WorldWideScience

Sample records for climate change greenhouse

  1. Global climate change : greenhouse effect

    OpenAIRE

    Attard, David

    1992-01-01

    One of the main problems caused by climate change is the greenhouse effect. Human activities emit so-called greenhouse gases into the atmosphere, such as carbon dioxide which is produced through fossil fuel burning. These gases absorb the earth‘s radiation, forcing the earth‘s temperature, like that of in greenhouse, to rise. Global warming would lead to a rise in the global mean sea-level due to thermal expansion of the waters, and glaciers will melt at a fast rate, as will the Greenland ice...

  2. Climate Change and Greenhouse Gas Awareness Study

    OpenAIRE

    Aubin, Pierre; Auger, Genevieve; Perreault, Claude

    2003-01-01

    This study falls within the enhancing awareness and understanding theme of the National Climate Change Strategy. It was conducted by Agriculture and Agri-Food Canada in January/February 2001 and involved 1,643 farming operation, feeder cattle, dairy cattle, hogs and poultry producers. The purpose of this study is to assess producers' level of awareness of climate change and greenhouse gas (GHG) emissions as well as their understanding of the role of agriculture in the emissions of GHG. This s...

  3. The greenhouse effect and global climate change

    International Nuclear Information System (INIS)

    The ongoing increase in the concentration of infrared-absorbing gases in the atmosphere is already causing and will continue to cause a growing unbalance in the radiation budget of the earth, and consequent warming of the lower atmosphere and earth surface. This climate phenomenon is the manifestation of the greenhouse or blanketing effect of absorbing gases (also known as ''greenhouse gases'') in the earth atmosphere. The main chemical species responsible for the build-up of the greenhouse effect are carbon dioxide, methane and chlorofluorocarbons (CFCs) or freons. Despite new regulatory efforts made by governments to slow down the emission of these gases, the combined atmospheric burden could be equivalent to doubling the pre-industrial concentration of carbon dioxide (2xCO2) by the middle of next century. The global warming of the earth surface would eventually reach about 4 deg. C if the 2xCO2 concentration then was maintained constant for a long period. As it is, the transient response of climate to an increasing greenhouse effect is delayed by 50 to 100 years. For this reason, we observe now a much smaller climate warming than would occur for climate equilibrium with the present atmospheric composition, i.e. 125% the pre-industrial concentration of CO2. Impacts of this phenomenon will range from disturbances of the existing hydrological regime of the planet to rise of the global mean sea-level. A warmer atmosphere means more rain but also faster evaporation: consequences in terms of the availability of water resources are unclear at temperate and high latitudes, but an aggravation of aridity in sub-tropical latitudes is probable. Sea-level rise may reach 50 cm by 2100. In general, the rate of climate warming when the climate system starts responding to the greenhouse effect could be 0.3 deg. C per decade, far exceeding the ability of natural ecosystems to adapt effectively to the change. (author). 5 refs, 2 figs

  4. Climate change and greenhouse gas awareness study

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, C.; Aubin, P.; Auger, G. [Agriculture and Agri-Food Canada, Ottawa, ON (Canada)

    2003-03-01

    Approximately 10 per cent of greenhouse gas (GHG) emissions result from agricultural production activities. This report assessed the level of understanding that farmers have on the issue of climate change and GHG emissions. It also examined the impact that their decisions have on soil, land, and livestock management. This information is intended to assist governments and industry in the development of policies aimed at meeting Canada's commitments under the Kyoto Protocol. In January-February of 2001, Leger Marketing conducted interviews with 1,643 producers from across Canada whose main farm type was field crops, beef cattle, dairy, hogs or poultry and whose annual gross farm revenues exceeded $10,000. The objective was to determine the farmers' level of awareness of climate change issues and GHG emissions in agriculture. The results of the survey indicated that producers generally do not understand how the agricultural sector contributes to climate change and GHG emissions. 5 tabs., 39 figs.

  5. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  6. An example of fingerprint detection of greenhouse climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Karoly, D.J.; Cohen, J.A. [Monash Univ., Clayton, Victoria (Australia); Meehl, G.A. [National Center for Atmospheric Research, Boulder, CO (United States)] [and others

    1994-07-01

    As an example of the technique of fingerprint detection of greenhouse climate change, a multivariate signal or fingerprint of the enhanced greenhouse effect is defined using the zonal mean atmospheric temperature change as a function of height and latitude between equilibrium climate model simulations with control and doubled CO{sub 2} concentrations. This signal is compared with observed atmospheric temperature variations over the period 1963 to 1988 from radiosonde-based global analyses. There is a signiificant increase of this greenhouse signal in the observational data over this period. These results must be treated with caution. Upper air data are available for a short period only, possibly, to be able to resolve any real greenhouse climate change. The greenhouse fingerprint used in this study may not be unique to the enhanced greenhouse effect and may be due to other forcing mechanisms. However, it is shown that the patterns of atmospheric temperature change associated with uniform global increases of sea surface temperature, with El Nino-Southern Oscillation events and with decreases of stratospheric ozone concentrations individually are different from the greenhouse fingerprint used here. 30 refs., 6 figs., 2 tabs.

  7. Arctic climate change: Greenhouse warming unleashed

    Science.gov (United States)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  8. Ozone depletion, greenhouse gases, and climate change

    Science.gov (United States)

    Mooney, Harold A.; Baker, D. James, Jr.; Bretherton, Francis P.; Burke, Kevin C.; Clark, William C.; Davis, Margaret B.; Dickinson, Robert E.; Imbrie, John; Malone, Thomas F.; Mcelroy, Michael B.

    1989-01-01

    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail.

  9. Research on Greenhouse-Gas-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  10. The influence of greenhouse gases on global climate change

    International Nuclear Information System (INIS)

    Present article is devoted to influence of greenhouse gases on global climate change. Thus, the impacts associated with increasing of CO2 concentration are considered. The impacts associated with decreasing of ozone layer are considered as well. The influence of air temperature on agriculture is studied.

  11. Greenhouse gas emissions considered responsible for climate change: Environmental indicators

    International Nuclear Information System (INIS)

    This paper concerns the more significant environmental indicators related to the emissions of radiatively and chemically/photochemically active trace gases. Reference is made to the preliminary work of the Intergovernmental Panel on Climate Change (IPCC) and to the proposals made in the framework of the international negotiation on climate change. Aiming to contribute to the definition of a national strategy for the reduction of greenhouse gases emissions, this paper proposes a possible application of the indicators. The calculation of the indicators is based on the emission estimate performed by ENEA (Italian National Agency for Energy, New Technologies and the Environment) for the Report on the State of the Environment edited by the Italian Ministry of the Environment. Finally, the paper suggests an application of such indicators for the international negotiation, in the framework of the Italian proposal for the Convention on climate change

  12. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  13. The detection of climate change due to the enhanced greenhouse effect

    Science.gov (United States)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  14. Role of Pakistan in Global Climate Change through Greenhouse Gas Emissions (GHGs)

    OpenAIRE

    Wajeeha Malik; Hajra Shahid; Rabeea Zafar; Zaheer Uddin; Zafar Wazir; Zubair Anwar; Jabar Zaman Khan Khattak; Syed Shahid Ali

    2012-01-01

    The increasing concentration of Greenhouse Gases (GHGs) is warming the earth’s atmosphere and the phenomenon is known as Climate Change or Global Warming. The major factors contributing to the global climate change include polluted emissions by excessive burning of fossil fuels and deforestation. Pakistan contributes very little to the overall Greenhouse Gas (GHG) emissions however it remains severely impacted by the negative effects of climate change. Pakistan, in particular is estimated to ...

  15. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  16. Regional climate change in Tropical and Northern Africa due to greenhouse forcing and land use changes

    OpenAIRE

    Paeth, H.; Born, K.; Girmes, R.; Podzun, R.; D. Jacob

    2009-01-01

    Human activity is supposed to affect the earth's climate mainly via two processes: the emission of greenhouse gases and aerosols and the alteration of land cover. While the former process is well established in state-of-the-art climate model simulations, less attention has been paid to the latter. However, the low latitudes appear to be particularly sensitive to land use changes, especially in tropical Africa where frequent drought episodes were observed during recent decades. Here several en...

  17. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C.; Hasselmann, K.; Cubasch, U.; Roeckner, E.; Voss, R. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mitchell, J.F.B. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office; Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1997-09-01

    A multifingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint is optimal for the detection of climate change, further tests of the statistical consistency of the detected climate change signal with model predictions for different candidate forcing mechanisms require the simultaneous application of several fingerprints. Model-predicted climate change signals are derived from three anthropogenic global warming simulations for the period 1880 to 2049and two simulations forced by estimated changes in solar radiation from 1700 to 1992. In the first global warming simulation, the forcing is by greenhouse gas only, while in the remaining two simulations the direct influence of sulfate aerosols is also included. From the climate change signals of the greenhouse gas only and the average of the two greenhouse gas-plus-aerosol simulations, two optimized fingerprint patterns are derived by weighting the model-predicted climate change patterns towards low-noise directions. The optimized fingerprint patterns are then applied as a filter to the observed near-surface temperature trend patterns, yielding several detection variables. The space-time structure of natural climate variability needed to determine the optimal fingerprint pattern and the resultant signal-to-noise ratio of the detection variable is estimated from several multicentury control simulations with different CGCMs and from instrumental data over the last 136 y. Applying the combined greenhouse gas-plus-aerosol fingerprint in the same way as the greenhouse gas only fingerprint in a previous work, the recent 30-y trends (1966-1995) of annual mean near surface temperature are again found to represent a significant climate change at the 97.5% confidence level. (orig.) With 13 figs., 3 tabs., 63 refs.

  18. Persistence of climate changes due to a range of greenhouse gases

    OpenAIRE

    Solomon, Susan; Daniel, John S.; Sanford, Todd J.; Murphy, Daniel M.; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-01-01

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO2 greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given...

  19. IMPACT OF GREENHOUSE EFFECT GASES ON CLIMATIC CHANGES. MEASUREMENT INDICATORS AND FORECAST MODELS

    OpenAIRE

    Valentina Vasile; Mariana Balan

    2008-01-01

    The existence of a heavier layer of greenhouse effect gases at the level of theentire planet triggered significant climate changes. The paper intends to present the mainenvironmental indicators elaborated by various specialised international bodies, and themodels used by different governmental or non-governmental European bodies for studying theimpact of greenhouse effect gas emissions on climatic changes or economic development.Also, a comparative analysis was made about the performance indi...

  20. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  1. 6.1 Greenhouse gas emissions and climate change

    International Nuclear Information System (INIS)

    In Austria, greenhouse gas emissions (GHG) have increased by about 10 % between 1990 and 2001. This means that already in 2001 the emissions reached the level projected with current measures for 2010. Thus Austria is far from complying with the 13 % reduction required under the Kyoto Protocol, meaning that GHG emissions will have to be reduce annually by 1.4 million tons of CO2-equivalents to fulfill its protocol obligation. It is shown that 2001 GHG emissions had increased by 9.6 % since the base year 1990, the main reason for this increase is the growing use of fossil fuels and the resulting increase in CO2 emissions. The highest growth rates can be observed in the transport sector by almost half (+ 49 %). Basically, greenhouse gas emission trends depend on a number of factors, about two thirds of them are caused by energy production, so the most important parameters affecting GHG are the trends of energy consumption, the energy mix and the following factors: population growth, economic growth, outdoor temperature and the resulting heating requirements, improvement of energy efficiency, the proportion of renewable energy sources such as electricity generation in hydroelectric power stations (which influences the need for supplementary power production in thermal power plants), the mix of fossil fuels, for example in caloric power plants (natural gas combustion produces about 40 % less CO2 per energy unit than coal combustion), the structure and price effects of energy market liberalization, which influence the use of various fuels in electricity production and the import of electricity, world market prices for energy, structural changes in the economy and in the behavior of consumers. Changes in important driving forces and in GHG emissions, sector emissions trends and Austrian, European and global emissions projections are provided. (nevyjel)

  2. Global mismatch between greenhouse gas emissions and the burden of climate change

    OpenAIRE

    Glenn Althor; Watson, James E. M.; Fuller, Richard A.

    2016-01-01

    Countries export much of the harm created by their greenhouse gas (GHG) emissions because the Earth’s atmosphere intermixes globally. Yet, the extent to which this leads to inequity between GHG emitters and those impacted by the resulting climate change depends on the distribution of climate vulnerability. Here, we determine empirically the relationship between countries’ GHG emissions and their vulnerability to negative effects of climate change. In line with the results of other studies, we...

  3. Greenhouse-gas-induced climatic change: A critical appraisal of simulations and observations

    International Nuclear Information System (INIS)

    This book is the culmination of a Workshop on Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations which was held at the University of Massachusetts, Amherst, during 8--12 May 1989. The objectives of the Workshop were to: (1) present and evaluate the current status of climate model simulations of greenhouse-gas-induced changes of both the equilibrium and nonequilibrium (transient) climates; (2) present and assess the current status of the observations of global and regional climates from the beginning of the industrial revolution to the present, circa 1850 to 1989; (3) present reconstructions of climatic change during the last millennium to determine the ''natural variability'' of climate on the intra-century time scale; (4) critically evaluate whether or not the climate has changes from circa 1850 to 1989; and (5) compare the observations with the model simulations to ascertain whether a greenhouse-gas-induced climatic change has occurred and, if not, to estimate when in the future such a climatic change will likely become detectable against the background of the ''natural variability.''

  4. [Research on greenhouse-gas-induced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M.

    1995-12-31

    This climate research focuses on the following topics: model development and testing; climate simulations and analyses; analyses of observed climate; development of analysis methods; global warming: physics, economics and policy; and participation in international research efforts. Also summarized are six projects that are proposed for the next five years.

  5. The greenhouse theory of climate change - A test by an inadvertent global experiment

    Science.gov (United States)

    Ramanathan, V.

    1988-01-01

    The greenhouse theory of climate change has reached the crucial stage of verification. Surface warming as large as that predicted by models would be unprecedented during an interglacial period such as the present. The theory, its scope for verification, and the emerging complexities of the climate feedback mechanisms are discussed in this paper. The evidence for change is described and competing nonclimatic forcings are discussed.

  6. Climate change politics with Chinese characteristics :: from discourse to institutionalised greenhouse gas mitigation

    OpenAIRE

    Ellermann, Christian; Liverman, Diana

    2013-01-01

    China has seen tremendous economic growth in the past three decades, and in the order of eight to ten per cent since 2000. This development has come with ever increasing energy consumption, and thus emissions of greenhouse gases (GHG). This trend has been an important topic in the international climate negotiations under the United Nations Framework Convention on Climate Change; China is under constant pressure from other large economies to contribute to reversing the GHG emissions trend in o...

  7. Detecting greenhouse-gas-induced climate change with an optimal fingerprint method

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C.; Storch, H. von; Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)] [and others

    1996-10-01

    A strategy using statistically optimal fingerprints to detect anthropogenic climate change is outlined and applied to near-surface temperature trends. The components of this strategy include observations, information about natural climate variability, and a {open_quotes}guess pattern{close_quotes} representing the expected time-space pattern of anthropogenic climate change. The expected anthropogenic climate change is identified through projection of the observations onto an appropriate optimal fingerprint, yielding a scalar-detection variable. The statistically optimal fingerprint is obtained by weighting the components of the guess pattern (truncated to some small-dimensional space) toward low-noise directions. The null hypothesis that the observed climate change is part of natural climate variability is then tested. This strategy is applied to detecting a greenhouse-gas-induced climate change in the spatial pattern of near surface temperature trends defined for time intervals of 15-30 years. The expected pattern of climate change is derived from a transient simulation with a coupled ocean-atmosphere general circulation model. Global gridded near-surface temperature observations are used to represent the observed climate change. Information on the natural variability needed to establish the statistics of the detection variable is extracted from long control simulations of coupled ocean-atmosphere models and, additionally, from the observations themselves (from which an estimated greenhouse warming signal has been removed). While the model control simulations contain only variability caused by the internal dynamics of the atmosphere-ocean system, the observations additionally contain the response to various external forcings. The resulting estimate of climate noise has large uncertainties but is qualitatively the best the authors can presently offer. 71 refs., 12 figs., 14 tabs.

  8. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    International Nuclear Information System (INIS)

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1–100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot. (letter)

  9. On multi-fingerprint detection and attribution of greenhouse gas- and aerosol forced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Mitchell, J.F.B. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-07-01

    A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint, as applied in a previous paper by Hegerl et al. (1996), is optimal for detecting a significant climate change, the simultaneous use of several fingerprints allows one to investigate additionally the consistency between observations and model predicted climate change signals for competing candidate forcing mechanisms. Thus the multi-fingerprint method is a particularly useful technique for attributing an observed climate change to a proposed cause. Different model-predicted climate change signals are derived from three global warming simulations for the period 1880 to 2049. In one simulation, the forcing was by greenhouse gases only, while in the remaining two simulations the influence of aerosols was also included. The two dominant climate change signals derived from these simulations are optimized statistically by weighting the model-predicted climate change pattern towards low-noise directions. These optimized fingerprints are then applied to observed near surface temperature trends. The space-time structure of natural climate variability (needed to determine the signal-to-noise ratio) is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 134 years. (orig.)

  10. Greenhouse policy without regrets. A free market approach to the uncertain risks of climate change

    International Nuclear Information System (INIS)

    Due to uncertainty about climate change, and human contributions thereto, many policymakers call for 'precautionary' measures to reduce the risk of global warming. Such policies are characterized as 'insurance'. Such insurance against the risks of climate change can be achieved by either lessening the likelihood of change by reducing atmospheric concentrations of greenhouse gases through a combination of emission controls and carbon sequestration strategies, or by enacting mitigation measures to reduce the possible economic and ecological impact of a potential climate change. No insurance policy is worthwhile if the cost of the premiums exceeds the protection purchased. For greenhouse insurance to be worthwhile, it must either reduce the risks of anthropogenic climate change or reduce the costs of emission reductions designed to achieve the same goal, without imposing off-setting risks, such as those which would result from policies that slow economic growth and technological advance. Currently proposed precautionary measures, such as the Kyoto Protocol, call for government interventions to control greenhouse-gas emissions and suppress the use of carbon-based fuels. Such policies would impose substantial costs and yet do little, if anything, to reduce the risks of climate change. Such policies cannot be characterized as cost-effective greenhouse 'insurance'. Rather than adopt costly regulatory measures that serve to suppress energy use and economic growth, policy makers should seek to eliminate government interventions in the marketplace that obstruct emission reductions and discourage the adoption of lower emission technologies. Such an approach is a 'no regrets' strategy, as these policy recommendations will provide economic and environmental benefits by fostering innovation and economic efficiency whether or not climate change is a serious threat. While fear of global warming may prompt the enactment of these reforms, they merit implementation even if we have

  11. Some estimates of the insurance value against climate change from reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Estimates of the value of reduced risk from marginal reductions in current greenhouse gas emissions are presented, using Nordhaus's results and predictions from the scientific models. Only under extreme scenarios for climate change, or when future utility is discounted at an unusually low rate, does the insurance value seem likely to be significant relative to the costs of cutting emissions. 17 refs., 1 fig., 3 tabs

  12. Global mismatch between greenhouse gas emissions and the burden of climate change

    Science.gov (United States)

    Althor, Glenn; Watson, James E. M.; Fuller, Richard A.

    2016-02-01

    Countries export much of the harm created by their greenhouse gas (GHG) emissions because the Earth’s atmosphere intermixes globally. Yet, the extent to which this leads to inequity between GHG emitters and those impacted by the resulting climate change depends on the distribution of climate vulnerability. Here, we determine empirically the relationship between countries’ GHG emissions and their vulnerability to negative effects of climate change. In line with the results of other studies, we find an enormous global inequality where 20 of the 36 highest emitting countries are among the least vulnerable to negative impacts of future climate change. Conversely, 11 of the 17 countries with low or moderate GHG emissions, are acutely vulnerable to negative impacts of climate change. In 2010, only 28 (16%) countries had an equitable balance between emissions and vulnerability. Moreover, future emissions scenarios show that this inequality will significantly worsen by 2030. Many countries are manifestly free riders causing others to bear a climate change burden, which acts as a disincentive for them to mitigate their emissions. It is time that this persistent and worsening climate inequity is resolved, and for the largest emitting countries to act on their commitment of common but differentiated responsibilities.

  13. Air pollution policy in Europe: Quantifying the interaction with greenhouse gases and climate change policies

    International Nuclear Information System (INIS)

    This paper uses the computable general equilibrium model WorldScan to analyse interactions between EU's air pollution and climate change policies. Covering the entire world and seven EU countries, WorldScan simulates economic growth in a neo-classical recursive dynamic framework, including emissions and abatement of greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). Abatement includes the possibility of using end-of-pipe control options that remove pollutants without affecting the emission-producing activity itself. This paper analyses several variants of EU's air pollution policies for the year 2020. Air pollution policy will depend on end-of-pipe controls for not more than two thirds, thus also at least one third of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease, which renders climate change policies less costly. Our results show that carbon prices will fall, and may even drop to zero when the EU agrees on a more stringent air pollution policy. - Highlights: • This paper models bottom-up emission control in top-down CGE model. • We analyse interactions between air pollution and climate policies in Europe. • Structural changes induced by stringent air policies may make EU-ETS market obsolete

  14. Climate - Greenhouse effect - Energy

    International Nuclear Information System (INIS)

    This book explains what is understood by climate systems and the concept of greenhouse effect. It also gives a survey of the world's energy consumption, energy reserves and renewable energy sources. Today, 75 - 80 per cent of the world's energy consumption involves fossil fuel. These are the sources that cause the CO2 emissions. What are the possibilities of reducing the emissions? The world's population is increasing, and to provide food and a worthy life for everybody we have to use more energy. Where do we get this energy from without causing great climate changes and environmental changes? Should gas power plants be built in Norway? Should Swedish nuclear power plants be shut down, or is it advisable to concentrate on nuclear power, worldwide, this century, to reduce the CO2 emissions until the renewable energy sources have been developed and can take over once the petroleum sources have been depleted? The book also discusses the global magnetic field, which protects against particle radiation from space and which gives rise to the aurora borealis. The book is aimed at students taking environmental courses in universities and colleges, but is also of interest for anybody concerned about climate questions, energy sources and living standard

  15. Air Pollution Policy in Europe. Quantifying the Interaction with Greenhouse Gases and Climate Change Policies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, J. [CPB Netherlands Bureau for Economic Policy Analysis, Den Haag (Netherlands); Brink, C. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands)

    2012-10-15

    In this study the Computable General Equilibrium Model called WorldScan is used to analyse interactions between European air pollution policies and policies aimed at addressing climate change. WorldScan incorporates the emissions of both greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). WorldScan has been extended with equations that enable the simulation of end-of-pipe measures that remove pollutants without affecting the emission-producing activity itself. Air pollution policy will depend on end-of-pipe controls for not more than 50%, thus also at least 50% of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease which renders climate change policies less costly. Our results show that carbon prices will fall, but not more than 33%, although they could drop to zero when the EU agrees on a more stringent air pollution policy.

  16. Smarter greenhouse climate control

    NARCIS (Netherlands)

    Nederhoff, E.M.; Houter, G.

    2011-01-01

    Greenhouse operators strive to be as economic as possible with energy. However, investing in fancy energy-saving equipment is often not cost-effective for smaller operations and in climate zones with mild winters. It is possible, though, for many growers to save energy without buying special equipme

  17. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    Science.gov (United States)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; Mundra, Anupriya

    2015-11-01

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits reaching 17 B under moderate mitigation, but only 7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to 18 B, generating benefits to moderate (stringent) mitigation as large as 26 B (20 B).

  18. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    International Nuclear Information System (INIS)

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B). (letter)

  19. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Klaus, Larsen; Emmett, B;

    2012-01-01

    , and in annual precipitation from 300 to 1300mmyr-1. The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (>30 yr) effect of drainage was assessed, while increased nitrogen deposition was...... at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71–96 %), except for NO- 3 addition where 89......% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances will be dominated by variations in soil CO2 fluxes....

  20. Role of Pakistan in Global Climate Change through Greenhouse Gas Emissions (GHGs

    Directory of Open Access Journals (Sweden)

    Wajeeha Malik

    2012-11-01

    Full Text Available The increasing concentration of Greenhouse Gases (GHGs is warming the earth’s atmosphere and the phenomenon is known as Climate Change or Global Warming. The major factors contributing to the global climate change include polluted emissions by excessive burning of fossil fuels and deforestation. Pakistan contributes very little to the overall Greenhouse Gas (GHG emissions however it remains severely impacted by the negative effects of climate change. Pakistan, in particular is estimated to have raised carbon emissions from 76 million tons in 1990 to 200 million tons in 2006. It is estimated that CO2 emissions with an average increase of 6.5% annually will grow to 482 million tons by 2020. The transport sector is a significant contributor to GHG emissions with an estimated 15million tons in 1990. With a proportionate increase in GHG emissions with the 100% increase in motor vehicles, the sector will be responsible for the emission of 30 million ton CO2 by 2020. According to data reviewed, the total petroleum consumption of Pakistan was 383 thousand barrels per day in 2008. Natural gas consumption was 1,088 billion cubic feet in 2007. Coal consumption reached 8.583 million short tons in 2007. In 2006, the total Carbon dioxide emissions from consumption of fossil fuels reached 125.59 million metric tons (EIA. Glacier melt in the Himalayas is projected to increase flooding and will affect water resources within the next two to three decades. Freshwater availability is also projected to decrease which will lead to biodiversity loss. Beside that, coastal areas bordering the Arabian Sea in the south of Pakistan will be at greatest risk due to inland intrusion and increased flooding from the sea. Being a predominantly agriculture economy, climate change is estimated to decrease crop yields in Pakistan. The endemic morbidity and mortality due to diseases primarily associated with floods and droughts are expected to rise. The impact of climate change

  1. Is Carbon Offsetting an Elaborate Charade? Climate Change: the Mirage of Greenhouse Gas Emission Compensation Mechanisms

    International Nuclear Information System (INIS)

    There is now a massive scientific consensus around global warming and the subject is a major focus of media interest in most industrialized countries. The man-made origin of the phenomenon is also generally accepted; hence the efforts expended by those in government, the international community, environmental organizations etc. to limit its scope by acting on its main driver, greenhouse gas emissions. It is in this context that a market in the voluntary compensation of greenhouse gas emissions has developed in recent years. This is known as the ''voluntary carbon offsetting market'' and consists in selling activities or projects that are supposed, in the medium or long term, to reduce greenhouse gas emissions, thereby compensating for the climatically damaging effects of the purchasers' current activities. In other words, buyers may be said to be giving themselves a clear conscience about today's emissions by paying for an act of emission-reduction tomorrow. Though the principle may seem praiseworthy, on closer inspection the idea of carbon offsetting, as currently on offer, turns out to be deceptive. Augustin Fragniere demonstrates the point here with a precise analysis of the estimates and forecasts available in this field (showing how disputable the up-front emissions assessments are), and also of the spatial and temporal dimensions that are very largely concealed by the players in the carbon offsetting market. He shows, lastly, that carbon offsetting mechanisms lead to action being postponed, with an aggravation of the harm done and an increased need for action in the future as a consequence, whereas concrete initiatives to promote behavioural change in the present would have both quicker and clearer effects on the reduction of greenhouse gas emissions

  2. Optimal greenhouse gas emissions under various assessments of climate change ambiguity

    International Nuclear Information System (INIS)

    The probabilities associated with global warming damage are likely to be continuously revised in the light of new information. Such revisions of probability are the defining characteristic of ambiguity, as opposed to risk. In this paper it is examined how climate change ambiguity may affect optimal greenhouse gas emission strategies, via the decision maker's attitude towards anticipated changes of damage probabilities. Two conceptualizations of ambiguity are distinguished, according to the emphasis placed on the ambiguity of priors or on the ambiguity of news, respectively. It is shown that the way in which ambiguity is viewed and the attitude taken towards it have a substantial influence on the optimal emission trajectory. 7 figs., 7 refs

  3. The Greenhouse Gas Project Of ESA's Climate Change Initiative (GHG-CCI): Phase 1 Achievements

    Science.gov (United States)

    Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Aben, I.; Armante, R.; Bergamaschi, P.; Blumenstock, T.; Bovensmann, H.; Brunner, D.; Buchmann, B.; Burrows, J. P.; Butz, A.; Chevallier, F.; Crevoisier, C. D.; Detmers, R.; Deutcher, N.; Dils, B.; Frankenberg, C.; Guerlet, S.; Hasekamp, O. P.; Heymann, J.; Kaminski, T.; Laeng, A.; Lichtenberg, G.; De Maziere, M.; Noel, S.; Notholt, J.; Parker, R.; Scholze, M.; Sussmann, R.; Stiller, G. P.; Warneke, T.; Zehner, C.

    2013-12-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI, http://www.esa-cci.org/), which delivers data sets of various Essential Climate Variables (ECVs). The goal of GHG-CCI is to generate global satellite-derived data sets of the two important anthropogenic greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) with a quality as needed to derive information on regional CO2 and CH4 surface sources and sinks. A good understanding of GHG sources and sinks is a pre-requisite for reliable climate prediction. The GHG-CCI core ECV data products are near-surface sensitive column-averaged dry air mole fractions of CO2 and CH4, denoted XCO2 and XCH4, retrieved from SCIAMACHY/ENVISAT and TANSO- FTS/GOSAT. Other satellite instruments such as IASI and MIPAS are also used as they provide additional information about the two GHGs. Here we present an overview of Phase 1 of the GHG-CCI project (Sept.2010 - Dec.2013), focusing on scientific achievements and on the “Climate Research Data Package” (CRDP), which is the first version of the ECV GHG data base.

  4. The Runaway Greenhouse: implications for future climate change, geoengineering and planetary atmospheres

    CERN Document Server

    Goldblatt, Colin

    2012-01-01

    The ultimate climate emergency is a "runaway greenhouse": a hot and water vapour rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only once the surface reaches ~1400K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon diox...

  5. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    Science.gov (United States)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  6. The greenhouse effect economy: a review of international commitments for the struggle against climate change

    International Nuclear Information System (INIS)

    After a description of climate change as a physical phenomenon, a review of assessments of costs associated to climate change and to the reduction of greenhouse gas emissions, and a discussion about the decision in a context of uncertainty, the author discusses political challenges, stressing the need for an international coordination, discussing the issue of property rights, the need to build a mutually beneficial agreement between states, and reviewing the different positions and beliefs in various countries. Then, she describes the system implemented by the Kyoto protocol, proposes an assessment of this protocol at the present time, highlights the qualities of this protocol, proposes pathways to improve it, and attempts to draw some perspectives. In a last part, she examines and comments the U.S. posture, questioning the high level of EU's ambitions in front of a lack of action of the United States, questioning also the negotiation framework, the place given to developing countries in this negotiation, and the possibility of taking up transatlantic negotiations again

  7. Climate Model Tests Of Anthropogenic Influence On Greenhouse-Induced Climate Change: The Role Of Plant Physiology Feedbacks

    Science.gov (United States)

    Philippon, G.; Vavrus, S.; Kutzbach, J. E.; Ruddiman, W. F.

    2008-12-01

    We use the NCAR's Community Climate System Model (CCSM3) forced by greenhouse gas concentrations that are lower than nominal pre-industrial (~1750 AD) levels and instead based on natural levels that were reached in similar stages of previous interglaciations. The aim is to test the plant physiology feedback from the vegetation model with the coupled atmosphere-slab ocean configuration at a moderate resolution (T42). According to previous modeling work allowing interactive vegetation but no physiology feedback, the response of this model to lowered greenhouse gases is a global cooling of about 3 K and an expansion of arctic snow area, resulting from an arctic desert expansion and a decrease mainly of boreal trees and also tundra. We focus on the comparison of two experiments with both the vegetation feedbacks (interactive vegetation) but one with no plant physiology feedback (NOANTHRO_VEG) and the other with plant physiology feedback (PHYSIO). The physiology feedback produces an even cooler northern hemisphere high latitude climate, about -0.5 K on average. But the land winter temperature difference can reach 2 K near the northern pole. Furthermore, the physiology feedback amplifies the decrease of boreal tree cover in high latitudes and the tundra area in many places except on the southern limit (South-west and south-east Russia and south-east Canada), where the tundra is increasing. Viewed from the perspective of explaining the unusual late-Holocene increases of CO2 that occurred prior to the Industrial Revolution, these simulated changes in the vegetation support the hypothesis that early agriculture played a role in initiating anomalous warming that thwarted incipient glaciation beginning several thousand years ago. In this work, we will show the impact of the vegetation feedback and the physiology effect on the climate.

  8. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wigley, T.M.L.; Jones, P.D.

    1994-07-01

    In addition to changes due to variations in greenhouse gas concentrations, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the enhanced greenhouse effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to ocean General Circulation Models. Appendices A--G contain the following seven papers: (A) Recent global warmth moderated by the effects of the Mount Pinatubo eruption; (B) Recent warming in global temperature series; (C) Correlation methods in fingerprint detection studies; (D) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes; (E) A simple model for estimating methane concentration and lifetime variations; (F) Implications for climate and sea level of revised IPCC emissions scenarios; and (G) Sulfate aerosol and climatic change.

  9. Greenhouse effect and climate; Effet de serre et climat

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2008-04-15

    In the framework of the climatic change, the author aims to explain the phenomena of greenhouse effect. He details the historical aspects of the scientific knowledge in the domain, the gases produced, some characteristic of the greenhouse effect, the other actors which contribute to the climate, the climate simulation, the different factors of climate change since 1750 and the signs of the global heating. (A.L.B.)

  10. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Science.gov (United States)

    Ramanathan, V.; Feng, Y.

    dimming has altered both the north-south gradients in sea surface temperatures and land-ocean contrast in surface temperatures, which in turn slow down the monsoon circulation and decrease rainfall over the continents. On the other hand, heating by black carbon warms the atmosphere at elevated levels from 2 to 6 km, where most tropical glaciers are located, thus strengthening the effect of GHGs on retreat of snow packs and glaciers in the Hindu Kush-Himalaya-Tibetan glaciers. Globally, the surface cooling effect of ABCs may have masked as much 47% of the global warming by greenhouse gases, with an uncertainty range of 20-80%. This presents a dilemma since efforts to curb air pollution may unmask the ABC cooling effect and enhance the surface warming. Thus efforts to reduce GHGs and air pollution should be done under one common framework. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.

  11. Climate Change Impacts on US Agriculture and the Benefits of Greenhouse Gas Mitigation

    Science.gov (United States)

    Monier, E.; Sue Wing, I.; Stern, A.

    2014-12-01

    As contributors to the US EPA's Climate Impacts and Risk Assessment (CIRA) project, we present empirically-based projections of climate change impacts on the yields of five major US crops. Our analysis uses a 15-member ensemble of climate simulations using the MIT Integrated Global System Model (IGSM) linked to the NCAR Community Atmosphere Model (CAM), forced by 3 emissions scenarios (a "business as usual" reference scenario and two stabilization scenarios at 4.5W/m2 and 3.7 W/m2 by 2100), quantify the agricultural impacts avoided due to greenhouse gas emission reductions. Our innovation is the coupling of climate model outputs with empirical estimates of the long-run relationship between crop yields and temperature, precipitation and soil moisture derived from the co-variation between yields and weather across US counties over the last 50 years. Our identifying assumption is that since farmers' planting, management and harvesting decisions are based on land quality and expectations of weather, yields and meteorological variables share a long-run equilibrium relationship. In any given year, weather shocks cause yields to diverge from their expected long-run values, prompting farmers to revise their long-run expectations. We specify a dynamic panel error correction model (ECM) that statistically distinguishes these two processes. The ECM is estimated for maize, wheat, soybeans, sorghum and cotton using longitudinal data on production and harvested area for ~1,100 counties from 1948-2010, in conjunction with spatial fields of 3-hourly temperature, precipitation and soil moisture from the Global Land Data Assimilation System (GLDAS) forcing and output files, binned into annual counts of exposure over the growing season and mapped to county centroids. For scenarios of future warming the identical method was used to calculate counties' current (1986-2010) and future (2036-65 and 2086-2110) distributions of simulated 3-hourly growing season temperature, precipitation

  12. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  13. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1992--30 June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wigley, T.M.L.; Jones, P.D.

    1993-07-09

    The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. The main research areas covered by this proposal are (b), First Detection and (c) Supporting Data. The project will also include work under area (a), Modeling: specifically, analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulating Models (GCMs).

  14. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    Science.gov (United States)

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  15. Climate change. The first national inventory of greenhouse gas emissions by sources and removals by sinks. Final report

    International Nuclear Information System (INIS)

    The structure of the present greenhouse gas inventory report follows the order established in the Revised 1996 IPCC Guidelines-Greenhouse Gas Inventory Workbook, volume 2, which has identified six major economic sectors, as follows: Energy, industrial processes, solvent and other product use, agriculture, land use change and forestry and waste. These guidelines have considered the following greenhouse gases: carbon dioxide, carbon monoxide, nitrogen oxides, nitrous oxide, sulfur dioxide, methane, non methane volatile organic compounds, hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride. It should be noted that the protocol developed for the United Nations framework convention on climate change in the conference of parties 3, held in Kyoto on December 10, 1997 has determined six greenhouse gases to be controlled: CH4, CO2, N2O, HF C, PFC, S F6. This report summaries pictures of all important results obtained by the National Inventory team:The emitted amount of each greenhouse in all sectors in Lebanon. Tables and charts have been developed to show the contributions of various sectors to total emissions of gases in Lebanon

  16. Changes in Hydrologic Conditions and Greenhouse Gas Emissions in Circumpolar Regions due to Climate Change Induced Permafrost Retreat

    International Nuclear Information System (INIS)

    Thawing permafrost peatlands substantially influence Canadian northern ecosystems by changing the regional hydrology and mobilizing the vast carbon (C) reserves that results in increased greenhouse gas (GHGs) emissions to the atmosphere. With permafrost distribution controlled largely by topography and climate, our International polar y ear (IPY) study intensively monitored the local C cycling processes and GHG fluxes associated with different hydrologic and permafrost environments at 4 sites along a climatic gradient extending from the Isolated patches permafrost Zone (northern alberta), to the continuous permafrost Zone (Inuvik, NWT). Each site encompasses a local gradient from upland forest and peat plateau to collapse scar. Our multi-year measurements of peatland profiles and flux chambers for CH4 and CO2 concentrations and stable isotope ratios indicate processes, including methanogenesis, methanotrophy, transport and emission that control the distribution of these GHGs. These relationships are modulated by fluctuating local soil water and corresponding ecosystem conditions. The gas geochemistry shows that significant surface CH4 production occurs by both hydrogenotrophic and acetoclastic methanogenesis in submerged, anaerobic peats, e.g., collapse scars, whereas methane oxidation is restricted to aerobic, drier environments, e.g., upland sites and peat-atmosphere interface. The most active methanogenesis and emissions are in areas of actively thawing permafrost contrasting with sites under continuous permafrost. This degree of methanogenesis is being amplified by the increased rate of Arctic warming and the rapid retreat of permafrost in canada's arctic (approximately. 2.5 km/a). (author)

  17. Some basic facts about climate change: global warming and greenhouse effect

    International Nuclear Information System (INIS)

    Climate change is one of the most profound challenges facing humidity today, Growing awareness of the problems inspired a surge of research in the relevant fields. but most of it in the form of highly technical reports which are not always comprehensible to non specialists. As a results, they often lack the authoritative but accessible information that they really need to understand the whole issue of this climate change. In this article answers to some of the very basic questions arising in the minds of general reader regarding the climate change are given. (author)

  18. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands – responses to climatic and environmental changes

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Larsen, Klaus Steenberg; Emmett, B.;

    2012-01-01

    , and in annual precipitation from 300 to 1300 mm yr−1. The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (>30 yr) effect of drainage was assessed, while increased nitrogen deposition was...... at a~hydric shrubland where drought tended to increase soil respiration. When comparing the fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71–96%), except for NO3− addition where...

  19. Papers of the Canadian Energy Pipeline Association's 7. annual climate change workshop : energy efficiency and greenhouse gas reduction opportunities

    International Nuclear Information System (INIS)

    This conference focused on the role that Canadian pipeline companies will play in addressing greenhouse gas emissions. Ninety-five per cent of Canada's oil and gas is transported by pipeline. The Canadian Energy Pipeline Association (CEPA) is a national association representing all the major crude oil and natural gas transportation companies in Canada which operate 100,000 kilometres of pipeline in the country. CEPA's ongoing commitment to climate change includes a commitment to participate in the climate change process, share best management practices, develop energy efficient technology, and position Canadian companies so that they can be part of the solution. It was emphasized that a strong commitment to an effective innovation strategy will be crucial to a successful long term energy policy that meets both economic and environmental objectives. One of the key messages at the conference was that Canada's climate change policies should be consistent with those of the United States, its major trading partner, to ensure that Canada is not placed at a competitive disadvantage within North American and world energy markets. It was also noted that greenhouse gas emissions should be reduced in all consuming and producing sectors of the economy through energy efficiency practices and not through reductions in Canadian industry output for domestic or export markets. Five presentations were indexed separately for inclusion in the database. tabs., figs

  20. Climate Change and the Global Harvest: Potential Impacts of the Greenhouse Effect on Agriculture

    Science.gov (United States)

    Norman, John M.

    The media preoccupation with El Nino and recent weather calamities suggests that nearly everyone should be aware, at least at a superficial level, of the possibilities for global climate changes. Endless articles in the popular press and scientific journal literature have reported a plethora of possible climate change outcomes, supported of course by a judicious selection of observations and reference citations. All this speculation has given rise to assertions that the scientific community is struggling with an uncomfortable dichotomy between genuine and justified concern versus enhanced budgets and notoriety that come with dire scenarios. Perhaps the climate-change research community is second only to the medical research community in having its credibility shaken by premature airing of uncertain findings.

  1. Greenhouse gas policy influences climate via direct effects of land-use change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Torn, Margaret S.; Janetos, Anthony C.; Calvin, Katherine V.; Thomson, Allison M.; Chini, Louise M.; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter; Hurtt, George; Wise, Marshall A.

    2013-06-01

    Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover compared to the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W/m2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing are uniquely related to atmospheric forcing targets such as those found in the RCP’s, but rather depend on particulars of the socioeconomic pathways followed to meet each target.

  2. Greenhouse climate model : an aid to estimate the influence of supplemental lighting on greenhouse climate

    OpenAIRE

    Binotto, Marco 1987

    2012-01-01

    GeoGreenhouse project involves the construction of a greenhouse for growing tomatoes in Iceland. The first stage consists of a gross area of five hectares. Due to the peculiarities of such project and because of the unique weather, a greenhouse climate model is advisable to analyze various design solutions. Iceland's weather has a seasonal change in the length of day and night, creating unique weather phenomena. In midwinter, there is a period where darkness prevails. In midsummer, dayligh...

  3. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  4. Greenhouse gases and their impact on climate change: case of Pakistan

    International Nuclear Information System (INIS)

    Changes in climate caused by human activities will have far-reaching environmental impacts. Of particular concern are the possibilities of major changes in regional water quantity and quality. An increase in average monthly temperature of 4 deg. C decreases spring runoff over 50% while increasing winter runoff nearly 35%; summer Soil moisture decreases over 30%. Changes in precipitation, whether positive or negative may have been greater consequences for the timing and magnitude of runoff and may contribute significantly to the possibility and consequences of flooding and drought. Global Climatic Changes caused by increasing atmospheric concentration of CO/sub 2/ from fuel combustion and other trace gases are likely to appear within the next few decades. One of the most important of such environmental changes will be alternations in regional hydrologic characteristics such as surface runoff and soil moisture. (author)

  5. Vulnerability and Adaptation to Potential Impacts of Climate Change and Inventory of Greenhouse Gas Emissions and Sinks in Kenya

    International Nuclear Information System (INIS)

    This document is the proceedings of two workshops organized by the Kenya Country Study on Climate change Project (KCSCCP) of the Ministry of Research and Technology. The first workshop dealt with the Vulnerability and Adaptation to the Impacts of climate Change whilst the second was on the inventory of Greenhouse gas emissions and sinks in Kenya. These were for culmination and socio-economic development in Kenya. this efforts were made possible through financial support from the US government, which was channelled through the US Country studies program. The US country studies program also supervised the expeditious peer review of the consultancy work to facilitate refining of the final reports by the consultants. These proceedings therefore, contain only summarized versions of the papers presented at the workshops

  6. Prospective Primary Teachers' Understanding of Climate Change, Greenhouse Effect, and Ozone Layer Depletion

    Science.gov (United States)

    Papadimitriou, Vasiliki

    2004-01-01

    Climate change is one of the most serious global environmental problems and for that reason there has been lately a great interest in educating pupils, the future citizens, about it. Previous research has shown that pupils of all ages and teachers hold many misconceptions and misunderstandings concerning this issue. This paper reports on research…

  7. Food, land and greenhouse gases The effect of changes in UK food consumption on land requirements and greenhouse gas emissions. Report for the Committee on Climate Change.

    OpenAIRE

    Audsley, Eric; Angus, Andrew; Chatterton, Julia C.; Graves, Anil R.; Morris, Joe; Murphy-Bokern,Donal; Pearn, Kerry R.; Sandars, Daniel L.; Williams, Adrian G

    2010-01-01

    EXECUTIVE SUMMARY •1. Key findingsThis study examines the land use and greenhouse gas implications of UK food consumption change away from carbon intensive products. It shows that the UK agricultural land base can support increased consumption of plant-based products arising from the reduced consumption of livestock products. A 50% reduction in livestock product consumption reduces the area of arable and grassland required to supply UK food, both in the UK and overseas. It a...

  8. Accelerated greenhouse gases versus slow insolation forcing induced climate changes in southern South America since the Mid-Holocene

    Science.gov (United States)

    Berman, Ana Laura; Silvestri, Gabriel E.; Rojas, Maisa; Tonello, Marcela S.

    2016-03-01

    This paper is a pioneering analysis of past climates in southern South America combining multiproxy reconstructions and the state-of-the-art CMIP5/PMIP3 paleoclimatic models to investigate the time evolution of regional climatic conditions from the Mid-Holocene (MH) to the present. This analysis allows a comparison between the impact of the long term climate variations associated with insolation changes and the more recent effects of anthropogenic forcing on the region. The PMIP3 multimodel experiments suggest that changes in precipitation over almost all southern South America between MH and pre-industrial (PI) times due to insolation variations are significantly larger than those between PI and the present, which are due to changes in greenhouse gas concentrations. Anthropogenic forcing has been particularly intense over western Patagonia inducing reduction of precipitation in summer, autumn and winter as a consequence of progressively weaker westerly winds over the region, which have moved further poleward, between ca. 35-55°S and have become stronger south of about 50°S. Orbital variations between the MH to the PI period increased insolation over southern South America during summer and autumn inducing warmer conditions in the PI, accentuated by the effect of anthropogenic forcing during the last century. On the other hand, changes in orbital parameters from the MH to the PI period reduced insolation during winter and spring inducing colder conditions, which have been reversed by the anthropogenic forcing.

  9. Climate change

    International Nuclear Information System (INIS)

    The indicators in this bulletin are part of a national set of environmental indicators designed to provide a profile of the state of Canada's environment and measure progress towards sustainable development. A review of potential impacts on Canada shows that such changes would have wide-ranging implications for its economic sectors, social well-being including human health, and ecological systems. This document looks at the natural state of greenhouse gases which help regulate the Earth's climate. Then it looks at human influence and what is being done about it. The document then examines some indicators: Carbon dioxide emissions from fossil fuel use; global atmospheric concentrations of greenhouse gases; and global and Canadian temperature variations

  10. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  11. Energy and climatic change: within 30 years, divide France's emissions of greenhouse gases in three

    International Nuclear Information System (INIS)

    Fighting against global warming means cutting down on greenhouse gases. France can significantly reduce its emissions by seriously modifying life-styles without disrupting them. The population will accept this all the better as far as it is deeply concerned with the issues. (author)

  12. Countries’ contributions to climate change: effect of accounting for all greenhouse gases, recent trends, basic needs and technological progress

    NARCIS (Netherlands)

    Elzen, M.J.; Olivier, J.J.; Hoehne, N.E.; Janssens-Maenhout, G.

    2013-01-01

    In the context of recent discussions at the UN climate negotiations we compared several ways of calculating historical greenhouse gas (GHG) emissions, and assessed the effect of these different approaches on countries’ relative contributions to cumulative global emissions. Elements not covered befor

  13. Climate changes. Greenhouse effect, ozone depletion and natural disasters. With an up-to-date documentation

    International Nuclear Information System (INIS)

    This book aims to set the climate discussion within a large and often neglected framework and to show connections, based strictly on modern scientific knowledge. This includes, as well as the human factor, rather importantly the natural climate occurrences which cannot simply be ignored; also the classification of climatic occurences within the extensive area of environmental problems. This breadth of discussion for general comprehensiveness has been freely at the expense of its depth. Detailed specialist information can be found in the references; further depth is detailed in the diagrams and documentation in the book's appendix. (orig.)

  14. The greenhouse effect and climate warming up

    International Nuclear Information System (INIS)

    The present article is a follow-up to a previous article, under the same title, which describes the scientific bases of the greenhouse effect and the prospect, based on climatic global models, of a potential climate warming up. The conclusions of the Intergovernmental Panel on Climate Change (IPCC, August 1990) were summarized, predicting a mean global temperature increase between 2.4 and 5.1 deg C in 2070, among other changes. The recent IPCC work confirms 1990 conclusions but states that the decline of ozone in the lower stratosphere could neutralize the radiative forcing of chlorofluorocarbons. At least ten more years of investigation are needed to ascertain an increase of the greenhouse effect. Information is given on recent events which may be connected with the global climate problem, in particular the spectacular eruption of the Pinatubo volcano, in mid 1991, cause of a probable cooling of the atmosphere and a potential decrease of radiative forcing due to anthropogenic dioxide emissions. The most important recent events in the political field is a directive proposal by the European Commission aimed at a taxation of both energy in general and of carbon dioxide emissions by fossil fuels. Another event is the United Nations Convention on climate change, signed by 155 countries at the Rio de Janeiro Conference on Environment and Development, which pledges signatories to decrease their greenhouse gas - emissions but no figures are given on percentages and calendar of reduction. At last, a short chapter is devoted to the French ECLAT programme on climate change which consists both in participating in world programmes and in performing original investigations by French Scientists

  15. Amazonian climatic change: Water isotope detection of deforestation and greenhouse impacts

    International Nuclear Information System (INIS)

    Full text: Land use change in the Amazon basin, the largest and most biologically diverse river system in the world, has the potential to cause significant disruption to hydrological, biogeochemical and human systems. The naturally occurring isotopologues of water, commonly, but incorrectly, termed 'isotopes', of interest as possible tracing and validation tools in hydrological simulations are 1H218O and 1H2H16O. Large catchment simulations of water resources where isotopes could be applicable include water re-cycling as a function of precipitation type and variability; evaporation sourcing (i.e. whether water vapour comes from transpiration or from evaporation from rivers, lakes, soil water or the vegetation canopy); ice and snow temperature deposition determination; and aquifer and soil processes including those dependent upon precipitation intensity and melt-water contributions. coupled with measurement of isotopes in water sources, SWI characteristics in river discharge now provide insight into basin- integrated hydro-climates. New data from the Global Network for Isotopes in Precipitation (GNIP) database, and previously published data now fully analysed, reveal significant changes in seasonal isotopic characteristics in the upper reaches of the Amazon basin underlining the use of stable water isotopes as a means of validating and improving numerical models. Despite observational limitations, which make determination of correctness difficult, some global models are shown here to be too poor to be of value in the Amazon. For example, isotopic depletions, a strong function of rainfall amount, are incorrect when precipitation is inadequately predicted seasonally or following ENSO circulation shifts. Isotopic enrichments of δ18O and δD exhibit systematic variations in the Amazonian water cycle as a result of forest and flooding changes. We find signatures of both circulation and land-use change impacts in the isotopic record: ENSO events cause decreased depletion

  16. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  17. Navigating SA's climate change legislation

    International Nuclear Information System (INIS)

    It is proposed that there should be a legislation to address climate change and Greenhouse Gas Emission Reduction Bill. South Australian Government Greenhouse Strategy and climate change legislation in light of the far-reaching implications this legislation could have on clients, who face the impacts of climate change in the business and natural environment. It is a commitment to reduce greenhouse gas emissions in South Australia by 2050 to 60 per cent of 1990 levels

  18. Enhanced chemistry-climate feedbacks in past greenhouse worlds

    OpenAIRE

    Beerling, David J.; Fox, Andrew; Stevenson, David S; Valdes, Paul J.

    2011-01-01

    Trace greenhouse gases are a fundamentally important component of Earth’s global climate system sensitive to global change. However, their concentration in the pre-Pleistocene atmosphere during past warm greenhouse climates is highly uncertain because we lack suitable geochemical or biological proxies. This long-standing issue hinders assessment of their contribution to past global warmth and the equilibrium climate sensitivity of the Earth system (Ess) to CO2. Here we report results from a s...

  19. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections

    International Nuclear Information System (INIS)

    Reduction of greenhouse gas (GHG) emissions to minimize climate change requires very significant societal effort. To motivate this effort, it is important to clarify the benefits of avoided emissions. To this end, we analysed the impact of four emissions scenarios on future renewable groundwater resources, which range from 1600 GtCO2 during the 21st century (RCP2.6) to 7300 GtCO2 (RCP8.5). Climate modelling uncertainty was taken into account by applying the bias-corrected output of a small ensemble of five CMIP5 global climate models (GCM) as provided by the ISI-MIP effort to the global hydrological model WaterGAP. Despite significant climate model uncertainty, the benefits of avoided emissions with respect to renewable groundwater resources (i.e. groundwater recharge (GWR)) are obvious. The percentage of projected global population (SSP2 population scenario) suffering from a significant decrease of GWR of more than 10% by the 2080s as compared to 1971–2000 decreases from 38% (GCM range 27–50%) for RCP8.5 to 24% (11–39%) for RCP2.6. The population fraction that is spared from any significant GWR change would increase from 29% to 47% if emissions were restricted to RCP2.6. Increases of GWR are more likely to occur in areas with below average population density, while GWR decreases of more than 30% affect especially (semi)arid regions, across all GCMs. Considering change of renewable groundwater resources as a function of mean global temperature (GMT) rise, the land area that is affected by GWR decreases of more than 30% and 70% increases linearly with global warming from 0 to 3 ° C. For each degree of GMT rise, an additional 4% of the global land area (except Greenland and Antarctica) is affected by a GWR decrease of more than 30%, and an additional 1% is affected by a decrease of more than 70%. (letter)

  20. Carbon stocks, greenhouse gas emissions and water balance of Sudanese savannah woodlands in relation to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Alam, S. A.

    2013-06-01

    Understanding the carbon (C) sequestration potential of drylands requires knowledge of the stocks of C in soils and biomass and on the factors affecting them. The overall aim of the study was to determine and evaluate the variation in the C stocks and water balance of Acacia savannah woodlands across the dryland (arid and semi-arid) region (10-16 deg N; 21-36 deg E) of the former Sudan (now mainly in the Republic of the Sudan) and how they are related to climatic factors and may be affected by climate change. The role played by small but numerous brick making industries on woodland deforestation in the region and greenhouse gas production was also investigated. The study region is often referred to as the gum belt because it is the world's major source of gum Arabic, which is harvested from Acacia trees. The soils in the centre and west of the region are mainly Arenosols (sandy soils) and those in the eastern part are mainly Vertisols (clay soils). The soils are C poor and often in a degraded state. This dissertation consists of a summary section and four articles (Study I, II, III and IV). Study I focuses on fuelwood consumption by the brick making industries (BMIs) and associated deforestation and greenhouse gas (GHG) emissions. In Study II the C densities (g C m-2) of the woodland tree biomass and soil (1 m) for 39 map sheets covering the study region were determined from national forest inventory data and global soil databases and the dependence on mean annual precipitation (MAP) and mean annual temperature (MAT) determined. The water balance of savannah woodlands for the same 39 map sheets was modelled in Study III and the variation in water balance components across the region evaluated. The potential impacts of climate change on woodland biomass C density and water-use (actual evapotranspiration, AET) was analysed for eight of the map sheets in Study IV. Sudanese BMIs consume a considerable amount of fuelwood that mainly comes from unsustainably managed

  1. Multivariate methods for the detection of greenhouse-gas-induced climate change

    International Nuclear Information System (INIS)

    This investigation considers whether observed changes in surface air temperature are consistent with GCM equilibrium response predictions for a doubling of atmospheric CO2. The model considered is a version of the Oregon State University (OSU) atmospheric general circulation model (AGCM). The study consists of three stages. In the first stage the authors examine the spatial structure of changes in the annual mean and annual cycle for surface air temperature, mean sea-level pressure (SLP) and precipitation rate. Signal-to-noise (S/N) ratios or equivalent test statistics are then computed (using the 1 x CO2 and 2 x CO2 data) in order to identify variables most useful for detection purposes. Changes in both means and variances are considered as possible detection parameters. The highest S/N ratios are obtained for annual-mean and winter surface air temperature, and the lowest S/N ratios are obtained for SLP. There are significant increases in the temporal and spatial variability of precipitation, and significant decreases in the temporal and spatial variability of surface air temperature

  2. Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    Science.gov (United States)

    Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.; Galin, V. Y.; Gohar, L. K.; Ingram, W. J.; Kratz, D. P.; Lefebvre, M.-P.; Li, J.; Marquet, P.; Oinas, V.; Tsushima, Y.; Uchiyama, T.; Zhong, W. Y.

    2006-07-01

    The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

  3. Climate change - global warming

    International Nuclear Information System (INIS)

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  4. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  5. The changing climate

    International Nuclear Information System (INIS)

    A historical outline of climate changes is followed by a discussion of the problem of predictability. The main section goes into anthropogenic changes of the local (urban) and global climate, with particular regard to the greenhouse effect and its consequences in terms of human action. The author points out that today's climate problems should be discussed in a subject-centered and objective manner. (KW)

  6. Climate Change

    Science.gov (United States)

    ... can be caused by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate change can affect our health. It can lead to More heat-related illness ...

  7. Climatic change and nuclear

    International Nuclear Information System (INIS)

    One of the main priorities of the WWF is to increase the implementing of solutions relative to the greenhouse effect fight. In this framework the foundation published a study on the nuclear facing the climatic change problem. The following chapters are detailed: the nuclear and the negotiations on the climatic change; the nuclear close; the unrealistic hypothesis of the nuclear forecast; the nuclear facing other energy supplying options; supplying efficiency for heating, electric power, gas and renewable energies; the consumption efficiency facing the nuclear; the economical aspects; the deregulation effect; the political aspects; the nuclear AND the greenhouse effect. (A.L.B.)

  8. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined and...... evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change and...... illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  9. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  10. Quantification of physical and economic impacts of climate change on public infrastructure in Alaska and benefits of global greenhouse gas mitigation

    Science.gov (United States)

    Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.

    2015-12-01

    Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to

  11. Struggle against climate change

    International Nuclear Information System (INIS)

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  12. Science or politics in the global greenhouse? : a study of the development towards scientific consensus on climate change

    OpenAIRE

    1991-01-01

    The major aim of the report is to analyse to what extent, and possibly how, the level of scientific consensus on global warming has changed over the last twenty years, with a particular focus on the IPCC process (Intergovernmental Panel on Climate Change). The report is organized in four main parts. In the first section, I develop the analytical framework that is needed in order to understand the mechanisms at work in politically salient scientific consensus processes. Changes in the leve...

  13. Variability of 500-mb geopotential heights in a general circulation model and the projection of regional greenhouse effect climate change

    International Nuclear Information System (INIS)

    Many researchers have utilized general circulation models (GCMs) in establishing climate change scenarios for specific regions or locations, despite the mismatch of spatial scales involved. A major underlying assumption involved in utilizing model output in this manner is that the GCM contains mid-tropospheric dynamics that are internally consistent with those of the real climate system. The main purpose of this study is examine the forms and processes of mid-tropospheric variability in the Goddard Institute for Space Studies (GISS) GCM, with the hope of shedding light on this model-analog strategy. The response of mean 500 mb and surface air temperature fields in the GISS GCM to a doubling of CO2 indicates a substantial relationship between the two. Unfortunately, the GISS GCM demonstrates systematic flaws in its simulation of mid-tropospheric dynamics. These are revealed in an examination of high-frequency and low-frequency 500-mb teleconnections in the model. The shapes and amplitudes of known teleconnection patterns are not well simulated. This is likely due to the weak stationary wave structure found in the control run of the model. More importantly, several model teleconnections appear to coincide geographically with the patterns of mean climate change. This may indicate a direct relationship between the modeled mid-tropospheric dynamics and the spatial patterns of mean climate change. This finding has two important implications. First, it is necessary to further study the influence of GCM mid-tropospheric dynamics on the spatial distribution of climate changes being modeled. Second, and more fundamentally, spatially specific climate system feedbacks may be substantially affected by variations in teleconnection strength and frequency, potentially impacting the global climate far beyond the regional scale

  14. Dynamics and impacts of fine-scale climate change: greenhouse forcing, heat-waves, and corn price volatility in the United States

    Science.gov (United States)

    Diffenbaugh, N. S.; Ashfaq, M.; Hertel, T. W.; Scherer, M.; Verma, M.

    2012-12-01

    We explore the use of climate impacts as a probe for understanding the dynamics governing the response of the climate system to changes in radiative forcing. As a case study, we focus on the volatility of corn prices in the U.S. Recent price spikes have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades. However, commodity price volatility is also influenced by other factors, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected to occur over the next three decades. Given this sensitivity to severe heat, we next explore the dynamics shaping the projected near-term intensification of severe heat over the US in our high-resolution ensemble climate model experiment. We find that the intensification of hot extremes is associated not only with increased downward long-wave radiation from increasing greenhouse gases, but also with a shift towards more anticyclonic atmospheric circulation during the warm season, along with warm season drying over much of the US. We find that the coupling between surface temperature change and surface moisture change is robust across a suite of global climate model experiments. Given these projected changes in climate dynamics associated with near-term intensification of severe hot events, we next explore the transient response of summer climate in the US to increasing greenhouse forcing through the end of the 21st century. We find that the central US exhibits

  15. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems

    DEFF Research Database (Denmark)

    del Prado, A; Crosson, P; Olesen, Jørgen E;

    2013-01-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to...... components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services....

  16. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  17. Witnesses of climate change

    International Nuclear Information System (INIS)

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  18. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  19. Economic impacts of climate change

    OpenAIRE

    Tol, Richard S.J.

    2015-01-01

    Climate change will probably have a limited impact on the economy and human welfare in the 21st century. The initial impacts of climate change may well be positive. In the long run, the negative impacts dominate the positive ones. Negative impacts will be substantially greater in poorer, hotter, and lower-lying countries. Poverty reduction complements greenhouse gas emissions reduction as a means to reduce climate change impacts. Climate change may affect the growth rate of the economy and ma...

  20. The climatic change

    International Nuclear Information System (INIS)

    In order to take stock on the climatic change situation and initiatives at the beginning of 2006, the INES (National Institute on the Solar Energy) proposes this special document. It presents the Montreal conference of December 2005, realized to reinforced the actions of the international community against the greenhouse gases. The technical decisions decided at this conference are detailed. The document discusses also the causes and consequences of the climatic warming, the intervention sectors and the actions possibilities. (A.L.B.)

  1. Libertarianism and Climate Change

    OpenAIRE

    Torpman, Olle

    2016-01-01

    In this dissertation, I investigate the implications of libertarian morality in relation to the problem of climate change. This problem is explicated in the first chapter, where preliminary clarifications are also made. In the second chapter, I briefly explain the characteristics of libertarianism relevant to the subsequent study, including the central non-aggression principle. In chapter three, I examine whether our individual emissions of greenhouse gases, which together give rise to climat...

  2. Climate for change

    International Nuclear Information System (INIS)

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  3. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  4. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  5. Historical contribution by country of three greenhouse gases (CO2, CH4, N2O) to the climate change and Equity principle

    International Nuclear Information System (INIS)

    The historical contribution by country to climate change can be used as a basis of analysis for a second period of commitments to the burden share. The historical greenhouse gases emission inventory is an important tool to evaluate the common but differentiated responsibilities of groups according to the principle of the UN Framework Convention on Climate Convention (1992). This paper aims to discuss the differences among the meaning of the GHG historical emissions in terms of development patterns and suggests that different weights for different sectors should be taken into account. GHG emissions due to enteric fermentation from domestic livestock, for example, are linked to different regional activities such as food production, cultural expression or even religion meaning, depending on the region analyzed. Emissions due to fossil fuel sector represent in the majority a not feasible consumption pattern in terms of sustainable development

  6. Trees against the greenhouse effect. Reforestation for climate protection

    International Nuclear Information System (INIS)

    Climate experts have voiced their warnings: If we continue to accumulate greenhouse gases in the Earth atmosphere, it must be expected that the global average temperature will increase by 1.5 degrees centigrade to 4.5 degrees centigrade, and significant climte changes will occur. (orig.)

  7. Climatic change

    International Nuclear Information System (INIS)

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  8. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  9. Assessing the environmental consequences of global climate and economic changes in Venezuela: Impacts of the greenhouse effect and of free trade agreements

    International Nuclear Information System (INIS)

    The ecological resources of most Latin American countries are subject to intense pressures for economic and industrial development which need to be balanced with local and global concerns about the long term sustainability of that resource base. Global issues and their potential long term effects should not be ignored when environmental policy strategies at the national level are elaborated. In this paper, the potential environmental consequences of two important global changes are examined, by taking Venezuela as a country case study: changes in climate, temperature, precipitation and radiation, generated by the greenhouse effect and changes in environmental stresses originating from shifts in local economic activity due to changing global trade, specifically free trade agreements. Both assessments are conducted using scenario-consequence approaches and expert judgment. The first analysis reported here is an example of the application of simulation models of global climate and local ecosystems, whereas the second analysis demonstrates the application of screening methodology which relies on processing of qualitative information. The approaches illustrated here are generic and can be applied to other Latin American countries

  10. Climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on

  11. Climate change

    International Nuclear Information System (INIS)

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  12. Global comparison of three greenhouse climate models

    OpenAIRE

    Bavel, van, M.A.H.J.; Takakura, T.; Bot, G.P.A.

    1985-01-01

    Three dynamic simulation models for calculating the greenhouse climate and its energy requirements for both heating and cooling were compared by making detailed computations for each of seven sets of data. The data sets ranged from a cold winter day, requiring heating, to a hot summer day, requiring cooling. On the whole, the models agreed in regard to calculated air temperature, humidity, and heating requirements. Significant differences were found between the estimates of fan-and-pad (evapo...

  13. Soil Carbon Sequestration and Greenhouse Gas Emissions Under a Changing Climate at the Foodshed Scale - Preliminary Results from Diverse Cropping Systems

    Science.gov (United States)

    Kong, A. Y.; Shukla, S. P.; Rosenzweig, C.

    2011-12-01

    The term 'foodshed' is an analog to the concept of a 'watershed' and describes "the flow of foodstuffs to consuming markets." Our main goals in identifying a foodshed are to: determine sustainable regional production and develop ideas for regional/local distribution systems that increase market access for producers and fresh food access for consumers, while reducing the carbon footprint of the food choices within the foodshed. The latter can be achieved by establishing policies that protect agricultural land from development, conserve water, and promote the adoption of agricultural management practices that decrease disturbance and/or increase carbon sequestration in soils, all of which can play a role in mitigating climate change. Because few studies relate climate change and agriculture at the regional-scale, we lack a good understanding of which elements of a foodshed are most vulnerable to changes in climate. With this foodshed analysis, our overall aims are to utilize the latest methods of climate and agricultural scenario generation to conduct multi-scale and transdisciplinary assessments of climate change impacts on the production, distribution and consumption of agricultural crops within a foodshed and to evaluate the potential for mitigation [soil carbon sequestration and greenhouse gas (GHG) emissions reduction)] and design the framework for adaptation (policy incentives) to climate change within a foodshed. Here, we present the methodology and preliminary results for an integrated climate/ecosystem modeling approach to look at how agricultural management practices can contribute to climate change mitigation within the Hudson Valley, a sub-region of the New York City foodshed. First, cutting-edge CMIP5 GCMs were validated against historical climatic data (1979-present) to identify which GCMs best simulate the climate of the Northeastern US (which includes the New York City foodshed). Subsequently, the selected GCMs were forced with the IPCC's four newly

  14. Global climate change

    International Nuclear Information System (INIS)

    In the last decade marked changes of climatic factors have been observed, such as increases in average global earth temperatures, the amount of precipitation and the number of extreme weather events. Green house gases influence the energy flow in the atmosphere by absorbing infra-red radiation. An overview of the Austrian greenhouse gas emissions is given, including statistical data and their major sources. In 1999 the emissions of all six Kyoto greenhouse gases ( CO2, CH4, N2O, HFCs, PFCs and SF6) amounted to 79.2 million tonnes of CO2 equivalents . A comparison between the EC Members states is also presented. Finally the climate change strategy prepared by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management together with other ministries and the federal provinces is discussed, which main aim is to lead to an annual emission reduction of 16 million tonnes of CO2. Figs. 2, Tables 1. (nevyjel)

  15. Urban Growth and Climate Change

    OpenAIRE

    Kahn, Matthew E.

    2008-01-01

    Between 1950 and 2030, the share of the world's population that lives in cities is predicted to grow from 30% to 60%. This urbanization has consequences for the likelihood of climate change and for the social costs that climate change will impose on the world's quality of life. This paper examines how urbanization affects greenhouse gas production, and it studies how urbanites in the developed and developing world will adapt to the challenges posed by climate change.

  16. Indications of climatic change

    International Nuclear Information System (INIS)

    The earth's annual mean global temperature increased by around 0,6 C during the 20 century, with wide regional differences. Even if solar activity has played some part in the mean temperature rise and some greenhouse gases are present naturally in the atmosphere, enhancing of the greenhouse effect due to the human activities is responsible for a large and increasing part of the observed warming. The work of the Intergovernmental Panel on Climate Change confirms the future increase under all scenarios. Depending on the efforts made by mankind to limit greenhouse gases emissions, the global mean temperature in 2100 could be between 1,4 and 5,8 C higher than in 2000. (A.L.B.)

  17. Stop the climate change

    International Nuclear Information System (INIS)

    This book tries to answer today's main environmental questions relative to the climatic change: how our massive petroleum and coal consumption has led to a greenhouse effect? What will happen tomorrow when Chinese and Indian people will reach the same energy consumption levels as people of western countries? Is it too late to reverse the trend? If solar energy is the long-term solution, what can we do in the meantime? The author presents the conditions we must fulfill to keep the Earth in a good environmental condition: 1 - a brief story of energy; 2 - the climatic changes and their secrets; 3 - the greenhouse effect: necessary for life but worrying for the future; 4 - the energy demand and the stakes; 2 - fossil fuels: abundance or shortage? 6 - can we fight against greenhouse gases? 7 - the nuclear energy (reactors and wastes management); 8 - the renewable energies: a necessary contribution at the century scale and the unique answer at the millennium scale; 9 - the time of main choices is not so far; 10 - two questions (energy demand and climatic change) and a unique answer (sustainable development). (J.S.)

  18. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valerie; Swingedouw, D.; Landais, A.;

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  19. United Kingdom Deriving Emissions linked to Climate Change Network: greenhouse gas and ozone depleting substance measurements from a UK network of tall towers

    Science.gov (United States)

    Stanley, Kieran; O'Doherty, Simon; Young, Dickon; Grant, Aoife; Manning, Alistair; Simmonds, Peter; Oram, Dave; Sturges, Bill; Derwent, Richard

    2016-04-01

    Real-time, high-frequency measurement networks are essential for investigating the emissions of gases linked with climate change and stratospheric ozone depletion. These networks can be used to verify greenhouse gas (GHG) and ozone depleting substances (ODS) emission inventories for the Kyoto and Montreal Protocols. Providing accurate and reliable country- and region-specific emissions to the atmosphere are critical for reporting to the UN agencies. The United Kingdom Deriving Emissions linked to Climate Change (UK DECC) Network, operating since 2012, is distinguished by its capability to measure at high-frequency, the influence of all of the important species in the Kyoto and Montreal Protocols from the UK, Ireland and Continental Europe. Data obtained from the UK DECC network are also fed into the European Integrated Carbon Observation System (ICOS). This presentation will give an overview of the UK DECC Network, detailing the analytical techniques used to determine the suite of GHGs and ODSs, as well as the calibration strategy used within the network. Interannual results of key GHGs from the network will also be presented.

  20. Romania within the Context of Climatic Changes

    OpenAIRE

    Dragoş, Raluca; Dragoş, Gheorghe-Viorel

    2011-01-01

    Under the circumstances of the menacing climatic changes upon both environment and social-economic framework, the United Nations Framework Convention on Climate Change (UNFCCC) has established its main objective “achieving stabilization of gas concentrations within climatic system”. Due to the fact that the main cause of the climatic changes derives from the exhausted gases resulting in the greenhouse effect, measures, targets and programs of reducing greenhouse effects gases will be esta...

  1. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    Science.gov (United States)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the

  2. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  3. Ireland and climate change

    International Nuclear Information System (INIS)

    As the rise of sea level, the higher frequency of tempests, and the threat of water shortages in some parts of the country are the major stakes for Ireland in the struggle against climate change, this report gives an overview of greenhouse gas emissions in this country (globally and per sector) and of their evolution. It presents the Irish policy to struggle against climate change since 2000, its public actors (ministries, agencies), its different action plans (National Climate Change Strategy, energy sector planning, promotion of renewable energies, transport sector planning), and sector-based and tax measures implemented in Ireland. It discusses the limitations of the current policy (insufficient results, limited domestic measures, socioeconomic obstacles, complex political steering), describes the new European context and the present Irish context (economic crisis). Some new orientations are discussed

  4. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern...... Periphery. The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This...

  5. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  6. MEMS climate sensor for crops in greenhouses

    DEFF Research Database (Denmark)

    Birkelund, Karen; Jensen, Kim Degn; Højlund-Nielsen, Emil;

    2010-01-01

    We have developed and fabricated a multi-sensor chip for greenhouse applications and demonstrated the functionality under controlled conditions. The sensor consists of a humidity sensor, temperature sensor and three photodiodes sensitive to blue, red and white light, respectively. The humidity...... sensor responds linearly with humidity with a full scale change of 5.6 pF. The best performing design measures a relative change of 48%. The temperature sensor responds linearly with temperature with a temperature coefficient of resistance of 3.95 x 10(-3) K-1 and a sensitivity of 26.5 Omega degrees C-1...... and humidity sensors have further been tested on plants in a greenhouse, demonstrating that individual plant behavior can be monitored....

  7. Climate change and the permafrost carbon feedback

    Science.gov (United States)

    Schuur, E.A.G.; McGuire, Anthony; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, S.M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  8. Climatic impacts of greenhouse gas concentration changes under glacial and interglacial conditions: polar amplification, land/sea warming ratio, atmospheric circulation anomalies

    International Nuclear Information System (INIS)

    Full text: We study the temperature response of a glacial and an interglacial climate to a greenhouse gas (GHG) concentration change in an ocean-atmosphere coupled model, IPSLCM4. Except for the GHG concentrations which are imposed to different values, the glacial climate is defined from the boundary conditions of the Last Glacial Maximum (LGM) as defined in the second phase of the Paleoclimate Modelling Intercomparasion Project (PMIP2). The interglacial climate consists of modern boundary conditions. The response to a GHG concentration varying from LGM to pre-industrial values is similar for both boundary conditions, but enhanced under modern ones. The model simulates the classical amplification of the temperature response in the northern high latitudes compared to lower latitudes and over the land surfaces compared to the oceanic ones. The physical reasons for the different temperature warmings according to the latitude and to the surface type are studied through an analysis of the energy fluxes anomalies. The high latitudes warm more due to strong sea-ice and snow albedo feedbacks, along with cloud cover increases that result in a radiative warming. Concerning the land-sea warming ratio, our study highlights the role played by the evaporation differential response between the two types of surface. The latitudinal variations of the land/sea warming ratio are due to variations in the anomalies in albedo changes, evaporation, cloud cover change and water vapour air content. The local amplifications or attenuations of the zonally-averaged warming are enhanced under modern boundary conditions compared to glacial ones, due to a greater land albedo feedback, water vapour increase and enhanced air/sea sensible heat fluxes changes in the northern hemisphere and mostly due to oceanic advection processes in the southern hemisphere. The consequences in terms of atmospheric circulation are anomalous stationary waves in the northern hemisphere with lower pressures over lands

  9. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  10. Agriculture and climate change

    International Nuclear Information System (INIS)

    How will increases in levels of CO2 and changes in temperature affect food production? A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO2 but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall? That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO2 from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO2 by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops

  11. Climate change and coasts

    International Nuclear Information System (INIS)

    The investigation of climatic processes and behaviour examines the effects of climatic changes on human beings and the surrounding environment. The authors discuss, in a wide-subject perspective, the regional impacts of the greenhouse effect, increase of the sea level, and changed conditions of both precipitation and wind using the North and Baltic Sea as examples. In this effort, questions dealing with changes of water level, motion and (disturbance) of the sea and morphodynamic in the coastal apron, in reference to requirements on a future protection of the shore, are handled. In addition, not only the aspects of ecosystem-orientated adaption in the strip of land between the continent northern islands 'Wattenmeer' and ground landscape (Bodenlandschaft) are taken into consideration, but also the impact of these on human beings and their interest to use the coastal regions. (orig.). 102 figs., 9 tabs

  12. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  13. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  14. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  15. The science of climate change

    International Nuclear Information System (INIS)

    Today, it can no longer be doubted that the greenhouse effect is being intensified ('enhanced') by human activity. The remaining uncertainties concern the magnitude, timing and regional distribution of the consequent climate change. The costs of control will almost certainly be elevated if action is delayed and the precautionary principle is not adopted. And today the size and extent of the global population precludes migration as an acceptable way of avoiding the impacts of climate change. Yet, so far only the Netherlands has published its greenhouse gas (GHG) emission inventory and reduction strategy in accordance with the 1992 UN Framework Convention on Climate Change (FCCC) (''Climate change convention'', Safe Energy 92). A Bill containing legislation to ratify FCCC is currently being prepared by the Swedish government. Britain and other European Community and Organisation for Economic Cooperation and Development (OECD) nations plan to ratify the FCCC by 1994. (author)

  16. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  17. Progress in climate science and its role in greenhouse policy

    International Nuclear Information System (INIS)

    In this presentation I will call heavily on the IPCC Second Assessment Report. However, this is a field of rapid change and I will also refer to recent outcomes of CSIRO research. Other overall assessments of the state of the science can be seen at www.agu.org/eos_elec/99148e.html (Ledley et a]., 1999); at the Environment Canada web site, http://www1.tor.ec.gc.ca/apac/climate/co2-climate/CO2_english_99-01.pdf or at CSIRO site http://www.dar.csiro.au. The other side of this rapid development has to do with policy. In the short few years since 'Villach', we have seen the establishment of an International Framework Convention on Climate Change, and the Kyoto Protocol. The Framework Convention (see www.unfccc.de/fccc/conv/conv) has the express purpose of bringing about the stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. The Protocol provides a first attempt at a set of agreements amongst developed countries to reduce global emissions of greenhouse gases (www.unfccc.de/fccc/docs/cop3/ protocol). The final, and most recent development relates to the response to the Protocol. In its broadest sense this involves real attempts to minimize carbon emissions, recognition that carbon emissions may develop dollar value, and that we are seeing a process whereby the environmental costs of carbon emissions may become effectively internalized in the costs of our energy resources. In this paper as a climate scientist, I will speak mostly about the underpinning science of 'greenhouse' but will attempt to give a perspective of how this work is influenced by, or influences, these other developments (author)

  18. Indoor Climate Requirements of Greenhouses in Tokat Region

    OpenAIRE

    Cemek, Bilal; ÜNLÜKARA, Sedat KARAMAN Ali

    2006-01-01

    In this research, the most suitable growing period for greenhouse warm season species was defined based on long term meteorological data. Considering the climate requirements of warm season species, air conditioning periods such as heating, natural ventilation and cooling periods were determined for nine locations in Tokat. In addition, the climate requirements for Tokat were compared to Antalya in which greenhouse production was done very intensively. Winter growing greenhouse production in ...

  19. Socio-economic aspects of the greenhouse effect. Climate fund

    International Nuclear Information System (INIS)

    The title project studies the impact of international capital transfers on the efficiency and efficacy of greenhouse gas emission reduction. The absolute costs of emission abatement is substantially lower in less developed countries. The associated reduction of the damage due to conventional air pollution is higher in the richer countries in both absolute and relative terms. The costs of climatic change are relatively higher (but absolute lower) in the developing countries. Prime impacts are on agriculture (in the developing world) and human health (highly valued in the developed world). Costs of emission reduction and climatic change are joined in a nine region, quasi-Ramsey, integrated climate-economy model, called FUND (Climate Framework for Uncertainty, Negotiation and Distribution). The first calculations with this model show that the (hardly known) dynamics of climate change and the great uncertainties play a critical role, that free riding behaviour need not be as prominent a problem as is generally believed, and that international capital transfers do not seem to substantially influence the optimal emission control, as the regions most interested in climate change do not have much capital to transfer. Negotiated emission caps are likely to alter this conclusion. 3 figs., 1 tab., 16 refs

  20. The European Climate Change Programme. EU Action against Climate Change

    International Nuclear Information System (INIS)

    The European Union has long been committed to international efforts to tackle climate change and felt the duty to set an example through robust policy-making at home. At European level a comprehensive package of policy measures to reduce greenhouse gas emissions has been initiated through the European Climate Change Programme (ECCP). Each of the 25 EU Member States has also put in place its own domestic actions that build on the ECCP measures or complement them. The European Commission established the ECCP in 2000 to help identify the most environmentally effective and most cost-effective policies and measures that can be taken at European level to cut greenhouse gas emissions. The immediate goal is to help ensure that the EU meets its target for reducing emissions under the Kyoto Protocol. This requires the 15 countries that were EU members before 2004 to cut their combined emissions of greenhouse gases to 8% below the 1990 level by 2012

  1. Climatic change. What solutions?

    International Nuclear Information System (INIS)

    From 1990 to the present day, worldwide greenhouse gas emissions have increased by about 25%. Fighting climatic change has become an urgency: we only have 15 years in front of us to inflect the trajectory of worldwide emissions and to avoid a temperature rise of more than 2 deg. C during this century. Therefore, how is it possible to explain the shift between the need of an urgent action and the apparent inertia of some governing parties? How is it possible to implement a worldwide governance capable to answer the urgency of the fight against climatic change? These are the two questions that this pedagogical and concrete book tries to answer by analysing the different dimensions of climatic change and by making a first status of the building up of the international action, and in particular of the Kyoto protocol. For the post-2012 era, research and negotiations are in progress with the objective of reaching an agreement for the Copenhagen conference of December 2009. Several architectures are possible. This book shades light on the advantages and limitations of each of them with the possible compromises. It supplies a pluri-disciplinary approach of the international negotiations, often considered as complex by the general public. Content: 1 - understanding the climatic change stakes: climatic stakes, the main actors behind the figures, the technical-economical stakes; 2 - understanding the present day architecture of the fight against climatic change: strengths and weaknesses of the Kyoto protocol; encouraging research and technology spreading; the other action means in developing countries; 3 - what structure for a future international agreement?: the Bali negotiation process; the ideal vision: an improved Kyoto protocol; the pragmatic vision: individualized commitments; the negotiation space; preventing a planned fiasco. (J.S.)

  2. Climate change from air in ice cores

    International Nuclear Information System (INIS)

    How sensitive is our climate to greenhouse gas concentrations? What feedbacks will trigger further emissions in a warming world and at which thresholds? Over the last 200 years human activity has increased greenhouse gases to well beyond the natural range for the last 800,000 years. In order to mitigate changes - or adapt to them - we need a better understanding of greenhouse gas sources and sinks in the recent past. Ice cores with occluded ancient air hold the key to understanding the linkages between climate change and greenhouse gas variations. (author). 22 refs., 1 tab.

  3. Climate change and the ethics of discounting

    NARCIS (Netherlands)

    M.D. Davidson

    2015-01-01

    Climate policy-making requires a balancing, however rudimentary, of the costs of reducing greenhouse gas emissions against the benefits of reduced risks of climate change. Since those creating and those facing the risks of climate change belong to different generations, striking the balance is preem

  4. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  5. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey [NASA Goddard Inst. for Space Studies, New York (United States)], e-mail: Andrew.A.Lacis@nasa.gov

    2013-11-15

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO{sub 2}. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discern able long-term trend in solar irradiance since precise monitoring began in the late seventies. This leaves atmospheric CO{sub 2} as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO{sub 2}, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO{sub 2}, to increase by 2 ppm yr{sup -1}, whereas the interglacial rate has been 0.005 ppm yr{sup -1}. This is a geologically unprecedented rate to turn the CO{sub 2} climate control knob. This is causing the global warming that threatens the global environment.

  6. The Role of Long-Lived Greenhouse Gases as Principal LW Control Knob that Governs the Global Surface Temperature for Past and Future Climate Change

    Science.gov (United States)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey

    2013-01-01

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapor and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernible long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm per year, whereas the interglacial rate has been 0.005 ppm per year. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  7. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  8. Climate change and human health

    International Nuclear Information System (INIS)

    Changes in the earth's climate, stemming from the greenhouse effect, are highly likely to damage human health. As well as the disruptions to food and fresh water supplies, there is the prospect of major diseases flourishing in warmer conditions, in addition the decrease in the ozone layer is causing an increased incidence of skin cancer

  9. Greenhouse Gas Emission Factor Module: Land Use in Rural New Zealand - Climate Version 1

    OpenAIRE

    Hendy, Joanna; Kerr, Suzi

    2005-01-01

    Several different New Zealand economic models produce measures of rural economic activity that have greenhouse gas implications. For climate change analysis, models need to translate economic activity into greenhouse gas emissions. This document estimates functions and creates projections for land-use related greenhouse gas emissions per unit of economic activity that are simple; are based on readily available data and strong science; are consistent with the national inventory in 2002; evolve...

  10. Greenhouse Gas Emission Factor Module: Land Use in Rural New Zealand—Climate Version 1

    OpenAIRE

    Hendy, Joanna; Kerr, Suzi

    2005-01-01

    Several different New Zealand economic models produce measures of rural economic activity that have greenhouse gas implications. For climate change analysis, models need to translate economic activity into greenhouse gas emissions. This document estimates functions and creates projections for land-use related greenhouse gas emissions per unit of economic activity that are simple; are based on readily available data and strong science; are consistent with the national inventory in 2002; evolve...

  11. Adaptation to Climate Change in Developing Countries

    OpenAIRE

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.; Rasmussen, Kjeld

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in devel...

  12. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  13. Current Climate Variability & Change

    Science.gov (United States)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    climate change. The next section guides students through the exploration of temporal changes in global temperature from the surface to the lower stratosphere. Students discover that there has been global warming over the past several decades, and the subsequent section allows them to consider solar radiation and greenhouse gases as possible causes of this warming. Students then zoom in on different latitudinal zones to examine changes in temperature for each zone and hypothesize about why one zone may have warmed more than others. The final section, prior to the answering of the essential questions, is an examination of the following effects of the current change in temperatures: loss of sea ice; rise of sea level; loss of permafrost loss; and moistening of the atmosphere. The lab addresses 14 climate-literacy concepts and all seven climate-literacy principles through data and images that are mainly NASA products. It focuses on the satellite era of climate data; therefore, 1979 is the typical starting year for most datasets used by students. Additionally, all time-series analysis end with the latest year with full-year data availability; thus, the climate variability and trends truly are 'current.'

  14. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important factors in

  15. Climate Response Uncertainty and the Unexpected Benefits of Greenhouse Gas Emissions Reductions

    OpenAIRE

    Adam Daigneault; Steve Newbold

    2009-01-01

    Some recent research suggests that uncertainty about the response of the climate system to atmospheric greenhouse gas (GHG) concentrations can have a disproportionately large influence on benefits estimates for climate change policies, potentially even dominating the effect of the discount rate. In this paper we conduct a series of numerical simulation experiments to investigate the quantitative significance of climate response uncertainty for economic assessments of climate change. First we ...

  16. Climate change policy position

    International Nuclear Information System (INIS)

    The Canadian Association of Petroleum Producers (CAPP) is a firm believer in the need to take action to mitigate the risks associated with climate change, and that clear government policy is called for. The principles of sustainable development must guide this policy development effort. The initiatives required to address greenhouse gas emissions over both the short and long term must be carefully considered, and it is up to industries to ensure their production efficiency and emission intensity. Promoting improved performance of industries in Canada and developing technology that can be deployed internationally for larger global effects represents Canada's best contribution to progress on greenhouse gas emissions. The increase in energy demand along with increases in population and economic growth have contributed to an increase in greenhouse gas emissions despite improved energy efficiency in industry. Significant damage to the economy will result if Canada is to meet its commitment under the Kyoto Protocol, forcing the country to buy large quantities of foreign credits instead of using those funds for increased research and development. CAPP indicated that an effective plan must be: balanced, equitable, responsible, competitive, focused on technology and innovation, and based on agreements on sectoral plans. Each of these principles were discussed, followed by the fundamentals of approach for upstream oil and gas. The framework for climate change policy was described as well as the elements of a sector plan. CAPP wants to work with all levels of government on an appropriate plan for Canada, that considers our unique circumstances. Canada can play a significant role on the international stage by properly implementing the policy position proposed by the CAPP without unnecessary risks to the economy. refs

  17. Ozone Depletion, Greenhouse Gases, and Climate Change. Proceedings of a Joint Symposium by the Board on Atmospheric Sciences and Climate and the Committee on Global Change, National Research Council (Washington, D.C., March 23, 1988).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    The motivation for the organization of this symposium was the accumulation of evidence from many sources, both short- and long-term, that the global climate is in a state of change. Data which defy integrated explanation including temperature, ozone, methane, precipitation and other climate-related trends have presented troubling problems for…

  18. Climate change convention

    International Nuclear Information System (INIS)

    Principles that guide Canada's Green Plan with respect to global warming are outlined. These include respect for nature, meeting environmental goals in an economically beneficial manner, efficient use of resources, shared responsibilities, federal leadership, and informed decision making. The policy side of the international Framework Convention on Climate Change is then discussed and related to the Green Plan. The Convention has been signed by 154 nations and has the long-term objective of stabilizing anthropogenic greenhouse gas concentrations in the atmosphere at levels that prevent dangerous interference with the climate system. Some of the Convention's commitments toward achieving that objective are only applicable to the developed countries. Five general areas of commitment are emissions reductions, assistance to developing countries, reporting requirements, scientific and socioeconomic research, and education. The most controversial area is that of limiting emissions. The Convention has strong measures for public accountability and is open to future revisions. Canada's Green Plan represents one country's response to the Convention commitments, including a national goal to stabilize greenhouse gas emissions at the 1990 level by the year 2000

  19. Climate change. Managing the risks

    International Nuclear Information System (INIS)

    In order to address the key question if a targeted approach to climate change response is feasible, different aspects of this question are analyzed. First, the scientific and political aspects of different options to determine specific long-term objectives for climate change are evaluated on the basis of the current scientific insights and the experiences over the last 5 years to develop climate objectives. Preliminary directions for such objectives are given. Next, important analytical tools are discussed that can be applied to analyze the different options and their implications in detail. In order to evaluate the implications of mitigation options, strategies that are consistent with the preliminary climate goals are analyzed in the third part. In chapter 2, the concept of long-term environmental goals, derived from critical levels of climate change, is discussed. Also a historical perspective is provided. A new, systematic regionalized and risk-based approach to elaborate the ultimate objective of the Framework Convention on Climate Change is proposed. In chapter 3 scenarios and integrated models are discussed. Central is the description of scenarios that were developed with RlVM's Integrated Model to Assess the Greenhouse Effect (IMAGE) and the US-EPA's Atmospheric Stabilization Framework (ASF). In chapter 4 potential long-term international emissions control strategies for the different sources and sinks of the most important greenhouse gases are analyzed. Carbon dioxide from energy, carbon dioxide from deforestation, and non-CO2 greenhouse gases are dealt with subsequently. The dissertation ends with general conclusions and recommendations for the further design of a targeted approach to climate change response, the development of analytical tools to support policy development in the area of climate change, and strategies that are consistent with preliminary long-term environmental goals. 66 figs., 8 tabs., 417 refs., 1 appendix

  20. Sustain : the climate change challenge

    International Nuclear Information System (INIS)

    This special report on climate change and greenhouse gas emissions focused on widely held current opinions which indicate that average global surface temperatures are increasing. The potential consequences of climate change can include rising sea levels, drought storms, disease, and mass migration of people. While the global climate change theory is widely accepted, the report warns that there are still many uncertainties about how climate change occurs and what processes can offset human-caused emissions. Canada produces about 2 per cent of global greenhouse gas emissions. Carbon dioxide comprises 80 per cent of Canada's total emissions. It is well known that Canadians place a heavy demand on energy to heat and light their homes because of the northern climate, and on transportation fuels to move people, goods and services across vast distances. With the Kyoto Protocol of December 1997, developed countries agreed to legally binding greenhouse gas emission reductions of at least five per cent by 2008 to 2012. Canada agreed to a six per cent reduction below 1990 levels by 2010. Although Canada signed the Kyoto Protocol, it does not intend to ratify it until an implementation strategy has been developed with broad support. The goal is to develop a strategy by 1999. The oil and gas industry has in general improved its efficiency and reduced emissions on a per unit of production basis by installing new equipment and new operating practices that reduce greenhouse gas emissions to the atmosphere, and improve energy efficiency. The industry is conscious of its responsibility, and while not fully in agreement with the environmental doomsayers, it is prepared to take proactive actions now, albeit on a voluntary basis. What the industry wants is a balance between environmental and economic responsibility. Emissions trading' and 'joint implementation' are seen as two important tools to tackle climate change on a global basis. 4 figs

  1. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  2. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  3. The Evaluation of Climate Change Risks

    OpenAIRE

    Popescu, Constantin; Maria-Luiza HRESTIC

    2012-01-01

    Nowadays, it is acknowledged that climatic changes represent a serious threat for the environment and, so, this problem has been approached at numerous conferences, conventions and summits. The climate is strongly influenced by the changes in the atmospheric concentrations of certain gases that hold the solar radiations on the Earth’s surface (the greenhouse effect). The water vapors and the carbon dioxide (CO2) present in the atmosphere have always generated a natural greenhouse effect, with...

  4. Climate Change and Forests

    International Nuclear Information System (INIS)

    The causes for climatic change in the period between 3000 and 1250 BC was different from what present scenario portends. After industrialization, temperatures has arisen by 0.5 degrees centigrade every 100 years since factories started to spew out smoke. Over the last two centuries, the concentration of Carbon Dioxide in the atmosphere has increased by more than 25% from about 275ppm in the 18th Century to more than 350ppm at the present time while the current level is expected to double by the year 2050. The increase in Carbon Dioxide and together with other greenhouse gases in the atmosphere will trap the sun's radiation causing the mean global temperatures to rise by between 1 degree and 5 degrees centigrade by 2050. The climatic change affects forestry in many ways for instance, temperatures determines the rate at which enzymes catalyze biochemical reactions while solar radiation provide the energy which drive light reactions in photosynthesis. On the other hand, water which is a component of climate is a universal solvent which enables plants to transport nutrients through the transpirational stream, and similarly transport photosynthates from the leave to all parts of the plants. It is a raw material for photosynthesis and important for maintaining turgidity, which is important for growth

  5. Chaos, spontaneous climatic variations and detection of the greenhouse effect

    International Nuclear Information System (INIS)

    The author illustrates some of the general properties of chaotic dissipative dynamical systems with a simple model. One frequently observed property is the existence of extended intervals, longer than any built-in time scale, during which the system exhibits one type of behavior, followed by extended intervals when another type predominates. In models designed to simulate a climate system with no external variability, he finds that an interval may persist for decades. He notes the consequent difficult in attributing particular real climatic changes to causes that are not purely internal. He concludes that he cannot say at present, on the basis of observations alone, that a greenhouse-gas-induced global warming has already set in, nor can he say that it has not already set in

  6. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  7. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  8. Climate change and forest

    International Nuclear Information System (INIS)

    Studies of the earth's present forms of vegetation show that the climate change to be expected from double the current greenhouse gas concentrations would have a fundamental impact on forest structures. This problem can be confronted in two ways: Either by adusting long-term silvicultural planning according to predictions derived from vegetation model calculations; or by managing forests in the manner of a flexible response strategy until changes actually occur. An evaluation of representative surveys of forests in Bavaria has shown that contrary to widerspread regions of Bavaria. This suggests that in the event of a warning by 1 to 2 C, assuming all other climate parameters to remain roughly constant, the beech could play a major role in the forest structure in large parts of Bavaria. The data material also shows that in defiance of all pessimistic forecasts the growth of beech has markedly improved over the past decade. To date the only explanations offered for this phenomenon are growth-stimulating changes in the chemical composition of the atmosphere, specifically the rise in carbon dioxide; and the enhanced nitrogen deposition in the soil. This example shows that the immense number of unpredictable influences prohibit long-term forecasts on forest development. Now if the forest is made up of a large number of tree species whose most favoured climatic ranges are known, then it is possible to meet climate changes with early silvicultural interventions and so preclude forest destruction. Scientifically founded silviculature can thus become an important support for the stability of our forests. (orig.)

  9. Climate change and ozone layer protection

    International Nuclear Information System (INIS)

    This conference is composed of 27 communications of which the following main themes are: general approach to the problems of climatic change, greenhouse effect and ozone layer; France, Cameroon and Switzerland examples of energy conservation and greenhouse gas reduction; energy conservation measures and policies for dwellings, transport, industry, agriculture and food industry with a global aspect of reducing greenhouse gas emissions; CFC utilization effects on environment and alternatives to CFC utilization

  10. Climate change and global warming potentials

    International Nuclear Information System (INIS)

    Climate change and the global budgets of the two main energy consumption related greenhouse gases, CO2 and CH4, are discussed. The global warming potential (GWP) of the non-CO2 greenhouse gases is defined and the large range of GWPs of CH4 in the literature is discussed. GWPs are expected to play an important role in energy policies and negotiations concerning lowering greenhouse gas emissions. (author). 20 refs, 4 figs, 4 tabs

  11. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J.M.; Jouzel, J. [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France)] [and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  12. Making Cities Resilient to Climate Change

    OpenAIRE

    Dulal, Hari Bansha

    2016-01-01

    Urbanization is truly a global phenomenon. Starting at 39% in 1980, the urbanization level rose to 52% in 2011. Ongoing rapid urbanization has led to increase in urban greenhouse gas (GHG) emissions. Urban climate change risks have also increased with more low-income urban dwellers living in climate sensitive locations. Despite increased emissions, including GHGs and heightened climate change vulnerability, climate mitigation and adaptation actions are rare in the cities of developing countri...

  13. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    are now ques-tioning this. Measurements as dykes will changes or cut off the spatial and func-tional coherence between the city structure and the sea. Questions regarding the status and the appropriation of these ‘new’ adaptive func-tions in landscapes and open urban spaces by ordinary people must...

  14. Scientific aspects of climate change

    International Nuclear Information System (INIS)

    For the last 35 years, the average temperature of the planet has been steadily increasing- Are the greenhouse gases emitted by human beings the cause? What will the consequences be? What can we do? The fourth report of the intergovernmental Panel on Climate change tries to answer these questions. There are clear signs of thawing that primary affect Greenland and the Antarctic, but there are still many doubts what the consequences will be throughout the century. In any case, it seems obvious that, if greenhouse gas emissions are not substantially reduced very soon, the rising temperature trend and its associated consequences will persist beyond the 21st century. (Author)

  15. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  16. Climate changes your business

    International Nuclear Information System (INIS)

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  17. Climate and Yield in a closed greenhouse

    OpenAIRE

    Heuvelink, E.; Bakker, M.J.; Marcelis, L. F. M.; Raaphorst, M.

    2008-01-01

    The so-called closed greenhouse (closed ventilation windows) is a recent innovation in Dutch greenhouse industry. The technical concept consists of a heat pump, underground (aquifer) seasonal energy storage as well as daytime storage, air treatment units with heat exchangers, and air distribution ducts. Savings of up to 30% in fossil fuel and production increases by up to 20%, mainly because of the continuously high CO2 concentration, have been reported. Economic feasibility of this innovativ...

  18. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people. PMID:26920851

  19. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  20. Assessment of urgent impacts of greenhouse gas emissions—the climate tipping potential (CTP)

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2014-01-01

    The impact of anthropogenic greenhouse gas (GHG) emissions on climate change receives much focus today. This impact is however often considered only in terms of global warming potential (GWP), which does not take into account the need for staying below climatic target levels, in order to avoid...... climate tipping potential (CTP) of GHG emissions relative to a climatic target level. The climate tipping impact category should be seen as complementary to the global warming impact category.The CTP of a GHG emission is expressed as the emission’s impact divided by the ‘capacity’ of the atmosphere for...... climate tipping impact category for assessing climate change impacts in LCA, complimentary to the global warming impact category which shall still represent the long-term climate change impacts, is considered to improve the value of LCA as a tool for decision support for climate change mitigation....

  1. Air Quality and Climate Change

    International Nuclear Information System (INIS)

    Climate change and air quality are closely related: through the policy measures implemented to mitigate these major environmental threats but also through the geophysical processes that drive them. We designed, developed and implemented a comprehensive regional air quality and climate modeling System to investigate future air quality in Europe taking into account the combined pressure of future climate change and long range transport. Using the prospective scenarios of the last generation of pathways for both climate change (emissions of well mixed greenhouse gases) and air pollutants, we can provide a quantitative view into the possible future air quality in Europe. We find that ozone pollution will decrease substantially under the most stringent scenario but the efforts of the air quality legislation will be adversely compensated by the penalty of global warming and long range transport for the business as usual scenario. For particulate matter, the projected reduction of emissions efficiently reduces exposure levels. (authors)

  2. Financing for climate change

    International Nuclear Information System (INIS)

    This paper argues that the 2009 pledge of $100 billion in 2020 by rich countries for mitigation and adaptation should not be used for mitigation by commercial firms in developing countries, since that would artificially create competitive advantage for such firms and provoke protectionist reactions in the rich countries where firms must bear the costs of mitigation, thereby undermining the world trading system. The costs of heating the earth's surface should be borne by all emitters, just as the price of copper and other scarce resources is paid by all users, rich or poor. That will still leave scope for rich country help in adaptation to climate change and in bringing to fruition new technologies to reduce emissions. - Highlights: ► Slowing climate change significantly cannot occur without the participation of the largest emitters among developing countries. ► The cost of GHG mitigation must be the same for all competing firms, wherever they are located. ► The world trading system is seriously at risk in the face of a poorly designed system for global mitigation of greenhouse gases. ► No significantly emitting firm, anywhere, public or private, should be protected from the incentive to reduce its emissions. ► Higher prices for fossil fuels need not reduce national growth rates in consuming countries.

  3. The Economic Impact of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2008-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  4. The Economic Effects of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2009-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  5. Ukraine's Participation In Solving Climate Change Problems

    OpenAIRE

    Irina Dubovich; Mariana Bulgakova

    2011-01-01

    Attention is paid to some problems of climate change. The main international agreements on climate change are overviewed. Ukraine's participation in solving global problems of climate change is described. Ukraine's statement about plans to reduce greenhouse gas emissions is analyzed. Characteristic of environmental political and legal prerequisites for the need to create a general agreement on environmental security of the planet – World Environmental Constitution is provided.

  6. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  7. Energy Revolution Against Climate Change

    International Nuclear Information System (INIS)

    Energy revolution is taking place in the world with objective to mitigate consequences of evident climate change, caused mostly by emissions of the greenhouse gases from combustion of fossil fuels (coal, oil and natural gas). The principal elements of the energy revolution are decrease in energy consumption by increase in energy efficiency and substitution of fossil fuels by renewable energies, supported by 'clean' fossil fuels and nuclear energy. (author)

  8. Interactions of Climate Change and Nitrogen Management for Optimizing Crop Productivity and Food Security while Minimizing Nitrogen Pollution and Greenhouse Gas Emissions

    Science.gov (United States)

    Davidson, E. A.; Suddick, E. C.

    2012-12-01

    Producing food, transportation, and energy for seven billion people has led to huge increases in use of synthetic nitrogen (N) fertilizers and fossil fuels, resulting in large releases of N as air and water pollution. In its numerous chemical forms, N plays a critical role in all aspects of climate change, including mitigation, adaptation, and impacts. Here we report on a multi-authored, interdisciplinary technical report on climate-nitrogen interactions submitted to the US National Climate Assessment as part of a Research Coordination Network activity. Management of the N cycle not only affects emissions of nitrous oxide (N2O) and nitrogen oxides (NOX), but also impacts carbon dioxide (CO2) and methane (CH4), through effects on carbon cycling processes in forests and soils and the effects on atmospheric reactions of ozone (O3) and CH4. While some of these direct and indirect N effects have a short-term cooling effect, the warming effects of N2O dominate at long time scales. The challenges of mitigating N2O emissions are substantially different from those for CO2 and CH4, because N is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. On one hand, improved agricultural nutrient management can confer some adaptive capacity of crops to climatic variability, but, on the other hand, increased climatic variability will render the task more difficult to manage nutrients for the optimization of crop productivity while minimizing N losses to the environment. Higher air temperatures will result in a "climate penalty" for air quality mitigation efforts, because larger NOX emissions reductions will be needed to achieve the same reductions of O3 pollution under higher temperatures, thus imposing further challenges to avoid harmful impacts on human health and crop productivity. Changes in river discharge, due to summer drought and to extreme precipitation events, will affect the transport of N from agricultural fields to

  9. Economics, institutions and adaptation to climate change

    OpenAIRE

    Oberlack, Christoph; Neumärker, Bernhard

    2011-01-01

    Adaptation to the consequences of climate change has attracted increasing interest as a necessary complement to greenhouse gas mitigation. Economic approaches to climate adaptation are rarely articulated and discussed explicitly despite many benefits of such a framework-level discourse. Therefore, this article investigates how climate adaptation is framed and approached in economics and attempts to contribute to the development of economic frameworks of climate adaptation. First, the paper id...

  10. Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate

    Digital Repository Service at National Institute of Oceanography (India)

    Bakker, D.C.E.; Bange, H.W.; Gruber, N.; Johannessen, T.; Upstill-Goddard, R.C.; Borges, A; Delille, B.; Loscher, C.R.; Naqvi, S.W.A; Omar, A; Santana-Casiano, J.M.

    in the context of ongoing global climate change. In this chapter we summarise our current state of knowledge regarding the oceanic distributions, formation and consumption pathways, and oceanic uptake and emissions of CO2, N2O and CH4, with a particular emphasis...

  11. Sustainable development and climatic change

    International Nuclear Information System (INIS)

    The relationships between the fight against climatic change and the objective of sustainable development have acquired an historical perspective: the Framework Convention of 1992, the Kyoto Protocol and the Bonn-Marrakech Accords. The Convention demonstrates that we must strive for economic growth and sustainable development to allow developing countries to better face the problems associated with climatic change. In the Kyoto Protocol, the commitments agreed upon by northern countries were presented as implicating a group of policies that promote sustainable development. The author discussed the challenges, the contradictions, and the means available to fight against climatic change since Rio. The author begins by expressing the hope that the Kyoto Protocol will be ratified at the Johannesburg Summit, since Russia is moving forward, despite the withdrawal of the United States. Scientists seem to agree that global warming is occurring due to the increase in greenhouse gases in the atmosphere. There are two major difficulties encountered in attempting to stabilize the levels of greenhouse gases: (1) are the countries that emit the most gases in a position to alter their activities in an effort to reduce emissions? and (2) will developing countries be able to avoid the pitfalls that led developed countries to emit greenhouse gases in enormous quantities?

  12. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  13. Energy and global climate change issues

    International Nuclear Information System (INIS)

    The paper considers the policy questions associated with global warming and with the fact that such policies will lead to future differences in the use of energy sources. Also discussed are the causes and the evidence of the greenhouse effect, as well as the human activities that have contributed to the growth in the concentrations of carbon dioxide, chlorofluorocarbons, methane and nitrous oxide, as well as to ozone changes. The responses of the Earth-atmosphere system to these increases in greenhouse gases are surface warming, increased water vapour, changes in the reflecting properties of ice-snow and alterations to the ecosystem. For calculating such climate changes, the Intergovernmental Panel on Climate Change has developed four scenarios for the future emissions of greenhouse gases and suggests that options for managing predicted climate change are likely to be combinations of slowing down as well as adapting to that change. (author). 1 ref., 10 figs, 5 tabs

  14. National inventory report 1990-2009: greenhouse gas sourcesand sinks in Canada - The Canadian Government's submission to the UN Framework Convention on Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This document is the national inventory report for 1990 to 2009 on greenhouse gas sources and sinks in Canada. Herein is provided an inventory of the emissions of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrogen dioxide (NO2), hydrofluorocarbon (HFCs), perfluorocarbon (PFCs), and sulphur hexafluoride (SF6) by the energy, industrial and agricultural sectors in Canada for every year between 1990 and 2009. An analysis of every Canadian province and territory in terms of electricity consumption and greenhouse gas emissions is then provided. Finally, an inventory of greenhouse gas emissions, electricity generation and greenhouse gas intensity is provided for the years 1990 and 2000 to 2009.

  15. Politics scenarios for climatic protection V - On the way to structural change, scenarios of greenhouse gas emissions up to the year 2030; Politikszenarien V - auf dem Weg zum Strukturwandel, Treibhausgas-Emissionsszenarien bis zum Jahr 2030

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, P.; Matthes, F.C. (eds.)

    2010-07-01

    For the project 'Politics scenarios for climate protection V' (Politics scenarios V), two scenarios for the development of greenhouse gas emissions in Germany for the period 2005 to 2030 were developed: (a) a 'With-Measure-scenario'; (b) a 'structural-change-scenario'. In the context of the scenario analyses a detailed evaluation of the respective climatic political and energy political measures is performed regarding to their effects on the development of the greenhouse gas emissions in Germany. Methane, laughing gas, halogenated hydrocarbons, perfluorinated hydrocarbons and sulphur hexafluoride are considered for the source sectors energy, industrial processes, product application, agriculture and waste management are considered. Sector-specific model analyses are used in the development of the scenarios. These model analyses are summarized to consistent and complete quantity structure for the power requirement and the emissions of greenhouse gases. Specific investigations are accomplished for the areas space heating and warm water, electrical devices, industry, trade and services, traffic, power generation from renewable energies and the fossil power generation as well as for the volatile emissions of the energy sector, process-related emissions of carbon dioxide, methane and nitrous oxides. For other selected sources (emissions of halogenated hydrocarbons and sulphur hexafluoride as well as the agriculture) results of other investigations were taken over and processed. In the case of an integration and determination of emissions a system integration module and an emission computation model are used in order to consolidate the detailed sector results to a quantity structure. This quantity structure completely is compatible to the German greenhouse gas inventories (according to the conditions of the inventory report 2008).

  16. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  17. Subtropical Modern Greenhouse Cucumber Canopy Transpiration Under Summer Climate Condition

    Institute of Scientific and Technical Information of China (English)

    LUO Wei-hong; WANG Xiao-han; DING Wei-min; CHEN Yu-qing; DAI Jian-feng

    2002-01-01

    Greenhouse canopy transpiration not only has effects on greenhouse air temperature and humidity, but also is important for determining the set-point of fertigation. In this study, Penman-Monteith equation was used to calculate the greenhouse cucumber canopy transpiration under summer climate condition.The effects of greenhouse environmental factors on canopy transpiration were analyzed based on the measurements of greenhouse microclimate factors and canopy transpiration. The results showed that Penman-Monteith equation was reliable and robust in estimating greenhouse cucumber canopy transpiration under summer climate condition. Greenhouse cucumber canopy transpiration rate increased linearly with the increase of net radiation and water vapor pressure deficit (VPD) above the canopy. But the maximum value of the canopy transpiration rate occurred at the same time as that of VPD whereas about two hours later than that of net radiation. Based on the results, it was concluded that in addition to radiation, air humidity should also be considered when determine the set-point of fertigation.

  18. Inventory of greenhouse effect gases in France under the united nation framework convention on climatic change; Inventaire des emissions de gaz a effet de serre en France au titre de la convention cadre des nations unies sur le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The present report supplies emission data, for France and for the period 1990 - 2000 concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. For the period 1990 - 1999 as a whole, estimates provided in the previous inventories have been reviewed and corrected to take into account updated statistics, improved knowledge, possible changes in methodology and specifications contained in the guidelines (FCCC/CP/1999/7) defined by the UNFCCC on reporting for inventories of emissions, in particular the use of the Common Reporting Format (CRF). (author)

  19. Climate change mitigation policies in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinaviciute, I.

    2003-09-01

    The Lithuanian climate change policy has to be considered in the framework of the Convention on Climate Change. The National Strategy for Implementation of Convention was the first step in evaluating the country's impact on climate change, adapting to the Convention and foreseeing the means and measures for climate change mitigation. The paper introduces main issues related to climate change mitigation policy in Lithuania. It presents an analysis of greenhouse gas emission trends in Lithuania and surveys institutional organizations as well as stakeholder associations related to climate change issues and their role in climate policy making. The main Lithuanian international environmental obligation and Lithuanian governmental climate change mitigation policy in the energy sector are presented as well. (Author)

  20. Climate variability and climate change in Mexico: A review

    OpenAIRE

    E. JÁUREGUI

    1997-01-01

    A review of research on climate variability, fluctuations and climate change in Mexico is presented. Earlier approaches include different time scales from paleoclimatic to historical and instrumental. The nature and causes of variability in Mexico have been attributed to large-scale southward/northward shifts of the mid-latitude major circulation and more recently to the ENSO cycle. Global greenhouse warming has become a major environmental issue and has spawned a large number of climate-chan...

  1. Identification and Resolution of Feature Interactions in Greenhouse Climate Control

    DEFF Research Database (Denmark)

    Sørensen, Jan Corfixen

    The slow adoption pace of new control strategies for sustainable greenhouse climate control by industrial growers, is mainly due to the complexity of identifying and resolving potentially conflicting climate control requirements. When separate climate control strategies are composed they become...... coupled through the shared environment resources. As a consequence, the greenhouse climate control system requirements may no longer be entailed when independent climate control strategies try to control the same shared environment phenomena. The problem emerges when control strategies interfere with one...... interaction manager provides visualization of the feature interactions, that allows the grower make an informed decision to resolve the interactions based on priorities and goals. The feature interaction manager is demonstrated in a real-life control system for industrial ornamental plant cultivation in...

  2. Climate changes - To understand and to react

    International Nuclear Information System (INIS)

    The first part of this report recalls the definition of the greenhouse effect, comments the climate past variations, outlines that climate changes are already here and that greenhouse effect has a human origin, and discusses the expected impacts during the 21. century. The second part presents the basis of international action in the struggle against climate change, outlines the necessity to strengthen this international action, describes the role of Europe in international negotiations on climate, outlines the need of an international agreement on climate, proposes an overview of the French climate policy (national and local actions), and outlines that some political responses do not match with sustainable development (nuclear energy, agro-fuels, carbon capture and storage, shale gas and oil). The third part indicates how one can compute his own impact on climate, and presents some collective and citizen innovative initiatives in the fields of agriculture and food, of energy, of transports and mobility, and of wastes

  3. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  4. The emerging climate change regime

    International Nuclear Information System (INIS)

    The emerging climate change regime--with the UN Framework Convention on Climate Change (FCCC) at its core--reflects the substantial uncertainties, high stakes and complicated politics of the greenhouse warming issue. The regime represents a hedging strategy. On the one hand, it treats climate change as a potentially serious problem, and in response, creates a long-term, evolutionary process to encourage further research, promote national planning, increase public awareness, and help create a sense of community among states. But it requires very little by way of substantive--and potentially costly--mitigation or adaptation measures. Although the FCCC parties have agreed to negotiate additional commitments, substantial progress is unlikely without further developments in science, technology, and public opinion. The FCCC encourages such developments, and is capable of evolution and growth, should the political will to take stronger international action emerge. 120 refs., 3 tabs

  5. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  6. Climate change: a primer

    OpenAIRE

    Khanna, Dr. Perminder; Aneja, Reenu

    2011-01-01

    Abstract Climate has inherent variability manifesting in gradual changes in temperature, precipitation and sea-level rise. The paper entitled “Climate Change: A Primer” attempts to analyse the policy response and adaptation to the need to address climate change at the international and domestic level both. Intense variations in climate would increase the risk of abrupt and non-linear changes in the ecosystem, impacting their function, biodiversity and productivity. The policy initiations and ...

  7. Climate and Change

    OpenAIRE

    Roger S. Pulwarty

    2011-01-01

    A presentation about the basics of climate change - the science, the impacts, and the consequences. The focus is on water and the Caribbean in particular but the information is general. It includes information about climate change mitigation and climate change adaptation.

  8. The impact of warming on greenhouse gas fluxes: an experimental comparison which reveals the varied response of ecosystems to climate change.

    Science.gov (United States)

    Stockdale, James; Ineson, Philip

    2016-04-01

    Modelled predictions of the response of terrestrial systems to climate change are highly variable, yet the response of net ecosystem exchange (NEE) is a vital ecosystem behaviour to understand due to its inherent feedback to the carbon cycle. The establishment and subsequent monitoring of replicated experimental manipulations are a direct method to reveal these responses, yet are difficult to achieve as they typically resource-heavy and labour intensive. We actively manipulated the temperature at three agricultural grasslands in southern England and deployed novel 'SkyLine' systems, recently developed at the University of York, to continuously monitor GHG fluxes. Each 'SkyLine' is a low-cost and fully autonomous technology yet produces fluxes at a near-continuous temporal frequency and across a wide spatial area. The results produced by 'SkyLine' enable the detail response of each system to increased temperature over diurnal and seasonal timescales. Unexpected differences in NEE are shown between superficially similar ecosystems which, upon investigation, suggest that interactions between a variety of environmental variables are key and that knowledge of pre-existing environmental conditions help to predict a systems response to future climate. For example, the prevailing hydrological conditions at each site appear to affect its response to changing temperature. The high-frequency data shown here, combined with the fully-replicated experimental design reveal complex interactions which must be understood to improve predictions of ecosystem response to a changing climate.

  9. Research activities related to the role of forests and forestry in climate change mitigation in Austria. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Weiss P.

    2000-01-01

    Full Text Available Forests and forestry play important roles in Austria with its close to 50/ forest cover. This paper provides details about the Austrian forest carbon inventory, discusses briefly the sources and sinks accounted under the land use, land use change and forestry articles of the Kyoto Protocol, and presents an integrated carbon model (Austrian C-Balance Model that was developed to include not only the forest sector, but other sectors that are greenhouse-gas relevant. Improvements in forest management practices are seen as important possibilities of increasing the carbon sink strength of Austrian forests, but also of pursuing other goals such as increased biodiversity and resistance to future climate-change impacts. This paper presents a process model and a carbon accounting model that are applicable for evaluating carbon impacts of changes in forest management.

  10. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  11. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  12. Coupled Climate Model Simulations of a Late Cretaceous (Maastrichtian) Greenhouse Climate: Comparison with Proxy Data

    Science.gov (United States)

    Upchurch, G. R.; Kiehl, J. T.; Shields, C. A.; Scotese, C.

    2009-12-01

    Earth’s future climate is expected to warm considerably due to increased atmospheric carbon dioxide. Paleoclimate records indicate that pre-Quaternary time periods provide the best possible view of Earth under warm greenhouse conditions. Thus, past warm greenhouse climates provide an important tool to evaluate fully coupled climate models that are currently used to study future climate change. In this study, we use the Community Climate System Model (CCSM3) to investigate the climate of the latest Cretaceous (Maastrichtian). CCSM3 is a fully coupled three-dimensional global model that includes atmospheric, oceanic, sea-ice and terrestrial processes. The CCSM3 simulations employ slight modifications of the paleogeographic and global vegetation reconstructions used in earlier simulations of the late Maastrichtian with the GENESIS Earth System Model (Upchurch, Otto-Bliesner, and Scotese, 1999). CCSM3 simulations include two levels of atmospheric carbon dioxide (2XPAL and 6XPAL), best estimates of atmospheric methane, changes to low level liquid cloud properties based on the hypothesis of Kump and Pollard (2008), and different paleoelevations for the interior of Siberia. A coupled simulation of multi-century length is carried out to study steady state conditions for the surface ocean. For terrestrial regions, model mean annual temperatures and seasonality are compared with data from angiosperm leaf physiognomy, plant life form distribution, and other climatic indicators to determine how well the model represents high latitude warmth on a zonal and regional basis. Model precipitation is compared with a database of climatically restricted sediments and angiosperm leaf physiognomy for specific sites. For oceanic regions, the CCSM3 simulations are compared to marine proxies of surface and benthic temperatures, especially the δ18O of exceptionally preserved carbonate. Our simulations reproduce many features of Maastrichtian climate, such as the latitudinal gradient of

  13. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  14. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  15. The Little Data Book on Climate Change 2011

    OpenAIRE

    World Bank

    2012-01-01

    The little data book on climate change includes a diverse set of indicators selected from the global economic and scientific communities. These indicators recognize the intrinsic relationship between climate change and development and attempt to synthesize important aspects of current and projected climate conditions, exposure to climate impacts, resilience, greenhouse gas emissions, and t...

  16. Statistical analyses for the purpose of an early detection of global and regional climate change due to the anthropogenic greenhouse effect; Statistische Analysen zur Frueherkennung globaler und regionaler Klimaaenderungen aufgrund des anthropogenen Treibhauseffektes

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, J.; Staeger, T.; Schoenwiese, C.D.

    2000-03-01

    The report answers the question where, why and how different climate variables have changed within the last 100 years. The analyzed variables are observed time series of temperature (mean, maximum, minimum), precipitation, air pressure, and water vapour pressure in a monthly resolution. The time series are given as station data and grid box data as well. Two kinds of time-series analysis are performed. The first is applied to find significant changes concerning mean and variance of the time series. Thereby also changes in the annual cycle and frequency of extreme events arise. The second approach is used to detect significant spatio-temporal patterns in the variations of climate variables, which are most likely driven by known natural and anthropogenic climate forcings. Furtheron, an estimation of climate noise allows to indicate regions where certain climate variables have changed significantly due to the enhanced anthropogenic greenhouse effect. (orig.) [German] Der Bericht gibt Antwort auf die Frage, wo sich welche Klimavariable wie und warum veraendert hat. Ausgangspunkt der Analyse sind huntertjaehrige Zeitreihen der Temperatur (Mittel, Maximum, Minimum), des Niederschlags, Luftdrucks und Wasserdampfpartialdrucks in monatlicher Aufloesung. Es wurden sowohl Stationsdaten als auch Gitterpunktdaten verwendet. Mit Hilfe der strukturorientierten Zeitreihenzerlegung wurden signifikankte Aenderungen im Mittel und in der Varianz der Zeitreihen gefunden. Diese betreffen auch Aenderungen im Jahresgang und in der Haeufigkeit extremer Ereignisse. Die ursachenorientierte Zeitreihenzerlegung selektiert signifikante raumzeitliche Variationen der Klimavariablen, die natuerlichen bzw. anthropogenen Klimaantrieben zugeordnet werden koennen. Eine Abschaetzung des Klimarauschens erlaubt darueber hinaus anzugeben, wo und wie signifikant der anthropogene Treibhauseffekt welche Klimavariablen veraendert hat. (orig.)

  17. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  18. Is Carbon Offsetting an Elaborate Charade? Climate Change: the Mirage of Greenhouse Gas Emission Compensation Mechanisms; La compensation carbone: un marche de dupes? Changement climatique: le leurre des mecanismes de compensation des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Fragniere, A. [Lausanne Univ., Institut de Politiques Territoriales et d' Environnement Humain (IPTEH) (Switzerland)

    2008-11-15

    There is now a massive scientific consensus around global warming and the subject is a major focus of media interest in most industrialized countries. The man-made origin of the phenomenon is also generally accepted; hence the efforts expended by those in government, the international community, environmental organizations etc. to limit its scope by acting on its main driver, greenhouse gas emissions. It is in this context that a market in the voluntary compensation of greenhouse gas emissions has developed in recent years. This is known as the ''voluntary carbon offsetting market'' and consists in selling activities or projects that are supposed, in the medium or long term, to reduce greenhouse gas emissions, thereby compensating for the climatically damaging effects of the purchasers' current activities. In other words, buyers may be said to be giving themselves a clear conscience about today's emissions by paying for an act of emission-reduction tomorrow. Though the principle may seem praiseworthy, on closer inspection the idea of carbon offsetting, as currently on offer, turns out to be deceptive. Augustin Fragniere demonstrates the point here with a precise analysis of the estimates and forecasts available in this field (showing how disputable the up-front emissions assessments are), and also of the spatial and temporal dimensions that are very largely concealed by the players in the carbon offsetting market. He shows, lastly, that carbon offsetting mechanisms lead to action being postponed, with an aggravation of the harm done and an increased need for action in the future as a consequence, whereas concrete initiatives to promote behavioural change in the present would have both quicker and clearer effects on the reduction of greenhouse gas emissions.

  19. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  20. Mathematics of Climate Change

    OpenAIRE

    Halstadtrø, Ida

    2013-01-01

    Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...

  1. Temperature and relative humidity changes inside greenhouse

    Directory of Open Access Journals (Sweden)

    A. Shafaei

    2005-06-01

    Full Text Available Better growing conditions are achieved in greenhouses by maintaining a higher internal ambient as compared with external ambient temperature. A computer-based control and monitoring system which provides visualization, control and coordination of temperature and humidity in a greenhouse was recently developed. To validate the system performance, a number of experiments were carried out during the autumn of 2003. In this paper, one of the experimental results conducted from 10 to 12 a.m. on December 7, 2003, in the city of Karaj, is presented and discussed. The system was tested for two modes of operation: the uncontrolled mode of operation and the controlled mode. Four sensors, three for temperature measurements and one for relative humidity measurements, were installed inside and outside. During the first hour and a half the system was tested as a data-acquisition system, ie, only data from the sensors were recorded and monitored on the screen with no operation of fans, sprayer and other installed environmental systems in the greenhouse. For the last 20 min of the experiment, inside air temperature was controlled by the system. The result on temperature measurements shows that external ambient temperature, Tout, is always less than the inside temperature. This is attributed to the solar radiation entering the greenhouse through transparent plastic and being trapped there. We also observed fluctuations on temperature profile inside the greenhouse. This is caused by natural conditions such as surface evaporation within the greenhouse, solar radiation, external ambient temperature and rapid weather changes during the time of the experiment. It was also found that the rate of change of temperature increase in the upper part, Tup, ie near plastic cover, is higher than that of the plants height, Tmid. This rise in vertical temperature gradient is partly due to the different amount of solar incident radiation being received at the locations of sensors

  2. Climate change in North-South perspective

    International Nuclear Information System (INIS)

    An overview is given of current knowledge on the greenhouse effect, in which the leitmotiv is the respective role of industrialized countries and developing countries. The study starts with reviewing greenhouse gas emissions per emitting activity per region in the eighties. A projection of emissions for the year 2025 is made in two emission scenarios, one which assumes little or no action taken to curb greenhouse gas emission (Business-As-Usual), and one which assumes major policy efforts (Policy). The potential impacts of climate change in a 'business-as-usual world' are outlined. A quantitative and qualitative description is given of strategies to achieve the greenhouse gas emission reduction between the two above-mentioned scenarios. Further, a description is given of options to adapt to climate change. 22 figs., 31 tabs., 2 app., 67 refs

  3. Climate Change Policy

    Science.gov (United States)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  4. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  5. Climate Change and Health – What’s the Problem?

    OpenAIRE

    Anstey, Matthew Harry Richards

    2013-01-01

    The scientific consensus is that global warming is occurring and is largely the result of greenhouse gas emissions from human activity. This paper examines the health implications of global warming, the current socio-political attitudes towards action on climate change and highlight the health co-benefits of reducing greenhouse gas emissions. In addition, policy development for climate change and health should embrace health systems strengthening, commencing by incorporating climate change ta...

  6. Climate change and health – what’s the problem?

    OpenAIRE

    Anstey, Matthew HR

    2013-01-01

    The scientific consensus is that global warming is occurring and is largely the result of greenhouse gas emissions from human activity. This paper examines the health implications of global warming, the current socio-political attitudes towards action on climate change and highlight the health co-benefits of reducing greenhouse gas emissions. In addition, policy development for climate change and health should embrace health systems strengthening, commencing by incorporating climate change ta...

  7. Global climate change: An introduction and results from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    OpenAIRE

    Seth, Anji

    2007-01-01

    This presentation gives summary of the results of the Intergovernmental Panel on Climate Change (IPCC) Working Group I (WG1) Fourth Assessment Report (AR4): The physical science basis for climate change. It begins with a history of the theory of global climate change, followed by the important concepts surrounding global climate change: the greenhouse effect and carbon cycle and how the climate has changed throughout the earth's history. It then discusses the IPCC's assessment reports, focusi...

  8. Health effects of global climate change

    International Nuclear Information System (INIS)

    This paper identifies potential health problems that may arise from global climates changes caused by increasing green house gases and depletion in the ozone layer. The mankind is responsible for saving or destroying the environment. There are many forms which can pollute the environment like greenhouse activities. The greenhouse gases like carbon dioxide, methane and ozone etc. cause pollutants in the environment. (A.B.)

  9. The significance of crop co-states for receding horizon optimal control of greenhouse climate

    NARCIS (Netherlands)

    Straten, van G.; Willigenburg, van L.G.; Tap, R.F.

    2002-01-01

    While a tomato crop grows on the time-scale of weeks, the greenhouse climate changes on a time-scale of minutes. The economic optimal control problem of producing good quality crops against minimum input of resources is tackled by a two time-scale decomposition. First, the sub-problem associated to

  10. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  11. Climate - Understanding climate change in order to act

    International Nuclear Information System (INIS)

    In a first part, the author proposes an overview of considerations about climate change and global warming. He discusses greenhouse gas emissions and their perspectives of evolution (IPCC scenarios, recent assessments, unreachable objectives). He comments and discusses the consequences and effects of climate change and global warming (impact on the biosphere and predictable consequences, the largely unknown issue of oceans). He comments the relationship between warming and meteorological evolutions (what is sure and what is not, what is due to climate change and what is not), and the associated risks and hazards

  12. GEF climate change operational strategy: Whither UNDP?

    Energy Technology Data Exchange (ETDEWEB)

    Hosier, R.

    1996-12-31

    The paper discusses aspects of the implementation of the program for climatic change which has been come about as part of the U.N. Framework Convention on Climate Change. Initial effort has focused on providing strategic information and help to countries, on achieving offsets in greenhouse gas emissions by energy conservation or carbon sinking, and an emphasis on development of renewable energy supplies. The U.N. Development Agency has limited funding to help support startup on projects submitted. Specific examples are discussed in the areas of energy conservation and energy efficiency, adoption of renewable energy sources, and reducing the long-term costs of low greenhouse gas-emitting energy technologies.

  13. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    OpenAIRE

    T.M. CORNEA; Dima, M.; Roca, D.

    2011-01-01

    Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC) [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ...

  14. An alternative to the Global Warming Potential for comparing climate impacts of emissions of greenhouse gases

    OpenAIRE

    2003-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subject to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here a new metric, which we call the Global Tem...

  15. Changing climate-protection policies

    International Nuclear Information System (INIS)

    This article presents an interview with Baldur Eliasson, a Swiss member of the International Energy Agency's committee on greenhouse gas reduction. Swiss involvement in the programme is discussed and the main areas of attention are described. Scientific and political factors involved in the reduction of greenhouse gas emissions are discussed and various economic models for the implementation of measures examined. In particular, the co-operation between industry and politics that is necessary to achieve the goals set by the Kyoto protocol on climate change are discussed and participative development projects in China are described. The application of CO2-pricing and further economical steering instruments is examined and the influence of public opinion on policy is looked at

  16. Global vs climate change

    International Nuclear Information System (INIS)

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  17. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested. PMID:18991898

  18. Our Changing Climate

    Science.gov (United States)

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  19. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  20. Climate change science - beyond IPCC

    International Nuclear Information System (INIS)

    Full text: Full text: The main conclusions of the IPCC Working Group I assessment of the physical science of climate change, from the Fourth IPCC Assessment, will be presented, along with the evidence supporting these conclusions. These conclusions include: Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture; The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] Wm-2; Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level; At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. Palaeo-climatic information supports the interpretation that the warmth of the last half-century is unusual in at least the previous 1,300 years; Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations; Discernible human influences now extend to other aspects of climate, including ocean warming, continental

  1. Climate change and electricity sector emissions

    International Nuclear Information System (INIS)

    A review of greenhouse gas reduction issues of the Framework Convention on Climate Change and the Kyoto Protocol was presented, including a review of the Berlin mandate, and targets and timetables for greenhouse gas reductions of various countries for 1990, 1995 and 2010. Carbon dioxide emissions outlook for Canada and the United States were examined in the context of the Kyoto commitments. Issues and implications of banking emissions credits and international emissions trading were discussed. The Canadian Electricity Association's support for voluntary action, equitable burden sharing, the removal of obstacles to electricity trade and commitment to promote non-greenhouse gas emitting electricity generation were outlined and reconfirmed.. 2 tabs

  2. The impact of climate change on agriculture

    OpenAIRE

    John Quiggin

    2008-01-01

    It is now virtually certain that Australia and the world will experience significant climate change over the next century, as a result of human-caused emissions of carbon dioxide (CO2) and other greenhouse gases. This note is a brief discussion of the projected effects of climate change on agriculture, under ‘business as usual’ conditions in which global concentrations of CO2 grow steadily and under the assumption that a global mitigation effort successfully stabilises global concentrations o...

  3. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  4. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  5. Science-policy interaction in the global greenhouse. Institutional design and institutional performance in the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, Tora

    1999-08-01

    This paper explores the science-policy interaction and the extent to which and how institutional arrangements may be used as instruments for enhancing the effectiveness of the dialog. The first part develops the theory. The point of departure of the analysis is the internal dynamics of science and politics in their pure forms and the nature of the dynamics that are generated when these two distinct systems of behaviour meet. On this basis, then, the question of which functions the institutional apparatus should be able to serve in order to enhance the effectiveness of science-policy dialogue is addressed. This approach is then applied to an empirical case study of the Intergovernmental Panel on Climate Change (IPCC) from its establishment in 1988 to the provision of the Second IPCC Assessment Report in 1995. 53 refs., 3 figs., 2 tabs.

  6. The economics of climate change

    International Nuclear Information System (INIS)

    An international Conference on the Economics of Climate Change was convened by the OECD and the International Energy Agency (IEA) in Paris, in June 1993. Participants included many of the world's foremost experts in the field, as well as representatives from business, labour, and other non-governmental organisations. The Conference sought to examine points of consensus and divergence among existing studies on the economics of climate change. Participants also focused on how economic analysis could contribute to meeting the obligations of OECD countries under the 1992 Framework Convention on Climate Change. Discussions centered on such topics as the economic costs and benefits of greenhouse gas mitigation strategies, the potential role of carbon taxes and other economic instruments in the policy mix, possibilities for technological change and diffusion, especially in the energy sector, and joint abatement action between industrialized and developing countries. This volume contains the papers presented at the Conference, as well as summaries of the subsequent discussions. It provides an overview of the 'state of the art' in the economics of climate change and several suggestions for future research. (author)

  7. Radiative Forcing of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  8. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  9. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.;

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs of...... climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... developing countries. It is concluded that although many useful steps have been taken in the direction of ensuring adequate adaptation in developing countries, much work still remains to fully understand the drivers of past adaptation efforts, the need for future adaptation, and how to mainstream climate...

  10. The Evaluation of Climate Change Risks

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2012-11-01

    Full Text Available Nowadays, it is acknowledged that climatic changes represent a serious threat for the environment and, so, this problem has been approached at numerous conferences, conventions and summits. The climate is strongly influenced by the changes in the atmospheric concentrations of certain gases that hold the solar radiations on the Earth’s surface (the greenhouse effect. The water vapors and the carbon dioxide (CO2 present in the atmosphere have always generated a natural greenhouse effect, without which the Earth surface would be 33o C lower than it is today. Other greenhouse gases are: methane (CH4, nitrogen protoxide (N2O, and the halogenated compounds such as chlorofluorocarbons (CFCs. During the last hundred years, man’s activity has led to the increase of the atmospheric concentration of the greenhouse gases and of other pollutants, its consequence being the increase of the average global temperature. Although it has not been calculated exactly how much of this warming can be attributed to the greenhouse gases, there is evidence that human activity contributes to global warming. The main causes leading to the accentuation of the greenhouse effect are the burning of the fossil fuels, deforestations, cement production, waste disposal, refrigeration etc. The climatic changes triggered by the greenhouse gases will have consequences that have already made themselves visible, causing: the increase of the sea level and the possible flooding of the low areas; the melting of the icecap; the modification of the precipitations regime, with consequences like the increase of the floods and droughts frequency; changes in the occurrence of climatic extremes, especially in the occurrence of the high, extreme temperatures. All these will have a direct impact on ecosystems, health, some key economic sectors such as agriculture and on water resources.

  11. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON

    Science.gov (United States)

    Dils, B.; Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Parker, R.; Guerlet, S.; Aben, I.; Blumenstock, T.; Burrows, J. P.; Butz, A.; Deutscher, N. M.; Frankenberg, C.; Hase, F.; Hasekamp, O. P.; Heymann, J.; De Mazière, M.; Notholt, J.; Sussmann, R.; Warneke, T.; Griffith, D.; Sherlock, V.; Wunch, D.

    2014-06-01

    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4-2.5 ppm

  12. Climate and Global Change

    International Nuclear Information System (INIS)

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  13. Climate change and related activities

    International Nuclear Information System (INIS)

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change

  14. Achievements and opportunities from ESF Research Networking Programme: Natural molecular structures as drivers and tracers of terrestrial C fluxes, and COST Action 639: Greenhouse gas budget of soils under changing climate and land use

    Science.gov (United States)

    Boeckx, P.; Rasse, D.; Jandl, R.

    2009-04-01

    soils under changing climate and land use" (BurnOut) (www.cost.esf.org/domains_actions/essem/Actions/changing_climate or bfw.ac.at/rz/bfwcms.web?dok=5906) BurnOut aims at improving the management of greenhouse gas emissions from European soils under different regimes of ecosystem disturbances and land-use change. This will allow the identification of soil and site conditions (hot spots) that are vulnerable to greenhouse gas emissions. The specific objectives are: - Identification of hot spots of greenhouse gas emissions from soils; - Identification of soil and site conditions that are vulnerable to GHG emissions; - Development of an advanced greenhouse gas reporting concept across different of land forms, land use and land use changes; - Communication of policy relevant GHG reporting concepts; Burnout covers the following activities: - Organisation of specific topical workshops; - Short-term scientific visits for scientists. Participating countries in BurnOut are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, Germany, Greece, Hungary, Ireland, Israel, Italy, Lithuania, Netherlands, Norway, Portugal, Romania, Slovak Republic, Slovenia, Spain, Spain, Sweden, Switzerland, Turkey, United Kingdom, Russian Federation, and Bosnia Herzegovina. During this oral presentation, possible lines of cooperation, opportunities and recent achievements will be exemplified and the audience will be invited to contribute their views on these initiatives.

  15. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  16. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  17. Preparing US community greenhouse gas inventories for climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station C1752, Austin, TX 78712-0276 (United States); Scott Matthews, H; Hendrickson, Chris T [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Sharrard, Aurora L [Green Building Alliance, 333 East Carson Street, Suite 331, Pittsburgh, PA 15219 (United States); Azevedo, Ines Lima, E-mail: mblackhurst@gmail.com, E-mail: hsm@cmu.edu, E-mail: auroras@gbapgh.org, E-mail: cth@andrew.cmu.edu, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-07-15

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  18. Preparing US community greenhouse gas inventories for climate action plans

    International Nuclear Information System (INIS)

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  19. The greenhouse effect economy: a review of international commitments for the struggle against climate change; L'economie de l'effet de serre: point sur les engagements internationaux de lutte contre le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Vieillefosse, A

    2008-07-01

    After a description of climate change as a physical phenomenon, a review of assessments of costs associated to climate change and to the reduction of greenhouse gas emissions, and a discussion about the decision in a context of uncertainty, the author discusses political challenges, stressing the need for an international coordination, discussing the issue of property rights, the need to build a mutually beneficial agreement between states, and reviewing the different positions and beliefs in various countries. Then, she describes the system implemented by the Kyoto protocol, proposes an assessment of this protocol at the present time, highlights the qualities of this protocol, proposes pathways to improve it, and attempts to draw some perspectives. In a last part, she examines and comments the U.S. posture, questioning the high level of EU's ambitions in front of a lack of action of the United States, questioning also the negotiation framework, the place given to developing countries in this negotiation, and the possibility of taking up transatlantic negotiations again.

  20. Climate change: where to now?

    International Nuclear Information System (INIS)

    Full text: Full text: The potential for human impact on global climate arose out of an understanding developed in the 19th century of the physical conditions influencing global temperatures. In the past three decades, observations and improved understanding of climate processes have led to the conclusions that the planet has warmed, this warming has been primarily due to increases of atmospheric greenhouse gases and that this has been due to human activities. But our knowledge is incomplete. The management of the risks associated with future climate change demands improvement of the knowledge base. Specific areas for improvement include the: role of aerosols in the amelioration or otherwise of warming trends; potential instability of systems, e.g. the deglaciation of Greenland that could lead to rapid destabilisation of climate; response of biological systems to climate change, their phrenology, behaviour, genetics and dispersion; opportunities for cost-effective managed adaptation; and improved technologies for meeting the energy demands. Climate science has been characterised by a level of integration of disciplinary fields uncommon in other areas. Yet the nature of the climate system, its diverse impacts and the range of mitigation options suggests that while disciplinary endeavours need to continue, further integration is required. Policy development requires the exploration of options that respect the complexity of climate and its impacts but also the pluralistic aspirations of societies. The 21st century should be characterised by considered, inclusive and strategic policy development. For science to contribute to this process, much more attention is needed to the processes involved in the exchange of knowledge between the scientific community and those who develop public or private policy. A new engagement and shared understanding of the potential role of science in modern societies, particularly with respect to climate change, is an essential component of

  1. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  2. Irreversivle Climate Change Will Also Change Environmental Assessment and Management

    OpenAIRE

    Cairns, John

    2010-01-01

    Currently, the environmental and management methods for climate change will not be effective after irreversible climate change occurs. Without efforts to stabilize greenhouse gases, the temperature will continue to increase leading to: 1) risk to unique and threatened systems, 2) risk of extreme weather events, 3) distribution of impacts, 4) aggregate damages, and 5) risks of large-scaled discontinuities. New management systems must be put in place to protect natural capital and ecosystem se...

  3. Netherlands' national communication on climate change policies

    International Nuclear Information System (INIS)

    National Communication was produced to fulfil the Netherlands' commitments to the Framework Convention on Climate Change which was ratified by the Netherlands' Government on 21 December 1993. It gives a broad overview of the country's climate change policies and a summary of the inventory of greenhouse gas emissions. It discusses projection of emissions to 2000 and effect of measures on emissions. The vulnerability of the Netherlands to sea level rise is discussed and adaptations outlined. Initiatives on joint implementation are summarised. Finance of mitigation/adaptation, international cooperation, research programs and education and training programs on climate change and its mitigation are briefly discussed. 63 refs., 40 figs., 36 tabs

  4. U.S. Regional Agricultural Production in 2030 and 2095: Response to CO2 Fertilization and Hadley Climate Model (HadCM2) Projections of Greenhouse-Forced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    NJ Rosenberg; RC Izaurralde: RA Brown

    1999-11-19

    Research activities underway to evaluate potential consequences of climate change and variability on the agriculture, water resources, and other U.S. sectors were mandated by the Global Change Research Act of 1990. These activities are being carried out in a public-private partnership under the guidance of the U.S. Global Change Research Program. Researchers at Pacific Northwest National Laboratory (PNNL) have been using integrated assessment methodologies to appraise the possible impacts of global warming and climatic variability on the behavior of managed and natural systems. This interim PNNL report contributes to the U.S. National Assessment process with an analysis of the modeled impacts of climatic changes projected by the Hadley/UKMO (HadCM2) general circulation model on agricultural productivity and selected environmental variables. The construction of climatic data for the simulation runs followed general guidelines established by the U.S. National Assessment Synthesis Team. The baseline climate data were obtained from national records for the period 1961 - 1990. The scenario runs for two future periods (2025 - 2030 and 2090 - 2099) were extracted from results of a HadCM2 run distributed at a half-degree spatial resolution. The Erosion Productivity Impact Calculator (EPIC) was used to simulate the behavior of 204 "representative farms" (i.e., soil-climate-management combinations) under baseline climate, the two future periods and their combinations with two levels of atmospheric C02 concentrations (365 and 560 ppm). Analysis of simulation results identified areas in Texas, New Mexico, Colorado, Utah, Arizona, and California that would experience large temperature increases by 2030. Slight cooling is expected by 2030 in parts of Alabama, Florida, Maine, Montana, Idaho, and Utah. Larger areas will experience increased warming by 2095. Uniform precipitation increases are expected by 2030 in the north eastern quarter of the country. These uniform precipitation

  5. Evaluating the Bush Climate Change Initiative

    NARCIS (Netherlands)

    Moor APG de; Berk MM; Elzen MGJ den; Vuuren DP van; MNV

    2002-01-01

    This report evaluates the Climate Change Initiative as presented by President Bush on February 14, 2002. The President's proposal aims to reduce the greenhouse gas intensity of the US economy by 18 per cent between 2002 and 2012. This policy target can be regarded as being very modest, when compared

  6. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  7. Market Forces Fight Climate Change?

    International Nuclear Information System (INIS)

    The Kyoto Protocol set industrialised nations' targets for cutting emissions of greenhouse gases, and promoted the so called flexible international market mechanisms to support those cuts, i.e. international emissions trading, joint implementation and clean development mechanisms. Greenhouse policy instruments should be environmentally effective, economically rational, equitable in allocation of emission rights, and politically feasible. Because of major uncertainties about both future damages and costs of global warming, it is advisable to start with low-cost and less radical mitigation measures, but to apply them in as many countries as possible. In time, according to the new findings, those measures could be replaced by more radical and more expensive ones (the so-called 'broad, then deep' strategy). Domestic climate change mitigation measures could be implemented only with an effective international agreement in place. One of the domestic measures could be CO2 emission charge, since it would increase the costs of fossil-fuelled plants and make them less competitive relative to other supply options, particularly to the zero-carbon nuclear option. The largest barriers to progress in dealing with climate change are domestic political obstacles and international institutional challenges. (author)

  8. Evaluating U.S. States climate change initiatives

    International Nuclear Information System (INIS)

    This paper evaluates sub-federal efforts to mitigate climate change in the United States through a range of climate-relevant initiatives, identifying principal trends and detailing climate-relevant initiatives in several states. These strategies include renewable electricity mandates, State and regional greenhouse gas emissions inventories, mandatory greenhouse gas emissions reporting, State greenhouse gas emissions caps, greenhouse gas emissions reductions from motor vehicles, and greenhouse gas emissions cap-and-trade programs for electric generation in several States. Many municipalities in the United States are also pursuing a range of climate-relevant initiatives, those actions are beyond the scope of this paper, but it should be noted they also influence state and national consideration of climate-relevant initiatives in the United States. (author)

  9. Changes in drought risk with climate change

    International Nuclear Information System (INIS)

    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  10. Organic farming and the challenges of climate change

    OpenAIRE

    Jørgen E. Olesen

    2009-01-01

    Climate change is without question one of the largest challenges that humankind has ever faced. This is not the least due to the enormous consequences that climate change will have for ecosystems and human society. Unfortunately, climate change also poses a very difficult problem for politicians to deal with. The core of the problem affecting modern democracies is that most people experience very little relationship between greenhouse gas emissions, climate change and their everyday life. The...

  11. Improving public health by tackling climate change

    OpenAIRE

    Griffiths, Jenny

    2013-01-01

    Across the world, climate change is now responsible for substantial mortality and morbidity, through direct effects on health and also by threatening the determinants of health. This commentary argues that adaptation policies to enhance resilience to adverse climate events are important, but must be coupled with determined action to reduce greenhouse gas emissions. The prize is synergy: many such policies, for example concerning food, travel and community engagement, can simultaneously improv...

  12. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity

    Science.gov (United States)

    Storelvmo, T.; Leirvik, T.; Lohmann, U.; Phillips, P. C. B.; Wild, M.

    2016-04-01

    Earth’s climate sensitivity has long been subject to heated debate and has spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of its most likely range. Recent observational studies have produced estimates of transient climate sensitivity, that is, the global mean surface temperature increase at the time of CO2 doubling, as low as 1.3 K (refs ,), well below the best estimate produced by global climate models (1.8 K). Here, we present an observation-based study of the time period 1964 to 2010, which does not rely on climate models. The method incorporates observations of greenhouse gas concentrations, temperature and radiation from approximately 1,300 surface sites into an energy balance framework. Statistical methods commonly applied to economic time series are then used to decompose observed temperature trends into components attributable to changes in greenhouse gas concentrations and surface radiation. We find that surface radiation trends, which have been largely explained by changes in atmospheric aerosol loading, caused a cooling that masked approximately one-third of the continental warming due to increasing greenhouse gas concentrations over the past half-century. In consequence, the method yields a higher transient climate sensitivity (2.0 +/- 0.8 K) than other observational studies.

  13. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  14. PERCEPTIONS OF CLIMATE CHANGE

    OpenAIRE

    WAITHAKA, E.; OGENDI, KIMANI; MORARA, G.; MUTUA, MAKENZI P.

    2014-01-01

    There is evidence of climate change related events in arid and semi-arid lands. People living in Arid and Semi-arid Lands are particularly vulnerable to the change. Previous studies have revealed great wealth of adaptation mechanisms developed by communities residing in therein over the course of history for their survival. Despite this, there is little or no evidence whether these developed indigenous strategies by the vulnerable communities are based on perception of climate change. The obj...

  15. The Liability of European States for Climate Change

    OpenAIRE

    Roger H J Cox

    2014-01-01

    According to climate science and the 195 signatory States to the UN Climate Convention, every emission of anthropogenic greenhouse gases contributes to climate change. Furthermore, they hold that a two degree Celsius rise of Earth’s average temperature is to be considered as a dangerous climate change to mankind and all of the world’s ecosystems. Using the climate proceedings of Dutch citizens against the Dutch state as a starting point, the author of this case note explains why each European...

  16. Global Climate Change and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    EK Shuman

    2010-12-01

    Full Text Available Climate change is occurring as a result of warming of the earth’s atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  17. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  18. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  19. The french researches on the climatic change

    International Nuclear Information System (INIS)

    Scientists were the first to prevent decision makers on the risk of the climatic change bond to the greenhouse gases emissions. The results of the third GIEC report confirmed that the main part of the global warming of the last 50 years is due to the human activities. This document presents the major results of the french researches during the last five years: the planet observation, the climate evolution study, the simulation of the future climate, the climatic change in France, the impacts of the climatic change on the marine and earth biosphere, the climatic risks and the public policies, the health impacts, the 2003 heat and the research infrastructures. (A.L.B.)

  20. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  1. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  2. Understanding climate change

    International Nuclear Information System (INIS)

    Topics covered in this book are: include volcanism; biogeochemistry; land hydrology; modeling climate; past and present; cryosphere; paleoclimates; land-surface processes; tropical oceans and the global atmosphere; clouds and atmospheric radiation; aeronomy and planetary atmospheres; and modeling future climate changes. The papers presented include uptake by the Atlantic Ocean of excess atmospheric carbon dioxide and radiocarbon

  3. Permafrost Meta-Omics and Climate Change

    Science.gov (United States)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  4. Population and Climate Change

    Science.gov (United States)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  5. Creationism & Climate Change (Invited)

    Science.gov (United States)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  6. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  7. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  8. Climate change in Australia: technical report 2007

    International Nuclear Information System (INIS)

    The purpose of this report is to provide an up-to-date assessment of observed climate change over Australia, the likely causes, and projections of future changes to Australia's climate. It also provides information on how to apply the projections in impact studies and in risk assessments. The two main strategies for managing climate risk are mitigation (net reductions in greenhouse gas emissions) to slow climate change and adaptation to climate impacts that are unavoidable. A number of major advances have been made since the last report on climate change projections in Australia (CSIRO 2001) including: a much larger number of climate and ocean variables are projected (21 and 6 respectively); a much larger number (23) of climate models are used; the provision of probabilistic information on some of the projections, including the probability of exceeding the 10th, 50th and 90th percentiles; greater emphasis on projections from models that are better able to simulate observed Australian climate; a detailed assessment of observed changes in Australian climate and likely causes; and information on risk assessment, to provide guidance for using climate projections in impact studies

  9. Accounting for Climate Change: Introduction

    International Nuclear Information System (INIS)

    The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is high on both political and scientific agendas internationally. As increasing international concern and cooperation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The approaches to addressing uncertainty introduced in this article attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Authors of the accompanying articles use detailed uncertainty analyses to enforce the current structure of the emission trading system and attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. Assessment of uncertainty can help improve inventories and manage risk. Through recognizing the importance of, identifying and quantifying uncertainties, great strides can be made in the process of Accounting for Climate Change

  10. Climate change - the impacts

    International Nuclear Information System (INIS)

    This special dossier about the impacts of climate change is made of 6 contributions dealing with: the mitigation of climate effects and how to deal with them (Bertrand Reysset); how to dare and transmit (Laurent Billes-Garabedian); littoral risks, the Pas-de-Calais example (Julien Henique); extreme meteorological events and health impacts (Mathilde Pascal, Philippe Pirard, Yvon Motreff); Biodiversity and climate: the janus of global change (Robert Barbault, Jacques Weber); adapting agriculture to dryness and temperatures (Philippe Gate); Paris and the future heats of the year 2100 (Jean-Luc Salagnac, Julien Desplat, Raphaelle Kounkou-Arnaud)

  11. Climate change: Recent findings

    International Nuclear Information System (INIS)

    In the late eighties several reports have been published on climate change and sea level rise. In the meantime insights may have changed due to the availability of better and more observations and/or more advanced climate models. The aim of this report is to present the most recent findings with respect to climate change, in particular of sea level rise, storm surges and river peak flows. These climate factors are important for the safety of low-lying areas with respect to coastal erosion and flooding. In the first chapters a short review is presented of a few of the eighties reports. Furthermore, the predictions by state of the art climate models at that time are given. The reports from the eighties should be considered as 'old' information, whereas the IPCC supplement and work, for example, by Wigley should be considered as new information. To assess the latest findings two experts in this field were interviewed: dr J. Oerlemans and dr C.J.E. Schuurmans, a climate expert from the Royal Netherlands Meteorological Institute (KNMI). Their views are presented together with results published in recent papers on the subject. On the basis of this assessment, the report presents current knowledge regarding predictions of climate change (including sea-level rise) over the next century, together with an assessment of the uncertainties associated with these predictions. 14 figs., 11 tabs., 24 refs

  12. The ACPI Climate Change Simulations

    International Nuclear Information System (INIS)

    The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data from these runs were saved at 6-hourly intervals (hourly for certain critical fields) to support the ACPI objective of accurately modeling hydrological cycles over the western U.S. It is shown that the initialization to 1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3-8C over northern high-latitudes by the end of the 21st century, and 1-2C over the oceans. This is generally within ±0.1C of model runs without the 1995 ocean initialization. The exception is in the Antarctic circumpolar ocean where surface air temperature is cooler in the ACPI run; however the ensemble scatter is large in this region. Although the difference in climate at the end of the 21st century is minimal between the ACPI runs and traditionally spun up runs, it might be larger for CGCMs with higher climate sensitivity or larger ocean drifts. Our results suggest that the effect of small errors in the oceans (such as those associated with climate drifts) on CGCM-simulated climate changes for the next 50-100 years may be negligible

  13. Climate change impacts: an Ontario perspective

    International Nuclear Information System (INIS)

    Significant changes in the climate system which are likely to affect biophysical, social and economic systems in various ways, were discussed. Trends in greenhouse gas levels show that during the 20. century, human activity has changed the make-up of the atmosphere and its greenhouse effect properties. A pilot study on the impacts of climate change identified changes in the water regime such as declines in net basin supply, lake levels and outflows, as important concerns. These changes would have impacts on water quality, wetlands, municipal water supply, hydroelectric power generation, commercial shipping, tourism and recreation, and to a lesser extent, on food productions. Climate impact assessments suggest that world conditions will change significantly as a result. Those with less resources are likely to be most affected by climate change, and the impacts on other regions of the world will be more significant to Ontario than the direct impacts on Ontario itself. In an effort to keep pace with global changes, Ontario will have to limit emissions, conduct research in innovative technology and develop greater awareness of the risk of climate change. refs., tabs., figs

  14. Sharing the burden of financing adaptation to climate change

    NARCIS (Netherlands)

    Dellink, R.; Elzen, M.; Aiking, H.; Bergsma, E.; Berkhout, F.; Dekker, T.; Gupta, J.

    2009-01-01

    Climate change may cause most harm to countries that have historically contributed the least to greenhouse gas emissions and land-use change. This paper identifies consequentialist and non-consequentialist ethical principles to guide a fair international burden-sharing scheme of climate change adapt

  15. Mitigation of climate change: which technologies for Vietnam?

    OpenAIRE

    Chu, Thi Thu Ha

    2012-01-01

    Vietnam is one of the countries suffering from the most serious adverse effects due to climate change and sea level rise. The main cause of climate change is the increased activities generating greenhouse gases. Organic waste is the main source of carbon dioxide emission, which has the largest concentration among different kinds of greenhouse gases in the earth’s atmosphere. The conversion of organic waste and biomass into energy contributes not only to supply cleaner energy but also to reduc...

  16. Eocene precipitation: How wet do greenhouse climates get? (Invited)

    Science.gov (United States)

    Greenwood, D. R.; Smith, R. Y.

    2010-12-01

    The Eocene was the warmest part of the Cenozoic due to CO2 being at 2x - 4x Holocene levels, with warm climates extending across North America into the Arctic. Substantive paleobotanical evidence for this greenhouse time shows the existence of extensive broadleaf and coniferous polar forests - a circumpolar rain forest. Similarly, Australia in the Eocene - while 25° south of its present position - was a well-forested and humid continent, in contrast to today where 2/3 of the continent is arid or semi-arid and lacks forest. Both of these regions reflect past climate states - mesothermal moist climates with low thermal seasonality at high latitudes - that have no analog in the modern world; undiscovered earth climates. Paleontological temperature proxies provide a basis for understanding early Paleogene climates; however, there is a lack of corresponding proxy data on precipitation. Paleobotanical proxies offer 2 methods for estimated paleo-precipitation; leaf physiognomy (including leaf area analysis), and quantitative analysis of nearest living relatives (‘NLRs’) of macrofloras. Presented here is an exploration of this former greenhouse world, through analyses of macrofloras from mid-latitude North America and the Canadian Arctic, as well as from Australia. Analysis of the Canadian Arctic floras indicate upper microthermal to lower mesothermal moist climates (MAT ~13-15 °C, CMMT ~4 °C, MAP >100cm/a) in the early and middle Eocene. Leaf-area analysis of Paleocene and Eocene Arctic floras demonstrates precipitation for the Paleogene western and eastern Arctic estimated as >100 cm/yr. Sites from the Okanagan Highlands early Eocene lake macrofloras of British Columbia and northern Washington indicate comparable conditions in the early Eocene to those reconstructed for the Arctic in the middle Eocene, with MAP ~100cm/a for most sites along a 1000km North-South transect from Republic in Washington State to Driftwood Canyon near Smithers in northern British

  17. Managing Climate Change Refugia for Climate Adaptation.

    Science.gov (United States)

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  18. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  19. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  20. Climate change: turning up the heat

    Energy Technology Data Exchange (ETDEWEB)

    Pittock, A. Barrie

    2005-12-15

    Climate change has been described as the most pressing issue for the future of Earth, dramatically affecting all aspects of our lives and civilization, yet many people remain baffled by what is going on. A. Barrie Pittock, one of the world's leading researchers on climate change, demystifies the issues and explains both sides of the current debates on this 'hot' topic. This timely book sorts fact from fiction as the author examines the arguments surrounding the reality of climate change and the divergent views of greenhouse sceptics and doom-and-gloom alarmists. The book discusses the major impacts of climate change on natural ecosystems and past civilizations, and describes how scientists are predicting future change. It also outlines the options for living with climate change, from mitigation to adaptation. Beyond the scientific facts, the book tackles the politics of climate change, including the apparent clash of interests between richer, developed countries and poorer, less-developed countries, climate change sceptics, and the current international action on climate change, including the Kyoto Protocol. Pittock also examines individual action, emphasizing the need for us to contribute to solutions through constructive political and personal action. (Author)

  1. Harvested wood products in the context of climate change : A comparison of different models and approaches for the Norwegian greenhouse gas inventory

    Energy Technology Data Exchange (ETDEWEB)

    Bache-Andreassen, Lihn

    2009-07-01

    Emissions of greenhouse gases is accounted for and reported annually under the UNFCCC and the Kyoto protocol. In the current accounting system, emissions of CO2 from harvested wood products (HWP) are attributed to the year of harvest and the country of harvest. All harvested wood is thus assumed to be oxidised to CO{sub 2} in the year of harvesting, and no wood goes into long term storage. This is called the IPCC default approach. Much of the harvested wood will however be stored for a short or long period of time before it oxidises and this will cause a delayed emission of CO{sub 2}. If more wood is stored than oxidised in a given year, harvested wood products will act as a sink and a removal of CO{sub 2} is recorded. However, if the consumption of wood decreases to a level below what is oxidised, harvested wood products will act as a source and emissions of CO{sub 2} is recorded. In Norway, as on many other countries, the stock of harvested wood products has been increasing for many years, and is likely to increase further. Including emissions/removals of CO{sub 2} from harvested wood products in the post Kyoto 2012 regime is under consideration by the UNFCCC, and in that context it is imperative to evaluate estimation models and approaches for the reporting/accounting. (Author)

  2. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... to estimate the impact of individual climate stressors on road infrastructure in Mozambique. Through these models, stressor–response functions are introduced that quantify the cost impact of a specific stressor based on the intensity of the stressor and the type of infrastructure it is affecting. Utilizing...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...

  3. Greenhouse effect and climates. Present state and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H.

    1986-12-01

    Model calculations with different marginal conditions and different physical processes do, on the basis of realistic assumptions, result in a temperature rise of 3 +- 1.5/sup 0/C at doubling carbon dioxide concentrations. Temperatures are increasing even more due to the presence of trace gases contributing to the greenhouse effect. They are assumed to be having a share of 100% in the carbon dioxide effect (additive) in 30-40 years from now. According to the model calculations the CO/sub 2/ increase from about 280 ppm around 1850 to 345 ppm today (1985) is equal to a globally averaged temperature rise of 0.5-0.7/sup 0/C. As the data obtained before 1900 were incomplete and little representative climatic analyses cannot be considered to have been effective but after that time. However, considering the additional influence of other climatic effects such as vulcanism the temperature rise satisfactorily corresponds to the values obtained since 1900.

  4. Climate Change Liability – Variations on Themes Across the Atlantic

    OpenAIRE

    Utter, Robert

    2012-01-01

    In recent years the United States Supreme Court has delivered two significant rulings, Massachusetts v. EPA and AEP v. Connecticut, concerning regulating and limiting greenhouse gas emissions. Since federal climate change legislation has stalled in Congress, these two rulings are all the more significant in setting the stage for how greenhouse gas emissions are regulated in the United States. According to the rulings, greenhouse gas emissions are coveredby the Clean Air Act and thus fall unde...

  5. The greenhouse gas exchange responses of methane and nitrous oxide to forest change in Europe

    OpenAIRE

    Gundersen, P.; Christiansen, J. R.; G. Alberti; N. Brüggemann; Castaldi, S.; Gasche, R.; Kitzler, B.; L. Klemedtsson; R. Lobo-do-Vale; Moldan, F.; Rütting, T; Schleppi, P.; Weslien, P.; S. Zechmeister-Boltenstern

    2012-01-01

    Climate change and air pollution, interact with altering forest management and land-use change to produce short and long-term changes to forest in Europe. The impact of these changes on the forest greenhouse gas (GHG) balance is currently difficult to predict. To improve the mechanistic understanding of the ongoing changes, we studied the response of GHG (N2O, CH4) exchange from forest soils at twelve experimental or natural gradient forest...

  6. Green cities, smart people and climate change

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Harrison, T.

    2014-12-01

    Climate change will require substantial changes to urban environments. Cities are huge sources of greenhouse gases. Further, cities will suffer tremendously under climate change due to heat stresses, urban flooding, energy and water supply and demand changes, transportation problems, resource supply and demand and a host of other trials and tribulations. Cities that evolve most quickly and efficiently to deal with climate change will likely take advantage of the changes to create enjoyable, healthy and safer living spaces for families and communities. Technology will provide much of the capability to both mitigate and adapt our cities BUT education and coordination of citizen and community lifestyle likely offers equal opportunities to make our cities more sustainable and more enjoyable places to live. This work is the first phase of a major project evaluating urban mitigation and adaptation policies, programs and technologies. All options are considered, from changes in engineering, planning and management; and including a range of citizen and population-based lifestyle practices.

  7. Disaster management, climate change and variability and social resilience

    OpenAIRE

    O'Brien, Geoff

    2008-01-01

    Disaster Management, Climate Change and Variability and Social Resilience Abstract Accelerated climate change and increasing climate variability caused by increasing anthropogenic greenhouse gas emissions is the single largest threat to the international goals of sustainable development, the Millennium Development Goals (MDGs) and disaster risk reduction. Global discourses recognise the need for effective and sustainable responses to produced climate risks. The risk types likely to occur are ...

  8. CAUSES AND CONSEQUENCES OF CLIMATE CHANGE

    OpenAIRE

    Adrian Stanisoara

    2014-01-01

    Climate change, arising from the greenhouse effect of heattrapping gases, is a global problem. All nations are involved in both its causes and consequences. Currently developed nations are the largest emitters of greenhouse gases, but emissions by developing nations will grow considerably in coming decades. The most recent scientific evidence indicates that effects during the twenty-first century may range from a global temperature increase of 1.1ºC (2ºF) up to 6.4ºC. In addition to simply wa...

  9. AMS and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, Walter, E-mail: walter.kutschera@univie.ac.a [Vienna Environmental Research Accelerator (VERA), Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringerstrasse 17, A-1090 Wien (Austria)

    2010-04-15

    This paper attempts to draw a connection between information that can be gained from measurements with accelerator mass spectrometry (AMS) and the study of climate change on earth. The power of AMS to help in this endeavor is demonstrated by many contributions to these proceedings. Just like in archaeology, we are entering a phase of an 'integrated approach' to understand the various components of climate change. Even though some basic understanding emerged, we are still largely in a situation of a phenomenological description of climate change. Collecting more data is therefore of paramount interest. Based on a recent suggestion of 'geo-engineering' to take out CO{sub 2} from the atmosphere, this radical step will also be briefly discussed.

  10. AMS and climate change

    Science.gov (United States)

    Kutschera, Walter

    2010-04-01

    This paper attempts to draw a connection between information that can be gained from measurements with accelerator mass spectrometry (AMS) and the study of climate change on earth. The power of AMS to help in this endeavor is demonstrated by many contributions to these proceedings. Just like in archaeology, we are entering a phase of an 'integrated approach' to understand the various components of climate change. Even though some basic understanding emerged, we are still largely in a situation of a phenomenological description of climate change. Collecting more data is therefore of paramount interest. Based on a recent suggestion of 'geo-engineering' to take out CO 2 from the atmosphere, this radical step will also be briefly discussed.

  11. The World Bank and climate change

    International Nuclear Information System (INIS)

    The reduction of greenhouse gas emissions is inextricably linked with economic and development policies. This raises the question, to what extent do the commitments to reduce carbon dioxide emissions under the Climate Change Convention affect the practices and policies of the World Bank? After briefly describing the interaction between climate change and economic development, as well as the respective instruments of the Climate Change Treaty and the World Bank, this paper identifies several windows through which the obligations set out by the Climate Change treaty affect the World Bank. These include the Global Environmentally Facility, the Operational Policies adopted by the Executive Directors of the World Bank, specific loan structures and conditions as well as the recent Prototype Carbon Fund. (Author)

  12. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world. PMID:23665996

  13. The human rights approach to climate change

    DEFF Research Database (Denmark)

    Toft, Kristian Høyer

    2013-01-01

    the distinction between human rights as protection against climate change versus the right to emit greenhouse gases. Both understandings are found in the debate on climate justice, but they are often not made explicit. Second, the “human rights as protection” approach with a focus on (a) right holders...... are instrumentally applied as a solution to what could be called the “justice problem” in climate negotiations. In order to assess the degree to which human rights could be a useful approach to the justice problem with regard to to climate change, four major issues need to be examined. First, there is......It is often argued that concerns about the equity of a global climate agreement might appropriately be addressed in the language of human rights. The human rights approach has been promoted by a number of international political actors, including the UN Human Rights Council. As such, human rights...

  14. Confronting climate change

    International Nuclear Information System (INIS)

    Emissions of greenhouse gases (GHGs), especially from energy production and use, and their impact on global climate emerged as a major national issue in the United States during the 1980s. As a result, Congress directed the US Department of Energy (DOE) to ask the National Academy of Sciences and the National Academy of Engineering to assess the current state of research and development (R ampersand D) in the United States in alternative energy sources, and to suggest energy R ampersand D strategies involving roles for both the public and private sectors, should the government want to give priority to stabilizing atmospheric concentrations of GHGs. The findings and recommendations of the Committee on Alternative Energy Research and Development Strategies, appointed by the National Research Council in response to Congress's directive, are provided in this report and summarized in this chapter. The energy R ampersand D strategies and actions recommended by the committee are structured to facilitate prudent and decisive responses by the United States, despite uncertainties regarding the effects of GHGs on global climate. 96 refs., 4 figs., 17 tabs

  15. Modeling of the climate system and of its response to a greenhouse effect increase

    International Nuclear Information System (INIS)

    The anthropic disturbance of the Earth's greenhouse effect is already visible and will enhance in the coming years or decades. In front of the rapidity and importance of the global warming effect, the socio-economical management of this change will rise problems and must be studied by the scientific community. At the modeling level, finding a direct strategy for the validation of climate models is not easy: many uncertainties exist because energy transformations take place at a low level and several processes take place at the same time. The variability observed at the seasonal, inter-annual or paleo- scales allows to validate the models at the process level but not the evolution of the whole system. The management of these uncertainties is an integral part of the global warming problem. Thus, several scenarios can be proposed and their risk of occurrence must be estimated. This paper presents first the greenhouse effect, the climatic changes during geologic times, the anthropic disturbance of the greenhouse effect, the modeling of climate and the forecasting of its evolution. (J.S.)

  16. Addressing Climate Change

    OpenAIRE

    Peter S. Heller

    2007-01-01

    Global climate change has moved high on the agenda of key policy makers in many industrial countries. As a “global public good,†a coordinated global response in terms of efforts at mitigation will be critically necessary. Equally, many countries will face serious economic harm in the absence of adaptation efforts. As one of the key global institutions with responsibility for global economic stability and growth, this paper argues that climate change should be on the economic surveillance ...

  17. Climate change and nuclear power

    International Nuclear Information System (INIS)

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  18. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  19. Uncertainty in simulating wheat yields under climate change

    Science.gov (United States)

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change...

  20. Solar activities and Climate change hazards

    Science.gov (United States)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  1. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).

    Science.gov (United States)

    Bogner, Jean; Pipatti, Riitta; Hashimoto, Seiji; Diaz, Cristobal; Mareckova, Katarina; Diaz, Luis; Kjeldsen, Peter; Monni, Suvi; Faaij, Andre; Gao, Qingxian; Zhang, Tianzhu; Ahmed, Mohammed Abdelrafie; Sutamihardja, R T M; Gregory, Robert

    2008-02-01

    Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints

  2. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  3. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  4. Effects of cover properties, ventilation rate and crop leaf area on tropical greenhouse climate

    NARCIS (Netherlands)

    Impron, I.; Hemming, S.; Bot, G.P.A.

    2008-01-01

    Experimental results and validation of a simple greenhouse climate model are analysed according to data sets from six prototype greenhouses with three different plastics (reference N0, and two levels of near-infrared reflecting pigments N1 and N2); two ratios of ventilation openings to greenhouse co

  5. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the...... paper advances a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global...

  6. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  7. The impacts of climate change in Aquitaine

    International Nuclear Information System (INIS)

    This article presents a book which addresses the impacts of climate change in the Aquitaine region by 2030-2050 in order to prepare the adaptation of the main economic sectors. Several fields are addressed: agriculture and wine-growing, forestry, estuaries, coasts and sea resources. The book examines two aspects of climate change due to greenhouse gas emissions: mitigation and adaptation. Two scenarios are studied: a global temperature increase of 2 degrees, and a global temperature increase between 4 and 5 degrees. As examples of this study, this article gives an overview of these issues of mitigation and adaptation in four domains: forests, wine-growing, air quality, and health

  8. A climate for development. Climate change policy options for Africa

    International Nuclear Information System (INIS)

    The seriousness of the potential impacts of climate change on development in Africa is now well recognized within, and increasingly outside, scientific circles. The United Nations Framework Convention on Climate Change is a landmark in international environmental governance, providing a mechanism for exchange, negotiation and institution-building to re-direct development towards more efficient use of resources, especially energy. The message of 'A climate for Development' is that unless policy-makers fully understand both the international commitments made under the Convention and the essential national development priorities of their own countries, effective action on climate change is unlikely to be realized. The action needed, however, can at the same time stimulate capacity-building, planning and policy change which would strengthen the economic and ecological base of African countries. The climate change issue has hence brought us face to face with the urgency of the basic issues of sustainable development in Africa. The book discusses key issues that cut across all African countries, such as emissions and their impacts, financial resources and technology transfer for emissions abatement strategies. It then provides a sectoral analysis of greenhouse gas emissions and abatement options focusing on energy, industry, agriculture, forestry and transportation. The book concludes with guidelines for options which may be considered by African countries to ensure that climate change concerns are effectively dealt with in the context of their development priorities. 113 refs

  9. The national adaptation plan to climate change

    International Nuclear Information System (INIS)

    Adaptation to climate change is a necessity, as well as reducing emissions of greenhouse gases. Since 2001, the National Observatory on the effects of global warming gathers and disseminates news on the effects of climate change and drive implementation of adaptation in France. A national strategy was adopted in 2006, followed by an analysis of the impacts of climate change and associated costs that could amount to several billion euros per year at the end of the century. Preceded by extensive consultation that involved stakeholders Grenelle Environment the National Adaptation Plan was published in mid-2011. It covers all sectors and many areas. He has more than 80 concrete actions that will commit France to adapt to the new climate. (author)

  10. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  11. Adaptation to climate change

    NARCIS (Netherlands)

    J. Carmin; K. Tierney; E. Chu; L.M. Hunter; J.T. Roberts; L. Shi

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  12. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  13. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  14. Climate change effects on regions of Canada

    International Nuclear Information System (INIS)

    This report describes the major effects of climatic change being experienced in different parts of Canada, and emphasizes those that they are likely to become so severe that they may disrupt social, ecological and economic systems. The report notes that the driving force behind these impacts is change in temperature, precipitation, and in extreme weather events. The report strongly suggests that greenhouse gas emissions, particularly carbon dioxide, methane and nitrous oxide will likely continue to increase due to human activities such as burning of fossil fuels for heating, cooling and transportation. Loss of tropical forests is also listed as a cause for increased greenhouse gases. In order to reduce greenhouse gas emissions into the atmosphere, Canada must use energy much more efficiently, use more alternative renewable energy source and substitute natural gas for coal and oil whenever possible. It was emphasized that the ratification of the Kyoto Protocol would slow down the rate of increase of the world's greenhouse gas emissions, which in turn affect atmospheric concentrations. The author states that Canada's ratification of the Kyoto Protocol is key to global success, particularly since some countries have backed away from it and some are wavering. The report outlined the following major impacts of climate change in various parts of Canada: sea ice, permafrost, forest fires, transportation, toxic contaminants, storminess, precipitation, water supply, water quality, fisheries, hydropower, agriculture and human adaptation. refs., tabs

  15. Nuclear power and climate change

    International Nuclear Information System (INIS)

    In the Kyoto Protocol, agreed upon by the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) in December 1997, Annex I countries committed to reduce their greenhouse gas (GHG) emissions. Also, the Protocol states that Annex I countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. One important option that could be covered by the last phrase, and is not specifically mentioned, is nuclear energy which is essentially carbon-free. Nuclear Energy Agency (NEA) has investigated the role that nuclear power could play in alleviating the risk of global climate change. The main objective of the study is to provide a quantitative basis for assessing the consequences for the nuclear sector and for the reduction of GHG emissions of alternative nuclear development paths. The analysis covers the economic, financial, industrial and potential environmental effects of three alternative nuclear power development paths ('nuclear variants'). (K.A.)

  16. A dissenting view on global climate change

    International Nuclear Information System (INIS)

    Global warming alarmists are vastly overstating the risks of climate change, often to further other agendas. The science of global warming simply does not support their claims of impending doom - as policy makers would be wise to note. There is scientific consensus on the existence of a benign natural greenhouse effect that keeps the Earth habitable by raising its average surface temperature by about 33 degrees C. Global warming alarmists, however, have falsely claimed that this consensus also extends to the belief that human activity is significantly enhancing this effect. This is simply untrue. Based on a wealth of new information, there is now strong and rapidly growing scientific dissent on the inevitability of catastrophic and even mildly detrimental anthropogenic climate change. This casts serious doubts on the need for binding international agreements to curtail emissions of greenhouse gases from fossil fuel combustion, or to limit conversion of tropical forests to agricultural uses in areas where increased food supply is a critical issue

  17. What is climate change policy now trying to achieve?

    OpenAIRE

    Campbell, David

    2015-01-01

    Almost all advocates of international climate change policy hope and expect that the Climate Change Conference to be held in Paris in November–December 2015 will reach an agreement to reduce global anthropomorphic greenhouse gas emissions. Yet more than 25 years of international climate change policy has failed to reach such an agreement: emissions, far from having been reduced, have greatly increased. In the author’s view, no agreement is likely to be reached in Paris. Anticipating this, Lor...

  18. Chapter 1. Impacts of the oceans on climate change.

    OpenAIRE

    Reid, PC; Fischer, AC; Lewis-Brown, E.; Meredith, MP; Sparrow, M; Andersson, AJ; Antia, A.; Bates, NR; Bathmann, U.; Beaugrand, G.; Brix, H.; Dye, S.; Edwards, M.; T. Furevik; Gangstø, R.

    2010-01-01

    The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the wor...

  19. Socio-economic Scenario Development for Climate Change Analysis

    OpenAIRE

    KRIEGLER Elmar; O'Neill, Brian-C; Hallegatte, Stéphane; Kram, Tom; Moss, Richard-H; Lempert, Robert; Wilbanks, Thomas J

    2010-01-01

    Socio-economic scenarios constitute an important tool for exploring the long-term consequences of anthropogenic climate change and available response options. They have been applied for different purposes and to a different degree in various areas of climate change analysis, typically in combination with projections of future climate change. Integrated assessment modeling (IAM) has used them to develop greenhouse gas (GHG) emissions scenarios for the 21st century and to investigate strategies...

  20. Crop based climate regimes for energy saving in greenhouse cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, O.

    2003-06-16

    Sustainability is one of the major aims in greenhouse horticulture. According to agreements between the Dutch grower association and the government, energy consumption and the use of chemical biocides have to be reduced. More advanced greenhouse technique is being developed to reach the target to decrease the energy efficiency-index by 65% between 1980 and 2010. However, this could also be achieved with existing technology by using more advanced climate regimes. The present thesis aimed at that, through designing and analysing climate regimes while employing existing climate control possibilities. Theoretical temperature and humidity regimes were designed to decrease energy consumption and a photosynthesis maximisation procedure was implemented to maximise growth. The basis for a crop gross photosynthesis model for control purposes was created. Crop photosynthesis models were evaluated at conditions expected to occur with more sustainable climate regimes. It was shown with experimental evidence that theoretical assumptions on the temperature - CO2 effects in a crop that are based on theoretically models scaling up leaf photosynthesis to the crop level are valid and that simplified existing models could be applied up to 28C. With higher temperatures new designs are needed and this can probably be achieved with an improved stomata-resistance model. The well known temperature integration principle was modified with two nested time-frames (24-hour and six days) and a temperature dose-response function. In a year round tomato cultivation, energy consumption was predicted to decrease with up to 9 % compared to regular temperature integration. The potential for energy saving with temperature integration is limited by humidity control when as usual fixed set points are maintained, because it counteracts temperature integration. Vents open at lower temperatures and heating is switched on at higher temperatures than required for optimal effects of temperature integration. A

  1. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  2. CO2 Increase: Questions Beyond Climate Change

    OpenAIRE

    Beckmann, G.; Klopries, B.

    1990-01-01

    The increase of the tropospheric C02 (carbon dioxide) concentration is considered by scientists all over the world to be an alarming signal, as becomes evident from the huge amount of literature on the subject. The so-called greenhouse-gas effect, or, more precisely, its anthropogenic component, is mainly caused by the C02 increase. However, other trace gases have also contributed their share. Far-reaching climatic changes, a temperature increase in the tropospheric air, especially in the po...

  3. Executive summary: a change of climate

    International Nuclear Information System (INIS)

    Public concern about the climate change is growing which is forcing the authorities concern in this country to take note and act accordingly, sooner the better. Droughts are damaging the agriculture industry, farmers are loosing their lively hoods and the country is loosing billions of dollars in sales. Meaningful greenhouse gas emissions reduction in Australia requires action on a number of fronts. Majority of the people would prefer a regulated emission scheme rather than the existing voluntary schemes

  4. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought o...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  5. Exciting Development: Real-Time Carbon Isotope Measurements for Quantifying Soil Carbon - A Strategic Asset in Combating Greenhouse Gas Emissions and Mitigating Climate Change

    International Nuclear Information System (INIS)

    Measurements of δ 13C in soil organic matter and soil-respired δ 13C-CO2 are an important tool used to determine rates of processes and fates of carbon (C) compounds on a variety of scales and for understanding the C cycle in soils. In near-surface soils where diffusion is the dominant mechanism of gas transport, it must be recognized that these systems rarely in isotopic steady state. Simple changes, such as variation in respiration rate or infiltration of rainwater alter the soil gas diffusion regime and cause transient isotopic disequilibrium. These transient fractionations can persist for hours or days, and decay as the system approaches a new steady state. Stable isotopes are increasingly being used in understanding the early stages of fractionation in soil systems. However, there is a clear divergence between the true and measured isotopic signatures at the onset of this fractionation (Nickerson and Risk, 2009a). Further, the actual measurement methodologies themselves can affect the isotopic signatures being measured and so care must be taken in experimental design to avoid such effects (Nickerson and Risk, 2009b). The growing awareness of these effects, in tandem with new instrumentation for observing them in real time, has allowed better modeling and more accurate quantification of these soil gas processes (Phillips et al. in press; Subke et al. 2009)

  6. Weather it's Climate Change?

    Science.gov (United States)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  7. Oceanic implications for climate change policy

    International Nuclear Information System (INIS)

    Under the United Nations convention on the law of the sea (1982), each participating country maintains exclusive economic and environmental rights within the oceanic region extending 200 nm from its territorial sea, known as the exclusive economic zone (EEZ). Although the ocean within each EEZ is undoubtedly an anthropogenic CO2 sink, it has been over-looked within international climate policy. In this paper I use an area-weighted scaling argument to show that the inclusion of the EEZ CO2 sink within national carbon accounts would have significant implications in tracking national greenhouse commitments to any future climate change policy initiative. The advantages and disadvantages for inclusion of the EEZ CO2 sink into global climate change policy are also explored. The most compelling argument for including the EEZ CO2 sink is that it would enhance the equity and resources among coastal nations to combat and adapt against future climate change that will inherently impact coastal nations more so than land locked nations. If included, the funds raised could be used for either monitoring or adaptive coastal infrastructure among the most vulnerable nations. On the other hand, the EEZ anthropogenic CO2 sink cannot be directly controlled by human activities and could be used as a disincentive for some developed nations to reduce fossil-fuel related greenhouse gas emissions. This may therefore dampen efforts to ultimately reduce atmospheric greenhouse gas concentrations. In consideration of these arguments it is therefore suggested that an 'EEZ clause' be added to Kyoto and any future international climate policy that explicitly excludes its use within national carbon accounts under these international climate frameworks

  8. Climate change mitigation and electrification

    International Nuclear Information System (INIS)

    An increasing number of mitigation scenarios with deep cuts in greenhouse gas emissions have focused on expanded use of demand-side electric technologies, including battery electric vehicles, plug-in hybrid vehicles, and heat pumps. Here we review such “electricity scenarios” to explore commonalities and differences. Newer scenarios are produced by various interests, ranging from environmental organizations to industry to an international organization, and represent a variety of carbon-free power generation technologies on the supply side. The reviewed studies reveal that the electrification rate, defined here as the ratio of electricity to final energy demand, rises in baseline scenarios, and that its increase is accelerated under climate policy. The prospect of electrification differs from sector to sector, and is the most robust for the buildings sector. The degree of transport electrification differs among studies because of different treatment and assumptions about technology. Industry does not show an appreciable change in the electrification rate. Relative to a baseline scenario, an increase in the electrification rate often implies an increase in electricity demand but does not guarantee it. - Highlights: ► Until recently few mitigation scenarios paid attention to electrification. ► Recent scenarios show an increasing focus on demand-side electric technologies. ► They are represented by various interests. ► Level of electrification increases with stringency of climate policy. ► Prospect of electrification differs across sectors.

  9. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum. PMID:23918402

  10. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions

    Institute of Scientific and Technical Information of China (English)

    DUAN Anmin; WU Guoxiong; ZHANG Qiong; LIU Yimin

    2006-01-01

    A striking climate warming over the Tibetan Plateau during the last decades has been revealed by many studies, but evidence linking it to human activity is insufficient. By using historical observations, here we show that the in situ climate warming is accompanied by a distinct decreasing trend of the diurnal range of surface air temperature. The ERA40 reanalysis further indicates that there seems to be a coherent warming trend near the tropopause but a cooling trend in the lower stratosphere. Moreover, all these features can be reproduced in two coupled climate models forced by observed CO2 concentration of the 20th century but cannot be produced by the fixed external conditions before the industrial revolution. These suggest that the recent climate warming over the Tibetan Plateau primarily results from the increasing anthropogenic greenhouse gases emissions, and impacts of the increased greenhouse gases emissions upon the climate change in the plateau are probably more serious than the rest of the world.

  11. Climate change and agriculture in Denmark

    International Nuclear Information System (INIS)

    This chapter reviews the current knowledge on effects of climate change on agriculture in Denmark, and the contribution of agriculture to greenhouse gas emissions in Denmark. The chapter also considers the possibilities of Danish agriculture to adapt to changing climate and to reduce greenhouse gas emissions. The relations to other aspects of global change are discussed, including liberalisation of world markets and changes in land use. Scenarios of climate change for Denmark suggest increases in annual mean temperature of 1 to 4 deg. C by the end of the 21st century depending on socioeconomic development. Winter rainfall may increase up to 20%. This implies a wide range of possible consequences. Agricultural productivity may be expected to increase under increasing temperature and increasing CO2 concentration. Highter temperatures will increase the risk of pests and deseases. Warming in association with increased winter rainfall will also increase the risk of nitrate leaching. Climate change may thus be expected to reinforce the current trends in Danish agriculture of declining cattle population and increasing pig and cereal production. Apart from an anticipated continued decline in total agricultural area, land use will probably not be greatly affected. The current environmental regulation in Denmark aims at reducing pesticide use and nitrogen losses from agriculture. Some of the regulations are very detailed and directly regulate farming practices in a manner that may not provide the most cost-effective mechanism under a changed climate. Some of these existing rigid frameworks for environmental regulation should thus be substituted by more flexible goal-oriented environmental protection strategies, in order to ensure sustainability of farming under global climate change. (LN)

  12. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  13. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  14. Outchasing climate change

    Science.gov (United States)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  15. Aligning corporate greenhouse-gas emissions targets with climate goals

    Science.gov (United States)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; van Vuuren, Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-12-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear methods to derive consistent corporate target setting that keeps cumulative corporate GHG emissions within a specific carbon budget (for example, 550-1,300 GtCO2 between 2011 and 2050 for the 2 °C target). Here we propose a method for corporate emissions target setting that derives carbon intensity pathways for companies based on sectoral pathways from existing mitigation scenarios: the Sectoral Decarbonization Approach (SDA). These company targets take activity growth and initial performance into account. Next to target setting on company level, the SDA can be used by companies, policymakers, investors or other stakeholders as a benchmark for tracking corporate climate performance and actions, providing a mechanism for corporate accountability.

  16. Climate change and sustainability in Europe

    International Nuclear Information System (INIS)

    This paper discusses the climate history of the Earth, exploring some of the driving forces of climate change along the way. It points out that it may not be the gradual increase in global mean temperature that we have to fear the most. Rather the variability of the climate may pose an even greater threat to us. The paper outlines some possible future scenarios of climate change based on what we now think we know about the causes of climate change and possible future development in emissions of greenhouse gases. It then goes on to describe the current climate negotiations and possible political solutions in the near term, before concluding with a description of the more long-term fundamental challenges we face. The aim of the discussion is to provide a deeper understanding of the climate problem we are facing, as well as the challenges that lie ahead of us, individually as well as a region, in securing the climate aspect of a sustainable development for Europe and the world. The paper is based on a presentation given at the conference Rio + 10 in Dublin in September 2001, made possible by a kind contribution from the European Environment Agency. (author)

  17. Climate change and sustainability in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.

    2001-07-01

    This paper discusses the climate history of the Earth, exploring some of the driving forces of climate change along the way. It points out that it may not be the gradual increase in global mean temperature that we have to fear the most. Rather the variability of the climate may pose an even greater threat to us. The paper outlines some possible future scenarios of climate change based on what we now think we know about the causes of climate change and possible future development in emissions of greenhouse gases. It then goes on to describe the current climate negotiations and possible political solutions in the near term, before concluding with a description of the more long-term fundamental challenges we face. The aim of the discussion is to provide a deeper understanding of the climate problem we are facing, as well as the challenges that lie ahead of us, individually as well as a region, in securing the climate aspect of a sustainable development for Europe and the world. The paper is based on a presentation given at the conference Rio + 10 in Dublin in September 2001, made possible by a kind contribution from the European Environment Agency. (author)

  18. Shading screens for the improvement of the night-time climate of unheated greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Montero, J. I.; Munoz, P.; Sanchez-Guerrero, M. C.; Medrano, E.; Piscia, D.; Lorenzo, P.

    2013-05-01

    The objective of this work was to study the effect of shading screens, normally used during the day for cooling purposes, on the night-time climate of unheated greenhouses. For this purpose, first a number of experimental measurements were taken during cold nights to characterise the greenhouse climate both with and without an aluminised external screen. Secondly a Computational Fluid Dynamic (CFD) model of greenhouse was developed. After validation of the model by comparison with experimental data, the model was used to simulate the greenhouse climate for different sky conditions ranging from cloudless to overcast nights. Simulations were performed for a greenhouse with internal and external shading screens and for the same greenhouse without screens. Experimental results showed the positive effect of an external shading screen, whose use increased night-time temperature and reduced the risk of thermal inversion. Its effect was much stronger under clear sky conditions. The CFD model supported this conclusion and provided a detailed explanation of the temperature behaviour of all the greenhouse types considered. CFD simulations proved that an aluminised screen placed inside the greenhouse at gutter height gave the greatest thermal increase. Therefore, external or internal screens can help to increase the sustainability of greenhouse production in areas with mild winter climates by enhancing the use of solar energy stored in the greenhouse soil during the previous day and released at night-time. (Author) 39 refs.

  19. Greenhouse effect dependence on atmospheric concentrations of greenhouse substances and the nature of climate stability on Earth

    Directory of Open Access Journals (Sweden)

    V. G. Gorshkov

    2002-03-01

    Full Text Available Due to the exponential positive feedback between sea surface temperature and saturated water vapour concentration, dependence of the planetary greenhouse effect on atmospheric water content is critical for stability of a climate with extensive liquid hydrosphere.

    In this paper on the basis of the law of energy conservation we develop a simple physically transparent approach to description of radiative transfer in an atmosphere containing greenhouse substances. It is shown that the analytical solution of the equation thus derived coincides with the exact solution of the well-known radiative transfer equation to the accuracy of 20% for all values of atmospheric optical depth. The derived equation makes it possible to easily take into account the non-radiative thermal fluxes (convection and latent heat and obtain an analytical dependence of the greenhouse effect on atmospheric concentrations of a set of greenhouse substances with arbitrary absorption intervals.

    The established dependence is used to analyse stability of the modern climate of Earth. It is shown that the modern value of global mean surface temperature, which corresponds to the liquid state of the terrestrial hydrosphere, is physically unstable. The observed stability of modern climate over geological timescales is therefore likely to be due to dynamic singularities in the physical temperature-dependent behaviour of the greenhouse effect. We hypothesise that such singularities may appear due to controlling functioning of the natural global biota and discuss major arguments in support of this conclusion.

  20. Climate Change - Global Risks, Challenges & Decisions

    DEFF Research Database (Denmark)

    Richardson, Katherine; Steffen, Will; Schellnhuber, Hans J.;

    negotiations is the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), published in 2007. The IPCC report has already been instrumental in increasing both public and political awareness of the societal risks associated with unchecked emission of greenhouse gases. Since the...... effective control measures, an understanding of how human activities are changing the climate, and of the implications of unchecked climate change, needs to be widespread among world and national leaders, as well as in the public. The purpose of this report is to provide, for a broad range of audiences, an......, many of whom have also been contributors to the IPCC reports. Participants came from nearly 80 different countries and contributed with more than 1400 scientific presentations. Abstracts for all of the scientific presentations made can be found at www.iop.org/EJ/volume/1755-1315/6 , and a transcript of...

  1. European Climate Change Policy Beyond 2012

    International Nuclear Information System (INIS)

    Europe sees itself on the forefront to combat climate change. Consequently, the European Union has adopted in 2003 a Directive on Emissions Trading and since then, focuses more and more on effective methods to reduce greenhouse gas emissions. So far, there is little knowledge about the further development of Climate Change Policy in Europe after 2012. The EU has already started a review process to define the new legislation starting in 2013. Furthermore, negotiations take place to develop a successor of the Kyoto protocol. The European energy sector can deliver valuable input to the discussion about the coming climate goals and how to achieve them, by addressing the importance of new climate-friendly technologies. Furthermore, the impact of climate change goals on the current investment decisions in the energy sector has to be stressed. Europe will certainly not solve the climate problem on its own, but can help to deliver abatement technologies and to prove, that climate change can be reconciled with economic growth - provided a long-term framework is established that is in line with other goals like security of supply and affordable energy.(author).

  2. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  3. Mediterranean climate change and Indian Ocean warming

    International Nuclear Information System (INIS)

    General circulation model (GCM) responses to 20. century changes in sea surface temperatures (SSTs) and greenhouse gases are diagnosed, with emphasis on their relationship to observed regional climate change over the Mediterranean region. A major question is whether the Mediterranean region's drying trend since 1950 can be understood as a consequence of the warming trend in tropical SSTs. We focus on the impact of Indian Ocean warming, which is itself the likely result of increasing greenhouse gases. It is discovered that a strong projection onto the positive polarity of the North Atlantic Oscillation (NAO) index characterizes the atmospheric response structure to the 1950-1999 warming of Indian Ocean SSTs. This influence appears to be robust in so far as it is reproduced in ensembles of experiments using three different GCMs. Both the equilibrium and transient responses to Indian Ocean warming are examined. Under each scenario, the latitude of prevailing mid latitude westerlies shifts poleward during the November-April period. The consequence is a drying of the Mediterranean region, whereas northern Europe and Scandinavia receive increased precipitation in concert with the poleward shift of storminess. The IPCC (TAR) 20. century coupled ocean-atmosphere simulations forced by observed greenhouse gas changes also yield a post-1950 drying trend over the Mediterranean. We argue that this feature of human-induced regional climate change is the outcome of a dynamical feedback, one involving Indian Ocean warming and a requisite adjustment of atmospheric circulation systems to such ocean warming

  4. Designing Global Climate Change

    Science.gov (United States)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  5. Lay rationalities of climate change

    OpenAIRE

    Alves, Fátima; Caeiro, Sandra; Azeiteiro, Ulisses

    2014-01-01

    In this special issue we were also interested in revealing the level of concepts and the level of social action, trying to contribute to the answer of questions like: How local populations explain, interpret and deal with climate change? What are the individual and collective actions in response to climate change? How do populations deal with Climate Change mitigation (risk perception and risk-mitigating)? What is the available traditional knowledge about Climate Change? How does the cu...

  6. Energy and climatic change

    International Nuclear Information System (INIS)

    Are described the policies for emission reduction taken at the international level with particular reference to the European Union. Are presented recent data on greenhouse gas emissions in the EU and the link between energy production and greenhouse gases, the environmental impact of major power systems related to economic data

  7. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  8. Corporate actions for the climate - Greenhouse gas reduction practices at EpE member companies

    International Nuclear Information System (INIS)

    Corporate awareness of the reality of climate change and the impact of human activity on global warming goes back some twenty years. It was at this time that EpE members decided to take voluntary action towards lowering greenhouse gas emissions. EpE member companies started out by measuring their emissions (see EpE publication entitled 'Measuring and Controlling Greenhouse Gas Emissions'), then worked to identify initiatives easiest to implement and those that would have the best reduction potential. This booklet is prepared to contribute to other businesses improving their knowledge and understanding of the best practices identified and implemented by EpE members, in order to speed up the reduction of global emissions, without hampering their competitiveness. The practices showcased here have intentionally been detailed so that they can be easier to adopt. (authors)

  9. Optimal learning on climate change: why climate skeptics should reduce emissions

    NARCIS (Netherlands)

    S. van Wijnbergen; T. Willems

    2012-01-01

    Climate skeptics argue that the possibility that global warming is exogenous implies that we should not take additional action towards reducing greenhouse gas emissions until we know more. However this paper shows that even climate skeptics have an incentive to reduce emissions: such a change of dir

  10. Reply to "Comment on 'Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change' by Dana Nuccitelli et al."

    Science.gov (United States)

    Lu, Q.-B.

    2014-04-01

    In the Comment by Nuccitelli et al., they make many false and invalid criticisms of the CFC-warming theory in my recent paper, and claim that their anthropogenic forcings including CO2 would provide a better explanation of the observed global mean surface temperature (GMST) data over the past 50 years. First, their arguments for no significant discrepancy between modeled and observed GMST changes and for no pause in recent global warming contradict the widely accepted fact and conclusion that were reported in the recent literature extensively. Second, their criticism that the key data used in my recent paper would be "outdated" and "flawed" is untrue as these data are still used in the recent or current literature including the newest (2013) IPCC Report and there is no considerable difference between the UK Met Office HadRCUT3 and HadRCUT4 GMST datasets. The use of even more recently computer-reconstructed total solar irradiance data (whatever have large uncertainties) for the period prior to 1976 would not change any of the conclusions in my paper, where quantitative analyses were emphasized on the influences of humans and the Sun on global surface temperature after 1970 when direct measurements became available. For the latter, the solar effect has been well shown to play only a negligible role in global surface temperature change since 1970, which is identical to the conclusion made in the 2013 IPCC Report. Third, their argument that the solar effect would not play a major role in the GMST rise of 0.2°C during 1850-1970 even contradicts the data and conclusion presented in a recent paper published in their Skeptical Science by Nuccitelli himself. Fourth, their comments also indicate their lack of understandings of the basic radiation physics of the Earth system as well as of the efficacies of different greenhouse gases in affecting global surface temperature. Their listed "methodological errors" are either trivial or non-existing. Fifth, their assertion that

  11. Agenda to address climate change

    International Nuclear Information System (INIS)

    This document looks at addressing climate change in the 21st century. Topics covered are: Responding to climate change; exploring new avenues in energy efficiency; energy efficiency and alternative energy; residential sector; commercial sector; industrial sector; transportation sector; communities; renewable energy; understanding forests to mitigate and adapt to climate change; the Forest Carbon budget; mitigation and adaptation

  12. Climate change, agriculture and poverty

    OpenAIRE

    Hertel, Thomas W.; Rosch, Stephanie D

    2010-01-01

    Although much has been written about climate change and poverty as distinct and complex problems, the link between them has received little attention. Understanding this link is vital for the formulation of effective policy responses to climate change. This paper focuses on agriculture as a primary means by which the impacts of climate change are transmitted to the poor, and as a sector at...

  13. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  14. Climate change and Canadian mining : opportunities for adaptation

    International Nuclear Information System (INIS)

    This presentation highlighted the vulnerability of the Canadian mining industry to the consequences of climate change. Opportunities for adaptation were highlighted and recommendations were provided for industry and government. Case studies from Ontario, Quebec, Saskatchewan, Yukon and the Northwest Territories provided insights of the mining industry's vulnerability to changes in water levels, increased precipitation and warm winter temperatures that result in ice road closures. The presentation demonstrated that most mine infrastructure is not designed for a changing climate. The results of 2 surveys indicated that between 34 and 48 per cent of mining stakeholders believe that climate change is already having a negative impact on their operations. However, despite the perceived threat most companies are not pro-actively planning for climate change. The surveys indicated that the dominant response by the mining sector is taking action to reduce greenhouse gas emissions and mitigation. The opportunities that exist for the mining industry to understand and adapt to a changing climate include more effective communication of the potential risks posed by climate change and identifying the most cost effective measures and technologies that will allow mines to adapt to climate change. The authors recommended that regulations are needed to mandate that mines plan for climate change both during their operational lifespan and through decommissioning. Regulatory certainty in regards to greenhouse gas mitigation should be established along with improved climate modeling and communication of climate change projections. figs.

  15. Global climate change and California

    International Nuclear Information System (INIS)

    In the fall of 1988 the University of California organized a new public-service initiative on global climate change in response to inquiries and requests from members of Congress and the Department of Energy (DOE). This new systemwide initiative involved all of the University of California campuses and the University's three national laboratories at Berkeley, Los Alamos, and Livermore. The goal of this Greenhouse Initiative was to focus the multidisciplinary resources of the UC campuses and the team-oriented research capabilities of the laboratories on the prospect of global warming and its associated effects on the planet and its nations. In consultation with the DOE, the organizers proposed a series of workshops to focus University of California research resources on the issue of global warming, to contribute to the congressionally mandated DOE studies on options for the US to reduce carbon dioxide emissions by 20% by the year 2000, and to begin building a long-term research base contributing to an improved understanding of global change in all of its complexity and diverse discipline implications. This volume contains papers from the first of these workshops. Individual papers are processed separately for inclusion in the appropriate data bases

  16. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  17. A model approach to climate change

    International Nuclear Information System (INIS)

    The Earth is warming up, with potentially disastrous consequences. Computer climate models based on physics are our best hope of predicting and managing climate change, as Adam Scaife, Chris Folland and John Mitchell explain. This month scientists from over 60 nations on the Intergovernmental Panel on Climate Change (IPCC) released the first part of their latest report on global warming. In the report the panel concludes that it is very likely that most of the 0.5 deg. C increase in global temperature over the last 50 years is due to man-made emissions of greenhouse gases. And the science suggests that much greater changes are in store: by 2100 anthropogenic global warming could be comparable to the warming of about 6 deg. C since the last ice age. The consequences of global warming could be catastrophic. As the Earth continues to heat up, the frequency of floods and droughts is likely to increase, water supplies and ecosystems will be placed under threat, agricultural practices will have to be changed and millions of people may be displaced as the sea level rises. The global economy could also be severely affected. The scientific consensus is that the observed warming of the Earth during the past half-century is mostly due to human emissions of greenhouse gases. Predicting climate change depends on sophisticated computer models developed over the past 50 years. Climate models are based on the Navier-Stokes equations for fluid flow, which are solved numerically on a grid covering the globe. These models have been very successful in simulating the past climate, giving researchers confidence in their predictions. The most likely value for the global temperature increase by 2100 is in the range 1.4-5.8 deg. C, which could have catastrophic consequences. (U.K.)

  18. Public health impacts of climate change in Nepal.

    Science.gov (United States)

    Joshi, H D; Dhimal, B; Dhimal, M; Bhusal, C L

    2011-04-01

    Climate change is a global issue in this century which has challenged the survival of living creatures affecting the life supporting systems of the earth: atmosphere, hydrosphere and lithosphere. Scientists have reached in a consensus that climate change is happening. The anthropogenic emission of greenhouse gases is responsible for global warming and therefore climate change. Climate change may directly or indirectly affect human health through a range of pathways related to temperature and precipitation. The aim of this article is to share knowledge on how climate change can affect public health in Nepal based on scientific evidence from global studies and experience gained locally. In this review attempt has been made to critically analyze the scientific studies as well as policy documents of Nepalese Government and shed light on public health impact of climate change in the context of Nepal. Detailed scientific study is recommended to discern impact of climate change on public health problems in Nepal. PMID:22929718

  19. The climatic change

    International Nuclear Information System (INIS)

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  20. Research activities related to the role of forests and forestry in climate change mitigation in Austria. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland). 28-30 Sep 2000

    OpenAIRE

    Weiss P.; Schlamadinger B.

    2000-01-01

    Forests and forestry play important roles in Austria with its close to 50/ forest cover. This paper provides details about the Austrian forest carbon inventory, discusses briefly the sources and sinks accounted under the land use, land use change and forestry articles of the Kyoto Protocol, and presents an integrated carbon model (Austrian C-Balance Model) that was developed to include not only the forest sector, but other sectors that are greenhouse-gas relevant. Improvements in forest manag...

  1. Assessing Climate Change Impacts: Agriculture

    OpenAIRE

    Bosello, Francesco; Zhang, Jian

    2005-01-01

    The economy-wide implications of climate change on agricultural sectors in 2050 are estimated using a static computable general equilibrium model. Peculiar to this exercise is the coupling of the economic model with a climatic model forecasting temperature increase in the relevant year and with a crop-growth model estimating climate change impact on cereal productivity. The main results of the study point out on the one hand the limited influence of climate change on world food supply and wel...

  2. Embracing uncertainty in climate change policy

    Science.gov (United States)

    Otto, Friederike E. L.; Frame, David J.; Otto, Alexander; Allen, Myles R.

    2015-10-01

    The 'pledge and review' approach to reducing greenhouse-gas emissions presents an opportunity to link mitigation goals explicitly to the evolving climate response. This seems desirable because the progression from the Intergovernmental Panel on Climate Change's fourth to fifth assessment reports has seen little reduction in uncertainty. A common reaction to persistent uncertainties is to advocate mitigation policies that are robust even under worst-case scenarios, thereby focusing attention on upper extremes of both the climate response and the costs of impacts and mitigation, all of which are highly contestable. Here we ask whether those contributing to the formation of climate policies can learn from 'adaptive management' techniques. Recognizing that long-lived greenhouse gas emissions have to be net zero by the time temperatures reach a target stabilization level, such as 2 °C above pre-industrial levels, and anchoring commitments to an agreed index of attributable anthropogenic warming would provide a transparent approach to meeting such a temperature goal without prior consensus on the climate response.

  3. Reducing greenhouse gas emissions: Lessons from state climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, Melisa, E-mail: mpollak@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Meyer, Bryn, E-mail: meye1058@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Wilson, Elizabeth, E-mail: ewilson@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States)

    2011-09-15

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: > This study analyzed climate action plans from 12 states and surveyed the advisory group members. > Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. > Advisory group members perceived different opportunities and risks in the top-ten strategies. > Both geographic and socio-political factors may underlie the varying reliance on certain strategies. > Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  4. Reducing greenhouse gas emissions: Lessons from state climate action plans

    International Nuclear Information System (INIS)

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: → This study analyzed climate action plans from 12 states and surveyed the advisory group members. → Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. → Advisory group members perceived different opportunities and risks in the top-ten strategies. → Both geographic and socio-political factors may underlie the varying reliance on certain strategies. → Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  5. Global climate change

    International Nuclear Information System (INIS)

    In Austria the CO2 emissions increased by 5.9 % from 1990 to 1999, the other greenhouse gases by 2.6 %. The Federal Ministry for Agriculture, Environment and Water Management, in cooperation with other ministries and the countries, has worked out an action plan for reduction of greenhouse gas emissions, to meet the targets of the Kyoto protocol. This study analyzes the greenhouse gas emissions in Austria, in the European Union and globally. The measured emission values throughout Austria and in the other European countries are given in tables, the environmental impact for Austria and globally is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental emission control in Austria, the European Union and worldwide are discussed. In particular the impact of fossil-fuel power plants on the greenhouse gas emissions is analysed. (a.n.)

  6. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that...... enable adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach...... is based on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant...

  7. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that...... enable adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach...... is based on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant...

  8. Preserving biodiversity in a changing climate

    International Nuclear Information System (INIS)

    Efforts to save the planet's rich diversity of plants, animals, and natural ecosystems from human encroachment have been largely inadequate. More than 100,000 species become extinct each year due to habitat destruction, according to the best estimates available. Now, an even more dangerous and literally invisible threat looms - global climate change caused by the buildup of greenhouse gases in the atmosphere. If it occurs as predicted by a majority of climatologists, greenhouse warming would trigger a massive disruption of natural environments, overwhelming today's preservation efforts and setting off a wave of mass extinctions. Yet most scientific reports and policy discussions downplay the dramatic changes global warming could wreak on the world's biota, and they lack the sense of urgency necessary to spur the many actions that must be taken now if the authors are to deal even minimally with this threat

  9. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  10. The development of climatic scenarios for assessing impacts of climate change

    International Nuclear Information System (INIS)

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  11. Green paper on energy and climate change

    International Nuclear Information System (INIS)

    This green paper was created by the Canadian Environmental Network to initiate a dialogue on climate change and energy issues. Recommendations for energy strategies for Canada beyond 2012 were presented. An overview of recent climate science was presented, as well as various stabilization scenarios needed to prevent further climate change. A review of global energy trends working for and against action to prevent climate change was also provided. It was suggested that the stabilization of greenhouse gas (GHG) concentrations can only be achieved when the United States and large developing economies such as China, India and Brazil transform themselves into renewable-energy based economies. Renewable energy and energy efficiency must play a central role in future climate change regimes. It was suggested that nuclear power cannot be considered as an option to reduce GHGs due to its high cost, and on-going public concerns over long-term waste disposal, fuel-cycle health and safety. A viable global framework for stabilizing GHG concentrations built on the current regimes of the United Nations Framework Convention on Climate Change and the Kyoto Protocol was recommended. It was suggested that richer industrialized nations must take the lead by pursuing absolute reductions and providing assistance to developing nations for mitigation and adaptation to climate change. It was recommended that developing nations should contribute to global mitigation efforts by pursuing low-carbon intensity development paths, and that effective climate change policies must address the economic barriers faced by developing nations. Other recommendations included a regulatory regime for major energy producers and users incorporating progressively lower GHG emission targets; the elimination of all subsidies for the fossil fuel and nuclear fuel-cycle and power industries; the adoption of a national renewable energy strategy; the implementation of a national energy conservation and efficiency

  12. certainty and Climate Change Policy

    OpenAIRE

    Quiggin, John

    2008-01-01

    The paper consists of a summary of the main sources of uncertainty about climate change, and a discussion of the major implications for economic analysis and the formulation of climate policy. Uncertainty typically implies that the optimal policy is more risk-averse than otherwise, and therefore enhances the case for action to mitigate climate change.

  13. Mapping Vulnerability to Climate Change

    OpenAIRE

    Heltberg, Rasmus; Bonch-Osmolovskiy, Misha

    2011-01-01

    This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natura...

  14. NPOESS, Essential Climates Variables and Climate Change

    Science.gov (United States)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  15. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    International Nuclear Information System (INIS)

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  16. Impact of climate change and agriculture adaptation

    International Nuclear Information System (INIS)

    The author outlines and discusses the various impacts climate change can have on agriculture, notably due to the increase of CO2 and other greenhouse gases in the atmosphere, to temperature increase, to the modification of rainfalls, and therefore to differences in evaporation, drainage, run-off, cloud cover. He notably discusses the impact in terms of photosynthesis, of crop production in tempered or tropical regions. He also discusses the impact of extreme events (notably frost), comments how recent evolutions noticed by farmers could prefigure the future. He addresses the issue of adaptation which could mean a change of local practices or a displacement of activities

  17. Deep solar minimum and global climate changes.

    Science.gov (United States)

    Hady, Ahmed A

    2013-05-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue. PMID:25685420

  18. Deep solar minimum and global climate changes

    Directory of Open Access Journals (Sweden)

    Ahmed A. Hady

    2013-05-01

    Full Text Available This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  19. Deep solar minimum and global climate changes

    OpenAIRE

    Ahmed A. Hady

    2013-01-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the trop...

  20. Economics and politics of climate change

    International Nuclear Information System (INIS)

    A fundamental issue is what steps, if any, nations should take to control greenhouse gas emissions. Robert Hahn argues that over the next decade the best strategy for policy makers is to build institutions that can address climate change in the future by developing a capacity at the nation-state level to measure greenhouse gas emissions and to implement and enforce cost-effective ways of limiting emissions. Policy makers must also improve the capacity of an international body to assess greenhouse gas inventories and review national policies. Hahn recommends that the developed nations craft an agreement for the next decade that provides a slight emission limitation and allows for a series of case studies, in which developing nations would participate, to preserve diversity and build useful institutional knowledge. The Economics and Politics of Climate Change is one in a series of new AEI studies related to the globalization of environmental policy. These studies will focus on specific issues and on the new institutional arrangements required to deal with them. A list of publications in this series appears inside

  1. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  2. The Climate Web Library - All the reference reports on climate changes

    International Nuclear Information System (INIS)

    This document gathers bibliographical information (title and original title, theme, authors, publication date, link to browse the document, and abstract) of documents addressing climatic change (generalities and mechanisms, temperatures, dry periods and rainfalls, snow and ice, oceans, extreme events, sources and sinks of greenhouse gases and feedbacks, breaking points and hazardous changes), impacts and consequences of climate change (pollution and health, soft water, ecosystems, food, agriculture and forestry, coasts and low altitude areas, populations and societies, economy), emissions of greenhouse gases (present emissions, evolution scenarios)

  3. ADAPTATION TO VARIABILITY AND CLIMATE CHANGE: INTERSECTIONS WITH RISK MANAGEMENET

    OpenAIRE

    MAURICIO QUINTERO-ANGEL; PAULINA ALDUNCE; YESID CARVAJAL-ESCOBAR

    2012-01-01

    Given the increase in the frequency of extreme hydro-meteorological events associated with climate variability and/or climate change, and to the increased vulnerability of human societies before those hazards, a higher interest in reducing greenhouse gases by the scientific community appears. This article highlights the importance of adaptation for disaster risk reduction associated with the weather, the climate and their intersections with risk management. It is concluded that adaptation ...

  4. Climate change and skin cancer.

    Science.gov (United States)

    van der Leun, Jan C; de Gruijl, Frank R

    2002-05-01

    Depletion of the ozone layer and climate change by the increasing greenhouse effect are distinctly different processes. It is becoming quite clear, however, that the two global environmental problems are interlinked in several ways [D. L. Albritton, P. J Aucamp, G. Mégie, R. T. Watson, Scientific Assessment of Ozone Depletion, 1998, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 44 (WMO, Geneva, 1998)]. In the present analysis we deal with the possibility of such an interlinkage within one effect on human health, namely, skin cancer. The increase in the incidence of skin cancer is one of the most extensively studied effects of increasing ultraviolet radiation by ozone depletion (F. R. de Gruijl, Skin cancer and solar radiation, Eur. J Cancer, 1999, 35, 2003-2009). We wondered if this impact could also be influenced by increasing environmental temperatures. Here we show that it is likely that such an influence will occur. For the same reason, it is likely that the baseline incidence of skin cancer will be augmented by rising temperatures, which may become significant in magnitude. PMID:12653470

  5. Adaptation : climate change briefing paper

    OpenAIRE

    Acclimatise

    2009-01-01

    Climate change adaptation means recognising what is happening to our climate on a global and local scale, and developing strategies to manage the risks that this presents is crucial to the growth, development and continuing success of any organisation.

  6. Identification and Categorization of Climate Change Risks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuehong; WU Shaohong; DAI Erfu; LIU Dengwei; YIN Yunhe

    2008-01-01

    The scientific evidence that climate is changing due to greenhouse gas emission is now incontestable,which may put many social,biological,and geophysical systems in the world at risk.In this paper,we first identified main risks induced from or aggravated by climate change.Then we categorized them applying a new risk categorization system brought forward by Renn in a framework of International Risk Governance Council.We proposed that "uncertainty" could be treated as the classification criteria.Based on this,we established a quantitative method with fuzzy set theory,in which "confidence" and "likelihood",the main quantitative terms for expressing uncertainties in IPCC,were used as the feature parameters to construct the fuzzy membership functions of four risk types.According to the maximum principle,most climate change risks identified were classified into the appropriate risk types.In the mean time,given that not all the quantitative terms are available,a qualitative approach was also adopted as a complementary classification method.Finally,we get the preliminary results of climate change risk categorization,which might lay the foundation for the future integrated risk management of climate change.

  7. Canada's national report on climate change: Actions to meet commitments under the United Nations framework convention on climate change

    International Nuclear Information System (INIS)

    Under the United Nations Framework Convention on Climate Change, countries must adopt measures to mitigate climate change, adapt to its possible effects, increase public awareness and scientific understanding of climate change and possible responses, and work together in all of these areas. A review is provided of action being currently taken by Canadian governments, non-governmental organizations, communities, and the private sector to meet domestic and international climate change commitments. Projections indicate that climate change could result in significant changes to many of Canada's natural ecosystems, with equally significant economic and social consequences. Canadian demand for energy is the chief cause of Canada's man-made emissions of greenhouse gases. As a first step in meeting its commitment, Canada is developing and implementing measures to limit greenhouse gas emissions, mainly in the area of energy efficiency, energy conservation, and switching to energy sources that are less carbon-intensive. Progress in limiting such emissions will be assessed via emissions inventories, examination of climatic change indicators, forecasting future energy-related emissions of the three primary greenhouse gases, and use of case studies to assess the effectiveness of emissions control measures. Other components of Canadian activities include increasing public awareness of climate change, sponsoring research on the subject, reviewing environmental policies, and international cooperation. 59 refs., 36 figs., 23 tabs

  8. Monitoring of climate variables in semi-closed greenhouses

    OpenAIRE

    Gieling, T.H.; Campen, J.B.; Dieleman, J. A.; Garcia Victoria, N.; Janssen, H.J.J.; Kempkes, F.L.K.; Kromwijk, J.A.M.; Raaphorst, M.G.M.

    2011-01-01

    Growers and Dutch government have concluded a covenant in which they express the ambition to reduce the carbon footprint of greenhouse production in order to improve the energy neutrality of newly built greenhouses. Conditioned cultivation in (semi-)closed greenhouses is seen as one of the instruments to reach this goal. It is appointed in the covenant to arrive in 2011 at 700 ha and in 2020 at 2,500 ha semi-closed greenhouses. This paper describes the instruments used to monitor the results ...

  9. Learning from integrated assessment of climate change

    International Nuclear Information System (INIS)

    The objective of integrated assessment of climate change is to put available knowledge together in order to evaluate what has been learned, policy implications, and research needs. This paper summarizes insights gained from five years of integrated assessment activity at Carnegie Mellon. After an introduction, Section 2 asks; who are the climate decision makers? It is concluded that they are a diffuse and often divergent group spread all over the world whose decisions are primarily driven by local non-climate considerations. Insights are illustrated with results from the ICAM-2 model. Section 3 asks: what is the climate problem? In addition to the conventional answer, it is noted that in a democracy the problem is whatever voters and their elected representatives think it is. Results from studies of public understanding are reported. Several other specific issues that define the problem, including the treatment of aerosols and alternative indices for comparing greenhouse gases are discussed. Section 4 discusses studies of climate impacts, focusing on coastal zones, the terrestrial biosphere and human health. Particular attention is placed on the roles of adaptation, value change, and technological innovation. In Section 5 selected policy issues are discussed. It is concluded by noting that equity has received too little attention in past work. It is argued that many conventional tools for policy analysis are not adequate to deal with climate problems. Values that change, and mixed levels of uncertainty, pose particularly important challenges for the future. 90 refs., 4 figs., 4 tabs

  10. Will Abundant Natural Gas Solve Climate Change?

    Science.gov (United States)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  11. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  12. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  13. Climate change, wine, and conservation

    OpenAIRE

    Hannah, L.; Roehrdanz, PR; Ikegami, M; Shepard, AV; Shaw; Tabor, G; Zhi, L; Marquet, PA; Hijmans, RJ

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticul...

  14. Climate change and catchment hydrology

    OpenAIRE

    Murphy, Conor

    2013-01-01

    Climate change is expected to alter catchment hydrology through changes in extremes of flooding and drought. River catchments are complex, dynamic systems and it is important to develop our understanding of how these systems are likely to respond to changes in climate. Work is ongoing in using EC-Earth simulations to further our understanding of how climate change will affect catchment hydrology and flood risk. In Ireland, the importance of this task is emphasised ...

  15. On Dangerous Anthropogenic Interference and Climate Change Risk (Invited)

    Science.gov (United States)

    Mann, M. E.

    2009-12-01

    The United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations (which includes all major nations including the United States) to stabilizing greenhouse gas concentrations at levels short of Dangerous Anthropogenic Interference (“ DAI”) with the climate. To properly define DAI, one must take into account issues that are not only scientific, but, economic, political, and ethical in nature. Defining DAI is furthermore complicated by the inter-generational and regionally-disaggregated nature of the risks associated with climate change. In this talk, I will explore the nature of anthropogenic climate change risks and the notion of DAI.

  16. KYOTO PROTOCOL- THE SOLUTION TO THE CLIMATE CHANGE PROBLEM

    OpenAIRE

    Andrei Stanisoara

    2014-01-01

    The United Nations Framework Convention on Climate Change is the subject to a particularly important Protocol: Kyoto Protocol from 1997 entered into force on 15 February 2005. It aims to limit emissions of six greenhouse gases. In short, the Kyoto Protocol commits industrialized countries to stabilize greenhouse gas emissions based on the principles of the Convention. The Convention itself only encourages countries to do so. Under the Protocol, the European Community has committed to reduce b...

  17. Quebec industry and climatic changes : Quebec Industry Working Group on Climatic Changes

    International Nuclear Information System (INIS)

    Global climatic change is a phenomenon greatly influenced by greenhouse gas emissions resulting from human activity and the natural greenhouse effect necessary to sustain life on the planet. Carbon dioxide emissions in the atmosphere now exceed the levels prior to the industrial revolution by 31 per cent. Half of this increase occurred during the past 30 years, while the average temperature increased by 0.3 to 0.6 degrees C. By using climate change models, scientists have linked this increase to the increase in the concentration of carbon dioxide in the atmosphere and predict that the average temperature will rise by 1 to 3.5 degrees C during the next century with increases of 5 to 10 degrees C being felt in certain parts of Canada. In an effort to curb the emissions of carbon dioxide, the Quebec Industry Working Group on Climatic Change was created to represent different sectors of the industry, including energy, metallurgy, aluminium, cement, environment, mines, plastics, petrochemicals, pulp and paper, and manufacturing. The group worked at meeting the following objectives: (1) to examine the possibilities of reducing greenhouse gases emissions in the industrial sector, (2) to propose and evaluate measures and initiatives for the reduction of greenhouse gases emissions including their cost, impact and potential timetable for implementation, (3) to identify new and promising technologies in the field of greenhouse gases reduction, (4) to identify business opportunities and risks for industry in Quebec, and (5) to recommend an implementation strategy for the Kyoto Protocol for each sector, in terms of reduction measures that would be economical and in agreement with the various plans in place at the federal, provincial and municipal levels. A total of 22 recommendations were proposed covering the entire spectrum of the mandate. 15 tabs, 2 appendices

  18. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation

    Science.gov (United States)

    Gifford, Robert

    2011-01-01

    Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…

  19. Potential global climate change

    International Nuclear Information System (INIS)

    Global economic integration and growth contribute much to the construction of energy plants, vehicles and other industrial products that produces carbon emission and in effect cause the destruction of the environment. A coordinated policy and response worldwide to curb emissions and to effect global climate change must be introduced. Improvement in scientific understanding is required to monitor how much emission reduction is necessary. In the near term, especially in the next seven years, sustained research and development for low carbon or carbon-free energy is necessary. Other measures must also be introduced, such as limiting the use of vehicles, closing down inefficient power plants, etc. In the long term, the use of the electric car, use solar energy, etc. is required. Reforestation must also be considered to absorb large amounts of carbon in the atmosphere

  20. Competitiveness and climate change

    International Nuclear Information System (INIS)

    The author addresses the relationship between competitiveness and climate policy beyond the issue of emission quota trading, and with taking into account links between different activities. For some sectors, demand may depend on measures undertaken to reduce emissions in the transport and building sectors. According to the author, these interactions could transform the industry on a middle term, more than the required technical changes aimed at the reduction of emissions. After a detailed analysis on these issues, this paper discusses the results of several studies dealing with the relationship between environmental regulation and competitiveness, and with global assessments of carbon leakages. Then, the author discusses the European directive which introduces the Emission Trading Scheme (ETS)

  1. Geopolitics of climate change

    International Nuclear Information System (INIS)

    Climate change has become an international policy topic. Its stakes go beyond the simple ecological question to encompass the overall global equilibrium, and in particular the North-South relations. This book, with solid references and illustrated with a tenth of color maps, examines the geopolitical dimension of global warming. Who are the countries responsible or considered to be so? Who are those who will be the most impacted? What population migrations have already started or have to be foreseen? What are the international security risks? The author presents also the different international cooperation mechanisms already implemented and takes stock of the present day situation of negotiations. We are entering into the critical phase, and probably into the potentially dramatic phase as well. This book allows to understand its key aspects and driving forces

  2. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith;

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  3. Economic analysis of climate change

    OpenAIRE

    Vojtíšek, Petr

    2012-01-01

    The bachelor thesis themed “Economic Analysis of Climate Change” focuses on the climate change from an economical point of view. The theoretical part sums up the basic facts about climate change, go through the most important social, environmental and economic impacts, main opinions about the climate change and also the main ideas of the mitigation and adaptation processes. The analyses tries to give the climate a monetary value with a use of non-market method to find out how much would be st...

  4. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K.; Polly J Ericksen; Herrero, Mario; Challinor, Andrew J.

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  5. Advances and bottlenecks in modelling the greenhouse climate: summary of a group discussion

    OpenAIRE

    Seginer, I.; Bakker, J.C.

    1998-01-01

    This report is a summary of a group discussion at the symposium 'Models in protected cultivation' held in Wageningen, August 1997. The discussion focused on the reasons for the relatively limited acceptance and application of greenhouse climate models, especially in commercial practice. The discussion focused on the reasons for the relatively limited acceptance and application of greenhouse climate models, especially in commercial practice. Three application types were mentioned: Education (a...

  6. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  7. Effects of Climate Change on Agriculture

    International Nuclear Information System (INIS)

    Agricultural activities involves cultivation of crops and keeping of livestock which have great impact on environment. Although the level of agricultural production is dependent on capital input, human resources and soils climate is the overriding factor. Climate determines the types of crops that can grow in certain geographical areas while weather elements such as light, rainfall and temperatures have direct effect on physiological processes such as photosynthesis, leave expansion plant growth and development. Weather also controls the spread of fugal diseases, insect pests and weeds which affect growth. The anticipated climate change due to greenhouse gas-induced global warming is expected to alter temporal and spatial patterns of rainfall, temperature, humidity, radiation, wind etc. Increase in air and land surface temperatures could lead to increase in evapotranspiration which could alter soil moisture condition of most agricultural lands

  8. Climatic change and nuclear; Changement climatique et nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2003-07-01

    One of the main priorities of the WWF is to increase the implementing of solutions relative to the greenhouse effect fight. In this framework the foundation published a study on the nuclear facing the climatic change problem. The following chapters are detailed: the nuclear and the negotiations on the climatic change; the nuclear close; the unrealistic hypothesis of the nuclear forecast; the nuclear facing other energy supplying options; supplying efficiency for heating, electric power, gas and renewable energies; the consumption efficiency facing the nuclear; the economical aspects; the deregulation effect; the political aspects; the nuclear AND the greenhouse effect. (A.L.B.)

  9. Climate change and the agenda for research

    International Nuclear Information System (INIS)

    The Center for International Climate and Energy Research Oslo (CICERO), founded in 1990, is a policy research foundation of the University of Oslo - Norway's largest university. After the United Nations (UN) Conference on Environment and Development (UNCED), CICERO convened a seminar to assess the UN Framework Convention on Climate Change that was one of UNCED's principal legacies. The essays collected in this volume derive from the presentations at that seminar. As one might suspect, the resulting collection is diverse in subject matter and variable in quality and pertinence. Papers deals with a diverse array of topics relating to anthropogenic climate change: greenhouse gas inventories, energy policies, means for abatement of carbon dioxide emissions, and legal and economic issues. Refreshingly, a number of the papers treat these issues from the perspective of the developing countries that will play an ever-increasing role in these issues, both as villians and victims. While hardly bedside reading, the compendium as a whole is a useful contribution to the vast literature on the climate change issue. The focus of a number of the papers on problems of the developing nations is particularly welcome, contributing usefully to filling a troubling gap in the international dialogue on climate change. However, the collection falls short of the promise of its title. Although topics for research are implicit in the papers, the volume does not attempt to organize these into an explicit agenda. It is more a smorgasbord than a coordinated menu

  10. Brazil - Country Note on Climate Change Aspects in Agriculture

    OpenAIRE

    World Bank

    2009-01-01

    This country note briefly summarizes information relevant to both climate change and agriculture in Brazil, with focus on policy developments (including action plans and programs) and institutional make-up. In Brazil, the 5th largest emitter of greenhouse gases in the world, agriculture (including land use change and forestry) is the largest contributor to green house gas (GHG) emissions. ...

  11. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  12. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    OpenAIRE

    Kahrl, Fredrich James

    2011-01-01

    Global energy markets and climate change in the twenty first century depend, to an extraordinary extent, on China. China is now, or will soon be, the world's largest energy consumer. Since 2007, China has been the world's largest emitter of greenhouse gases (GHGs). Despite its large and rapidly expanding influence on global energy markets and the global atmosphere, on a per capita basis energy consumption and GHG emissions in China are low relative to developed countries. The Chinese economy,...

  13. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  14. Global climate change. A petroleum industry perspective. Proceedings

    International Nuclear Information System (INIS)

    The proceedings of a symposium organised by the International Petroleum Industry Environmental Conservation Association (IPIECA) in 1992 are presented. The topics covered include: the science and environmental impacts of global climate change; future greenhouse gas emissions and reduction prospects; the role of energy in development; international and regional processes relating to climate change; the scale and timing of options in response to climate change; cutting carbon emissions; implementation strategies, mechanisms and institution; long and short term energy planning; North Sea oil and gas development; Indonesian oil and gas development; Italian experience of the role of natural gas in reducing greenhouse gas emissions; opportunities for improving energy efficiency and the environment in power generation; issues to consider in the economic analysis of global climate change policies; economic assessment of CO2 control policies; developing economic responses; the impact of response measures by industrialized countries on the world economy; reducing US CO2 emissions - the value of flexibility in timing; criteria for policy analysis. (UK)

  15. Climate change adaptation strategies and mitigation policies

    Science.gov (United States)

    García Fernández, Cristina

    2015-04-01

    by greenhouse gases in the atmosphere. Mitigation and adaptation are therefore complementary actions. In the long term, climate change without mitigation measures will likely exceed the adaptive capacity of natural, managed and human systems. Early adoption of mitigation measures would break the dependence on carbon-intensive infrastructures and reduce adaptation needs to climate change. It also can save on adaptation cost. Therefore mitigation is the key objective of the global warming problem but little is being done in this field. We will present some proposals of "preventive economically efficient" policies at a global and regional level which will constitute the complement to the adaptation aspect.

  16. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  17. Global warming and climate change

    International Nuclear Information System (INIS)

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  18. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    Science.gov (United States)

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions. PMID:27283642

  19. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of sour

  20. The Danish government's climate plan. Towards a society without greenhouse gases; Regeringens klimaplan. Pae vej mod et samfund uden drivhusgasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The Danish government's goal is to reduce greenhouse gas emissions with 40% by the year 2020, compared to 1990 levels. A major step towards reaching that goal was accomplished in March 2012, with the political agreement on energy policy. The remaining reductions to achieve the goal will come primarily from the transportation, agriculture and construction sectors, and from waste management. In order to reach the government's goal, we must eliminate the equivalent of approximately four million tonnes of CO{sub 2} emissions by 2020. Reaching the goal in 2020 also depends on factors such as the economy as we progress toward 2020, as well as on EU climate policy. The government will continue to work proactively to ensure that ambitious climate and energy policies are pursued by the EU. The EU policies will contribute significantly in order to achieve the national objectives. The government will engage in a dialogue with parliament, business society and civil society to discuss what kind of national policy initiatives to be decided on to reduce greenhouse gas emissions. The government will introduce a climate change bill during the upcoming session of parliament. The purpose of this upcoming bill is to ensure progress and transparency in the climate policy development. The bill will include requirements for an annual climate policy progress report to show whether Denmark is on track to meet the goal of a 40% reduction in greenhouse gases by 2020. As part of its work on the climate policy plan, an inter-ministerial working group has developed a catalogue of about 80 possible climate policy initiatives to address climate change. These policy proposals, along with the proposed legislation, will be the government's main instruments in the coming years in order to continuously monitor and adjust its climate policy. (Author)

  1. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. PMID:24916195

  2. Low Simulated Radiation Limit for Runaway Greenhouse Climates

    Science.gov (United States)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-01-01

    Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.

  3. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  4. Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies

    OpenAIRE

    Duli Zhao; Yang-Rui Li

    2015-01-01

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. The increasing greenhouse gas emission and global warming during climate change result in the increased frequency and intensity of extreme weather events. Climate change is expected to have important consequences for sugarcane production in the world, especially in the developing countries because of relatively low adaptive capacity, high vulnerability to natural hazards, and poor forecasting systems ...

  5. Farmers’ perceptions of climate change:identifying types

    OpenAIRE

    Hyland, John; Jones, Davey L.; Parkhill, Karen Anne; Barnes, Andrew P; Williams, A Prysor

    2015-01-01

    Ambitious targets to reduce greenhouse gas (GHG) emissions from agriculture have been set by both national governments and their respective livestock sectors. We hypothesize that farmer self-identity influences their assessment of climate change and their willingness to im- plement measures which address the issue. Perceptions of climate change were determined from 286 beef/sheep farmers and evaluated using principal component analysis (PCA). The analysis elicits two components which evaluate...

  6. Public Perception of Climate Change in Yenagoa, Bayelsa State, Nigeria

    OpenAIRE

    Odafivwotu Ohwo

    2015-01-01

    This study was designed to assess the public perception of climate change in Yenagoa. The sample survey method was adopted, which involved the administration of 360 questionnaires to randomly selected households. The results showed that 43.33% of respondents lack adequate knowledge of climate change. Further interview revealed that 55.3% of the respondents are unaware that carbon dioxide (CO2) is the major greenhouse gas, contributing about 55% to global warming. It was revealed that responde...

  7. Climate change: Impact on agriculture and costs of adaptation

    OpenAIRE

    Nelson, Gerald C.; Rosegrant, Mark W.; Koo, Jawoo; Robertson, Richard; Sulser, Timothy; Zhu, Tingju; Ringler, Claudia; Msangi, Siwa; Palazzo, Amanda; Batka, Miroslav; Magalhaes, Marilia; Valmonte-Santos, Rowena; Ewing, Mandy; Lee, David

    2009-01-01

    "The Challenge The unimpeded growth of greenhouse gas emissions is raising the earth’s temperature. The consequences include melting glaciers, more precipitation, more and more extreme weather events, and shifting seasons. The accelerating pace of climate change, combined with global population and income growth, threatens food security everywhere. Agriculture is extremely vulnerable to climate change. Higher temperatures eventually reduce yields of desirable crops while encouraging weed and ...

  8. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  9. Climate change - a natural hazard

    Energy Technology Data Exchange (ETDEWEB)

    Kininmonth, William

    2003-07-01

    The impacts of weather and climate extremes (floods, storms, drought, etc) have historically set back development and will continue to do so into the future, especially in developing countries. It is essential to understand how future climate change will be manifest as weather and climate extremes in order to implement policies of sustainable development. The purpose of this article is to demonstrate that natural processes have caused the climate to change and it is unlikely that human influences will dominate the natural processes. Any suggestion that implementation of the Kyoto Protocol will avoid future infrastructure damage, environmental degradation and loss of life from weather and climate extremes is a grand delusion. (Author)

  10. What's happening out there? (Climatic change impacts)

    International Nuclear Information System (INIS)

    This article briefly comments on some stumbling-blocks to climatic change modelling accuracy - in assessments of the greenhouse effect, 25% (missing link) of atmospheric carbon dioxide absorption is still unaccounted for; 1989 World Bank estimates of the Amazon rain forest deforestation rate have since proven to be inaccurate; there are difficulties in assessing the movement of the earth's crust relative to variations in sea level; and different studies vary in results relative to global temperature measurement and trend assessment. The need for an assessment of the economic impacts of increased atmospheric concentrations of carbon dioxide is also pointed out

  11. The changing world of climate change: Oregon leads the states

    International Nuclear Information System (INIS)

    Following on the heels of recent national and international developments in climate change policy, Oregon's open-quote best-of-batch close-quote proceeding has validated the use of CO2 offsets as a cost-effective means of advancing climate change mitigation goals. The proceeding was a first in several respects and represents a record commitment of funds to CO2 mitigation by a private entity. In December 1995, the Intergovernmental Panel on Climate Change (IPCC), issued its Second Assessment Report. The IPCC's conclusion that open-quotes[t]he balance of evidence suggests a discernible human influence on global climateclose quotes fundamentally changed the tenor of the policy debate regarding potential threats associated with global climate change. At the Climate Change Convention's Conference of the Parties (COP) in Geneva in July 1996, most countries, including the United States, advocated adopting the IPCC report as the basis for swift policy movement toward binding international emissions targets. The next COP, in December 1997, is scheduled to be the venue for the signing of a treaty protocol incorporating such targets. Binding targets would have major consequences for power plant operators in the US and around the world. Recent developments in the state of Oregon show the kinds of measures that may become commonplace at the state level in addressing climate change mitigation. First, Oregon recently completed the first administrative proceeding in the US aimed at offsetting the greenhouse gas emissions of a new power plant. Second, a legislatively mandated energy facility siting task force recently recommended that Oregon adopt a carbon dioxide (CO2) standard for new power plant construction and drop use of the open-quotes need for powerclose quotes standard. This article reviews these two policy milestones and their implications for climate change mitigation in the United States

  12. Nuclear Energy: Combating Climate Change

    International Nuclear Information System (INIS)

    of non-OECD countries. COP 21 offers the opportunity to include nuclear energy firmly in future flexibility mechanisms such as the Clean Development Mechanism (CDM), or a potential successor in the post-2020 period, thus enabling nuclear full potential to reduce climate-change inducing greenhouse gas emissions. To achieve this objective, however, it is important to understand the current and potential contribution of nuclear power in reducing future greenhouse gas emissions, as well as the appropriate measures that governments can take to address outstanding social, institutional and financial issues so as to ensure the necessary expansion of nuclear generating capacity that will make the 2 deg. scenario a reality

  13. Integrated science model for assessment of climate change. Revision 1

    International Nuclear Information System (INIS)

    Past measurements show that greenhouse gas concentrations, many of which are affected by human related activities, are increasing in the atmosphere. There is wide consensus that this increase influences related activities, are increasing the earth's energy balance and concern that this will cause significant change in climate. Many different policies could be adopted in response to the prospects of greenhouse warming. Models are used by policy markers to analyze the range of possible policy options developed as a response to concerns about climate change. A fully integrated assessment model that spans the many aspects of climate change, including economics, energy options, effects of climate, and impacts of climate change, would be a useful tool. With this goal in mind, the science modules which estimate the effect of emissions of greenhouse gasses on global temperature and sea level are being developed. This is a report of the current characteristics and performance of an Integrated Science Model which consists of coupled modules for carbon cycle, atmospheric chemistry of other trace gases, radiative forcing by greenhouse gases, energy balance model for global temperature, and a model for sea level response

  14. Simulation of climate variability and anthropogenic climate change

    International Nuclear Information System (INIS)

    The climatic changes in the last century were discussed and focus was on the questions: 1) What are the causes of the rapid climate fluctuations and 2) Is the global warming, which is observed during the last century, caused by natural or anthropogenic effects. It is concluded that an understanding of climate based on the interpretation of observational data only is not feasible, unless supported by an adequate theoretical interpretation. The capabilities of climatic models were discussed and the importance of incorporating 1) calculations of the internal variability of the atmosphere when forced from an ocean with prescribed sea surface temperature as well as for a system consisting of an atmosphere and a mixed ocean of limited depth, 2) a fully coupled atmospheric and ocean model and finally, 3) a fully coupled system including transiently changing greenhouse gases and aerosols. A short summation of the results is presented. The pronounced warming during the last century is not reproduced under the assumption of constant forcing and pollution emissions have to be incorporated into the models in order to bring the simulated data in agreement with observations

  15. Climate change negotiations. COP-2 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The Second Conference of the Parties to the UN Framework Convention on Climate Change (COP-2), which met in Geneva during July, 1996, was only a partial success when considered in relation to its avowed aims, gaining acceptance of the Second Assessment Report by IPCC (Intergovernmental Panel on Climate Change), producing an agreed Ministerial Declaration, making real advances towards a protocol, and agreeing Rules of Procedure. This paper describes the main aims of COP-2, consideration of and response to the IPCC`s Second Assessment Report, the COP-2 Ministerial Declaration, some significant statements by individual country delegations at COP-2, lack of progress on Rules of Procedure for the Conference, realization of returning the greenhouse gas emissions in industrialized countries based on the Montreal Protocol, differing views among countries to the Convention on a protocol, prospects for achieving agreement on a legally binding protocol at COP-3 planned for Kyoto, Japan in December, 1997, and recent scientific and technical findings.

  16. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  17. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  18. Climate Change and Nuclear Power 2013

    International Nuclear Information System (INIS)

    Climate change is one of the most important issues facing the world today. Nuclear power can make an important contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for global socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. The accident at the Fukushima Daiichi nuclear power plant of March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power - a reminder that safety can never be taken for granted. Yet, in the wake of the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The International Atomic Energy Agency provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report has been substantially revised, updated and extended since the 2012 edition. It summarizes the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change-nuclear energy nexus, such as cost, safety, waste management and non-proliferation. New developments in resource supply, innovative reactor technologies and related fuel cycles are also presented

  19. Uncertainty in simulating wheat yields under climate change

    DEFF Research Database (Denmark)

    Asseng, A; Ewert, F; Rosenzweig, C; Jones, J W; Hatfield, J L; Ruane, A; Boote, K J; Thorbum, P; Rötter, R P; Cammarano, D; Brisson, N; Basso, B; Martre, P; Aggarwal, P K; Angulo, C; Bertuzzi, P; Biernath, C; Challinor, A J; Doltra, J; Gayler, S; Goldberg, R; Grant, R; Heng, L; Hooker, J; Hunt, L A; Ingwersen, J; Izaurralde, R C; Kersebaum, K C; Müller, C; Kumar, S N; Nendel, C; O'Leary, G O; Olesen, Jørgen E; Osborne, T M; Palosuo, T; Priesack, E; Ripoche, D; Semenov, M A; Shccherbak, I; Steduto, P; Stöckle, C; Stratonovitch, P; Streck, T; Supit, I; Tao, F; Travasso, M; Waha, K; Wallach, D; White, J W; Williams, J R; Wolf, J

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic...... and objective comparisons among process-based crop simulation models1, 3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of...... environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models...

  20. Vulnerability and adaptation to potential impacts of climate change

    International Nuclear Information System (INIS)

    Climate in Kenya is controlled by the seasonal southward and northward movements of the Inter-Tropical Convergence zone (ITCZ).The effects of ITCZ produces two rainy seasons namely the 'long rains' in April/May and the 'short rains' in October/November. Following the build up of greenhouse gases such as carborn dioxide and methane in the earth's atmosphere, a variety of changes is expected in climatic conditions. The study analyses the sensivity of the lower Tana Basin to climate change while specific objectives include: to determine the effects of climate change on water supply in Tana River Basin; to assess the posible effect of climate change on the ground water resourse in the basin; to make some suggestions on possible adaptation measures that may be adopted to cope with the possible impacts of climate change for the Tana Basin

  1. The climatic change

    International Nuclear Information System (INIS)

    After a presentation of the greenhouse effect principle, the UFIP evaluates the emissions of carbon dioxide, the energy policy and the actions, in the world first and then in Europe and France. The second part is devoted to the refining evolution in France facing the challenges and the environmental requirements. The presentation concludes on the necessity, for a better profitability, of improve the energy efficiency where it is particularly poor, in the developing countries. (A.L.B.)

  2. Lay representations on climate change

    OpenAIRE

    Cabecinhas, Rosa; Lázaro, Alexandra; Carvalho, Anabela

    2006-01-01

    Lay representations on climate change were mapped via the free-word association method in two pilot studies. Participants were asked to generate words associated to “the big problems faced by humankind nowadays” (1st study) and to “climate change” (2nd study). Climate change was not spontaneously evoked by the participants in the first study: pollution was among the top 10 problems, but references to other environmental issues were very low. In the second study, climate change was consid...

  3. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  4. How climate changes

    International Nuclear Information System (INIS)

    Climate variability on time scales of years through centuries seems to be dominated by two kinds of recurring fluctuations, each exhibiting characteristic evolution in time. One is the El Nino/Southern oscillation phenomenon, a tropical ocean/atmosphere autofluctuation that is phase locked to the annual cycle and recurs at 3 or 4 year intervals. The other fluctuation exhibits a recurrence period of about 1 1/3 century and appears to be forced from high latitudes in winter, more strongly from the Arctic than from the Antarctic. This paper is an overview of the morphology and teleconnections associated with this longer period fluctuation. The dynamic forcing is exhibited most strongly as deepening (or shallowing) of the sub-polar surface pressure trough in both the Atlantic and Pacific sectors and some changes in the central pressure of the subtropical highs. This can be visualized as strengthening (or weakening) of the mean winter fields of pressure and wind, reflected by southward displacement and strengthening of the major wind and SST fields over the Atlantic and Pacific. These dynamical relationships are reflected in teleconnections extending from the Arctic far into the southern hemisphere. The range of variability of surface wind strength is 20-30%, (a factor of 2 in wind stress on the ocean) with wind strongest in the 1860s, sudden weakening in the northern hemisphere in the 1870s, continued weakening to a minimum in 1930s, strengthening since then, especially since the 1960s

  5. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  6. Update on Canada's response to climate change

    International Nuclear Information System (INIS)

    The challenge facing Canada regarding climate change was discussed with reference to federal initiatives and the Climate Change Action Fund (CCAF) extension. Phase 1 of Canada's strategy to reduce greenhouse gas emissions was also discussed. The national process from 1998 to 2000 involved 450 experts from government, industry and non-governmental organizations who created 16 working groups to develop analysis and policy options for reducing emissions. Each working group produced foundation papers regarding the state of various sectors of the Canadian economy. They also directed option reports describing a full range of options for reducing greenhouse gas emissions. Graphs depicting greenhouse gas emissions by province and by sector for 1990 and 2010 showed that Alberta and Ontario are the provinces that emit, and will continue to emit, the most greenhouse gases. The transportation sector is responsible for the greatest amount of emissions into the atmosphere, followed by the industrial, power generation and agricultural sectors. The action plan for budget 2000 called for $1.1 billion over 5 years to reduce emissions, increase understanding of climate science, and build a foundation for future action. The federal measures are designed to obtain 65 Mt/year during 2008-2012 commitment period, taking Canada one third of the way towards the Kyoto target. For the transportation sector, this means an objective of increasing fuel efficiency of vehicles and having a supply of lower emitting fuels. New fuels include ethanol produced from biomass. The use of fuel cell vehicles that emit low or no emissions will require the development of a refuelling infrastructure. Energy efficiencies and technologies are also encouraged in aviation, rail, marine and trucking industries. Energy efficiency in urban transportation is encouraged through best urban transportation practices and strategies to reduce greenhouse gases. The CCAF structure is extended to 2004. The hydrogen and fuel

  7. The International Climate Change Regime

    Science.gov (United States)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  8. Manufacturers response to climate change

    OpenAIRE

    Rattanakit, Rattanachai

    2007-01-01

    There is now clear scientific proof which indicates that emissions from economic activity, particularly the industrial sector, are the main cause of the change in global climatic conditions. The Stern Review describes climate change as the greatest market failure the world has ever seen. UK alone contributes more than 6.5 billion tonnes of the global carbon dioxide emissions every year. This, along with other scientific evidence, has led the UK government to publish Climate ...

  9. Ground water and climate change

    OpenAIRE

    Taylor, Richard G; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F P

    2013-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the...

  10. Climate change - the commitment of governments

    International Nuclear Information System (INIS)

    'Climate change - the commitment of governments' is an authoritative information source for the energy policies of the OECO member states with regard to climate change. The publication descirbes the extent to which the individual countries have promised to lower their greenhouse gas emissions and by what political means they intend to fulfill their promises. It informs the reader on the resolutions of the Conference of the United Nations on Environment and Development and on the Framework Treaty Concerning the Climate Change. The publication is dedicated in particular to the extent to which national governments have committed themselves to stabilise or lower emissions and impose carbon or CO2 taxes. Each of the OECO states and the thirteen largest countries outside the OECO has been dedicated a chapter containing the official position of its government on the issue of climate change as well as references to the literature on relevant national studies. The picture of each country is rounded off by a presentation of its energy and CO2 emission data and indicators facilitating comparison. (orig.)

  11. The climatic change induced by human activities

    International Nuclear Information System (INIS)

    The climate of the Earth is a changing climate. Along their history many natural climate changes have existed in all time scales. At the present time we use the term climate changes have existed in all time scales. At the present time we use the term climate change in a restricted way, understanding that we have referring to a singular change that has their origin in the modification of the natural composition of the atmosphere. The increase of greenhouse gases from the second half the XVIII century, is due to the human activities of fossil fuels burning to obtain energy and to industrial and agricultural activities needing for the development of a world which population has been duplicated between 1960 and 2000, until overcoming the 6,000 million inhabitants. In particular, the concentrations of carbon dioxide-CO2 have increased in a 34%. The more recent emission scenarios proposed by the IPCC (SRES, 2000) are based on hypothesis about the population evolution, the energy consumption and the word patterns of development, which are grouped in four families dominated as A1, A2, B1 and B2. The answer for these scenarios from a range of climate models results in an increase of the world average surface atmospheric temperature between 1,4 degree centigrade and 5,8 degree centigrade and a corresponding sea level rise understood between 9 cm and 88 cm. The changes in the precipitation patterns show us that could be above to the current one in high and media latitudes and below in subtropical latitudes, with exceptions highly depending of the model used. (Author)

  12. Energy and Climate Change (Executive Summary)

    International Nuclear Information System (INIS)

    The world needs urgently to develop a coherent and practical approach to reducing greenhouse gas (ghg) emissions. Energy professionals from across the world have been examining climate change policies to see what works in promoting sustainable development. The Intergovernmental Panel on Climate Change has recently confirmed that the evidence for global warming is unequivocal and the Stern Report has argued that early action to combat climate change makes economic sense. However, existing efforts are clearly insufficient - most countries with targets under Kyoto Protocol are not on track to meeting them and many countries do not have Kyoto targets. As a result, ghg emissions are still rising and are forecast to go on doing so for decades to come. The problem is not a lack of policies to deal with climate change - some thousands of policies have been introduced, both by countries within the Kyoto system and those outside, and the effort is under way to develop a successor to the Kyoto Protocol. Yet so far those policies are not proving adequate to the scale of the problem. There is a pressing need to understand why they are failing and to implement measures that are more effective in reducing emissions, particularly from the energy sector, which accounts for around two thirds of total ghg emissions. The WEC has therefore undertaken a Study of Energy and Climate Change, drawing on the collective experience and resources of energy professionals worldwide. It has looked in detail at the impact of existing climate change measures and how effective they have been in promoting sustainable development, using the criteria of the three A's - accessibility (to affordable energy); acceptability (of the energy sources used, particularly in environmental terms); and availability (how secure and reliable are those sources?). It is important to remember that sustainable development is not only about the environment - policies which fail to contribute to economic and social

  13. Climate Change: The Physical Basis and Latest Results

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the...

  14. And if climate change would help us to get out of crisis? - Commonplace about the action against climate change

    International Nuclear Information System (INIS)

    Climate protection or economic recovery? With the crisis, this dilemma influences the decision-makers who fear the excessive cost of the climate action. However, fighting against climate change can become a powerful lever for the benefit of economy and employment. The idea put forward by the authors consists in assigning a cost to any greenhouse gas emission of human origin. The implementation of a 'carbon price' would allow to reduce inequalities, and to finance additional investments beneficial for the economy. Climate change would therefore become the catalyst of the 'green growth'

  15. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  16. Nuclear Energy and Climate Change

    OpenAIRE

    Méritet, Sophie; Zaleski, Pierre

    2009-01-01

    The paper will discuss the possibilities of the development of nuclear energy in the world in the midterm and long term. It will correlate the prospects with the emissions of CO2 and the effects on climate change. In particular it will discuss the problems nuclear energy face to make a large contribution of climate change issue.

  17. Congress Assesses Climate Change Paleodata

    Science.gov (United States)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  18. The threat of climate change

    International Nuclear Information System (INIS)

    Every one knows that the harsh reality of climate change is here. Our water supplies are drying up. More droughts are linked to the climate change. This is the time for the world to take action and if we don't we are heading for an economic and environmental disaster

  19. Energy, climate change and sequestration

    International Nuclear Information System (INIS)

    There is now very little debate that the earth's climate is changing, and the balance of evidence suggests a discernible human influence. Many causes have been postulated and speculation about the eventual outcomes abounds. Whatever eventuates, society will have to adapt to a new and changing climate

  20. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  1. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...

  2. Climate Change, Growth, and Poverty

    OpenAIRE

    Hull, Katy

    2008-01-01

    Equity emerged as the principal theme during the Poverty Reduction and Economic Management (PREM) week session 'climate change, growth and poverty,' where presenters addressed the distributional consequences of climate change, as well as countries' unequal capacity to cope with the twin challenges of adaptation and mitigation. They highlighted actions to strengthen the global knowledge bas...

  3. Bioenergy, Land Use Change and Climate Change Mitigation. Report for Policy Advisors and Policy Makers

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goran [Chalmers Univ. of Technology (Sweden); Bird, Nell [Joanneum Research (Austria); Cowle, Annette [National Centre for Rural Greenhouse Gas Research (Australia)

    2010-07-01

    The report addresses a much debated issue - bioenergy and associated land use change, and how the climate change mitigation from use of bioenergy can be influenced by greenhouse gas emissions arising from land use change. The purpose of the report was to produce an unbiased, authoritative statement on this topic aimed especially at policy advisors and policy makers.

  4. Regional modelling of future African climate north of 15S including greenhouse warming and land degradation

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, H. [Geographical Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Thamm, H.P. [Geographical Institute, University of Bonn, Bonn (Germany)

    2007-08-15

    Previous studies have highlighted the crucial role of land degradation in tropical African climate. This effect urgently has to be taken into account when predicting future African climate under enhanced greenhouse conditions. Here, we present time slice experiments of African climate until 2025, using a high-resolution regional climate model. A supposable scenario of future land use changes, involving vegetation loss and soil degradation, is prescribed simultaneously with increasing greenhouse-gas concentrations in order to detect, where the different forcings counterbalance or reinforce each other. This proceeding allows us to define the regions of highest vulnerability with respect to future freshwater availability and food security in tropical and subtropical Africa and may provide a decision basis for political measures. The model simulates a considerable reduction in precipitation amount until 2025 over most of tropical Africa, amounting to partly more than 500 mm (20-40% of the annual sum), particularly in the Congo Basin and the Sahel Zone. The change is strongest in boreal summer and basically reflects the pattern of maximum vegetation cover during the seasonal cycle. The related change in the surface energy fluxes induces a substantial near-surface warming by up to 7C. According to the modified temperature gradients over tropical Africa, the summer monsoon circulation intensifies and transports more humid air masses into the southern part of West Africa. This humidifying effect is overcompensated by a remarkable decrease in surface evaporation, leading to the overall drying tendency over most of Africa. Extreme daily rainfall events become stronger in autumn but less intense in spring. Summer and autumn appear to be characterized by more severe heat waves over Subsaharan West Africa. In addition, the Tropical Easterly Jet is weakening, leading to enhanced drought conditions in the Sahel Zone. All these results suggest that the local impact of land

  5. Landcare and climate change: a regional perspective

    International Nuclear Information System (INIS)

    wide range of decisions, some urgent, some gradually unfolding. This very slow pace of change and the varying season cycles will make planning for change very difficult and more stressful. Experience to date indicates that discussion about adaptation to climate change often brings up issues of emissions, blame and scepticism which serve to distract the adaptation debate. Communications about adaptation are urgently needed to move the conversation towards strategic planning for a less reliable climate future, regardless of how the greenhouse debate develops

  6. Level of knowledge in the science of climate change: will the climate really change in the 21st century?

    International Nuclear Information System (INIS)

    The Intergovernmental Panel on Climate Change (IPCC) recently stated that mean temperature is not as stable as it used to be, indicating a trend toward global warming. Understanding this phenomena should lead to better decisions concerning reductions of greenhouse gas emissions. It should also make it easier to adapt our socio-economic and environmental activities to a new reality which seems inevitable. The author discussed climate equilibrium by looking at the five sub-systems: atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere. A review of the historical evolution of climate was presented along with an examination of the relationships between greenhouse gases and the recent evolution of climate. The author discussed the uncertainty of scenarios predicting the future of climate change and concluded that climate change is upon us and is likely to intensify in the future. It was emphasized that adaptation to climate change will have to include reductions of greenhouse gas emissions. According to the author, a scenario involving a doubling of carbon dioxide in the atmosphere appears almost unavoidable. 7 refs., 1 tab., 6 figs

  7. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  8. Climate Change and Oil Depletion

    International Nuclear Information System (INIS)

    2 atmospheric content and of the average earth surface temperature are being considered to be interrelated. Carbon dioxide, water vapour and clouds all act as greenhouse forcing agents; cloud cover on account of its high solar reflectivity also acts as a direct cooling agent. Aerosols are of great importance in the processes of cloud formation and in precipitation initiation, thereby affecting the hydrological cycle; they also exhibit radiative forcing properties both direct and indirect, by the way of the clouds, either positive or negative, according to their particular composition. These particular influences are not yet well known and not yet properly incorporated in the simulations of climate scenarios adopted by the IPCC. And uncertainty brackets are still rather large. Notwithstanding, the results of these still incomplete climate scenarios have been taken as enough scientific evidence to decide upon imposing limits to greenhouse gas emissions. The European Union has already approved an European Climate Change Programme and took the political initiative in the Marrakech COP of the UNFCCC in November 2001, to the effect of the implementation of the Kyoto Protocol (1997). This is a political option which, besides setting emissions targets and energy policy terms of reference, also sets emission taxes and opens a new financial market for the trade of emission rights or permits. Evidence for the actual strain put upon the fossil energy supply is rather stronger than the evidence for anthropogenic climate changes. Rather more attention should be drawn to the supply of alternative energy sources, to the development of new energy carriers, to the improvement of technologies of energy conversion and storage as well as to the rationalization and moderation of demand at end use, so that a severe fossil energy supply crises might be avoided. In doing so, environmental and climatic consequences of any kind due to the rising worldwide level of energy demand would be

  9. 32 questions concerning climate change (results of a questionnaire)

    Energy Technology Data Exchange (ETDEWEB)

    Auer, I.; Boehm, R. [Central Inst. for Meteorology and Geodynamics, Vienna (Austria); Steinacker, R. [Vienna Univ. (Austria).Inst. for Meteorology and Geophysics

    1995-12-31

    The intention of the inquiry was to investigate the opinion within the scientific community about climate change questions that are believed to be already well solved in the public opinion. 32 questions were formulated that deal with 12 main assumptions about the existence, the predictability and the impacts of climate changes due to an artificially enhanced greenhouse effect. The possibilities to answer reached from `sure yes`, over `guess yes`, `not answerable or no opinion` to `guess no` and `sure no`. There were additional questions about the way the answers were gained: `by own research`, `by studying scientific literature or discussion with colleagues` and `by mass media consumption`. In the following some of the key assumptions about climate change topics will be discussed as the predictability of future evolution of climate by climate models and the detectability of an artificially enhanced greenhouse effect in climate time series. The other assumptions can be shown here only in the form of a comprehensive overview. In a very comprehensive form the results of the inquiry could be described in the following: A weak majority of climatologists believe today`s climate models to be able to describe a greenhouse gas induced climate change in global scale - much less in regional scale and not in local scale. A majority of climatologists believe an anthropogenic greenhouse gas forced climate and its impacts to be developing in the future but not already at present. The shape of the opinion spectra is in most cases far from that of a scientifically solved problem - a lot of work still has to be done

  10. Grappling with greenhouse

    International Nuclear Information System (INIS)

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  11. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  12. Environmental optimal control strategies based on plant canopy photosynthesis responses and greenhouse climate model

    Science.gov (United States)

    Deng, Lujuan; Xie, Songhe; Cui, Jiantao; Liu, Tao

    2006-11-01

    It is the essential goal of intelligent greenhouse environment optimal control to enhance income of cropper and energy save. There were some characteristics such as uncertainty, imprecision, nonlinear, strong coupling, bigger inertia and different time scale in greenhouse environment control system. So greenhouse environment optimal control was not easy and especially model-based optimal control method was more difficult. So the optimal control problem of plant environment in intelligent greenhouse was researched. Hierarchical greenhouse environment control system was constructed. In the first level data measuring was carried out and executive machine was controlled. Optimal setting points of climate controlled variable in greenhouse was calculated and chosen in the second level. Market analysis and planning were completed in third level. The problem of the optimal setting point was discussed in this paper. Firstly the model of plant canopy photosynthesis responses and the model of greenhouse climate model were constructed. Afterwards according to experience of the planting expert, in daytime the optimal goals were decided according to the most maximal photosynthesis rate principle. In nighttime on plant better growth conditions the optimal goals were decided by energy saving principle. Whereafter environment optimal control setting points were computed by GA. Compared the optimal result and recording data in real system, the method is reasonable and can achieve energy saving and the maximal photosynthesis rate in intelligent greenhouse

  13. Climate change and marine vertebrates.

    Science.gov (United States)

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  14. The impact of precession and obliquity on the Late-Devonian greenhouse climate

    Science.gov (United States)

    De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.

    2012-12-01

    To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter

  15. Climate change, fire and the carbon balance

    International Nuclear Information System (INIS)

    On average, forest fires have burned 2 to 3 million hectares annually in Canada over the last twenty years. Over the last 40 years, this amounts to 20 per cent of the amount of carbon released through fossil fuel emissions in Canada. This paper analyses the extent to which climate change may contribute to a disturbance in the carbon balance due to increased fire activity. In addition, data from FLUXNET-Canada was examined, indicating that carbon fluxes from younger forests show dramatic changes in diurnal carbon flux patterns, caused by reduced photosynthetic uptake during the day and less root respiration at night. Increases in fire are expected throughout much of the boreal forest towards the end of this century, with a lengthening of the fire season and increases in severity and intensity. It was concluded that there is the possibility of a positive feedback, where climate change could cause more fires, resulting in a greater release of carbon and thereby increasing greenhouse gas concentrations. Evidence that smoke promoted positive lightning strikes while reducing precipitation was also presented. It was suggested that certain self-limiting factors may prevent a run-away scenario. Changes to human and lightning ignition patterns, for example, may have an impact. It was also suggested that research efforts should focus on refining climate change estimates that account for landscape change and other aspects that control fire in Canada. 9 refs., 2 figs

  16. Moving Towards the Use of New Micro Technology (MEMS) in Greenhouse Climate Related Sensing

    DEFF Research Database (Denmark)

    Andreassen, A.U.; Hyldgaard, Anders; Petersen, Søren D.;

    2006-01-01

    Climatic control of plant growth based on almost static set points in the greenhouse industry is slowly but surely about to be replaced by more advanced control based on models describing biological processes in the plants. The use of various sensors in relation to the climate control system is a...... measurements. This study is the first step in developing a future MEMS multi sensor for the greenhouse industry.......Climatic control of plant growth based on almost static set points in the greenhouse industry is slowly but surely about to be replaced by more advanced control based on models describing biological processes in the plants. The use of various sensors in relation to the climate control system is...... also developing towards new techniques and technologies. A prototype Micro-Electro-Mechanical System (MEMS) dual temperature and light sensor has been compared in experiments with conventional sensors to analyse the reliability, repeatability and usability of both the MEMS dual sensor and the resulting...

  17. Asian Change in the Context of Global Climate Change

    Science.gov (United States)

    Galloway, James N.; Melillo, Jerry M.

    1998-09-01

    Nearly two-thirds of the world's population live in Asia, and many countries in that region are currently undergoing very rapid industrial, agricultural and economic development. The Framework Convention on Climate Change constrains developed countries with regard to their future emissions of greenhouse gases, but recognizes the special needs of developing countries. There is growing appreciation of the ways in which developing countries in the Asian region both contribute to global changes (by altering biogeochemical pathways and cycles) and are themselves affected by those changes. This volume uses the intellectual efforts and findings of the International Geosphere-Biosphere Programme (IGBP) community to provide the first integrated analysis of the interactions between global change and Asian change, giving particular attention to China's role. The book will be of interest to readers in a wide range of academic disciplines (natural sciences and socio-economic) and for those involved in national and international policy development relevant to global change.

  18. Climate Change and Political Action: the Citizens' Climate Lobby

    Science.gov (United States)

    Nelson, P. H.; Secord, S.

    2014-12-01

    Recognizing the reality of global warming and its origin in greenhouse gas emissions, what does one do about it? Individual action is commendable, but inadequate. Collective action is necessary--Citizens' Climate Lobby proposes a "fee-and-dividend" approach in which a fee is imposed on carbon-based fuel at its sources of production. The fee increases annually in a predictable manner. The funds collected are paid out to consumers as monthly dividends. The approach is market-based, in that the cost of the fee to producers is passed on to consumers in the cost of carbon-based fuels. Downstream energy providers and consumers then make their choices regarding investments and purchases. Citizens' Climate Lobby (CCL) builds national consensus by growing local Chapters, led and populated by volunteers. The Chapters are charged with public education and presenting the fee-and-dividend proposal to their respective Representatives and Senators. CCL builds trust by its non-partisan approach, meeting with all members of Congress regardless of party affiliation and stance on climate-related issues. CCL also builds trust by a non-confrontational approach, seeking to understand rather than to oppose. CCL works both locally, through its local Chapters, and nationally, with an annual conference in Washington DC during which all Congressional offices are visited. CCL recognizes that a long-term, sustained effort is necessary to address climate change.

  19. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  20. Climate variability and change

    International Nuclear Information System (INIS)

    When Australia's climate should not be definite barrier to the population reaching 30 million by 2050, it is recognised that our climate has limited the development of the nation over the past 200 years. Indeed in 1911, based on a comparison of the climate and development between the US and Australia. Griffith Taylor predicted that Australia's population would be 19 million at the end of the 20th century, which is a pretty good 90-year forecast. The climate constraint is not only due to much of the country being semi-arid with an annual rainfall below 400 millimetres, but also due to the large year-to-year variability of rainfall across the country