WorldWideScience

Sample records for climate change impact

  1. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  2. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  3. Modelling climate change impacts on mycotoxin contamination

    NARCIS (Netherlands)

    Fels, van der Ine; Liu, C.; Battilani, P.

    2016-01-01

    Projected climate change effects will influence primary agricultural systems and thus food security, directly via impacts on yields, and indirectly via impacts on its safety, with mycotoxins considered as crucial hazards. Mycotoxins are produced by a wide variety of fungal species, each having their

  4. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  5. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate c...

  6. Projected Climate Change Impacts on Pennsylvania

    Science.gov (United States)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  7. Impact of Climate Change on Riverbank Erosion

    Directory of Open Access Journals (Sweden)

    Most. Nazneen Aktar

    2014-04-01

    Full Text Available Bangladesh is one of the most climate vulnerable countries in the world. This country is highly vulnerable to climate change because of a number of hydro-geological and socio-economic factors such as geographical location, topography, extreme climate variability, high population density, poverty incidence and dependency of agriculture on climate. Presently this country has been experiencing different hydro-meteorological disastrous events that have never been experienced before. Along with other natural disasters, floods are expected to be impacted by climate change in the future. Since floods are always associated with riverbank erosion, it is essential to assess the impact of climate change on bank erosion. Riverbank erosion is also a serious hazard that directly or indirectly causes the suffering of millions of people. Beyond that, most of the old cities and important infrastructures in this country are situated on riverbanks since once upon a time waterway transportation was the main mode of travel. Moreover, people like to reside near rivers because of their dependency on river water for irrigation purposes. So a major part of the total population of this country lives near riverbanks, which frequently makes them victims of riverbank erosion. The major rivers, the Jamuna, the Ganges and the Padma, annually erode thousand hectares of floodplain land and damage or destroy infrastructures. Consequently, this natural disaster has become a major social hazard. This study aims to find out the relationship between floods and bank erosion; and hence the impact of climate changes on riverbank erosion. Since there is no record on riverbank erosion, this study attempts to measure it with the help of satellite images. It has been found in this study that climate change will play a significant role in riverbank erosion. On an average, the riverbank erosion along the major three rivers will be increased by 13% by 2050 and it will be increased by 18% by

  8. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  9. The Impact of Climate Change on the European Energy System

    OpenAIRE

    DOWLING PAUL

    2012-01-01

    Climate change can affect the economy via many different channels in many different sectors. Most studies investigating the impact of climate change on the energy system have concentrated on the impact of changes in heating and cooling demand, but there are many energy sector impacts that remain unanalysed. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling...

  10. Climate change impacts on marine ecosystems.

    Science.gov (United States)

    Doney, Scott C; Ruckelshaus, Mary; Duffy, J Emmett; Barry, James P; Chan, Francis; English, Chad A; Galindo, Heather M; Grebmeier, Jacqueline M; Hollowed, Anne B; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N; Sydeman, William J; Talley, Lynne D

    2012-01-01

    In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

  11. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  12. How Will Climate Change Impact Cholera Outbreaks?

    Science.gov (United States)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  13. Climate Change in Myanmar: Impacts and Adaptation

    Science.gov (United States)

    2014-12-01

    complex field of study developed from a rather simple idea. Climate, as described by Harun Rashid and Bimal Paul, can be defined as...Harun Rashid and Bimal Paul, Climate Change in Bangladesh: Confronting Impending Disasters (Lanham, MD: Lexington Books, 2014), 3–4. 43 “Climate...El Nino seasons, the warming trend has continued in a positive 44 Rashid and Paul, Climate Change

  14. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  15. Climate Change Impacts on the Congo Basin Region

    NARCIS (Netherlands)

    Ludwig, F.; Franssen, W.; Jans, W.W.P.; Kruijt, B.; Supit, I.

    2012-01-01

    This report presents analyses of climate change impacts in the Congo Basin on water for agriculture and hydropower, forest ecosystem functioning and carbon storage and impacts of climate variability and change on future economic development. To quantify the impacts of future climate we developed a m

  16. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are a

  17. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  18. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program.

  19. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  20. Turning climate change information into economic and health impacts

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Kühl, J.; Olesen, J.E.

    2007-01-01

    The PRUDENCE project has generated a set of spatially and temporally high-resolution climate data, which provides new opportunities for assessing the impacts of climate variability and. change on economic and human systems in Europe. In this context, we initiated the development of new approaches...... of an analytical approach for assessing economic impacts of climate change and discuss how economic concepts and valuation paradigms can be applied to climate change impact evaluation. A number of methodological difficulties encountered in economic assessments of climate change impacts are described and a number...... for linking climate change information and economic studies. We have considered a number of case studies that illustrate how linkages can be established between geographically detailed climate data and economic information. The case studies included wheat production in agriculture, where regional climate data...

  1. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production...... are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes...... and for adapting to climate change. in order to adapt to changing climate, future monitoring and research must be closely linked to responsive, flexible and reflexive management systems. (C) 2009 Elsevier B.V. All rights reserved....

  2. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  3. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  4. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  5. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  6. The direct impact of climate change on regional labour productivity

    OpenAIRE

    Kjellstrom, Tord; Kovats, R Sari; Simon J. Lloyd; Holt, Tom; Richard S.J. Tol

    2008-01-01

    Global climate change will increase outdoor and indoor heat loads, and may impair health and productivity for millions of working people. This study applies physiological evidence about effects of heat, climate guidelines for safe work environments, climate modelling and global distributions of working populations, to estimate the impact of two climate scenarios on future labour productivity. In most regions, climate change will decrease labour productivity, under the simple assumption of no ...

  7. Projected climate change impact on oceanic acidification

    Directory of Open Access Journals (Sweden)

    McNeil Ben I

    2006-06-01

    Full Text Available Abstract Background Anthropogenic CO2 uptake by the ocean decreases the pH of seawater, leading to an 'acidification' which may have potential detrimental consequences on marine organisms 1. Ocean warming or circulation alterations induced by climate change has the potential to slowdown the rate of acidification of ocean waters by decreasing the amount of CO2 uptake by the ocean 2. However, a recent study showed that climate change affected the decrease in pH insignificantly 3. Here, we examine the sensitivity of future oceanic acidification to climate change feedbacks within a coupled atmosphere-ocean model and find that ocean warming dominates the climate change feedbacks. Results Our results show that the direct decrease in pH due to ocean warming is approximately equal to but opposite in magnitude to the indirect increase in pH associated with ocean warming (ie reduced DIC concentration of the upper ocean caused by lower solubility of CO2. Conclusion As climate change feedbacks on pH approximately cancel, future oceanic acidification will closely follow future atmospheric CO2 concentrations. This suggests the only way to slowdown or mitigate the potential biological consequences of future ocean acidification is to significantly reduce fossil-fuel emissions of CO2 to the atmosphere.

  8. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  9. Impact Assessment of Climate Change on Forestry Development in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Forestry and forest ecosystem are highly sensitive to climate change.At present,studies about the responses of forests to climate change in China are more focused on physical influences of climate change.This paper firstly divided the key impact factors of climate change on forest and forestry developing into direct factors and indirect factors,and then made an assessment on climate change affecting future forestry development from the aspect of forest products and ecological services.On this basis,the adap...

  10. Impacts of Climate Change on Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  11. Impact of climate change on waterborne diseases

    OpenAIRE

    Enzo Funari; Maura Manganelli; Luciana Sinisi

    2012-01-01

    Change in climate and water cycle will challenge water availability but it will also increase the exposure to unsafe water. Floods, droughts, heavy storms, changes in rain pattern, increase of temperature and sea level, they all show an increasing trend worldwide and will affect biological, physical and chemical components of water through different paths thus enhancing the risk of waterborne diseases. This paper is intended, through reviewing the available literature, to highlight environmen...

  12. Modeling Climate Change Impacts on the US Agricultural Exports

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-quan; CAI Yong-xia; Beach Robert H; McCARL Bruce A

    2014-01-01

    Climate change is expected to have substantial effects on agricultural productivity worldwide. However, these impacts will differ across commodities, locations and time periods. As a result, landowners will see changes in relative returns that are likely to induce modiifcations in production practices and land allocation. In addition, regional variations in impacts can alter relative competitiveness across countries and lead to adjustments in international trade patterns. Thus in climate change impact studies it is likely useful to account for worldwide productivity effects. In this study, we investigate the implications of considering rest of world climate impacts on projections of the US agricultural exports. We chose to focus on the US because it is one of the largest agricultural exporters. To conduct our analyses, we consider four alternative climate scenarios, both with and without rest of world climate change impacts. Our results show that considering/ignoring rest of world climate impacts causes signiifcant changes in the US production and exports projections. Thus we feel climate change impact studies should account not only for climate impacts in the country of focus but also on productivity in the rest of the world in order to capture effects on commodity markets and trade potential.

  13. Impact on human health of climate changes.

    Science.gov (United States)

    Franchini, Massimo; Mannucci, Pier Mannuccio

    2015-01-01

    There is increasing evidence that climate is rapidly changing. These changes, which are mainly driven by the dramatic increase of greenhouse gas emissions from anthropogenic activities, have the potential to affect human health in several ways. These include a global rise in average temperature, an increased frequency of heat waves, of weather events such as hurricanes, cyclones and drought periods, plus an altered distribution of allergens and vector-borne infectious diseases. The cardiopulmonary system and the gastrointestinal tract are particularly vulnerable to the adverse effects of global warming. Moreover, some infectious diseases and their animal vectors are influenced by climate changes, resulting in higher risk of typhus, cholera, malaria, dengue and West Nile virus infection. On the other hand, at mid latitudes warming may reduce the rate of diseases related to cold temperatures (such as pneumonia, bronchitis and arthritis), but these benefits are unlikely to rebalance the risks associated to warming.

  14. Risk Assessment Of Climate Change Impacts On Railway Infrastructure

    NARCIS (Netherlands)

    Stipanovic Oslakovic, I.; Maat, ter H.W.; Hartmann, A.; Dewulf, G.

    2013-01-01

    Although it has been known for a while that climate-related factors account for the performance development of infrastructure, it remains difficult for infrastructure manager to estimate the effect of the anticipated climate change. The impact of climate factors differs very much between geographica

  15. Climate Change 2007: Impacts, Adaptation and Vulnerability.

    OpenAIRE

    Schiavon, Stefano; Zecchin, Roberto

    2007-01-01

    Impatti, adattamento e vulnerabilità Le cause e le responsabilità dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilità” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto ...

  16. Impacts of Climate Change on Inequities in Child Health

    Directory of Open Access Journals (Sweden)

    Charmian M. Bennett

    2014-12-01

    Full Text Available This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world’s poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  17. Impacts of Climate Change on Inequities in Child Health.

    Science.gov (United States)

    Bennett, Charmian M; Friel, Sharon

    2014-12-03

    This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world's poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  18. Congressional Briefing on Climate Change Impacts and Adaptation

    Science.gov (United States)

    Landau, Elizabeth

    2010-01-01

    During an 8 January 2010 congressional briefing on climate change cosponsored by AGU, speakers discussed the impacts of climate change in the United States and the ability of society to cope with these impacts. More than 200 congressional and federal agency staff attended the briefing, which featured Michael MacCracken, chief scientist for climate change programs at the Climate Institute; Kristie Ebi, executive director of the Intergovernmental Panel on Climate Change Working Group 2 Technical Support Unit; Katharine Jacobs, professor at the University of Arizona's Soil, Water and Environmental Science Department; and Susanne Moser, director and principal researcher at Susanne Moser Research and Consulting. The briefing was jointly sponsored by AGU, the American Association for the Advancement of Science, American Meteorological Society, Ecological Society of America, and Pew Center on Global Climate Change. For more information about AGU's science policy program, visit http://www.agu.org/sci_pol/.

  19. Climate Change Impacts on Worldwide Coffee Production

    Science.gov (United States)

    Foreman, T.; Rising, J. A.

    2015-12-01

    Coffee (Coffea arabica and Coffea canephora) plays a vital role in many countries' economies, providing necessary income to 25 million members of tropical countries, and supporting a $81 billion industry, making it one of the most valuable commodities in the world. At the same time, coffee is at the center of many issues of sustainability. It is vulnerable to climate change, with disease outbreaks becoming more common and suitable regions beginning to shift. We develop a statistical production model for coffee which incorporates temperature, precipitation, frost, and humidity effects using a new database of worldwide coffee production. We then use this model to project coffee yields and production into the future based on a variety of climate forecasts. This model can then be used together with a market model to forecast the locations of future coffee production as well as future prices, supply, and demand.

  20. Extended impacts of climate change on health and wellbeing

    DEFF Research Database (Denmark)

    Thomas, Felicity; Sabel, Clive E.; Morton, Katherine;

    2014-01-01

    Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained...

  1. Impact of climate change on waterborne diseases

    Directory of Open Access Journals (Sweden)

    Enzo Funari

    2012-12-01

    Full Text Available Change in climate and water cycle will challenge water availability but it will also increase the exposure to unsafe water. Floods, droughts, heavy storms, changes in rain pattern, increase of temperature and sea level, they all show an increasing trend worldwide and will affect biological, physical and chemical components of water through different paths thus enhancing the risk of waterborne diseases. This paper is intended, through reviewing the available literature, to highlight environmental changes and critical situations caused by floods, drought and warmer temperature that will lead to an increase of exposure to water related pathogens, chemical hazards and cyanotoxins. The final aim is provide knowledge-based elements for more focused adaptation measures.

  2. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  3. Global climate change impacts on forests and markets

    Science.gov (United States)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  4. Impact of climate change on Antarctic krill

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Atkinson, A.; Kawaguchi, S.; Bravo Rebolledo, E.; Franeker, van J.A.

    2012-01-01

    Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of

  5. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  6. Potential impacts of climatic change upon geographical distributions of birds

    DEFF Research Database (Denmark)

    Huntley, Brian; Collingham, Yvonne C.; Green, Rhys E.

    2006-01-01

    Potential climatic changes of the near future have important characteristics that differentiate them from the largest magnitude and most rapid of climatic changes of the Quaternary. These potential climatic changes are thus a cause for considerable concern in terms of their possible impacts upon...... biodiversity. Birds, in common with other terrestrial organisms, are expected to exhibit one of two general responses to climatic change: they may adapt to the changed conditions without shifting location, or they may show a spatial response, adjusting their geographical distribution in response...... to the changing climate. The Quaternary geological record provides examples of organisms that responded to the climatic fluctuations of that period in each of these ways, but also indicates that the two are not alternative responses but components of the same overall predominantly spatial response. Species unable...

  7. Salmon Population Summary - Impacts of climate change on Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This work involves 1) synthesizing information from the literature and 2) modeling impacts of climate change on specific aspects of salmon life history and...

  8. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    Science.gov (United States)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  9. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet, uncerta......Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet...... with alternative climate data and model algorithms. Ensemble forecasting provides a means for exploring the breadth and spatial variation of uncertainties, and for building consensus among projections. Several consensus methodologies are compared here, including a newly proposed methodology that preserves...

  10. Climate Change Impacts on Fort Bragg, NC

    Science.gov (United States)

    2013-10-15

    scenarios .................. 22 9 Climate affects on Longleaf pine (Pinus palustris... Longleaf pine (Pinus palustris). In the near future (Figure 9), the range may expand to include the installation completely. This is important because...installation. Figure 9. Climate affects on Longleaf pine (Pinus palustris). Figure 10. Climate affects on Loblolly pine (Pinus taeda). ERDC/CERL

  11. Uncertainty in climate change impacts on low flows

    NARCIS (Netherlands)

    Booij, Martijn J.; Huisjes, Martijn; Hoekstra, Arjen Y.; Demuth, Siegfried; Gustard, Alan; Planos, Eduardo; Scatena, Fred; Servat, Eric

    2006-01-01

    It is crucial for low flow management that information about the impacts of climate change on low flows and the uncertainties therein becomes available. This has been achieved by using information from different Regional Climate Models for different emission scenarios to assess the uncertainty in cl

  12. Impacts of Europe's changing climate- 2008 indicator-based assessment

    NARCIS (Netherlands)

    Swart, R.J.

    2008-01-01

    The report presents past and projected climate change and impacts in Europe by means of about 40 indicators and identifies sectors and regions most vulnerable with a high need for adaptation. The report covers the following indicator categories: atmosphere and climate, cryosphere, marine biodiversit

  13. Assessing ozone-related health impacts under a changing climate.

    Science.gov (United States)

    Knowlton, Kim; Rosenthal, Joyce E; Hogrefe, Christian; Lynn, Barry; Gaffin, Stuart; Goldberg, Richard; Rosenzweig, Cynthia; Civerolo, Kevin; Ku, Jia-Yeong; Kinney, Patrick L

    2004-11-01

    Climate change may increase the frequency and intensity of ozone episodes in future summers in the United States. However, only recently have models become available that can assess the impact of climate change on O3 concentrations and health effects at regional and local scales that are relevant to adaptive planning. We developed and applied an integrated modeling framework to assess potential O3-related health impacts in future decades under a changing climate. The National Aeronautics and Space Administration-Goddard Institute for Space Studies global climate model at 4 degrees x 5 degrees resolution was linked to the Penn State/National Center for Atmospheric Research Mesoscale Model 5 and the Community Multiscale Air Quality atmospheric chemistry model at 36 km horizontal grid resolution to simulate hourly regional meteorology and O3 in five summers of the 2050s decade across the 31-county New York metropolitan region. We assessed changes in O3-related impacts on summer mortality resulting from climate change alone and with climate change superimposed on changes in O3 precursor emissions and population growth. Considering climate change alone, there was a median 4.5% increase in O3-related acute mortality across the 31 counties. Incorporating O3 precursor emission increases along with climate change yielded similar results. When population growth was factored into the projections, absolute impacts increased substantially. Counties with the highest percent increases in projected O3 mortality spread beyond the urban core into less densely populated suburban counties. This modeling framework provides a potentially useful new tool for assessing the health risks of climate change.

  14. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  15. THE IMPACT OF CLIMATE CHANGE UPON WINTER RAINFALL

    Directory of Open Access Journals (Sweden)

    Numan Shehadeh

    2013-01-01

    Full Text Available Climatic models that project the impact of climate change upon rainfall in the Eastern Mediterranean region predict that the negative impact will be more pronounced upon winter rainfall rather than Fall or Spring rainfall where instability conditions become more pronounced. Those models, also, predict that, due to the great geographical diversity, projected rainfall trends in the above region will show great spatial variability. Therefore, this study aims to analyze the possible impact of climate change upon winter rainfall (December, January and February in Jordan. Data from six meteorological stations that represent well the spatial variation of rainfall in the country is used. Various statistical techniques are applied in this study including, linear regression, t- test, moving averages and CUSUM charts. Results of the analysis reveal a decreasing rainfall trend in all the sample stations. However, the decreasing trends are significant at the 0.05 level in three stations only (Salt, Amman and Irbid. The negative impact of climate change upon winter rainfall totals in the northern and central parts of Jordan, where most of winter rainfall is associated with Mediterranean depressions, is statistically significant at the 0.05 level. However, such impact is not significant in the southern and eastern parts of the country, where a greater portion of winter rainfall is associated with khamasini depressions and instability conditions. Further research analyzing the impact of climate change upon other climatic elements such as temperature, relative humidity and dust storms is needed.

  16. Climate Change Impacts on Future Wave Climate around the UK

    Directory of Open Access Journals (Sweden)

    William G. Bennett

    2016-11-01

    Full Text Available Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015 was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model.

  17. Arctic Cities and Climate Change: A Geographic Impact Assessment

    Science.gov (United States)

    Shiklomanov, N. I.; Streletskiy, D. A.

    2014-12-01

    Arctic climate change is a concern for the engineering community, land-use planners and policy makers as it may have significant impacts on socio-economic development and human activities in the northern regions. A warmer climate has potential for a series of positive economic effects, such as development of maritime transportation, enhanced agricultural production and decrease in energy consumption. However, these potential benefits may be outwaited by negative impacts related to transportation accessibility and stability of existing infrastructure, especially in permafrost regions. Compared with the Arctic zones of other countries, the Russian Arctic is characterized by higher population, greater industrial development and urbanization. Arctic urban areas and associated industrial sites are the location of some of intense interaction between man and nature. However, while there is considerable research on various aspects of Arctic climate change impacts on human society, few address effects on Arctic cities and their related industries. This presentation overviews potential climate-change impacts on Russian urban environments in the Arctic and discusses methodology for addressing complex interactions between climatic, permafrost and socio-economic systems at the range of geographical scales. We also provide a geographic assessment of selected positive and negative climate change impacts affecting several diverse Russian Arctic cities.

  18. U.S. Global Climate Change Impacts Report, Adaptation

    Science.gov (United States)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  19. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  20. Climate Change Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization

    Science.gov (United States)

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...

  1. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  2. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  3. Climate Change Impacts on Migration in the Vulnerable Countries

    Science.gov (United States)

    An, Nazan; Incealtin, Gamze; Kurnaz, M. Levent; Şengün Ucal, Meltem

    2014-05-01

    This work focuses on the economic, demographic and environmental drivers of migration related with the sustainable development in underdeveloped and developed countries, which are the most vulnerable to the climate change impacts through the Climate-Development Modeling including climate modeling and panel logit data analysis. We have studied some countries namely Bangladesh, Netherlands, Morocco, Malaysia, Ethiopia and Bolivia. We have analyzed these countries according to their economic, demographic and environmental indicators related with the determinants of migration, and we tried to indicate that their conditions differ according to all these factors concerning with the climate change impacts. This modeling covers some explanatory variables, which have the relationship with the migration, including GDP per capita, population, temperature and precipitation, which indicate the seasonal differences according to the years, the occurrence of natural hazards over the years, coastal location of countries, permanent cropland areas and fish capture which represents the amount of capturing over the years. We analyzed that whether there is a relationship between the migration and these explanatory variables. In order to achieve sustainable development by preventing or decreasing environmental migration due to climate change impacts or related other factors, these countries need to maintain economic, social, political, demographic, and in particular environmental performance. There are some significant risks stemming from climate change, which is not under control. When the economic and environmental conditions are considered, we have to regard climate change to be the more destructive force for those who are less defensible against all of these risks and impacts of uncontrolled climate change. This work was supported by the BU Research Fund under the project number 6990. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  4. Impacts of Climate Change on the Climate Extremes of the Middle East

    Science.gov (United States)

    Turp, M. Tufan; Collu, Kamil; Deler, F. Busra; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The Middle East is one of the most vulnerable regions to the impacts of climate change. Because of the importance of the region and its vulnerability to global climate change, the studies including the investigation of projected changes in the climate of the Middle East play a crucial role in order to struggle with the negative effects of climate change. This research points out the relationship between the climate change and climate extremes indices in the Middle East and it investigates the changes in the number of extreme events as described by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI). As part of the study, the regional climate model (RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) is run to obtain future projection data. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  5. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  6. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  7. Modelingthe impacts of climate change on China's agriculture

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The impacts of climate change on China's agriculture are measured based on Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture-dominated counties in the period of 1985-1991, we find that both higher temperature and more precipitation will have overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Higher temperature in all seasons except spring increases agricultural net revenue while more precipitation is beneficial in winter but is harmful in summer. Applying the model to five climate scenarios in the 2020s and 2050s shows that the North, the Northeast, the Northwest, and the Qinghai-Tibet Plateau would always benefit from climate change while the South and the Southwest may be negatively affected. For the East and the Central China, most scenarios show that they may benefit from climate change. In conclusion, climate change would be beneficial to the whole China.

  8. Health Care Facilities Resilient to Climate Change Impacts

    Directory of Open Access Journals (Sweden)

    Jaclyn Paterson

    2014-12-01

    Full Text Available Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change.

  9. Climate change impacts: Public policies and perception in Albania

    Directory of Open Access Journals (Sweden)

    Elona Pojani

    2013-12-01

    Full Text Available The purpose of this paper is to discuss some of the main impacts of climate change in Albania. More specifically the paper will try to analyze the public response toward these new challenges. This analysis will be preceded by a brief review of the international literature regarding climate change consequences. In addition, the paper will discuss public perception and awareness toward climate change. This discussion will be based on a survey which has involved a wide range of population. The main results of the survey show that the level of awareness of the study group (which consisted mainly on high educated participants about climate change and its relationship with the development is very low. Therefore more emphasis should be put to information regarding environmental issues, through education system and awareness campaigns.

  10. Climate change impacts on hydrology and water resources

    Directory of Open Access Journals (Sweden)

    Fred Fokko Hattermann

    2015-04-01

    Full Text Available Aim of our study is to quantify the impacts of climate change on hydrology in the large river basins in Germany (Rhine, Elbe, Danube, Weser and Ems and thereby giving the range of impact uncertainty created by the most recent regional climate projections. The study shows mainly results for the A1B SRES (Special Report on Emission Scenario scenario by comparing the reference period 1981–2010 and the scenario periods 2031–2060 and 2061–2090 and using climate projections of a combination of 4 Global Climate Models (GCMs and 12 Regional Climate Models (RCMs as climate driver. The outcome is compared against impacts driven by a more recent RCP (Representative Emission Pathways scenario by using data of a statistical RCM. The results indicate that more robust conclusions can be drawn for some river basins, especially the Rhine and Danube basins, while diversity of results leads to higher uncertainty in the other river basins. The results also show that hydrology is very sensitive to changes in climate and effects of a general increase in precipitation can even be over-compensated by an increase in evapotranspiration. The decrease of runoff in late summer shown in most results can be an indicator for more pronounced droughts under scenario conditions.

  11. Impacts of Land Cover Changes on Climate over China

    Science.gov (United States)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  12. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Science.gov (United States)

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  13. Potential climatic impacts of vegetation change: A regional modeling study

    Science.gov (United States)

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  14. U.S. Global Climate Change Impacts Overview

    Science.gov (United States)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  15. IMPACT, VULNERABILITY AND INURING TO THE CLIMATE CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Mazilu Mirela; Buce Gabriela; Ciobanu Mariana [University of Craiova, University Centre of Drobeta Turnu Severin, Mehedinti (Romania)

    2008-09-30

    The adverse effects of the climate changes caused or not by the human being are on the international politic agenda for more than a decade. All over the world the discussions on the climate changes are intensifying and heading new directions, with a larger opening. The climate changes were subject of the agenda of the most important regional and international meetings this year, many of these asking the ending with positive results of the U.N.O. Conference on Climate Changes that is taking place these days in Bali, between the 3rd and 14th of December 2007. The Bali Conference will give the possibility of getting involved in the future into the multilateral processes of climate change under the auspices of the United Nations and into the process of shaping a global approaching plan of the climate changes. The climate changes represent one of the major challenges in our century--a complex field about what we have to improve our knowledge and understanding in order to take immediate and correct actions for a lasting and efficient approach from the point of view of the costs and challenges in the climate changes field respecting the precaution and climate changes inuring principle. The inuring is a process which allows societies to learn to react to the risks associated to the climate changes. These risks are real and already present in many systems and essential sectors of the human existence--the hydrological resources, alimentary security and health. The inuring options are multiple and vary from the technical ones--protection against the water gown level or dwellings protected against the floods by being hanged up on pontoons--to the change of the behavior of the individuals, such as the reduce of the water or energy consumption and/or a more efficient consumption. Other strategies suppose: signaling systems of the meteorological phenomenon, improvements of the risk management, ways to assure and preserve the biodiversity in order to reduce the impact of the

  16. Emissions pathways, climate change, and impacts on California

    Science.gov (United States)

    Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; Dale, L.; Drapek, R.; Hanemann, R.M.; Kalkstein, L.S.; Lenihan, J.; Lunch, C.K.; Neilson, R.P.; Sheridan, S.C.; Verville, J.H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50-75%; and Sierra snowpack is reduced 30-70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75-90%; and snowpack declines 73-90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades.

  17. Climate change and its gendered impacts on agriculture in Vietnam

    Directory of Open Access Journals (Sweden)

    Trung, P.T

    2013-03-01

    Full Text Available Studies have shown that Vietnam is one of the countries that most affected by climate change because of its geographical and natural conditions together with its fast but massive and unplanned urbanization. There are many research and studies that have been conducted to assess the impacts of climate change on different sectors in Vietnam. Agriculture plays an important role in the country’s economy in terms of poverty reduction, food security, employment and export but projected to be heavily affected because of sea level rise, floods or droughts etc. A large proportion of Vietnam’s population, especially women, involves with agricultural works and production. So, this paper using a gender perspective will examine possible impacts that climate change has been causing to women and men differently in order to propose some solutions for the facing problems. Since the paper only utilizes available resources, it can serve as a concept note for further works in the future.

  18. Climate Change Impacts of Irrigation on the Central High Plains

    Science.gov (United States)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  19. The Impact of Climate Change on Agriculture in Asia

    Institute of Scientific and Technical Information of China (English)

    Robert Mendelsohn

    2014-01-01

    Asian agriculture is responsible for two thirds of global agricultural GDP. There have been numerous studies exploring the impact of climate change on crops in speciifc locations in Asia but no study has yet analyzed crops across the entire continent. This study relies on a Ricardian study of China that estimated climate coefifcients for Chinese crops. These coefifcients are then used to interpolate potential climate damages across the continent. With carbon fertilization, the model predicts small aggregate effects with a 1.5°C warming but damages of about US$84 billion with 3°C warming. India is predicted to be especially vulnerable.

  20. Projected impacts of climate change on marine fish and fisheries

    DEFF Research Database (Denmark)

    Hollowed, Anne B.; Barange, Manuel; Beamish, Richard J.;

    2013-01-01

    ) implications for food security and associated changes; and (v) uncertainty and modelling skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite of linked processes. Integrated interdisciplinary research teams are forming...... in many regions to project these complex responses. National and international marine research organizations serve a key role in the coordination and integration of research to accelerate the production of projections of the effects of climate change on marine ecosystems and to move towards a future where...

  1. Climate change impacts on runoff in West Africa: a review

    OpenAIRE

    Roudier, P.; A. Ducharne; Feyen, L.

    2014-01-01

    International audience; This review summarizes the impacts of climate change on runoff in West Africa, assesses the uncertainty in the projections and describes future research needs for the region. To do so, we constitute a meta-database made of 19 studies and 301 future runoff change values. The future tendency in streamflow developments is overall very uncertain (median of the 301 points is 0% and mean +5.2%), except for (i) the Gambia River, which exhibits a significant negative change (m...

  2. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Science.gov (United States)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  3. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  4. Climate change impact on wetland forest plants of SNR Zasavica

    Directory of Open Access Journals (Sweden)

    Čavlović Dragana

    2012-01-01

    Full Text Available Wetlands are among the most vulnerable habitats on the planet. Very complex forest ecosystems are also parts of wetlands. Research and analysis of forest vegetation elements, leads to a conclusion about ecological conditions of wetlands. The aim of the paper is detail forest vegetation study, and analyzing the impact of climate changes on wetland forest vegetations of the strict protection area at the SNR Zasavica Ramsar site. Field research was carried out by using Braun-Blanquet’s Zurich-Montpelier school method. Phytogeographical elements and life forms of plants were determined subsequently, in order to get indicator values of wetland plants. Coupled Regional Climate Model (CRCM, EBU-POM was used for the climate simulations. Exact climatic variables for the site were determined by downscaling method. Climatic variables reference values were taken for the period of 1961-1990, and climate change simulations for the period 2071-2100 (A1B and A2. Indicator values of forest plants taken into consideration were humidity and temperature; therefore, ecological optimums were determined in scales of humidity and temperature. Regional Climate Model shows that there will be a long and intensive dry period in the future, with high temperatures from April till October. Continental winter will be more humid, with higher precipitation, especially in February. Based on the analysis of results it was concluded that wetlands are transitional habitats, also very variable and therefore vulnerable to changes. The changes may lead to the extinction of some plant species.

  5. Chapter 1. Impacts of the oceans on climate change.

    Science.gov (United States)

    Reid, Philip C; Fischer, Astrid C; Lewis-Brown, Emily; Meredith, Michael P; Sparrow, Mike; Andersson, Andreas J; Antia, Avan; Bates, Nicholas R; Bathmann, Ulrich; Beaugrand, Gregory; Brix, Holger; Dye, Stephen; Edwards, Martin; Furevik, Tore; Gangstø, Reidun; Hátún, Hjálmar; Hopcroft, Russell R; Kendall, Mike; Kasten, Sabine; Keeling, Ralph; Le Quéré, Corinne; Mackenzie, Fred T; Malin, Gill; Mauritzen, Cecilie; Olafsson, Jón; Paull, Charlie; Rignot, Eric; Shimada, Koji; Vogt, Meike; Wallace, Craig; Wang, Zhaomin; Washington, Richard

    2009-01-01

    The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to

  6. Little auks buffer the impact of current Arctic climate change

    DEFF Research Database (Denmark)

    Grémillet, David; Welcker, Jorg; Karnovsky, Nina J.

    2012-01-01

    Climate models predict a multi-degree warming of the North Atlantic in the 21st century. A research priority is to understand the impact of such changes upon marine organisms. With 40-80 million individuals, planktivorous little auks (Alle alle) are an essential component of pelagic food webs in ...

  7. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  8. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated with ...

  9. Global Catastrophes in Perspective: Asteroid Impacts vs Climate Change

    Science.gov (United States)

    Boslough, M. B.; Harris, A. W.

    2008-12-01

    When allocating resources to address threats, decision makers are best served by having objective assessments of the relative magnitude of the threats in question. Asteroids greater than about 1 km in diameter are assumed by the planetary impact community to exceed a "global catastrophe threshold". Impacts from smaller objects are expected to cause local or regional destruction, and would be the proximate cause of most associated fatalities. Impacts above the threshold would be expected to alter the climate, killing billions of people and causing a collapse of civilization. In this apocalyptic scenario, only a small fraction of the casualties would be attributable to direct effects of the impact: the blast wave, thermal radiation, debris, ground motion, or tsunami. The vast majority of deaths would come later and be due to indirect causes: starvation, disease, or violence as a consequence of societal disruption related to the impact-induced global climate change. The concept of a catastrophe threshold comes from "nuclear winter" studies, which form the basis for quantitative estimates of the consequences of a large impact. The probability estimates come from astronomical observations and statistical analysis. Much of the impact threat, at its core, is a climate-change threat. Prior to the Spaceguard Survey of Near-Earth Objects (NEOs), the chance of dying from an asteroid impact was estimated to be 1 in 25,000 (Chapman & Morrison, 1994). Most of the large asteroids have now been discovered, and none is on an impact trajectory. Moreover, new data show that mid-sized asteroids (tens to hundreds of meters across) are less abundant than previously thought, by a factor of three. We now estimate that the lifetime odds of being killed by the impact of one of the remaining undiscovered NEOs are about one in 720,000 for individuals with a life expectancy of 80 years (Harris, 2008). One objective way to compare the relative magnitude of the impact threat to that of

  10. Potential Impacts of Climate Change in the Great Lakes Region

    Science.gov (United States)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  11. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its

  12. Climate change impact chains in tropical coastal areas

    OpenAIRE

    Pramova, Emilia; Chazarin, Florie; Locatelli, Bruno; Hoppe, Michael

    2013-01-01

    Policy Brief. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Bonn, Germany; Tropical coasts are highly vulnerable to climatic pressures, the future impacts of which are projected to propagate through the natural and human components of coastal systems. One single event (e.g., intense storm) or gradual changes (e.g., upland deforestation or sea-level rise) can have multiple direct and indirect impacts in coral reefs, seagrass meadows, mangroves and human settlements and can com...

  13. Climate change impacts and risks for animal health in Asia.

    Science.gov (United States)

    Forman, S; Hungerford, N; Yamakawa, M; Yanase, T; Tsai, H-J; Joo, Y-S; Yang, D-K; Nha, J-J

    2008-08-01

    The threat of climate change and global warming is now recognised worldwide and some alarming manifestations of change have occurred. The Asian continent, because of its size and diversity, may be affected significantly by the consequences of climate change, and its new status as a 'hub' of livestock production gives it an important role in mitigating possible impacts of climate variability on animal health. Animal health may be affected by climate change in four ways: heat-related diseases and stress, extreme weather events, adaptation of animal production systems to new environments, and emergence or re-emergence of infectious diseases, especially vector-borne diseases critically dependent on environmental and climatic conditions. To face these new menaces, the need for strong and efficient Veterinary Services is irrefutable, combined with good coordination of public health services, as many emerging human diseases are zoonoses. Asian developing countries have acute weaknesses in their Veterinary Services, which jeopardises the global surveillance network essential for early detection of hazards. Indeed, international cooperation within and outside Asia is vital to mitigating the risks of climate change to animal health in Asia.

  14. Terrestrial Water Cycle and the Impact of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Fulu Tao; Erda Lin [Chinese Academy of Agricultural Sciences, Beijing (China). Agrometeorology Inst.; Yokozawa, Masayuki; Hayashi, Yousay [National Inst. for Agro-Environmental Sciences, Tsukuba (Japan)

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socio-economics.

  15. [Impact of climatic change on soybean production: a review].

    Science.gov (United States)

    Hao, Xing-yu; Han, Xue; Ju, Hui; Lin, Er-da

    2010-10-01

    Since the industrial revolution, the rapid increase of global atmospheric concentration of CO2 and other greenhouse gases has induced the global warming and the change of global precipitation pattern. The growth, development, yield, and quality of soybean are subject to all these changes of climatic conditions. Soybean is one of the major grain and oil crops in the world and in China, and any change in the soybean production under future climate scenario will affect the grain- and edible oil security nationally and internationally. This paper reviewed the effects of elevated atmospheric CO2, global warming, and water stress on soybean growth, and discussed the future research needs, which could provide scientific basis for realizing soybean production in the future and for implementing in advance proper policies in the context of climatic change impact on soybean production.

  16. Climate for Culture : assessing the impact of climate change on the future indoor climate in historic buildings using simulations

    OpenAIRE

    2015-01-01

    Background The present study reports results from the large-scale integrated EU project "Climate for Culture". The full name, or title, of the project is Climate for Culture: damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in times of climate change. This paper focusses on implementing high resolution regional climate models together with new building simulation tools in order to predict future outdoor and indoor climate cond...

  17. Impact of Climate Change on Drylands. Climate variability, livelihood strategies and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Verhagen, A. [Plant Research International, Wageningen (Netherlands); Dietz, A.J. [Amsterdam Research Institute for Global Issues and Development Studies AGIDS, University of Amsterdam UvA, Amsterdam (Netherlands)

    2001-09-01

    The findings of the Impact of Climate Change on Drylands (ICCD) project were discussed during a workshop held on 26 and 27 April 2001. The aims of the workshop were to disseminate the findings of the ICCD project, create awareness of the possible effects of climate change and contribute to the dialogue on climate change research in West Africa. Both the workshop and the project were financed by the National Research Programme on Global Air Pollution and Climate Change (NRP), Centre Technique de Cooperation de Agricole et Rurale (CTA), Wageningen University (INREF), and Amsterdam Research Institute for Global Issues and Development Studies (AGIDS)

  18. Assessing the impacts of climatic change on mountain water resources.

    Science.gov (United States)

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades.

  19. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  20. Climate change impacts and adaptation: a Canadian perspective. Transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    A brief summary of research over the past five years in the field of climate change, as it relates to key sectors in Canada, is presented in the report entitled: Climate change impacts and adaptation: a Canadian perspective. The emphasis of this chapter is on transportation, the role of adaptation in reducing vulnerabilities, and capitalizing on potential opportunities. Other sectors, such as fisheries, the coastal zone, tourism and human health might be affected by decisions made with regard to transportation. The areas that seem most vulnerable to climate change in transportation include northern ice roads, Great Lakes shipping, coastal infrastructure threatened by sea-level rise, and infrastructure located on permafrost. Most of the attention has been devoted to infrastructure and operations issues in northern Canada, despite most of the transportation activities taking place in southern Canada. Milder and or shorter winters might lead to savings, but additional knowledge is required before quantitative estimates can be made. The changed frequency of extreme climate events, and or changes in precipitation may influence other weather hazards or inefficiencies. If Canadians are prepared to be proactive, the report indicated that the effects of climate change on transportation may be largely manageable. 77 refs., 2 tabs., 3 figs.

  1. Impacts and adaptation for climate change in urban forests

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    Changes to urban trees as a result of climate change were reviewed in order to aid urban forest managers in the development of adaptive climate change strategies. Various climate change models have predicted that winter and spring temperatures will increase. Higher amounts of precipitation are also anticipated. Higher temperatures will results in evapotranspiration, which will cause soil moisture levels to decline. Climatologists have also suggested that very hot days, winter storms and high rainfall events will increase in frequency. In addition, higher levels of atmospheric carbon dioxide (CO{sub 2}) will affect photosynthesis, with associated impacts on urban tree growth. Higher temperatures and longer growing seasons will allow insect populations to build up to higher levels, and warmer and dryer summers are likely to bring longer fire seasons and more severe fires. Urban trees under stress from drought and higher temperatures will be increasingly vulnerable to existing urban stressors such as air pollution and soil compaction. However, the ecological services provided by trees will become more valuable under future climate change regimes, particularly for shading and space cooling, as well as soil aeration and stabilization and the uptake of storm water. It was suggested that future tree growth may be enhanced on sites with adequate water and nutrients, but will probably decline in areas that are already marginal. It was recommended that urban forest managers assess the present vulnerability of trees to climate-related events in order to prepare for future change. Managers should also assess their capacity to implement various strategies through municipal and provincial partnerships. It was observed that decisions taken now about forest management will play out over several decades. It was concluded that maintaining a flexible and resilient urban forest management system is the best defence, as specific climate change impacts cannot be predicted. 18 refs., 4

  2. Climate change impact studies - how reliable are they?

    Science.gov (United States)

    Blöschl, Günter; Montanari, Alberto

    2010-05-01

    When two experts estimate the 100-year flood in a small ungauged catchment, chances are that their estimates are very different. When two groups predict the effects of future hydrological changes on stream flow and recharge for the same catchment, the results will hardly be consistent. Yet, climate change impact analyses have become a standard method in our tool box for addressing issues that seem to be of overwhelming concern to the society today. In this paper we argue that impact studies often tend to be overly optimistic about the reliability of their predictions, and overly pessimistic about the effects on society. Just as a medical doctor who, when in doubt, would say that his patient is going to die - to be on the safe side. We will contrast this assessment with our views on the current state of change prediction and outline the opportunities in this area of hydrologic research. Improving the understanding of hydrological processes under the current climate, focusing on why impact studies predict changes rather than on the magnitudes of the change, improving hydrologically-driven uncertainty methods, being more transparent about what we can and cannot predict and being realistic about the role of adaptation measures in the context of water management, we believe, are the cornerstones of more successful climate impact studies. We are truly optimistic that hydrologists will make progress in this important and exciting area of hydrology. Blöschl and A. Montanari (2009) Climate change impacts - throwing the dice? Hydrol. Process. DOI: 10.1002/hyp.7574

  3. Public health impacts of city policies to reduce climate change

    DEFF Research Database (Denmark)

    Sabel, Clive E; Hiscock, Rosemary; Asikainen, Arja;

    2016-01-01

    Background: Climate change is a global threat to health and wellbeing. Here we provide findings of an international research project investigating the health and wellbeing impacts of policies to reduce greenhouse gas emissions in urban environments. Methods:  Five European and two Chinese city...... authorities and partner academic organisations formed the project consortium. The methodology involved modelling the impact of adopted urban climate-change mitigation transport, buildings and energy policy scenarios, usually for the year 2020 and comparing them with business as usual (BAU) scenarios (where...... policies had not been adopted). Carbon dioxide emissions, health impacting exposures (air pollution, noise and physical activity), health (cardiovascular, respiratory, cancer and leukaemia) and wellbeing (including noise related wellbeing, overall wellbeing, economic wellbeing and inequalities) were...

  4. Conservation strategies to mitigate impacts from climate change in Amazonia.

    Science.gov (United States)

    Killeen, Timothy J; Solórzano, Luis A

    2008-05-27

    Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.

  5. Globalisation and climate change in Asia: the urban health impact.

    Science.gov (United States)

    Munslow, Barry; O'Dempsey, Tim

    2010-01-01

    Asia's economic development successes will create new policy areas to address, as the advances made through globalisation create greater climate change challenges, particularly the impact on urban health. Poverty eradication and higher standards of living both increase demand on resources. Globalisation increases inequalities and those who are currently the losers will carry the greatest burden of the costs in the form of the negative effects of climate change and the humanitarian crises that will ensue. Of four major climate change challenges affecting the environment and health, two—urban air pollution and waste management—can be mitigated by policy change and technological innovation if sufficient resources are allocated. Because of the urban bias in the development process, these challenges will probably register on policy makers' agenda. The second two major challenges—floods and drought—are less amenable to policy and technological solutions: many humanitarian emergency challenges lie ahead. This article describes the widely varying impact of both globalisation and climate change across Asia. The greatest losers are those who flee one marginal location, the arid inland areas, only to settle in another marginal location in the flood prone coastal slums. Effective preparation is required, and an effective response when subsequent humanitarian crises occur.

  6. Climate Change

    Science.gov (United States)

    ... events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  7. Human Interventions versus Climate Change: Impacts on Water Management

    Science.gov (United States)

    Gautam, M. R.; Acharya, K.

    2009-12-01

    Water availability and occurrence of water induced disasters are impacted by both natural and human centric drivers. Climate change is considered to be one of the noted drivers in this regard. Human interventions through land use/land cover change, stream and floodplain regulations via dams, weirs, and embankments could be other equally important group of drivers. Unlike developed countries that have both resources and capabilities to adapt and mitigate the impact of such drivers, developing countries are increasingly at more risk. Identifying roles of such drivers are fundamental to the formulation of any adaptation and mitigation plans for their impacts for developing countries. In this study, we present a few examples from three regions of Nepal- a developing country in South Asia generally considered as a water rich country. Through results of modeling and statistical analyses, we show which driver is in control in different watersheds. Preliminary results show that climate change impact appears to be more prominent in large snow-fed river basins. In the smaller non-snow-fed watersheds originating from the middle hill, the impacts are not explicit despite perception of local people about changes in the water availability. In the southern belt bordering India, the impacts of river regulation on downstream areas are found to be the principal cause of flooding/inundation.

  8. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    Science.gov (United States)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  9. Impact of climate change on global malaria distribution.

    Science.gov (United States)

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  10. Burning Fossil Fuels: Impact of Climate Change on Health.

    Science.gov (United States)

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases.

  11. Climate Change Impacts in a Colombian Andean Tropical Basin

    Science.gov (United States)

    Ocampo, O. L.; Vélez, J. J.; Londoño, A.

    2012-12-01

    Climate change and climate variability have a large impact on water resources. Developing regions have less capacity to prepare for, respond to, and recover from climate-related hazards and effects, and then, populations may be disproportionately affected. In Colombia, the geographical location and the marked irregularity in the terrain, give as a result, a complex climate. These factors have contributed to the water supply of the territory. Unfortunately, the visualization of abundant and inexhaustible water resources created a great disregard for them. Besides, the water supply is not distributed uniformly across the country, and then there is water-deficit in some areas as Andean Region, where the largest population and the main development centers are located. In recent decades, water conflicts have emerged locally and regionally, which have generated a crisis in the allocation mechanisms and have improved the understanding of the water situation in Colombia. The Second National Communication to CCMNU alerts on possible future consequences of climate change and the need for regional studies for understanding climate change impacts on the fragile ecosystems of high mountains as paramos and fog forest, which are water production regulators. Colombian water resources are greatly affected by changes in rainfall patterns influenced by El Niño and La Niña. The recent disasters in the 2010-2011 rainy seasons have caught the attention of not only the authorities but from the scientific community to explore strategies to improve water management by tracking, anticipating and responding to climate variability and climate change. Whereas sound water management is built upon long-term, the country is undertaking a pilot exercise for the integrated management of water resources, five Basins are selected, among them, is the Chinchiná River Basin; this Andean tropical Basin is located on the western slopes at the central range in the Andes between 4°48 and 5°12 N

  12. Climate change impacts are sensitive to the concentration stabilization path

    Science.gov (United States)

    O'Neill, Brian C.; Oppenheimer, Michael

    2004-01-01

    Analysis of policies to achieve the long-term objective of the United Nations Framework Convention on Climate Change, stabilizing concentrations of greenhouse gases at levels that avoid “dangerous” climate changes, must discriminate among the infinite number of emission and concentration trajectories that yield the same final concentration. Considerable attention has been devoted to path-dependent mitigation costs, generally for CO2 alone, but not to the differential climate change impacts implied by alternative trajectories. Here, we derive pathways leading to stabilization of equivalent CO2 concentration (including radiative forcing effects of all significant trace gases and aerosols) with a range of transient behavior before stabilization, including temporary overshoot of the final value. We compare resulting climate changes to the sensitivity of representative geophysical and ecological systems. Based on the limited available information, some physical and ecological systems appear to be quite sensitive to the details of the approach to stabilization. The likelihood of occurrence of impacts that might be considered dangerous increases under trajectories that delay emissions reduction or overshoot the final concentration. PMID:15545606

  13. Biophysical climate impacts of recent changes in global forest cover.

    Science.gov (United States)

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-01

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change.

  14. Scenarios of long-term farm structural change for application in climate change impact assessment

    NARCIS (Netherlands)

    Mandryk, M.; Reidsma, P.; Ittersum, van M.K.

    2012-01-01

    Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, ada

  15. Predicting impacts of climate change on Fasciola hepatica risk.

    Directory of Open Access Journals (Sweden)

    Naomi J Fox

    Full Text Available Fasciola hepatica (liver fluke is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits.

  16. An Assessment of the Impact of Climate Change in India

    Science.gov (United States)

    Nair, K. S.

    2009-09-01

    National economy and life of millions of poor largely related to climate sensitive natural resource base and a densely populated 7500 Km long low-lying coastline make India highly vulnerable to the impacts of climate change. Significant changes in the amount, intensity and seasonality of rainfall and extremes in temperature observed in different states are serious challenges to the securities in food, water and energy. Vagaries in monsoons and associated setbacks in agriculture that represents 35% GDP affect economy and rural life, leading to social issues like migration and spread of terrorism. Impact on forest affects the biodiversity, economy and life of tribals. Water availability in certain states has been falling sharply due to the changes in the amount as well as the seasonality of rainfall. Increase in rainfall intensity erodes topsoil in the Western Ghats Mountain and reduces the streamflow and reservoir capacity. Retreat of the Himalayan glaciers may add to the severity of hydrological extremes in the entire north India in the coming years. Irregular onset of monsoon and change in seasonality have already affected the plant biodiversity in the southern state of Kerala. Some seasonal plants became extinct because of the prolonged dry season. Almost all parts of India are increasingly becoming prone to floods or droughts. Drylands are potentially threatened by desertification. Changes in the frequency, intensity and track of cyclones and rising sea level are of serious concern in the coastal zones. Decreasing trend in fish catch in the southern coasts is linked to the changes in coastal circulation, SST and upwelling patterns. Coral environments also suffer from this. Cold waves and heat waves are becoming severe, extending to new regions and resulting in casualties. New viruses and vectors spread fatal deceases, expanding geographical extent. Climate change is likely to retard the present economic growth, because of the massive investment required for

  17. Impact of Climate change on Milk production of Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    A. Ashutosh

    2010-02-01

    Full Text Available Global warming is likely to impact productivity of buffaloes due to their sensitivity to temperature changes. Air temperature, humidity, wind velocity and solar radiation are the main climate variables that affect buffalo production in tropical climate. In the present study sensitivity of lactating Murrah buffaloes to sudden temperature (Tmax, Tmin change and THI have been analyzed from milk production and climatic records (1994-2004 of Karnal. Algorithms were developed and validated on lactating buffaloes during 2005-2006 at the Institute. A sudden change (rise or fall in Maximum/Minimum temperature during summer and winter was observed to affect milk production. The decline in minimum temperature (>3°C during winter and increase (>4°C during summer than normal were observed to negatively impact milk production upto 30% on the next or subsequent days after extreme event. The return to normal milk production depended on severity and time period of thermal stress/ event occurrence. The R² was very low for cool period observed during Feb- April/Sept-Nov and actual effect on milk production was minimum. This indicated that low THI had a relatively small effect on milk production performance. The lactation period of animals are shortened during extreme summer when THI were more than 80 and reproductive functions were also adversely affected. Thermal stressed buffaloes did not exhibit estrus or exhibited estrus for short period. The potential direct effects of possible climate change and global warming on summer season milk production of Murrah buffaloes were evaluated using widely known global circulation model UKMO to represent possible scenarios of future climate. Both milk production and reproductive functions of Murrah buffaloes are likely to be affected due to warming effects.

  18. Climate change impacts on water barriers and possibilities

    DEFF Research Database (Denmark)

    Frederiksen, Peter

    The purpose is to elucidate climate change impacts on water related to precipitation, catchment hydrology, water management and land development in fruit export regions at the desert margin in Chile. The case is a region exposed to intense globalization and severe climate change. A timeline (past...... on precipitation. The change and variability is most serious in the northernmost valleys that receive less than 200 mm/yr. This is strengthened by the northwards decrease in the importance of mountains. Precipitation in the mountains, glaciers and snowfields are the main source of irrigation water...... – not the lowland precipitation. As a result annual discharge is up to 50 times lower compared to the southernmost valleys. This did not impede the expansion of fruit plantations explained by the expansion of irrigation canals, and the adoption of drip irrigation. More serious are land tenure barriers, the lack...

  19. 76 FR 17962 - Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of...

    Science.gov (United States)

    2011-03-31

    ... Geological Survey Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater... titled ``Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States''. The report reviews key issues related to freshwater resource data and...

  20. Chapter 6. Impacts of Climate Change on Oregon's Coasts and Estuaries in "Oregon Climate Change Assessment Report"

    Science.gov (United States)

    In 2007 the Oregon legislature created a new Oregon Climate Change Research Institute (OCCRI), which is based at Oregon State University (OSU). As part of its charter, OCCRI is mandated to produce a biennial report for the state legislature synthesizing climate change impacts a...

  1. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Patrick [Arizona State University; Abdelaziz, Omar [ORNL; Otanicar, Todd [University of Tulsa; Phelan, Bernadette [Phelan Research Solutions, Inc.; Prasher, Ravi [Arizona State University; Taylor, Robert [University of New South Wales, Sydney, Australia; Tyagi, Himanshu [Indian Institute of Technology Ropar, India

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  2. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    Science.gov (United States)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  3. Regional Risk Assessment for climate change impacts on coastal aquifers.

    Science.gov (United States)

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems.

  4. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  5. Reservoir performance under uncertainty in hydrologic impacts of climate change

    Science.gov (United States)

    Raje, Deepashree; Mujumdar, P. P.

    2010-03-01

    Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible future scenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India, which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to

  6. Climate Change, Human Impacts, and the Resilience of Coral Reefs

    Science.gov (United States)

    Hughes, T. P.; Baird, A. H.; Bellwood, D. R.; Card, M.; Connolly, S. R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J. B. C.; Kleypas, J.; Lough, J. M.; Marshall, P.; Nyström, M.; Palumbi, S. R.; Pandolfi, J. M.; Rosen, B.; Roughgarden, J.

    2003-08-01

    The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.

  7. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    Science.gov (United States)

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  8. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    Science.gov (United States)

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level.

  9. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  10. Hurricanes and Climate Change: Global Systems and Local Impacts

    Science.gov (United States)

    Santer, J.

    2011-12-01

    With funding from NOAA, the Miami Science Museum has been working with exhibit software developer Ideum to create an interactive exhibit exploring the global dimensions and local impacts of climate change. A particular focus is on climate-related impacts on coastal communities, including the potential effects on South Florida of ocean acidification, rising sea level, and the possibility of more intense hurricanes. The exhibit is using a 4-foot spherical display system in conjunction with a series of touchscreen kiosks and accompanying flat screens to create a user-controlled, multi-user interface that lets visitors control the sphere and choose from a range of global and local content they wish to explore. The exhibit has been designed to promote engagement of diverse, multigenerational audiences through development of a fully bilingual user interface that promotes social interaction and conversation among visitors as they trade off control of global content on the sphere and related local content on the flat screens. The open-source learning module will be adaptable by other museums, to explore climate impacts specific to their region.

  11. Climate Change and Fruit-Picking Tourism: Impact and Adaptation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2016-01-01

    Full Text Available The purpose of this work is to present phenology as a valid indicator and methodology for monitoring and assessing the impact of climate change on plant-based tourist activities. Fruit-picking has become a popular rural tourism activity worldwide. However, fruit maturity dates (FMD have been affected by climate change (CC, which has in turn profoundly affected fruit-picking tourism activities (FPTA. In this paper, phenological data on the FMD for 45 types of plants in 1980–2012, dates for more than 200 fruit-picking festivals, and data on monthly average air temperature in 1980–2013 were used to assess the impact of CC on FPTA by wavelet and correlation analyses. The findings indicated that the study area had been significantly affected by CC. Prevailing temperatures at one or three months prior have a decisive influence on FMD. Among the 11 plants directly related to FPTA, the FMD of four were significantly advanced, while 6-7 were significantly delayed owning to increased temperature. Of the 11 FPTA, only two had realized the impact of CC and had adjusted festival opening dates based on dynamic changes. However, a considerable number of festival activities remained fixed or scheduled on the weekends.

  12. Health Impacts of Air Pollution Under a Changing Climate

    Science.gov (United States)

    Kinney, P. L.; Knowlton, K.; Rosenthal, J.; Hogrefe, C.; Rosenzweig, C.; Solecki, W.

    2003-12-01

    Outdoor air pollution remains a serious public health problem in cities throughout the world. In the US, despite considerable progress in reducing emissions over the past 30 years, as many as 50,000 premature deaths each year have been attributed to airborne particulate matter alone. Tropospheric ozone has been associated with increased daily mortality and hospitalization rates, and with a variety of related respiratory problems. Weather plays an important role in the transport and transformation of air pollution. In particular, a warming climate is likely to promote the atmospheric reactions that are responsible for ozone and secondary aerosol production, as well as increasing emissions of many of their volatile precursors. Increasingly, efforts to address urban air pollution problems throughout the world will be complicated by trends and variability in climate. The New York Climate and Health Project (NYCHP) is developing and applying tools for integrated assessment of health impacts from air pollution and heat associated with climate and land-use changes in the New York City metropolitan region. Global climate change is modeled over the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) A2 greenhouse gas emissions scenario using the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model (GCM). Meteorological fields are downscaled to a 36 km grid over the eastern US using the Penn State/NCAR MM5 mesoscale meteorological model. MM5 results are then used as input to the Community Multiscale Air Quality (CMAQ) model for simulating air quality, with emissions based on the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). To date, simulations have been performed for five summer seasons each during the 1990s and the 2050s. An evaluation of the present-day climate and air quality predictions indicates that the modeling system largely captures the observed climate-ozone system. Analysis of future-year predictions

  13. Potential impacts of climate change on production of biofuels in agriculture the Nordic and Baltic Region

    DEFF Research Database (Denmark)

    Porter, John R.

    2006-01-01

    Report prepared for: "Nordic Project on Climate and Energy; Impacts of Climate change on Renewable Energy Sources and their role in the Nordic Energy System"......Report prepared for: "Nordic Project on Climate and Energy; Impacts of Climate change on Renewable Energy Sources and their role in the Nordic Energy System"...

  14. Impact of climate change on carbon cycle in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kankaala, P.; Ojala, A.; Tulonen, T.; Haapamaeki, J.; Arvola, L. [Helsinki Univ., Lammi (Finland). Lammi Biological Station

    1996-12-31

    The impacts of the expected climate change on Finnish lake ecosystems were studied with the biota of the mesohumic Lake Paeaejaervi, southern Finland. Experimental conditions, from small-scale experiments on single species level to a large-scale ecosystem manipulation, were established to simulate directly the future climate and/or loading of nutrients and dissolved organic matter (DOM) from the drainage area. The experimental studies were accomplished by modelling the carbon flow in the pelagic food web as well as the growth of littoral macrophytes. The main hypothese tested were as follows: As a consequence of the climate change (rising temperature and increasing precipitation) the loading of nutrients and dissolved organic matter (DOM) from the drainage area to the lake will increase. In the pelagic zone this will be first reflected i higher productivity of primary producers and bacteria, but will later affect the entire food chain. Increase in atmospheric CO{sub 2} concentration and ambient temperature as well as longer growing season will enhance the overall productivity of littoral macrophytes. The higher productivity of the littoral zone will be reflected in the pelagic zone an thus may change the whole ecosystem of the lake

  15. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.;

    2016-01-01

    Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability...... uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale.Weconclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment...

  16. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    OpenAIRE

    S. P. Bindra; Hamid, A.; S. Abulifa; H.S. Al Reiani; Hammuda Khalifa Abdalla

    2014-01-01

    This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achi...

  17. The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy

    Science.gov (United States)

    DeWaters, J.; Powers, S. E.; Dhaniyala, S.

    2014-12-01

    Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (pteacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.

  18. Projected impact of climate change on waves at Mumbai High

    Digital Repository Service at National Institute of Oceanography (India)

    Pentapatim, S.; Deo, M.C.; Kerkar, J.; Vethamony, P.

    Structures built in the sea are traditionally designed according to historical climate observations or hindcasts. In geographical locations typical of India, such designs do not take the effect of future climate change into account. For structural...

  19. Potential Impact of Climate Change on Rained Agriculture of Ningxia

    Directory of Open Access Journals (Sweden)

    Zhenning Ma Hongxiang Chen

    2013-07-01

    Full Text Available Rain fed agriculture in Ningxia is one of the most vulnerable sector to climate change, as the available water and land resources are limited and most of the province’s land is arid. In this study, a crop simulation model (DSSAT was used to assess the impact of climate change scenario on rainfed maize and potato in the southern mountain areas in Ningxia. Analysis of observed crop data showed differences between cultivated and harvested areas for both crops in the study area with variations among years. Results from DSSAT model for years showed that it was able to capture the trend of yield over the years realistically well. The model predicted an average yield of maize of 5450 kg/ha, which was close to the average (5446kg/ha yield reported by the Department of statistics of Ningxia (DOSN and an average predicted yield of potato was 2350 kg/ha while the DOSN average was 2358 kg/ha, with higher RMSE for maize (1046kg/ha than for potato (358kg/ha. Predictions of future yield for both crops showed that the responses of maize and potato were different under different climate changes scenarios. The reduction of rainfall by 10-20% reduced the expected yield by 7-12% for maize and 9-18% for potato, respectively. The increase in rainfall by 10-20% increased the expected yield by5-9% for maize and 10-20% for potato, respectively. The increase of air temperature by 1,2,3 and 4°C resulted in deviation from expected yield by -3.3, -0.27,+6.1 and +12.5 % for maize and -18.4, -15.7, -8 and +0.4 % for potato, respectively. These results indicated that potato would be more negatively affected by the climate changes scenarios and therefore adaptation plans should prioritize the areas cultivated with this crop.

  20. Health Impacts in a Changing Climate - An Overview

    Science.gov (United States)

    Louis, V. R.; Phalkey, R. K.

    2016-05-01

    In the past decades the topic of climate change has been subjected to intense scientific scrutiny, and since the mid-1990's it has become an increasingly political issue. Because of increased temperatures and more frequent and intense extreme weather events, the number of direct injuries and deaths will increase, along with infectious diseases, whether food, water or vector-borne; respiratory and cardiovascular diseases are expected to rise due to worsened air pollution and extreme heat. In a context of on-going environmental degradation, local food-producing systems, both marine and terrestrial, will be affected and the risk of malnutrition, especially in children, will increase. These impacts on health and livelihood are expected to be significant factors in the spread of regional social crises, potentially leading to forced migration, conflicts and increased poverty. The link between health and climate change operates through a variety of pathways that are now well established. In addition to taking climate mitigation measures, it will also be necessary to take adaptation measures, such as strengthening health systems, improving preparedness and developing early warning systems. There is now a broad scientific consensus on the issue and the science is sufficiently robust to enable a coordinated response to meet this global challenge.

  1. Risk-based climate-change impact assessment for the water industry.

    Science.gov (United States)

    Thorne, O M; Fenner, R A

    2009-01-01

    In response to a rapidly changing and highly variable climate, engineers are being asked to perform climate-change impact assessments on existing water industry systems. There is currently no single method of best practice for engineers to interpret output from global climate models (GCMs) and calculate probabilistic distributions of future climate changes as required for risk-based impact assessments. The simplified climate change impact assessment tool (SCIAT) has been developed to address the specific needs of the water industry and provides a tool to translate climate change projections into 'real world' impacts or for detailed statistical analysis. Through the use of SCIAT, water system operators are provided with knowledge of potential impacts and an associated probability of occurrence, enabling them to make informed, risk-based adaptation and planning decisions. This paper demonstrates the application of SCIAT to the consideration of the impacts of climate change on reservoir water quality under future climate scenarios.

  2. Identifying alternate pathways for climate change to impact inland recreational fishers

    Science.gov (United States)

    Hunt, Len M.; Fenichel, Eli P.; Fulton, David C.; Mendelsohn, Robert; Smith, Jordan W.; Tunney, Tyler D.; Lynch, Abigail J.; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Fisheries and human dimensions literature suggests that climate change influences inland recreational fishers in North America through three major pathways. The most widely recognized pathway suggests that climate change impacts habitat and fish populations (e.g., water temperature impacting fish survival) and cascades to impact fishers. Climate change also impacts recreational fishers by influencing environmental conditions that directly affect fishers (e.g., increased temperatures in northern climates resulting in extended open water fishing seasons and increased fishing effort). The final pathway occurs from climate change mitigation and adaptation efforts (e.g., refined energy policies result in higher fuel costs, making distant trips more expensive). To address limitations of past research (e.g., assessing climate change impacts for only one pathway at a time and not accounting for climate variability, extreme weather events, or heterogeneity among fishers), we encourage researchers to refocus their efforts to understand and document climate change impacts to inland fishers.

  3. Climate change impacts and uncertainties in flood risk management: Examples from the North Sea Region

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, D.; Graham, L.P.; Besten, J. Den; Andreasson, J.; Bergstroem, S.; Engen-Skaugen, T.; Foerland, E.; Groen, R.; Jespersen, M.; Jong, K. de; Olsson, J.

    2012-07-01

    This report presents methods used for estimating the hydrological impacts of climate change and their uncertainties, the expected impacts on extreme flows in Norway, and in Sweden with particular reference to Lake Vaenern, and examples of climate change impacts on river discharge and on agriculture in the Netherlands. Work considering changes in extreme precipitation is also reported, as are methods and strategies for communicating climate change impacts in flood management practice. (eb)

  4. Relationship Between Climate Change Impact, Migration and Socioeconomic Development

    Science.gov (United States)

    Sann Oo, Kyaw

    2016-06-01

    Geospatial data are available in raster and vector formats and some of them are available in open data form. The technique and tools to handle those data are also available in open source. Though it is free of charge, the knowledge to utilize those data is limited to non-educated in the specific field. The data and technology should be promoted to those levels to utilize in required fields with priceless in developing countries. Before utilize open data, which are required to verify with local knowledge to become usable information for the local people as priceless data resources. Developing country, which economic is based in agriculture, required more information about precise weather data and weather variation by the climate change impact for their socioeconomic development. This study found that rural to urban migration occurs in the developing countries such agriculture based country likes Myanmar when the agriculture economic are affected by unpredictable impact by the climate change. The knowledge sharing using open data resources to non-educated local people is one of the curable solutions for the agriculture economy development in the country. Moreover, the study will find ways to reduce the rural to urban migration.

  5. Climate change and the impact of extreme temperatures on aviation

    Science.gov (United States)

    Coffel, E.; Horton, R.

    2014-12-01

    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  6. Inventory of Research on the Impacts of Climate Change

    OpenAIRE

    2004-01-01

    Climate change is one of the greatest threats for the global environment today. Global mean temperature has risen by about 0.6 degrees C during the 20th century, greater than during any other century in the last 1000 years. Subsequently, climate change is likely to have detrimental effects on all global natural and anthropogenic systems. Climate change will have consequences for the structure and function of ecosystems and all the major global biomes. Also agricultural production and producti...

  7. Chapter 1. Impacts of the oceans on climate change.

    OpenAIRE

    Reid, PC; Fischer, AC; Lewis-Brown, E; Meredith, MP; Sparrow, M; Andersson, AJ; Antia, A.; Bates, NR; Bathmann, U.; Beaugrand, G.; Brix, H.; Dye, S.; Edwards, M.; Furevik, T.; R. Gangstø

    2009-01-01

    The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the wor...

  8. Agriculture in a changing climate: impacts and adaptation

    NARCIS (Netherlands)

    Reilly, J.; Baethgen, W.; Chege, F.E.; Geijn, van de S.C.; Lin Erda,; Iglesias, A.; Kenny, G.; Patterson, D.; Rogasik, J.; Rötter, R.; Rosenzweig, C.; Sombroek, W.; Westbrook, J.; Bachelet, D.; Brklacich, M.; Dämmgen, U.; Howden, M.

    1996-01-01

    This chapter deals with sensitivities, adaptive capacity and vulnerability of agriculture to climate change. It covers: the direct and indirect effects of changes in climate and atmospheric constituents on crop yield, soils, agricultural pests, and livestock; estimates of yield and production change

  9. Uncertainties in Agricultural Impact Assessments of Climate Change

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel

    Future food security will be challenged by the likely increase in demand, changes in consumption patterns and the effects of climate change. Framing food availability requires adequate agricultural production planning. Decision-making can benefit from improved understanding of the uncertainties...... for adaptation to climate change (and a significant aspect for the design of the Representative Agricultural Pathways)....

  10. Impact of climate change on arid lands agriculture

    Directory of Open Access Journals (Sweden)

    El-Beltagy Adel

    2012-04-01

    Full Text Available Abstract The planet earth, on which we live in communities, is being increasingly 'ruptured' because of human activities; its carrying capacity is under great stress because of demographic pressures. The pressure is especially affecting the people living in the dry areas because of the marginal and fragile nature of the resources they have access to. There are over 2,000 million hectares of land that have been degraded, with a loss of agrobiodiversity, increased water scarcity and increased natural resource destruction. Superimposed on this is the fact that the neglectful and exploitive use of natural resources has set the train of global climate change in motion. It is anticipated that the impact of climate change will cut across all boundaries. Crops, cropping systems, rotations and biota will undergo transformation. To maintain the balance in the system, there is a need for new knowledge, alternative policies and institutional changes. The marginalized people in dry areas are likely to be most seriously hit by the shifts in moisture and temperature regimes as a result of the global climate change. To help them cope with the challenges, there is a need for a new paradigm in agricultural research and technology transfer that makes full use of modern science and technology in conjunction with traditional knowledge. This necessitates more investment by international agencies and national governments for supporting the relevant integrated research and sustainable development efforts, with full participation of the target communities. Only such an approach can enable the vulnerable communities of the dryland areas to use the natural resources in a sustainable manner and thus help protect the environment for future generations. The clock is ticking and the future of the world lies in the collective responsibility and wisdom of all nations on this planet. This should be reflected in the endorsement of a solid future plan.

  11. Minimizing Climate Change Impacts through the Application of Green Building Principles

    OpenAIRE

    Baharuddin

    2014-01-01

    The presentation explains the climate change and the role of green building in minimising the impact of climate change. The presentation covers the emerging issues, sustainable building, green building certification which covers: sustainable site, water efficiency, energy and

  12. Climate change impacts on extreme events in the United States: an uncertainty analysis

    Science.gov (United States)

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  13. Climate change impacts on flood seasonality in Norway

    Science.gov (United States)

    Vormoor, Klaus; Heistermann, Maik; Lawrence, Deborah; Bronstert, Axel

    2013-04-01

    The hydrological impacts of climate change on floods have been studied by ensemble based modeling in 115 catchments in Norway (Lawrence & Hisdal 2011). Despite of a considerable variation in the projections, consistent regional patterns of hydrological change are evident. Spatial patterns of directional change in flood magnitude allow for drawing conclusions about dominating flood-generating processes and for differentiating regions with similar flood regimes. Since the magnitude of floods results from the seasonality of precipitation, snowmelt/snow storage, and the preconditions in a catchment, seasonal flood frequency analysis can help to understand the influence of flood-generating processes under a changing climate. Currently, regional patterns of flood regimes in Norway separate regions which are dominated by high flows during the spring and early summer snowmelt season (inland and northernmost regions) from regions where autumn and winter pluvial floods are dominant (western Norway along the coast). However, projected increase in winter temperature, reduced snow storage and earlier snowmelt will probably lead to a reduction in flood probability in inland and northern Norway. In western Norway and along the coast, the probability of large floods is likely to increase due to projected increases in seasonal and extreme rainfall. In addition, there are some areas which probably will be dominated by a mixed regime in the future where both snowmelt- and rainfall-dominated events will occur. Based on an ensemble model approach in a subset of representative catchments, we study the role of seasonality contributing to flood hazards in Norway. Seasonal flood frequency analyses are used to explore changes in flood seasonality. Peak flow series are analyzed using a Peak Over Threshold (POT) approach, and changes in the return periods are estimated based on the Generalized Pareto Distribution (GPD). A model re-calibration is performed based on the series distance approach

  14. Climate Change Impacts on Rainfall Extremes and Urban Drainage: a State-of-the-Art Review

    DEFF Research Database (Denmark)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten;

    2013-01-01

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend or impact results. The review (Willems et al., 2012) considers the following aspects: analysis of long-term historical trends...... due to anthropogenic climate change, analysis of long-term future trends due to anthropogenic climate change, and implications for urban drainage infrastructure design and management. A summary is provided in this paper....

  15. Contribution of human and climate change impacts to changes in streamflow of Canada.

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  16. Research Advances of Impacts of Climate Changes on Crop Climatic Adaptability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Agriculture received most direct influences from climate changes. Because of climate changes, agricultural climate resources changed and thus influenced climate adaptability of agricultural products. The growth and output of crops were finally affected. The calculation method and application of agricultural products in recent years were summarized. Several questions about the response of agricultural crops to climate elements were proposed for attention.

  17. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    Science.gov (United States)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  18. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  19. Impact of Climatic Change on Agricultural Production and Response Strategies in China%Impact of Climatic Change on Agricultural Production and Response Strategies in China

    Institute of Scientific and Technical Information of China (English)

    Liu Yansui; Liu Yu; Guo Liying

    2011-01-01

    A number of studies indicate that global climate warming has been increasing, especially in recent decades. Climate warming greatly affects global agro-production and food security-- becoming a hotspot of global environmental change. This paper proposes a structural and orientational framework for scientifically addressing climatic change impact on agroroduction. Through literature reviews and comparative studies, the paper systematically summarizes influencing mechanisms and impact of climate warming on such agro-production factors as light, temperature, soil quality and water environment. The impact of climate warm- ing on cultivation regions, cropping systems, crop pests, agro- production capacity, agro-economy and farm management is analyzed. Then, suitable climate-adapting agro-development strategies are put forward for different regions in China. The strategies are carefully selected from a repository of international tested climatic change countermeasures in agriculture at national or district level.

  20. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  1. Impacts of Climate Change on Locust Outbreaks in China's History

    Institute of Scientific and Technical Information of China (English)

    YU Ge

    2009-01-01

    @@ Global warming is causing the climate to change, lakes to dry up and less rain to fall. In population ecology, researchers have found that climate change plays an important role in controlling the size of species populations. To proof this model, long-term observational data are crucial, making researchers to turn to historical records of locust outbreaks.[1

  2. Projected impact of climate change on hydropower potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Huijuan, Cui

    2016-08-22

    In China, hydroelectric power is abundant, and half of hydropower potential is currently unexploited. Hydropower has been an important electrical energy during the past decades, and is still growing rapidly in China. However, hydropower is highly dependent on streamflow and is sensitive to climate change. It is of great interest to examine the impact of climate change on hydropower potential against the background within the context of the undergoing fast development of hydropower in China. Future changes in gross hydropower potential (GHP) of China are projected using simulations from eight global hydrological models (GHMs) forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Developed hydropower potential (DHP), based on existing reservoirs and installed hydropower capacity (IHC) in 2004, is also estimated by incorporating a hydropower module. Results show that GHP will generally decrease in southern China and increase in northern China; annual GHP would change by -1.7% to 2% in the near future (2020-2050), and increase by 3-6% of present GHP at the late 21st century (2070-2099). Annual DHP will decrease by about 2.2-5.4% (0.7-1.7% of total IHC) and 1.3%-4% (0.4-1.3% of total IHC) in 2020-2050 and 2070-2099, respectively, which are mostly contributed by the large DHP decrease in South Central China (SCC) and Eastern China (EC), where most reservoirs and large IHC are currently located. The hotspot region of hydropower in Southwest China, where many hydropower stations are under planning or construction, show increases of near 2-6% and 4-11% in annual GHP for the 2020-2050 and 2070-2099, respectively. In another hotspot region, Sichuan and Hubei provinces, DHP will decrease by 2.6-5.7% (0.46-0.97% of total IHC) and 0.8-5% (0.13-0.91% of total IHC) in the 2020-2050 and 2070-2099, respectively. This is mainly due to the significant reduction in discharge; meanwhile, increasing floods

  3. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening

    Science.gov (United States)

    Parkes, B.; Challinor, A.; Nicklin, K.

    2015-08-01

    The impact of geoengineering on crops has to date been studied by examining mean yields. We present the first work focusing on the rate of crop failures under a geoengineered climate. We investigate the impact of a future climate and a potential geoengineering scheme on the number of crop failures in two regions, Northeastern China and West Africa. Climate change associated with a doubling of atmospheric carbon dioxide increases the number of crop failures in Northeastern China while reducing the number of crop failures in West Africa. In both regions marine cloud brightening is likely to reduce the number crop failures, although it is more effective at reducing mild crop failure than severe crop failure. We find that water stress, rather than heat stress, is the main cause of crop failure in current, future and geoengineered climates. This demonstrates the importance of irrigation and breeding for tolerance to water stress as adaptation methods in all futures. Analysis of global rainfall under marine cloud brightening has the potential to significantly reduce the impact of climate change on global wheat and groundnut production.

  4. Impacts of climate change on infrastructure in permafrost regions

    Science.gov (United States)

    Beloloutskaia, M.; Anisimov, O.

    2003-04-01

    There is a growing evidence of enhanced warming over the permafrost regions, and significant impacts on natural and human systems are expected. Changes in the temperature, distribution, and depth of seasonal thawing of permafrost will have direct and immediate implications for the infrastructure built upon it. The mechanical strength of permafrost decreases with warming, resulting in damage to and possible failure of buildings, pipelines, and transportation facilities. Extensive infrastructure was developed in the Arctic largely in association with the extraction and transportation industries. Several large cities in Russia with few hundred thousand population are of particular concern since many buildings there have already been affected by the changes in permafrost properties. Detrimental changes in permafrost conditions are often not abrupt. Instead, they evolve gradually and can be predicted and monitored, allowing avoidance of catastrophic events and mitigation of negative consequences. Climate-induced threats to infrastructure in permafrost regions may be evaluated using a numerical "settlement" index, Iset, which allows to classify modern permafrost with respect to its potential for thermokarst development: Iset = dZ * W, where dZ is the relative change in the depth of seasonal thawing predicted by permafrost model for the conditions of the future climate and W is the volumetric proportion of near surface soil occupied by ground ice. Permafrost model of intermediate complexity (Koudriavtcev's model) was used with selected GCM-based scenarios of climate change to construct predictive maps of "settlement" index for the mid-21st century. Circumpolar permafrost area was partitioned into zones of high, moderate, and low hazard potential. Despite discrepancies in details, all scenarios yield a zone in the high-risk category distributed discontinuously around the margins of the Arctic Ocean, indicating high potential for coastal erosion. Several population centers

  5. Prediction technologies for assessment of climate change impacts

    Science.gov (United States)

    Temperatures, precipitation, and weather patterns are changing, in response to increasing carbon dioxide in the atmosphere. With these relatively rapid changes, existing soil erosion prediction technologies that rely upon climate stationarity are potentially becoming less reliable. This is especiall...

  6. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  7. The local impacts of climate change in the Ferlo, Western Sahel

    NARCIS (Netherlands)

    Hein, L.G.; Metzger, M.J.; Leemans, R.

    2009-01-01

    Recent increases in the accuracy of climate models have enhanced the possibilities for analyzing the impacts of climate change on society. This paper explores how the local, economic impacts of climate change can be modeled for a specific eco-region, the Western Sahel. The people in the Sahel are hi

  8. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    Science.gov (United States)

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  9. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    Science.gov (United States)

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  10. Climate Change Impact Uncertainties for Maize in Panama: Farm Information, Climate Projections, and Yield Sensitivities

    Science.gov (United States)

    Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia

    2011-01-01

    We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the

  11. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    Science.gov (United States)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like

  12. Climate change and its impacts on river discharge in two climate regions in China

    Science.gov (United States)

    Xu, H.; Luo, Y.

    2015-11-01

    Understanding the heterogeneity of climate change and its impacts on annual and seasonal discharge and the difference between median flow and extreme flow in different climate regions is of utmost importance to successful water management. To quantify the spatial and temporal heterogeneity of climate change impacts on hydrological processes, this study simulated river discharge in the River Huangfuchuan in semi-arid northern China and in the River Xiangxi in humid southern China. The study assessed the uncertainty in projected discharge for three time periods (2020s, 2050s and 2080s) using seven equally weighted GCMs (global climate models) for the SRES (Special Reports on Emissions Scenarios) A1B scenario. Climate projections that were applied to semi-distributed hydrological models (Soil Water Assessment Tools, SWAT) in both catchments showed trends toward warmer and wetter conditions, particularly for the River Huangfuchuan. Results based on seven GCMs' projections indicated changes from -1.1 to 8.6 °C and 0.3 to 7.0 °C in seasonal temperature and changes from -29 to 139 % and -32 to 85 % in seasonal precipitation in the rivers Huangfuchuan and Xiangxi, respectively. The largest increases in temperature and precipitation in both catchments were projected in the spring and winter seasons. The main projected hydrologic impact was a more pronounced increase in annual discharge in the River Huangfuchuan than in the River Xiangxi. Most of the GCMs projected increased discharge in all seasons, especially in spring, although the magnitude of these increases varied between GCMs. The peak flows were projected to appear earlier than usual in the River Huangfuchuan and later than usual in the River Xiangxi, while the GCMs were fairly consistent in projecting increased extreme flows in both catchments with varying magnitude compared to median flows. For the River Huangfuchuan in the 2080s, median flow changed from -2 to 304 %, compared to a -1 to 145 % change in high flow

  13. Integrating Water into an Economic Assessment of Climate Change Impacts on Egypt

    OpenAIRE

    Yates, D

    1996-01-01

    Recent research indicates that larger countries, with multiple agro-climatic zones, have the capacity to adjust to marginal climate changes which could occur over the next century. However, in countries with fewer adaptation options and with increasing dependency on imports to meet growing domestic demands, climate change might have significant impacts. To date, little has been done on assessing integrated impacts of climate change in developing countries. This motivates the need for imp...

  14. Impacts of Climate Change on Forest Ecosystems in Northeast China

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Ying; ZHAO Chun-Yu; JIA Qing-Yu

    2013-01-01

    This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing’anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China’s territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing’anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a

  15. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Science.gov (United States)

    Lauri, H.; de Moel, H.; Ward, P. J.; Räsänen, T. A.; Keskinen, M.; Kummu, M.

    2012-12-01

    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20-30 yr. We downscaled the output of five general circulation models (GCMs) that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia) between the baseline (1982-1992) and projected time period (2032-2042) ranges from -11% to +15% for the wet season and -10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25-160% higher dry season flows and 5-24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20-30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the uncertainty of the

  16. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  17. Using climate analogues for assessing climate change economic impacts in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Hallegatte, S. [Centre National de Recherche Meteorologique, Toulouse (France); Hourcade, J.C. [Centre International de Recherche sur l' Environnement et le Developpement, 45bis Av de la Belle Gabrielle, F-94736 Nogent-sur-Marne (France); Ambrosi, P. [Laboratoire des Sciences du Climat et de l' Environnement, Paris (France)

    2007-05-15

    This paper aims at proposing a way to get round the intrinsic deadlocks of the economic assessment of climate change impacts (absence of consistent baseline scenario and of credible description of adaptation behaviours under uncertainty). First, we use climate scenarios from two models of the PRUDENCE project (HadRM3H and ARPEGE) to search for cities whose present climates can be considered as reasonable analogues of the future climates of 17 European cities. These analogues meet rather strict criteria in terms of monthly mean temperature, total annual precipitations and monthly mean precipitations. Second, we use these analogues as a heuristic tool to understand the main features of the adaptation required by climate change. The availability of two analogues for each city provides a useful estimate of the impact of uncertainty on the required adaptation efforts. Third, we carry out a cost assessment for various adaptation strategies, taking into account the cost of possible ill-adaptations due to wrong anticipations in a context of large uncertainty (from sunk-costs to lock-in in suboptimal adaptation choices). We demonstrate the gap between an enumerative approach under perfect expectation and a calculation accounting for uncertainty and spillover effects on economic growth.

  18. Climate , communication and participation impacting commitment to change

    NARCIS (Netherlands)

    Rogiest, S.E.A.M.; Segers, J.; van Witteloostuijn, Arjen

    2015-01-01

    Purpose Through the combination of change process, context and content this paper aims to provide a deeper understanding of failure or success of organizational change. This study considers the effect of organizational climate on affective commitment to change simultaneously with quality change comm

  19. Climate and change: simulating flooding impacts on urban transport network

    Science.gov (United States)

    Pregnolato, Maria; Ford, Alistair; Dawson, Richard

    2015-04-01

    National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et

  20. Knowing the Damages is not Enough: The General Equilibrium Impacts of Climate Change

    OpenAIRE

    Kalkuhl, Matthias; Edenhofer, Ottmar

    2016-01-01

    We show that economies may exhibit a strong endogenous macroeconomic adaptation response to climate change. If climate change induces a structural change to the more productive sector, economies can benefit from climate change though productivities in both sectors are reduced. If climate change causes structural shifts towards the less productive sector, damages are exacerbated by the intersectoral reallocation of labor and intertemporal reallocation of capital. We further assess impacts on l...

  1. Significance of hydrological model choice and land use changes when doing climate change impact assessment

    Science.gov (United States)

    Bjørnholt Karlsson, Ida; Obel Sonnenborg, Torben; Refsgaard, Jens Christian; Høgh Jensen, Karsten

    2014-05-01

    Uncertainty in impact studies arises both from Global Climate Models (GCM), emission projections, statistical downscaling, Regional Climate Models (RCM), hydrological models and calibration techniques (Refsgaard et al. 2013). Some of these uncertainties have been evaluated several times in the literature; however few studies have investigated the effect of hydrological model choice on the assessment results (Boorman & Sefton 1997; Jiang et al. 2007; Bastola et al. 2011). These studies have found that model choice results in large differences, up to 70%, in the predicted discharge changes depending on the climate input. The objective of the study is to investigate the impact of climate change on hydrology of the Odense catchment, Denmark both in response to (a) different climate projections (GCM-RCM combinations); (b) different hydrological models and (c) different land use scenarios. This includes: 1. Separation of the climate model signal; the hydrological model signal and the land use signal 2. How do the different hydrological components react under different climate and land use conditions for the different models 3. What land use scenario seems to provide the best adaptation for the challenges of the different future climate change scenarios from a hydrological perspective? Four climate models from the ENSEMBLES project (Hewitt & Griggs 2004): ECHAM5 - HIRHAM5, ECHAM5 - RCA3, ARPEGE - RM5.1 and HadCM3 - HadRM3 are used, assessing the climate change impact in three periods: 1991-2010 (present), 2041-2060 (near future) and 2081-2100 (far future). The four climate models are used in combination with three hydrological models with different conceptual layout: NAM, SWAT and MIKE SHE. Bastola, S., C. Murphy and J. Sweeney (2011). "The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments." Advances in Water Resources 34: 562-576. Boorman, D. B. and C. E. M. Sefton (1997). "Recognising the uncertainty in the

  2. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.

    2015-05-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either to disrupt the utility or increase the value of wind to the system over time. Wind power projects are designed to last many years, so at this timescale, climate change may become an influential factor on wind patterns. We examine the potential effects of climate change on the average diurnal power production cycles at 12 locations in North America by analyzing averaged and individual output from nine high-resolution regional climate models comprising historical (1971–1999) and future (2041–2069) periods. A semi-parametric mixed model is fit using cubic B-splines, and model diagnostics are checked. Then, a likelihood ratio test is applied to test for differences between the time periods in the seasonal daily averaged cycles, and agreement among the individual regional climate models is assessed. We investigate the significant changes by combining boxplots with a differencing approach and identify broad categories of changes in the amplitude, shape, and position of the average daily cycles. We then discuss the potential impact of these changes on wind power production.

  3. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  4. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.

    Science.gov (United States)

    Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R

    2014-10-22

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent.

  5. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    OpenAIRE

    2012-01-01

    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekon...

  6. Climate change impacts on hydrological extremes in Central Europe

    Science.gov (United States)

    Fokko Hattermann, Fred; Huang, Shaochun; Kundzewicz, Zbigniew W.; Hoffmann, Peter

    2016-04-01

    An increase of hydro-climatic extremes can be observed worldwide and is challenging national and regional risk management and adaptation plans. Our study presents and discusses possible trends in climate drivers and hydro-climatic extremes in Europe observed and under future climate conditions. In a case study for Germany, impacts of different regional climate scenario ensembles are compared. To this end, a hydrological model was applied to transform the scenarios data into river runoff for more than 5000 river reaches in Germany. Extreme Value Distributions have been fitted to the hydrographs of the river reaches to derive the basic flood statistics. The results for each river reach have been linked to related damage functions as provided by the German Insurance Association considering damages on buildings and small enterprises. The robust result is that under scenario conditions a significant increase in flood related losses can be expected in Germany, while also the number of low flow events may rise.

  7. Modeling climate change impacts on overwintering bald eagles

    OpenAIRE

    Chris J. Harvey; Moriarty, Pamela E.; Salathé Jr, Eric P

    2012-01-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperat...

  8. The Climate Change Challenge in Africa:- Impacts, Mitigation and Adaptation

    OpenAIRE

    Adebamowo Michael; Uduma-Olugu Nnezi; Oginni Adeyemi

    2012-01-01

    Climate change is now a reality, and is already having devastating effects on the natural environment and human populations across the world. Many studies (Maathai, 2006; UNFCC 2006; CCDI 2007; IPCC 2007 and UNDP 2009) have confirmed that Africa contributes the least to global warming but the region is the most vulnerable and most adversely affected by climate change. Unpredictable rains and floods, prolonged droughts, subsequent crop failures and rapid desertification among others have in fa...

  9. Climate Change Impacts in the Upper Rio Grande Catchment

    Science.gov (United States)

    Heikkila, T.; Siegfried, T. U.; Sellars, S. L.; Schlager, E.

    2010-12-01

    In the US Southwest, evidence of increased future drought severity and duration in the context of climate change has been detected. Considering the already difficult water distribution and allocation strategies within the region, we are investigating the Costilla Creek, a tributary to the Rio Grande. The catchment is located in Costilla county in Colorado from where on runoff is crossing boundaries between Colorado and New Mexico three times before its confluence with the Rio Grande in New Mexico. Water allocation is governed by an interstate compact between Colorado and New Mexico. While the states have been relatively successful in complying with the compact’s allocation rules, the Costilla Creek catchment has experienced interstate upstream/downstream conflict, mainly during irrigation seasons. Whether or not the states will be able to avert conflict in the future and maintain compliance with the compact, is a critical question. The situation in the relatively small catchment is not unique. Various interstate watersheds, including the entire Rio Grande basin, the La Plata, Arkansas, and Colorado, are expected to face similar impacts from climate change, yet the water compacts that govern them may not be structured to adapt to these conditions. Looking at the Costilla Creek offers a valuable starting point for understanding how to model these effects across various basins. We have developed a lumped-parameter rainfall-runoff model including snow storage of the Costilla Creek watershed. Temperature and precipitation data from NCRS - SNOTEL stations together with USGS gauging station data were utilized for model calibration and validation. ISCCP solar radiation data and temperature data were used to estimate irrigation water demand in irrigated agriculture. The model is driven by the IPCC SRES A2 scenario. GCM ensemble averaged temperature / precipitation trends were extracted for the upper Rio Grande region. 50 year precipitation simulations were created using a

  10. Arctic marine mammals and climate change: impacts and resilience.

    Science.gov (United States)

    Moore, Sue E; Huntington, Henry P

    2008-03-01

    Evolutionary selection has refined the life histories of seven species (three cetacean [narwhal, beluga, and bowhead whales], three pinniped [walrus, ringed, and bearded seals], and the polar bear) to spatial and temporal domains influenced by the seasonal extremes and variability of sea ice, temperature, and day length that define the Arctic. Recent changes in Arctic climate may challenge the adaptive capability of these species. Nine other species (five cetacean [fin, humpback, minke, gray, and killer whales] and four pinniped [harp, hooded, ribbon, and spotted seals]) seasonally occupy Arctic and subarctic habitats and may be poised to encroach into more northern latitudes and to remain there longer, thereby competing with extant Arctic species. A synthesis of the impacts of climate change on all these species hinges on sea ice, in its role as: (1) platform, (2) marine ecosystem foundation, and (3) barrier to non-ice-adapted marine mammals and human commercial activities. Therefore, impacts are categorized for: (1) ice-obligate species that rely on sea ice platforms, (2) ice-associated species that are adapted to sea ice-dominated ecosystems, and (3) seasonally migrant species for which sea ice can act as a barrier. An assessment of resilience is far more speculative, as any number of scenarios can be envisioned, most of them involving potential trophic cascades and anticipated human perturbations. Here we provide resilience scenarios for the three ice-related species categories relative to four regions defined by projections of sea ice reductions by 2050 and extant shelf oceanography. These resilience scenarios suggest that: (1) some populations of ice-obligate marine mammals will survive in two regions with sea ice refugia, while other stocks may adapt to ice-free coastal habitats, (2) ice-associated species may find suitable feeding opportunities within the two regions with sea ice refugia and, if capable of shifting among available prey, may benefit from

  11. Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts

    OpenAIRE

    Füssel, Hans-Martin

    2010-01-01

    Adaptation to climate change is necessary, in addition to mitigation of climate change, to avoid unacceptable impacts of anthropogenic climate change [IPCC 2007]. UNFCCC Article 4 requires developed countries to assist developing countries that are "particularly vulnerable" to climate change in meeting costs of adaptation to its adverse effects. As a result, three funds have been established under the UNFCCC and Kyoto Protocol to provide financial resources for assessing, planning, and implem...

  12. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  13. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-05-01

    Full Text Available The transboundary Mekong River is facing two on-going changes that are estimated to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and the projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled output of five General Circulation Models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact to hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the

  14. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran;

    , climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  15. Impacts of Future Climate Change on Ukraine Transportation System

    Science.gov (United States)

    Khomenko, Inna

    2016-04-01

    Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures

  16. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    Adaptation Case, in which the optimal electricity generation mix is determined by allowing for endogenous capacity adjustments in the model. This modeling exercise will identify the changes in the energy demand and in electricity generation mix in the Adaptation Case, as well as climate change damages......Although previous climate change research has documented the effects of linking mitigation and adaptation in the energy sector, there is still a lack of integrated assessment, particularly at national level. This paper may contribute to fill this gap, identifying the interactions between climate...... change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...

  17. Climate Change Impact on Sugarcane Production in Developing Countries

    Science.gov (United States)

    A combination of long-term change in the weather patterns worldwide (Global climate change), caused by natural processes and anthropogenic factors, may result in major environmental issues that have affected and will continuously affect agriculture. Increases in atmospheric carbon dioxide concentrat...

  18. Climate change impact on a groundwater-influenced hillslope ecosystem

    NARCIS (Netherlands)

    Brolsma, R.J.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2010-01-01

    This study investigates the effect of climate change on a groundwater-influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration

  19. Climate change impact on a groundwater-influenced hillslope ecosystem

    NARCIS (Netherlands)

    Brolsma, R.J.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2010-01-01

    This study investigates the effect of climate change on a groundwater‐influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration

  20. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  1. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  2. [Environmental pollution, climate variability and climate change: a review of health impacts on the Peruvian population].

    Science.gov (United States)

    Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air.

  3. Impact changes of climatic extremes on arable farming in the north of the Netherlands

    NARCIS (Netherlands)

    Schaap, B.F.; Blom, M.; Hermans, C.M.L.; Meerburg, B.G.; Verhagen, A.

    2011-01-01

    Agriculture is vulnerable to climate change in multiple ways. Here, we use the northern region of the Netherlands as a case study to explore how risk assessments for climate change impacts on crop production can address multiple vulnerabilities. We present a methodology, which we call agro climate c

  4. A changing climate: impacts on human exposures to O3 using an integrated modeling methodology

    Science.gov (United States)

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposu...

  5. A New Economic Assessment Index for the Impact of Climate Change on Grain Yield

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The impact of climate change on agriculture has received wide attention by the scientific community.This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore,the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China,and the results show that it has an encouraging application outlook.

  6. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Directory of Open Access Journals (Sweden)

    Sara Shields

    2015-05-01

    Full Text Available The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture.

  7. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  8. Impacts on Canadian Competitiveness of International Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Robin Somerville

    1998-06-01

    Full Text Available This article summarizes and provides additional perspective on a study that contributes to the growing body of analyses of the costs of limiting greenhouse gas emissions. The study estimates the economic costs to Canada of six planning scenarios. Four of these scenarios involve the use of tradable emission permits and two involved a carbon tax. In each case, the mechanism's target is to stabilize greenhouse gas emissions at some percentage of 1990 levels (100% or 90% by either 2010 or 2015. Policies that impose greater constraints on carbon dioxide emissions lead to higher economic costs in terms of foregone output. These costs, however, vary for the same objective, depending on the mechanism chosen and the economic assumptions made. In one typical scenario, in which tradable emission permits are used to achieve stabilization at 1990 levels by 2010, GDP is depressed from the "business-as-usual" scenario by about 2% for the first decade, after which it recovers to business-as-usual levels. Generally, for all scenarios, the economic impact of climate change mitigation imposes a transition cost on the economy, but the long-term productive capacity of the economy is not significantly affected.

  9. Burgundy regional climate change and its potential impact on grapevines

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yiwen [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); G.C. Rieber Climate Institute at the Nansen Environment and Remote Sensing Center, Bergen (Norway); Castel, Thierry [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); AgroSup, Department of Agriculture and Environment, Dijon (France); Richard, Yves; Cuccia, Cedric [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); Bois, Benjamin [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); IUVV, University of Burgundy, Dijon (France)

    2012-10-15

    ARPEGE general circulation model simulations were dynamically downscaled by The Weather Research and Forecasting Model (WRF) for the study of climate change and its impact on grapevine growth in Burgundy region in France by the mid twenty-first century. Two time periods were selected: 1970-1979 and 2031-2040. The WRF model driven by ERA-INTERIM reanalysis data was validated against in situ surface temperature observations. The daily maximum and minimum surface temperature (T{sub max} and T{sub min}) were simulated by the WRF model at 8 x 8 km horizontal resolution. The averaged daily T{sub max} for each month during 1970-1979 have good agreement with observations, the averaged daily T{sub min} have a warm bias about 1-2 K. The daily T{sub max} and T{sub min} for each month (domain averaged) during 2031-2040 show a general increase. The largest increment ({proportional_to}3 K) was found in summer. The smallest increments (<1 K) were found in spring and fall. The spatial distribution of temperature increment shows a strong meridional gradient, high in south in summer, reversing in winter. The resulting potential warming rate in summer is equivalent to 4.7 K/century under the IPCC A2 emission scenario. The dynamically downscaled T{sub max} and T{sub min} were used to simulate the grape (Pinot noir grape variety) flowering and veraison dates. For 2031-2040, the projected dates are 8 and 12 days earlier than those during 1970-1979, respectively. The simulated hot days increase more than 50% in the two principal grapevine regions. They show strong impact on Pinot noir development. (orig.)

  10. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  11. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    Science.gov (United States)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  12. Cross-sectoral conflicts for water under climate change: the need to include water quality impacts

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Ludwig, F.; Kabat, P.

    2013-01-01

    Climate change is expected to increase pressures on water use between different sectors (e.g. agriculture, energy, industry, domestic uses) and ecosystems. While climate change impacts on water availability have been studied widely, less work has been done to assess impacts on water quality. This st

  13. Impacts of climate change on water resources in southern Africa: A review

    Science.gov (United States)

    Kusangaya, Samuel; Warburton, Michele L.; Archer van Garderen, Emma; Jewitt, Graham P. W.

    The Intergovernmental Panel on Climate Change concluded that there is consensus that the increase of atmospheric greenhouse gases will result in climate change which will cause the sea level to rise, increased frequency of extreme climatic events including intense storms, heavy rainfall events and droughts. This will increase the frequency of climate-related hazards, causing loss of life, social disruption and economic hardships. There is less consensus on the magnitude of change of climatic variables, but several studies have shown that climate change will impact on the availability and demand for water resources. In southern Africa, climate change is likely to affect nearly every aspect of human well-being, from agricultural productivity and energy use to flood control, municipal and industrial water supply to wildlife management, since the region is characterised by highly spatial and temporally variable rainfall and, in some cases, scarce water resources. Vulnerability is exacerbated by the region's low adaptive capacity, widespread poverty and low technology uptake. This paper reviews the potential impacts of climate change on water resources in southern Africa. The outcomes of this review include highlighting studies on detected climate changes particularly focusing on temperature and rainfall. Additionally, the impacts of climate change are highlighted, and respective studies on hydrological responses to climate change are examined. The review also discusses the challenges in climate change impact analysis, which inevitably represents existing research and knowledge gaps. Finally the paper concludes by outlining possible research areas in the realm of climate change impacts on water resources, particularly knowledge gaps in uncertainty analysis for both climate change and hydrological modelling.

  14. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water

    NARCIS (Netherlands)

    Hofstra, N.

    2011-01-01

    Climate change, among other factors, will impact waterborne pathogen concentrations in surface water worldwide, possibly increasing the risk of diseases caused by these pathogens. So far, the impacts are only determined qualitatively and thorough quantitative estimates of future pathogen concentrati

  15. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    Science.gov (United States)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate. PMID:28281687

  16. Climate change and human health: impacts, vulnerability, and mitigation.

    Science.gov (United States)

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-06-24

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways--eg, as a result of increased frequency and intensity of heat waves, reduction in cold-related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases, and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries might also be adversely affected. Adaptation to climate change requires public-health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing the use of a number of renewable energy technologies should improve health in the near term by reducing exposure to air pollution.

  17. Climate change and human health: impacts, vulnerability and public health.

    Science.gov (United States)

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-07-01

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways, for example as a result of increased frequency and intensity of heat waves, reduction in cold related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries may also be adversely affected. Adaptation to climate change requires public health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing a number of uses of the renewable energy technologies should improve health in the near-term by reducing exposure to air pollution.

  18. Projected impacts of climate change on hydropower potential in China

    Science.gov (United States)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-08-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by -1.7 to 2 % in the near future (2020-2050) and increase by 3 to 6 % in the late 21st century (2070-2099). The annual DHP is projected to change by -2.2 to -5.4 % (0.7-1.7 % of the total installed hydropower capacity (IHC)) and -1.3 to -4 % (0.4-1.3 % of total IHC) for 2020-2050 and 2070-2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China - mostly in south central China and eastern China - where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  19. Climate-change impact potentials as an alternative to global warming potentials

    Science.gov (United States)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  20. Climate-change impacts on sandy-beach biota: crossing a line in the sand.

    Science.gov (United States)

    Schoeman, David S; Schlacher, Thomas A; Defeo, Omar

    2014-08-01

    Sandy ocean beaches are iconic assets that provide irreplaceable ecosystem services to society. Despite their great socioeconomic importance, beaches as ecosystems are severely under-represented in the literature on climate-change ecology. Here, we redress this imbalance by examining whether beach biota have been observed to respond to recent climate change in ways that are consistent with expectations under climate change. We base our assessments on evidence coming from case studies on beach invertebrates in South America and on sea turtles globally. Surprisingly, we find that observational evidence for climate-change responses in beach biota is more convincing for invertebrates than for highly charismatic turtles. This asymmetry is paradoxical given the better theoretical understanding of the mechanisms by which turtles are likely to respond to changes in climate. Regardless of this disparity, knowledge of the unique attributes of beach systems can complement our detection of climate-change impacts on sandy-shore invertebrates to add rigor to studies of climate-change ecology for sandy beaches. To this end, we combine theory from beach ecology and climate-change ecology to put forward a suite of predictive hypotheses regarding climate impacts on beaches and to suggest ways that these can be tested. Addressing these hypotheses could significantly advance both beach and climate-change ecology, thereby progressing understanding of how future climate change will impact coastal ecosystems more generally.

  1. Overview of Impacts of Climate Change and Adaptation in China’s Agriculture

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-xia; HUANG Ji-kun; YANG Jun

    2014-01-01

    The purpose of this paper is to document the likely impacts of climate change on China’s agriculture and the current adaptation efforts made by government and farmers. The review of literature shows that climate change will have a signiifcant impact on agriculture, primarily through its effect on crop yields. The extent of predicted impacts highly depends on the crop, the CO2 fertilization effect assumption and adaptation abilities. Market response to the production shocks resulting from climate change will lessen the impacts on agricultural production predicted by natural scientists. On adaptation, the government’s major efforts have been in the developing new technologies, reforming extension system and enhancing institutional capacity. Farmers do adapt to climate change, but their adaptation measures cannot fully offset the negative impacts of climate change. The paper concludes and makes implications for future studies.

  2. A climate robust integrated modelling framework for regional impact assessment of climate change

    Science.gov (United States)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  3. Methodologies for simulating impacts of climate change on crop production

    Science.gov (United States)

    Ecophysiological models of crop growth have seen wide use in IPCC and related assessments. However, the diversity of modeling approaches constrains cross-study syntheses and increases potential for bias. We reviewed 139 peer-reviewed papers dealing with climate change and agriculture, considering si...

  4. The impact of economic recession on climate change: eight trends

    NARCIS (Netherlands)

    P.C. Obani; J. Gupta

    2015-01-01

    In the context of deadlocked climate change negotiations, and the expectation that legally binding targets may only set in as early as 2020, this paper addresses the question of whether the current economic recession in major economies in the North can help us buy time by reducing the emissions of g

  5. Impacts of sea ice / SST changes for the observed climate change -GREENICE project-

    Science.gov (United States)

    Ogawa, Fumiaki; Gao, Yongqi; Keenlyside, Noel; Koenigk, Torben; Semenov, Vladimir; Suo, Lingling; Yang, Shuting; Wang, Tao

    2016-04-01

    Under the recent global warming, melting of arctic sea-ice in recent decades could have contributed to recent climate changes including its long-term trend and extreme weather events. While the climatic response to the sea-ice loss have been studied recently, it is still an open question to what extent the sea-ice change has influenced recent climate change. Other factors, such as for example, SST could also have had an influence. A main objective of GREENICE research project is to show what extent of the observed climate trend as well as observed weather extremes could be explained by the change and variability in sea ice and SST, respectively. In this project, we designed two atmospheric general circulation model experiments: In both experiments observed daily sea ice cover variations are prescribed, while for SST, one experiment uses observed daily variations and the other the observed climatology. The experiment is performed by several different state-of-the-art AGCMs. Our preliminary results show that the observed wintertime temperature trend near the surface is poorly reproduced in our hindcast experiments using observed SIC and SST. The impact of SIC variation seems to be confined near the surface, while SST variation seems a key for temperature trend above. It suggests a necessity to consider the atmospheric poleward energy transport associated with SST variation to understand the observed arctic amplification. Other aspects of SIC/SST impact on the observed circulation change such as NAO shall also be discussed.

  6. Isolating the impacts of land use and climate change on streamflow

    Science.gov (United States)

    Chawla, I.; Mujumdar, P. P.

    2015-08-01

    Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this

  7. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    Science.gov (United States)

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies.

  8. Climate change impact on wave energy in the Persian Gulf

    Science.gov (United States)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  9. Impacts of climate change on the future of biodiversity.

    Science.gov (United States)

    Bellard, Céline; Bertelsmeier, Cleo; Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck

    2012-04-01

    Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth.

  10. Data driven approaches vs. qualitative approaches in climate change impact and vulnerability assessment.

    Science.gov (United States)

    Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello

    2015-04-01

    In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.

  11. Cumulative Impacts of Energy and Climate Change Policies on Carbon Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Varma, A.; Milnes, R.; Miller, K.; Williams, E. [AEA Technology plc, London (United Kingdom); De Bruyn, S.; Brinke, L. [CE Delft, Delft (Netherlands)

    2012-02-15

    Carbon leakage occurs when climate change policy aimed at reducing carbon dioxide emissions in one country leads to an increase in carbon dioxide emissions in a country that is not bound by these policies. Given that climate change is a global issue, carbon leakage impacts upon the effectiveness of climate change policies. This independent study examines the cumulative impact of climate change policies on carbon leakage. The report brings together findings and analysis from a wide range of primary literature in this area and where possible, conclusions relevant to the UK are drawn.

  12. Drought and climatic change impact on streamflow in small watersheds.

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2012-12-01

    The paper presents a comprehensive, thought simple, methodology, for forecasting the annual hydrological drought, based on meteorological drought indications available early during the hydrological year. The meteorological drought of 3, 6 and 9 months is estimated using the reconnaissance drought index (RDI), whereas the annual hydrological drought is represented by the streamflow drought index (SDI). Regression equations are derived between RDI and SDI, forecasting the level of hydrological drought for the entire year in real time. Further, using a wide range of scenarios representing possible climatic changes and drought events of varying severity, nomographs are devised for estimating the annual streamflow change. The Medbasin rainfall-runoff model is used to link meteorological data to streamflow. The later approach can be useful for developing preparedness plans to combat the consequences of drought and climate change. As a case study, the area of N. Peloponnese (Greece) was selected, incorporating several small river basins.

  13. A new dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2012-11-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature changeTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  14. Robust features of future climate change impacts on sorghum yields in West Africa

    OpenAIRE

    Sultan, Benjamin; Guan, K; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G.L.; McLean, G.; Lobell, D.B.

    2014-01-01

    International audience; West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to ev...

  15. Future changes of the atmospheric composition and the impact of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Grewe, V.; Dameris, M.; Hein, R.; Sausen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany). Abt. Chemie der Atmosphaere

    1999-05-01

    The development of the future atmospheric chemical composition, with respect of NO{sub y} and O{sub 3} is investigated by means of the off-line coupled dynamic-chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO{sub x} and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO{sub x} and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamic parameters, like precipitation and changes in the circulation, i.e. wind speed, diabatic circulation, stratosphere-troposphere-exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate-chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major role for the composition of the future atmosphere, but they also clearly show that climate change has a significant impact and strongly reduces the NO{sub y} and ozone concentration in the lower stratosphere. (orig.)

  16. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    Science.gov (United States)

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  17. Uncertainty of climate change impacts on soil erosion from cropland in central Oklahoma

    Science.gov (United States)

    Impacts of climate change on soil erosion and the potential need for additional conservation actions are typically estimated by applying a hydrologic and soil erosion model under present and future climate conditions defined by an emission scenario. Projecting future climate conditions harbors sever...

  18. Climate change: a review of its health impact and perceived awareness by the young citizens.

    Science.gov (United States)

    Rahman, Muhammad Sabbir; Mohamad, Osman Bin; Zarim, Zainal bin Abu

    2014-04-16

    In recent time climate change and its impact on human health and awareness constitute a set of complex and serious consequences to be tackled by an individual country. Climate change is not merely an environmental issue, but also it is a threat that goes beyond national borders. The purpose of this study is to identify the awareness and the impact of climate change, perceived by the young citizens in Malaysia by focusing on gender differences. Based on a survey of 200 respondents from different public and private University's students in Malaysia, this research used descriptive statistics and T-test to look into the research objective. The results revealed media can play an important role in the awareness of climate change. Meanwhile the male respondents have shown considerable attention on the physical impact of climate change like heat related stress. On the other hand female respondents have shown considerable attention to the psychological impact by the climate change. From a pragmatic perspective, the findings from this research will assists the policy makers to understand more about the perceived awareness on the climate change issues of the young citizens which ultimately assist them to inaugurate new initiatives to confront the challenges of climate changes. This research is among the pioneer study on the issue of the perceived awareness in regards to climate change in Malaysia by focusing on gender differences.

  19. Climate Change Impacts in the State of Delaware

    Science.gov (United States)

    Snyder, C.

    2011-12-01

    The State of Delaware is currently completing its first statewide climate impacts and vulnerability assessment that will provide the foundation for a new statewide adaptation planning process. The assessment focuses on both the observed impacts and the projected impacts on five main sectors: public health and safety; infrastructure and water; industry, agriculture, and forestry; tourism and recreation; and wildlife, plants, and natural ecosystems. Examples of key impacts to the State include loss of wetlands from sea level rise and public health impacts from increased tropospheric ozone and heatwaves. The assessment is a result of collaboration across state agencies, universities, local governments, and non-governmental organizations. We discuss several challenges in translating national and regional research to locally-specific and locally-meaningful impacts necessary for the policy process, adaptation planning, and public outreach. We identify information and research gaps that continue to slow progress at the local and state level. There are lessons learned on how to best engage with policymakers and be relevant and useful for policy planning. Lastly, we give examples of successes in diverse collaborations, public communication of the results, and early policy actions resulting from the findings.

  20. Assessment of climate change impact on floodplain and hydrologic ecotones

    Science.gov (United States)

    Moradkhani, Hamid; Baird, Ruben G.; Wherry, Susan A.

    2010-12-01

    SummaryCurrent modeling efforts continue to indicate that the effects of climate change will be both global and local in scale, and that ecohydrologic factors including vegetation pattern, altered precipitation events, reduced system yields due to streamflow changes, increased flooding and changes to current floodplain characteristics will be affected. Therefore, using technology such as light detection and ranging (LiDAR) data, using future general circulation model (GCM) data, and conducting floodplain analyses to predict the changes to ecohydrologic factors are critical for cataloging existing ecosystem resources and for understanding the effects that different climate change scenarios may have on these resources at the basin scale. This study considers the effects of three different GCM climate change emissions scenarios (high from the IPSL GCM's A2 scenario, middle from the ECHAM5 GCM's A2 scenario and low from the GISS GCM's B1 scenario) using daily downscaled precipitation and temperature data over the Lower Tualatin basin in the Pacific Northwest US. The Tualatin River basin is a dynamic watershed that supports urban and agricultural uses and is also 50% forested. Its economic drivers include agricultural and forest products, as well as other consumer products including high-tech software and hardware industries. The Soil and Water Assessment Tool (SWAT) software was used as a distributed hydrologic model to predict the daily flows in the basin. It is predicted the 50-year recurrence interval (RI) flow will decrease significantly for the low and middle emissions scenarios (to between approximately 18,000-19,000 cfs compared to the observed 50-year RI of near 26,000 cfs) and will increase significantly under the high emissions scenario to nearly 33,000 cfs. Floodplain extents for the various climate scenarios and timeframes were delineated using the HEC-RAS model. A geo-processing procedure was employed to delineate hydrologic ecotones to evaluate the

  1. Assessing Impacts of Climate Change on Food Security Worldwide

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  2. Impact of climate change on larch budmoth cyclic outbreaks

    Science.gov (United States)

    Iyengar, Sudharsana V.; Balakrishnan, Janaki; Kurths, Jürgen

    2016-06-01

    Periodic outbreaks of the larch budmoth Zeiraphera diniana population (and the massive forest defoliation they engender) have been recorded in the Alps over the centuries and are known for their remarkable regularity. But these have been conspicuously absent since 1981. On the other hand, budmoth outbreaks have been historically unknown in the larches of the Carpathian Tatra mountains. To resolve this puzzle, we propose here a model which includes the influence of climate and explains both the 8–9 year periodicity in the budmoth cycle and the variations from this, as well as the absence of cycles. We successfully capture the observed trend of relative frequencies of outbreaks, reproducing the dominant periodicities seen. We contend that the apparent collapse of the cycle in 1981 is due to changing climatic conditions following a tipping point and propose the recurrence of the cycle with a changed periodicity of 40 years – the next outbreak could occur in 2021. Our model also predicts longer cycles.

  3. Impact of climate change on electricity systems and markets

    Science.gov (United States)

    Chandramowli, Shankar N.

    Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan

  4. Climate change has limited impact on soil-mantled landsliding

    Science.gov (United States)

    Parker, Robert; Hales, Tristram; Mudd, Simon; Grieve, Stuart

    2015-04-01

    Projected increases in future storminess, associated with anthropogenically-driven climate change, are expected to produce an increase in landslide frequency and hazards. This prediction relies on an implicit and poorly tested assumption, that landslide frequency is limited by the effectiveness of landslide triggers (pore-pressure events determined by the intensity and duration of storms). Using an unprecedented field dataset of hillslope soil depths and ages (attained through radiocarbon dating) from the Southern Appalachian Mountains (USA), we show that this assumption is not valid in this landscape. Instead, landslide frequency is limited by rates of soil production and transport processes, which prepare sites for future landsliding. By simulating the evolution of Appalachian hillslopes, we demonstrate that unless climate change can drive an increase in soil production and transport rates, an increase in future storminess will have little effect on long-term landslide frequency, while individual storms will trigger fewer and smaller landslides.

  5. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework.

    Science.gov (United States)

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Takahashi, Kiyoshi; Masui, Toshihiko; Tanaka, Akemi

    2014-01-01

    We assessed the impacts of climate change and agricultural autonomous adaptation measures (changes in crop variety and planting dates) on food consumption and risk of hunger considering uncertainties in socioeconomic and climate conditions by using a new scenario framework. We combined a global computable general equilibrium model and a crop model (M-GAEZ), and estimated the impacts through 2050 based on future assumptions of socioeconomic and climate conditions. We used three Shared Socioeconomic Pathways as future population and gross domestic products, four Representative Concentration Pathways as a greenhouse gas emissions constraint, and eight General Circulation Models to estimate climate conditions. We found that (i) the adaptation measures are expected to significantly lower the risk of hunger resulting from climate change under various socioeconomic and climate conditions. (ii) population and economic development had a greater impact than climate conditions for risk of hunger at least throughout 2050, but climate change was projected to have notable impacts, even in the strong emission mitigation scenarios. (iii) The impact on hunger risk varied across regions because levels of calorie intake, climate change impacts and land scarcity varied by region.

  6. [The impact of climate change on leishmaniasis in Brazil].

    Science.gov (United States)

    Mendes, Chrystian Soares; Coelho, Alexandre Bragança; Féres, José Gustavo; Souza, Elvanio Costa de; Cunha, Dênis Antônio da

    2016-01-01

    This paper sought to assess how climate change will affect the proliferation of leishmaniasis in Brazil in three time frames: 2010-2039, 2040-2079 and 2080-2100, and with two climate change scenarios. The relation of temperature, precipitation and the number of hospital admissions due to leishmaniasis was estimated and projections were made using these results. Results show that precipitation has a strong relation with leishmaniasis incidence and projections show that by the end of the twenty-first century there will be a 15% growth in the annual number of hospital admissions due to leishmaniasis in Brazil, compared to the base scenario (1992-2002). In regional terms, projections indicate growth in every region, with the exception of the Mid-West. The highest relative growth will be in the South of the country, while the highest increase in absolute terms will be observed in the Northeast region. In general, the incidence of leishmaniasis will grow in Brazil due to climate change.

  7. Impacts of Climate Change on Agriculture and Adaptive Strategies in China

    Institute of Scientific and Technical Information of China (English)

    LI Rui-li; Shu Geng

    2013-01-01

    China is the world’s most populous country and a major emitter of greenhouse gases. Consequently, China’s role in climate change has received a great deal of attention, whereas the impact of climate change on China has been largely ignored. Studies on the impacts of climate change on agriculture and adaptation strategies are increasingly becoming major areas of scientific concern. However, the clear warming that has been sounded in China in recent decades has not been matched with a clear assessment of the impact of climate change on China’s water resources and agriculture. In the present study, we review observations on climate change, hydrology, and agriculture in China and relate these observations to likely future changes. We also analyse the adaptive strategies in China’s agriculture.

  8. Expected impacts of climate change on extreme climate events; Impacts du changement climatique sur les evenements climatiques extremes

    Energy Technology Data Exchange (ETDEWEB)

    Planton, S.; Deque, M.; Chauvin, F. [Meteo-France, Centre National de Recherches Meteorologiques/groupe d' Etude de l' Atmosphere Meteorologique (CNRM/GAME), 31 - Toulouse (France); Terray, L. [Centre Europeen de Recherches Avancees en Calcul Scientifique, 31 - Toulouse (France)

    2008-09-15

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  9. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  10. Systems thinking methodology in researching the impacts of climate change on livestock industry

    OpenAIRE

    Nguyen,Quan; Nguyen, Nam Cao

    2013-01-01

    The impacts of climate change on livestock production are complex problems, existing in the rela-tionship among this sector and others sectors such as environmental, social, economic and political systems. The complexity and dynamic of these impacts cannot be solved simply in isolation with the linear approach. A system thinking methodology is introduced in this paper to understand the impacts of climate change on livestock production, and identify effective interventions strategies to addres...

  11. An Economic Analysis of Potential Impacts of Climate Change in Egypt

    OpenAIRE

    Onyeji, S.C.; Fischer, G.

    1993-01-01

    Projections of climate impacts on crop yields simulated for different GCM scenarios are used, in a recursively dynamic general equilibrium framework, to account for potential economy-wide impacts of climate change in Egypt. Comparing these impact projections to those obtained under a reference, business-as-usual, scenario assuming some moderate changes in the political, economic or technological sphere, indicates that global warming has potentially negative effects. The analysis is based on ...

  12. A structural Ricardian valuation of climate change impacts on agriculture in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mirza Nomman

    2013-07-01

    This book presents the economic analysis of the impacts of climate change on agriculture in Pakistan. Particular emphasis is laid on the magnitude of implicit adaptations in overall climate impact assessment and the analysis of selected adaptation options. Using a hedonic pricing model and a revealed choice approach, this study identifies the impacts of climate change on agricultural incomes, depicts the spatial patterns and seasonality of the impacts, and models the future adaptation behavior of farmers in the crop sector. A high sensitivity of farming in Pakistan to climate change is confirmed. With a changing climate and income in mind, farmers in Pakistan are more likely to choose rice, vegetables and maize, whereas they move away from wheat, sugarcane, cotton and fruits.

  13. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    OpenAIRE

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more holidays in the home country. In all three countries, climate change would first reduce the number of international arrivals - as Western European international tourist demand falls - but later increase ...

  14. Climate change and land management impact rangeland condition and sage-grouse habitat in southeastern Oregon

    OpenAIRE

    Megan K. Creutzburg; Emilie B. Henderson; David R. Conklin

    2015-01-01

    Contemporary pressures on sagebrush steppe from climate change, exotic species, wildfire, and land use change threaten rangeland species such as the greater sage-grouse (Centrocercus urophasianus). To effectively manage sagebrush steppe landscapes for long-term goals, managers need information about the potential impacts of climate change, disturbances, and management activities. We integrated information from a dynamic global vegetation model, a sage-grouse habitat climate envelope model, an...

  15. Impact of climate change in Switzerland on socioeconomic snow indices

    Science.gov (United States)

    Schmucki, Edgar; Marty, Christoph; Fierz, Charles; Weingartner, Rolf; Lehning, Michael

    2017-02-01

    Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000-1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.

  16. Climate change impact on the carbon cycle in Russian peatlands

    Science.gov (United States)

    Zavalishin, N. N.

    2009-04-01

    Dynamic compartment model with annual time resolution of carbon cycle functioning with elements of nitrogen and water cycles for three basic types of peatlands (oligotrophic, mesotrophic, eutrophic) is designed and verified based on data for several peatland ecosystems from Russian European part and Western Siberia as well as on estimates of relative areas occupied by these types in each of wetland provinces marked by Kats (1970). Flows between three main reservoirs and input-output fluxes can have donor-, recipient-, Volterra-controlled forms or be saturation functions of storages in participating reservoirs. Possible steady states of combined cycles allow to distinguish forest, forest-swamp and swamp for each of three types of peatland ecosystems as stable equilibria. Stability and bifurcation analysis of the dynamic model, as well as numerical modeling of transient non-equilibrium dynamic regimes, is carried out in the space of three parameters corresponding to intensities of atmospheric carbon assimilation by vegetation, output runoff from soils and litter, decay of dead organic matter by animals and microorganisms. These parameters depend on climatic magnitudes - annual temperature and total precipitation, soil moisture, availability of nitrogen in the litterfall. Atmospheric CO2 concentration increase can lead to appearance of oscillations in system compartments or to transition into other steady states depending on two other parameter values. Numerical simulations and analytical findings allow establish stability boundaries of each peatland type as an equilibrium of the model, and to calculate critical values of external parameters for which stable functioning of matter cycles is provided. Change in climatic or human perturbation parameters initiates a shift in the model parameter space corresponding to the temporal evolution of carbon cycle capable to change the ecosystem state significantly. Estimations of relative areas occupied by peatland types in some

  17. Investigating the impacts of climate change on Chinese agriculture. China-UK collaboration project

    Energy Technology Data Exchange (ETDEWEB)

    Erda, Lin (ed.)

    2004-04-15

    The impact of climate change in China is expected to be considerable. A regional climate change model (PRECIS), developed by the UK's Hadley Centre for Climate Prediction and Research, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average temperature increase in China by the end of the 21st century may be between 3 and 4C.

  18. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  19. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  20. Impacts of Participatory Modeling on Climate Change-related Water Management Impacts in Sonora, Mexico

    Science.gov (United States)

    Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.

    2013-12-01

    Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.

  1. The impacts of climate change on water resources and agriculture in China.

    Science.gov (United States)

    Piao, Shilong; Ciais, Philippe; Huang, Yao; Shen, Zehao; Peng, Shushi; Li, Junsheng; Zhou, Liping; Liu, Hongyan; Ma, Yuecun; Ding, Yihui; Friedlingstein, Pierre; Liu, Chunzhen; Tan, Kun; Yu, Yongqiang; Zhang, Tianyi; Fang, Jingyun

    2010-09-02

    China is the world's most populous country and a major emitter of greenhouse gases. Consequently, much research has focused on China's influence on climate change but somewhat less has been written about the impact of climate change on China. China experienced explosive economic growth in recent decades, but with only 7% of the world's arable land available to feed 22% of the world's population, China's economy may be vulnerable to climate change itself. We find, however, that notwithstanding the clear warming that has occurred in China in recent decades, current understanding does not allow a clear assessment of the impact of anthropogenic climate change on China's water resources and agriculture and therefore China's ability to feed its people. To reach a more definitive conclusion, future work must improve regional climate simulations-especially of precipitation-and develop a better understanding of the managed and unmanaged responses of crops to changes in climate, diseases, pests and atmospheric constituents.

  2. CLIMATE CHANGE AND ITS IMPACT ON WHEAT PRODUCTION IN KANSAS

    Directory of Open Access Journals (Sweden)

    Joshua C. Howard

    2016-04-01

    Full Text Available This paper studies the effect of climate change on wheat production in Kansas using annual time series data from 1949 to 2014. For the study, an error correction model is developed in which the price of wheat, the price of oats (substitute good, average annual temperature and average annual precipitation are used as explanatory variables with total output of wheat being the dependent variable. Time series properties of the data series are diagnosed using unit root and cointegration tests. The estimated results suggest that Kansas farmers are supply responsive to both wheat as well as its substitute (oat prices in the short run as well as in the long run. Climate variables; temperature has a positive effect on wheat output in the short run but an insignificant effect in the long run. Precipitation has a positive effect in the short run but a negative effect in the long run.

  3. China: The Impact of Climate Change to 2030. A Commissioned Research Report

    Science.gov (United States)

    2009-04-01

    2006): 1–21. lvi X. Chen, B. Hu, R. Yu et al. “Spatial and temporal variation of phenological growing season and climate change impacts in...The simulated climatic belts, climatic seasons, and Yellow River ice phenology in China are compared between the present climate during 1975–1984 and...simulating the dominant variations of the mean temperature over China, but not the spatial distributions. The annual precipitation over East Asia exceeds

  4. Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems provides a state-of-the-art overview of existing methodologies and relevant results related to the assessment of the climate change impacts on urban rainfall extremes as well as on urban hydrology and hydraulics....... This overview focuses mainly on several difficulties and limitations regarding the current methods and discusses various issues and challenges facing the research community in dealing with the climate change impact assessment and adaptation for urban drainage infrastructure design and management....

  5. The impact of climate change on the BRICS economies: The case of insurance demand.

    Science.gov (United States)

    Ranger, N.; Surminski, S.

    2012-04-01

    Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising

  6. Climate Change Impact On Mekong Delta of Vietnam in recent years

    Science.gov (United States)

    Le, L. T. X., III

    2015-12-01

    In recent years, the climate change signal increase globally. Abnormal changes of weather tends increasingly detrimental to human life, such as natural disasters occur with increasing level of more severe. Climate change is one the biggest challenges, and is a potential threat to humans. The impact of climate change increases the number and extent of the disaster fierce exists as typhoons, floods, droughts ... Global warming and sea level rise increases the area of flooding, saline intrusion and erosion in the delta region may cause farmers to lose the opportunity to produce, source of life their only. Impact of climate change on people in the community, but poor farmers in the developing countries like our country, women are the most severe consequences In this section, we summarize changes in climate on the territory of Vietnam, especially in Mekong Delta evaluate causes and its relationship to changes in global climate and region. Along with the analysis of characteristics of climate changes over time and through space to help the evolution of the standard deviation (average deviation from the standard of the period from 1971 to 2015) may indicate that the characteristic gas scenes took place related to global climate change ... Vietnam's territory stretches over approximately 15 latitude, the terrain is very complex, located in the interior full of tropical Southeast Asia. Vietnam climate strongly influenced by the Asian monsoon, monsoon and Northern Hemisphere especially the ENSO activity in the equatorial region and the Pacific Ocean. Climate Vietnam abundant and diversified, with strong ties to the region and globally.

  7. [Evolution of the climate change concept and its impact in the public health of Peru].

    Science.gov (United States)

    Sánchez Zavaleta, Carlos A

    2016-03-01

    The term "climate change" is not a new concept but its impact on public health is under constant review. We know that climate has already changed and will continue to change for centuries with the rise in average global temperature, and the associated rise in sea level. This fact makes mitigation efforts relevant only in the very long term and for generations of humans whose parents have not yet been born. When we talk about public health in the context of climate change, we are talking about adaptation. In the present, countries that are currently the most affected by climate change are precisely countries like Peru, without a significant carbon footprint at the global level but that are highly sensitive to the effects of climate. Without reliable climate projections, the health impact of climate change can be uncertain and complicated. Nevertheless, at the local level, every district can identify its vulnerabilities and define priorities to protect the health of its population. There are, and it can also be developed, environmental health indicators that can help monitor how well we are adapting and how prepared we are for changes in the climate. Adaptation to climate change implies improving living conditions, enhancing epidemiological surveillance systems and extending access to healthcare. The fight against the effects of climate change in public health is a fight against poverty and inequality, and that is nothing new in Peru.

  8. Hydrological Impact of Climate Change Scenarios for the Southern Alps

    Science.gov (United States)

    Maran, S.; Barontini, S.; Grossi, G.; Ranzi, R.; Quaglia, G.

    2005-12-01

    Starting from results of Global Circulation Models, IPCC-based scenarios for the XXI century were selected and the expected time series for surface temperature and precipitation were extracted together with model results for the second half of the XX century for two regions of the southern Alps, in Italy. Both monthly and daily data were analysed. Monthly data were used to describe the variability of climatic data in terms of trend, and characteristic frequencies were singled out. Comparisons were made among results of different models and, for past data, experimental records collected in meteorological stations located in Northern Italy. The aim was to derive the expected trends in two watersheds where hydropower is well developed. From daily data, statistics on rainy events were derived and they were compared to experimental data, for model's verification. These results were used in a hydrological model in order to assess the expected changes of runoff regimes in the two watersheds. The model, of the semi-distributed and conceptual type, assumes the projected meteorological data as forcing for the XXI century. It also assumes that land use changes (snow and forest cover) will adapt to climate changes. In the area, in fact, an increase of the timberline altitude is already being observed, since the end of the Little Ice Age. Using detailed knowledge of characteristics of the hydropower plants and their past operation rules, and of irrigation uses downstream, the influence of climate change on hydropower production and water resources availability for irrigation and human use was extrapolated for the 21st century in these two representative basins.

  9. Water constraints on European power supply under climate change: Impacts on electricity prices

    OpenAIRE

    Michelle T.H. van Vliet; Vögele, Stefan; Rübbelke, Dirk

    2013-01-01

    Recent warm, dry summers showed the vulnerability of the European power sector to low water availability and high river temperatures. Climate change is likely to impact electricity supply, in terms of both water availabilty for hydropower generation and cooling water usage for thermoelectric power production. Here, we show the impacts of climate change and changes in water availability and water temperature on European electricity production and prices. Using simulations of daily river flo...

  10. Climate change impact assessments on the water resources of India under extensive human interventions.

    Science.gov (United States)

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  11. Climate change and waterborne diarrhoea in Northern India: Impact and adaptation strategies

    NARCIS (Netherlands)

    Moors, E.J.; Singh, T.; Siderius, C.; Balakrishnan, S.; Mishra, A.

    2013-01-01

    Although several studies show the vulnerability of human health to climate change, a clear comprehensive quantification of the increased health risks attributable to climate change is lacking. Even more complicated are assessments of adaptation measures for this sector. We discuss the impact of clim

  12. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    NARCIS (Netherlands)

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more holi

  13. Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios

    NARCIS (Netherlands)

    Meller, L.; van Vuuren, D.P.; Cabeza, M.

    2015-01-01

    The role of bioenergy in climate change mitigation is a topic of heated debate, as the demand for land may result in social and ecological conflicts. Biodiversity impacts are a key controversy, given that biodiversity conservation is a globally agreed goal under pressure due to both climate change a

  14. Adapting to and Coping with the Threat and Impacts of Climate Change

    Science.gov (United States)

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  15. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    Science.gov (United States)

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  16. Climate change impacts on dunes erosion in the Netherlands

    Science.gov (United States)

    de Winter, Renske; Ruessink, Gerben

    2016-04-01

    The dunes in the Netherlands are occasionally eroded as a result of storms and corresponding storm surge levels and extreme waves. We discuss the effect of climate change and the corresponding sea level rise on dune erosion. With the XBeach dune erosion model we studied two representative profiles and analysed the effect of sea-level rise ranging from 0.20 to 2.50 m on dune erosion, as well as changes in the angle of wave incidence. The eroded volume in our XBeach model under storm conditions is in the order of magnitude of previous studies. In contrast with the Bruun-rule, which suggests a relation between sea-level rise and retreat distance, we found a linear relation between SLR and the amount of eroded volume of the dunes. Changes in the wave angle from shore normal to ~40 degrees, increase the erosion volume to the same extend as 40 cm sea-level rise.

  17. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D; Field, C; Cahill, K; Bonfils, C

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

  18. Climate Change Science, Impacts, Solutions - A Senior Science Course for Post-Secondary Students

    Science.gov (United States)

    Byrne, J. M.; Little, L. J.; Barnes, C. C.; Mirmasoudi, S.; Mansouri Kouhestani, F.; Reiger, C.; Rodriguez Bueno, R. A.

    2015-12-01

    The role of humanity in warming the global climate is well defined. The research community has predicted and documented many of the early impacts of climate change. The research literature has extensive assessments of future impacts on environment, cities, agriculture, human health, infrastructure, social and political changes, and the risks of military conflict. Society is facing massive infrastructure redevelopment, protection and possible abandonment due to increasing weather extremes. We have reached the point where science consensus is obvious and the population over much of the developed and developing world understands the urgency - humanity is changing the climate. The challenge is helping people help themselves. People understand there are consequences - they want to know how to minimize those consequences, and how to adapt to minimize the impacts. There is a dire need for a senior level course that addresses the key issues across disciplines. This course should cover a range of topics across many disciplinary boundaries, including: an introduction to the science, politics, health and well-being challenges of climate change; likely changes to personal and community lifestyles; consumption of energy and other resources. Population migration due to climate change impacts is a critical topic. Most important, the course must address the solutions to climate change. The population is demanding the power to address this massive challenge. This course will provide a multimedia curriculum on the impacts and solutions to our climate change dilemma.

  19. Climate change and land-use change impact on Western African river basins

    Science.gov (United States)

    Mariotti, Laura; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    The main resource in western Africa is agriculture and therefore availability and quality of fresh water resources threaten food production in many regions. Quantifying the impact of climate and land-use change in very vulnerable regions like western Africa is therefore of crucial importance for developing appropriate adaptation and mitigation strategies. In this work the International Center for theoretical Physic (ICTP) regional climate model (RegCM3) is used to perform a 120 (1980-2100) years climate change simulation under the A1B scenario using ECHAM5 as boundary condition (BC). To further investigate which it would be the combined effect of the land-use change together with the climate change a 10 years time simulation has been completed using the future projected land-use from IIASA (The International Institute for Applied Systems Analysis). Both simulations have been coupled with a physical based fully distributed hydrological model (CHyM) to asses which it would be the final effect of climate and land-use change on the river discharge. The two rivers used for this analysis are the Niger and Volta basin. The CHyM model has been validated coupling fist the hydrological model with a perfect boundary regional model simulation using ERA-interim as BC and using the runoff observations available along the two river basins. The model is able to reproduce the monthly seasonal cycle in both river basins reasonably well, therefore this allow us to use the same setting for a climate and land-use change simulation. Two hydrological time slice simulations have been performed with and without land-use change included. Results are presented and discussed for the monsoon season (JJA) on a station based, for the same stations used for validation purposed, but also the spatial change in discharge is presented in both cases and compared with the simple precipitation change observed in the region. Although the portion of change in precipitation due to the green house gases

  20. Impacts of climate change on mangrove ecosystems: A region by region overview

    Science.gov (United States)

    Ward, Raymond D.; Friess, Daniel A.; Day, Richard H.; MacKenzie, Richard A.

    2016-01-01

    Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.

  1. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian;

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  2. Evaluation of economic impact of climatic change on agro-forestry systems

    Directory of Open Access Journals (Sweden)

    Vittorio Gallerani

    Full Text Available Climate change has a strong influence on agro-forestry systems. Present estimations evisage that changes in climate patterns and extreme events connected to climate change will have greater impacts in the future. This paper seeks to illustrate the articulation of the problems concerning the economic evaluation of climate change, with particularly attention to open problems and future lines of research. Research on this topic, though using methods and approaches consolidated in the disciplines of resource economics and evaluation, still have several open problems, particularly in the field of multidisciplinary studies of the man-environmental relations, policy evaluation and development of decision support systems for decision makers.

  3. Robust features of future climate change impacts on sorghum yields in West Africa

    Science.gov (United States)

    Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.; Lobell, D. B.

    2014-10-01

    West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031-2060 compared to a baseline of 1961-1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16-20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential

  4. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    Science.gov (United States)

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación.

  5. Two Degrees of Separation: Abrupt Climate Change and the Adverse Impact to US National Security

    Science.gov (United States)

    2009-04-01

    trend of increasing GHG emissions is marginally impacting or irrelevant altogether. “Other factors, including sun spots, solar winds, variations ...climate variations over a wide range of time scales, making it a natural sensor of climate variability and providing a visible expression of climate...many observed changes in phenology and distribution have been associated with rising water temperatures, as well as changes in salinity, oxygen levels

  6. Climate Change Impact Chains in Coastal Areas (ICCA): Final study report

    OpenAIRE

    Pramova, Emilia; Chazarin, Florie; Locatelli, Bruno; Hoppe, Michael

    2013-01-01

    The study “Climate Change Impact Chains in Coastal Areas”, produced by the Center for International Forestry Research, CIFOR, was commissioned by the Inventory of Methods for Adaptation to Climate Change (IMACC) project, a global project by the Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, and funded through the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). The project aims at user-driven a...

  7. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed.

    Science.gov (United States)

    Ertürk, Ali; Ekdal, Alpaslan; Gürel, Melike; Karakaya, Nusret; Guzel, Cigdem; Gönenç, Ethem

    2014-11-15

    Western Mediterranean Region of Turkey is subject to considerable impacts of climate change that may adversely affect the water resources. Decrease in annual precipitation and winter precipitation as well as increase in temperatures are observed since 1960s. In this study, the impact of climate change on groundwater resources in part of Köyceğiz-Dalyan Watershed was evaluated. Evaluation was done by quantifying the impacts of climate change on the water budget components. Hydrological modeling was conducted with SWAT model which was calibrated and validated successfully. Climate change and land use scenarios were used to calculate the present and future climate change impacts on water budgets. According to the simulation results, almost all water budget components have decreased. SWAT was able to allocate less irrigation water because of the decrease of overall water due to the climate change. This resulted in an increase of water stressed days and temperature stressed days whereas crop yields have decreased according to the simulation results. The results indicated that lack of water is expected to be a problem in the future. In this manner, investigations on switching to more efficient irrigation methods and to crops with less water consumption are recommended as adaptation measures to climate change impacts.

  8. Climate change impacts on water salinity and health.

    Science.gov (United States)

    Vineis, Paolo; Chan, Queenie; Khan, Aneire

    2011-12-01

    It is estimated that 884 million people do not have access to clean drinking water in the world. Increasing salinity of natural drinking water sources has been reported as one of the many problems that affect low-income countries, but one which has not been fully explored. This problem is exacerbated by rising sea-levels, owing to climate change, and other contributing factors, like changes in fresh water flow from rivers and increased shrimp farming along the coastal areas. In some countries, desalination plants are used to partly remove salt and other minerals from water sources, but this is unlikely to be a sustainable option for low-income countries affected by high salinity. Using the example of Bangladesh as a model country, the following research indicates that the problem of salinity can have serious implications with regard to rising rates of hypertension and other public health problems among large sectors of the worldwide population.

  9. Viewpoints on impacts of climate change on soil quality

    Science.gov (United States)

    Dilly, Oliver; Pfeiffer, Eva-Maria; Trasar-Cepeda, Carmen; Nannipieri, Paolo

    2010-05-01

    Climate projections indicate a critical increase in temperature and modification of the precipitation pattern for the next century worldwide (IPCC 2007). Higher temperature increase are expected in polar than in temperate and tropical regions. In addition, studies on the response of microbial metabolism to temperature changes showed lower sensitivity at higher temperature level as analyzed by Q10 values (Kirschbaum 1995). The temperature response as indicated by the Q10 value refers to physiological response including enzyme configuration and substrate availability. For soils from an undisturbed forest site in eastern Amazonia, Knorr et al. (2005) observed even that the apparent pool turnover times are insensitive to temperature and received evidence that non-labile soil organic carbon was more sensitive to temperature than labile soil organic carbon. Linking the climate projections and the findings related to Q10 values suggests that the microbial activity may be stimulated to a higher degree at northern latitudes than at lower latitudes. But few studies address the role of temperature changes on soil organic matter pool and microbial biomass and activities although temperature changes may be important (Dilly et al. 2003). On top, the thawing of permafrost soil (24 % of exposed land in the Northern Hemisphere) represents a further threat since erosion processes will occur and captured gases may evolve to the atmosphere. Finally, dryness and drying-rewetting cycling that are affected by climate change are regulating soil organic carbon turnover (Mamilov and Dilly 2001). The lecture will summarize basic findings and positive feedback on our climate system and also address the concept of ‘soil energ-omics' including the interaction between respiration and microbial colonization and the respective metabolic quotient (Dilly 2006). Key words: Q10, Nitrogen deposition, Permafrost, Carbon turnover, Microbial biomass, adjustment References Dilly, O., 2006. Evaluating

  10. Is the impact of future climate change on hydro-climatic conditions significant? - A climate change study for an Eastern European catchment area.

    Science.gov (United States)

    Pavlik, Dirk; Söhl, Dennis; Bernhofer, Christian

    2014-05-01

    The future change of climatic conditions is, among others, closely linked to future hydrological changes. One important aspect of these issues is the question of future availability of water resources. A changed climatic water balance, as indicator for potential water availability, has far-reaching consequences for the water cycle, hydrological conditions, ecology, water management, the energy business, agriculture and forestry, and for anthropogenic use of the river. We generated regional climate projections via dynamic downscaling for the catchment area of the Western Bug river in the border area of Poland, Belarus, and Ukraine. The hydro-climatic conditions of the past and their projected future changes in the catchment were analyzed based on 2m-temperature, precipitation, potential evaporation and climatic water balance. Up to the end of the century, the used IPCC scenarios B1 and A2 lead to warming for each month in the long-term mean, with highest warming rates in winter. Instead, precipitation does not change in the long-term yearly mean. However, the intra-annual distribution of monthly precipitation sums shifts with an increase in winter and a strong decrease in summer. Combined, this leads to a changed climatic water balance with a stronger deficit in summer and a higher gain in winter. Particular in the south-eastern part of the catchment, the summer deficit cannot be compensated within the annual cycle. It raised the question: are these changes statistically significant and thus robust for use in further impact studies? Using a significance analysis, we found, that climatic changes in temperature, precipitation and potential evaporation and thus the climatic water balance change is most significant for scenario A2 from 2071 to 2100. The temperature changes are significant throughout the year. For the other variables changes are most significant in the late summer months (July, August, and September) and the winter months (December, January, and February

  11. Projecting Poverty at the Household Scale to Assess the Impact of Climate Change on Poor People

    Science.gov (United States)

    Hallegatte, S.; Rozenberg, J.

    2015-12-01

    This paper quantifies the potential impacts of climate change on poverty in 2030 and 2050, in 92 countries covering 90% of the developing world population. It accounts for the deep uncertainties that characterize future socio-economic evolutions and the lack of data regarding the condition and livelihood of poor people. It also considers many impacts of climate change, another source of uncertainty. We use a micro-simulation model based on household surveys and explore a wide range of uncertainties on future structural change, productivity growth or demographic changes. This results, for each country, in the creation of several hundred scenarios for future income growth and income distribution. We then explore the resulting space of possible futures and use scenario discovery techniques to identify the main drivers of inequalities and poverty reduction. We find that redistribution and structural change are powerful drivers of poverty and inequality reduction, except in low-income countries. In the poorest countries in Africa, reducing poverty cannot rely on redistribution but requires low population growth and productivity growth in agriculture. Once we have explored the space of possible outcomes for poverty and inequalities, we choose two representative scenarios of the best and worst cases and model the impacts of climate change in each of these two scenarios. Climate change impacts are modeled through 4 channels. First, climate change has an impact on labor productivity growth for people who work outside because of higher temperatures. Second, climate change has an impact on human capital because of more severe stunting in some places. Third, climate change has an impact on physical capital via more frequent natural disasters. Fourth, climate change has an impact on consumption because of changes in food prices. Impacts are very heterogeneous across countries and are mostly concentrated in African and South-East Asian countries. For high radiative forcing (RCP8

  12. Human Health Impacts of and Public Health Adaptation to Climate Variability and Change

    Science.gov (United States)

    Ebi, K. L.

    2007-12-01

    Weather and climate are among the factors that determine the geographic range and incidence of several major causes of ill health, including undernutrition, diarrheal diseases and other conditions due to unsafe water and lack of basic sanitation, and malaria. The Human Health chapter in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change concluded that climate change has begun to negatively affect human health, and that projected climate change will increase the risks of climate-sensitive health outcomes, particularly in lower-income populations, predominantly within tropical/subtropical countries. Those at greatest risk include the urban poor, older adults, children, traditional societies, subsistence farmers, and coastal populations, particularly in low income countries. The cause-and-effect chain from climate change to changing patterns of health determinants and outcomes is complex and includes socioeconomic, institutional, and other factors. The severity of future impacts will be determined by changes in climate as well as by concurrent changes in nonclimatic factors and by the adaptation measures implemented to reduce negative impacts. Public health has a long history of effectively intervening to reduce risks to the health of individuals and communities. Lessons learned from more than 150 years of research and intervention can provide insights to guide the design and implementation of effective and efficient interventions to reduce the current and projected impacts of climate variability and change.

  13. U.S. Global Climate Change Impacts Report, Overview of Sectors

    Science.gov (United States)

    Wuebbles, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in

  14. Perceptions on climate change and its impact on livelihoods in Hwange district, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Charles Nhemachena

    2014-03-01

    Full Text Available This study investigated perceptions of rural communities on climate change and its impacts on livelihoods. The research was conducted in the semi-arid Hwange district in Matebelel and North province of Zimbabwe. The perceptions were compared with empirical evidence from climatic studies on trends on temperature and rainfall, and impacts on livelihoods in the country and region. The findings from the current study are generally in agreement with those of other studies that indicate changes in the climate, especially in terms of rainfall. This largely applies to short-term periods; however, for long-term periods it is difficult to accurately relate rural community perceptions to changes in rainfall over time. Despite perceived changes and impacts of climate change on local livelihood activities, mainly agriculture, there are multiple stressors that the communities face which also affect their livelihoods. Further evidence-based research is required to disentangle climate change impacts on livelihoods, including livelihood impacts arising from interactions of climate and non-climatic factors.

  15. Climate change impacts on water supply: implications for reservoir management in upper Sabor, northeast Portugal

    OpenAIRE

    Carvalho-Santos, Cláudia; Monteiro, António T.; Azevedo, João; Nunes, João Pedro

    2016-01-01

    Climate change scenarios project warmer temperatures and less precipitation in Mediterranean watersheds. This can aggravate drought conditions, with negative impacts on water supply. Here, reservoirs may play an important role to mitigate these impacts. However, the implications of climate change are not always considered in the reservoir planning and management. This study aimed to address this issue for the Upper Sabor watershed, northeast Portugal. This is a medium watershed...

  16. Climate Change Impacts and Adaptation Strategies in Northwest China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-Yan; LIU Cai-Hong; LI Yan-Chun; FANG Jian-Gang; LI Lin; LI Hong-Mei; ZHENG Guang-Fen; DENG Zhen-Yong; DONG An-Xiang; GUO Jun-Qin; ZHANG Cun-Jie; SUN Lan-Dong; ZHANG Xu-Dong; LIN Jing-Jing; WANG You-Heng; FANG Feng; MA Peng-Li

    2014-01-01

    Climate change resulted in changes in crop growth duration and planting structure, northward movement of planting region, and more severe plant diseases and insect pests in Northwest China. It caused earlier seeding for spring crop, later seeding for autumn crop, accelerated crop growth, and reduced mortality for winter crop. To adapt to climate change, measures such as optimization of agricultural arrangement, adjustment of planting structure, expansion of thermophilic crops, and development of water-saving agriculture have been taken. Damaging consequences of imbalance between grassland and livestock were enhanced. The deterioration trend of grassland was intensified; both grass quantity and quality declined. With overgrazing, proportions of inferior grass, weeds and poisonous weeds increased in plateau pastoral areas. Returning farmland to grazing, returning grazing to grassland, fence enclosure and artificial grassland construction have been implemented to restore the grassland vegetation, to increase the grassland coverage, to reasonably control the livestock carrying capacity, to prevent overgrazing, to keep balance between grassland and livestock, and to develop the ecological animal husbandry. In Northwest China, because the amount of regional water resources had an overall decreasing trend, there was a continuous expansion in the regional land desertification, and soil erosion was very serious. A series of measures, such as development of artificial precipitation (snow), water resources control, regional water diversion, water storage project and so on, were used effectively to respond to water deficit. It had played a certain role in controlling soil erosion by natural forest protection and returning farmland to forest and grassland. In the early 21st century, noticeable achievements had been made in prevention and control of desertification in Northwest China. The regional ecological environment has been improved obviously, and the desertification trend

  17. Impacts of Climate Change on European Critical Infrastructures: The Case of the Power Sector

    OpenAIRE

    Rübbelke, Dirk; Vogele, Stefan

    2010-01-01

    23 p. Anthropogenic emissions of greenhouse gases cause climate change and this change in turn induces various direct impacts, e.g., changes in regional weather patterns. The frequency of heat waves and droughts in Europe is likely to rise. Yet, beyond these immediate effects of climate change, there are more indirect effects: Droughts may cause water scarcity and a lack of water supply which in turn would affect further sectors and critical infrastructures. A rising lack of water supply f...

  18. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    Science.gov (United States)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  19. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    NARCIS (Netherlands)

    Droogers, P.; Loon, van A.F.; Immerzeel, W.W.

    2008-01-01

    Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario

  20. The health impacts of climate change and variability in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Menne, B. [WHO European Centre for Environment and Health, Rome (Italy). Global Change and Health; Kunzil, N. [Institute for Social and Preventive Medicine University, Los Angeles, CA (United States). Basel and Keck School of Medicine; Bertollini, R. [WHO Regional Office for Europe, Copenhagen (Denmark). Technical Support Div.

    2002-07-01

    Health is a focus reflecting the combined impacts of climate change on the physical environment, ecosystems, the economic environment and society. Long-term changes in the world's climate may affect many requisites of good health - sufficient food, safe and adequate drinking water and secure dwelling. The current large-scale social and environmental changes mean that we must assign a much higher priority to population health in the policy debate on climate change. Climate change will affect human health and wellbeing through a variety of mechanisms. Climate change can adversely impact on the availability of fresh water supply and the efficiency of local sewerage systems. It is also likely to affect food security. Cereal yields are expected to increase at high and mid latitudes but decrease at lower latitudes. Changes in food production are likely to significantly affect health in Africa. In addition, the distribution and seasonal transmission of several vector-borne infectious diseases (such as malaria and dengue) may be affected by climate change. Altered distribution of some vector species may be among the early signals of climate change. A change in the world climate could increase the frequency and severity of extreme weather events. The impacts on health of natural disasters are considerable - the number of people killed, injured or made homeless from such causes is increasingly alarming. The vulnerability of people living in risk-prone areas is an important contributor to disaster casualties and damage. An increase in heatwaves (and possibly air pollution) will be a problem in urban areas, where excess mortality and morbidity is currently observed during hot weather episodes. We can assume that climate change will affect the most vulnerable in developing countries. These might be socio-economic deprived populations, people who lack access to a health care system, technology and communication, as well as immuno compromised persons. The health community

  1. The impacts of climate change on the Finnish economy

    Energy Technology Data Exchange (ETDEWEB)

    Kuoppamaeki, P. [Research Inst. of the Finnish Economy, Helsinki (Finland)

    1996-12-31

    The purpose of the project was to evaluate the potential influence of global warming on the Finnish economy and well-being during the next 50 to 100 years. In order to achieve this goal a cost-benefit analysis was conducted which produced a quantitative estimate of the economic and partially non-economic effects of the climate change projected to happen in Finland. The analysis utilised the natural scientific evidence produced by other SILMU projects in partial sector models. Also a broader view of the phenomena and the possibilities for restricting greenhouse gas emissions was briefly discussed and surveyed. Two of the more important side-goals were to develop the methodology for country analysis and study the possibilities for adaptation

  2. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.

    Science.gov (United States)

    Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing

    2016-01-01

    Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change.

  3. Aerosol physical properties and their impact on climate change processes

    Science.gov (United States)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  4. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  5. Impacts of Climate Change on Water and Agricultural Production in Ten Large River Basins in China

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-xia; HUANG Ji-kun; YAN Ting-ting

    2013-01-01

    The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops’ production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.

  6. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    Directory of Open Access Journals (Sweden)

    P. Droogers

    2008-04-01

    Full Text Available Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario model errors will level out. For a polder in The Netherlands an innovative procedure has been introduced, referred to as the Model-Scenario-Ratio (MSR, to express model inaccuracy on climate change impact assessment studies based on simulation models comparing a reference situation to a climate change situation. The SWAP (Soil Water Atmosphere Plant model was used for the case study and the reference situation was compared to two climate change scenarios. MSR values close to 1, indicating that impact assessment is mainly a function of the scenario itself rather than of the quality of the model, were found for most indicators evaluated. A climate change scenario with enhanced drought conditions and indicators based on threshold values showed lower MSR values, indicating that model accuracy is an important component of the climate change impact assessment. It was concluded that the MSR approach can be applied easily and will lead to more robust impact assessment analyses.

  7. An exploratory study on occurrence and impact of climate change on agriculture in Tamil Nadu, India

    Science.gov (United States)

    Varadan, R. Jayakumara; Kumar, Pramod; Jha, Girish Kumar; Pal, Suresh; Singh, Rashmi

    2017-02-01

    This study has been undertaken to examine the occurrence of climate change in Tamil Nadu, the southernmost state of India and its impact on rainfall pattern which is a primary constraint for agricultural production. Among the five sample stations examined across the state, the minimum temperature has increased significantly in Coimbatore while the same has decreased significantly in Vellore whereas both minimum and maximum temperatures have increased significantly in Madurai since 1969 with climate change occurring between late 1980s and early 1990s. As a result, the south-west monsoon has been disturbed with August rainfall increasing with more dispersion while September rainfall decreasing with less dispersion. Thus, September, the peak rainfall month of south-west monsoon before climate change, has become the monsoon receding month after climate change. Though there has been no change in the trend of the north-east monsoon, the quantity of October and November rainfall has considerably increased with increased dispersion after climate change. On the whole, south-west monsoon has decreased with decreased dispersion while north-east monsoon has increased with increased dispersion. Consequently, the season window for south-west monsoon crops has shortened while the north-east monsoon crops are left to fend against flood risk during their initial stages. Further, the incoherence in warming, climate change and rainfall impact seen across the state necessitates devising different indigenous and institutional adaptation strategies for different regions to overcome the adverse impacts of climate change on agriculture.

  8. An exploratory study on occurrence and impact of climate change on agriculture in Tamil Nadu, India

    Science.gov (United States)

    Varadan, R. Jayakumara; Kumar, Pramod; Jha, Girish Kumar; Pal, Suresh; Singh, Rashmi

    2015-12-01

    This study has been undertaken to examine the occurrence of climate change in Tamil Nadu, the southernmost state of India and its impact on rainfall pattern which is a primary constraint for agricultural production. Among the five sample stations examined across the state, the minimum temperature has increased significantly in Coimbatore while the same has decreased significantly in Vellore whereas both minimum and maximum temperatures have increased significantly in Madurai since 1969 with climate change occurring between late 1980s and early 1990s. As a result, the south-west monsoon has been disturbed with August rainfall increasing with more dispersion while September rainfall decreasing with less dispersion. Thus, September, the peak rainfall month of south-west monsoon before climate change, has become the monsoon receding month after climate change. Though there has been no change in the trend of the north-east monsoon, the quantity of October and November rainfall has considerably increased with increased dispersion after climate change. On the whole, south-west monsoon has decreased with decreased dispersion while north-east monsoon has increased with increased dispersion. Consequently, the season window for south-west monsoon crops has shortened while the north-east monsoon crops are left to fend against flood risk during their initial stages. Further, the incoherence in warming, climate change and rainfall impact seen across the state necessitates devising different indigenous and institutional adaptation strategies for different regions to overcome the adverse impacts of climate change on agriculture.

  9. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios

    NARCIS (Netherlands)

    Wiebe, Keith; Lotze-Campen, H.; Sands, R.; Tabeau, A.A.; Meijl, van J.C.M.

    2015-01-01

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences thro

  10. Impact of climate change on the streamflow hydrology of the Yangtze River in China

    Science.gov (United States)

    Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...

  11. Assessing the Economic Impacts of Climate Change on Agriculture in Egypt : A Ricardian Approach

    OpenAIRE

    Eid, Helmy M.; El-Marsafawy, Samia M.; Ouda, Samiha A.

    2007-01-01

    This study employed the Ricardian approach to measure the economic impacts of climate change on farm net revenue in Egypt. Farm net revenue were regressed against climate, soil, socioeconomic and hydrological variables to determine which factors influence the variability of farm net revenues. 900 households from 20 governorates were interviewed. The standard Ricardian model was applied, in...

  12. Focus on Agriculture and Forestry Benefits of Reducing Climate Change Impacts

    Science.gov (United States)

    The objective of this focus issue is to present the methods and results of modeling exercises that estimate the impacts of climate change on agriculture and forestry under a consistent set of climate projections that represent futures with and without global-scale GHG mitigation....

  13. Climate change impact assessment of extreme precipitation on urban flash floods – case study, Aarhus, Denmark

    DEFF Research Database (Denmark)

    Madsen, Henrik; Sunyer Pinya, Maria Antonia; Rosbjerg, Dan;

    Climate change is expected to cause more intense extreme rainfall events, which will have a severe impact on the risk of flash floods in urban areas. An assessment study was performed for the city of Aarhus, Denmark, analysing different methods of statistical downscaling of climate model...

  14. Preliminary study on impact assessment of climate change on building risks induced by typhoons in Japan

    DEFF Research Database (Denmark)

    Nishijima, Kazuyoshi; Maruyama, Takashi; Graf, Mathias

    The present paper investigates possible impacts of the climate change on building risks caused by typhoons. The inputs to this investigation are: (1) outcomes from the numerical simulations with a Global Climate Model (GCM) developed under the framework of the KAKUSHIN program, (2) statistics...... on building damage in the event of Typhoon Songda, and (3) numerical simulation of the wind field induced by the typhoon Songda with the JMA Non- Hydrostatic Model (JMA-NHM). The first input is utilized to develop two sets of probabilistic typhoon models; i.e. corresponding to the current climate...... and the future climate subject to the climate change, whereas the other inputs are utilized to develop a model for structural performance of buildings. Taking basis in these models, changes of building risks under the climate change are investigated. The result shows that the building risks slightly decrease...

  15. Integrated Modelling of Climate Change Impacts in an Irrigated, Semi-arid Catchment

    Science.gov (United States)

    Haslauer, C. P.; von Gunten, D.; Wöhling, T.; Rudolph, D. L.; Cirpka, O. A.

    2015-12-01

    Predicting the impacts of climate change on hydrological processes is a central challenge for water management. Commonly, studies on climate-change effects focus on surface flow and feed-backs between surface and subsurface flows are neglected frequently. Furthermore, changes in hydrological processes are generally not distributed realistically. Integrated catchment models, based on partial-differential-equations, have the potential of overcoming these difficulties. However, these models are complicated to use in realistic settings, notably because of their long simulation time. In this presentation, we demonstrate a successful application of an integrated catchment model (HydroGeoSphere) in a semi-arid catchment in north-east Spain. The study area recently underwent a transition to irrigated agriculture, which is reflected in our model evaluations conducted under varying irrigation conditions. To accelerate model calibration, we developed a novel calibration method based on a hierarchy of computational grids. The climate scenarios for the region are based on four regional climate models, which are downscaled using a weather generator. These scenarios are used to estimate climate change impacts on hydrologic parameters in different irrigation settings. The effects of climate change strongly depend on the presence of irrigation. Water table depth and low flows are more sensitive to climate change when irrigation is present, while peak flows exhibit a more pronounced response to climate in scenarios without irrigation. In addition to the climatic means, we examined the impacts of changes in drought conditions. We compare the outcomes of droughts predicted by our hydrological model with simpler approaches based on drought indices. We show that drought indices oversimplify future hydrological impacts of droughts and can result in biased estimation of drought impacts, especially if drought indices do not take temperature changes into account.

  16. Climate Change Impacts on the Built Environment in the United States and Implications for Sustainability

    Science.gov (United States)

    Quattrochi, Dale A.

    2012-01-01

    As an integral part of the National Climate Assessment (NCA), technical assessment reports for 13 regions in the U.S. that describe the scientific rationale to support climate change impacts within the purview of these regions, and provide adaptation or mitigation measures in response to these impacts. These technical assessments focus on climate change impacts on sectors that are important environmental, biophysical, and social and economic aspects of sustainability within the U.S.: Climate change science, Ecosystems and biodiversity, Water resources, Human health, Energy supply and use, Water/energy/land use, Transportation, Urban/infrastructure/vulnerability, Agriculture, Impacts of climate change on tribal/indigenous and native lands and resources, Forestry, Land use/land cover change, Rural communities development, and Impacts on biogeochemical cycles, with implications for ecosystems and biodiversity. There is a critical and timely need for the development of mitigation and adaptation strategies in response to climate change by the policy and decision making communities, to insure resiliency and sustainability of the built environment in the future.

  17. Ozone depletion and climate change: impacts on UV radiation.

    Science.gov (United States)

    Bais, A F; McKenzie, R L; Bernhard, G; Aucamp, P J; Ilyas, M; Madronich, S; Tourpali, K

    2015-01-01

    We assess the importance of factors that determine the intensity of UV radiation at the Earth's surface. Among these, atmospheric ozone, which absorbs UV radiation, is of considerable importance, but other constituents of the atmosphere, as well as certain consequences of climate change, can also be major influences. Further, we assess the variations of UV radiation observed in the past and present, and provide projections for the future. Of particular interest are methods to measure or estimate UV radiation at the Earth's surface. These are needed for scientific understanding and, when they are sufficiently sensitive, they can serve as monitors of the effectiveness of the Montreal Protocol and its amendments. Also assessed are several aspects of UV radiation related to biological effects and health. The implications for ozone and UV radiation from two types of geoengineering methods that have been proposed to combat climate change are also discussed. In addition to ozone effects, the UV changes in the last two decades, derived from measurements, have been influenced by changes in aerosols, clouds, surface reflectivity, and, possibly, by solar activity. The positive trends of UV radiation observed after the mid-1990s over northern mid-latitudes are mainly due to decreases in clouds and aerosols. Despite some indications from measurements at a few stations, no statistically significant decreases in UV-B radiation attributable to the beginning of the ozone recovery have yet been detected. Projections for erythemal irradiance (UVery) suggest the following changes by the end of the 21(st) century (2090-2100) relative to the present time (2010-2020): (1) Ozone recovery (due to decreasing ozone-depleting substances and increasing greenhouse gases) would cause decreases in UVery, which will be highest (up to 40%) over Antarctica. Decreases would be small (less than 10%) outside the southern Polar Regions. A possible decline of solar activity during the 21(st) century

  18. The impact of climate change on the global wine industry: Challenges & solutions

    Directory of Open Access Journals (Sweden)

    Michelle Renée Mozell

    2014-12-01

    Full Text Available This paper explores the impact of climate change upon the global production of winegrapes and wine. It includes a review of the literature on the cause and effects of climate change, as well as illustrations of the specific challenges global warming may bring to the production of winegrapes and wine. More importantly, this paper provides some practical solutions that industry professionals can take to mitigate and adapt to the coming change in both vineyards and wineries.

  19. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    Science.gov (United States)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long

  20. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    Science.gov (United States)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production

  1. Does Water Management Reduce uncertainty of Projected Climate Change Impacts on River Discharge?

    Science.gov (United States)

    Pohle, I.; Koch, H.; Gaedeke, A.; Hinz, C.; Grünewald, U.

    2015-12-01

    Climate change impact studies are associated with error propagation and amplification of uncertainties through model chains. Water management, especially reservoir management, reduces discharge variability. In this study we investigated how water management influences uncertainty propagation of climate change scenarios. We applied a model ensemble of (i) the regional climate model STAR (STAR 0K: no further climate change, STAR 2K and 3K: increase of mean annual temperature by 2 K and 3 K resp.; each scenario is represented by 100 realizations), (ii) the hydrological models SWIM and EGMO, and (iii) the water management model WBalMo. The study was performed in the two neighbouring catchments of the Schwarze Elster River (Germany) and the Spree River (Germany and Czech Republic). These catchments have similar climate, topography and land use, but differ in their water management. The Spree River has a higher reservoir capacity, more withdrawals and discharges from water users and more water transfers. The projected natural runoff in both catchments is similar. Compared to STAR 0K, the natural runoff decreases remarkably in the other climate scenarios. The uncertainties related to the climate projection are propagated through the hydrological model. In the Schwarze Elster River catchment, these uncertainties are slightly increased by the water management model, whereas in the Spree River catchment, due to a higher reservoir capacity and more water transfers, interannual variability and uncertainty of managed discharge are strongly moderated by water management. The results of this study imply that generally, effective water management can reduce uncertainty related to climate change impacts on river discharge. Catchments with a high storage ratio are less vulnerable to changing climate conditions. This underlines the role of water management in coping with climate change impacts. Yet, due to decreasing reservoir volumes in drought periods, reservoir management alone

  2. Research on Climate Change and Its Impacts Needs Freedom of Research

    Directory of Open Access Journals (Sweden)

    Nicole Mölders

    2013-12-01

    Full Text Available Climate change captured my interest as a teenager when, at the dining table, my dad talked about potential anthropogenic climate changes. He brought up subjects such as “climate could change if the Siberian Rivers were to be deviated to the South for irrigation of the (semi arid areas of the former Soviet Union”. Other subjects were afforestation in the Sahel to enhance precipitation recycling, deforestation in the Tropics that could have worldwide impacts on climate, the local climate impacts of the Merowe High Dam in its vicinity and downstream, Atlantropa, a new ice age, and the increase in days with sunshine after the introduction of the high-chimney policy in the Rhein-Ruhr area, just to mention a few.

  3. Impacts of climate change on Oregon's coasts and estuaries: Chapter 6

    Science.gov (United States)

    Ruggiero,; Brown, Cheryl A.; Komar, Paul D.; Allan, Jonathan C.; Reusser, Deborah A.; Lee,

    2010-01-01

    Earth’s changing climate is expected to have significant physical impacts along the coast and estuarine shorelands of Oregon, ranging from increased erosion and inundation of low lying areas, to wetland loss and increased estuarine salinity. The environmental changes associated with climate change include rising sea levels, increased occurrences of severe storms, rising air and water temperatures, and ocean acidification. The combination of these processes and their climate controls are important to beach and property erosion, flood probabilities, and estuarine water quality, with the expectation of significant changes projected for the 21st century.

  4. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten;

    2014-01-01

    , these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal......Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However...... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  5. Adaptation to Climate change Impacts on the Mediterranean islands' Agriculture (ADAPT2CLIMA)

    Science.gov (United States)

    Giannakopoulos, Christos; Karali, Anna; Lemesios, Giannis; Loizidou, Maria; Papadaskalopoulou, Christina; Moustakas, Konstantinos; Papadopoulou, Maria; Moriondo, Marco; Markou, Marinos; Hatziyanni, Eleni; Pasotti, Luigi

    2016-04-01

    Agriculture is one of the economic sectors that will likely be hit hardest by climate change, since it directly depends on climatic factors such as temperature, sunlight, and precipitation. The EU LIFE ADAPT2CLIMA (http://adapt2clima.eu/en/) project aims to facilitate the development of adaptation strategies for agriculture by deploying and demonstrating an innovative decision support tool. The ADAPT2CLIMA tool will make it possible to simulate the impacts of climate change on crop production and the effectiveness of selected adaptation options in decreasing vulnerability to climate change in three Mediterranean islands, namely Crete (Greece), Sicily (Italy), and Cyprus. The islands were selected for two reasons: firstly, they figure among the most important cultivation areas at national level. Secondly, they exhibit similarities in terms of location (climate), size, climate change threats faced (coastal agriculture, own water resources), agricultural practices, and policy relevance. In particular, the tool will provide: i) climate change projections; ii) hydrological conditions related to agriculture: iii) a vulnerability assessment of selected crops; iv) an evaluation of the adaptation options identified. The project is expected to contribute significantly to increasing climate resilience of agriculture areas in Sicily, Cyprus and Crete as well as at EU and international level by: • Developing, implementing and demonstrating an innovative and interactive decision support tool (ADAPT2CLIMA tool) for adaptation planning in agriculture that estimates future climate change impacts on local water resources, as well as the climate change vulnerability of the agricultural crop production in the project areas; • Evaluating the technical and economic viability of the implementation of the ADAPT2CLIMA tool; • Developing climate change adaptation strategies for agriculture (including a monitoring plan) for the three project areas and presenting them to the competent

  6. Health impacts of climate change and biosecurity in the Asian Pacific region.

    Science.gov (United States)

    Sly, Peter D

    2011-01-01

    Our climate is changing as a result of human activity, and such changes have the potential to have a significant impact on human health. The basic requirements for health--clean air, safe drinking water, sufficient food and secure shelter--are all vulnerable to climate change. Low-income developing countries are especially vulnerable; no country, however, is totally immune. In Australia, we are already seeing evidence of the health effects of climate change with an increase in temperature-related food poisoning events and an increase in mosquito-borne infections, including Ross River virus and Dengue fever. In the Asian Pacific region the issues identified as most pressing vary from country to country, but a common theme is a lack of public understanding and education and lack of capacity for implementing mitigation strategies. Strategies addressing the health impacts of climate change must incorporate the principles of social justice and equity within the region.

  7. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  8. Development of new impact functions for global risk caused by climate change

    Science.gov (United States)

    Miyazaki, C.

    2014-12-01

    The purpose of our study is to identify and quantify global-scale risks which can be caused by future climate change. In particular, we focus on the global-scale risks which have critical impacts to human environments. Use of impact functions is one of the common way to quantify global-scale risks. Output of impact function is climate impacts (e.g. economic damage by temperature increasing) and input can be global temperature increasing and/or socioeconomic condition (e.g. GDP). As the first step of study, we referred to AR5 WG II report (AR5, hereafter) and comprehensive inventories of climate change risks developed by Strategic R&D Area Project of the Environment Research and Technology Development Fund (ICA-RUS project). Then we extracted information which can be used to develop impact function from them. By following SPM/AR5, we focused on 11 sectors and extracted quantitative description on climate impacts from the AR5 and paper/reports cited in AR5. As a result, we identified about 40 risk items to focus as global-scale risks by climate change. Using the collected information, we tentatively made impact function on sea level rise and so on. In addition, we also extracted the impact functions used in Integrated Assessment Models (IAMs). The literature survey on IAM suggested the risk items considered in IAMs are limited. For instance, although FUND model provides detailed impact functions compared with most of other IAMs, its impact functions deal with only several sectors (e.g. agriculture, forestry, biodiversity, sea level rise, human health, energy demand and water resources). The survey on impact functions in IAMs also suggested impact function for abrupt climate change (so-called Tipping Element) is premature. Moreover, as example for quantifying health risk by our calculation, we also present the result on global-scale projection of the health burden attributable to childhood undernutrition (Ishida et al., 2014, ERL).

  9. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

    NARCIS (Netherlands)

    Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Ittersum, van M.K.

    2015-01-01

    Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation option

  10. Impact of climate Change on Groundwater Recharge in the Tiber River Basin (Central Italy) Using Regional Climate model Outputs

    Science.gov (United States)

    Muluneh, F. B.; Setegn, S. G.; Melesse, A. M.; Fiori, A.

    2011-12-01

    Quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by many internal and external drivers. Changes in climate variables can affect the quantity and quality of various components of hydrological cycle. Among others, the local effects of climate change on groundwater resources were not fully studied in different part of the world as compared to the surface water. Moreover, understanding the potential impact of climate change on groundwater is more complex than surface water. The main objective of this study is to analyze the potential impact of climate change on Groundwater recharge in the Tiber River Basin using outputs from Regional Climate model. In this study, a physically-based watershed model called Soil Water Assessment Tool (SWAT) was used to estimate recharge characteristics and its response to climate change in Tiber River Basin (central Italy). The SWAT model was successfully calibrated and validated using observed weather and flow data for the period of 1963-1970 and 1971-1978 respectively. During calibration, the model was highly sensitivity to groundwater flow parameters. Dynamically downscaled rainfall and temperature datasets from ten Regional Climate Models (RCM) archived in 'Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE)' were used to force the model to assess the climate change impact on the study area. A quantile-mapping statistical correction procedure was applied to the RCM dataset to correct the inherent systematic biases. The climate change analysis indicated that by the end of 2080s the rainfall was found to decrease nearly up to 40% in dry period and there was an increase in temperature that could reach as high as 3 to 5 oC. By the end of 2080s the ground water recharge shows a decreasing trend as a response to changes in rainfall. However as the timing of both precipitation and

  11. Impacts of climate change and variability on European agriculture

    DEFF Research Database (Denmark)

    Orlandini, Simone; Nejedlik, Pavol; Eitzinger, Josef;

    2008-01-01

    Climate plays a fundamental role in agriculture because of to its influence on production. All processes are regulated by specific climatic requirements. Furthermore, European agriculture, based on highly developed farming techniques, is mainly oriented to high quality food production that is mor...

  12. Impact of climate change on crop yield and role of model for achieving food security.

    Science.gov (United States)

    Kumar, Manoj

    2016-08-01

    In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of

  13. Development of spatial water resources vulnerability index considering climate change impacts.

    Science.gov (United States)

    Jun, Kyung Soo; Chung, Eun-Sung; Sung, Jin-Young; Lee, Kil Seong

    2011-11-15

    This study developed a new framework to quantify spatial vulnerability for sustainable water resources management. Four hydrologic vulnerability indices--potential flood damage (PFDC), potential drought damage (PDDC), potential water quality deterioration (PWQDC), and watershed evaluation index (WEIC)--were modified to quantify flood damage, drought damage, water quality deterioration, and overall watershed risk considering the impact of climate change, respectively. The concept of sustainability in the Driver-Pressure-State-Impact-Response (DPSIR) framework was applied in selecting all appropriate indicators (criteria) of climate change impacts. In the examination of climate change, future meteorological data was obtained using CGCM3 (Canadian Global Coupled Model) and SDSM (Statistical Downscaling Model), and future stream run-off and water quality were simulated using HSPF (Hydrological Simulation Program - Fortran). The four modified indices were then calculated using TOPSIS, a multi-attribute method of decision analysis. As a result, the ranking obtained can be changed in consideration of climate change impacts. This study represents a new attempt to quantify hydrologic vulnerability in a manner that takes into account both climate change impacts and the concept of sustainability.

  14. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings

    DEFF Research Database (Denmark)

    Willems, P.; Arnbjerg-Nielsen, Karsten; Olsson, J.;

    2012-01-01

    for assessing the impacts of climate change on precipitation at the urban catchment scale. Downscaling of results from global circulation models or regional climate models to urban catchment scales are needed because these models are not able to describe accurately the rainfall process at suitable high temporal......Cities are becoming increasingly vulnerable to flooding because of rapid urbanization, installation of complex infrastructure, and changes in the precipitation patterns caused by anthropogenic climate change. The present paper provides a critical review of the current state-of-the-art methods...... of average precipitation.In this paper, following an overview of some recent advances in the development of innovative methods for assessing the impacts of climate change on urban rainfall extremes as well as on urban hydrology and hydraulics, several existing difficulties and remaining challenges in dealing...

  15. Impact of Climate Change on Urban Agglomerations in China's Coastal Region

    Institute of Scientific and Technical Information of China (English)

    Dong Suocheng; Tao Shu; YangWangzhou; Li Fei; LiShuangcheng; Li Yu; Liu Hongyan

    2012-01-01

    Climate change and urbanization issues are the two key factors that make humans liable to be affected by disasters, which are overlapped in urban agglomeration. The five big urban agglom- erations of China with strong economic power are the important engines for national economic and social development. However, being in the sea-land mutual interaction belts with a vast hazard- bearing body, they are affected by sea-land compound disasters, and are liable to suffer heavy disaster losses with climate change. It is suggested that government departments concerned should fully recognize the impact of climate change on coastal urban ag- glomerations, propose strategies as soon as possible, and integrate the impact of climate change and adaptation countermeasures into the various kinds of social-economic development plans for coastal urban regions.

  16. Impacts of Climate Change on Stream Flow in the Upper Mississippi River Basin: A Regional Climate Model Perspective, The

    OpenAIRE

    Manoj Jha; Zaitao Pan; Takle, Eugene S.; Roy Gu

    2003-01-01

    We evaluate the impact of climate change on stream flow in the Upper Mississippi River Basin (UMRB) by using a regional climate model (RCM) coupled with a hydrologic model, the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated and validated against measured stream flow data using observed weather data and inputs from the Environmental Protection Agency's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) geographical information/database system. The c...

  17. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape.

  18. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2013-04-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  19. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2012-09-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes and the importance of these signals needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven on meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone the impacts of anthropogenic emissions dominates though a climate penalty is found in the Arctic region and the Northwestern Europe where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes increasing to be up to an order of magnitude larger close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  20. The cascade of uncertainty in modeling the impacts of climate change on Europe's forests

    Science.gov (United States)

    Reyer, Christopher; Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin

    2015-04-01

    Projecting the impacts of global change on forest ecosystems is a cornerstone for designing sustainable forest management strategies and paramount for assessing the potential of Europe's forest to contribute to the EU bioeconomy. Research on climate change impacts on forests relies to a large extent on model applications along a model chain from Integrated Assessment Models to General and Regional Circulation Models that provide important driving variables for forest models. Or to decision support systems that synthesize findings of more detailed forest models to inform forest managers. At each step in the model chain, model-specific uncertainties about, amongst others, parameter values, input data or model structure accumulate, leading to a cascade of uncertainty. For example, climate change impacts on forests strongly depend on the in- or exclusion of CO2-effects or on the use of an ensemble of climate models rather than relying on one particular climate model. In the past, these uncertainties have not or only partly been considered in studies of climate change impacts on forests. This has left managers and decision-makers in doubt of how robust the projected impacts on forest ecosystems are. We deal with this cascade of uncertainty in a structured way and the objective of this presentation is to assess how different types of uncertainties affect projections of the effects of climate change on forest ecosystems. To address this objective we synthesized a large body of scientific literature on modeled productivity changes and the effects of extreme events on plant processes. Furthermore, we apply the process-based forest growth model 4C to forest stands all over Europe and assess how different climate models, emission scenarios and assumptions about the parameters and structure of 4C affect the uncertainty of the model projections. We show that there are consistent regional changes in forest productivity such as an increase in NPP in cold and wet regions while

  1. Costing the impact of climate change on tourism in Europe: results of the PESETA project. Climatic Change

    NARCIS (Netherlands)

    Amelung, B.; Moreno, A.

    2012-01-01

    Climate change might lead to large shifts in tourist flows, with large economic implications. This article simulates the effect of future climate change by the 2080s on outdoor international tourism expenditure within Europe. The assessment is based on the statistical relationship between bed nights

  2. Climate Change Impact on Photovoltaic Energy Output: The Case of Greece

    OpenAIRE

    Panagea, Ioanna S.; Tsanis, Ioannis K.; Koutroulis, Aristeidis G.; Manolis G. Grillakis

    2014-01-01

    Solar power is the third major renewable energy, constituting an increasingly important component of global future—low carbon—energy portfolio. Accurate climate information is essential for the conditions of solar energy production, maximization, and stable regulation and planning. Climate change impacts on energy output projections are thus of crucial importance. In this study the effect of projected changes in irradiance and temperature on the performance of photovoltaic systems in Greece i...

  3. The implication of irrigation in climate change impact assessment: a European-wide study.

    Science.gov (United States)

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-11-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982-2006) and three SRES scenarios (B1, B2 and A1B, 2040-2064) under rainfed and irrigated conditions, using a process-based crop model, SIMPLACE . We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr(-1) ). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area.

  4. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis in Nepal Himalaya.

    Directory of Open Access Journals (Sweden)

    Uttam Babu Shrestha

    Full Text Available Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0 in three different time periods (2030, 2050, and 2070 using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2 area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  5. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya.

    Science.gov (United States)

    Shrestha, Uttam Babu; Bawa, Kamaljit S

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  6. Impacts of climate change on rainfall extremes and urban drainage systems: A review

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Willems, P.; Olsson, J.;

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review concludes that in spite of significant advances there are still many limitations in our understanding...... of how to describe precipitation patterns in a changing climate in order to design and operate urban drainage infrastructure. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified and suitable solutions implemented. Design and optimization of urban...... drainage infrastructure considering climate change impacts and co-optimizing these with other objectives will become ever more important to keep our cities habitable into the future. © IWA Publishing 2013....

  7. The Impact of Climate Change on Metal Transport in a Lowland Catchment.

    Science.gov (United States)

    Wijngaard, René R; van der Perk, Marcel; van der Grift, Bas; de Nijs, Ton C M; Bierkens, Marc F P

    2017-01-01

    This study investigates the impact of future climate change on heavy metal (i.e., Cd and Zn) transport from soils to surface waters in a contaminated lowland catchment. The WALRUS hydrological model is employed in a semi-distributed manner to simulate current and future hydrological fluxes in the Dommel catchment in the Netherlands. The model is forced with climate change projections and the simulated fluxes are used as input to a metal transport model that simulates heavy metal concentrations and loads in quickflow and baseflow pathways. Metal transport is simulated under baseline climate ("2000-2010") and future climate ("2090-2099") conditions including scenarios for no climate change and climate change. The outcomes show an increase in Cd and Zn loads and the mean flux-weighted Cd and Zn concentrations in the discharged runoff, which is attributed to breakthrough of heavy metals from the soil system. Due to climate change, runoff enhances and leaching is accelerated, resulting in enhanced Cd and Zn loads. Mean flux-weighted concentrations in the discharged runoff increase during early summer and decrease during late summer and early autumn under the most extreme scenario of climate change. The results of this study provide improved understanding on the processes responsible for future changes in heavy metal contamination in lowland catchments.

  8. Climate change impacts on the Sundarbans mangrove ecosystem services and dependent livelihoods in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Shams Uddin

    2013-12-01

    Full Text Available The Sundarbans mangrove forest of Bangladesh provides ecosystem services having great importance for local livelihoods, national economy and global environment. Nevertheless, the Sundarbans is threatened by various natural and anthropogenic pressures including climate change. This paper presents the potential impacts of climate change on the ecosystem services of the Sundarbans and the forest dependent livelihoods. Both secondary information on climate change impacts and primary data on forest dependent livelihoods were used for the analysis. Recent study revealed that the suitable area of two dominant tree species ofthe Sundarbans - Sundri (Heritiera fomes and Gewa (Excoecaria agallocha may be decreased significantly by the year 2100 due to sea level rise (88 cm in the Sundarbans compared to the year 2001, which may be reduce the timber stock of those trees. This indicates the potential loss of economic value of the key provisioning services of Sundarbans. Similarly, the other ecosystem services (e.g. fisheries, tourism, biodiversity, carbon sequestration, etc. maybe affected by climate change. Consequently, the forest dependent livelihoods would be affected by the degraded ecosystem services of the forest. Further studies should quantify the impacts of climate change on all the ecosystem services and explore the potential loss and opportunities in future. A new paradigm of management should look forward considering climate change, ecological integrity, sustainable harvesting and ensuring continuity of the ecosystem services of the Sundarbans.

  9. The last decade in ecological climate change impact research: where are we now?

    Science.gov (United States)

    Jaeschke, Anja; Bittner, Torsten; Jentsch, Anke; Beierkuhnlein, Carl

    2014-01-01

    Climate change is increasingly affecting organisms and ecosystems. The amount of research and the number of articles in this field is overwhelming. However, single studies necessarily consider limited aspects. Hence, there is an increasing need for structuring the research approaches and findings in climate change research in order to direct future action in an efficient way towards research gaps and areas of uncertainty. Here, we review the current state of knowledge accumulated over the last 10 years (2003-2012) about impacts of climate change on species and ecosystems. Almost 1,200 articles of the scientific literature listed in the ISI Web of Science are analysed. We explore the geographical distribution of knowledge gain, the studied taxonomic groups, ecosystems and environmental parameters as well as the applied methods. Several knowledge gaps arise. Most of the first authors of the analysed articles are residents of North America, Australia or Europe. A similar pattern is found for the study areas. Vascular plants and therewith forests are the most studied taxonomic group and ecosystem. The use of models to estimate potential impacts of climate change is well established in climate change impact research and is continuously developing. However, there is a lack of empirical data derived from experimental climate change simulations. In a rapidly evolving research landscape, this review aims at providing an overview of the current patterns of knowledge distribution and research demands arising from knowledge gaps and biases. Our results should help to identify future research needs and priorities.

  10. Predicting the impact of climate change on threatened species in UK waters.

    Directory of Open Access Journals (Sweden)

    Miranda C Jones

    Full Text Available Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis and angelshark (Squatina squatina.

  11. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    Science.gov (United States)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions

  12. Assessing Climate Change Impacts on Electric Power Generation in the Western Interconnection

    Science.gov (United States)

    Bartos, M. D.; Chester, M.

    2014-12-01

    In recent years, concerns have grown over the potential impacts of climate change on electricity generation. Water resources are integral to the production of thermoelectric and hydroelectric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. Many generation technologies—including gas turbines and solar cells—are also vulnerable to changes in local climatic conditions like ambient air temperature. As extreme weather becomes more common, methods are needed to assess the impacts of climate change on regional power systems. However, these methods must also account for (1) heterogeneity in generation technologies, and (2) local variation in climatic conditions. This study uses a physically-based modeling system to assess the vulnerability of electric power infrastructure in the Western Interconnection. Climatic and hydrologic parameters relevant to power generation are identified for six generation technologies. Downscaled climate forcings are then used as inputs to a physically-based modeling system, consisting of the Variable Infiltration Capacity (VIC) hydrological model and the RBM one-dimensional stream temperature model. Impacts to generating capacity are estimated directly from changes in modeled climatic and hydrologic parameters, using functional relationships unique to each generating technology. A preliminary analysis of 1,302 power stations in the Western Interconnection reveals decreases in summertime generating capacity of 8-22%, with the largest impacts occurring at thermoelectric and hydroelectric facilities in the Pacific Northwest and California. Impacts to base-load thermoelectric plants are mitigated by recirculating cooling systems, which reduce the performance penalty of low flows and high water temperatures. Climate impacts on solar and wind capacity are relatively small, indicating that these energy sources may play a more prominent role as conventional generation

  13. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    Directory of Open Access Journals (Sweden)

    P. V. Caldwell

    2012-08-01

    Full Text Available Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic

  14. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080.

    Science.gov (United States)

    Fischer, Günther; Shah, Mahendra; Tubiello, Francesco N; van Velhuizen, Harrij

    2005-11-29

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological-economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5' X 5' latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.

  15. Prerequisites for understanding climate-change impacts on northern prairie wetlands

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Post van der Burg, Max; Pearse, Aaron T.

    2016-01-01

    The Prairie Pothole Region (PPR) contains ecosystems that are typified by an extensive matrix of grasslands and depressional wetlands, which provide numerous ecosystem services. Over the past 150 years the PPR has experienced numerous landscape modifications resulting in agricultural conversion of 75–99 % of native prairie uplands and drainage of 50–90 % of wetlands. There is concern over how and where conservation dollars should be spent within the PPR to protect and restore wetland basins to support waterbird populations that will be robust to a changing climate. However, while hydrological impacts of landscape modifications appear substantial, they are still poorly understood. Previous modeling efforts addressing impacts of climate change on PPR wetlands have yet to fully incorporate interacting or potentially overshadowing impacts of landscape modification. We outlined several information needs for building more informative models to predict climate change effects on PPR wetlands. We reviewed how landscape modification influences wetland hydrology and present a conceptual model to describe how modified wetlands might respond to climate variability. We note that current climate projections do not incorporate cyclical variability in climate between wet and dry periods even though such dynamics have shaped the hydrology and ecology of PPR wetlands. We conclude that there are at least three prerequisite steps to making meaningful predictions about effects of climate change on PPR wetlands. Those evident to us are: 1) an understanding of how physical and watershed characteristics of wetland basins of similar hydroperiods vary across temperature and moisture gradients; 2) a mechanistic understanding of how wetlands respond to climate across a gradient of anthropogenic modifications; and 3) improved climate projections for the PPR that can meaningfully represent potential changes in climate variability including intensity and duration of wet and dry periods. Once

  16. Uncertainties in assessing climate change impacts on the hydrology of Mediterranean basins

    Science.gov (United States)

    Ludwig, Ralf

    2013-04-01

    There is substantial evidence in historical and recent observations that the Mediterranean and neighboring regions are especially vulnerable to the impacts of climate change. Numerous climate projections, stemming from ensembles of global and regional climate models, agree on severe changes in the climate forcing which are likely to exacerbate subsequent ecological, economic and social impacts. Many of these causal connections are closely linked to the general expectation that water availability will decline in the already water-stressed basins of Africa, the Mediterranean region and the Near East, even though considerable regional variances must be expected. Consequently, climate change impacts on water resources are raising concerns regarding their possible management and security implications. Decreasing access to water resources and other related factors could be a cause or a 'multiplier' of tensions within and between countries. Whether security threats arise from climate impacts or options for cooperation evolve does not depend only on the severity of the impacts themselves, but on social, economic, and institutional vulnerabilities or resilience as well as factors that influence local, national and international relations. However, an assessment of vulnerability and risks hinges on natural, socio-economic, and political conditions and responses, all of which are uncertain. Multidisciplinary research is needed to tackle the multi-facet complexity of climate change impacts on water resources in the Mediterranean and neighboring countries. This is particularly true in a region of overall data scarcity and poor data management and exchange structures. The current potential to develop appropriate regional adaptation measures towards climate change impacts suffers heavily from large uncertainties. These spread along a long chain of components, starting from the definition of emission scenarios to global and regional climate modeling to impact models and a

  17. Climate change impacts on the water balance of coastal and montane rainforests in northern Queensland, Australia

    Science.gov (United States)

    Wallace, Jim; McJannet, Dave

    2012-12-01

    SummaryHow the water balance of coastal and montane rainforests in northern Queensland could change in response to climate change was examined using physically based models of interception and transpiration along with long term weather records. Future rainfall and temperature changes were based on the most recent climate modelling for the region and were assumed to fall within the range ±20% for rainfall with a temperature increase of 1-3 K. Climate change will affect the water balance of Australian rainforests primarily via rainfall changes rather than temperature. Any given change in rainfall produces a greater change in downstream runoff, the amplification ranging from 1.1 to 1.5 in the wet season to a factor of 12 in the dry season. Changes in wet season rainfall (80% of the annual total) dominate the total annual amount of water released for downstream flow, but dry season rainfall (20% of the annual total) changes are also very important as they affect onset and the duration of the period when there is no runoff. This period is currently ˜110 days and this would change by ±30 days under the above climate scenarios. There are also potential in situ impacts of climate change that affect how long the rainforest canopy is wet, which may have important implications for the epiphytes and mosses that depend on these wet canopy conditions. Similarly there may be significant impacts on downstream freshwater species whose life cycles are adapted to the current dry season flow regime.

  18. 21 century climatic change impacts on the hydrology of major rivers in the Tibetan Plateau

    Science.gov (United States)

    Su, F.; Duan, X.; Zhang, L.; Hao, Z.; Cuo, L.

    2011-12-01

    Major Asian rivers including Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtz originate from the Tibetan Plateau (TP). These rivers support billions of people downstream, and the TP is therefore considered as the water tower of Asia. Changes of climate factors (e.g., temperature and precipitation) and the induced changes (e.g, melting of glacial and permafrost) may have substantial impacts on the hydrological cycle and runoff of the rivers in the TP. Therefore, quantifying the potential impacts of future climate changes over the TP is essential to assist policy-makers and water managers in adopting strategies reflecting the state of scientific understanding of the likelihood. In this work, temperature and precipitation projected by 20 general circulation models (GCMs) from emission scenarios B1 (lower emission scenario) and A2 (mid-high emission scenario) were used to characterize the potential climate changes over the TP for 2011-2099. Outputs from the 20 GCMs were bias corrected and statistically downscaled, and were used to force a land surface hydrology model. The hydrology model was applied to investigate the impacts of potential climate changes on the hydrology over the TP in the 21th century. Precipitation and streamflow regimes vary among the river basins in the TP. The investigation of climate change impacts was focused on the precipitation-dominated and melting water-dominated river basins.

  19. Impacts of climate change on transportation in Canada : final workshop report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This workshop was attended by transportation professionals and experts in climate change who identified potential impacts of climate change on transportation infrastructure and operations in Canada. Global climate models have suggested some of the changes that can be anticipated, but there is a need for regional scenarios and impact assessment to determine the impact of climate change on transportation demand. Some impacts have already been observed. Warmer temperatures and change in permafrost are affecting the winter and all season roads in northern regions. Western Canada is dealing with an increase in landslide related damage to roads and railroads, and sea level rise and storm surges may threaten some coastal infrastructure. It was argued that infrastructure investment is planned for a long-term horizon, but to date, climate change has not been a major factor in planning activities. It was suggested that information should be shared between industry and government for greater adaptability. In particular, industry is concerned with the recent reduction in weather monitoring activities by federal government agencies. The interdependence of transportation and other economic sectors was also highlighted because all sectors rely on transportation. It was suggested that research priorities should be based on the most probable risks and the most sensitive areas of the country. tabs.

  20. The Impacts of Climate Change on Hydrology and Water Resources in Zayandeh-Rood Basin - Iran

    Science.gov (United States)

    Abrishamchi, A.; Azaranfar, A.; Ghasemi, S.; Tajrishy, M.; Marino, M. A.; Abrishamchi, A.

    2007-12-01

    Increasing concentration of greenhouse gases may have significant consequences on the global climate. If climate change occurs, changes in temperature and precipitation may have profound impacts on hydrologic processes, water resources and water uses such as agriculture. In Zayandeh-River Basin of Iran, agriculture is an important economic activity and is the main water user. Climate change may exacerbate the already contentious water supply situation in the basin. This paper focuses on the impact of climate change on hydrology and water resources of Zayandeh-Rood river basin. GCM models do not have suitable spatial resolution for regional assessment, so GCM outputs should be downscaled to the regional scale. In this paper, statistical downscaling is used in two difference methods (probability and regression) for downscaling the CGCM2 model outputs under A2 and B2 scenarios for two periods: 2021-2050 (immediate future) and 2071-2100 (far future). Temperature and precipitation projections from the downscaled GCM outputs were used as inputs to the hydrologic model. To study the impact of climate change on the water resources in the basin, an operational model was used to simulate the operation of the Zayandeh-Rood reservoir under different hydrologic projections. Both scenarios showed similar increases in temperature while they have less agreement in the amount and rate of precipitation they projected. The results of this study also show that the water resources in the study area are sensitive to changes in temperature and precipitation projections. The reservoir simulations provide information on the timing and rate of changes expected in water supply. The methodology developed can be used to predict the impacts of new or updated predictions of climate change. Vulnerability to climate change may be characterized as a function of three components: sensitivity, exposure, and adaptive capacity. In this study, only the first component and infrastructure as an indicator

  1. Use of RCM simulations to assess the impact of climate change on wind energy availability

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, Rebecca Jane

    2004-01-01

    There is considerable interest in the potential impact of climate change on the feasibility and predictability of renewable energy sources including wind energy. This report presents an application and evaluation of physical (dynamical) downscaling toolsfor examining the impact of climate change...... on near-surface flow and hence wind energy density across northern Europe. It is shown that: - Simulated wind fields using the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) during the control period(1961-1990) exhibit reasonable and realistic features as documented in in situ observations...... for a small increase in the annual wind energyresource over northern Europe between the control run (January 1, 1961 – December 30, 1990) and climate change projection period (January 1, 2071 – December 30, 2100), and for more substantial increases in mean wind speed and energy density during thewinter season...

  2. Using Impact-Relevant Sensitivities to Efficiently Evaluate and Select Climate Change Scenarios

    Science.gov (United States)

    Vano, J. A.; Kim, J. B.; Rupp, D. E.; Mote, P.

    2014-12-01

    We outline an efficient approach to help researchers and natural resource managers more effectively use global climate model information in their long-term planning. The approach provides an estimate of the magnitude of change of a particular impact (e.g., summertime streamflow) from a large ensemble of climate change projections prior to detailed analysis. These estimates provide both qualitative information as an end unto itself (e.g., the distribution of future changes between emissions scenarios for the specific impact) and a judicious, defensible evaluation structure that can be used to qualitatively select a sub-set of climate models for further analysis. More specifically, the evaluation identifies global climate model scenarios that both (1) span the range of possible futures for the variable/s most important to the impact under investigation, and (2) come from global climate models that adequately simulate historical climate, providing plausible results for the future climate in the region of interest. To identify how an ecosystem process responds to projected future changes, we methodically sample, using a simple sensitivity analysis, how an impact variable (e.g., streamflow magnitude, vegetation carbon) responds locally to projected regional temperature and precipitation changes. We demonstrate our technique over the Pacific Northwest, focusing on two types of impacts each in three distinct geographic settings: (a) changes in streamflow magnitudes in critical seasons for water management in the Willamette, Yakima, and Upper Columbia River basins; and (b) changes in annual vegetation carbon in the Oregon and Washington Coast Ranges, Western Cascades, and Columbia Basin ecoregions.

  3. Impacts of climate change on plant productivity in the Cajander larch woodlands of northeastern Eurasia

    Science.gov (United States)

    Berner, L. T.; Beck, P.; Bunn, A. G.; Goetz, S. J.

    2013-12-01

    Climate change in Northern Eurasia is driving shifts in the productivity and extent of forest ecosystems, which can in turn feedback on the climate system. Few studies have examined plant response to climate change near latitudinal treeline in northeastern Siberia. We therefore quantified trends in climate and plant productivity, as well as productivity-climate relationships, in the Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma River watershed using satellite-derived normalized difference vegetation indices (NDVI), tree ring measurements, and climate data. Averaged across the watershed there was a 1.0°C increase in mean summer temperature (T) from 1938 to 2009, but no systematic change in precipitation or climate moisture index (CMI). Plant productivity, as indicated by mean summer NDVI (NDVIs), was widely correlated with T and exhibited positive trends across 20% of the watershed, primarily in the climatically coolest area. In the climatically warmest areas NDVIs was positively associated with CMI instead of T and positive trends in NDVIs were uncommon. Annual larch basal area increment was positively correlated with NDVIs (r=0.44, Plimited increases in productivity. Unless there is a concomitant increase in moisture availability with future warming, it is possible that increased moisture stress could progressively limit forest productivity and perhaps slow the rate of forest expansion into the tundra, which could have significant climate feedback implications dues to impacts on carbon storage and surface energy balance.

  4. Simulation of hydrosedimentological impacts caused by climate change in the Apucaraninha River watershed, southern Brazil

    Science.gov (United States)

    Ramos Iensen, I. R.; Bauer Schultz, G.; Dos Santos, I.

    2015-03-01

    Climate change can cause significant modifications in hydrosedimentological processes. Climate projections indicate the occurrence of extreme events, in terms of precipitation, droughts, floods and temperature. By increasing temperatures and altering precipitation regimes, climate change is expected to affect sediment dynamics. Predictions of the effects of climate change on streamflow and sediment yield vary widely, depending on the geographical location and climate scenarios used. Mathematical modelling can be used to simulate the hydrosedimentological processes in watersheds and enable the simulation of climate change effects on sediment yield. This paper aims to simulate the impacts of climate change hydrosedimentological dynamics in the Apucaraninha River watershed (504 km²), southern Brazil, considering the climate change scenarios A2 (pessimistic about the emissions of greenhouse gases) and B2 (optimistic about the emissions of greenhouse gases), developed by the IPCC. The Soil and Water Assessment Tool (SWAT) was used to evaluate the impacts of climate projections on the sediment yield in the Apucaraninha River watershed. The model was calibrated and validated using daily streamflow and sediment data from 1987 to 2012. The model presented satisfactory fit to the observed data allowing the reproduction of the current hydrological conditions of the watershed. Based on the satisfactory results in calibration and validation, the climate scenarios A2 and B2 were inserted to simulate streamflow and sediment conditions for the period 2071-2100. The results for both scenarios indicate that simulations of both climate scenarios resulted in changes in hydrosedimentological dynamics in the Apucaraninha River watershed, mainly in terms of decrease in average sediment yield due to the reduction in precipitation amount and increase in evapotranspiration. Our results also indicate that every 1% change in precipitation has resulted in 2.8% change in soil erosion and 1

  5. Analysis of possible impacts of climate change on the hydrological regimes of different regions in Germany

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2009-08-01

    Full Text Available In this study, the impact of climate change scenarios on the hydrological regimes of five different regions in Germany is investigated. These regions (Northwest Germany, Northeast Germany and East German basins, upper and lower Rhine, pre-Alps differ with respect to present climate and projected climate change. The physically based SVAT-model SIMULAT is applied to theoretical soil columns based on combinations of land use, soil texture and groundwater depth to quantify climate change effects on the hydrological regime. Observed climate, measured at climate stations of the German Weather Service (1991–2007, is used for comparison with climate projections (2071–2100 generated by the regional scale climate model WETTREG.

    While all climate scenarios implicate an increase in precipitation in winter, a decrease in precipitation in summer and an increase in temperature, the simulated impacts on the hydrological regime are regionally different. In the Rhine region and in Northwest Germany, an increase in the annual runoff and groundwater recharge is simulated despite the increase in temperature and potential evapotranspiration. In the Eastern part of Germany and the pre-Alps, annual runoff and groundwater recharge will decrease. Due to dry conditions in summer, the soil moisture deficit will increase (in Northeast Germany and the East German basins in particular or remain constant (Rhine region. In all regions the seasonal variability in runoff and soil moisture status will increase. Despite regional warming actual evapotranspiration will decrease in most regions except in areas with shallow groundwater tables and the lower Rhine. Although the study is limited by the fact that only one climate model was used to drive one hydrologic model, the study shows that the hydrological regime will be affected by climate change. The direction of the expected changes seems to be obvious as well as the necessity of the adaptation of future water

  6. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Goldman, Charles

    2008-12-01

    This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the problem is to understand how the electric system is vulnerable to physical weather risk, and how to make use of information from climate models to characterize the way these risks may evolve over time, including a treatment of uncertainty. In this paper, to provide the necessary technical background in climate science, we present an overview of the basic physics of climate and explain some of the methodologies used in climate modeling studies, particularly the importance of emissions scenarios. We also provide a brief survey of recent climate-related studies relevant to electric system planning in the Western US. To define the institutional context, we discuss the core elements of the resource and reliability planning processes used currently by utilities and by the Western Electricity Coordinating Council. To illustrate more precisely how climate-related risk could be incorporated into modeling exercises, we discuss three idealized examples. Overall, we argue that existing methods of analysis can and should be extended to encompass the uncertainties related to future climate. While the focus here is on risk related to physical impacts, the same principles apply to a consideration of how future climate change policy decisions might impact the design and functioning of the electric grid. We conclude with some suggestions and recommendations on how to begin developing this approach within the existing electric system planning framework for the West.

  7. Potential Impacts of Global Climate Change on Power and Energy Generation

    Directory of Open Access Journals (Sweden)

    Christian Ifeanyi ENETE

    2011-10-01

    Full Text Available Climate change and climate variability is receiving much attention recently because it has significant effects on our power and energy sector and therefore on the socio-economic activities of the society especially in a developing country such as Nigeria. Approach: The aim of the study is to examine the influence of climate change on power generation. Literatures were identified for review through a comprehensive search by using electronic and non-electronic databases. Related published literature and documents were searched in a systematic way using a range of key words relating to climate change impacts and energy. Results: The literature review indicates that climate change undermine power and energy production by increasingly depleting renewable and non-renewable sources, creating resources scarcity as well as damage to infrastructure. The review also indicate that climate change undermine environmental dimensions by increasing sea-level rise, extreme weather events and land degradation and pollution. Conclusion: In reducing climate-induced threats on power sector, efforts should be geared towards ensuring that our energy sector withstand the changes to our climate that are already underway by optimizing energy mix, developing low carbon and renewable energy, formulating relevant law and regulations and promoting technology advancement and economic engineering.

  8. Global Potential for Hydro-generated Electricity and Climate Change Impact

    Science.gov (United States)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  9. Climate change impacts on California vegetation: physiology, life history, and ecosystem change.

    OpenAIRE

    Cornwell, William K.; Stuart, Stephanie A.; Ramirez, Aaron; Dolanc, Christopher R.; Thorne, James H.; Ackerly, David D

    2012-01-01

    Dominant plant species mediate many ecosystem services, including carbon storage, soil retention, and water cycling. One of the uncertainties with climate change effects on terrestrial ecosystems is understanding where transitions in dominant vegetation, often termed state change, will occur. The complex nature of state change requires multiple lines of evidence. Here, we present four lines of inquiry into climate change effects on dominant vegetation, focu...

  10. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    Science.gov (United States)

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction.

  11. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  12. Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years

    NARCIS (Netherlands)

    Kabel, K.; Moros, M.; Porsche, C.; Neumann, T.; Adolphi, F.; Andersen, T.J.; Siegel, H.; Gerth, M.; Leipe, T.; Jansen, E.; Sinninghe Damsté, J.S.

    2012-01-01

    Climate change has a strong impact on ecosystem health, particularly in marginal seas(1) such as the Baltic, for example causing the spreading of anoxic areas (oxygen-free areas, the so-called dead zones) through strong feedbacks. Marked ecosystem changes in the Baltic Sea have been recorded in the

  13. Climate Change Impacts and Greenhouse Gas Mitigation Effects on US Water Quality

    Science.gov (United States)

    Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic...

  14. Potential impact of climate change on porous asphalt with a focus on winter damage

    NARCIS (Netherlands)

    Kwiatkowski, K.P.; Stipanovic Oslakovic, I.; Hartmann, A.; Maat, ter H.W.

    2016-01-01

    This chapter investigates the impact and adaptation options of climate change on porous asphalt
    (PA) roads, specifically for the case of winter weather (freeze–thaw cycles) and road damage in
    the Netherlands. Changes in weather patterns pose a threat to the serviceability and long-term
    p

  15. Climate Change Impact Assessment and Adaptation Options in Vulnerable Agro-Landscapes in East-Africa

    Science.gov (United States)

    Manful, D.; Tscherning, K.; Kersebaum, K.; Dietz, J.; Dietrich, O.; Gomani, C.; Böhm, H.; Büchner, M.; Lischeid, G.,; Ojoyi, M.,

    2009-04-01

    Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.

  16. Assessing the impact of climate change on smallholder farmers’ crop net revenue in Togo

    Directory of Open Access Journals (Sweden)

    Agossou Gadédjisso-Tossou

    2016-12-01

    Full Text Available This study employs a Ricardian modelling approach to measure the impact of climate change variables such as temperature and rainfalls on smallholder famers’ crop net revenue in Togo. The obtained results show that climate has a nonlinear effect on crop net revenue. In rainy season, the marginal impact of temperature on farmers’ net revenue is negative, while the impact of rainfalls is positive. The scenarios of decrease of rainfalls and/or increase of the temperature show negative impacts on the agriculture of Togo given the already harsh climatic conditions in the country. Other variables such as educational attainment, access to extension services and livestock ownership are found to have positive impact on farmers’ crop net revenue. Consequently, policies aimed at improving those factors could improve smallholder farmers’ wellbeing.

  17. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scen

  18. Assessing climate change impacts on water balance in the Mount Makiling forest, Philippines

    Indian Academy of Sciences (India)

    E A Combalicer; R V O Cruz; S Lee; S Im

    2010-06-01

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change impacts based on two scenarios (A1B and A2) from CGCM3 experiment. The annual precipitation change was estimated to be 0.1–9.3% increase for A1B scenario, and −3.3 to 3.3% decrease/increase for the A2 scenario. Difference in the mean temperature between the present and the 2080s were predicted to be 0.6–2.2°C and 0.6–3.0°C under A1B and A2 scenarios, respectively. The water balance showed that 42% of precipitation is converted into evaporation, 48% into streamflow, and 10% into deep seepage loss. The impacts of climate change on water balance reflected dramatic fluctuations in hydrologic events leading to high evaporation losses, and decrease in streamflow, while groundwater flow appeared unaffected. A study on the changes in monthly water balance provided insights into the hydrologic changes within the forest watershed system which can be used in mitigating the effects of climate change.

  19. Assessing the impacts of climate change on the forested watersheds in Korea using RCM scenarios

    Science.gov (United States)

    Jung, H.; Yoon, J. H.; Jeon, S. W.

    2015-12-01

    Climate change has significant effects on water resources in Korea, where about the 70% of areas are forested, by direct and indirect ways such as changes in forest species distribution and the growth rates. We explored the effect of climate change on water balance in the eight forested DAM watersheds by using a process-based hydrological model which integrates the various mechanisms of forest hydrology and developed the simplified impact response model to quantify the regional-scale impacts. As the first step of study, the GIS-based BROOK90 (gB90), operated on a grid resolution of 5×5 arc minute resolution under the RCP-based regional climate model (RCM) scenarios. To separate the effects of ecosystem functioning and distribution changes from the overall runoff change, modeling has conducted based on the three novel approaches of climate change with a doubled CO2 concentration, increases in the deciduous forest fraction at each watershed, and three RCM climate change. The results of the process-based model study are extended to develop the impact response model to assist policy makers to derive informed decisions in land, forest and water management.

  20. The impact of high-end climate change on agricultural welfare.

    Science.gov (United States)

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-08-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.

  1. The impacts of climate change on energy: An aggregate expenditure model for the US

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W. [Boston Univ., MA (United States); Mendelsohn, R. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies

    1998-09-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion.

  2. Impact of stratospheric variability on tropospheric climate change

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Amico, Mauro [University of Reading, NCAS Climate, Reading (United Kingdom); Institut fuer Physik der Atmosphaere, Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Stott, Peter A.; Scaife, Adam A. [Met Office Hadley Centre, Exeter (United Kingdom); Gray, Lesley J. [University of Reading, NCAS Climate, Reading (United Kingdom); Rosenlof, Karen H. [NOAA Earth System Research Laboratory, Boulder, CO (United States); Karpechko, Alexey Yu. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom)

    2010-02-15

    An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979-2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichon eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichon eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed. (orig.)

  3. A GIS framework for the assessment of tick impact on human health in a changing climate

    Directory of Open Access Journals (Sweden)

    Agustin Estrada-Peña

    2007-05-01

    Full Text Available A framework to evaluate the impact of ticks on human health under various scenarios of climate change is proposed. The purpose is not to provide a comprehensive plan (e.g. the economic impact of ticks on human society is not included, instead we wish to describe a series of indices that would be helpful by obtaining homogeneous comparisons of impact and vulnerability exerted by ticks in different regions, countries or continents, using normalized sets of population, vegetation, climate and physical attributes of the territory. Three tick species, i.e. Dermacentor marginatus, Rhipicephalus turanicus and Hyalomma marginatum, have been traced over the territory of Spain to further explain the computation of these indices. The discussion is based on tick habitat suitability, used as a measure of the abiotic (climate fitness of the habitat for the species in question, and the sensitivity of each tick species to the rate of change of habitat suitability with respect to climate change. The impact is the rate of change in habitat suitability weighted with a fuzzy logic function evaluating the total number of people in an area, percent of rural population and accessibility of the geographical divisions (expressed as hexagons with a 10 km radius used in the study. The different climate scenarios evaluated in relation to ticks show that the north-western part of Spain would suffer the greatest impact in case the mean temperature would increase, while the Mediterranean region would suffer the highest impact if temperatures decreased. Vulnerability, based on the sanitary structure of the territory and on the impact on human activities due to the change in tick distribution and abundance, is proposed as a measure of adaptation of society to these climate scenarios. The cost is evaluated as a function of land use and tick habitat suitability in a buffer zone surrounding each geographic division. All indices proposed have been obtained by search of common and

  4. Bio-physical vs. Economic Uncertainty in the Analysis of Climate Change Impacts on World Agriculture

    Science.gov (United States)

    Hertel, T. W.; Lobell, D. B.

    2010-12-01

    Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. The recent paper by Hertel, Burke and Lobell (GEC, 2010) considers three scenarios of agricultural impacts of climate change, corresponding to the fifth, fiftieth, and ninety fifth percentiles of projected yield distributions for the world’s crops in 2030. They evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, their low productivity scenario reveals the potential for much larger food price changes than reported in recent studies which have hitherto focused on the most likely outcomes. The poverty impacts of price changes under the extremely adverse scenario are quite heterogeneous and very significant in some population strata. They conclude that it is critical to look beyond central case climate shocks and beyond a simple focus on yields and highly aggregated poverty impacts. In this paper, we conduct a more formal, systematic sensitivity analysis (SSA) with respect to uncertainty in the biophysical impacts of climate change on agriculture, by explicitly specifying joint distributions for global yield changes - this time focusing on 2050. This permits us to place confidence intervals on the resulting price impacts and poverty results which reflect the uncertainty inherited from the biophysical side of the analysis. We contrast this with the economic uncertainty inherited from the global general equilibrium model (GTAP), by undertaking SSA with respect to the behavioral parameters in that model. This permits us to assess which type of uncertainty is more important for regional price and poverty outcomes. Finally, we undertake a

  5. Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa

    Science.gov (United States)

    Farzan Ahmed, Kazi; Wang, Guiling; You, Liangzhi; Yu, Miao

    2016-02-01

    Agriculture is a key component of anthropogenic land use and land cover changes that influence regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important factor shaping agricultural land use. In this study, we compare the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on a balance between food supply and demand, and accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. The impact of human decision-making on land use is explicitly considered through multiple "what-if" scenarios. In the application to West Africa, future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. Without agricultural intensification, the climate-induced decrease in crop yield together with future increases in food demand is found to cause a significant increase in cropland areas at the expense of forest and grassland by the mid-century. The increase in agricultural land use is primarily climate-driven in the western part of West Africa and socioeconomically driven in the eastern part. Analysis of results from multiple scenarios of crop area allocation suggests that human adaptation characterized by science-informed decision-making can potentially minimize future land use changes in many parts of the region.

  6. Modeling climate change impact in hospitality sector, using building resources consumption signature

    Science.gov (United States)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  7. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie;

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....... by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...

  8. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2016-01-01

    Full Text Available Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.

  9. From global framing to local action : translation of climate change impacts in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ogunseitan, O.A. [Harvard Univ., Cambridge, MA (United States)

    2000-06-01

    There is considerable controversy regarding policy and climate change mitigation in Africa. Its resolution will require integrating local knowledge and values into climate impact assessments. Africa's vulnerability to climate change can be traced to the frequency of socio-ecological devastation that comes from major climate variations on the continent. The incidence of famines, homelessness and disease epidemics that require international assistance are reflections of weak policies and institution action frames used to cope with climate and weather related emergencies. However, the valuation of climate change impacts has a subjective dimension that can be gained only through indigenous experience and an understanding of values associated with life-saving intervention programs. A recent study showed that discount rates applied to future life-saving programs by Africans are very different from the rates applied in developed countries, and that the difference should be reflected in national development programs and transnational initiatives for capacity building. The study suggests that if the boundary institutions responsible for public health security have not been too effective in resolving the policy controversy surrounding Africa's participation in climate change assessments, it is due partly to the limitations imposed by cross-scale issues in framing. It was concluded that efforts to reduce Africa's dependence on global emergency health response systems will necessitate the development of autonomous capacity to adapt to natural disasters. Appropriate frame reflection is needed at the local level. 56 refs., 3 tabs., 1 fig.

  10. Climate Change Potential Impacts on the Built Environment and Possible Adaptation Strategies

    Science.gov (United States)

    Quattrochi, Dale A.

    2014-01-01

    The built environment consists of components that exist at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. Thus, the impacts of climate change on the built environment may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, mechanisms may exist wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. This presentation surveys potential climate change impacts on the built environment from the perspective of the National Climate Assessment, and explores adaptation measures that can be employed to mitigate these impacts.

  11. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2016-08-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  12. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO): Science at Your Fingertips

    Science.gov (United States)

    Jennings, L. N.; Treasure, E.; Moore Myers, J.; McNulty, S.

    2012-12-01

    There is an ever-increasing volume of useful scientific knowledge about climate change effects and management options for natural ecosystems. Agencies such as the USDA Forest Service have been charged with the need to evaluate this body of knowledge and if necessary adapt to the impacts of climate change in their forest planning and management. However, the combined volume of existing information and rate of development of new information, lack of climate change specialists, and limited technology transfer mechanisms make efficient access and use difficult. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) addresses this difficulty through its publically accessible web-based tool that puts current and concise climate change science at the fingertips of forest planners and managers. A collaborative product of the USDA Forest Service Research Stations and the National Forest System, TACCIMO integrates peer-reviewed research with management and planning options through search and reporting tools that connect land managers with information they can trust. TACCIMO highlights elements from the wealth of climate change science with attention to what natural resource planners and managers need through a searchable repository of over 4,000 effects of climate change and close to 1,000 adaptive management options, all excerpted from a growing body of peer-reviewed scientific literature. A geospatial mapping application provides downscaled climate data for the nation and other spatially explicit models relevant to evaluating climate change impacts on forests. Report generators assist users in capturing outputs specific to a given location and resource area in a consistent and organized manner. For USDA Forest Service users, science findings can be readily linked with management conditions and capabilities from national forest management plans. The development of TACCIMO was guided by interactions with natural resource professionals, resulting

  13. Impacts of climate change on soil erosion in Portuguese watersheds with contrasting Mediterranean climates and agroforestry practices

    Science.gov (United States)

    Nunes, J. P.; Lima, J. C.; Bernard-Jannin, L.; Veiga, S.; Rodríguez-Blanco, M. L.; Sampaio, E.; Batista, D. P.; Zhang, R.; Rial-Rivas, M. E.; Moreira, M.; Santos, J. M.; Keizer, J. J.; Corte-Real, J.

    2012-04-01

    Climate change in Mediterranean regions could lead to higher winter rainfall intensity and, due to higher climatic aridity, lower vegetation cover. This could lead to increasing soil erosion rates, accelerating ongoing soil degradation and desertification processes. Adaptation to these scenarios would have costs and benefits associated with soil protection but also agroforestry production and water usage. This presentation will cover project ERLAND, which is studying these impacts for two headwater catchments (impacts of climate change include less favorable conditions for eucalypt growth, higher incidence of wildfires, and less available water for summer irrigation, all of which could lead to lower vegetation cover. The Guadalupe catchment in southern Portugal has a dry Mediterranean climate (700 mm/yr, falling mostly in winter). The land-use is montado, an association between sclerophyllous oaks (cork and holm oaks) and annual herbaceous plans (winter wheat or pasture). The region suffers occasional severe droughts; climate change has the potential to increase the frequency and severity of these droughts, leading to lower vegetation cover and, potentially, limiting the conditions for cork and holm oak growth. Each catchment has been instrumented with erosion measurement plots and flow and turbidity measurements at the outlet, together with surveys of vegetation and soil properties; measurements in Macieira began in 2010 and in Guadalupe they began in 2011. These datasets will be used to parameterize, calibrate and validate the SWAT ecohydrological model, in order to ensure the appropriate simulation of the most important hydrological, vegetation growth and erosion processes which could be impacted upon by climate change. The model will, in turn, be the main tool to study future climate and land-use scenarios. The presentation will focus on the data collected so far, the modeling structure, and preliminary results coming for the work.

  14. Evidence of current impact of climate change on life: a walk from genes to the biosphere.

    Science.gov (United States)

    Peñuelas, Josep; Sardans, Jordi; Estiarte, Marc; Ogaya, Romà; Carnicer, Jofre; Coll, Marta; Barbeta, Adria; Rivas-Ubach, Albert; Llusià, Joan; Garbulsky, Martin; Filella, Iolanda; Jump, Alistair S

    2013-08-01

    We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.

  15. Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity.

    Science.gov (United States)

    Seidl, Rupert; Lexer, Manfred J

    2013-01-15

    The unabated continuation of anthropogenic greenhouse gas emissions and the lack of an international consensus on a stringent climate change mitigation policy underscore the importance of adaptation for coping with the all but inevitable changes in the climate system. Adaptation measures in forestry have particularly long lead times. A timely implementation is thus crucial for reducing the considerable climate vulnerability of forest ecosystems. However, since future environmental conditions as well as future societal demands on forests are inherently uncertain, a core requirement for adaptation is robustness to a wide variety of possible futures. Here we explicitly address the roles of climatic and social uncertainty in forest management, and tackle the question of robustness of adaptation measures in the context of multi-objective sustainable forest management (SFM). We used the Austrian Federal Forests (AFF) as a case study, and employed a comprehensive vulnerability assessment framework based on ecosystem modeling, multi-criteria decision analysis, and practitioner participation. We explicitly considered climate uncertainty by means of three climate change scenarios, and accounted for uncertainty in future social demands by means of three societal preference scenarios regarding SFM indicators. We found that the effects of climatic and social uncertainty on the projected performance of management were in the same order of magnitude, underlining the notion that climate change adaptation requires an integrated social-ecological perspective. Furthermore, our analysis of adaptation measures revealed considerable trade-offs between reducing adverse impacts of climate change and facilitating adaptive capacity. This finding implies that prioritization between these two general aims of adaptation is necessary in management planning, which we suggest can draw on uncertainty analysis: Where the variation induced by social-ecological uncertainty renders measures aiming to

  16. Climate change and forests: Impacts and adaption. A regional assessment for the Western Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sukumar, R. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deshingkar, P. [Stockholm Environment Inst. (Sweden)

    1997-12-31

    Potential climate change over the next 50 to 100 years could have major impacts on tropical forests. Forests, particularly in the tropics, are subjected to anthropogenic pressures leading to degradation and loss of forest ecosystems. Given the significant dependence of local people and economies on forests in tropical and temperate countries, there is a need to assess the possible impacts of climate change and to develop adaption measures. The diversity of forest types in the Western Ghats ranges from wet evergreen and deciduous forest to dry thorn and montane forests with a wide range of annual rainfall regimes (from less than 65 cm to over 300 cm). The study was conducted in two regions of the Western Ghats; the Uttara Kannada district and the Nilgiris. Climate change projections for 2020 and 2050 were used in assessing the possible impacts on forests. In general, the `most likely` projections of climate change were an increase in mean temperature in the range of 0.3-1.0 deg C and an increase in precipitation of 3-8% over the study regions by the year 2050. The `worst case` scenario was an increase in temperature of 1 deg C and a decrease in precipitation by 8% by 2050. To assess the vegetational responses to climate change, a simple model based on present-day correlations between climatic (mean annual temperature and precipitation) and vegetation types for these regions was developed. Likely changes in the areas under different forest types were assessed for `moderate climate` sensitivity and central scaling factor (referred to as the `most likely scenario`) for the years 2020 and 2050, and `high climate` sensitivity and a lower scaling factor (the `worst case scenario`) for 2050 90 refs, 15 figs, 15 tabs

  17. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Directory of Open Access Journals (Sweden)

    M. J. Muerth

    2013-03-01

    Full Text Available In climate change impact research, the assessment of future river runoff as well as the catchment-scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques, as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of uncertainty. Within the QBic3 project (Québec–Bavarian International Collaboration on Climate Change, the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use regional climate models (RCMs. One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to facilitate the reproduction of historic runoff conditions when used in hydrological models, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased climate model data itself is sometimes disputed among scientists. For these reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source

  18. Projected impacts of climate change on a continent-wide protected area network

    DEFF Research Database (Denmark)

    Hole, David G; Willis, Stephen G; Pain, Deborah J;

    2009-01-01

    Despite widespread concern, the continuing effectiveness of networks of protected areas under projected 21st century climate change is uncertain. Shifts in species' distributions could mean these resources will cease to afford protection to those species for which they were originally established......, despite the likelihood of significant community disruption, we demonstrate that rigorously defined networks of protected areas can play a key role in mitigating the worst impacts of climate change on biodiversity....... species). Persistence of suitable climate space across the network as a whole, however, is notably high, with 88-92% of priority species retaining suitable climate space in >or= 1 IBA(s) in which they are currently found. Only 7-8 priority species lose climatic representation from the network. Hence...

  19. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    Science.gov (United States)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed

  20. Impact of Climate Change: Views and Perceptions of Policy Makers on Smallholder Agriculture in Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Tetteh

    2014-05-01

    Full Text Available The threat of global climate change has caused intense debate among policy makers as agricultural productivity and food security risks considerable decline due to changes in rainfallpatterns and temperature. Although the impact of climate change on crop yields vary greatly from region to region, smallholder farmers in developing countries who depend solely on rain-fed agriculture are among the most disadvantaged and vulnerable groups. While the successes in agricultural production in Africa and Ghana over the last decades are heralded, the inequitable distribution of benefits and unsustainable impacts on natural resources are becoming more evident. Many authors have blamed global warming and climate change on the emission of greenhouse gasses however, farming methods and other human activities are also to blame for the emerging change in the climate. Therefore, bringing farming practices and ecosystem services into decision-making in order to make full use of the potential gains from working with the natural environment and the underpinning biophysical processes is imperative. This paper assesses the views and perceptions of Ghanaian policy makers on the impact of climate change on smallholder agricultural productivity in order to sustain agricultural productivity in Ghana. The study used data from a case study conducted by the Environment Policy Action Node Project with sponsorship from the Alliance for a Green Revolution in Africa (AGRA in Ghana between 2012 and 2013. An interview guide was used to collect qualitatively data from 35 key policy making institutions/organization in Ghana. One important finding of the paper is that even though Ghana has a climate change policy, most of the policy makers were not aware of the policy document and its contents. The paper however argues that to improve smallholder agricultural productivity in Ghana, a national debate on climate change mitigation and adaptation policies are needed to ensure coherence

  1. Impacts of climate change on large forest wildfire of Washington and Oregon

    Science.gov (United States)

    Yang, Z.; Davis, R. J.; Yost, A.; Cohen, W. B.

    2014-12-01

    Climate changes in the 21st century were projected to have major impact on wildfire. The state of Washington and Oregon contains a tightly coupled forest ecosystem and fire regime. The objective of this study was to examine the impact of future climate changes for large wildfire in the two states. MAXENT algorithm was used to develop a large forest wildfire suitability model using historical fire for the 1971-2000 time period and validated for 1981-2010 time period . Input variables include climate (e.g. July-August temperature) and topographic variables (e.g. elevation). The model test AUC of 0.77±0.1. Using the predicted versus expected curve and methods described by Hirzel and others (Hirzel et al. 2006), we reclassified the model into four classes; low suitability (0-0.36), moderate suitability 0.36-0.5), high suitability (0.5-0.75), and very high suitability (0.75-1.0). To examine the future climate change impact, climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from 33 different climate models were used to predict the large wildfire suitability from 1971-2100 using the NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset. Results from ensembles of all the climate scenarios showed that the area with high and very high suitability for large wildfire increased under all 4 climate scenarios from 1971 to 2100. However, under RCP 2.6, the area start to decline from 2080 while the other three scenarios keep increasing. On the extreme case of RCP 8.5, very high suitable area increases from less than 1% during 1971-2000 to 14.9% during 2070-2100. Details about temporal patterns for the study area and changes by ecoregions will be presented.

  2. Quantification of Climate Changes and Human Activities That Impact Runoff in the Taihu Lake Basin, China

    OpenAIRE

    Dingzhi Peng; Linghua Qiu; Jing Fang; Zhongyuan Zhang

    2016-01-01

    Although a fragile climate region, the Taihu Lake Basin is among the most developed regions in China and is subjected to intense anthropogenic interference. In this basin, water resources encounter major challenges (e.g., floods, typhoons, and water pollution). In this study, the impacts of climate changes and human activities on hydrological processes were estimated to aid water resource management in developed regions in China. The Mann-Kendall test and cumulative anomaly curve were applied...

  3. Vulnerability of freshwater fisheries and impacts of climate change in south Indian states economies

    Digital Repository Service at National Institute of Oceanography (India)

    Sannadurgappa, D.; Abitha, R.; Sukumaran, S.

    be preserved rather than relying only on management of their biomass. We are currently fishing most stocks at levels that expose them to a high risk of collapse, given the trends in climate and the uncertainty over impacts. Figure 3 schematic... are urgently needed, because most policy responses relating to planned climate change adaptation and fisheries management are or will be implemented at national levels and even those at local levels will be derived from decisions made at national levels...

  4. Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States

    OpenAIRE

    Montserrat Fuentes; Chang, Howard H.; Jingwen Zhou

    2010-01-01

    There is a growing interest in quantifying the health impacts of climate change. This paper examines the risks of future ozone levels on non-accidental mortality across 19 urban communities in Southeastern United States. We present a modeling framework that integrates data from climate model outputs, historical meteorology and ozone observations, and a health surveillance database. We first modeled present-day relationships between observed maximum daily 8-hour average ozone concentrations an...

  5. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change

    OpenAIRE

    Dodo, Mahamat K.

    2014-01-01

    Abstract Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many St...

  6. Climate change impact on freshwater resources in a deltaic environment: A groundwater modeling study

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, John D.; Panagopoulos, Andreas; Nastos, Panagiotis T.; Kotsopoulos, Spyros; Ghionis, George; Poulos, Serafim

    2016-04-01

    Climate change is expected to affect the hydrological cycle, altering seawater level and groundwater recharge to coastal aquifers with various other associated impacts on natural ecosystems and human activities. As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. This study investigates the impacts of climate change on the groundwater of the deltaic plain of River Pinios (Central Greece). Geophysical data processing indicates that the phreatic aquifer extends mainly in the central and northern parts of the region. A one-layer transient groundwater flow and contaminant mass transport model of the aquifer system is calibrated and validated. Impacts of climate change were evaluated by incorporating the estimated recharge input and sea level change of different future scenarios within the simulation models. The most noticeable and consistent result of the climate change impact simulations is a prominent sea water intrusion in the coastal aquifer mainly as a result of sea level change which underlines the need for a more effective planning of environmental measures.

  7. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    Science.gov (United States)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2016-09-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize (Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  8. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  9. Assessing the Impacts of Climate Change on Tourism-Dependent Communities in the Great Lakes

    Science.gov (United States)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2013-12-01

    Tourism is an essential element of the Laurentian Great Lakes economy as well as one of the sectors expected to be affected most by climate change, particularly through extreme weather events. While studies looking at climate change impacts on the Great Lakes tourism, specifically, are limited, the results of other studies suggest that both summer tourism activities, such as beach-going, and winter tourism activities, such as skiing and snowboarding, could feel the effects of a changing climate. The purpose of this study was to determine how existing data and models might be used to predict the potential impacts of climate change on tourism-dependent communities at the local scale. Future climate projections and variable infiltration capacity (VIC) model simulations based on historical climate data were used to quantify trends in environmental metrics with a potential influence on tourism for several tourism-dependent Great Lakes communities. The results of this research show that the potential impacts of climate change vary at the local scale and could require different adaptation strategies for different communities and for different sectors of the tourism industry. For example, communities in the northern parts of the Great Lakes may find benefit in a greater diversification of their tourism industries, given that warming temperatures could be beneficial for summer tourism activities, while communities in the southern parts of the Great Lakes may have to find other ways to cope with climate conditions that are less conducive to summer tourism activities. Stakeholder input could also help inform the process of producing scientific information that is useful to policymakers when it comes to tourism sector-related decision making.

  10. Economic Impacts of Climate Change on Cereal Production: Implications for Sustainable Agriculture in Northern Ghana

    Directory of Open Access Journals (Sweden)

    Anslem Bawayelaazaa Nyuor

    2016-08-01

    Full Text Available This paper investigates the economic impacts of climate change on cereal crop production in Northern Ghana using 240 households comprising maize and sorghum farmers. The Ricardian regression approach was used to examine the economic impacts of climate change based on data generated from a survey conducted in the 2013/2014 farming seasons. Forty-year time-series data of rainfall and temperature from 1974 to 2013, together with cross-sectional data, were used for the empirical analysis. The Ricardian regression estimates for both maize and sorghum showed varying degrees of climate change impacts on net revenues. The results indicated that early season precipitation was beneficial for sorghum, but harmful for maize. However, mid-season precipitation tended to promote maize production. Temperature levels for all seasons impacted negatively on net revenue for both crops, except during the mid-season, when temperature exerted a positive effect on net revenue for sorghum. Our findings suggest that appropriate adaptation strategies should be promoted to reduce the negative impacts of prevailing climate change on cereal crop production.

  11. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    Science.gov (United States)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  12. Statistical Bias Correction scheme for climate change impact assessment at a basin scale

    Science.gov (United States)

    Nyunt, C. T.

    2013-12-01

    Global climate models (GCMs) are the primary tool for understanding how the global climate may change in the future. GCM precipitation is characterized by underestimation of heavy precipitation, frequency errors by low intensity with long drizzle rain days and fail to catch the inter-seasonal change compared to the ground data. This study focus on the basin scale climate change impact study and we proposed the method for the multi model (GCMs) selection method together with the statistical bias correction method which cover the major deficiencies of GCM biases for climate change impact study at the basin level. The proposed method had been tested its applicability in the various river basin under different climate such as semiarid region in Tunisia, tropical monsoonal climate in Philippines and temperate humid region in Japan. It performed well enough for the climate change impact study in the basin scale and it can catch the point scale and basin scale climatology precipitation very well during the historical simulation. We found the GCM simulation during baiu season dissipate the baiu activity more earlier than the actual one when compared to the in-situ station data in Japan. For that case, the proposed bias correction performed in each season to reduce the bias of GCM for the impact study. The proposed bias correction method is still tested in different river basin in the world to check it applicability and now under developing as the web interface as the handy and efficient tool for the end users from the different parts of the world.

  13. Climate change impacts on crop yield,crop water productivity and food security-A review

    Institute of Scientific and Technical Information of China (English)

    Yinhong Kang; Shahbaz Khan; Xiaoyi Xi

    2009-01-01

    This paper provides a comprehensive review of literature related to the assessment of climate change impacts on crop productivity using climate,water and crop yield models.The existing studies present that climate change models with higher spatial resolution can be a way forward for future climate projections.Meanwhile,stochastic projections of more than one climate model are necessary for providing insights into model uncertainties as well as to develop risk management strategies.It is projected that water availability will increase in some parts of the world,which will have its own effect on water use efficiency and water allocation.Crop production can increase if irrigated areas are expanded or irrigation is intensified,but these may increase the rate of environmental degradation.Since climate change impacts on soil water balance will lead to changes of soil evaporation and plant transpiration,consequently,the crop growth period may shorten in the future impacting on water productivity.Crop yields affected by climate change are projected to be different in various areas,in some areas crop yields will increase,and for other areas it will decrease depending on the latitude of the area and irrigation application.Existing modelling results show that an increase in precipitation will increase crop yield,and what is more,crop yield is more sensitive to the precipitation than temperature.If water availability is reduced in the future,soils of high water holding capacity will be better to reduce the impact of drought while maintaining crop yield.With the temperature increasing and precipitation fluctuations,water availability and crop production are likely to decrease in the future.If the irrigated areas are expanded,the total crop production will increase;however,food and environmental quality may degrade.

  14. An assessment of climate change impacts on maize yields in Hebei Province of China.

    Science.gov (United States)

    Chen, Yongfu; Han, Xinru; Si, Wei; Wu, Zhigang; Chien, Hsiaoping; Okamoto, Katsuo

    2017-03-01

    The climate change impacts on maize yields are quantified in this paper using statistical models with panel data from 3731 farmers' observations across nine sample villages in Hebei Province of China. The marginal impacts of climate change and the simulated impacts on maize yields based on scenarios of Representative Concentration Pathways 2.6, 4.5, 6.0, and 8.5 from the global climate models of Model for Interdisciplinary Research on Climate version 5 (MIROC5) and Meteorological Research Institute Coupled General Circulation Model version 3 (MRI-CGCM3) were then calculated, analyzed, and explained. The results indicate that, first, the most important finding was that climate change impacts on maize yields were significant and a 1°C warming or a 1mm decrease in precipitation resulted in a 150.255kg or a 1.941kg loss in maize yields per hectare, respectively. Second, villages with latitudes of less than 39.832 and longitudes of more than 114.839 in Hebei province suffered losses due to warm weather. Third, the simulated impacts for the full sample are all negative based on scenarios from MIROC5, and their magnitudes are more than those of MRI-CGCM3 are. Based on scenarios in the 2050s, the biggest loss for maize yields per hectare for the full sample accounts for about one-tenth of the mean maize yield from 2004 to 2010, and all of the villages are impacted. Hence, it is important to help farms adopt an adaptation strategy to tackle the risk of loss for maize yields from climate change, and it is necessary to develop agricultural synthesis services as a public adaptation policy at the village level to interact with the adaptation strategy at the farm level.

  15. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    Science.gov (United States)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change.

  16. Impacts of Climate Change on Droughts in Gilan Province, Iran

    Directory of Open Access Journals (Sweden)

    Ladan Kazemi Rad

    2015-06-01

    Full Text Available Drought as a complex natural hazard is best characterized by multiple climatological and hydrological parameters and its assessment is important for planning and managing water resources. So understanding the history of drought in an area is essential like investigating the effects of drought. In this study at first climate parameters affecting the drought have downscaled by LARS-WG stochastic weather generator over Gilan province in Iran. After choosing a suitable model, the outputs were used for assessing the drought situation in the period of 2011-2030. Assessing the drought was done by TOPSIS method during 2 periods (present and future. After validation of the method, zoning the drought was performed by IDW method in GIS. Results showed that the expanse of situations with lower drought index will increase. Also we will expect more droughts in these regions for the future.

  17. Making the case for cumulative impacts assessment : modelling the potential impacts of climate change, harvesting, oil and gas, and fire

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, S.H.; Duchesneau, R.; Doyon, F. [Inst. quebecois d' Amenagement de la Foret feuillue, Ripon, PQ (Canada); Russell, J.S. [Millar Western Forest Products Ltd., Whitecourt, AB (Canada); Gooding, T. [Forestry Corp., Edmonton, AB (Canada)

    2008-05-15

    Oil and gas activities and wildfires are altering the composition, age-class structure, and spatial configuration of Alberta's forests. Climate change may also be modifying forest dynamics which will lead to important changes in the future. This paper presented a landscape model designed to simulate the long-term cumulative effects of forestry, oil and gas activities, climate change, wildlife, and demographic change for the Whitecourt forest management area. Various landscape scenarios were presented for the forest, and key indicators for biodiversity and forest productivity were evaluated. Multiple disturbance agents were simulated in order to detect potential interactions among disturbance agents. Results of the study showed that climate and demographic changes will intensify the impacts of fires on timber supplies. It was concluded that cumulative impacts assessments and spatial and temporal stochastic modelling should be included in forest management practices. 34 refs., 2 tabs., 22 figs.

  18. Bioethics and Public Health Collaborate to Reveal Impacts of Climate Change on Caribbean Life

    Science.gov (United States)

    Macpherson, C.; Akpinar-Elci, M.

    2011-12-01

    Interdisciplinary dialog and collaboration aimed at protecting health against climate change is impeded by the small number of scientists and health professionals skilled in interdisciplinary work, and by the view held by many that "climate change won't affect me personally". These challenges may be surmounted by discussions about the lived experience of climate change and how this threatens things we value. Dialog between bioethics and public health generated an innovative collaboration using the focus group method. The main limitation of focus groups is the small number of participants however the data obtained is generalizable to wider groups and is used regularly in business to enhance marketing strategies. Caribbean academicians from varied disciplines discussed how climate change affects them and life in the Caribbean. Caribbean states are particularly vulnerable to climate change because their large coastal areas are directly exposed to rising sea levels and their development relies heavily on foreign aid. The Caribbean comprises about half of the 39 members of the Association of Small Island States (AOSIS), and small island states comprise about 5% of global population [1]. Participants described socioeconomic and environmental changes in the Caribbean that they attribute to climate change. These include extreme weather, unusual rain and drought, drying rivers, beach erosion, declining fish catches, and others. The session exposed impacts on individuals, businesses, agriculture, and disaster preparedness. This data helps to reframe climate change as a personal reality rather than a vague future concern. It is relevant to the design, implementation, and sustainability of climate policies in the Caribbean and perhaps other small island states. The method and interdisciplinary approach can be used in other settings to elicit dialog about experiences and values across sectors, and to inform policies. Those who have experienced extreme weather are more concerned

  19. Impact of climate change on operations and planning of Hydro-Quebec's generation system

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, M.P.; Houle, B.; Robert, S. [Hydro-Quebec, Montreal, PQ (Canada)

    2008-07-01

    Hydraulic resources currently account for more than 95 per cent of Hydro-Quebec's generation capacity. Hydro-Quebec also plans to purchase more wind power in the future. However, the utility wind and hydroelectric resources will be affected by climatic change in the future. This paper outlined research needed by hydroelectric and water resource managers in order to accurately determine the impacts of climatic change. Parameters included changes in annual and seasonal distribution as well as changes in the variability of natural inflows. The research will be used to determine the configuration of new projects as well as the refurbishment and replacement of existing infrastructure. Load profiles for the future indicate that electricity use will change, with less heating needed in winter, and more air conditioning required in summer months. The Delta method was used to determine impacts of future inflows and hydrological regimes. A case study of climate change impacts and management strategies for the Outardes River system up to the year 2050 was presented. The study showed that higher inflows are expected to produce more energy. Maintenance planning and flood control techniques were also discussed. The study showed that the effects of climate change on each of Hydro-Quebec's systems is expected to follow a similar pattern to the Outardes system. tabs., figs.

  20. Impact of climate change on mercury concentrations and deposition in the eastern United States.

    Science.gov (United States)

    Megaritis, Athanasios G; Murphy, Benjamin N; Racherla, Pavan N; Adams, Peter J; Pandis, Spyros N

    2014-07-15

    The global-regional climate-air pollution modeling system (GRE-CAPS) was applied over the eastern United States to study the impact of climate change on the concentration and deposition of atmospheric mercury. Summer and winter periods (300 days for each) were simulated, and the present-day model predictions (2000s) were compared to the future ones (2050s) assuming constant emissions. Climate change affects Hg(2+) concentrations in both periods. On average, atmospheric Hg(2+) levels are predicted to increase in the future by 3% in summer and 5% in winter respectively due to enhanced oxidation of Hg(0) under higher temperatures. The predicted concentration change of Hg(2+) was found to vary significantly in space due to regional-scale changes in precipitation, ranging from -30% to 30% during summer and -20% to 40% during winter. Particulate mercury, Hg(p) has a similar spatial response to climate change as Hg(2+), while Hg(0) levels are not predicted to change significantly. In both periods, the response of mercury deposition to climate change varies spatially with an average predicted increase of 6% during summer and 4% during winter. During summer, deposition increases are predicted mostly in the western parts of the domain while mercury deposition is predicted to decrease in the Northeast and also in many areas in the Midwest and Southeast. During winter mercury deposition is predicted to change from -30% to 50% mainly due to the changes in rainfall and the corresponding changes in wet deposition.

  1. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  2. Assessing impacts of climate change on forests: The state of biological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States); Rauscher, H.M. [Forest Service, Grand Rapids, MI (United States). North Central Forest Experiment Station

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  3. Towards an integrated economic assessment of climate change impacts on agriculture

    Science.gov (United States)

    Lotze-Campen, H.; Piontek, F.; Stevanovic, M.; Popp, A.; Bauer, N.; Dietrich, J.; Mueller, C.; Schmitz, C.

    2012-12-01

    For a detailed understanding of the effects of climate change on global agricultural production systems, it is essential to consider the variability of climate change patterns as projected by General Circulation Models (GCMs), their bio-physical impact on crops and the response in land-use patterns and markets. So far, approaches that account for the interaction of bio-physical and economic impacts are largely lacking. We present an integrative analysis by using a soft-coupled system of a biophysical impact model (LPJmL, Bondeau et al. 2007), an economically driven land use model (MAgPIE, Lotze-Campen et al. 2008) and an integrated assessment model (ReMIND-R, Leimbach et al. 2010) to study climate change impacts and economic damages in the agricultural sector. First, the dynamic global vegetation and hydrology model LPJmL is used to derive climate change impacts on crop yields for wheat, maize, soy, rice and other major crops. A range of different climate projections is used, taken from the dataset provided by the Intersectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org), which bias-corrected the latest CMIP5 climate data (Taylor et al. 2011). Crop yield impacts cover scenarios with and without CO2 fertilization as well as different Representative Concentration Pathways (RCPs) and different GCMs. With increasing temperature towards the end of the century yields generally decrease in tropical and subtropical regions, while they tend to benefit in higher latitudes. LPJmL results have been compared to other global crop models in the Agricultural Model Intercomparison and Improvement Project (AgMIP, www.agmip.org). Second, changes in crop yields are analysed with the spatially explicit agro-economic model MAgPIE, which covers their interaction with economic development and changes in food demand. Changes in prices as well as welfare changes of producer and consumer surplus are taken as economic indicators. Due to climate-change related reductions in

  4. Predicting future changes in climate and its impact on change in land use: a case study of Cauvery Basin

    Science.gov (United States)

    Poyil, Rohith P.; Dhanalakshmi, S.; Goyal, Pramila

    2016-05-01

    The study involves the climate change prediction and its effects over a local sub grid scale of smaller area in Cauvery basin. The consequences of global warming due to anthropogenic activities are reflected in global as well as regional climate in terms of changes in key climatic variables such as temperature, precipitation, humidity and wind speed. The key objectives of the study are to define statistical relationships between different climate parameters, to estimate the sensitivities of climate variables to future climate scenarios by integrating with GIS and to predict the land use/ land cover change under the climate change scenarios. The historical data set was analyzed to predict the climate change and its impact on land use/land cover (LULC) is observed by correlating the Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) values for two different times for the same area. It is so evident that due to the rise in temperature there is a considerable change in the land use affecting the vegetation index; increased temperature results in very low NDVI values or vegetation abundance.

  5. Impacts and adaptation of European crop production systems to climate change

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Trnka, M; Kersebaum, K C;

    2011-01-01

    The studies on anthropogenic climate change performed in the last decade over Europe show consistent projections of increases in temperature and different patterns of precipitation with widespread increases in northern Europe and decreases over parts of southern and eastern Europe. In many...... countries and in recent years there is a tendency towards cereal grain yield stagnation and increased yield variability. Some of these trends may have been influenced by the recent climatic changes over Europe. A set of qualitative and quantitative questionnaires on perceived risks and foreseen impacts...... incidents of heat waves and droughts without possibilities for effectively shifting crop cultivation to other parts of the years. A wide range of adaptation options exists in most European regions to mitigate many of the negative impacts of climate change on crop production in Europe. However, considering...

  6. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  7. Climate Change Impacts on US Water Quality Using Two Models: HAWQS and US Basins

    Directory of Open Access Journals (Sweden)

    Charles Fant

    2017-02-01

    Full Text Available Climate change and freshwater quality are well-linked. Changes in climate result in changes in streamflow and rising water temperatures, which impact biochemical reaction rates and increase stratification in lakes and reservoirs. Using two water quality modeling systems (the Hydrologic and Water Quality System; HAWQS and US Basins, five climate models, and two greenhouse gas (GHG mitigation policies, we assess future water quality in the continental U.S. to 2100 considering four water quality parameters: water temperature, dissolved oxygen, total nitrogen, and total phosphorus. Once these parameters are aggregated into a water quality index, we find that, while the water quality models differ under the baseline, there is more agreement between future projections. In addition, we find that the difference in national-scale economic benefits across climate models is generally larger than the difference between the two water quality models. Both water quality models find that water quality will more likely worsen in the East than in the West. Under the business-as-usual emissions scenario, we find that climate change is likely to cause economic impacts ranging from 1.2 to 2.3 (2005 billion USD/year in 2050 and 2.7 to 4.8 in 2090 across all climate and water quality models.

  8. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

    KAUST Repository

    Wilson, S. K.

    2010-02-26

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.

  9. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes.

    Science.gov (United States)

    Wilson, S K; Adjeroud, M; Bellwood, D R; Berumen, M L; Booth, D; Bozec, Y-Marie; Chabanet, P; Cheal, A; Cinner, J; Depczynski, M; Feary, D A; Gagliano, M; Graham, N A J; Halford, A R; Halpern, B S; Harborne, A R; Hoey, A S; Holbrook, S J; Jones, G P; Kulbiki, M; Letourneur, Y; De Loma, T L; McClanahan, T; McCormick, M I; Meekan, M G; Mumby, P J; Munday, P L; Ohman, M C; Pratchett, M S; Riegl, B; Sano, M; Schmitt, R J; Syms, C

    2010-03-15

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.

  10. Agriculture in West Africa in the twenty-first century : climate change and impacts scenarios, and potential for adaptation

    OpenAIRE

    Benjamin Sultan; Marco Gaetani

    2016-01-01

    International audience; West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensiv...

  11. Agricultural Intensification as a Mechanism of Adaptation to Climate Change Impacts

    Science.gov (United States)

    Kyle, P.; Calvin, K. V.; le Page, Y.; Patel, P.; West, T. O.; Wise, M. A.

    2015-12-01

    The research, policy, and NGO communities have devoted significant attention to the potential for agricultural intensification, or closure of "yield gaps," to alleviate future global hunger, poverty, climate change impacts, and other threats. However, because the research to this point has focused on biophysically attainable yields—assuming optimal choices under ideal conditions—the presently available work has not yet addressed the likely responses of the agricultural sector to real-world conditions in the future. This study investigates endogenous agricultural intensification in response to global climate change impacts—that is, intensification independent of policies or other exogenous interventions to promote yield gap closure. The framework for the analysis is a set of scenarios to 2100 in the GCAM global integrated assessment model, enhanced to include endogenous irrigation, fertilizer application, and yields, in each of 283 land use regions, with maximum yields based on the 95th percentile of attainable yields in a recent global assessment. We assess three levels of agricultural climate impacts, using recent global gridded crop model datasets: none, low (LPJmL), and high (Pegasus). Applying formulations for decomposition of climate change impacts response developed in prior AgMIP work, we find that at the global level, availability of high-yielding technologies mitigates price shocks and shifts the agricultural sector's climate response modestly towards intensification, away from cropland expansion and reduced production. At the regional level, the behavior is more complex; nevertheless, availability of high-yielding production technologies enhances the inter-regional shifts in agricultural production that are induced by climate change, complemented by commensurate changes in trade patterns. The results highlight the importance of policies to facilitate yield gap closure and inter-regional trade as mechanisms for adapting to climate change

  12. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    Directory of Open Access Journals (Sweden)

    Helen Brown

    2014-12-01

    Full Text Available This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  13. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  14. Impact of land cover changes on the South African climate

    Energy Technology Data Exchange (ETDEWEB)

    Ngwana, T I [South African Weather Service, Pretoria (South Africa); Demory, M-E; Vidale, P L; Plant, R S [University of Reading, Earley Gate, Reading (United Kingdom); Mbedzi, M P, E-mail: isaac.ngwana@weathersa.co.z [Eskom Holdings, Cleveland (South Africa)

    2010-08-15

    The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.

  15. Icy rivers heating up : Modelling hydrological impacts of climate change in the (sub)arctic

    OpenAIRE

    2003-01-01

    The Arctic is considered to be particularly sensitive to global climate change. Global warming will seriously affect the components of the water balance in northern regions and changes in precipitation and temperature have immediate as well as long term effects on river systems. The main goal of this thesis was to assess the potential impact of climate change on the water balance and river discharge in the (sub)arctic Usa basin, East-European Russia on an annual, monthly and 5-daily basis. Th...

  16. Impacts of climate and catastrophic forest changes on streamflow and water balance in a mountainous headwater stream in Southern Alberta

    OpenAIRE

    V. Mahat; Anderson, A.

    2013-01-01

    Rivers in Southern Alberta are vulnerable to climate change because much of the river water originates as snow in the eastern slopes of the Rocky Mountains. Changes in likelihood of forest disturbance (wildfire, insects, logging, etc.) may also have impacts that are compounded by climate change. This study evaluates the impacts of climate and forest changes on streamflow in the upper parts of the Oldman River in Southern Alberta using a conceptual hydrological model, HBV-EC ...

  17. Impacts of climate and forest changes on streamflow and water balance in a mountainous headwater stream in Southern Alberta

    OpenAIRE

    V. Mahat; Anderson, A.

    2013-01-01

    Rivers in Southern Alberta are vulnerable to climate change because much of the river water originates as snow in the eastern slopes of the Rocky Mountains. Changes in likelihood of forest disturbance (wildfire, insects, logging, etc.) may also have impacts that are compounded by climate change. This study evaluates the impacts of climate and forest changes on streamflow in the upper parts of the Oldman River in Southern Alberta using a conceptual hydrological model, HBV-EC in combination wit...

  18. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    Full Text Available Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming, whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  19. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate.

    Science.gov (United States)

    Walls, Susan C; Barichivich, William J; Brown, Mary E

    2013-03-11

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change-that of extreme variation in precipitation-may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall "pulses" are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  20. Cotton and Climate Change: Impacts and Options to mitigate and adapt.

    Science.gov (United States)

    Ton, P.

    2012-04-01

    Cotton & Climate change: Impacts and Options to mitigate and adapt. Climate change will have major impacts on cotton production and trade depending on production location. This report to be presented analyses the impacts of climate change on cotton production and trade in the main producing areas world-wide, and the options available to mitigate and to adapt to these impacts. Cotton production is both a contributor to climate change and subject to its impacts. Agricultural production, processing, trade and consumption contribute up to 40% of the world's emissions when forest clearance is included in the calculation. Cotton production contributes to between 0.3% and 1% of total global GHG emissions. Cotton has a certain resilience to high temperatures and drought due to its vertical tap root. The crop is, however, sensitive to water availability, particularly at the height of flowering and boll formation. Rising temperatures favour plant development, unless day temperatures exceed 32°C. New production areas may be established where cotton was not grown before. Increases in atmospheric CO2 will also favour plant development. In turn, increased pests, water stress, diseases, and weather extremes will pose adaptation challenges. Overall, the negative impacts of climate change on cotton production relate to the reduced availability of water for irrigation, in particular in Xinjiang (China), Pakistan, Australia and the western United States. Heat stress risks creating depressed yields in Pakistan in particular, while in other countries limited increases in temperatures could favour cotton plant growth and lengthen the cotton growing season. The impacts of climate change on rainfall will likely be positive in the Yellow River area (China), in India, the south-eastern United States and south-eastern Anatolia (Turkey). Impacts on rainfall in Brazil and West and Central Africa are unclear. Mitigation and adaptation to climate change in cotton production, as in agriculture

  1. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    Science.gov (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC.

  2. Changing landscapes to accomodate for climate change impacts: a call for landscape ecology

    NARCIS (Netherlands)

    Opdam, P.F.M.; Luque, S.; Jones, K.B.

    2009-01-01

    Predictions of climate change suggest major changes in temperature, rainfall as well as in frequency and timing of extreme weather, all in varying degrees and patterns around the world. Although the details of these patterns changes are still uncertain, we can be sure of profound effects on ecologic

  3. Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment

    Directory of Open Access Journals (Sweden)

    Anastassi Stefanova

    2015-04-01

    Full Text Available Climate projections agree on a dryer and warmer future for the Mediterranean. Consequently, the region is likely to face serious problems regarding water availability and quality in the future. We investigated potential climate change impacts, alone (for three scenario periods and in combination with four socio-economic scenarios (for the near future on water resources in a Mediterranean catchment, whose economy relies on irrigated agriculture and tourism. For that, the Soil and Water Integrated Model (SWIM was applied to the drainage area of the Mar Menor coastal lagoon, using a set of 15 climate scenarios and different land use maps and management settings. We assessed the long-term average seasonal and annual changes in generated runoff, groundwater recharge and actual evapotranspiration in the catchment, as well as on water inflow and nutrients input to the lagoon. The projected average annual changes in precipitation are small for the first scenario period, and so are the simulated impacts on all investigated components, on average. The negative trend of potential climate change impacts on water resources (i.e., decrease in all analyzed components becomes pronounced in the second and third scenario periods. The applied socio-economic scenarios intensify, reduce or even reverse the climate-induced impacts, depending on the assumed land use and management changes.

  4. Impacts of biofuels on climate change, water use, and land use.

    Science.gov (United States)

    Delucchi, Mark A

    2010-05-01

    Governments worldwide are promoting the development of biofuels in order to mitigate the climate impact of using fuels. In this article, I discuss the impacts of biofuels on climate change, water use, and land use. I discuss the overall metric by which these impacts have been measured and then present and discuss estimates of the impacts. In spite of the complexities of the environmental and technological systems that affect climate change, land use, and water use, and the difficulties of constructing useful metrics, it is possible to make some qualitative overall assessments. It is likely that biofuels produced from crops using conventional agricultural practices will not mitigate the impacts of climate change and will exacerbate stresses on water supplies, water quality, and land use, compared with petroleum fuels. Policies should promote the development of sustainable biofuel programs that have very low inputs of fossil fuels and chemicals that rely on rainfall or abundant groundwater, and that use land with little or no economic or ecological value in alternative uses.

  5. Probabilistic Projections of Climate Change Impacts on the Agricultural Sector in Bangladesh

    Science.gov (United States)

    Ruane, A. C.; Rosenzweig, C.; Major, D. C.

    2008-12-01

    We describe a novel approach to impact assessment that generates probabilistic distributions of climate change impacts by passing model and societal uncertainties in a continuous manner throughout the assessment process. Rather than driving impact models with conditions based upon summary statistics from an ensemble of global climate models (GCMs) or relying on a prescribed range of inputs, end-to-end assessment is conducted for a wide variety of GCMs and emissions scenarios. The resulting distribution of impacts may be used to elucidate internal dynamics of the system and to attach model and societal-based probabilities to individual outcomes. To demonstrate the method, preliminary results from a World Bank project on the effect of climate change on Bangladesh's agricultural sector are presented. Working with a wide range of collaborators in Bangladesh, 48 climate change scenarios (16 GCMs and 3 emissions scenarios) were generated from 2020-2100 for each of 16 regions in Bangladesh. These scenarios were then used to drive the Decision Support System for Agrotechnology Transfer (DSSAT) biophysical model for major cereal crops. Output generated from a smaller subset of hydrologic and coastal model scenarios is then used to adjust the yield production to account for projected river floods in the Ganges/Brahmaputra/Meghna basin and coastal inundation from the Bay of Bengal, respectively. The result is a probabilistic distribution of agricultural impacts for Bangladesh that retains model and societal uncertainties throughout the assessment process.

  6. Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India.

    Science.gov (United States)

    Ferrant, Sylvain; Caballero,