient. This was the aim which the international community set itself in order to avoid the catastrophic effect of climate change. In their fifth report, the experts of the IPCC recommend the limitation, before the end of the century, of the concentration of greenhouse gases in the atmosphere, to 450 parts per million. This level is equivalent, according to the scientists, to a rise in global temperature of 2 deg. C and would imply a reduction of between 40 % and 70 % of global emissions between now and 2050 and would envisage decreasing them to an 'almost zero level' before the end of the century. The last Conference of the United Nations on Climate Change which was held in Warsaw at the end of 2013 (COP19) was a 'stepping-stone' conference according to the very words of its participants. In order to remain on track concerning the global agreement on climate for 2015, two types of decision were taken there: - the notion of bringing nations together in the framework of a global initiative aiming to reduce emissions quite quickly so as to allow humanity to avoid, in the long term, the dangerous threshold concerning climate change, whilst, at the same time, strengthening the capabilities for adaptation; - the idea of moving so as to speed up and bolster the current plan of action. The Warsaw Conference managed to chart the way towards the Paris Conference on Climate in 2015 during which a new world agreement on climate should be signed. However, it also showed that the road will be long and difficult. Basic questions remain unanswered and require a high level of political commitment. The negotiations on climate change of the 20. Climate Change Conference or COP, will take place in Lima between December 1 - 12, 2014. The Conference will thus be the last within the United Nations Framework Convention on Climate Change

  4. Probabilistic Climate Scenario Information for Risk Assessment

    Science.gov (United States)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  5. Technologies for climate change adaptation. Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. (ed.) (UNEP Risoe Centre, Roskilde (Denmark)); Clements, R.; Quezada, A.; Torres, J. (Practical Action Latin America, Lima (Peru)); Haggar, J. (Univ. of Greenwich, London (United Kingdom))

    2011-08-15

    This guidebook presents a selection of technologies for climate change adaptation in the agriculture sector. A set of 22 adaptation technologies are showcased. These are based primarily on the principles of agroecology, but also include scientific technologies of climate and biological sciences complemented by important sociological and institutional capacity building processes that are required for climate change to function. The technologies cover: 1) Planning for climate change and variability. 2) Sustainable water use and management. 3) Soil management. 4) Sustainable crop management. 5) Sustainable livestock management. 6) Sustainable farming systems. 7) Capacity building and stakeholder organisation. Technologies that tend to homogenise the natural environment and agricultural production have low possibilities of success in environmental stress conditions that are likely to result from climate change. On the other hand, technologies that allow for, and promote diversity are more likely to provide a strategy which strengthens agricultural production in the face of uncertain future climate change scenarios. The 22 technologies showcased in this guidebook have been selected because they facilitate the conservation and restoration of diversity while also providing opportunities for increasing agricultural productivity. Many of these technologies are not new to agricultural production practices, but they are implemented based on the assessment of current and possible future impacts of climate change in a particular location. agroecology is an approach that encompasses concepts of sustainable production and biodiversity promotion and therefore provides a useful framework for identifying and selecting appropriate adaptation technologies for the agriculture sector. The guidebook provides a systematic analysis of the most relevant information available on climate change adaptation technologies in the agriculture sector. It has been compiled based on a literature

  6. Ground water and climate change

    Science.gov (United States)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  7. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit;

    to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  8. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope...

  9. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  10. Tools for Teaching Climate Change Studies

    Energy Technology Data Exchange (ETDEWEB)

    Maestas, A.M.; Jones, L.A.

    2005-03-18

    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Western Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders

  11. Japan's Ambivalent Diplomacy on Climate Change

    International Nuclear Information System (INIS)

    Japan often pictures itself as an environmental leader. While many examples of Japan's actions against climate change are in line with global climate change norms, others can be in opposition to them. This study, based on first hand interviews with Japanese policy makers and actors from the private and civil society sector, gives an informed perspective on the process through which Japan came to integrate and implement, at the domestic level, the international objective of climate change prevention, pointing out the discrepancies, tensions or synergies that emerged. As the current governance on climate change, and particularly after the Copenhagen conference, tends to reassert the importance of the national level against the global one, the Japanese case can serve as an example of tools and strategies that fully integrate the domestic level

  12. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  13. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  14. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  15. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  16. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  17. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  18. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  19. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  20. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  1. Observed changes in phenology across the USA: A regional review for the 2013 National Climate Assessment, Southwest Regional Information Sheet

    Science.gov (United States)

    Leicht-Young, Stacey A.; Enquist, Carolyn A.F.; Weltzin, Jake F.

    2013-01-01

    This is one in a series of eight, geographic region-focused information sheets that summarizes documented changes in plant and animal phenology over the past century across the United States. This summary is based on long-term studies (10 years or more) published in the primary scientific literature since 2001. A forthcoming manuscript synthesizes the findings of the eight regional information sheets.

  2. Observed changes in phenology across the USA: A regional review for the 2013 National Climate Assessment, Northeast Regional Information Sheet

    Science.gov (United States)

    Leicht-Young, Stacey A.; Enquist, Carolyn A.F.; Weltzin, Jake F.

    2013-01-01

    This is one in a series of eight, geographic region-focused information sheets that summarizes documented changes in plant and animal phenology over the past century across the United States. This summary is based on long-term studies (10 years or more) published in the primary scientific literature since 2001. A forthcoming manuscript synthesizes the findings of the eight regional information sheets.

  3. Observed changes in phenology across the USA: A regional review for the 2013 National Climate Assessment, Southeast Regional Information Sheet

    Science.gov (United States)

    Leicht-Young, Stacey A.; Enquist, Carolyn A.F.; Weltzin, Jake F.

    2013-01-01

    This is one in a series of eight, geographic region-focused information sheets that summarizes documented changes in plant and animal phenology over the past century across the United States. This summary is based on long-term studies (10 years or more) published in the primary scientific literature since 2001. A forthcoming manuscript synthesizes the findings of the eight regional information sheets.

  4. Observed changes in phenology across the USA: A regional review for the 2013 National Climate Assessment, Midwest Regional Information Sheet

    Science.gov (United States)

    Leicht-Young, Stacey A.; Enquist, Carolyn A.F.; Weltzin, Jake F.

    2013-01-01

    This is one in a series of eight, geographic region-focused information sheets that summarizes documented changes in plant and animal phenology over the past century across the United States. This summary is based on long-term studies (10 years or more) published in the primary scientific literature since 2001. A forthcoming manuscript synthesizes the findings of the eight regional information sheets.

  5. Reservoir Systems in Changing Climate

    Science.gov (United States)

    Lien, W.; Tung, C.; Tai, C.

    2007-12-01

    Climate change may cause more climate variability and further results in more frequent extreme hydrological events which may greatly influence reservoir¡¦s abilities to provide service, such as water supply and flood mitigation, and even danger reservoir¡¦s safety. Some local studies have identified that climate change may cause more flood in wet period and less flow in dry period in Taiwan. To mitigate climate change impacts, more reservoir space, i.e. less storage, may be required to store higher flood in wet periods, while more reservoir storage may be required to supply water for dry periods. The goals to strengthen adaptive capacity of water supply and flood mitigation are conflict under climate change. This study will focus on evaluating the impacts of climate change on reservoir systems. The evaluation procedure includes hydrological models, a reservoir water balance model, and a water supply system dynamics model. The hydrological models are used to simulate reservoir inflows under different climate conditions. Future climate scenarios are derived from several GCMs. Then, the reservoir water balance model is developed to calculate reservoir¡¦s storage and outflows according to the simulated inflows and operational rules. The ability of flood mitigation is also evaluated. At last, those outflows are further input to the system dynamics model to assess whether the goal of water supply can still be met. To mitigate climate change impacts, the implementing adaptation strategies will be suggested with the principles of risk management. Besides, uncertainties of this study will also be analyzed. The Feitsui reservoir system in northern Taiwan is chosen as a case study.

  6. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  7. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip;

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  8. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  9. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  10. Climate Change Facts: Answers to Common Questions

    Science.gov (United States)

    ... Basics Climate Change Facts: Answers to Common Questions Climate Change Facts: Answers to Common Questions This page ... All Responses Is there a scientific consensus on climate change? The major scientific agencies of the United ...

  11. Regional Climate Change Hotspots over Africa

    Science.gov (United States)

    Anber, U.; Zakey, A.; Abd El Wahab, M.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation (P % , of present day value ), change in regional surface air temperature interannual variability (T % ,of present day value), change in regional precipitation interannual variability (P % ,of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter

  12. Covering Climate Change in Wikipedia

    Science.gov (United States)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  13. PoLAR Voices: Informing Adult Learners about the Science and Story of Climate Change in the Polar Regions Through Audio Podcast

    Science.gov (United States)

    Quinney, A.; Murray, M. S.; Gobroski, K. A.; Topp, R. M.; Pfirman, S. L.

    2015-12-01

    The resurgence of audio programming with the advent of podcasting in the early 2000s spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. PoLAR Voices is a public education initiative that uses creative storytelling and novel narrative structures to immerse the listener in an auditory depiction of climate change. The programs will feature the science and story of climate change, approaching topics from both the points of view of researchers and Arctic indigenous peoples. This approach will engage the listener in the holistic story of climate change, addressing both scientific and personal perspectives, resulting in a program that is at once educational, entertaining and accessible. Feedback is being collected at each stage of development to ensure the content and format of the program satisfies listener interests and preferences. Once complete, the series will be released on thepolarhub.org and on iTunes. Additionally, blanket distribution of the programs will be accomplished via radio broadcast in urban, rural and remote areas, and in multiple languages to increase distribution and enhance accessibility.

  14. The climatic change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    For a long time the climatic change was the prerogative of the scientists. It is today a stake of the international policy. After a short presentation of a scientific evaluation of the situation, this document presents the policies of the fight against the climatic warming (Kyoto protocol, economical instruments), debates on the Usa attitude and the nuclear and general information on the topic (chronology, bibliography, glossary and Internet addresses references). (A.L.B.)

  15. Climate Change and Nuclear Power

    International Nuclear Information System (INIS)

    The 1992 United Nations Framework Convention on Climate Change is one of a series of recent agreements through which countries around the world are banding together to meet the challenge of altering the global climate. In 1997, in respond to the growing public pressure and questions on climate change governments adopted the Kyoto Protocol. The 5th Conference of the Parties to the UN Framework Convention on Climate Change (COP5 UNFCCC) was a rather technical and complex conference which focused in particular on the development of a detailed framework for the application of ''flexible mechanisms'' as laid down in the Kyoto Protocol. Young Generation Network as a part of the International Nuclear Forum at COP5 took part in the debate saying that nuclear is the part of the solution. (author)

  16. Projection of future climate changes

    International Nuclear Information System (INIS)

    Climate models provide the opportunity to anticipate how the climate system may change due to anthropogenic activities during the 21. century. Studies are based on numerical simulations that explore the evolution of the mean climate and its variability according to different socio-economic scenarios. We present a selection of results from phase 5 of the Climate model intercomparison project (CMIP5) with an illustrative focus on the two French models that participated to this exercise. We describe the effects of human perturbations upon surface temperature, precipitation, the cryo-sphere, but also extreme weather events and the carbon cycle. Results show a number of robust features, on the amplitude and geographical patterns of the expected changes and on the processes at play in these changes. They also show the limitations of such a prospective exercise and persistent uncertainties on some key aspects. (authors)

  17. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes...... substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. Udgivelsesdato: 2007-Dec......Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  18. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  19. Climate Change and Migration in the MENA Region: An Overview

    OpenAIRE

    Wodon, Quentin; Liverani, Andrea

    2014-01-01

    Climate change and migration are major concerns in the MENA region, yet the empirical evidence on the impact of climate change and extreme weather events on migration remains limited. Information is broadly lacking on how households in vulnerable areas perceive changes in the climate, how they are affected by extreme weather events, whether they benefit from community and government programs to help them cope with and adapt to a changing climate, and how these conditions influence the decisio...

  20. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  1. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  2. Confronting climate change

    International Nuclear Information System (INIS)

    Emissions of greenhouse gases (GHGs), especially from energy production and use, and their impact on global climate emerged as a major national issue in the United States during the 1980s. As a result, Congress directed the US Department of Energy (DOE) to ask the National Academy of Sciences and the National Academy of Engineering to assess the current state of research and development (R ampersand D) in the United States in alternative energy sources, and to suggest energy R ampersand D strategies involving roles for both the public and private sectors, should the government want to give priority to stabilizing atmospheric concentrations of GHGs. The findings and recommendations of the Committee on Alternative Energy Research and Development Strategies, appointed by the National Research Council in response to Congress's directive, are provided in this report and summarized in this chapter. The energy R ampersand D strategies and actions recommended by the committee are structured to facilitate prudent and decisive responses by the United States, despite uncertainties regarding the effects of GHGs on global climate. 96 refs., 4 figs., 17 tabs

  3. Adapting to Climate Change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    This paper uses a unique panel dataset on firm-level corruption. It contains quantitative information on bribe payments by a sample of formal and informal Vietnamese firms. We show that bribe incidence is highly associated with firm-level differences in (i) visibility, (ii) sunk costs, (iii) abil...

  4. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  5. Climate change and shareholder value

    International Nuclear Information System (INIS)

    During 2005, the Carbon Trust worked with Cairneagle Associates to develop a methodology for analysing shareholder value at risk from climate change. The model developed offers a robust, replicable, top-down approach to analysing such value at risk. In addition to a company's own energy linked ('direct' and electricity linked 'indirect') carbon emissions, it looks further along the value chain and considers broader potential risk. In calculating the financial impact, the analysis quantifies the potential impact on profits, using the shape of the business in 2004, but applying a potential 2013 emissions regulatory regime. 2013 was chosen as the first year after the end of the 2008-2012 Kyoto compliance period (which also equates to Phase Two in the EU Emissions Trading Scheme). A major uncertainty is to what extent countries not currently regulated by the Kyoto Protocol (particularly the USA, India and China) will be brought into committed emission reduction targets from 2013. 2013 therefore represents the earliest year under this uncertain, but likely tougher, regulatory regime. However, although this report focuses on 2013, it needs to be recognised that, for many sectors, financial impacts will be seen significantly before this time. Ten 'case study companies' have been studied, from a range of sectors. In some cases, the 'case study company' analysed is strictly linked to a single company within that sector. In others, just a single corporate division has been reviewed, and in others yet again, characteristics from several companies have been combined to produce a more representative example. In order to enable analysis on a strictly like-for-like basis, the research has been based entirely upon public sources of information. This analysis illustrates what a determined shareholder (or other onlooker) could derive about value at risk from climate change, based upon what companies disclose today. A summary of the analysis for each sector case study is given, with

  6. Understanding the school 'climate': secondary school children and climate change

    International Nuclear Information System (INIS)

    This interdisciplinary study analyzes the production, circulation and reception of messages on climate change in secondary schools in France. The objective is to understand how political and educational policy initiatives influence the ways in which schools contribute to creating youngsters' perceptions and opinions about climate change. In order to study the conditions of production and reception of information about climate change, a survey was conducted in four French secondary schools, in the 'Bas Rhin' and 'Nord' departments, and local political actors in each department were interviewed. The cross disciplinary analytical and methodological approach uses the tools of sociological inquiry, information science, and political science: questionnaires and interviews were conducted with members of the educational and governmental communities of each school and department, semiotic and discursive analyses of corpuses of documents were carried out, in order to characterize documents used by students and teachers at school or in more informal contexts; the nature and extent of the relations between the political contexts and school directives and programs were also discussed. This interdisciplinary approach, combining sociological, communicational, and political methods, was chosen in response to the hypothesis that three types of variables (social, communicational and political) contribute to the structuring and production of messages about climate change in schools. This report offers a contextualized overview of activities developed within the four secondary schools to help sensitize children to the risks associated with climate change. A study of the networks of individuals (teachers, staff, members of associations, etc.) created in and around the school environment is presented. The degree of involvement of these actors in climate change programs is analyzed, as it is related to their motives and objectives, to the school discipline taught, and to the position

  7. Landcare and climate change: a regional perspective

    International Nuclear Information System (INIS)

    Full text: Full text: Bass Coast in Victoria represents a microcosm of the wide range of issues on which climate change will impact. It is experiencing rapid demographic change as sea and tree change populations increase, it adjoins the urban fringe of Melbourne, it includes Victoria's most popular eco-tourism and other recreational tourism areas, and it continues to be an important agricultural production area. The area has been one of the most reliable climate zones in Australia, but it is predicted to be one of the most affected by climate change. Landcare is a community-based, government and corporate-funded national organisation established for over twenty years. Landcare has been responsible for developing a positive attitude to sustainable and productive land management and implementing landscape scale environmental improvement. In Bass Coast it faces a broad range of problems related to climate change and it suffers from a scarcity of science-based information on which to base strategic direction. Given the very long-term nature of climate change and the equally long-term nature of Bass Coast Landcare Network environmental programs, it is essential to have more evidence based information and the need is urgent. Examples: Vegetation species for future climate and robustness of indigenous vegetation; Water supplies for livestock and wildlife while maintaining environmental flows; Salinity issues, soil structure and health issues; Testing and extending changed farming practices as seasons change Specific research/information needs: Growth rates at higher C02, especially woody weeds; Assessment of evaporation prevention options for farm dams (urgently needed); Options for harvesting stormwater and storage for both agriculture and wildlife use; A flexible and simple template for objectively assessing the costs and benefits of changing farming practices; Localised information on likely reduction in run-off under lower rainfall conditions. Communities will face a

  8. The climate crisis: An introductory guide to climate change

    Science.gov (United States)

    Trenberth, Kevin E.

    2011-06-01

    Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.

  9. Creating Constructive Dialogues Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2014-12-01

    Presenting scientific facts to the general public often creates strong emotional responses in listeners. This is especially the case around issues like climate change, in which strong resistance can arise in individuals and groups. This is an inherent psychological characteristic when conveying disturbing information to people. In this presentation, I will describe personal experiences of presenting climate change science in various public forums. In particular, I will describe two experiences: one in which I was able to effectively work with the emotional reactions to the scientific information and another in which the resistance was difficult to resolve within the group. Based on these experiences and others, I describe an innovative four-stage process for working with situations in which there is strong resistance to the science of climate change (or other challenging scientific issues). I conclude by discussing how this approach can be employed and potential pitfalls with such an approach.

  10. Climate change and fuel poverty

    OpenAIRE

    Simon Dresner; Paul Ekins

    2005-01-01

    The research examined the possible effects of rapid climate change on fuel poverty (needing to spend more than 10% of income to maintain a satisfactory level of warmth and other energy services in the home). One particular concern was the prospect that there might be a shutting off of the Gulf Stream, which warms Britain and the rest of north-western Europe. Computer simulations of the climate indicate that shutting down the Gulf Stream would cool England by about 3°C. Climate is not the only...

  11. Reporting the climate change crisis

    OpenAIRE

    Carvalho, Anabela

    2010-01-01

    Climate change is one of the most serious threats that humankind will have to deal with in the coming decades. There is every indication that it will engender a significant upheaval in the climate patterns of the world regions, with corresponding impacts on agriculture, ecosystems and human health. This main entail unpredictable weather events, like storms and tornados, while posing significant risks for human security, destruction of housing and economic structures, and floodi...

  12. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  13. Invasive species and climate change

    Science.gov (United States)

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  14. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  15. iSeeChange: Crowdsourced Climate Change Reporting

    Science.gov (United States)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  16. Climate Information Needs for Financial Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Paul [American Meteorological Society, Washington, DC (United States)

    2013-11-19

    Climate Information Needs for Financial Decision Making (Final Report) This Department of Energy workshop award (grant #DE-SC0008480) provided primary support for the American Meteorological Society’s study on climate information needs for financial decision making. The goal of this study was to help advance societal decision making by examining the implications of climate variability and change on near-term financial investments. We explored four key topics: 1) the conditions and criteria that influence returns on investment of major financial decisions, 2) the climate sensitivity of financial decisions, 3) climate information needs of financial decision makers, and 4) potential new mechanisms to promote collaboration between scientists and financial decision makers. Better understanding of these four topics will help scientists provide the most useful information and enable financial decision makers to use scientific information most effectively. As a result, this study will enable leaders in business and government to make well-informed choices that help maximize long-term economic success and social wellbeing in the United States The outcomes of the study include a workshop, which brought together leaders from the scientific and financial decision making communities, a publication of the study report, and a public briefing of the results to the policy community. In addition, we will present the results to the scientific community at the AMS Annual Meeting in February, 2014. The study results were covered well by the media including Bloomberg News and E&E News. Upon request, we also briefed the Office of Science Technology Policy (OSTP) and the Council on Environmental Quality (CEQ) on the outcomes. We presented the results to the policy community through a public briefing in December on Capitol Hill. The full report is publicly available at www.ametsoc.org/cin. Summary of Key Findings The United States invests roughly $1.5 trillion U.S. dollars (USD) in

  17. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  18. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  19. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  20. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  1. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  2. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  3. Helsinki Metropolitan Area Climate Change Adaptation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    steering group has guided and steered the work and disseminated the results in their own organisations. In the strategy, the adaptation policies are divided into two groups: (1) regional and joint strategic starting points in adaptation and (2) short term (2012 - 2020) adaptation policies. The policies are defined for the following sectors and cross-sectoral issues: (1) Land use, (2) Transport and technical networks, (3) Building and climate proof local environment, (4) Water and waste management, (5) Rescue services and safety, (6) Social and health services, and (7) Cooperation in producing and disseminating information. The environmental impacts of the strategy proposal were assessed by Ramboll Finland Oy. In the study, the impacts of the measures to vegetation, fauna, biodiversity, greenhouse gas emissions, air quality and noise, human health, social impacts and economic impacts were assessed. In addition, a case study of flood protection costs was carried out. It is important to monitor the implementation of regional adaptation measures, and to follow the changes in the working environment and newest research information in order to prepare for the impacts of climate change effectively and to asses the efficiency of the policies in reducing vulnerability. It is also necessary to assess practices and policies from time to time if for example new climate research information or changes in legislation call for reassessment. The preparation of the strategy was part of the Julia 2030 project that was part-financed by the European Union Life+ Programme. (orig.)

  4. Uncertain outcomes and climate change policy

    OpenAIRE

    Robert S. Pindyck

    2011-01-01

    Focusing on tail effects, I incorporate distributions for temperature change and its economic impact in an analysis of climate change policy. I estimate the fraction of consumption w*(tau) that society would be willing to sacrifice to ensure that any increase in temperature at a future point is limited to tau. Using information on the distributions for temperature change and economic impact from studies assembled by the IPCC and from "integrated assessment models" (IAMs), I fit displaced gamm...

  5. Philosophy of climate science part II: modelling climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the second of three parts of an introduction to the philosophy of climate science. In this second part about modelling climate change, the topics of climate modelling, confirmation of climate models, the limits of climate projections, uncertainty and finally model ensembles will be discussed.

  6. Vulnerability of birds to climate change in California's Sierra Nevada

    OpenAIRE

    Rodney B. Siegel; Peter Pyle; James H. Thorne; Andrew J. Holguin; Christine A Howell; Sarah Stock; Tingley, Morgan W.

    2014-01-01

    In a rapidly changing climate, effective bird conservation requires not only reliable information about the current vulnerability of species of conservation concern, but also credible projections of their future vulnerability. Such projections may enable managers to preempt or reduce emerging climate-related threats through appropriate habitat management. We used NatureServe's Climate Change Vulnerability Index (CCVI) to predict vulnerability to climate change of 168 bird species that breed i...

  7. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  8. Climate change adaptation strategies and mitigation policies

    Science.gov (United States)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved

  9. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  10. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people. PMID:26920851

  11. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  12. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  13. Sustain : the climate change challenge

    International Nuclear Information System (INIS)

    This special report on climate change and greenhouse gas emissions focused on widely held current opinions which indicate that average global surface temperatures are increasing. The potential consequences of climate change can include rising sea levels, drought storms, disease, and mass migration of people. While the global climate change theory is widely accepted, the report warns that there are still many uncertainties about how climate change occurs and what processes can offset human-caused emissions. Canada produces about 2 per cent of global greenhouse gas emissions. Carbon dioxide comprises 80 per cent of Canada's total emissions. It is well known that Canadians place a heavy demand on energy to heat and light their homes because of the northern climate, and on transportation fuels to move people, goods and services across vast distances. With the Kyoto Protocol of December 1997, developed countries agreed to legally binding greenhouse gas emission reductions of at least five per cent by 2008 to 2012. Canada agreed to a six per cent reduction below 1990 levels by 2010. Although Canada signed the Kyoto Protocol, it does not intend to ratify it until an implementation strategy has been developed with broad support. The goal is to develop a strategy by 1999. The oil and gas industry has in general improved its efficiency and reduced emissions on a per unit of production basis by installing new equipment and new operating practices that reduce greenhouse gas emissions to the atmosphere, and improve energy efficiency. The industry is conscious of its responsibility, and while not fully in agreement with the environmental doomsayers, it is prepared to take proactive actions now, albeit on a voluntary basis. What the industry wants is a balance between environmental and economic responsibility. Emissions trading' and 'joint implementation' are seen as two important tools to tackle climate change on a global basis. 4 figs

  14. Portfolio conservation of metapopulations under climate change.

    Science.gov (United States)

    Anderson, Sean C; Moore, Jonathan W; McClure, Michelle M; Dulvy, Nicholas K; Cooper, Andrew B

    2015-03-01

    Climate change is likely to lead to increasing population variability and extinction risk. Theoretically, greater population diversity should buffer against rising climate variability, and this theory is often invoked as a reason for greater conservation. However, this has rarely been quantified. Here we show how a portfolio approach to managing population diversity can inform metapopulation conservation priorities in a changing world. We develop a salmon metapopulation model in which productivity is driven by spatially distributed thermal tolerance and patterns of short- and long-term climate change. We then implement spatial conservation scenarios that control population carrying capacities and evaluate the metapopulation portfolios as a financial manager might: along axes of conservation risk and return. We show that preserving a diversity of thermal tolerances minimizes risk, given environmental stochasticity, and ensures persistence, given long-term environmental change. When the thermal tolerances of populations are unknown, doubling the number of populations conserved may nearly halve expected metapopulation variability. However, this reduction in variability can come at the expense of long-term persistence if climate change increasingly restricts available habitat, forcing ecological managers to balance society's desire for short-term stability and long-term viability. Our findings suggest the importance of conserving the processes that promote thermal-tolerance diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and demonstrate that diverse natural portfolios may be critical for metapopulation conservation in the face of increasing climate variability and change.

  15. The adaptation to climate change

    International Nuclear Information System (INIS)

    The authors address the issue of adaptation to climate change. They first address the physical aspects related to this issue: scenarios of temperature evolution, main possible impacts. Then, they address the social impacts related to climate risks, and the adaptation strategies which aim at reducing the exposure and vulnerability of human societies, or at increasing their resilience. Some examples of losses of human lives and of economic damages due to recent catastrophes related to climate change are evoked. The authors address the international framework, the emergence of an international regime on climate, the quite recent emergence of adaptation within international negotiations in 2001, the emergence of the idea of a support to developing countries. National and local policies are presented in the next chapter (in the European Union, the Netherlands which are faced with the issue of sea level rise, programs in developing countries) and their limitations are also outlined. The next chapter addresses the adaptation actions performed by private actors (enterprises, households, associations, civil society, and so on) with example of vulnerability, and adaptation opportunities and possibilities in some specific sectors. The last chapter presents a typology of actions of adaptation, indicators of adaptation to climate change, and examples of mistaken adaptation

  16. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  17. A Record of Climate Change

    Science.gov (United States)

    Smith, Zach

    2007-01-01

    The hydrologic cycle is a very basic scientific principle. In this article, background information is presented on how the hydrologic cycle provides scientists with clues to understanding the history of Earth's climate. Also detailed is a web-based activity that allows students to learn about how scientists are able to piece together a record of…

  18. GEF climate change operational strategy: Whither UNDP?

    Energy Technology Data Exchange (ETDEWEB)

    Hosier, R.

    1996-12-31

    The paper discusses aspects of the implementation of the program for climatic change which has been come about as part of the U.N. Framework Convention on Climate Change. Initial effort has focused on providing strategic information and help to countries, on achieving offsets in greenhouse gas emissions by energy conservation or carbon sinking, and an emphasis on development of renewable energy supplies. The U.N. Development Agency has limited funding to help support startup on projects submitted. Specific examples are discussed in the areas of energy conservation and energy efficiency, adoption of renewable energy sources, and reducing the long-term costs of low greenhouse gas-emitting energy technologies.

  19. Climatic servitude: climate change, business and politics

    International Nuclear Information System (INIS)

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  20. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring

    Science.gov (United States)

    Obregón, A.; Nitsche, H.; Körber, M.; Kreis, A.; Bissolli, P.; Friedrich, K.; Rösner, S.

    2014-05-01

    The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).

  1. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions

    Science.gov (United States)

    Goldsmith, Kaitlin A.; Granek, Elise F.; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  2. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions.

    Science.gov (United States)

    Goldsmith, Kaitlin A; Granek, Elise F; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  3. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  4. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  5. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Science.gov (United States)

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status. PMID:26808087

  6. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Directory of Open Access Journals (Sweden)

    Mariella Siña

    Full Text Available Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  7. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Science.gov (United States)

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  8. Permafrost Meta-Omics and Climate Change

    Science.gov (United States)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  9. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  10. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO2 emissions. (Author)

  11. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future. PMID:27300144

  12. Kyoto protocol on climate change

    International Nuclear Information System (INIS)

    This article reports a short overview of main points of Kyoto protocol to United Nations Framework Convention on climate Change and of some options still to be defined, evolutions of Italian emissions with respect to other European countries, check of decree by inter ministerial committee on economic planning on national plan to reduce emissions

  13. Health Effects of Climate Change

    Science.gov (United States)

    ... or insects can increase. Disease vectors such as mosquitoes, ticks, and flies may occur in greater numbers over longer periods during the year, and expand the locations in which they thrive. Climate change also affects air movement and quality by increasing ...

  14. Climate benefits of changing diet

    NARCIS (Netherlands)

    Stehfest, E.; Bouwman, A.F.; Vuuren, van D.P.; Elzen, M.; Kabat, P.

    2009-01-01

    Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in

  15. Symposium on Global Climate Change

    OpenAIRE

    Richard Schmalensee

    1993-01-01

    Global climate change, and policies to slow it or adapt to it, may be among the primary forces shaping the world's economy throughout the next century and beyond. Nonetheless, popular treatments of this issue commonly ignore economics. This introductory essay sketches some of the uncertainties and research questions.

  16. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  17. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  18. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  19. Climate change and related activities

    International Nuclear Information System (INIS)

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change

  20. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  1. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  2. Population, poverty, and climate change

    OpenAIRE

    Das Gupta, Monica

    2013-01-01

    The literature is reviewed on the relationships between population, poverty, and climate change. While developed countries are largely responsible for global warming, the brunt of the fallout will be borne by the developing world, in lower agricultural output, poorer health, and more frequent natural disasters. Carbon emissions in the developed world have leveled off, but are projected to ...

  3. Indigenous Peoples and Climate Change

    Directory of Open Access Journals (Sweden)

    Shelton H. Davis

    2010-05-01

    Full Text Available There has been a growing attention on the need to take into account the effects of global climate change. This is particularly so with respect to the increasing amount of green house gas emissions from the Untied States and Europe affecting poor peoples, especially those in developing countries. In 2003, for example, the experts of several international development agencies, including the World Bank, prepared a special report titled “Poverty and Climate Change: Reducing the Vulnerability of the Poor through Adaptation” (OECD 2003. This report followed the Eighth Session of the Conference of Parties (COP8 to the United Nations Framework Convention on Climate Change (UNFCCC in New Delhi, India in October 2002. It showed that poverty reduction is not only one of the major challenges of the 21st century, but also that climate change is taking place in many developing countries and is increasingly affecting, in a negative fashion, both the economic conditions and the health of poor people and their communities.

  4. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  5. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  6. Climate Information Needs for Financial Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Paul [American Meteorological Society, Washington, DC (United States)

    2013-11-19

    Climate Information Needs for Financial Decision Making (Final Report) This Department of Energy workshop award (grant #DE-SC0008480) provided primary support for the American Meteorological Society’s study on climate information needs for financial decision making. The goal of this study was to help advance societal decision making by examining the implications of climate variability and change on near-term financial investments. We explored four key topics: 1) the conditions and criteria that influence returns on investment of major financial decisions, 2) the climate sensitivity of financial decisions, 3) climate information needs of financial decision makers, and 4) potential new mechanisms to promote collaboration between scientists and financial decision makers. Better understanding of these four topics will help scientists provide the most useful information and enable financial decision makers to use scientific information most effectively. As a result, this study will enable leaders in business and government to make well-informed choices that help maximize long-term economic success and social wellbeing in the United States The outcomes of the study include a workshop, which brought together leaders from the scientific and financial decision making communities, a publication of the study report, and a public briefing of the results to the policy community. In addition, we will present the results to the scientific community at the AMS Annual Meeting in February, 2014. The study results were covered well by the media including Bloomberg News and E&E News. Upon request, we also briefed the Office of Science Technology Policy (OSTP) and the Council on Environmental Quality (CEQ) on the outcomes. We presented the results to the policy community through a public briefing in December on Capitol Hill. The full report is publicly available at www.ametsoc.org/cin. Summary of Key Findings The United States invests roughly $1.5 trillion U.S. dollars (USD) in

  7. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    Science.gov (United States)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  8. Information report made by the Commission for European Affairs on international negotiations on climate change. Nr 3248

    International Nuclear Information System (INIS)

    In its first part, this report discusses the Lima agreement with questions left to be answered in Paris, and large divergences. It also comments the issue of national contributions and its process which has been adopted in Lima, and highlights the shortcomings of the Lima call. Then, it discusses progresses related to the creation of a Green Fund, and outlines uncertainties for the period 2015-2020. In the second part, it describes and discusses stakes and challenges faced by the Paris conference: the importance of a legally constraining treaty, the necessity of higher level of ambition regarding mitigation, the essential guarantee of control and transparency, the attention paid to the adaptation of the most vulnerable countries, and the need of a sufficient and sustainable financing. The third part addresses the situation and role of the European Union within international negotiations on climate change: position of the EU and of the European Parliament regarding the COP21, publications by Eurostat to assess and measure advances made by the EU. It also addresses the uncertain conciliation with other important interveners like the USA, China, the G7 and the G20

  9. Ensuring sustainable development within a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Meltofte Traerup, S.L. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Systems Analysis Div., Roskilde (Denmark))

    2010-09-15

    The research in this thesis focuses on the impacts of and adaptation to present variations in climate and to projected future changes. The research has dealt with different levels, i.e. household/community, national/policymaking, and sectoral level, to show different perspectives of the implications of climate variability and change to development. In particular, it focuses on how present variations in rainfall patterns affect rural households, ways to strengthen households' resilience to climate variability, and the costs and benefits of adaptation measures. The research attempts to contribute to the knowledge that informs the development community and national governments for policy-making on the implications of climate change on development planning and strategies. It is argued in the thesis that it is essential for sustainable development to mainstream climate change into strategies and planning where relevant. To do this a knowledge of the costs and benefits of diverse adaptation measures is essential. Fluctuations in annual and seasonal rainfall, both in terms of modest and excessive rains, are found to cause negative shocks to rural household incomes in the Kagera a region of Tanzania. An analysis of rainfall and household data for the region shows large local discrepancies in the distribution of rainfall, as well as in households reporting shocks to income caused by harvest failure. It is also evident from the research results that the timing of rainfall seems to play a greater role than the level of annual precipitation. The coping strategies that households report following subsequent to a harvest failure further show local divergence in the choice of, for example, taking casual employment and relying on support from others in the form of informal networks. These results support earlier work which points in the same direction and emphasizes that policies should be targeted to local specificities. This provides a great motivation for targeted

  10. Cloud feedback on climate change and variability

    Science.gov (United States)

    Zhou, C.; Dessler, A. E.; Yang, P.

    2014-12-01

    Cloud feedback on climate change and variability follow similar mechanism in climate models, and the magnitude of cloud feedback on climate change and variability are well correlated among models. Therefore, the cloud feedback on short-term climate fluctuations correlates with the equilibrium climate sensitivity in climate models. Using this correlation and the observed short-term climate feedback, we infer a climate sensitivity of ~2.9K. The cloud response to inter-annual surface warming is generally consistent in observations and climate models, except for the tropical boundary-layer low clouds.

  11. Changing Information Retrieval Behaviours

    DEFF Research Database (Denmark)

    Constantiou, Ioanna D.; Lehrer, Christiane; Hess, Thomas

    2014-01-01

    on the continuance of LBS use and indicate changes in individuals' information retrieval behaviours in everyday life. In particular, the distinct value dimension of LBS in specific contexts of use changes individuals' behaviours towards accessing location-related information....

  12. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  13. The ACPI Climate Change Simulations

    International Nuclear Information System (INIS)

    The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data from these runs were saved at 6-hourly intervals (hourly for certain critical fields) to support the ACPI objective of accurately modeling hydrological cycles over the western U.S. It is shown that the initialization to 1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3-8C over northern high-latitudes by the end of the 21st century, and 1-2C over the oceans. This is generally within ±0.1C of model runs without the 1995 ocean initialization. The exception is in the Antarctic circumpolar ocean where surface air temperature is cooler in the ACPI run; however the ensemble scatter is large in this region. Although the difference in climate at the end of the 21st century is minimal between the ACPI runs and traditionally spun up runs, it might be larger for CGCMs with higher climate sensitivity or larger ocean drifts. Our results suggest that the effect of small errors in the oceans (such as those associated with climate drifts) on CGCM-simulated climate changes for the next 50-100 years may be negligible

  14. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  15. 1000 years of climate change

    Science.gov (United States)

    Keller, C.

    Solar activity has been observed to vary on decadal and centennial time scales. Recent evidence (Bond, 2002) points to a major semi-periodic variation of approximately 1,500 yrs. For this reason, and because high resolution proxy records are limited to the past thousand years or so, assessing the role of the sun's variability on climate change over this time f ame has received much attention. A pressingr application of these assessments is the attempt to separate the role of the sun from that of various anthropogenic forcings in the past century and a half. This separation is complicated by the possible existence of natural variability other than solar, and by the fact that the time-dependence of solar and anthropogenic forcings is very similar over the past hundred years or so. It has been generally assumed that solar forcing is direct, i.e. changes in sun's irradiance. However, evidence has been put forth suggesting that there exist various additional indirect forcings that could be as large as or even exceed direct forcing (modulation of cosmic ray - induced cloudiness, UV- induced stratospheric ozone change s, or oscillator -driven changes in the Pacific Ocean). Were such forcings to be large, they could account for nearly all 20th Century warming, relegating anthropogenic effects to a minor role. Determination of climate change over the last thousand years offers perhaps the best way to assess the magnitude of total solar forcing, thus allowing its comparison with that of anthropogenic sources. Perhaps the best proxy records for climate variation in the past 1,000 yrs have been variations in temperat ure sensitive tree rings (Briffa and Osborne, 2002). A paucity of such records in the Southern Hemisphere has largely limited climate change determinations to the subtropical NH. Two problems with tree rings are that the rings respond to temperature differently with the age of the tree, and record largely the warm, growing season only. It appears that both these

  16. Assessment of awareness regarding climate change in an urban community

    Directory of Open Access Journals (Sweden)

    Harshal T Pandve

    2011-01-01

    Full Text Available Background : Climate change has emerged as one of the most devastating environmental threats. It is essential to assess the awareness regarding climate change in the general population for framing the mitigation activities. Aim: To assess the awareness regarding climate change in an urban community. Settings and Design: Urban field practice area of a medical college in the Pune city. Observational study. Materials and Methods: The cross-sectional survey was conducted in the urban adult population who had given the written consent. A pre-tested questionnaire was used for a face to face interview. Responses were evaluated. Statistical Analysis Used: Proportions, percentage. Results: Total 733 respondents above 18 years of age were included in the present survey. 672 (91.68% respondents commented that global climate is changing. 547 (81.40% respondents opined that human activities are contributing to climate change. 576 (85.71% respondents commented that climate changing based on their personal experiences. Commonest source of information about climate change was television (59.78%. Poor awareness about UNFCC, Kyoto Protocol and IPCC was found. 549 (74.90% respondents commented that deforestation contribute most significantly towards climate change. As per 530 (72.31% respondents water related issues are due to changing climate change. According to 529 (72.17% respondents, direct physical hazards of extreme climatic events are most important health related impact of climate change. According to 478 (65.21% respondents, life style changes (63.3% would be most effective in tackling climate change and for preventing further climate change. Conclusion: The urban general population is aware about changing global climate. Personal efforts are more important in mitigating climate change as per the urban general population. The awareness campaigns regarding mitigation activities are recommended.

  17. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  18. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Hubs will deliver science-based knowledge and practical information to farmers, ranchers and forest landowners on a ... mitigate risks and thrive despite change. For more information on the Hubs, visit the USDA Climate Hubs ...

  19. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  20. Global Climate Change and Ocean Education

    Science.gov (United States)

    Spitzer, W.; Anderson, J.

    2011-12-01

    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in

  1. Climatic change and security stakes

    International Nuclear Information System (INIS)

    This paper explores the relationships between climate change and security. Potential threats from climate change, as a unique source of stress or together with other factors, to human security are first examined. Some of the most explicit examples illustrate this section: food security, water availability, vulnerability to extreme events and vulnerability of small islands States and coastal zones. By questioning the basic needs of some populations or at least aggravating their precariousness, such risks to human security could also raise global security concerns, which we examine in turn, along four directions: rural exodus with an impoverishment of displaced populations, local conflicts for the use of natural resources, diplomatic tensions and international conflicts, and propagation to initially-unaffected regions through migratory flows. (authors)

  2. Radiative Forcing of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  3. Making sense of climate change

    International Nuclear Information System (INIS)

    Climate change has always occurred naturally but at a pace to which the earth has adapted well. Now, due to human activities like energy utilization and waste disposal, the earth is heating up much faster than earlier. Ecosystems, water resources, food sources, health, and human settlements are getting adversely affected. Floods and droughts are increasing, glaciers are melting, and disease is spreading. The problem is serious and it is time to act. Global consensus has been agreements; mitigation initiatives have been undertaken; hopes are up. The aim of this book is to raise the awareness of secondary school students about climate change and its impacts while enhancing their understanding of global responses. It includes a chapter specific to Indian conditions. Lucidly written and illustrated with anecdotes and visuals, this handbook will catalyse young minds into greater awareness, concern, and, hopefully, remedial action on this global threat

  4. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    OpenAIRE

    Kanchan Joshi; Preeti Chaturvedi

    2013-01-01

    Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  5. Connecting stakeholders and climate science: A summary of farmer, rancher, and forester climate data needs and climate change attitudes

    Science.gov (United States)

    The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes abo...

  6. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review. PMID:22435190

  7. Poverty Traps and Climate Change

    OpenAIRE

    Tol, Richard S.J.

    2011-01-01

    We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro level, technological progress is slow because of decreasing returns to scale in agriculture. With high populatio...

  8. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models are given

  9. Challenges and Possibilities in Climate Change Education

    Science.gov (United States)

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  10. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  11. Communicating Uncertainties on Climate Change

    Science.gov (United States)

    Planton, S.

    2009-09-01

    The term of uncertainty in common language is confusing since it is related in one of its most usual sense to what cannot be known in advance or what is subject to doubt. Its definition in mathematics is unambiguous but not widely shared. It is thus difficult to communicate on this notion through media to a wide public. From its scientific basis to the impact assessment, climate change issue is subject to a large number of sources of uncertainties. In this case, the definition of the term is close to its mathematical sense, but the diversity of disciplines involved in the analysis process implies a great diversity of approaches of the notion. Faced to this diversity of approaches, the issue of communicating uncertainties on climate change is thus a great challenge. It is also complicated by the diversity of the targets of the communication on climate change, from stakeholders and policy makers to a wide public. We will present the process chosen by the IPCC in order to communicate uncertainties in its assessment reports taking the example of the guidance note to lead authors of the fourth assessment report. Concerning the communication of uncertainties to a wide public, we will give some examples aiming at illustrating how to avoid the above-mentioned ambiguity when dealing with this kind of communication.

  12. Past and Current Climate Change

    Science.gov (United States)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  13. Climate change, environment and allergy.

    Science.gov (United States)

    Behrendt, Heidrun; Ring, Johannes

    2012-01-01

    Climate change with global warming is a physicometeorological fact that, among other aspects, will also affect human health. Apart from cardiovascular and infectious diseases, allergies seem to be at the forefront of the sequelae of climate change. By increasing temperature and concomitant increased CO(2) concentration, plant growth is affected in various ways leading to prolonged pollination periods in the northern hemisphere, as well as to the appearance of neophytes with allergenic properties, e.g. Ambrosia artemisiifolia (ragweed), in Central Europe. Because of the effects of environmental pollutants, which do not only act as irritants to skin and mucous membranes, allergen carriers such as pollen can be altered in the atmosphere and release allergens leading to allergen-containing aerosols in the ambient air. Pollen has been shown not only to be an allergen carrier, but also to release highly active lipid mediators (pollen-associated lipid mediators), which have proinflammatory and immunomodulating effects enhancing the initiation of allergy. Through the effects of climate change in the future, plant growth may be influenced in a way that more, new and altered pollens are produced, which may affect humans. PMID:22433365

  14. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  15. Accounting for Climate Change: Introduction

    International Nuclear Information System (INIS)

    The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is high on both political and scientific agendas internationally. As increasing international concern and cooperation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The approaches to addressing uncertainty introduced in this article attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Authors of the accompanying articles use detailed uncertainty analyses to enforce the current structure of the emission trading system and attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. Assessment of uncertainty can help improve inventories and manage risk. Through recognizing the importance of, identifying and quantifying uncertainties, great strides can be made in the process of Accounting for Climate Change

  16. Sustainable development and climatic change

    International Nuclear Information System (INIS)

    The relationships between the fight against climatic change and the objective of sustainable development have acquired an historical perspective: the Framework Convention of 1992, the Kyoto Protocol and the Bonn-Marrakech Accords. The Convention demonstrates that we must strive for economic growth and sustainable development to allow developing countries to better face the problems associated with climatic change. In the Kyoto Protocol, the commitments agreed upon by northern countries were presented as implicating a group of policies that promote sustainable development. The author discussed the challenges, the contradictions, and the means available to fight against climatic change since Rio. The author begins by expressing the hope that the Kyoto Protocol will be ratified at the Johannesburg Summit, since Russia is moving forward, despite the withdrawal of the United States. Scientists seem to agree that global warming is occurring due to the increase in greenhouse gases in the atmosphere. There are two major difficulties encountered in attempting to stabilize the levels of greenhouse gases: (1) are the countries that emit the most gases in a position to alter their activities in an effort to reduce emissions? and (2) will developing countries be able to avoid the pitfalls that led developed countries to emit greenhouse gases in enormous quantities?

  17. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  18. Lack of Climate Expertise Among Climate Change Educators

    Science.gov (United States)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  19. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies USDA Climate Hubs Through this ...

  20. Development of a central information system, communication system and cooperation system for the German Strategy for Adaptation to Climate Change (IKK-DAS); Aufbau eines zentralen Informations-, Kommunikations- und Kooperationssystems fuer die Deutsche Anpassungsstrategie an den Klimawandel (IKK-DAS)

    Energy Technology Data Exchange (ETDEWEB)

    Bloser, Marcus [IKU GmbH, Dortmund (Germany); Venjakob, Johannes [Wuppertal Institut fuer Klima, Umwelt, Energie GmbH, Wuppertal (Germany); Wilforth, Stephan [tetraeder.com GmbH, Dortmund (Germany)

    2010-03-15

    The research project started in April, 2008 before adoption of the cabinet report of the Federal Government to the German strategy for Adaptation to Climate Change. The German Strategy for Adaptation emphasizes the meaning of information about requirements for adaptation and the active involvement of all social groups in the other process of the strategy. For this the research project has made concrete proposals for the information, communication and participation of social groups. These proposals are based in the essentials on an interest analysis about interviews with stakeholders and the economy to their demands and expectations to the German strategy for Adaptation. Besides we have researched international examples for the adaptation to the climate change for the public relations. For the interactive development of the Internet platform www.anpassung.net concrete proposals were developed. (orig.)

  1. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  2. Several Suggestions on the Climate Change and Its Studies

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to the abundant studies,the relevant information and comprehensive analysis of the climate changes,several important problems on the climate changes and its studies were proposed.Based on the temporal distribution of the meteorological disaster of agriculture,the wave theory was expounded so as to draw people's attention on climate changes and to be objective,just and careful about the study.

  3. Shaping the Public Dialogue on Climate Change

    Science.gov (United States)

    Spitzer, W.; Anderson, J. C.

    2012-12-01

    In order to broaden the public dialogue about climate change, climate scientists need to leverage the potential of informal science education and recent advances in social and cognitive science. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Given that we spend less than 5% of our lifetime in a classroom, and only a fraction of that is focused on science, informal science venues will continue to play a critical role in shaping public understanding of environmental issues in the years ahead. Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. The New England Aquarium is leading a national effort to enable informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine ecosystems. This NSF-funded partnership, the National Network for Ocean and Climate Change Interpretation (NNOCCI), involves the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. We believe that skilled interpreters can serve as "communication strategists" by

  4. Information report published by the Commission of European affairs on international negotiations related to climate change - Nr 1550

    International Nuclear Information System (INIS)

    This report first outlines the urgency of struggle against global warming. It refers the scientific results recently published by the IPCC which notably worsened the diagnosis on global warming. It discussed the mixed results of the Doha Conference. In a second part, the authors discuss the stakes of the Warsaw climate Conference while outlining the need of a global agreement in 2015. For the Warsaw conference, the main identified issues are: to operate the green fund for climate and the technological mechanism, to finance aids to adaptation and to compensation of losses and damages, a better transparency and a greater ambition for emission reductions. The third part addresses the international struggle against global warming at the ICAO level (International Civil Aviation Organization), to reach a constraining agreement (top down versus bottom up approach), at the European Union level. The last part addresses the struggle against climate scepticism

  5. Polar ices: rapid climatic changes

    International Nuclear Information System (INIS)

    The recent successes of the European GRIP (GReenland Ice core Project) and American GISP 2 (Greenland Ice Sheet Project) drillings which have reached in 1992 and 1993 the basement rocks of central Greenland (SUMMIT site, 3250 m of altitude) have allow to reconstruct the climate evolution for the last 100,000 years or more. A comparison of climatic informations deduced from these two drillings with records from Vostok (Antarctica) is given in this paper. The δD and δ18O isotopic approach have been used for the reconstruction of climatic series and paleotemperatures in polar regions. Empirical relationships explained by Rayleigh's isotopic models are used as a base for paleotemperature reconstructions from isotopic analyses of ice. A one degree Celsius cooling corresponds to an oxygen 18 decay of 0.67 per thousand and to a 6 per thousand deuterium decay. The GRIP and GISP 2 drillings have demonstrated the exceptional stability of Greenland climate during the last 10.000 years in comparison with strong instabilities encountered during the last 100.000 years and also recorded in North Atlantic marine sediments. The time scales associated with these instabilities are of the order of a few decades for the warming phase. Thanks to Vostok ice-trapped air bubbles analyses, it is now well demonstrated that the strongest instabilities (cooling during the last deglaciation and major glaciation inter stages) are also recorded but less pronounced in Antarctica. GRIP data for the last interglacial stage have been interpreted in terms of climate instabilities but neither GISP 2 results nor Vostok results allow to confirm this interpretation. (J.S.). 29 refs, 3 figs

  6. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  7. Frogs and climate change in South Africa

    OpenAIRE

    Minter, Leslie Rory

    2011-01-01

    This article explores the relationship between frog declines and climate change, discusses the possible impact of climate change on the South African frog fauna, and highlights the necessity for increased research and monitoring of our frog populations.

  8. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Science.gov (United States)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  9. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  10. Visiting a climate-influenced national park: the stability of climate change perceptions.

    Science.gov (United States)

    Brownlee, Matthew Tyler James; Hallo, Jeffrey C; Wright, Brett A; Moore, Dewayne; Powell, Robert B

    2013-11-01

    Understanding perceptions of global environmental issues, such as climate change, can help inform resource management, policy development, and communication with constituents. Although a considerable amount of research documents citizens' perceptions of climate change, few have investigated how interactions with climate-impacted parks and protected areas influence these perceptions, and consequently elements of environmental management. Using a mixed methods Instrument Development Approach, the researchers examined the stability of park visitors' (N = 429) climate change perceptions during a daylong interaction with climate-sensitive and influenced resources at Kenai Fjords National Park in Alaska. Results indicate that global-level beliefs about climate change remained relatively stable during a park experience, but perceptions about climate change at the park-level (e.g., impacts) appeared more malleable. Findings also revealed the type of park experience (terrestrial vs. marine) can influence the degree of change in visitors' perceptions. Implications for communication, outreach, and park management are discussed.

  11. How will climate change working life?

    OpenAIRE

    Lundgren, Karin

    2014-01-01

    Heat stress has been studied extensively. However, in the contemporary context of climate change there is a lack of information on the extent of future heat stress and its consequences, especially in occupational settings. The main aim of the research was to identify the current knowledge gaps by conducting a literature review (paper I) together with the collection of empirical data to examine the implications for labour productivity and occupational health in already hot workplaces in Chenna...

  12. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  13. Weather anomalies affect Climate Change microblogging intensity

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  14. Using Global Geo-information for Disaster Risk Reduction Following the UN Sendai Framework: Climate Change and Disruptions to Global Fire Activity

    Science.gov (United States)

    Ganz, D.

    2015-12-01

    Despite the knowledge that climate induced fire activity will threaten ecosystems and human well-being throughout the world, there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). The following study presents global fire datasets and environmental variables used to build spatial statistical baseline models of fire probability and examine the environmental controls on fire activity. As the UN Sendai Framework requires an update of hazard databases and an integration additional manmade hazards in the calculation of risks, this global fire study examines the magnitude and direction of change over two projection periods, 2010-2039 and 2070-2099. From the GCM ensemble results, the study identified areas of consensus for increases or decreases in fires. This type of information may inform policies and strategies of fire-prone nations to better utilize baseline and projection geo-information for enhancing disaster preparedness for what the Sendai Framework is calling an effective response, and to "Build Back Better" in recovery, rehabilitation and reconstruction. Certain biomes are sensitive to constraints on biomass productivity while others to atmospheric conditions promoting combustion. Substantial and rapid shifts are projected for future fire activity across vast portions of the globe. In the near term, the most consistent increases in fire activity occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near-term changes across more than 50% of terrestrial lands. Although these models demonstrated that long-term environmental norms captured chronic fire probability patterns, future work is needed to assess how annual variation in climate variables could add more explanatory power. This study provides an examination of global disruptions to fire activity using a

  15. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  16. Population viability of Pediocactus brady (Cactaceae) in a changing climate

    Science.gov (United States)

    Shryock, Daniel F.; Esque, Todd C.; Huges, Lee

    2014-01-01

    • Premise of the study: A key question concerns the vulnerability of desert species adapted to harsh, variable climates to future climate change. Evaluating this requires coupling long-term demographic models with information on past and projected future climates. We investigated climatic drivers of population growth using a 22-yr demographic model for Pediocactus bradyi, an endangered cactus in northern Arizona.

  17. Climate change mitigation policies in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinaviciute, I.

    2003-09-01

    The Lithuanian climate change policy has to be considered in the framework of the Convention on Climate Change. The National Strategy for Implementation of Convention was the first step in evaluating the country's impact on climate change, adapting to the Convention and foreseeing the means and measures for climate change mitigation. The paper introduces main issues related to climate change mitigation policy in Lithuania. It presents an analysis of greenhouse gas emission trends in Lithuania and surveys institutional organizations as well as stakeholder associations related to climate change issues and their role in climate policy making. The main Lithuanian international environmental obligation and Lithuanian governmental climate change mitigation policy in the energy sector are presented as well. (Author)

  18. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  19. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, Sabine

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  20. As climate changes, so do glaciers

    OpenAIRE

    Lowell, Thomas V.

    2000-01-01

    Understanding abrupt climate changes requires detailed spatial/temporal records of such changes, and to make these records, we need rapidly responding, geographically widespread climate trackers. Glacial systems are such trackers, and recent additions to the stratigraphic record show overall synchronous response of glacial systems to climate change reflecting global atmosphere conditions.

  1. A Massive Open Online Course (MOOC) on Climate Change

    Science.gov (United States)

    Somerville, R. C. J.

    2015-12-01

    A climate change MOOC is a way to reach a global audience of many thousands of students. What was it like to teach climate change to an invisible class over the Internet, and how well did it work? The need to educate many people about climate change seems obvious. Climate change is one of the most important existential issues of our time. Sound science can inform wise policy, and coping successfully with climate change is surely an urgent global challenge that requires scientific input and a scientifically informed public. Today many scientists have opportunities to communicate what science has learned about climate and climate change. Yet being a scientific expert on these subjects does not necessarily mean having the skills to communicate effectively to a broad audience. Like learning to ski or to drive a car skillfully, learning to communicate climate science well takes time and effort. The MOOC format has its own special challenges. Effective communication should always resemble a conversation rather than a monologue, but a conversation can be difficult when the teacher will never see or hear from the great majority of students in the class. In addition, a well-funded and effective professional disinformation campaign has been successful in sowing widespread confusion about climate change. As a result, many people mistakenly think climate change science is unreliable or is controversial within the expert community. One can expect that some of the students taking the MOOC will have been influenced by this sort of erroneous information. Thus, one appealing topic to include in a MOOC on climate change is to give useful guidelines for recognizing and rejecting junk science and disinformation. This talk will describe one climate scientist's first-person participation in teaching a climate change MOOC.

  2. Climate Change and Nuclear Power 2014

    International Nuclear Information System (INIS)

    Climate change is the foremost global environmental issue today. Nuclear power is one of the low carbon technologies that can contribute to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power — a reminder that safety can never be taken for granted. Yet, more than three years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in resource supply, changes in

  3. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  4. The Copernicus Climate Change Service (C3S): A European Answer to Climate Change

    Science.gov (United States)

    Thepaut, Jean-Noel

    2016-04-01

    Copernicus is the European Commission's flagship Earth observation programme that delivers freely accessible operational data and information services. ECMWF has been entrusted to operate two key parts of the Copernicus programme, which will bring a consistent standard to the measurement, forecasting and prediction of atmospheric conditions and climate change: • The Copernicus Atmosphere Monitoring Service, CAMS, provides daily forecasts detailing the makeup composition of the atmosphere from the ground up to the stratosphere. • The Copernicus Climate Change Service (C3S) (in development) will routinely monitor and analyse more than 20 essential climate variables to build a global picture of our climate, from the past to the future, as well as developing customisable climate indicators for relevant economic sectors, such as energy, water management, agriculture, insurance, health…. C3S has now taken off and a number of proof-of-concept sectoral climate services have been initiated. This paper will focus on the description and expected outcome of these proof-of-concept activities as well as the definition of a roadmap towards a fully operational European Climate Change Service.

  5. Use of the computational-informational web-GIS system for the development of climatology students' skills in modeling and understanding climate change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    The current situation with the training of specialists in environmental sciences is complicated by the fact that the very scientific field is experiencing a period of rapid development. Global change has caused the development of measurement techniques and modeling of environmental characteristics, accompanied by the expansion of the conceptual and mathematical apparatus. Understanding and forecasting processes in the Earth system requires extensive use of mathematical modeling and advanced computing technologies. As a rule, available training programs in the environmental sciences disciplines do not have time to adapt to such rapid changes in the domain content. As a result, graduates of faculties do not understand processes and mechanisms of the global change, have only superficial knowledge of mathematical modeling of processes in the environment. They do not have the required skills in numerical modeling, data processing and analysis of observations and computation outputs and are not prepared to work with the meteorological data. For adequate training of future specialists in environmental sciences we propose the following approach, which reflects the new "research" paradigm in education. We believe that the training of such specialists should be done not in an artificial learning environment, but based on actual operating information-computational systems used in environment studies, in the so-called virtual research environment via development of virtual research and learning laboratories. In the report the results of the use of computational-informational web-GIS system "Climate" (http://climate.scert.ru/) as a prototype of such laboratory are discussed. The approach is realized at Tomsk State University to prepare bachelors in meteorology. Student survey shows that their knowledge has become deeper and more systemic after undergoing training in virtual learning laboratory. The scientific team plans to assist any educators to utilize the system in earth

  6. Climate change, migration and health.

    Science.gov (United States)

    Carballo, Manuel

    2008-01-01

    In summary, climate change of the magnitude that is now being talked about promises to invoke major changes in the nature of the world we live in. From an agricultural and food production perspective new challenges are already emerging and many countries, regional organizations and international agencies are ill-prepared to deal with them. From the perspective of the forced emergence of new diseases. There may also be complex struggles for scarce resources including land, water, food and housing. To what extent these will translate into social and political instability is not clear, but the potential for instability within and between countries should not be under-estimated; nor should the scarcity of selected commodities. Understanding these complex dynamics and planning for them in timely and comprehensive ways is essential. Preparedness by governments, the international community and the private sector, will help accommodate some of the changes that are already taking place and many others which are still to materialize. PMID:18795506

  7. Peru - Country Note on Climate Change Aspects in Agriculture

    OpenAIRE

    World Bank

    2009-01-01

    This country note briefly summarizes information relevant to both climate change and agriculture in Peru, with focus on policy developments (including action plans and programs) and institutional make-up. Like most developing countries, Peru has submitted only one national communication to the United Nations Framework Convention on Climate Change (UNFCCC), with the second one under prepara...

  8. Engaging the Public in Climate Change Research

    Science.gov (United States)

    Meymaris, K. K.; Henderson, S.; Alaback, P.; Havens, K.; Schwarz Ballard, J.

    2009-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, currently finishing its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. In anticipation of the 2010 campaign, Project BudBurst has developed and released innovative and exciting projects with a special focus in the field of phenology and climate change. The collaborations between Project BudBurst and other organizations are producing unique campaigns for engaging the public in environmental research. The special project foci include on-the-spot and in-the-field data reporting via mobile phones, an emphasis on urban tree phenology data, as well as monitoring of native gardens across the US National Wildlife Refuge System. This presentation will provide an overview of Project Budburst and the new special projects, and share results from 2007-2009. Project BudBurst is managed by the University Corporation for Atmospheric Research, the Chicago Botanic Garden, and the University of Montana.

  9. Global climate change : greenhouse effect

    OpenAIRE

    Attard, David

    1992-01-01

    One of the main problems caused by climate change is the greenhouse effect. Human activities emit so-called greenhouse gases into the atmosphere, such as carbon dioxide which is produced through fossil fuel burning. These gases absorb the earth‘s radiation, forcing the earth‘s temperature, like that of in greenhouse, to rise. Global warming would lead to a rise in the global mean sea-level due to thermal expansion of the waters, and glaciers will melt at a fast rate, as will the Greenland ice...

  10. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  11. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  12. Scientific aspects of climate change

    International Nuclear Information System (INIS)

    For the last 35 years, the average temperature of the planet has been steadily increasing- Are the greenhouse gases emitted by human beings the cause? What will the consequences be? What can we do? The fourth report of the intergovernmental Panel on Climate change tries to answer these questions. There are clear signs of thawing that primary affect Greenland and the Antarctic, but there are still many doubts what the consequences will be throughout the century. In any case, it seems obvious that, if greenhouse gas emissions are not substantially reduced very soon, the rising temperature trend and its associated consequences will persist beyond the 21st century. (Author)

  13. Climate Change and Nuclear Power 2015

    International Nuclear Information System (INIS)

    Climate change is one of the most important environmental challenges facing the world today. Nuclear power can make a significant contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. Yet, more than four years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other economic, energy and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in electricity generation and distribution technologies and their impacts on nuclear power are also presented. This edition has been

  14. Denmark's forth national communication on climate change. Under the United Nations framework convention on climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Kingdom of Denmark comprises Denmark, Greenland and the Faeroe Islands. The UN Framework Convention on Climate Change has been ratified on behalf of all three parts. This report is Denmark's Fourth Climate Communication under the Climate Convention. Since Denmark's ratification covers the entire Realm, the report includes information on Greenland and the Faeroe Islands. The report is organised in accordance with the guidelines for national communications adopted by the parties to the Climate Convention. (BA)

  15. Putting Climate Change Adaptation in the Development Mainstream. Policy Brief

    International Nuclear Information System (INIS)

    Climate change poses a serious challenge to social and economic development. Developing countries are particularly vulnerable because their economies are generally more dependent on climate-sensitive natural resources, and because they are less able to cope with the impacts of climate change. How development occurs has implications, in turn, for climate change and for the vulnerability of societies to its impacts. Climate change adaptation needs to be brought into the mainstream of economic policies, development projects, and international aid efforts. Considerable analytical work has been done on how development can be made climate-friendly in terms of helping reduce greenhouse gas emissions which cause climate change, although implementation remains a challenge. Much less attention has been paid to how development can be made more resilient to the impacts of climate change. In a narrow engineering sense, this could involve taking climate changes into account in the siting and design of bridges and other infrastructure. At a policy level, it could involve considering the implications of climate change on a variety of development activities including poverty reduction, sectoral development, and natural resource management. Bridging the gap between the climate change adaptation and development communities, however, is not easy. The two communities have different priorities, often operate on different time and space scales, and do not necessarily 'speak the same language'. Specific information is therefore needed on the significance of climate change for development activities along with operational guidance on how best to adapt to its impacts, within the context of other pressing social priorities. This Policy Brief looks at how far current development policies and programmes are taking climate change risks into account, as well as at ways to improve the 'mainstreaming' of adaptation to climate change in development planning and assistance

  16. Romania within the Context of Climatic Changes

    OpenAIRE

    Dragoş, Raluca; Dragoş, Gheorghe-Viorel

    2011-01-01

    Under the circumstances of the menacing climatic changes upon both environment and social-economic framework, the United Nations Framework Convention on Climate Change (UNFCCC) has established its main objective “achieving stabilization of gas concentrations within climatic system”. Due to the fact that the main cause of the climatic changes derives from the exhausted gases resulting in the greenhouse effect, measures, targets and programs of reducing greenhouse effects gases will be esta...

  17. Climate Change and Corporate Environmental Responsibility

    OpenAIRE

    Dewan Mahboob HOSSAIN; Chowdhury, M. Jahangir Alam

    2012-01-01

    Climate change, as an international environmental issue, is getting a lot of attention. The negative effects of climate change have become one of the most talked about issues among Governments, scientists, environmentalists and others. It is said that business activities are affecting the climate negatively. In order to minimize the negative effects of climate change, the activities of the businesses should be controlled and encouraged to perform in a socially responsible manner. The article ...

  18. Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change

    OpenAIRE

    A Michelle Lawing; David Polly, P

    2011-01-01

    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we sy...

  19. The challenges of communicating climate change

    Directory of Open Access Journals (Sweden)

    Emiliano Feresin

    2009-06-01

    Full Text Available The climate change issue has become increasingly present in our society in the last decade and central also to communication studies. In the e-book “Communicating Climate Change: Discourses, Mediations and Perceptions”, edited by Anabela Carvalho, various scholars investigate how climate change challenges communication by looking at three main aspects: the discourses of a variety of social actors on climate change; the reconstruction of those discourses in the media; the citizens’ perceptions, understandings and attitudes in relation to climate change.

  20. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    Science.gov (United States)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  1. Climate Masters of Nebraska: An Innovative Action-Based Approach for Climate Change Education

    Science.gov (United States)

    Pathak, Tapan B.; Bernadt, Tonya; Umphlett, Natalie

    2014-01-01

    Climate Masters of Nebraska is an innovative educational program that strategically trains community volunteers about climate change science and corresponding ways to reduce greenhouse gas emissions in an interactive and action-based teaching environment. As a result of the program, 91% of participants indicated that they made informed changes in…

  2. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  3. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.;

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  4. Wagging ETOM's Long Tail: MOOCs, Hangouts on Air, and Formal and Informal Undergraduate Experiences with Climate Change Science and Clean Energy Solutions

    Science.gov (United States)

    Haines-Stiles, G.; Alley, R. B.; Akuginow, E.; McNeal, K.; Blockstein, D.

    2014-12-01

    Climate change can reasonably be described as a "wicked problem" meaning that it is complex, difficult and multi-faceted, although critical to equitable development and the sustainability of human civilization. But while the Wikipedia definition says such problems are "impossible" to solve, not even to try will lead to certain failure. "Earth: The Operators' Manual" (ETOM) was an NSF-funded informal science education project with 3 hour-long TV programs appearing on PBS in 2011 and 2012, along with live presentations by series host, Penn State's Richard Alley, and others at 5 major science centers. Uniquely among climate change programming, ETOM gave equal time to identifying solutions along with climate science, and made all its materials freely available via YouTube. Formal and informal science educators can register to download HD videos for classroom and outreach use, and signups have ranged from middle schools to 4-year colleges. Building on the success of the series and Alley's companion tradebook of the same name, Penn State working with Coursera invited Alley to develop a MOOC entitled "Energy, The Environment and Our Future" that similarly combined the essential science along with clean energy solutions. The course reached more than 30,000 students in the first semester of 2014. More recently the ETOM team has partnered with the National Council for Science and the Environment (NCSE) to develop "READ for the EARTH," an NSF EAGER project, offering campuses the opportunity to adopt Alley's book, the ETOM videos (including "How To Talk To An Ostrich"), NCSE's www.CAMELclimatechange.org web site and other resources for both formal and informal uses. Some campuses have used the book with honors classes, and some are exploring adapting ETOM as a first year reading experience for all freshman. Our presentation will share reactions to the MOOC, to the pilot phases of "READ for the EARTH" and present both qualitative and quantitative results. Some of the most

  5. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that it is unequivocal that climate change is occurring. One of the largest impacts of climate change is anticipated to be an increase in the severity of extreme events, such as extreme precipitation. Floods caused...... by extreme precipitation pose a threat to human life and cause high economic losses for society. Thus, strategies to adapt to changes in extreme precipitation are currently being developed and established worldwide. Information on the expected changes in extreme precipitation is required for the development...... of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...

  6. National plan for adaptation to climate change

    International Nuclear Information System (INIS)

    This report first explains the rationale for such a plan, and discusses the costs associated to climate change impacts. It presents two scenarios for climate change in France during the 21. century, highlights the weight of uncertainty for the results of these scenarios, and indicates some current consequences. Then, it presents the Plan content and gives an overview of the Plan governance and evaluation. It proposes a set of action sheets which contain the main adopted measures and briefly describe some implemented or projected actions. These sheets concern the different fields of application of the plan: cross-cutting actions, health, water resources, biodiversity, natural hazards, agriculture, forest, fishery and aquaculture, energy and industry, transport infrastructures and systems, urban planning and built environment, tourism, information, education and training, research, finance and insurance, coasts, mountains, European and international actions, governance

  7. Rapid adaptation to climate change.

    Science.gov (United States)

    Hancock, Angela M

    2016-08-01

    In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations. PMID:27463237

  8. Climate Change Adaptation in the Water Sector

    NARCIS (Netherlands)

    Ludwig, F.; Kabat, P.; Schaik, van H.; Valk, van der M.

    2009-01-01

    Today’s climate variability already has a large impact on water supply and protection. Millions of people are affected every year by droughts and floods. Future climate change is likely to make things worse. Many people within the water sector are aware that climate change is affecting water resourc

  9. Contributions of Psychology to Limiting Climate Change

    Science.gov (United States)

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  10. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  11. Climate change and the ethics of discounting

    NARCIS (Netherlands)

    M.D. Davidson

    2015-01-01

    Climate policy-making requires a balancing, however rudimentary, of the costs of reducing greenhouse gas emissions against the benefits of reduced risks of climate change. Since those creating and those facing the risks of climate change belong to different generations, striking the balance is preem

  12. Climate Change and Poverty : An Analytical Framework

    OpenAIRE

    Hallegatte, Stephane; Bangalore, Mook; Bonzanigo, Laura; Fay, Marianne; Narloch, Ulf; Rozenberg, Julie; Vogt-Schilb, Adrien

    2014-01-01

    Climate change and climate policies will affect poverty reduction efforts through direct and immediate impacts on the poor and by affecting factors that condition poverty reduction, such as economic growth. This paper explores this relation between climate change and policies and poverty outcomes by examining three questions: the (static) impact on poor people's livelihood and well-being; ...

  13. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered. PMID:23185568

  14. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  15. Climate change: believing and seeing implies adapting.

    Directory of Open Access Journals (Sweden)

    Kristina Blennow

    Full Text Available Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01 to 0.81 (SD ± 0.03 for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008 to 0.91 (SD ± 0.02. We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  16. Climate Change Education: Goals, Audiences, and Strategies--A Workshop Summary

    Science.gov (United States)

    Forest, Sherrie; Feder, Michael A.

    2011-01-01

    The global scientific and policy community now unequivocally accepts that human activities cause global climate change. Although information on climate change is readily available, the nation still seems unprepared or unwilling to respond effectively to climate change, due partly to a general lack of public understanding of climate change issues…

  17. Climate Change and Nuclear Power 2013

    International Nuclear Information System (INIS)

    Climate change is one of the most important issues facing the world today. Nuclear power can make an important contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for global socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. The accident at the Fukushima Daiichi nuclear power plant of March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power - a reminder that safety can never be taken for granted. Yet, in the wake of the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The International Atomic Energy Agency provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report has been substantially revised, updated and extended since the 2012 edition. It summarizes the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change-nuclear energy nexus, such as cost, safety, waste management and non-proliferation. New developments in resource supply, innovative reactor technologies and related fuel cycles are also presented

  18. Rethinking climate change as a security threat

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, Corinne

    2011-10-15

    Once upon a time climate change was a strictly environment and development issue. Today it has become a matter of national and international security. Efforts to link climate change with violent conflict may not be based on solid evidence, but they have certainly captured the attention of governments. They have played a vital role in raising the much-needed awareness of climate change as an issue that deserves global action. But at what cost? Focusing on climate change as a security threat alone risks devolving humanitarian responsibilities to the military, ignoring key challenges and losing sight of those climate-vulnerable communities that stand most in need of protection.

  19. Uncertainty in simulating wheat yields under climate change

    DEFF Research Database (Denmark)

    Asseng, A; Ewert, F; Rosenzweig, C;

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic...... and objective comparisons among process-based crop simulation models1, 3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range...... of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models...

  20. Data Requirements for Developing Adaptations to Climate Variability and Change

    International Nuclear Information System (INIS)

    An extensive foundation of high quality data and information on the climate and on the biological, environmental and social systems affected by climate is required in order to understand the climate impact processes involved, to develop new adaptation practices, and to subsequently implement these practices. Experience of the impacts of current and past variability of climate and sea level is a prime source of information. Many practices are in use to reduce climate impacts, for example in engineering design, agricultural risk management and climate prediction services, though their roles as adaptations to climate change are not widely appreciated. While there are good data sets on some factors and in some regions, in many cases the databases are inadequate and there are few data sets on adaptation-specific quantities such as vulnerability, resilience and adaptation effectiveness. Current international action under the United Nations Framework Convention on Climate Change (UNFCCC) pays little attention to adaptation and its information requirements. Furthermore there are trends toward reduced data gathering and to restrictions on access to data sets, especially arising from cost and commercialisation pressures. To effectively respond to the changes in climate that are now inevitable, governments will need to more clearly identify adaptation as a central feature of climate change policy and make a renewed shared commitment to collecting and freely exchanging the necessary data. 12 refs

  1. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    OpenAIRE

    Heinke, J.; Ostberg, S.; S. Schaphoff; Frieler, K.; C. Müller; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-01-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of tempe...

  2. Climate change: an issue for parliamentarians in Southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala; Anderson, Simon; Schoch, Corinne; Smith, Barry

    2011-11-15

    Parliamentarians can play a key role in building climate resilience by bringing constituents' concerns into national forums, scrutinising how governments are responding to domestic and global climate change issues, and ensuring policy continuity. In the Southern African Customs Union, members of parliament often struggle to fulfill this role, hampered by limited understanding of the issues, fragmented policy and legal frameworks and competing priorities. Boosting parliamentarians' capacity to engage effectively with climate change in Southern Africa requires them to strengthen their research capabilities, diversify their sources of information and build cross-party groups on climate change.

  3. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  4. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  5. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  6. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  7. Uncertainty assessment tool for climate change impact indicators

    Science.gov (United States)

    Otto, Juliane; Keup-Thiel, Elke; Jacob, Daniela; Rechid, Diana; Lückenkötter, Johannes; Juckes, Martin

    2015-04-01

    A major difficulty in the study of climate change impact indicators is dealing with the numerous sources of uncertainties of climate and non-climate data . Its assessment, however, is needed to communicate to users the degree of certainty of climate change impact indicators. This communication of uncertainty is an important component of the FP7 project "Climate Information Portal for Copernicus" (CLIPC). CLIPC is developing a portal to provide a central point of access for authoritative scientific information on climate change. In this project the Climate Service Center 2.0 is in charge of the development of a tool to assess the uncertainty of climate change impact indicators. The calculation of climate change impact indicators will include climate data from satellite and in-situ observations, climate models and re-analyses, and non-climate data. There is a lack of a systematic classification of uncertainties arising from the whole range of climate change impact indicators. We develop a framework that intends to clarify the potential sources of uncertainty of a given indicator and provides - if possible - solutions how to quantify the uncertainties. To structure the sources of uncertainties of climate change impact indicators, we first classify uncertainties along a 'cascade of uncertainty' (Reyer 2013). Our cascade consists of three levels which correspond to the CLIPC meta-classification of impact indicators: Tier-1 indicators are intended to give information on the climate system. Tier-2 indicators attempt to quantify the impacts of climate change on biophysical systems (i.e. flood risks). Tier-3 indicators primarily aim at providing information on the socio-economic systems affected by climate change. At each level, the potential sources of uncertainty of the input data sets and its processing will be discussed. Reference: Reyer, C. (2013): The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable

  8. Economic Consequences Of Climate Change

    Science.gov (United States)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  9. Changes in Benefits of Flood Protection Standard under Climate Change

    Science.gov (United States)

    Lim, W. H.; Koirala, S.; Yamazaki, D.; Hirabayashi, Y.; Kanae, S.

    2014-12-01

    Understanding potential risk of river flooding under future climate scenarios might be helpful for developing risk management strategies (including mitigation, adaptation). Such analyses are typically performed at the macro scales (e.g., regional, global) where the climate model output could support (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014). To understand the potential benefits of infrastructure upgrading as part of climate adaptation strategies, it is also informative to understand the potential impact of different flood protection standards (in terms of return periods) on global river flooding under climate change. In this study, we use a baseline period (forced by observed hydroclimate conditions) and CMIP5 model output (historic and future periods) to drive a global river routing model called CaMa-Flood (Yamazaki et al., 2011) and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the potential risk of river flooding and changes in the benefits of flood protection standard (e.g., 100-year flood of the baseline period) from the past into the future (represented by the representative concentration pathways). In this presentation, we show our preliminary results. References: Arnell, N.W, Gosling, S., N., 2014. The impact of climate change on river flood risk at the global scale. Climatic Change 122: 127-140, doi: 10.1007/s10584-014-1084-5. Hirabayashi et al., 2013. Global flood risk under climate change. Nature Climate

  10. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  11. Making Cities Resilient to Climate Change

    OpenAIRE

    Dulal, Hari Bansha

    2016-01-01

    Urbanization is truly a global phenomenon. Starting at 39% in 1980, the urbanization level rose to 52% in 2011. Ongoing rapid urbanization has led to increase in urban greenhouse gas (GHG) emissions. Urban climate change risks have also increased with more low-income urban dwellers living in climate sensitive locations. Despite increased emissions, including GHGs and heightened climate change vulnerability, climate mitigation and adaptation actions are rare in the cities of developing countri...

  12. The transnational regime complex for climate change

    OpenAIRE

    Kenneth W Abbott

    2012-01-01

    In climate change, as in other areas, recent years have produced a ‘Cambrian explosion’ of transnational institutions, standards, financing arrangements, and programs. As a result, climate governance has become complex, fragmented, and decentralized, operating without central coordination. Most studies of climate governance focus on inter­state institutions. In contrast, I map a different realm of climate change governance: the diverse array of transnational schemes. I analyze this emerging s...

  13. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  14. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  15. Forests and climate change - lessons from insects

    OpenAIRE

    Battisti A

    2008-01-01

    The climate change may indirectly affects the forest ecosystems through the activity of phytophagous insects. The climate change has been claimed to be responsible of the range expansion northward and upward of several insect species of northern temperate forests, as well as of changes in the seasonal phenology. Several papers have dealt with the prediction of the most likely consequences of the climate change on the phytophagous insects, including some of the most important forest pests. Inc...

  16. Climatic change: possible impacts on human health

    OpenAIRE

    Beniston, Martin

    2005-01-01

    This paper addresses a number of problems relating climatic change and human health. Following an introduction that outlines the over-arching issues, a short summary is given on climatic change and its anthropogenic causes. The rest of the paper then focuses on the direct and indirect impacts of global climatic change on health. Direct effects comprise changes in the hygrothermal stress response of humans, atmospheric pollution, water quality and availability; indirect effects include the pot...

  17. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    visits. The richness of this type of field experience changes the focus of a science educator from that of a content sage to that of being a scientist. The immersion of the PolarTREC teacher into the work of the principal investigator during the expedition enlightens the teacher to the challenges and rewards of actually "doing" science. This experience translates into the methodologies used by the science teacher which are now more closely aligned with the actual practices of science. A teacher returning from the field speaks with passion and authority about climate change impacts in the Polar Regions and knows how to connect students with the issues of climate change. They continually connect students to the poles through the expeditions of other PolarTREC teachers through live broadcasts and blogs. They know where to get information, know how to make cross-curricular connections for the students, and know how to lead students in authentic research answering student generated questions. Climate change education is a challenge, but strong professional development programs such as PolarTREC can assist in removing the challenges.

  18. Climate change mitigation and electrification

    International Nuclear Information System (INIS)

    An increasing number of mitigation scenarios with deep cuts in greenhouse gas emissions have focused on expanded use of demand-side electric technologies, including battery electric vehicles, plug-in hybrid vehicles, and heat pumps. Here we review such “electricity scenarios” to explore commonalities and differences. Newer scenarios are produced by various interests, ranging from environmental organizations to industry to an international organization, and represent a variety of carbon-free power generation technologies on the supply side. The reviewed studies reveal that the electrification rate, defined here as the ratio of electricity to final energy demand, rises in baseline scenarios, and that its increase is accelerated under climate policy. The prospect of electrification differs from sector to sector, and is the most robust for the buildings sector. The degree of transport electrification differs among studies because of different treatment and assumptions about technology. Industry does not show an appreciable change in the electrification rate. Relative to a baseline scenario, an increase in the electrification rate often implies an increase in electricity demand but does not guarantee it. - Highlights: ► Until recently few mitigation scenarios paid attention to electrification. ► Recent scenarios show an increasing focus on demand-side electric technologies. ► They are represented by various interests. ► Level of electrification increases with stringency of climate policy. ► Prospect of electrification differs across sectors.

  19. Climate change in the Pacific - is it real or not?

    Science.gov (United States)

    Kuleshov, Yuriy

    2013-04-01

    In this presentation, novel approaches and new ideas for students and young researchers to appreciate the importance of climate science are discussed. These approaches have been applied through conducting a number of training workshops in the Pacific Island Countries and teaching a course on climate change international law and climate change science at the University of the South Pacific (USP) - the first course on this type in the Pacific. Particular focus of this presentation is on broadening students' experience with application of web-based information tools for analysis of climatic extremes and natural hazards such as tropical cyclones. Over the past few years, significant efforts of Australian climate scientists have been dedicated to improving understanding of climate in the Pacific through the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region). The first comprehensive scientific report about the Pacific climate has been published in 2011, as an outcome of the Pacific Climate Change Science Program (PCCSP). A range of web-based information tools such as the Pacific Tropical Cyclone Data Portal, the Pacific Climate Change Data Portal and the Pacific Seasonal Climate Prediction Portal has been also developed through the PCCSP and the Pacific Adaptation Strategy Assistance Program. Currently, further advancement in seasonal climate prediction science and developing enhanced software tools for the Pacific is undertaken through the Theme 1 of the Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) Program. This new scientific knowledge needs to be transferred to students to provide them with true information about climate change and its impact on the Pacific Island Countries. Teachers and educators need their knowledge-base regularly updated and tools that will help their students critically

  20. Using EPA Tools and Data Services to Inform Changes to Design Storm Definitions for Wastewater Utilities based on Climate Model Projections

    Science.gov (United States)

    Tryby, M.; Fries, J. S.; Baranowski, C.

    2014-12-01

    Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.

  1. Connecting Stakeholders and Climate Science: A Summary of Farmer, Rancher, and Forester Climate Data Needs and Climate Change Attitudes

    Science.gov (United States)

    Rango, A.; Crimmins, M.; Elias, E.; Steele, C. M.; Weiss, J. L.

    2015-12-01

    The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes about climate change is required. Here we present a summary of results from 17 peer-reviewed articles on studies pertaining to landowner needs and attitudes towards climate change adaptation and mitigation that span much of the continental U.S. and ideally represent a cross-section of different geographies. In general, approximately 75% of landowners and farm advisors believe climate change is occurring, but disagree on the human contribution. Studies found that most farmers were supportive of adaptation responses, but fewer endorsed farm-based greenhouse gas reduction mitigation strategies. Adaptation is often driven by local concerns and requires locally specific strategies. Perceiving weather variability increased belief in human-caused climate change. Presently farmers and ranchers rely on past experience and short-range forecasts (weeks to seasons) whereas some foresters are requesting long-term predictions on the order of years to decades. Foresters indicated that most of them (74%) are presently unable to find needed long-term information. We augment peer-reviewed literature with observations from landowner workshops conducted in Nevada and Arizona during 2014, the first year of Climate Hub operation. To better collect information about climate change needs and attitudes of farmers, ranchers and foresters across the globe, we created a Climate Change Attitudes collection in JournalMap (https://journalmap.org/usda-southwest-regional-climate-hub/climate-change-attitudes). Users anywhere can add articles to this collection, ultimately generating a comprehensive spatial resource in support of adaptation and mitigation efforts on working lands.

  2. Salmon Population Summary - Impacts of climate change on Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This work involves 1) synthesizing information from the literature and 2) modeling impacts of climate change on specific aspects of salmon life history and...

  3. Past hydrological extreme events in a changing climate

    NARCIS (Netherlands)

    Benito, G.; Macklin, M.G.; Cohen, K.M.; Herget, J.

    2015-01-01

    Fluvial records contain evidence of past hydrological changes in terms of water/sediment fluxes and extreme hydrological events (floods), which can be linked to Earth's climate variability. Sedimentological records of hydrological extremes can be complemented with historical documentary information

  4. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Regulations Organic Agriculture Outreach Plant Health Research and Science Rural and Community Development Rural Opportunities Trade Travel ... mitigation to climate change. These Hubs will deliver science-based knowledge and practical information to farmers, ranchers ...

  5. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... climate change. These Hubs will deliver science-based knowledge and practical information to farmers, ranchers and forest ... New uniform, science-based guidance on cover crop management helps producers prevent erosion, improve soil properties, supply ...

  6. An Interface between Law and Science: The Climate Change Regime

    Science.gov (United States)

    Kuleshov, Y.; Grandbois, M.; Kaniaha, S.

    2012-04-01

    Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific

  7. Abrupt climate change:Debate or action

    Institute of Scientific and Technical Information of China (English)

    CHENG Hai

    2004-01-01

    Global abrupt climate changes have been documented by various climate records, including ice cores,ocean sediment cores, lake sediment cores, cave deposits,loess deposits and pollen records. The climate system prefers to be in one of two stable states, i.e. interstadial or stadial conditions, but not in between. The transition between two states has an abrupt character. Abrupt climate changes are,in general, synchronous in the northern hemisphere and tropical regions. The timescale for abrupt climate changes can be as short as a decade. As the impacts may be potentially serious, we need to take actions such as reducing CO2emissions to the atmosphere.

  8. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, J.-C.; Olesen, Jørgen E;

    2009-01-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular...... interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change...

  9. A Dynamic Information Framework: A Multi-Sector, Geospatial Gateway for Environmental Conservation and Adaptation to Climate Change

    Science.gov (United States)

    Fernandes, E. C.; Norbu, C.; Juizo, D.; Wangdi, T.; Richey, J. E.

    2011-12-01

    Landscapes, watersheds, and their downstream coastal and lacustrine zones are facing a series of challenges critical to their future, centered on the availability and distribution of water. Management options cover a range of issues, from bringing safe water to local villages for the rural poor, developing adaptation strategies for both rural and urban populations and large infrastructure, and sustaining environmental flows and ecosystem services needed for natural and human-dominated ecosystems. These targets represent a very complex set of intersecting issues of scale, cross-sector science and technology, education, politics, and economics, and the desired sustainable development is closely linked to how the nominally responsible governmental Ministries respond to the information they have. In practice, such information and even perspectives are virtually absent, in much of the developing world. A Dynamic Information Framework (DIF) is being designed as a knowledge platform whereby decision-makers in information-sparse regions can consider rigorous scenarios of alternative futures and obtain decision support for complex environmental and economic decisions is essential. The DIF is geospatial gateway, with functional components of base data layers, directed data layers focused on synthetic objectives, geospatially-explicit, process-based, cross-sector simulation models (requiring data from the directed data layers), and facilitated input/output (including visualizations), and decision support system and scenario testing capabilities. A fundamental aspect to a DIF is not only the convergence of multi-sector information, but how that information can be (a) integrated (b) used for robust simulations and projections, and (c) conveyed to policymakers and stakeholders, in the most compelling, and visual, manner. Examples are given of emerging applications. The ZambeziDIF was used to establish baselines for agriculture, biodiversity, and water resources in the lower

  10. White House Conference on Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  11. An Assessment of Decision-Making Processes: Evaluation of Where Land Protection Planning Can Incorporate Climate Change Information (Final Report)

    Science.gov (United States)

    This report, prepared by the Global Change Research Program (GCRP) in the National Center for Environmental Assessment (NCEA) of the Office of Research and Development (ORD) at the U.S. Environmental Protection Agency (EPA), is a review of decision-making processes of selected la...

  12. Climate change and forest ecosystem dynamics

    International Nuclear Information System (INIS)

    Effects of climate change on water relations in forests were studied using several modelling approaches. Of several models tested, the FORGRO model had the highest potential for a reliable estimation of effects of climate change on forests. An evaluation of process-based models of forest growth showed that several models, including FORGRO, were able to produce accurate estimates of carbon and water fluxes at several forest sites of Europe. Responses were in relatively good agreement with the expected responses obtained by experimental studies, and models were able to deal with new conditions and explore the likely effects of climate change. The effect of climate change on forest development was assessed for three forests stands in the Netherlands using a gap model which was made climate sensitive by including the effects of climate change scenario IPCC IS92A on growth (FORGRO results), phenology (FORGRO results), and seed production (regression analysis). Results showed that climate change is likely to cause subtle changes rather than abrupt changes in forest development in the Netherlands, and that forest development on sandy soils in the Netherlands is not likely to be influenced significantly by climate change over the coming 50 years. The impact of climate change on the production, nature and recreation values of forests was studied using a simple economic model, and showed that response are likely to be relatively small during the first century, and are related to the successional status of the forest. Linking of detailed process-based models with gap models enables interpretation of climate change effects beyond a change in tree growth only, and is an important tool for investigating the effects of climate change on the development of mixed forests. The modelling approach presented in this project (process-based growth models -> gap models -> economic model) is a useful tool to support policy decisions in the light of climate change and forests. refs

  13. Communicating climate information: travelling through the decision-making process

    International Nuclear Information System (INIS)

    Climate change forces society to adapt. Adaptation strategies are preferably based on the best available climate information. Climate projections, however, often inform adaptation strategies after being interpreted once or several times. This process affects the original message put forward by climate scientists when presenting the basic climate projections, in particular regarding uncertainties. The nature of this effect and its implications for decision-making are as yet poorly understood. This paper explores the nature and consequences of a) the communication tools used by scientists and experts, and b)changes in the communicated information as it travels through the decision-making process. It does so by analysing the interpretative steps taken in a sample of 25 documents, pertaining to the field of public policies for climate change impact assessment and adaptation strategies. Five phases in the provisioning of climate information are distinguished: pre-existing knowledge (i.e. climate models and data), climate- change projection, impact assessment, adaptation strategy, and adaptation plan. Between the phases, climate information is summarized and synthesised in order to be passed on. The results show that in the sample information on uncertainty is under-represented: e.g. studies focus on only one scenario, and/or disregard probability distributions. In addition, visualization tools are often used ineffectively, leading to confusion and unintended interpretations. Several recommendations are presented. A better training of climatologists to communication issues, but also a training to climatology for decision makers are required, as well as more cautious and robust adaptation strategies, accounting for the uncertainty inherent to climate projections. (authors)

  14. Active Learning about Climate Change

    OpenAIRE

    Hwang, I.C.; Tol, R.S.J.; Hofkes, M.W.

    2013-01-01

    We develop a climate-economy model with active learning. We consider three ways of active learning: improved observations, adding observations from the past and improved theory from climate research. From the model, we find that the decision maker invests a significant amount of money in climate research. Expenditures to increase the rate of learning are far greater than the current level of expenditure on climate research, as it helps in taking improved decisions. The optimal carbon tax for ...

  15. Wealth reallocation and sustainability under climate change

    Science.gov (United States)

    Fenichel, Eli P.; Levin, Simon A.; McCay, Bonnie; St. Martin, Kevin; Abbott, Joshua K.; Pinsky, Malin L.

    2016-03-01

    Climate change is often described as the greatest environmental challenge of our time. In addition, a changing climate can reallocate natural capital, change the value of all forms of capital and lead to mass redistribution of wealth. Here we explain how the inclusive wealth framework provides a means to measure shifts in the amounts and distribution of wealth induced by climate change. Biophysical effects on prices, pre-existing institutions and socio-ecological changes related to shifts in climate cause wealth to change in ways not correlated with biophysical changes. This implies that sustainable development in the face of climate change requires a coherent approach that integrates biophysical and social measurement. Inclusive wealth provides a measure that indicates sustainability and has the added benefit of providing an organizational framework for integrating the multiple disciplines studying global change.

  16. Contrasting Controversies: Fracking and Climate Change

    Science.gov (United States)

    Duggan-Haas, D.; Zabel, I. H. H.; Ross, R. M.

    2014-12-01

    Slickwater high-volume hydraulic fracturing (commonly known as "fracking") is highly controversial. So is global warming, and the two issues are closely related, but the natures of these two controversies have substantial and important differences. Building upon years of experience in teaching and developing resources and strategies for teaching about evolution and climate change, staff at the Paleontological Research Institution have engaged in public outreach and educator professional development to help nurture understanding of fracking and the broader energy system. How are these controversies similar to and different from one another, and how should understanding these similarities and differences inform educational programming (and about how you talk about these issues with your Uncle Fred at the family holiday dinner?). It is nearly universally agreed amongst scientists who study climate that changes now underway are real and human caused, and are posing or likely to pose very serious problems for humanity. Scientists who study slickwater high-volume hydraulic fracturing agree that it causes environmental damage, but there is no consensus as to whether fracking causes more or less harm (e.g., among different kinds of environment harm, across different temporal and spatial scales, and among different social contexts) than other ways of producing energy on a large scale. In other words, the basic tenets of climate change are not a matter of scientific controversy, though the implications for policy making obviously remain politically controversial, while fracking is an issue of both scientific and political controversy. Without advocating for or against fracking, we help audiences disentangle scientific and political issues, better understand the energy resources used in their own communities, and consider issues of scale, systems, and complexity. We will compare and contrast the overlapping controversies surrounding climate change and fracking and highlight

  17. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting......This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  18. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  19. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:26504134

  20. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo;

    a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...... on population size and range of the polar bear, for example, are scarce, whereas data on the pollen season are extensive. Each indicator is evaluated using a number of quality criteria, including sensitivity to climate change, policy relevance and methodology. Although the indicator framework presented here has......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...

  1. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud

    IPCC climate change scenarios, which also consider possible changes in urban population, have been developed. Innovative strategies to land use and spatial planning are proposed that seek synergies between the adaptation to climate change and the need to solve social problems. Furthermore, the book......Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  2. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  3. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects. PMID:26580230

  4. Mental health effects of climate change

    OpenAIRE

    Susanta Kumar Padhy; Sidharth Sarkar; Mahima Panigrahi; Surender Paul

    2015-01-01

    We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more numb...

  5. The Economic Impact of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2008-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  6. The Economic Effects of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2009-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  7. Ukraine's Participation In Solving Climate Change Problems

    OpenAIRE

    Irina Dubovich; Mariana Bulgakova

    2011-01-01

    Attention is paid to some problems of climate change. The main international agreements on climate change are overviewed. Ukraine's participation in solving global problems of climate change is described. Ukraine's statement about plans to reduce greenhouse gas emissions is analyzed. Characteristic of environmental political and legal prerequisites for the need to create a general agreement on environmental security of the planet – World Environmental Constitution is provided.

  8. Gender mainstreaming and EU climate change policy

    OpenAIRE

    Allwood, Gill

    2014-01-01

    This article uses feminist institutionalism to examine how gender mainstreaming has been sidelined in European Union (EU) climate change policy. It finds that, with a few exceptions largely emanating from the European Parliament's Committee on Women's Rights and Gender Equality, EU responses to climate change are gender-blind. This is despite the Treaty obligations to gender mainstream policy in all areas and despite the intersections between climate change and development policy, which is re...

  9. Challenges of Climate Change and Bioenergy

    OpenAIRE

    Jahangir, Daniyal

    2008-01-01

    Atmospheric concentration of the Green House Gases, Carbon Dioxide, Methane and Nitrous Oxide has increased largely since Industrial Revolution. Continued GHG emissions at or above current rates would cause further warming and induce many changes in global climate system. Climate changes will lead to more intense and longer droughts, water scarcity and many other problems then have been observed. For these reasons concept of development of bioenergy came into existance for climate change miti...

  10. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies Through this initiative, USDA will ...

  11. Climate Change and European Union Member Economies

    OpenAIRE

    Margaux Tharin; Alina Gabriela Brezoi; Livia–Irina Olaru

    2010-01-01

    Climate change affects us all both global and personal level. In recent years, we have seen an increase in extreme weather phenomena such as floods, droughts, tornadoes, increased shoreline erosion seas and oceans. The phenomenon of climate change that changed the globe is an irreversible process. Due to extreme weather events to human civilization began to be in danger.

  12. Gender angle to the climate change negotiations

    NARCIS (Netherlands)

    Wamukonya, Njeri; Skutsch, Margaret

    2002-01-01

    The South is likely to suffer more from climate change than the North due to its already vulnerable situation and lack of the necessary resources to adapt to change. But do the interests of men and of women differ as regards climate change and does this have a South-North dimension? This paper attem

  13. Climate Change Scientific Assessment and Policy Analysis. Scientific Assessment of Solar Induced Climate Change

    International Nuclear Information System (INIS)

    The programme Scientific Assessment and Policy Analysis is commissioned by the Dutch Ministry of Housing, Spatial Planning, and the Environment (VROM) and has the following objectives: Collection and evaluation of relevant scientific information for policy development and decision-making in the field of climate change; Analysis of resolutions and decisions in the framework of international climate negotiations and their implications. The programme is concerned with analyses and assessments intended for a balanced evaluation of the state of the art knowledge for underpinning policy choices. These analyses and assessment activities are carried out within several months to about a year, depending on the complexity and the urgency of the policy issue. Assessment teams organised to handle the various topics consist of the best Dutch experts in their fields. Teams work on incidental and additionally financed activities, as opposed to the regular, structurally financed activities of the climate research consortium. The work should reflect the current state of science on the relevant topic. In this report an assessment on the following topics is presented: (1) Reconstructions of solar variability, especially with respect to those parameters which are relevant for climate change; (2) Reconstructions of proxies of solar variability, e.g. cosmogenic isotopes; (3) Reconstructions of global as well as regional climate, with respect to temperature, precipitation and circulation; (4) Physical understanding of the mechanisms which play a role in the solar terrestrial link. We focus on the Holocene with emphasis on the last centuries because of data availability, to avoid confusing climate responses to orbital changes with those due to solar activity and because of the relevance for human induced climate change as compared to the role of the variable sun in the 20th century

  14. Climatic changes: explicative guide of international agreements

    International Nuclear Information System (INIS)

    The following themes of the negotiation in the United Nations Convention framework, on the climatic changes and the kyoto protocol are taken into account: the observation, the information communication, the policies and the measures, the developing countries, the flexibility mechanisms, the soils utilizations and the regime evolution. For each theme the document recalls quickly how the theme is detailed in the Convention and in the Protocol, it presents then the decisions and the adopted rules and defines the agreements contain, in terms of challenges and implication in the protocol implementation. (A.L.B.)

  15. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  16. Climate variability and climate change in Mexico: A review

    OpenAIRE

    E. Jáuregui

    1997-01-01

    A review of research on climate variability, fluctuations and climate change in Mexico is presented. Earlier approaches include different time scales from paleoclimatic to historical and instrumental. The nature and causes of variability in Mexico have been attributed to large-scale southward/northward shifts of the mid-latitude major circulation and more recently to the ENSO cycle. Global greenhouse warming has become a major environmental issue and has spawned a large number of climate-chan...

  17. The Economics of Adaptation to Climate Change : Methodology Report

    OpenAIRE

    World Bank

    2008-01-01

    The proposed methodology begins with a consistent downscaling of projected climatic changes from a multiplicity of General Circulation to local levels. Subsets of the suite of downscaled climatic factors are then to be used to estimate the vector of impacts on key economic sectors of each country, using sector-specific impact assessment models. Based on this information, alternative govern...

  18. Adapting complex multi-level landscape systems to climate change

    NARCIS (Netherlands)

    Koomen, E.; Steingröver, E.G.; Opdam, P.F.M.

    2012-01-01

    Adaptation to climate change is becoming a prominent issue in both landscape research and landuse planning. Current research focuses mainly on the description of potential impacts for different societal sectors and in general fails to provide useful information to help define climate adaptation stra

  19. EMS adaptation for climate change

    Science.gov (United States)

    Pan, C.; Chang, Y.; Wen, J.; Tsai, M.

    2010-12-01

    The purpose of this study was to find an appropriate scenario of pre-hospital transportation of an emergency medical service (EMS) system for burdensome casualties resulting from extreme climate events. A case of natural catastrophic events in Taiwan, 88 wind-caused disasters, was reviewed and analyzed. A sequential-conveyance method was designed to shorten the casualty transportation time and to promote the efficiency of ambulance services. A proposed mobile emergency medical center was first constructed in a safe area, but nearby the disaster area. The Center consists of professional medical personnel who process the triage of incoming patients and take care of casualties with minor injuries. Ambulances in the Center were ready to sequentially convey the casualties with severer conditions to an assigned hospital that is distant from the disaster area for further treatment. The study suggests that if we could construct a spacious and well-equipped mobile emergency medical center, only a small portion of casualties would need to be transferred to distant hospitals. This would reduce the over-crowding problem in hospital ERs. First-line ambulances only reciprocated between the mobile emergency medical center and the disaster area, saving time and shortening the working distances. Second-line ambulances were highly regulated between the mobile emergency medical center and requested hospitals. The ambulance service of the sequential-conveyance method was found to be more efficient than the conventional method and was concluded to be more profitable and reasonable on paper in adapting to climate change. Therefore, additional practical work should be launched to collect more precise quantitative data.

  20. Interpreting climate data visualisations to inform adaptation decisions

    Directory of Open Access Journals (Sweden)

    Joseph D. Daron

    2015-01-01

    Full Text Available The appropriate development of graphical visualisations to communicate climate data is fundamental to the provision of climate services to guide climate change adaptation decisions. However, at present there is a lack of empirical evidence, particularly in Africa, to help climate information providers determine how best to communicate and display climate data. To help address this issue, an online survey, primarily targeted at the African vulnerability, impacts and adaptation community, was designed and disseminated widely. The survey examines the interpretation of climate data as a function of the style and information content of graphical visualisations. It is shown that choices made when constructing the visualisations, such as presenting percentile information versus showing the range, significantly impact on interpretation. Results also show that respondents who interpret a higher likelihood of future changes to climate, based on the visualisation of climate model projections, express greater confidence in their interpretations. The findings have relevance to the climate risk community in Africa and elsewhere across the world, and imply that a naïve approach to visualising climate data risks misinterpretation and unjustified levels of trust, with the potential to misinform adaptation and policy decisions.

  1. Road Infrastructure and Climate Change in Vietnam

    Directory of Open Access Journals (Sweden)

    Paul S. Chinowsky

    2015-05-01

    Full Text Available Climate change is a potential threat to Vietnam’s development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam by evaluating the potential impact of changes from stressors, including: sea level rise, precipitation, temperature and flooding. Across 56 climate scenarios, the mean additional cost of maintaining the same road network through 2050 amount to US$10.5 billion. The potential scale of these impacts establishes climate change adaptation as an important component of planning and policy in the current and near future.

  2. The Role of Natural Resource Professionals in Addressing Climate Change

    Directory of Open Access Journals (Sweden)

    Shorna B. Allred

    2016-08-01

    Full Text Available Natural resource professionals, ranging from forest managers and educators to floodplain managers, play a critical role in implementing and conducting outreach with regards to climate mitigation and adaptation appropriate to local and regional scales. Natural resource professionals can also pave the way by adopting actions that serve as demonstrations of efforts to mitigate greenhouse gas emissions or adapt natural systems for the future. A web survey of 1488 natural resource professionals across New York State (NYS was conducted to assess their attitudes toward climate change, views toward climate change mitigation and adaptation priorities, actions taken to address climate change, and barriers faced as they relate to their professional responsibilities. The majority of natural resource professionals believe that climate change is happening, but there was slightly less agreement about human causes of climate change. Most natural resource professionals (69% see evidence of how climate change is impacting natural resources in NYS, but few (17% believed that there was sufficient information about how to address climate impacts at the local level. Nearly 60% of natural resources professionals undertook climate mitigation or adaptation actions in their work. Prominent influencing factors for action were proactive leadership and local impacts. Barriers to taking action on climate change were a lack of human and financial resources, the nature of costs relative to benefits, and lack of perceived threat. As managers and educators responsible for local water, land, and wildlife resources, natural resource professionals witness changes resulting from climate change first-hand. This paper will be useful to decision-makers at state and federal government levels regarding policies, incentives, and guidance that can be created with the goal of promoting a sound natural resource strategy in support of climate change readiness.

  3. Teasing out the impacts of climate change on agricultural development

    OpenAIRE

    Knox, Jerry W.; Kay, Melvyn G.

    2010-01-01

    plethora of articles, books, and academic papers. Not least are the detailed and extensive publications of the Inter-Governmental Panel on Climate Change (IPCC) which set out in their latest assessment (AR4), the scientific, technical, and socio-economic information relevant for understanding the risks posed by human- induced climate change, and the policy options for dealing with it. Although it is useful to study and identify the specific benefits and risks of a changing c...

  4. Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate?

    OpenAIRE

    Miguel Clavero; Daniel Villero; Lluís Brotons

    2011-01-01

    Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitu...

  5. Framings and coverage of climate change in Swedish specialized farming magazines

    OpenAIRE

    Asplund, Therese; Hjerpe, Mattias; Wibeck, Victoria

    2013-01-01

    Climate change is a fundamental challenge for which agriculture is sensitive and   vulnerable. The Intergovernmental Panel on Climate Change has identified relevant information as key to enabling appropriate climate adaptation and mitigation action. Information specifically directed to farmers can be found, for example, in specialized farming magazines. While recent studies examine how national news media frame climate change, less —if any —studies have addressed climate framings and coverage...

  6. Climate - Understanding climate change in order to act

    International Nuclear Information System (INIS)

    In a first part, the author proposes an overview of considerations about climate change and global warming. He discusses greenhouse gas emissions and their perspectives of evolution (IPCC scenarios, recent assessments, unreachable objectives). He comments and discusses the consequences and effects of climate change and global warming (impact on the biosphere and predictable consequences, the largely unknown issue of oceans). He comments the relationship between warming and meteorological evolutions (what is sure and what is not, what is due to climate change and what is not), and the associated risks and hazards

  7. Cave temperatures and global climatic change.

    OpenAIRE

    Badino Giovanni

    2004-01-01

    The physical processes that establish the cave temperature are briefly discussed, showing that cave temperature is generally strictly connected with the external climate. The Global Climatic changes can then influence also the underground climate. It is shown that the mountain thermal inertia causes a delay between the two climates and then a thermal unbalance between the cave and the atmosphere. As a consequence there is a net energy flux from the atmosphere to the mountain, larger than the ...

  8. Climate Change: Integrating Science and Economics

    Science.gov (United States)

    Prinn, R. G.

    2008-12-01

    The world is facing an ever-growing conflict between environment and development. Climate change is a century-scale threat requiring a century-long effort in science, technology and policy analysis, and institutions that can sustain this effort over generations. To inform policy development and implementation there is urgent need for better integration of the diverse components of the problem. Motivated by this challenge, we have developed the Integrated Global System Model (IGSM) at MIT. It comprises coupled sub- models of economic development, atmospheric chemistry, climate dynamics and ecosystems. The results of a recent uncertainty analysis involving hundreds of runs of the IGSM imply that, without mitigation policies, the global average surface temperature may rise much faster than previously estimated. Polar temperatures are projected to rise even faster than the average rate with obvious great risks for high latitude ecosystems and ice sheets at the high end of this range. Analysis of policies for climate mitigation, show that the greatest effect of these policies is to lower the probability of extreme changes as opposed to lowering the medians. Faced with the above estimated impacts, the long lifetimes of most greenhouse gases in the atmosphere, the long delay in ultimate warming due to ocean heat uptake, and the capital-intensive global energy infrastructure, the case is strong for concerted action now. Results of runs of the IGSM indicate the need for transformation of the global energy industry on a very large scale to mitigate climate change. Carbon sequestration, renewable energy sources, and nuclear present new economic, technological, and environmental challenges when implemented at the needed scales. Economic analyses using the IGSM indicate that global implementation of efficient policies could allow the needed transformations at bearable costs.

  9. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  10. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.)

  11. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  12. Climate Change and Oil Depletion

    International Nuclear Information System (INIS)

    2 atmospheric content and of the average earth surface temperature are being considered to be interrelated. Carbon dioxide, water vapour and clouds all act as greenhouse forcing agents; cloud cover on account of its high solar reflectivity also acts as a direct cooling agent. Aerosols are of great importance in the processes of cloud formation and in precipitation initiation, thereby affecting the hydrological cycle; they also exhibit radiative forcing properties both direct and indirect, by the way of the clouds, either positive or negative, according to their particular composition. These particular influences are not yet well known and not yet properly incorporated in the simulations of climate scenarios adopted by the IPCC. And uncertainty brackets are still rather large. Notwithstanding, the results of these still incomplete climate scenarios have been taken as enough scientific evidence to decide upon imposing limits to greenhouse gas emissions. The European Union has already approved an European Climate Change Programme and took the political initiative in the Marrakech COP of the UNFCCC in November 2001, to the effect of the implementation of the Kyoto Protocol (1997). This is a political option which, besides setting emissions targets and energy policy terms of reference, also sets emission taxes and opens a new financial market for the trade of emission rights or permits. Evidence for the actual strain put upon the fossil energy supply is rather stronger than the evidence for anthropogenic climate changes. Rather more attention should be drawn to the supply of alternative energy sources, to the development of new energy carriers, to the improvement of technologies of energy conversion and storage as well as to the rationalization and moderation of demand at end use, so that a severe fossil energy supply crises might be avoided. In doing so, environmental and climatic consequences of any kind due to the rising worldwide level of energy demand would be

  13. Forced migrations caused by climate change

    Directory of Open Access Journals (Sweden)

    Neven Tandarić

    2014-06-01

    Full Text Available The consequences of climate change are becoming more and more pronounced, causing various environmental and social changes. One of the major and globally most noticeable changes is the intensification of forced migration caused by climate change. Such forced migrants, due to international legislation that has no built-in criteria to regulate the status of refugees due to environmental reasons and also climate change, cannot achieve this status and are becoming a problem of the entire international community, leading to significant social, economic, political and cultural changes at a global scale.

  14. Insurance against Climate Change : Financial Disaster Risk Management and Insurance Options for Climate Change Adaptation in Bulgaria

    OpenAIRE

    World Bank Group

    2014-01-01

    Bulgaria is exposed to nearly all types of climate extremes, including floods, droughts, and others, as well as earthquakes. The combination of insurance products, early warning systems, information campaigns, infrastructure adaptation measures, and strict regulations can be very useful in tackling the negative climate change impacts. This note provides an overview of the insurance sector ...

  15. Managing climate change risk : emerging financial sector expectations

    International Nuclear Information System (INIS)

    Engagement of the financial sector in the climate change debate is apparent, with social investors and advocacy groups launching 32 climate change related shareholder resolutions with American and Canadian energy companies in 2003. Eos Research and Consulting Ltd. recently conducted a study to examine emerging standards for how energy companies manage climate change related risks. A survey was conducted in the first part of the study to determine the environmental awareness of energy companies. Financial firms were asked whether they sought information concerning GHG inventories; projections of future emissions; action plans for addressing climate change and energy efficiency; evaluation of relative risk; estimation of cost of carbon; assessment of financial impact; evaluation of future regulations; and emissions trading activity. The second part of the study compared the response of 11 leading energy companies. The result was 2 opposing views on how climate change risks should be managed. The survey revealed that while most mainstream financial institutions are not paying much attention to climate change issues, socially responsible investment (SRI) investors are aware and working to factor climate change risk management information into their activities. In addition, SRI is growing at a faster pace than other investment segments, which may lead to greater future expectations for energy companies' climate change risk management efforts. It was concluded that the financial sector may emerge as an important source of direction that will guide energy companies in their future efforts to manage climate change risks. The five trends that contribute to the sector's emerging role are the continuing influence of advocacy groups; evolution of socially responsible approaches to investment; growing concerns for reputation; development of financial risk assessment approaches in terms of climate change; and, increase focus on corporate governance issues. 15 refs., 2 tabs., 1

  16. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  17. River Restoration for a Changing Climate

    Science.gov (United States)

    Beechie, T. J.; Pollock, M. M.; Pess, G. R.; Roni, P.

    2012-12-01

    Future climate scenarios suggest that riverine habitats will be significantly altered in the next few decades, forcing managers to ask whether and how river restoration activities should be altered to accommodate climate change. Obvious questions include: Will climate change alter river flow and temperature enough to reduce action effectiveness? What types of restoration actions are more likely to remain effective in a climate altered future? To help address these questions, we reviewed literature on habitat restoration actions and river processes to determine the degree to which different restoration actions are likely to either ameliorate a climate effect or increase habitat diversity and resilience. Key findings are that restoring floodplain connectivity and re-aggrading incised channels ameliorate both stream flow and temperature changes and increase lateral connectivity, whereas restoring in-stream flows can ameliorate decreases in low flows as well as stream temperature increases. Other restoration actions (e.g., reducing sediment supply, in-stream rehabilitation) are much less likely to ameliorate climate change effects. In general, actions that restore watershed and ecosystem processes are most likely to be robust to climate change effects because they allow river channels and riverine ecosystems to evolve in response to shifting stream flow and temperature regimes. We offer a decision support process to illustrate how to evaluate whether a project design should be altered to accommodate climate change effects, and show examples of restoration actions that are likely to be resilient to a changing climate.

  18. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, Jens-Christian; Olesen, Jørgen E;

    2009-01-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5–7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular...... interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change......; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference...

  19. Coastal tourism and climate change in Tunisia

    Science.gov (United States)

    Henia, Latifa; Hlaoui, Zouhaier; Alouane, Tahar

    2014-05-01

    Tunisia is a major tourist destination on the southern shore of the Mediterranean. The tourism sector occupies an important place in the Tunisian economy with 816 hotels, 229,873 beds and a more than six million tourists at the end of the first decade of the 21th century, i.e. , more than half of the population. It offers a large number of direct and indirect jobs: One out of five people work in the tourism sector. The 1960s tourism boom was caused by a number of factors including long days of sunshine, 1,300 km of sandy coast, and a location close to Europe. Tunisian tourism is fundamentally based on two natural determinants: the sun and the sea. The coastline accounts for 95% of tourism investments and functional beds. The high season extends from April to October and it records 73% of nonresident tourists. This results in a homogenous growth of the "product" and its "consumers". This standardization is an important factor in the vulnerability of the Tunisian tourism to climate change. Global warming may affect the comfort level of the swimming season as well as its structure. An estimation of air and water temperature evolution near the Tunisian coasts was conducted under the CLIM-RUN project "Climate Local Information in the Mediterranean Region: Responding to User Needs" funded by the European Union's Seventh Framework Program (FP7). The University of Tunis research unit "GREVACHOT", project partner in charge of the case study of Tunisian tourism, has made the study of comfort indices of the present climate. This paper presents: - The climate comfort indices for seaside tourism in Tunisia, - The approach and results of the future evolution of air and water temperatures by the Tunisian coasts, - The future evolution of climate seaside comfort indices of Tunisia as well as the evolution of the swimming season in relation to global warming.

  20. Climate change: turning up the heat

    Energy Technology Data Exchange (ETDEWEB)

    Pittock, A. Barrie

    2005-12-15

    Climate change has been described as the most pressing issue for the future of Earth, dramatically affecting all aspects of our lives and civilization, yet many people remain baffled by what is going on. A. Barrie Pittock, one of the world's leading researchers on climate change, demystifies the issues and explains both sides of the current debates on this 'hot' topic. This timely book sorts fact from fiction as the author examines the arguments surrounding the reality of climate change and the divergent views of greenhouse sceptics and doom-and-gloom alarmists. The book discusses the major impacts of climate change on natural ecosystems and past civilizations, and describes how scientists are predicting future change. It also outlines the options for living with climate change, from mitigation to adaptation. Beyond the scientific facts, the book tackles the politics of climate change, including the apparent clash of interests between richer, developed countries and poorer, less-developed countries, climate change sceptics, and the current international action on climate change, including the Kyoto Protocol. Pittock also examines individual action, emphasizing the need for us to contribute to solutions through constructive political and personal action. (Author)