WorldWideScience

Sample records for climate change detection

  1. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  2. Detection and Attribution of Regional Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  3. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  4. Detection and Attribution of Anthropogenic Climate Change Impacts

    Science.gov (United States)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  5. Detecting anthropogenic climate change with an optimal fingerprint method

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Storch, H. von [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Santer, B.D. [Lawrence Livermore National Lab., CA (United States). Program for Climate Model Diagnosis and Intercomparison; Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Jones, P.D. [East Anglia Univ., Norwich (United Kingdom). Climatic Research Unit

    1994-09-01

    We propose a general fingerprint strategy to detect anthropogenic climate change and present application to near surface temperature trends. An expected time-space-variable pattern of anthropogenic climate change (the `signal`) is identified through application of an appropriate optimally matched space-time filter (the `fingerprint`) to the observations. The signal and the fingerprint are represented in a space with sufficient observed and simulated data. The signal pattern is derived from a model-generated prediction of anthropogenic climate change. Application of the fingerprint filter to the data yields a scalar detection variable. The statistically optimal fingerprint is obtained by weighting the model-predicted pattern towards low-noise directions. A combination of model output and observations is used to estimate the noise characteristics of the detection variable, arising from the natural variability of climate in the absence of external forcing. We test then the null hypothesis that the observed climate change is part of natural climate variability. We conclude that a statistically significant externally induced warming has been observed, with the caveat of a possibly inadequate estimate of the internal climate variability. In order to attribute this warming uniquely to anthropogenic greenhouse gas forcing, more information on the climate`s response to other forcing mechanisms (e.g. changes in solar radiation, volcanic or anthropogenic aerosols) and their interaction is needed. (orig./KW)

  6. Enhanced climate change and its detection over the Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, J.C.; Flato, G.M. [Canadian Centre for Climate Modeling and Analysis, Victoria, British Columbia (Canada)

    1999-01-01

    Results from an ensemble of climate change experiments with increasing greenhouse gas and aerosols using the Canadian Centre for Climate Modeling and Analysis Coupled Climate Model are presented with a focus on surface quantities over the Rocky Mountains. There is a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains in the winter and spring seasons, with more pronounced changes at higher elevations. The elevation signal is linked to a rise in the snow line in the winter and spring seasons, which amplifies the surface warming via the snow-albedo feedback. Analysis of the winter surface energy budget shows that large changes in the solar component of the radiative input are the direct consequence of surface albedo changes caused by decreasing snow cover. Although the warming signal is enhanced at higher elevations, a two-way analysis of variance reveals that the elevation effect has no potential for early climate change detection. In the early stages of surface warming the elevation effect is masked by relatively large noise, so that the signal-to-noise ratio over the Rocky Mountains is no larger than elsewhere. Only after significant continental-scale warming does the local Rocky Mountain signal begin to dominate the pattern of climate change over western North America (and presumably also the surrounding ecosystems and hydrological networks).

  7. Statistical Procedures for Estimating and Detecting Climate Changes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper provides a concise description of the philosophy, mathematics, and algorithms for estimating,detecting, and attributing climate changes. The estimation follows the spectral method by using empirical orthogonal functions, also called the method of reduced space optimal averaging. The detection follows the linear regression method, which can be found in most textbooks about multivariate statistical techniques.The detection algorithms are described by using the space-time approach to avoid the non-stationarity problem. The paper includes (1) the optimal averaging method for minimizing the uncertainties of the global change estimate, (2) the weighted least square detection of both single and multiple signals, (3)numerical examples, and (4) the limitations of the linear optimal averaging and detection methods.

  8. An example of fingerprint detection of greenhouse climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Karoly, D.J.; Cohen, J.A. [Monash Univ., Clayton, Victoria (Australia); Meehl, G.A. [National Center for Atmospheric Research, Boulder, CO (United States)] [and others

    1994-07-01

    As an example of the technique of fingerprint detection of greenhouse climate change, a multivariate signal or fingerprint of the enhanced greenhouse effect is defined using the zonal mean atmospheric temperature change as a function of height and latitude between equilibrium climate model simulations with control and doubled CO{sub 2} concentrations. This signal is compared with observed atmospheric temperature variations over the period 1963 to 1988 from radiosonde-based global analyses. There is a signiificant increase of this greenhouse signal in the observational data over this period. These results must be treated with caution. Upper air data are available for a short period only, possibly, to be able to resolve any real greenhouse climate change. The greenhouse fingerprint used in this study may not be unique to the enhanced greenhouse effect and may be due to other forcing mechanisms. However, it is shown that the patterns of atmospheric temperature change associated with uniform global increases of sea surface temperature, with El Nino-Southern Oscillation events and with decreases of stratospheric ozone concentrations individually are different from the greenhouse fingerprint used here. 30 refs., 6 figs., 2 tabs.

  9. Detection of anthropogenic climate change using a fingerprint method

    Energy Technology Data Exchange (ETDEWEB)

    Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Bengtsson, L. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Rodhe, H. [Stockholm Univ. (Sweden). Dept. of Meteorology; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Storch, H. v. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1995-07-01

    A fingerprint method for detecting anthropogenic climate change is applied to new simulations with a coupled ocean-atmosphere general circulation model (CGCM) forced by increasing concentrations of greenhouse gases and aerosols covering the years 1880 to 2050. In addition to the anthropogenic climate change signal, the space-time structure of the natural climate variability for near-surface temperatures is estimated from instrumental data over the last 134 years and two 1000 year simulations with CGCMs. The estimates are compared with paleoclimate data over 570 years. The space-time information on both the signal and the noise is used to maximize the signal-to-noise ratio of a detection variable obtained by applying an optimal filter (fingerprint) to the observed data. The inclusion of aerosols slows the predicted future warming. The probability that the observed increase in near-surface temperatures in recent decades is of natural origin is estimated to be less than 5%. However, this number is dependent on the estimated natural variability level, which is still subject to some uncertainty. (orig.)

  10. Population variability complicates the accurate detection of climate change responses.

    Science.gov (United States)

    McCain, Christy; Szewczyk, Tim; Bracy Knight, Kevin

    2016-06-01

    The rush to assess species' responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species' range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate 'canaries in the coal mine' for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses. PMID:26725404

  11. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara

    2014-05-01

    The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  12. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  13. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  14. Multi-pattern fingerprint method for detection and attribution of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hasselmann, K.

    1996-08-01

    The multivariate optimal fingerprint method for the detection of an externally forced climate change signal in the presence of natural internal variability is extended to the attribution problem. To determine whether a climate change signal which has been detected in observed climate data can be attributed to a particular climate forcing mechanism, or combination of mechanisms, the predicted space-time dependent climate change signal patterns for the candidate climate forcings must be specified. In addition to the signal patterns, the method requires input information on the space-time dependent covariance matrices of the natural climate variability and the predicted signal pattern errors. The detection and attribution problem is treated as a sequence of individual consistency tests applied to all candidate forcing mechanisms, as well as to the null hypothesis that no climate change has taken place, within the phase space spanned by the predicted climate change patterns. As output the method yields a significance level for the detection of a climate change signal in the observed data and individual confidence levels for the consistency of the retrieved climate change signal with each of the forcing mechanisms. A statistically significant climate change signal is regarded as consistent with a given forcing mechanism if the statistical confidence level exceeds a given critical value, but is attributed to that forcing only if all other climate change mechanisms are rejected at that confidence level. The analysis is carried out using tensor notation, with a metric given by the natural-variability covariance matrix. This clarifies the relation between the covariant signal patterns and their contravariant fingerprint counterparts. The signal patterns define the vector space in which the climate trajectories are analyzed, while the fingerprints are needed to project the climate trajectories onto this space. (orig.)

  15. Detecting Climate Change due to Increasing Carbon Dioxide.

    Science.gov (United States)

    Madden, R A; Ramanathan, V

    1980-08-15

    The observed interannual variability of temperature at 60 degrees N has been investigated. The results indicate that the surface warming due to increased carbon dioxide which is predicted by three-dimensional climate models should be detectable now. It is not, possibly because the predicted warming is being delayed more than a decade by ocean thermal inertia, or because there is a compensating cooling due to other factors. Further consideration of the uncertainties in model predictions and of the likely delays introduced by ocean thermal inertia extends the range of time for the detection of warming, if it occurs, to the year 2000. The effects of increasing carbon dioxide should be looked for in several variables simultaneously in order to minimize the ambiguities that could result from unrecognized compensating cooling. PMID:17753291

  16. Multi-pattern fingerprint method for detection and attribution of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1997-09-01

    To determine whether a climate change signal which has been detected in observed climate data can be attributed to a particular climate forcing mechanism, or combination of mechanisms, the predicted space-time dependent climate change signal patterns for the candidate climate forcings must be specified. In addition to the signal patterns, the method requires input information on the space-time dependent covariance matrices of the natural climate variability and of the errors of the predicted signal patterns. The detection and attribution problem is treated as a sequence of individual consistency tests applied to all candidate forcing mechanisms, as well as to the null hypothesis that no climate change has taken place, within the phase space spanned by the predicted climate change patterns. As output the method yields a significance level for the detection of a climate change signal in the observed data and individual confidence levels for the consistency of the retrieved climate change signal with each of the forcing mechanisms. A statistically significant climate change signal is regarded as consistent with a given forcing mechanism if the statistical confidence level exceeds a given critical value, but is attributed to that forcing only if all other candidate climate change mechanisms (from a finite set of proposed mechanisms) are rejected at that confidence level. Although all relations can be readily expressed in standard matrix notation, the analysis is carried out using tensor notation, with a metric given by the natural-variability covariance matrix. This simplifies the derivations and clarifies the invariant relation between the covariant signal patterns and their contravariant fingerprint counterparts. The signal patterns define the reduced vector space in which the climate trajectories are analyzed, while the fingerprints are needed to project the climate trajectories onto this reduced space. (orig.) With 1 fig., 19 refs.

  17. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  18. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  19. Climate change and birds: have their ecological consequences already been detected in the mediterranean region?

    OpenAIRE

    Sanz, Juan José

    2002-01-01

    Global climate has already warmed by 0.6 ºC, mainly due to human activities, over the second half of the XXth century. Recent studies have shown that it is possible to detect the effects of a changing climate on individual and ecosystem levels. Among biologists, there is a growing concern about how global climate change may affect the phenology, physiology and distribution of plants and animals. Many phenological processes, such as the date of flowering, leaf unfolding, insect appearance, and...

  20. On multi-fingerprint detection and attribution of greenhouse gas- and aerosol forced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Mitchell, J.F.B. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-07-01

    A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint, as applied in a previous paper by Hegerl et al. (1996), is optimal for detecting a significant climate change, the simultaneous use of several fingerprints allows one to investigate additionally the consistency between observations and model predicted climate change signals for competing candidate forcing mechanisms. Thus the multi-fingerprint method is a particularly useful technique for attributing an observed climate change to a proposed cause. Different model-predicted climate change signals are derived from three global warming simulations for the period 1880 to 2049. In one simulation, the forcing was by greenhouse gases only, while in the remaining two simulations the influence of aerosols was also included. The two dominant climate change signals derived from these simulations are optimized statistically by weighting the model-predicted climate change pattern towards low-noise directions. These optimized fingerprints are then applied to observed near surface temperature trends. The space-time structure of natural climate variability (needed to determine the signal-to-noise ratio) is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 134 years. (orig.)

  1. Detecting greenhouse-gas-induced climate change with an optimal fingerprint method

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C.; Storch, H. von; Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)] [and others

    1996-10-01

    A strategy using statistically optimal fingerprints to detect anthropogenic climate change is outlined and applied to near-surface temperature trends. The components of this strategy include observations, information about natural climate variability, and a {open_quotes}guess pattern{close_quotes} representing the expected time-space pattern of anthropogenic climate change. The expected anthropogenic climate change is identified through projection of the observations onto an appropriate optimal fingerprint, yielding a scalar-detection variable. The statistically optimal fingerprint is obtained by weighting the components of the guess pattern (truncated to some small-dimensional space) toward low-noise directions. The null hypothesis that the observed climate change is part of natural climate variability is then tested. This strategy is applied to detecting a greenhouse-gas-induced climate change in the spatial pattern of near surface temperature trends defined for time intervals of 15-30 years. The expected pattern of climate change is derived from a transient simulation with a coupled ocean-atmosphere general circulation model. Global gridded near-surface temperature observations are used to represent the observed climate change. Information on the natural variability needed to establish the statistics of the detection variable is extracted from long control simulations of coupled ocean-atmosphere models and, additionally, from the observations themselves (from which an estimated greenhouse warming signal has been removed). While the model control simulations contain only variability caused by the internal dynamics of the atmosphere-ocean system, the observations additionally contain the response to various external forcings. The resulting estimate of climate noise has large uncertainties but is qualitatively the best the authors can presently offer. 71 refs., 12 figs., 14 tabs.

  2. The detection of climate change due to the enhanced greenhouse effect

    Science.gov (United States)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  3. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  4. Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1995-07-21

    The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.

  5. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  6. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  7. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  8. Climate Change

    OpenAIRE

    The IJOEM

    2010-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathways could stabilise the global average atmospheric concentration of greenhouse gases (GHG) at 450 ppm, the level which has a 50% chance of keeping the temperature rise to 2 oC? What policies are nee...

  9. SIGNAL DETECTION OF GLOBAL CLIMATE CHANGE AND EXTERNAL FORCING FACTORS

    Institute of Scientific and Technical Information of China (English)

    李晓东; 王在文; 侯章栓

    2001-01-01

    In this paper, we displayed one-dimensional climate signals, such as global temperature variation, Southern Oscillation Index and variation of external forcing factors, on a two-dimensional time-scale plane using compactly supported wavelet decomposition. Using the lag-correlation analysis method, and interpretative variance analysis method, and phase comparison method to the wavelet analysis result, we not only gained the variation on different scales to the global temperature and El Nino signals, the location of the jump point and intrinsic scale of these series, but also indicated the magnitude, extent and time of the effect of external forcing factors on them. We also put forward reasonable explanation to the main variation of recent 140 years.

  10. Rapid systematic assessment of the detection and attribution of regional anthropogenic climate change

    Science.gov (United States)

    Stone, Dáithí A.; Hansen, Gerrit

    2016-09-01

    Despite being a well-established research field, the detection and attribution of observed climate change to anthropogenic forcing is not yet provided as a climate service. One reason for this is the lack of a methodology for performing tailored detection and attribution assessments on a rapid time scale. Here we develop such an approach, based on the translation of quantitative analysis into the "confidence" language employed in recent Assessment Reports of the Intergovernmental Panel on Climate Change. While its systematic nature necessarily ignores some nuances examined in detailed expert assessments, the approach nevertheless goes beyond most detection and attribution studies in considering contributors to building confidence such as errors in observational data products arising from sparse monitoring networks. When compared against recent expert assessments, the results of this approach closely match those of the existing assessments. Where there are small discrepancies, these variously reflect ambiguities in the details of what is being assessed, reveal nuances or limitations of the expert assessments, or indicate limitations of the accuracy of the sort of systematic approach employed here. Deployment of the method on 116 regional assessments of recent temperature and precipitation changes indicates that existing rules of thumb concerning the detectability of climate change ignore the full range of sources of uncertainty, most particularly the importance of adequate observational monitoring.

  11. Climate Change Detection in the UTLS with the GPS Radio Occultation Record

    Science.gov (United States)

    Steiner, A. K.; Kirchengast, G.; Lackner, B. C.; Hegerl, G. C.; Pirscher, B.; Foelsche, U.

    2009-12-01

    Radio Occultation (RO) based on signals from Global Positioning System (GPS) satellites provides a new climate record of high quality and vertical resolution in the upper troposphere and lower stratosphere (UTLS). RO data are considered a climate benchmark data type since they are based on timing with precise atomic clocks and tied to the international definition of the second. Long-term stability and the consistency of RO data stemming from different satellites (without need for inter-calibration) make RO well suited for climate change detection. RO data are available on a continuous basis from Sep 2001 to Sep 2008 from the CHAMP satellite and intermittent periods of observations from the GPS/Met proof-of-concept mission exist in the years 1995-1997, with sufficient data only for Oct 1995 and Feb 1997. We present a climate change detection study based on monthly mean zonal mean RO climatologies in the UTLS region within 9-25 km (300-30 hPa) where we use different detection methods. An optimal fingerprinting technique is applied to the whole record of RO accessible parameters refractivity, geopotential height, and temperature to detect a forced climate signal. Three representative global climate models of the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are employed to estimate natural climate variability using pre-industrial control runs. The response pattern to the external forcings is presented by an ensemble mean of the models' A2 and B1 scenario runs. Optimal fingerprinting shows that a climate change signal can be detected in the RO refractivity and in the RO temperature record (90 % significance level). Furthermore, standard and multiple linear regression is applied to temperature time series for February (1997 and 2002-2008) and for October (1995 and 2001-2007), taking RO errors into account. In the tropics, we also investigate the influence of stratospheric quasi-biennial oscillation (QBO) and tropospheric El Nino

  12. Detectability of changes to the Atlantic meridional overturning circulation in the Hadley Centre Climate Models

    International Nuclear Information System (INIS)

    The Atlantic meridional overturning circulation (MOC) is responsible for a climatically significant northward heat transport that is expected to decrease in response to anthropogenic global warming. Here, simulations from an ensemble of UK Met Office Hadley Centre Climate Models (HadGEM1, HadGEM2 and a 22 member perturbed physics ensemble of HadCM3-like models) are used to evaluate detection times for different MOC observing strategies. Six different detection statistics are compared, including direct observations of the MOC at two latitudes (26 N and 50 N) and several multivariate detection variables based on an optimal fingerprint of MOC change previously identified using HadCM3 (Vellinga and Wood in Geophys Res Lett 31(14):L14203, 2004). Using these models, and assuming perfectly observed conditions, we find no evidence to suggest that detection times would be significantly reduced by measuring the MOC at 50 N instead of (or in addition to) measurements at 26 N. Our results suggest that complementary observations of hydrographic properties in the North Atlantic may help reduce MOC detection times, but the benefits are not universal across models, nor as large as previously suggested. In addition, detection times calculated using optimal fingerprint methods are sensitive to the model-dependent estimates of covariances describing internal climate variability. This last result presents a strong case for deriving fingerprints of MOC change using dynamical/physical arguments, rather than statistical methods, in order to promote more robust results across a range of models. (orig.)

  13. Advancing Research Methods to Detect Impact of Climate Change on Health in Grand'Anse, Haiti

    Science.gov (United States)

    Barnhart, S.; Coq, R. N.; Frederic, R.; DeRiel, E.; Camara, H.; Barnhart, K. R.

    2013-12-01

    Haiti is considered particularly vulnerable to the effects of climate change, but directly linking climate change to health effects is limited by the lack of robust data and the multiple determinants of health. Worsening storms and rising temperatures in this rugged country with high poverty is likely to adversely affect economic activity, population growth and other determinants of health. For the past two years, the Univ. of Washington has supported the public hospital in the department of Grand'Anse. Grand'Anse, a relatively contained region in SW Haiti with an area of 11,912 km2, is predominantly rural with a population of 350,000 and is bounded to the south by peaks up to 2,347 m. Grand'Anse would serve as an excellent site to assess the interface between climate change and health. The Demographic and Health Survey (DHS) shows health status is low relative to other countries. Estimates of climate change for Jeremie, the largest city in Grand'Anse, predict the mean monthly temperature will increase from 26.1 to 27.3 oC while mean monthly rainfall will decrease from 80.5 to 73.5 mm over the next 60 years. The potential impact of these changes ranges from threatening food security to greater mortality. Use of available secondary data such as indicators of climate change and DHS health status are not likely to offer sufficient resolution to detect positive or negative impacts of climate change on health. How might a mixed methods approach incorporating secondary data and quantitative and qualitative survey data on climate, economic activity, health and determinants of health address the hypothesis: Climate change does not adversely affect health? For example, in Haiti most women deliver at home. Maternal mortality is high at 350 deaths/100,000 deliveries. This compares to deliveries in facilities where the median rate is less than 100/100,000. Thus, maternal mortality is closely linked to access to health care in this rugged mountainous country. Climate change

  14. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing

    Science.gov (United States)

    Wang, Hai; Xie, Shang-Ping; Tokinaga, Hiroki; Liu, Qinyu; Kosaka, Yu

    2016-04-01

    Anthropogenic aerosols are a major driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

  15. To what extent is climate change detection at the local scale 'clouded' by internal variability?

    Science.gov (United States)

    Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart

    2016-04-01

    Internal variability, i.e. the natural variability of the climate system, has been shown to be an important source of uncertainty in climate change projections of mean and (especially) extreme climate events, next to model uncertainty and uncertainty in projections of greenhouse gas emissions. To quantify the internal variability and get a robust estimate of the forced climate change response, large ensembles of climate model simulations of the same model provide essential information. For global climate models (GCMs) a number of these single model ensembles are indeed available. So far however, the size of single model ensembles for regional climate models (RCMs) has been limited to only a few members, relatively short periods or small modeling domains. Here, we use a 16 member ensemble generated with the RCM KNMI-RACMO2 driven by the GCM EC-EARTH. The initial atmospheric state of EC-EARTH was perturbed in 1850, after which each member was run until 2100 assuming the historical emission scenario until 2005 and the RCP8.5 emission scenario from 2006 onwards. Each of the EC-EARTH members was then downscaled on a 12-km resolved domain covering Western Europe including the Alps for the period 1950-2100. For this ensemble we show the climate change signal, the noise due to internal variability and the signal-to-noise ratio, and how these depend on parameter, season, location and projection period. Using an aggregated spatial probability perspective similar to Fischer et al. (2013) we also examine whether spatially aggregated responses yield more robust changes and earlier detection times of climate change. This information is particularly relevant when the output of RCMs is applied in impact studies. Firstly, with this information we can identify which of the two - internal variability or climate change - is more important for a certain timescale, requiring potentially different coping strategies. Secondly, the internal variability can be a cause for the discrepancy

  16. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  17. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate

    Science.gov (United States)

    Kellermann, Jherime L.; Van Riper, Charles, III

    2015-01-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  18. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  19. Testing the robustness of the anthropogenic climate change detection statements using different empirical models

    KAUST Repository

    Imbers, J.

    2013-04-27

    This paper aims to test the robustness of the detection and attribution of anthropogenic climate change using four different empirical models that were previously developed to explain the observed global mean temperature changes over the last few decades. These studies postulated that the main drivers of these changes included not only the usual natural forcings, such as solar and volcanic, and anthropogenic forcings, such as greenhouse gases and sulfates, but also other known Earth system oscillations such as El Niño Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO). In this paper, we consider these signals, or forced responses, and test whether or not the anthropogenic signal can be robustly detected under different assumptions for the internal variability of the climate system. We assume that the internal variability of the global mean surface temperature can be described by simple stochastic models that explore a wide range of plausible temporal autocorrelations, ranging from short memory processes exemplified by an AR(1) model to long memory processes, represented by a fractional differenced model. In all instances, we conclude that human-induced changes to atmospheric gas composition is affecting global mean surface temperature changes. ©2013. American Geophysical Union. All Rights Reserved.

  20. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  1. A comparison of two methods for detecting abrupt changes in the variance of climatic time series

    CERN Document Server

    Rodionov, Sergei

    2016-01-01

    Two methods for detecting abrupt shifts in the variance, Integrated Cumulative Sum of Squares (ICSS) and Sequential Regime Shift Detector (SRSD), have been compared on both synthetic and observed time series. In Monte Carlo experiments, SRSD outperformed ICSS in the overwhelming majority of the modelled scenarios with different sequences of variance regimes. The SRSD advantage was particularly apparent in the case of outliers in the series. When tested on climatic time series, in most cases both methods detected the same change points in the longer series (252-787 monthly values). The only exception was the Arctic Ocean SST series, when ICSS found one extra change point that appeared to be spurious. As for the shorter time series (66-136 yearly values), ICSS failed to detect any change points even when the variance doubled or tripled from one regime to another. For these time series, SRSD is recommended. Interestingly, all the climatic time series tested, from the Arctic to the Tropics, had one thing in commo...

  2. Detecting climate-change responses of plants and soil organic matter using isotopomers

    Science.gov (United States)

    Schleucher, Jürgen; Ehlers, Ina; Segura, Javier; Haei, Mahsa; Augusti, Angela; Köhler, Iris; Zuidema, Pieter; Nilsson, Mats; Öquist, Mats

    2015-04-01

    Responses of vegetation and soils to environmental changes will strongly influence future climate, and responses on century time scales are most important for feedbacks on the carbon cycle, climate models, prediction of crop productivity, and for adaptation to climate change. That plants respond to increasing CO2 on century time scales has been proven by changes in stomatal index, but very little is known beyond this. In soil, the complexity of soil organic matter (SOM) has hampered a sufficient understanding of the temperature sensitivity of SOM turnover. Here we present new stable isotope methodology that allows detecting shifts in metabolism on long time scales, and elucidating SOM turnover on the molecular level. Compound-specific isotope analysis measures isotope ratios of defined metabolites, but as average of the entire molecule. Here we demonstrate how much more detailed information can be obtained from analyses of intramolecular distributions of stable isotopes, so-called isotopomer abundances. As key tool, we use nuclear magnetic resonance (NMR) spectroscopy, which allows detecting isotope abundance with intramolecular resolution and without risk for isotope fractionation during analysis. Enzyme isotope fractionations create non-random isotopomer patterns in biochemical metabolites. At natural isotope abundance, these patterns continuously store metabolic information. We present a strategy how these patterns can be used as to extract signals on plant physiology, climate variables, and their interactions. Applied in retrospective analyses to herbarium samples and tree-ring series, we detect century-time-scale metabolic changes in response to increasing atmospheric CO2, with no evidence for acclimatory reactions by the plants. In trees, the increase in photosynthesis expected from increasing CO2 ("CO2 fertilization) was diminished by increasing temperatures, which resolves the discrepancy between expected increases in photosynthesis and commonly observed

  3. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  4. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C.; Hasselmann, K.; Cubasch, U.; Roeckner, E.; Voss, R. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mitchell, J.F.B. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office; Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1997-09-01

    A multifingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint is optimal for the detection of climate change, further tests of the statistical consistency of the detected climate change signal with model predictions for different candidate forcing mechanisms require the simultaneous application of several fingerprints. Model-predicted climate change signals are derived from three anthropogenic global warming simulations for the period 1880 to 2049and two simulations forced by estimated changes in solar radiation from 1700 to 1992. In the first global warming simulation, the forcing is by greenhouse gas only, while in the remaining two simulations the direct influence of sulfate aerosols is also included. From the climate change signals of the greenhouse gas only and the average of the two greenhouse gas-plus-aerosol simulations, two optimized fingerprint patterns are derived by weighting the model-predicted climate change patterns towards low-noise directions. The optimized fingerprint patterns are then applied as a filter to the observed near-surface temperature trend patterns, yielding several detection variables. The space-time structure of natural climate variability needed to determine the optimal fingerprint pattern and the resultant signal-to-noise ratio of the detection variable is estimated from several multicentury control simulations with different CGCMs and from instrumental data over the last 136 y. Applying the combined greenhouse gas-plus-aerosol fingerprint in the same way as the greenhouse gas only fingerprint in a previous work, the recent 30-y trends (1966-1995) of annual mean near surface temperature are again found to represent a significant climate change at the 97.5% confidence level. (orig.) With 13 figs., 3 tabs., 63 refs.

  5. Detection,Causes and Projection of Climate Change over China:An Overview of Recent Progress

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃ over the past 100 years.slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation,interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so.Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants.Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 modeis developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is

  6. Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate

    Science.gov (United States)

    Nsubuga, F. W. N.; Botai, Joel O.; Olwoch, Jane M.; Rautenbach, C. J. deW; Kalumba, Ahmed M.; Tsela, Philemon; Adeola, Abiodun M.; Sentongo, Ausi A.; Mearns, Kevin F.

    2015-09-01

    Detection of changes in Earth surface features, for example lakes, is important for understanding the relationships between human and natural phenomena in order to manage better the increasingly scarce natural resources. This work presents a procedure of using modified normalised difference water index (MNDWI) to detect fluctuations of lake surface water area and relate it to a changing climate. The study used radiometrically and geometrically rectified Landsat images for 1986, 1995 and 2010 encompassing the Kyoga Basin lakes of Uganda, in order to investigate the changes in surface water area between the respective years. The standard precipitation index (SPI) and drought severity index (DSI) are applied to show the relationship between variability of surface water area and climate parameters. The present analysis reveals that surface water area fluctuation is linked to rainfall variability. In particular, Lake Kyoga sub-basin lakes experienced an increase in surface water area in 2010 compared to 1986. This work has important implications to water resources management for Lake Kyoga and could be vital to water resource managers across Ugandan lakes.

  7. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  8. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  9. Climatic change in French Polynesia: detection of observed changes and projections evaluation

    International Nuclear Information System (INIS)

    The effects of climate change on Pacific islands is a major concern for the local populations. The rainfall parameter, specifically, appears as one of the sensitive parameters, as it determines water resources. The goal of this thesis is to bring a first insight into the 21. century evolution of precipitation in Tahiti. The first step was to characterize rainfall in Tahiti using data records from the observation network of Meteo France. The 'rainfall season', lasting from November to April, is the season of interest, as rainfall amounts are the highest at this time of the year. Indeed, the South Pacific Convergence Zone (SPCZ), host of deep convection, remains the principal source of rainfall in Tahiti in austral summer (December-January-February). On inter-annual and inter-decadal timescales, the El nino Southern Oscillation (ENSO) and the Inter-decadal Pacific Oscillation (IPO) imply north/south and east/west migrations of the SPCZ, drawing it away, or closer to Tahiti. The positive phase of the IPO involves a north-eastward displacement of the SPCZ, which causes higher rainfall amounts in Tahiti. The SPCZ is displaced towards the southwest during negative IPO phase, leading to a decrease of rainfall in Tahiti. The study reveals that the IPO positive phase favor the occurrence of intense El nino events. In those cases, the SPCZ is critically displaced to the northeast and lies zonally just south of the equator. Accordingly, the SPCZ is drawn away from Tahiti and alters the southeast flow of trade winds. As a result, substantial orographic precipitation affect the southeast coasts of Tahiti. Following the assessment of observed precipitation for the period 1961-2011, an original method has been set up to obtain a model able to resolve the island and capture the orographic effects at best. Two successive down-scaling steps have been necessary to get the limited area model ALADINClimat over Tahiti (at the resolution of 12 km), starting from the global coupled model

  10. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  11. Climate Change

    Science.gov (United States)

    Moore, Berrien

    The DLR Institute of Planetary Exploration has proposed a novel design for a space instrument accommodated on a small satellite bus (SSB) that is dedicated to the detection of inner earth objects (IEOs) from a low earth orbit (LEO). The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5m (V-Band) and astrometric accuracy of 1 arcsec (1). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak∼90). The instrument design is based on a novel focal plane consisting of four Electron-Multiplying CCDs (EMCCD). These detectors operate at a high frame rate of nominally 5fps and very low effective readout noise (¡2e rms), in order to compensate the spacecraft's pointing jitter. The telescope optics is based on an off-axis anastigmatic design (TMA). A reflective Schmidt-type corrector plate enables a corrected 22 field of view to be achieved by the fast F/3.4 telescope with near diffraction-limited performance. The absence of center obscurations or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. To accommodate the passive thermal stabilization scheme and the necessary structural stability, HB-Cesic R was selected as material for the telescope structure and mirrors. This new composite ceramic material is highly promising for space telescope applications. The electronics design comprises high speed signal and data processing chains for on-board acquisition, filtering, accumulation and compression of the CCD data. One of the most important tasks of the on-board processing software is to implement the image stabilization function. For this purpose the images are oversampled, guide stars are automatically identified and tracked, and the individual short-exposure images are shifted and co-added with sub-pixel accuracy. During this process, spurious events as cosmic ray hits or

  12. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  13. A wavelet-based approach to detect climate change on the coherent and turbulent component of the atmospheric circulation

    Science.gov (United States)

    Faranda, Davide; Defrance, Dimitri

    2016-06-01

    The modifications of atmospheric circulation induced by anthropogenic effects are difficult to capture because wind fields feature a complex spectrum where the signal of large-scale coherent structures (planetary, baroclinic waves and other long-term oscillations) is mixed up with turbulence. Our purpose is to study the effects of climate changes on these two components separately by applying a wavelet analysis to the 700 hPa wind fields obtained in climate simulations for different forcing scenarios. We study the coherent component of the signal via a correlation analysis to detect the persistence of large-scale or long-lasting structures, whereas we use the theory of autoregressive moving-average stochastic processes to measure the spectral complexity of the turbulent component. Under strong anthropogenic forcing, we detect a significant climate change signal. The analysis suggests that coherent structures will play a dominant role in future climate, whereas turbulent spectra will approach a classical Kolmogorov behaviour.

  14. Objective local weather types with applications in climate change detection and impact studies

    Science.gov (United States)

    Mika, Janos; Razsi, Andras; Wypych, Agnieszka; Ustrnul, Zbigniew

    2014-05-01

    sampling and in detection of climate change in terms of weather. Examples of both aspects will be presented in the study. I.e. frequency variations of the individual types are analysed and efficiency of the local types are also verified against various human mortality data, as well, as air pollution indicators. The study has been supported by the TÉT 10-1-2011-0037 Polish-Hungarian bi-lateral project. Keywords: synoptic climatology, climate change, mortality, air pollution, Hungary, Poland.

  15. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  16. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wigley, T.M.L.; Jones, P.D.

    1994-07-01

    In addition to changes due to variations in greenhouse gas concentrations, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the enhanced greenhouse effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to ocean General Circulation Models. Appendices A--G contain the following seven papers: (A) Recent global warmth moderated by the effects of the Mount Pinatubo eruption; (B) Recent warming in global temperature series; (C) Correlation methods in fingerprint detection studies; (D) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes; (E) A simple model for estimating methane concentration and lifetime variations; (F) Implications for climate and sea level of revised IPCC emissions scenarios; and (G) Sulfate aerosol and climatic change.

  17. Detection and attribution of abrupt climate changes in the last one hundred years

    Institute of Scientific and Technical Information of China (English)

    Zhang Wen; Wan Shi-Quan

    2008-01-01

    Based on physical backgrounds, the four time series of the Guliya (Tibetan plateau) ice core (GIC) δ18O, and three natural factors, I.e. The rotation rate of earth, sunspots, and El Nino-Southern Oscillation (ENSO) signals, are decomposed into two hierarchies, I.e. More and less than 10-year hierarchies respectively, and then the running t-test is used to reanalyse the data before and after filtering with the purpose of investigating the contribution of natural factors to the abrupt climate changes in the last one hundred years. The results show that the GIC δ18O evolved with a quasi-period of 7-9 years, and the abrupt climate changes in the early 1960s and in the period from the end of the 1970s to the beginning of the 1980s resulted from the joint effect of the two hierarchies, in other words, the two interdecadal abrupt changes of climate in the last one hundred years were global. The interannual variations of ENSO and sunspots were the important triggering factors for the abrupt climate changes in the last one hundred years. At the same time, the method of Information Transfer (IT) is employed to estimate the contributions of ENSO signals and sunspots activities to the abrupt climate changes, and it is found that the contribution of the interannual variation of ENSO signals is relatively large.

  18. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1992--30 June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wigley, T.M.L.; Jones, P.D.

    1993-07-09

    The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. The main research areas covered by this proposal are (b), First Detection and (c) Supporting Data. The project will also include work under area (a), Modeling: specifically, analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulating Models (GCMs).

  19. Communicating confidence in the detection and attribution of trends relevant to climate change

    Science.gov (United States)

    Ebi, K. L.

    2015-12-01

    Readily understandable and consistent language for describing confidence in detection and attribution statements can be developed based on the approach used by the International Agency for Research on Cancer (IARC). IARC was founded in 1965 to provide government authorities with expert, independent, scientific opinion on the causes of human cancer. IARC developed four standard terms for evaluations of the strength of evidence for carcinogenicity arising from human and experimental animal data, and for the strength of mechanistic evidence. Evidence is categorized as sufficient, limited, inadequate, and lack of carcinogenicity. The IARC process then combines theory, evidence, and degree of agreement into a summary evaluation that includes concise statements of the principal line(s) of argument that emerged, the conclusions of the working group on the strength of the evidence for each group of studies, citations to indicate which studies were pivotal to these conclusions, and the reasons for any differential weighting of data. The summary IARC categories are: Group 1 for agents carcinogenic to humans; Group 2 includes Group 2A (probably carcinogenic to humans) or Group 2B (possibly carcinogenic to humans) on the basis of epidemiological and experimental evidence of carcinogenicity and mechanistic and other relevant data; Group 3 for agents is not classifiable as to its carcinogenicity to humans; and Group 4 for agents probably not carcinogenic to humans. There are obvious parallels with describing confidence in key findings on detection and attribution of a trend to anthropogenic climate change with the confidence statements used by the IARC. Developing and consistent application of similar categories along with accompanying explanations of the principal lines of evidence, would be a helpful step in clearing communicating the degree and sources of certainty in the findings of detection and attribution.

  20. Detecting and Attributing the Effects of Climate Change on the Distributions of Snake Species Over the Past 50 Years

    Science.gov (United States)

    Wu, Jianguo

    2016-01-01

    It is unclear whether the distributions of snakes have changed in association with climate change over the past years. We detected the distribution changes of snakes over the past 50 years and determined whether the changes could be attributed to recent climate change in China. Long-term records of the distribution of nine snake species in China, grey relationship analysis, fuzzy sets classification techniques, the consistency index, and attributed methods were used. Over the past 50 years, the distributions of snake species have changed in multiple directions, primarily shifting northwards, and most of the changes were related to the thermal index. Driven by climatic factors over the past 50 years, the distribution boundary and distribution centers of some species changed with the fluctuations. The observed and predicted changes in distribution were highly consistent for some snake species. The changes in the northern limits of distributions of nearly half of the species, as well as the southern and eastern limits, and the distribution centers of some snake species can be attributed to climate change.

  1. Detecting and Attributing the Effects of Climate Change on the Distributions of Snake Species Over the Past 50 Years.

    Science.gov (United States)

    Wu, Jianguo

    2016-01-01

    It is unclear whether the distributions of snakes have changed in association with climate change over the past years. We detected the distribution changes of snakes over the past 50 years and determined whether the changes could be attributed to recent climate change in China. Long-term records of the distribution of nine snake species in China, grey relationship analysis, fuzzy sets classification techniques, the consistency index, and attributed methods were used. Over the past 50 years, the distributions of snake species have changed in multiple directions, primarily shifting northwards, and most of the changes were related to the thermal index. Driven by climatic factors over the past 50 years, the distribution boundary and distribution centers of some species changed with the fluctuations. The observed and predicted changes in distribution were highly consistent for some snake species. The changes in the northern limits of distributions of nearly half of the species, as well as the southern and eastern limits, and the distribution centers of some snake species can be attributed to climate change.

  2. The Characteristics of Climate Change over the Tibetan Plateau in the Last 40 Years and the Detection of Climatic Jumps

    Institute of Scientific and Technical Information of China (English)

    牛涛; 陈隆勋; 周自江

    2004-01-01

    Through analyzing the yearly average data obtained from 123 regular meteorological observatories located in the Tibetan Plateau (T-P), this article studies the characteristics of climate change in T-P in the last 40 years. From the distribution of the linear trend, it can be concluded that the southeastern part of T-P becomes warmer and wetter, with an obvious increase of rainfall. The same characteristics arc found in the southwestern part of T-P, but the shift is smaller. In the middle of T-P, temperature and humidity obviously increase with the center of the increase in Bangoin-Amdo. The south of the Tarim Basin also exhibits the same tendency. The reason for this area being humid is that it gets less sunshine and milder wind. The northeastern part of T-P turns warmer and drier. Qaidam Basin and its western and southern areas are the center of this shift, in which the living environment is deteriorating. Analyzing the characteristics of the regional average time series, it can be found that in the mid-1970s, a significant sudden change occurred to annual rainfall, yearly average snow-accumulation days and surface pressure in the eastern part of T-P. In the mid-1980s, another evident climatic jump happened to yearly average temperature, total cloud amount, surface pressure, relative humidity, and sunshine duration in the same area. That is, in the mid 1980s, the plateau experienced a climatic jump that is featured by the increase of temperature, snow-accumulation days, relative humidity, surface pressure, and by the decrease of sunshine duration and total cloud amount. The sudden climatic change of temperature in T-P is later than that of the global-mean temperature. From this paper it can be seen that in the middle of the 1980s, a climatic jump from warm-dry to warm-wet occurred in T-P.

  3. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  4. Adaptation of the optimal fingerprint method for climate change detection using a well-conditioned covariance matrix estimate

    Energy Technology Data Exchange (ETDEWEB)

    Ribes, Aurelien; Planton, Serge [CNRM-GAME, Meteo France-CNRS, Toulouse (France); Azais, Jean-Marc [Universite de Toulouse, UPS, IMT, LSP, Toulouse (France)

    2009-10-15

    The ''optimal fingerprint'' method, usually used for detection and attribution studies, requires to know, or, in practice, to estimate the covariance matrix of the internal climate variability. In this work, a new adaptation of the ''optimal fingerprints'' method is presented. The main goal is to allow the use of a covariance matrix estimate based on an observation dataset in which the number of years used for covariance estimation is close to the number of observed time series. Our adaptation is based on the use of a regularized estimate of the covariance matrix, that is well-conditioned, and asymptotically more precise, in the sense of the mean square error. This method is shown to be more powerful than the basic ''guess pattern fingerprint'', and than the classical use of a pseudo-inverted truncation of the empirical covariance matrix. The construction of the detection test is achieved by using a bootstrap technique particularly well-suited to estimate the internal climate variability in real world observations. In order to validate the efficiency of the detection algorithm with climate data, the methodology presented here is first applied with pseudo-observations derived from transient regional climate change scenarios covering the 1960-2099 period. It is then used to perform a formal detection study of climate change over France, analyzing homogenized observed temperature series from 1900 to 2006. In this case, the estimation of the covariance matrix is only based on a part of the observation dataset. This new approach allows the confirmation and extension of previous results regarding the detection of an anthropogenic climate change signal over the country. (orig.)

  5. Detection and attribution of climate change at regional scale: case study of Karkheh river basin in the west of Iran

    Science.gov (United States)

    Zohrabi, Narges; Goodarzi, Elahe; Massah Bavani, Alireza; Najafi, Husain

    2016-09-01

    This research aims at providing a statistical framework for detection and attribution of climate variability and change at regional scale when at least 30 years of observation data are available. While extensive research has been done on detecting significant observed trends in hydroclimate variables and attribution to anthropogenic greenhouse gas emissions in large continents, less attention has been paid for regional scale analysis. The latter is mainly important for adaptation to climate change in different sectors including but not limited to energy, agriculture, and water resources planning and management, and it is still an open discussion in many countries including the West Asian ones. In the absence of regional climate models, an informative framework is suggested providing useful insights for policymakers. It benefits from general flexibility, not being computationally expensive, and applying several trend tests to analyze temporal variations in temperature and precipitation (gradual and step changes). The framework is implemented for a very important river basin in the west of Iran. In general, some increasing and decreasing trends of the interannual precipitation and temperature have been detected. For precipitation annual time series, a reducing step was seen around 1996 compared with the gradual change in most of the stations, which have not experience a dramatical change. The range of natural forcing is found to be ±76 % for precipitation and ±1.4 °C for temperature considering a two-dimensional diagram of precipitation and temperature anomalies from 1000-year control run of global climate model (GCM). Findings out of applying the proposed framework may provide useful insights into how to approach structural and non-structural climate change adaptation strategies from central governments.

  6. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  7. Mathematics of Climate Change

    OpenAIRE

    Halstadtrø, Ida

    2013-01-01

    Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...

  8. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  9. A sequential method of detecting abrupt changes in the correlation coefficient and its application to Bering Sea climate

    CERN Document Server

    Rodionov, Sergei

    2015-01-01

    A new method of regime shift detection in the correlation coefficient is proposed. The method is designed to find multiple change-points with unknown locations in time series. It signals a possible regime shift in real time and allows for its monitoring. The method is tested on randomly generated time series with predefined change-points. It is applied to examine structural changes in the Bering Sea climate. A major shift is found in 1967, which coincides with a transition from a zonal type of atmospheric circulation to a meridional one. The most recent shift has occurred in 2004, but it still needs to be monitored.

  10. Our Changing Climate

    Science.gov (United States)

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  11. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  12. Elevational and Latitudinal Gradient Sites Enable Phenology Controls and Climate Change Detection

    Science.gov (United States)

    Losleben, M. V.; Weltzin, J. F.; Billick, I.; Jones, D.

    2008-12-01

    Phenology is the study of the timing of recurring biological phases, the causes of their timing with regard to biotic and abiotic forces, and the interrelation among phases of the same or different species. Although phenology is a far-reaching component of environmental science, it is poorly understood relative to other ecological patterns and processes. For example, it is unclear how climatic attributes affect the phenology of different organisms, and how those attributes vary in importance on different spatial and temporal scales. We know phenology affects the abundance and diversity of organisms, and their function and interactions in the environment, especially their effects on fluxes in water, energy, and chemical elements at various scales. With sufficient observations and understanding, phenology can be used as a predictor for other processes and variables of importance at local to global scales, and phenology could drive a variety of ecological forecast models with both scientific and practical applications. Integration of spatially-extensive phenological data and models with both short and long-term climatic forecasts offer a powerful agent for human adaptation to ongoing and future climate change. To fully utilize the value of phenology, not only more observations at more locations are needed, but also linkages between climatic factors and phenology must be more firmly established through linked direct observations and remotely sensed (Landscape Phenology or LSP) measurements with climatic factors. Sites along elevational gradients over a range of latitudes provide this opportunity. Elevational gradients present the phenological observational efficiency of compressed ecosystem transitions, and through climatic matching of sites, latitudinal range presents opportunities to control for additional abiotic factors such as day length, seasonal variability, storm track, and atmospheric chemistry. These sites also provide excellent platforms to advance new, and

  13. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  14. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  15. Climate and Global Change

    International Nuclear Information System (INIS)

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  16. The changing climate

    International Nuclear Information System (INIS)

    A historical outline of climate changes is followed by a discussion of the problem of predictability. The main section goes into anthropogenic changes of the local (urban) and global climate, with particular regard to the greenhouse effect and its consequences in terms of human action. The author points out that today's climate problems should be discussed in a subject-centered and objective manner. (KW)

  17. Change of sea ice content in the Arctic and the associated climatic effects: detection and simulation

    Directory of Open Access Journals (Sweden)

    I. I. Mokhov

    2013-01-01

    Full Text Available Modeling results of the impact of sea surface temperature and sea ice extent changes over the last decades on the formation of weather and climate anomalies are presented. It was found that the Arctic sea ice area reduction may lead to anti-cyclonic regimes’ formation causing anomalously cold winters in particular on the Russian territory. Using simulation with an atmospheric general circulation model, it is shown that the Early 20th Century Warming must have been accompanied by a large negative Arctic sea ice area anomaly in winter time. The results imply a considerable role of long-term natural climate variations in the modern sea ice area decrease. Estimates of the possible probability’s changes of the dangerous events of strong winds and high waves in the Arctic basin and favorable navigation conditions for the Northern Sea Route in the 21st century are made based on numerical model calculations. An increase of extreme wave height is found to the middle of the 21st century for Kara and Chukchi Seas as a consequence of prolonged run length and increased surface winds.

  18. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  19. Climate for change

    International Nuclear Information System (INIS)

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  20. Struggle against climate change

    International Nuclear Information System (INIS)

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  1. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  2. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  3. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  4. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  5. Witnesses of climate change

    International Nuclear Information System (INIS)

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  6. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  7. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  8. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  9. Use of an automated digital images system for detecting plant status changes in response to climate change manipulations

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo

    2014-05-01

    The importance of phenological research for understanding the consequences of global environmental change on vegetation is highlighted in the most recent IPCC reports. Collecting time series of phenological events appears to be of crucial importance to better understand how vegetation systems respond to climatic regime fluctuations, and, consequently, to develop effective management and adaptation strategies. However, traditional monitoring of phenology is labor intensive and costly and affected to a certain degree of subjective inaccuracy. Other methods used to quantify the seasonal patterns of vegetation development are based on satellite remote sensing (land surface phenology) but they operate at coarse spatial and temporal resolution. To overcome the issues of these methodologies different approaches for vegetation monitoring based on "near-surface" remote sensing have been proposed in recent researches. In particular, the use of digital cameras has become more common for phenological monitoring. Digital images provide spectral information in the red, green, and blue (RGB) wavelengths. Inflection points in seasonal variations of intensities of each color channel can be used to identify phenological events. Canopy green-up phenology can be quantified from the greenness indices. Species-specific dates of leaf emergence can be estimated by RGB image analyses. In this research, an Automated Phenological Observation System (APOS), based on digital image sensors, was used for monitoring the phenological behavior of shrubland species in a Mediterranean site. The system was developed under the INCREASE (an Integrated Network on Climate Change Research) EU-funded research infrastructure project, which is based upon large scale field experiments with non-intrusive climatic manipulations. Monitoring of phenological behavior was conducted continuously since October 2012. The system was set to acquire one panorama per day at noon which included three experimental plots for

  10. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  11. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  12. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... and to investigate the institutional dynamics new institutional theory is used with an emphasis on examining institutional mechanisms in relation to building legitimacy for action. The concept of mechanisms can help explain how and why constraints on action occur, and the concept of legitimacy is useful to clarify...... entrepreneurs create windows for action through the establishment of local networks. The thesis contributes knowledge on the constraints of the internal integration process in city governments. It provides explanations of why these constraints occur, and how officials seek to overcome them. The thesis provides...

  13. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  14. Climate change - global warming

    International Nuclear Information System (INIS)

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  15. Changing change detection

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Bundesen, Claus

    2009-01-01

    The change detection paradigm is a popular way of measuring visual short-term memory capacity. Using the paradigm, researchers have found evidence for a capacity of about four independent visual objects, confirming classic estimates that were based on the number of items that could be reported....... Here, we determine the reliability of capacity measures found by change detection. We derive theoretical predictions of the variance of the capacity estimates and show how they depend on the number of items to be remembered and the guessing strategy of the observer. We compare the theoretically derived...... variance to the variance estimated over repeated blocks of trials with the same observer and find close correspondence between predicted and observed variances. Also, we propose a new version of the two-alternative choice change detection paradigm, in which the choice is unforced. This new paradigm reduces...

  16. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity.

    Science.gov (United States)

    Tillotson, Michael D; Quinn, Thomas P

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change.

  17. Managing Climate Change Refugia for Climate Adaptation.

    Science.gov (United States)

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  18. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  19. EARLY DETECTION OF CLIMATE CHANGE IMPACT ON AGRICULTURE AN ISRAELI CASE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    N. Kliot [Department of Geography and Environment Studies University of Haifa, Haifa (Israel)

    2008-09-30

    According to moderate I.P.C.C. scenarios, within the coming 100 years the temperature in the Eastern Mediterranean is expected to rise by an average of 3.3 C in the summer and 2.8 C in the winter. It is expected that heat waves will increase in intensity and frequency. It is also expected that the annual rainfall will be reduced, there will be fewer rainy days and rise in the frequency of extreme rainfall event. Also, frequency of extreme whether events is expected to rise. The difficulties which face Israeli farming which is technologically a very advanced one, are: first, water stress - shortage in water resources and deterioration in their quality; second, impacts on crops and various livestock and poultry branches. Generally, agricultural long term planning will have to plan for replacing many fruit trees which need cool winter (apples, pears, peaches, cherries - for example) by crops which will be better adapted to heat and dry weather. It is expected that the higher temperatures will sustain more diseases of plants, crops and orchards. Field crops which depend on winter precipitation will be particularly effected by climatic changes. Some, such cotton will require supplemental irrigation. All field crops will be subjected to increased soil erosion. Studies which were conducted in Israel estimated that the future damages to agriculture as a result of water shortages as ranging between $101-$208 million. The income of farmers may drop by 20%. One of the coping methods is a system of insurance in most of the agricultural branches and a special fund to compensate wheat farmers for frequent droughts. The various difficulties and adaptation mechanisms (such as smart agriculture, or complete green house farming systems) will be presented.

  20. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  1. Current Climate Variability & Change

    Science.gov (United States)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  2. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle;

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... during the last 10 000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to severely influence both...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  3. Amazonian climatic change: Water isotope detection of deforestation and greenhouse impacts

    International Nuclear Information System (INIS)

    Full text: Land use change in the Amazon basin, the largest and most biologically diverse river system in the world, has the potential to cause significant disruption to hydrological, biogeochemical and human systems. The naturally occurring isotopologues of water, commonly, but incorrectly, termed 'isotopes', of interest as possible tracing and validation tools in hydrological simulations are 1H218O and 1H2H16O. Large catchment simulations of water resources where isotopes could be applicable include water re-cycling as a function of precipitation type and variability; evaporation sourcing (i.e. whether water vapour comes from transpiration or from evaporation from rivers, lakes, soil water or the vegetation canopy); ice and snow temperature deposition determination; and aquifer and soil processes including those dependent upon precipitation intensity and melt-water contributions. coupled with measurement of isotopes in water sources, SWI characteristics in river discharge now provide insight into basin- integrated hydro-climates. New data from the Global Network for Isotopes in Precipitation (GNIP) database, and previously published data now fully analysed, reveal significant changes in seasonal isotopic characteristics in the upper reaches of the Amazon basin underlining the use of stable water isotopes as a means of validating and improving numerical models. Despite observational limitations, which make determination of correctness difficult, some global models are shown here to be too poor to be of value in the Amazon. For example, isotopic depletions, a strong function of rainfall amount, are incorrect when precipitation is inadequately predicted seasonally or following ENSO circulation shifts. Isotopic enrichments of δ18O and δD exhibit systematic variations in the Amazonian water cycle as a result of forest and flooding changes. We find signatures of both circulation and land-use change impacts in the isotopic record: ENSO events cause decreased depletion

  4. The climatic change

    International Nuclear Information System (INIS)

    In order to take stock on the climatic change situation and initiatives at the beginning of 2006, the INES (National Institute on the Solar Energy) proposes this special document. It presents the Montreal conference of December 2005, realized to reinforced the actions of the international community against the greenhouse gases. The technical decisions decided at this conference are detailed. The document discusses also the causes and consequences of the climatic warming, the intervention sectors and the actions possibilities. (A.L.B.)

  5. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  6. Detecting failure of climate predictions

    Science.gov (United States)

    Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve

    2016-01-01

    The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty1, 2. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies3. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.

  7. Detecting failure of climate predictions

    Science.gov (United States)

    Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve

    2016-09-01

    The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.

  8. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  9. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...

  10. Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate?

    OpenAIRE

    Miguel Clavero; Daniel Villero; Lluís Brotons

    2011-01-01

    Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitu...

  11. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  12. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  13. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  14. Climate change velocity underestimates climate change exposure in mountainous regions.

    Science.gov (United States)

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  15. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  16. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  17. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  18. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  19. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  20. Adaptation to climate change

    NARCIS (Netherlands)

    J. Carmin; K. Tierney; E. Chu; L.M. Hunter; J.T. Roberts; L. Shi

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  1. Challenges of climate change

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  2. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  3. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  4. Outchasing climate change

    Science.gov (United States)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  5. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  6. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  7. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  8. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  9. Designing Global Climate Change

    Science.gov (United States)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  10. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  11. Economic impacts of climate change

    OpenAIRE

    Tol, Richard S.J.

    2015-01-01

    Climate change will probably have a limited impact on the economy and human welfare in the 21st century. The initial impacts of climate change may well be positive. In the long run, the negative impacts dominate the positive ones. Negative impacts will be substantially greater in poorer, hotter, and lower-lying countries. Poverty reduction complements greenhouse gas emissions reduction as a means to reduce climate change impacts. Climate change may affect the growth rate of the economy and ma...

  12. Climate change, agriculture and poverty

    OpenAIRE

    Hertel, Thomas W.; Rosch, Stephanie D

    2010-01-01

    Although much has been written about climate change and poverty as distinct and complex problems, the link between them has received little attention. Understanding this link is vital for the formulation of effective policy responses to climate change. This paper focuses on agriculture as a primary means by which the impacts of climate change are transmitted to the poor, and as a sector at...

  13. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  14. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  15. The climatic change

    International Nuclear Information System (INIS)

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  16. Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change

    Directory of Open Access Journals (Sweden)

    Aude-Valérie Jung

    2014-04-01

    Full Text Available Microbial pollution in aquatic environments is one of the crucial issues with regard to the sanitary state of water bodies used for drinking water supply, recreational activities and harvesting seafood due to a potential contamination by pathogenic bacteria, protozoa or viruses. To address this risk, microbial contamination monitoring is usually assessed by turbidity measurements performed at drinking water plants. Some recent studies have shown significant correlations of microbial contamination with the risk of endemic gastroenteresis. However the relevance of turbidimetry may be limited since the presence of colloids in water creates interferences with the nephelometric response. Thus there is a need for a more relevant, simple and fast indicator for microbial contamination detection in water, especially in the perspective of climate change with the increase of heavy rainfall events. This review focuses on the one hand on sources, fate and behavior of microorganisms in water and factors influencing pathogens’ presence, transportation and mobilization, and on the second hand, on the existing optical methods used for monitoring microbiological risks. Finally, this paper proposes new ways of research.

  17. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  18. History of Plant Phenological Observation in Hungary and Plans for Renewal of System to detect Evidence of the Climate Change

    Science.gov (United States)

    Hunkar, M.; Dunkel, Z.

    2009-04-01

    observation in Hungary is to give information for plant protection forecast. The system was time to time renewed, last tin in 1984. The system was closed in 2001because of financial restriction. Taking into consideration of necessity of systematic phenological observation mainly as a possible tool of climate change detection and seeing the results of COST Action 725 a project proposal was submitted for reconstruction of phonological network. Beside the main historical milestones of Hungarian phenological history the most important elements of the new plan will be shown. Since climate change expressed by the responses of the vegetation system our investigation is focused to long time data series like the Book of Vine Branches which contains the conditions of wine branches year by year on St. George day 24 April since 1740.

  19. NPOESS, Essential Climates Variables and Climate Change

    Science.gov (United States)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  20. Mapping Vulnerability to Climate Change

    OpenAIRE

    Heltberg, Rasmus; Bonch-Osmolovskiy, Misha

    2011-01-01

    This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natura...

  1. Climate change or land use dynamics: do we know what climate change indicators indicate?

    Directory of Open Access Journals (Sweden)

    Miguel Clavero

    Full Text Available Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i environmental temperature; and ii three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization, all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.

  2. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland......) a study on the effects of elevated atmospheric CO2-concentration, warming and drought on the photosynthetic capacity and phenology of C. vulgaris and D. flexuosa in an outdoor climate change experiment on a grassy heathland in Denmark; 4) a study on climate change impacts on the competitive interactions...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  3. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  4. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought o...

  5. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  6. Climate change, wine, and conservation

    OpenAIRE

    Hannah, L.; Roehrdanz, PR; Ikegami, M; Shepard, AV; Shaw; Tabor, G; Zhi, L; Marquet, PA; Hijmans, RJ

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticul...

  7. Climate change and catchment hydrology

    OpenAIRE

    Murphy, Conor

    2013-01-01

    Climate change is expected to alter catchment hydrology through changes in extremes of flooding and drought. River catchments are complex, dynamic systems and it is important to develop our understanding of how these systems are likely to respond to changes in climate. Work is ongoing in using EC-Earth simulations to further our understanding of how climate change will affect catchment hydrology and flood risk. In Ireland, the importance of this task is emphasised ...

  8. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K.; Polly J Ericksen; Herrero, Mario; Challinor, Andrew J.

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  9. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith;

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  10. Climate change policy position

    International Nuclear Information System (INIS)

    The Canadian Association of Petroleum Producers (CAPP) is a firm believer in the need to take action to mitigate the risks associated with climate change, and that clear government policy is called for. The principles of sustainable development must guide this policy development effort. The initiatives required to address greenhouse gas emissions over both the short and long term must be carefully considered, and it is up to industries to ensure their production efficiency and emission intensity. Promoting improved performance of industries in Canada and developing technology that can be deployed internationally for larger global effects represents Canada's best contribution to progress on greenhouse gas emissions. The increase in energy demand along with increases in population and economic growth have contributed to an increase in greenhouse gas emissions despite improved energy efficiency in industry. Significant damage to the economy will result if Canada is to meet its commitment under the Kyoto Protocol, forcing the country to buy large quantities of foreign credits instead of using those funds for increased research and development. CAPP indicated that an effective plan must be: balanced, equitable, responsible, competitive, focused on technology and innovation, and based on agreements on sectoral plans. Each of these principles were discussed, followed by the fundamentals of approach for upstream oil and gas. The framework for climate change policy was described as well as the elements of a sector plan. CAPP wants to work with all levels of government on an appropriate plan for Canada, that considers our unique circumstances. Canada can play a significant role on the international stage by properly implementing the policy position proposed by the CAPP without unnecessary risks to the economy. refs

  11. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  12. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  13. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  14. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  15. Urban Growth and Climate Change

    OpenAIRE

    Kahn, Matthew E.

    2008-01-01

    Between 1950 and 2030, the share of the world's population that lives in cities is predicted to grow from 30% to 60%. This urbanization has consequences for the likelihood of climate change and for the social costs that climate change will impose on the world's quality of life. This paper examines how urbanization affects greenhouse gas production, and it studies how urbanites in the developed and developing world will adapt to the challenges posed by climate change.

  16. Global warming and climate change

    International Nuclear Information System (INIS)

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  17. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  18. Climate change - a natural hazard

    Energy Technology Data Exchange (ETDEWEB)

    Kininmonth, William

    2003-07-01

    The impacts of weather and climate extremes (floods, storms, drought, etc) have historically set back development and will continue to do so into the future, especially in developing countries. It is essential to understand how future climate change will be manifest as weather and climate extremes in order to implement policies of sustainable development. The purpose of this article is to demonstrate that natural processes have caused the climate to change and it is unlikely that human influences will dominate the natural processes. Any suggestion that implementation of the Kyoto Protocol will avoid future infrastructure damage, environmental degradation and loss of life from weather and climate extremes is a grand delusion. (Author)

  19. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  20. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  1. Lay representations on climate change

    OpenAIRE

    Cabecinhas, Rosa; Lázaro, Alexandra; Carvalho, Anabela

    2006-01-01

    Lay representations on climate change were mapped via the free-word association method in two pilot studies. Participants were asked to generate words associated to “the big problems faced by humankind nowadays” (1st study) and to “climate change” (2nd study). Climate change was not spontaneously evoked by the participants in the first study: pollution was among the top 10 problems, but references to other environmental issues were very low. In the second study, climate change was consid...

  2. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  3. The International Climate Change Regime

    Science.gov (United States)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  4. Ground water and climate change

    OpenAIRE

    Taylor, Richard G; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F P

    2013-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the...

  5. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  6. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  7. Nuclear Energy and Climate Change

    OpenAIRE

    Méritet, Sophie; Zaleski, Pierre

    2009-01-01

    The paper will discuss the possibilities of the development of nuclear energy in the world in the midterm and long term. It will correlate the prospects with the emissions of CO2 and the effects on climate change. In particular it will discuss the problems nuclear energy face to make a large contribution of climate change issue.

  8. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  9. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  10. Congress Assesses Climate Change Paleodata

    Science.gov (United States)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  11. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  12. Climate Change, Growth, and Poverty

    OpenAIRE

    Hull, Katy

    2008-01-01

    Equity emerged as the principal theme during the Poverty Reduction and Economic Management (PREM) week session 'climate change, growth and poverty,' where presenters addressed the distributional consequences of climate change, as well as countries' unequal capacity to cope with the twin challenges of adaptation and mitigation. They highlighted actions to strengthen the global knowledge bas...

  13. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  14. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  15. Climate change and marine vertebrates.

    Science.gov (United States)

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  16. Climate variability and change

    International Nuclear Information System (INIS)

    When Australia's climate should not be definite barrier to the population reaching 30 million by 2050, it is recognised that our climate has limited the development of the nation over the past 200 years. Indeed in 1911, based on a comparison of the climate and development between the US and Australia. Griffith Taylor predicted that Australia's population would be 19 million at the end of the 20th century, which is a pretty good 90-year forecast. The climate constraint is not only due to much of the country being semi-arid with an annual rainfall below 400 millimetres, but also due to the large year-to-year variability of rainfall across the country

  17. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  18. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal.

    Directory of Open Access Journals (Sweden)

    Francisco Amorim

    Full Text Available Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe. Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software to design three optimized monitoring networks considering: a changes in species likely occurrence, b species conservation status, and c level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.

  19. Detecting the climatic effects of increasing carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M C; Luther, F M [eds.

    1985-12-01

    This report documents what is known about detecting the CO2-induced changes in climate, and describes the uncertainties and unknowns associated with this monitoring and analysis effort. The various approaches for detecting CO2-induced climate changes are discussed first, followed by a review of applications of these strategies to the various climatic variables that are expected to be changing. Recommendations are presented for research and analysis activities. Separate abstracts have been prepared for the individual papers. (ACR)

  20. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  1. Application of nonlinear dynamical metho ds in abrupt climate change detection%非线性动力学方法在气候突变检测中的应用∗

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The research of abrupt climate change is an important field in the climate change. The rapid and accurate detection of the abrupt climate change has important practical significance and major economic-social costs, which will help us understand climate change and forecast the future evolutionary trend of the climate system. The detection results of most traditional abrupt climate change depend on the selection of the time scale concerned, which may result in the fact that we cannot identify an abrupt climate change until the event has been past for a long time. Moreover, these detection methods cannot extract the dynamical changes from the observational data of the climate system. As the rapid development in nonlinear science, the abrupt climate change detection technology has also been improved gradually. This article briefly reviews several new progresses in abrupt dynamical detection methods developed on the basis of recent nonlinear technologies, and some applications in the real observational data. These new methods mainly contain the technologies based on the long-range correlation of climate systems, such as moving detrended fluctuation analysis, moving cut data-detrended fluctuation analysis, moving cut data-R/S analysis, degenerate fingerprinting, and red noise. Moreover, some abrupt dynamical detection methods developed by the complexity of the time series, namely, entropy, such as approximate entropy, moving cutting data-approximate entropy, Fisher information, and wavelet Fisher’s information measure. Furthermore, there are some other abrupt dynamical detection methods based on the theory of phase space, such as the dynamics exponent Q. Climate system is a complex dynamical system with nonlinear and interactive nature, which has long-range persistence in spatio-temporal variation, thus the abrupt detection method on spatial field change is pointed out to be a promising direction for further research in future. Because the spatial field contains

  2. The detectability of climate engineering

    Science.gov (United States)

    Bürger, Gerd; Cubasch, Ulrich

    2015-11-01

    We assess the detection and attribution (D&A) of climate engineering (CE) as a function of their duration after initiation. We employ "surrogate" climates where observations are mimicked by simulations. Unlike classical, stationary D&A, the null hypothesis for this analysis is the nonstationary gradual warming caused by continued greenhouse gas (GHG) forcing, which creates a number of theoretical and technical complications. Adapting D&A to this nonstationary setting requires several ad hoc assumptions whose validity is analyzed and discussed. We study the stratospheric sulfur injection scenarios G3 and G4 of the Geoengineering Model Intercomparison Project. For G3, which smoothly balances global warming with a corresponding cooling, the effect is smaller initially and harder to detect. Temperature and precipitation signals are detectable about a decade after commencing CE and attributable a few years later (details depending on model and scenario). The G4 scenario consists of a continuous injection of 5 Tg SO2 (roughly one fourth of the Pinatubo eruption per year), which represents a shock-like forcing that is easier and earlier detectable, just after a few years. Later into the century, uncertainty in GHG sensitivity increasingly dominates the background noise, hampering G4 detection. Spatiotemporal CE fingerprints produce more stable D&A results, with smoother dependence on time. Spatial resolution (within the range of a few spherical harmonics) is less relevant. We argue that especially for early detectability, climate predictions (with proper initialization from observations) are more promising. Many details depend on the choice of climate model for observation and fingerprint. We discuss the potential and limitation of using multimodel ensembles.

  3. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  4. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J;

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  5. Ground water and climate change

    Science.gov (United States)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  6. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit;

    to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  7. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope...

  8. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  9. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  10. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  11. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  12. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  13. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  14. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  15. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  16. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  17. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  18. Detecting Extreme Events in Gridded Climate Data

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, Bharathkumar [North Carolina State University (NCSU), Raleigh; Gadiraju, Krishna [North Carolina State University (NCSU), Raleigh; Vatsavai, Raju [North Carolina State University (NCSU), Raleigh; Kaiser, Dale Patrick [ORNL; Karnowski, Thomas Paul [ORNL

    2016-01-01

    Detecting and tracking extreme events in gridded climatological data is a challenging problem on several fronts: algorithms, scalability, and I/O. Successful detection of these events will give climate scientists an alternate view of the behavior of different climatological variables, leading to enhanced scientific understanding of the impacts of events such as heat and cold waves, and on a larger scale, the El Nin o Southern Oscillation. Recent advances in computing power and research in data sciences enabled us to look at this problem with a different perspective from what was previously possible. In this paper we present our computationally efficient algorithms for anomalous cluster detection on climate change big data. We provide results on detection and tracking of surface temperature and geopotential height anomalies, a trend analysis, and a study of relationships between the variables. We also identify the limitations of our approaches, future directions for research and alternate approaches.

  19. Responses of large mammals to climate change.

    Science.gov (United States)

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  20. Responses of large mammals to climate change.

    Science.gov (United States)

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  1. Reservoir Systems in Changing Climate

    Science.gov (United States)

    Lien, W.; Tung, C.; Tai, C.

    2007-12-01

    Climate change may cause more climate variability and further results in more frequent extreme hydrological events which may greatly influence reservoir¡¦s abilities to provide service, such as water supply and flood mitigation, and even danger reservoir¡¦s safety. Some local studies have identified that climate change may cause more flood in wet period and less flow in dry period in Taiwan. To mitigate climate change impacts, more reservoir space, i.e. less storage, may be required to store higher flood in wet periods, while more reservoir storage may be required to supply water for dry periods. The goals to strengthen adaptive capacity of water supply and flood mitigation are conflict under climate change. This study will focus on evaluating the impacts of climate change on reservoir systems. The evaluation procedure includes hydrological models, a reservoir water balance model, and a water supply system dynamics model. The hydrological models are used to simulate reservoir inflows under different climate conditions. Future climate scenarios are derived from several GCMs. Then, the reservoir water balance model is developed to calculate reservoir¡¦s storage and outflows according to the simulated inflows and operational rules. The ability of flood mitigation is also evaluated. At last, those outflows are further input to the system dynamics model to assess whether the goal of water supply can still be met. To mitigate climate change impacts, the implementing adaptation strategies will be suggested with the principles of risk management. Besides, uncertainties of this study will also be analyzed. The Feitsui reservoir system in northern Taiwan is chosen as a case study.

  2. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  3. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip;

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  4. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  5. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  6. Climate Change Facts: Answers to Common Questions

    Science.gov (United States)

    ... Basics Climate Change Facts: Answers to Common Questions Climate Change Facts: Answers to Common Questions This page ... All Responses Is there a scientific consensus on climate change? The major scientific agencies of the United ...

  7. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  8. Classifying climate change adaptation frameworks

    Science.gov (United States)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  9. A Review of the Detection Methods for Climate Regime Shifts

    Directory of Open Access Journals (Sweden)

    Qunqun Liu

    2016-01-01

    Full Text Available An abrupt climate change means that the climate system shifts from a steady state to another steady state. Study on the phenomenon and theory of the abrupt climate change is a new research field of modern climatology, and it is of great significance for the prediction of future climate change. The climate regime shift is one of the most common forms of abrupt climate change, which mainly refers to the statistical significant changes on the variable of climate system at one time scale. These detection methods can be roughly divided into five categories based on different types of abrupt changes, namely, abrupt mean value change, abrupt variance change, abrupt frequency change, abrupt probability density change, and the multivariable analysis. The main research progress of abrupt climate change detection methods is reviewed. What is more, some actual applications of those methods in observational data are provided. With the development of nonlinear science, many new methods have been presented for detecting an abrupt dynamic change in recent years, which is useful supplement for the abrupt change detection methods.

  10. Climate Change and Nuclear Power

    International Nuclear Information System (INIS)

    The 1992 United Nations Framework Convention on Climate Change is one of a series of recent agreements through which countries around the world are banding together to meet the challenge of altering the global climate. In 1997, in respond to the growing public pressure and questions on climate change governments adopted the Kyoto Protocol. The 5th Conference of the Parties to the UN Framework Convention on Climate Change (COP5 UNFCCC) was a rather technical and complex conference which focused in particular on the development of a detailed framework for the application of ''flexible mechanisms'' as laid down in the Kyoto Protocol. Young Generation Network as a part of the International Nuclear Forum at COP5 took part in the debate saying that nuclear is the part of the solution. (author)

  11. Projection of future climate changes

    International Nuclear Information System (INIS)

    Climate models provide the opportunity to anticipate how the climate system may change due to anthropogenic activities during the 21. century. Studies are based on numerical simulations that explore the evolution of the mean climate and its variability according to different socio-economic scenarios. We present a selection of results from phase 5 of the Climate model intercomparison project (CMIP5) with an illustrative focus on the two French models that participated to this exercise. We describe the effects of human perturbations upon surface temperature, precipitation, the cryo-sphere, but also extreme weather events and the carbon cycle. Results show a number of robust features, on the amplitude and geographical patterns of the expected changes and on the processes at play in these changes. They also show the limitations of such a prospective exercise and persistent uncertainties on some key aspects. (authors)

  12. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes...... substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. Udgivelsesdato: 2007-Dec......Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  13. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  14. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  15. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  16. Confronting climate change

    International Nuclear Information System (INIS)

    Emissions of greenhouse gases (GHGs), especially from energy production and use, and their impact on global climate emerged as a major national issue in the United States during the 1980s. As a result, Congress directed the US Department of Energy (DOE) to ask the National Academy of Sciences and the National Academy of Engineering to assess the current state of research and development (R ampersand D) in the United States in alternative energy sources, and to suggest energy R ampersand D strategies involving roles for both the public and private sectors, should the government want to give priority to stabilizing atmospheric concentrations of GHGs. The findings and recommendations of the Committee on Alternative Energy Research and Development Strategies, appointed by the National Research Council in response to Congress's directive, are provided in this report and summarized in this chapter. The energy R ampersand D strategies and actions recommended by the committee are structured to facilitate prudent and decisive responses by the United States, despite uncertainties regarding the effects of GHGs on global climate. 96 refs., 4 figs., 17 tabs

  17. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  18. Tracking Public Beliefs About Anthropogenic Climate Change.

    Science.gov (United States)

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  19. Tracking Public Beliefs About Anthropogenic Climate Change.

    Directory of Open Access Journals (Sweden)

    Lawrence C Hamilton

    Full Text Available A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40% concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15% say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  20. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  1. Climate change and fuel poverty

    OpenAIRE

    Simon Dresner; Paul Ekins

    2005-01-01

    The research examined the possible effects of rapid climate change on fuel poverty (needing to spend more than 10% of income to maintain a satisfactory level of warmth and other energy services in the home). One particular concern was the prospect that there might be a shutting off of the Gulf Stream, which warms Britain and the rest of north-western Europe. Computer simulations of the climate indicate that shutting down the Gulf Stream would cool England by about 3°C. Climate is not the only...

  2. Reporting the climate change crisis

    OpenAIRE

    Carvalho, Anabela

    2010-01-01

    Climate change is one of the most serious threats that humankind will have to deal with in the coming decades. There is every indication that it will engender a significant upheaval in the climate patterns of the world regions, with corresponding impacts on agriculture, ecosystems and human health. This main entail unpredictable weather events, like storms and tornados, while posing significant risks for human security, destruction of housing and economic structures, and floodi...

  3. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  4. Invasive species and climate change

    Science.gov (United States)

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  5. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  6. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  7. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  8. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  9. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  10. Philosophy of climate science part II: modelling climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the second of three parts of an introduction to the philosophy of climate science. In this second part about modelling climate change, the topics of climate modelling, confirmation of climate models, the limits of climate projections, uncertainty and finally model ensembles will be discussed.

  11. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  12. Market Strategies for Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2004-06-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still reflect the political, non-market components. Using empirical information from the largest multinational companies worldwide, this article examines current market responses, focusing on the drivers (threats and opportunities) and the actions being taken by companies to address climate change. It also develops a typology of climate strategies that addresses the market dimensions, covering both the aim (strategic intent) and the degree of cooperation (form of organisation). The aim turns out to be either innovation or compensation, while the organisational arrangements to reach this objective can be oriented at the company level (internal), at companies' own supply chain (vertical) or at cooperation with other companies (competitors or companies in other sectors - horizontal). The typology can assist managers in deciding about the strategic option(s) they want to choose regarding climate change, also based on the insights offered by the paper about the current state of activities of other companies worldwide.

  13. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  14. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  15. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people. PMID:26920851

  16. Impacts of Climate Change on the Climate Extremes of the Middle East

    Science.gov (United States)

    Turp, M. Tufan; Collu, Kamil; Deler, F. Busra; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The Middle East is one of the most vulnerable regions to the impacts of climate change. Because of the importance of the region and its vulnerability to global climate change, the studies including the investigation of projected changes in the climate of the Middle East play a crucial role in order to struggle with the negative effects of climate change. This research points out the relationship between the climate change and climate extremes indices in the Middle East and it investigates the changes in the number of extreme events as described by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI). As part of the study, the regional climate model (RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) is run to obtain future projection data. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  17. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  18. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  19. Sustain : the climate change challenge

    International Nuclear Information System (INIS)

    This special report on climate change and greenhouse gas emissions focused on widely held current opinions which indicate that average global surface temperatures are increasing. The potential consequences of climate change can include rising sea levels, drought storms, disease, and mass migration of people. While the global climate change theory is widely accepted, the report warns that there are still many uncertainties about how climate change occurs and what processes can offset human-caused emissions. Canada produces about 2 per cent of global greenhouse gas emissions. Carbon dioxide comprises 80 per cent of Canada's total emissions. It is well known that Canadians place a heavy demand on energy to heat and light their homes because of the northern climate, and on transportation fuels to move people, goods and services across vast distances. With the Kyoto Protocol of December 1997, developed countries agreed to legally binding greenhouse gas emission reductions of at least five per cent by 2008 to 2012. Canada agreed to a six per cent reduction below 1990 levels by 2010. Although Canada signed the Kyoto Protocol, it does not intend to ratify it until an implementation strategy has been developed with broad support. The goal is to develop a strategy by 1999. The oil and gas industry has in general improved its efficiency and reduced emissions on a per unit of production basis by installing new equipment and new operating practices that reduce greenhouse gas emissions to the atmosphere, and improve energy efficiency. The industry is conscious of its responsibility, and while not fully in agreement with the environmental doomsayers, it is prepared to take proactive actions now, albeit on a voluntary basis. What the industry wants is a balance between environmental and economic responsibility. Emissions trading' and 'joint implementation' are seen as two important tools to tackle climate change on a global basis. 4 figs

  20. The adaptation to climate change

    International Nuclear Information System (INIS)

    The authors address the issue of adaptation to climate change. They first address the physical aspects related to this issue: scenarios of temperature evolution, main possible impacts. Then, they address the social impacts related to climate risks, and the adaptation strategies which aim at reducing the exposure and vulnerability of human societies, or at increasing their resilience. Some examples of losses of human lives and of economic damages due to recent catastrophes related to climate change are evoked. The authors address the international framework, the emergence of an international regime on climate, the quite recent emergence of adaptation within international negotiations in 2001, the emergence of the idea of a support to developing countries. National and local policies are presented in the next chapter (in the European Union, the Netherlands which are faced with the issue of sea level rise, programs in developing countries) and their limitations are also outlined. The next chapter addresses the adaptation actions performed by private actors (enterprises, households, associations, civil society, and so on) with example of vulnerability, and adaptation opportunities and possibilities in some specific sectors. The last chapter presents a typology of actions of adaptation, indicators of adaptation to climate change, and examples of mistaken adaptation

  1. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  2. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  3. Climatic servitude: climate change, business and politics

    International Nuclear Information System (INIS)

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  4. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  5. Integrated assessment of climate change

    International Nuclear Information System (INIS)

    Many researchers are working on all the separate parts of the climate problem. The objective of integrated assessment is to put the results from this work together in order to look carefully at the big picture so as to: (1) keep a proper sense of perspective about the problem, since climate change will occur in the presence of many other natural and human changes; (2) develop the understanding necessary to support informed decision making by many different key public and private actors around the world; and (3) assure that the type and mix of climate-related research that is undertaken will be as useful as possible to decisions makers in both the near and long term. This paper outlines a set of design guidelines for formulating integrated assessment programs and projects and then outlines some of the current problems and opportunities. Selected points are illustrated by drawing on results from the integrated assessment research now in progress at Carnegie Mellon University

  6. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  7. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO2 emissions. (Author)

  8. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future. PMID:27300144

  9. Kyoto protocol on climate change

    International Nuclear Information System (INIS)

    This article reports a short overview of main points of Kyoto protocol to United Nations Framework Convention on climate Change and of some options still to be defined, evolutions of Italian emissions with respect to other European countries, check of decree by inter ministerial committee on economic planning on national plan to reduce emissions

  10. Health Effects of Climate Change

    Science.gov (United States)

    ... or insects can increase. Disease vectors such as mosquitoes, ticks, and flies may occur in greater numbers over longer periods during the year, and expand the locations in which they thrive. Climate change also affects air movement and quality by increasing ...

  11. Climate benefits of changing diet

    NARCIS (Netherlands)

    Stehfest, E.; Bouwman, A.F.; Vuuren, van D.P.; Elzen, M.; Kabat, P.

    2009-01-01

    Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in

  12. Symposium on Global Climate Change

    OpenAIRE

    Richard Schmalensee

    1993-01-01

    Global climate change, and policies to slow it or adapt to it, may be among the primary forces shaping the world's economy throughout the next century and beyond. Nonetheless, popular treatments of this issue commonly ignore economics. This introductory essay sketches some of the uncertainties and research questions.

  13. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  14. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  15. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  16. Climate change and related activities

    International Nuclear Information System (INIS)

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change

  17. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  18. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  19. Population, poverty, and climate change

    OpenAIRE

    Das Gupta, Monica

    2013-01-01

    The literature is reviewed on the relationships between population, poverty, and climate change. While developed countries are largely responsible for global warming, the brunt of the fallout will be borne by the developing world, in lower agricultural output, poorer health, and more frequent natural disasters. Carbon emissions in the developed world have leveled off, but are projected to ...

  20. Indigenous Peoples and Climate Change

    Directory of Open Access Journals (Sweden)

    Shelton H. Davis

    2010-05-01

    Full Text Available There has been a growing attention on the need to take into account the effects of global climate change. This is particularly so with respect to the increasing amount of green house gas emissions from the Untied States and Europe affecting poor peoples, especially those in developing countries. In 2003, for example, the experts of several international development agencies, including the World Bank, prepared a special report titled “Poverty and Climate Change: Reducing the Vulnerability of the Poor through Adaptation” (OECD 2003. This report followed the Eighth Session of the Conference of Parties (COP8 to the United Nations Framework Convention on Climate Change (UNFCCC in New Delhi, India in October 2002. It showed that poverty reduction is not only one of the major challenges of the 21st century, but also that climate change is taking place in many developing countries and is increasingly affecting, in a negative fashion, both the economic conditions and the health of poor people and their communities.

  1. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  2. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  3. Cloud feedback on climate change and variability

    Science.gov (United States)

    Zhou, C.; Dessler, A. E.; Yang, P.

    2014-12-01

    Cloud feedback on climate change and variability follow similar mechanism in climate models, and the magnitude of cloud feedback on climate change and variability are well correlated among models. Therefore, the cloud feedback on short-term climate fluctuations correlates with the equilibrium climate sensitivity in climate models. Using this correlation and the observed short-term climate feedback, we infer a climate sensitivity of ~2.9K. The cloud response to inter-annual surface warming is generally consistent in observations and climate models, except for the tropical boundary-layer low clouds.

  4. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  5. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  6. The ACPI Climate Change Simulations

    International Nuclear Information System (INIS)

    The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data from these runs were saved at 6-hourly intervals (hourly for certain critical fields) to support the ACPI objective of accurately modeling hydrological cycles over the western U.S. It is shown that the initialization to 1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3-8C over northern high-latitudes by the end of the 21st century, and 1-2C over the oceans. This is generally within ±0.1C of model runs without the 1995 ocean initialization. The exception is in the Antarctic circumpolar ocean where surface air temperature is cooler in the ACPI run; however the ensemble scatter is large in this region. Although the difference in climate at the end of the 21st century is minimal between the ACPI runs and traditionally spun up runs, it might be larger for CGCMs with higher climate sensitivity or larger ocean drifts. Our results suggest that the effect of small errors in the oceans (such as those associated with climate drifts) on CGCM-simulated climate changes for the next 50-100 years may be negligible

  7. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  8. Climatic change controls productivity variation in global grasslands

    OpenAIRE

    Qingzhu Gao; Wenquan Zhu; Schwartz, Mark W.; Hasbagan Ganjurjav; Yunfan Wan; Xiaobo Qin; Xin Ma; Williamson, Matthew A.; Yue Li

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with ...

  9. 1000 years of climate change

    Science.gov (United States)

    Keller, C.

    Solar activity has been observed to vary on decadal and centennial time scales. Recent evidence (Bond, 2002) points to a major semi-periodic variation of approximately 1,500 yrs. For this reason, and because high resolution proxy records are limited to the past thousand years or so, assessing the role of the sun's variability on climate change over this time f ame has received much attention. A pressingr application of these assessments is the attempt to separate the role of the sun from that of various anthropogenic forcings in the past century and a half. This separation is complicated by the possible existence of natural variability other than solar, and by the fact that the time-dependence of solar and anthropogenic forcings is very similar over the past hundred years or so. It has been generally assumed that solar forcing is direct, i.e. changes in sun's irradiance. However, evidence has been put forth suggesting that there exist various additional indirect forcings that could be as large as or even exceed direct forcing (modulation of cosmic ray - induced cloudiness, UV- induced stratospheric ozone change s, or oscillator -driven changes in the Pacific Ocean). Were such forcings to be large, they could account for nearly all 20th Century warming, relegating anthropogenic effects to a minor role. Determination of climate change over the last thousand years offers perhaps the best way to assess the magnitude of total solar forcing, thus allowing its comparison with that of anthropogenic sources. Perhaps the best proxy records for climate variation in the past 1,000 yrs have been variations in temperat ure sensitive tree rings (Briffa and Osborne, 2002). A paucity of such records in the Southern Hemisphere has largely limited climate change determinations to the subtropical NH. Two problems with tree rings are that the rings respond to temperature differently with the age of the tree, and record largely the warm, growing season only. It appears that both these

  10. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  11. Climate change science - beyond IPCC

    International Nuclear Information System (INIS)

    Full text: Full text: The main conclusions of the IPCC Working Group I assessment of the physical science of climate change, from the Fourth IPCC Assessment, will be presented, along with the evidence supporting these conclusions. These conclusions include: Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture; The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] Wm-2; Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level; At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. Palaeo-climatic information supports the interpretation that the warmth of the last half-century is unusual in at least the previous 1,300 years; Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations; Discernible human influences now extend to other aspects of climate, including ocean warming, continental

  12. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  13. Drought, Climate Change and Potential Agricultural Productivity

    Science.gov (United States)

    Sheffield, J.; Herrera-Estrada, J. E.; Caylor, K. K.; Wood, E. F.

    2011-12-01

    climate change. Whether these events are exceptional in the context of the historic record is a key question in detecting a climate change signal and evaluating the potential future impacts. However, a detectable signal is generally masked by uncertainties in the data, particularly for precipitation, but also the impact of changes in evapotranspiration, and its driving radiative and aerodynamic controls. We also explore the potential future impacts of global warming on drought and agricultural productivity over the next 30-100 years using future climate data from downscaled and bias corrected climate model data. This indicates that drying in marginal climates coupled with increased evaporation may have the largest impact on drought occurrence and agricultural productivity.

  14. Climatic change and security stakes

    International Nuclear Information System (INIS)

    This paper explores the relationships between climate change and security. Potential threats from climate change, as a unique source of stress or together with other factors, to human security are first examined. Some of the most explicit examples illustrate this section: food security, water availability, vulnerability to extreme events and vulnerability of small islands States and coastal zones. By questioning the basic needs of some populations or at least aggravating their precariousness, such risks to human security could also raise global security concerns, which we examine in turn, along four directions: rural exodus with an impoverishment of displaced populations, local conflicts for the use of natural resources, diplomatic tensions and international conflicts, and propagation to initially-unaffected regions through migratory flows. (authors)

  15. Radiative Forcing of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  16. Making sense of climate change

    International Nuclear Information System (INIS)

    Climate change has always occurred naturally but at a pace to which the earth has adapted well. Now, due to human activities like energy utilization and waste disposal, the earth is heating up much faster than earlier. Ecosystems, water resources, food sources, health, and human settlements are getting adversely affected. Floods and droughts are increasing, glaciers are melting, and disease is spreading. The problem is serious and it is time to act. Global consensus has been agreements; mitigation initiatives have been undertaken; hopes are up. The aim of this book is to raise the awareness of secondary school students about climate change and its impacts while enhancing their understanding of global responses. It includes a chapter specific to Indian conditions. Lucidly written and illustrated with anecdotes and visuals, this handbook will catalyse young minds into greater awareness, concern, and, hopefully, remedial action on this global threat

  17. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  18. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    OpenAIRE

    Kanchan Joshi; Preeti Chaturvedi

    2013-01-01

    Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  19. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  20. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review. PMID:22435190

  1. Poverty Traps and Climate Change

    OpenAIRE

    Tol, Richard S.J.

    2011-01-01

    We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro level, technological progress is slow because of decreasing returns to scale in agriculture. With high populatio...

  2. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models are given

  3. Challenges and Possibilities in Climate Change Education

    Science.gov (United States)

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  4. Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control

    Directory of Open Access Journals (Sweden)

    Karsten Hueffer

    2013-02-01

    Full Text Available Over the last 60 years, Alaska's mean annual temperature has increased by 1.6°C, more than twice the rate of the rest of the United States. As a result, climate change impacts are more pronounced here than in other regions of the United States. Warmer temperatures may allow some infected host animals to survive winters in larger numbers, increase their population and expand their range of habitation thus increasing the opportunity for transmission of infection to humans. Subsistence hunting and gathering activities may place rural residents of Alaska at a greater risk of acquiring zoonotic infections than urban residents. Known zoonotic diseases that occur in Alaska include brucellosis, toxoplasmosis, trichinellosis, giardiasis/cryptosporidiosis, echinococcosis, rabies and tularemia. Actions for early disease detection, research and prevention and control include: (1 determining baseline levels of infection and disease in both humans and host animals; (2 conducting more research to understand the ecology of infection in the Arctic environment; (3 improving active and passive surveillance systems for infection and disease in humans and animals; (4 improving outreach, education and communication on climate-sensitive infectious diseases at the community, health and animal care provider levels; and (5 improving coordination between public health and animal health agencies, universities and tribal health organisations.

  5. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  6. Communicating Uncertainties on Climate Change

    Science.gov (United States)

    Planton, S.

    2009-09-01

    The term of uncertainty in common language is confusing since it is related in one of its most usual sense to what cannot be known in advance or what is subject to doubt. Its definition in mathematics is unambiguous but not widely shared. It is thus difficult to communicate on this notion through media to a wide public. From its scientific basis to the impact assessment, climate change issue is subject to a large number of sources of uncertainties. In this case, the definition of the term is close to its mathematical sense, but the diversity of disciplines involved in the analysis process implies a great diversity of approaches of the notion. Faced to this diversity of approaches, the issue of communicating uncertainties on climate change is thus a great challenge. It is also complicated by the diversity of the targets of the communication on climate change, from stakeholders and policy makers to a wide public. We will present the process chosen by the IPCC in order to communicate uncertainties in its assessment reports taking the example of the guidance note to lead authors of the fourth assessment report. Concerning the communication of uncertainties to a wide public, we will give some examples aiming at illustrating how to avoid the above-mentioned ambiguity when dealing with this kind of communication.

  7. Past and Current Climate Change

    Science.gov (United States)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  8. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  9. Climate change, environment and allergy.

    Science.gov (United States)

    Behrendt, Heidrun; Ring, Johannes

    2012-01-01

    Climate change with global warming is a physicometeorological fact that, among other aspects, will also affect human health. Apart from cardiovascular and infectious diseases, allergies seem to be at the forefront of the sequelae of climate change. By increasing temperature and concomitant increased CO(2) concentration, plant growth is affected in various ways leading to prolonged pollination periods in the northern hemisphere, as well as to the appearance of neophytes with allergenic properties, e.g. Ambrosia artemisiifolia (ragweed), in Central Europe. Because of the effects of environmental pollutants, which do not only act as irritants to skin and mucous membranes, allergen carriers such as pollen can be altered in the atmosphere and release allergens leading to allergen-containing aerosols in the ambient air. Pollen has been shown not only to be an allergen carrier, but also to release highly active lipid mediators (pollen-associated lipid mediators), which have proinflammatory and immunomodulating effects enhancing the initiation of allergy. Through the effects of climate change in the future, plant growth may be influenced in a way that more, new and altered pollens are produced, which may affect humans. PMID:22433365

  10. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  11. Accounting for Climate Change: Introduction

    International Nuclear Information System (INIS)

    The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is high on both political and scientific agendas internationally. As increasing international concern and cooperation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The approaches to addressing uncertainty introduced in this article attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Authors of the accompanying articles use detailed uncertainty analyses to enforce the current structure of the emission trading system and attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. Assessment of uncertainty can help improve inventories and manage risk. Through recognizing the importance of, identifying and quantifying uncertainties, great strides can be made in the process of Accounting for Climate Change

  12. Sustainable development and climatic change

    International Nuclear Information System (INIS)

    The relationships between the fight against climatic change and the objective of sustainable development have acquired an historical perspective: the Framework Convention of 1992, the Kyoto Protocol and the Bonn-Marrakech Accords. The Convention demonstrates that we must strive for economic growth and sustainable development to allow developing countries to better face the problems associated with climatic change. In the Kyoto Protocol, the commitments agreed upon by northern countries were presented as implicating a group of policies that promote sustainable development. The author discussed the challenges, the contradictions, and the means available to fight against climatic change since Rio. The author begins by expressing the hope that the Kyoto Protocol will be ratified at the Johannesburg Summit, since Russia is moving forward, despite the withdrawal of the United States. Scientists seem to agree that global warming is occurring due to the increase in greenhouse gases in the atmosphere. There are two major difficulties encountered in attempting to stabilize the levels of greenhouse gases: (1) are the countries that emit the most gases in a position to alter their activities in an effort to reduce emissions? and (2) will developing countries be able to avoid the pitfalls that led developed countries to emit greenhouse gases in enormous quantities?

  13. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  14. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  15. Lack of Climate Expertise Among Climate Change Educators

    Science.gov (United States)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  16. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies USDA Climate Hubs Through this ...

  17. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  18. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  19. Frogs and climate change in South Africa

    OpenAIRE

    Minter, Leslie Rory

    2011-01-01

    This article explores the relationship between frog declines and climate change, discusses the possible impact of climate change on the South African frog fauna, and highlights the necessity for increased research and monitoring of our frog populations.

  20. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Science.gov (United States)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  1. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  2. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  3. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  4. Changes in drought risk with climate change

    International Nuclear Information System (INIS)

    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  5. Climate change mitigation policies in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinaviciute, I.

    2003-09-01

    The Lithuanian climate change policy has to be considered in the framework of the Convention on Climate Change. The National Strategy for Implementation of Convention was the first step in evaluating the country's impact on climate change, adapting to the Convention and foreseeing the means and measures for climate change mitigation. The paper introduces main issues related to climate change mitigation policy in Lithuania. It presents an analysis of greenhouse gas emission trends in Lithuania and surveys institutional organizations as well as stakeholder associations related to climate change issues and their role in climate policy making. The main Lithuanian international environmental obligation and Lithuanian governmental climate change mitigation policy in the energy sector are presented as well. (Author)

  6. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  7. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, Sabine

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  8. As climate changes, so do glaciers

    OpenAIRE

    Lowell, Thomas V.

    2000-01-01

    Understanding abrupt climate changes requires detailed spatial/temporal records of such changes, and to make these records, we need rapidly responding, geographically widespread climate trackers. Glacial systems are such trackers, and recent additions to the stratigraphic record show overall synchronous response of glacial systems to climate change reflecting global atmosphere conditions.

  9. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  10. Climate change, migration and health.

    Science.gov (United States)

    Carballo, Manuel

    2008-01-01

    In summary, climate change of the magnitude that is now being talked about promises to invoke major changes in the nature of the world we live in. From an agricultural and food production perspective new challenges are already emerging and many countries, regional organizations and international agencies are ill-prepared to deal with them. From the perspective of the forced emergence of new diseases. There may also be complex struggles for scarce resources including land, water, food and housing. To what extent these will translate into social and political instability is not clear, but the potential for instability within and between countries should not be under-estimated; nor should the scarcity of selected commodities. Understanding these complex dynamics and planning for them in timely and comprehensive ways is essential. Preparedness by governments, the international community and the private sector, will help accommodate some of the changes that are already taking place and many others which are still to materialize. PMID:18795506

  11. Climate change and nuclear power

    International Nuclear Information System (INIS)

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  12. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  13. Global climate change : greenhouse effect

    OpenAIRE

    Attard, David

    1992-01-01

    One of the main problems caused by climate change is the greenhouse effect. Human activities emit so-called greenhouse gases into the atmosphere, such as carbon dioxide which is produced through fossil fuel burning. These gases absorb the earth‘s radiation, forcing the earth‘s temperature, like that of in greenhouse, to rise. Global warming would lead to a rise in the global mean sea-level due to thermal expansion of the waters, and glaciers will melt at a fast rate, as will the Greenland ice...

  14. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  15. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  16. Scientific aspects of climate change

    International Nuclear Information System (INIS)

    For the last 35 years, the average temperature of the planet has been steadily increasing- Are the greenhouse gases emitted by human beings the cause? What will the consequences be? What can we do? The fourth report of the intergovernmental Panel on Climate change tries to answer these questions. There are clear signs of thawing that primary affect Greenland and the Antarctic, but there are still many doubts what the consequences will be throughout the century. In any case, it seems obvious that, if greenhouse gas emissions are not substantially reduced very soon, the rising temperature trend and its associated consequences will persist beyond the 21st century. (Author)

  17. Romania within the Context of Climatic Changes

    OpenAIRE

    Dragoş, Raluca; Dragoş, Gheorghe-Viorel

    2011-01-01

    Under the circumstances of the menacing climatic changes upon both environment and social-economic framework, the United Nations Framework Convention on Climate Change (UNFCCC) has established its main objective “achieving stabilization of gas concentrations within climatic system”. Due to the fact that the main cause of the climatic changes derives from the exhausted gases resulting in the greenhouse effect, measures, targets and programs of reducing greenhouse effects gases will be esta...

  18. Climate Change and Corporate Environmental Responsibility

    OpenAIRE

    Dewan Mahboob HOSSAIN; Chowdhury, M. Jahangir Alam

    2012-01-01

    Climate change, as an international environmental issue, is getting a lot of attention. The negative effects of climate change have become one of the most talked about issues among Governments, scientists, environmentalists and others. It is said that business activities are affecting the climate negatively. In order to minimize the negative effects of climate change, the activities of the businesses should be controlled and encouraged to perform in a socially responsible manner. The article ...

  19. The challenges of communicating climate change

    Directory of Open Access Journals (Sweden)

    Emiliano Feresin

    2009-06-01

    Full Text Available The climate change issue has become increasingly present in our society in the last decade and central also to communication studies. In the e-book “Communicating Climate Change: Discourses, Mediations and Perceptions”, edited by Anabela Carvalho, various scholars investigate how climate change challenges communication by looking at three main aspects: the discourses of a variety of social actors on climate change; the reconstruction of those discourses in the media; the citizens’ perceptions, understandings and attitudes in relation to climate change.

  20. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  1. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.;

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  2. Climate Change Projections for African Urban Areas

    Science.gov (United States)

    Simonis, Ingo; Engelbrecht, Francois; Bucchignani, Edoardo; Mercogliano, Paola; Naidoo, Mogesh

    2013-04-01

    Mainly driven by changes in the orbital characteristics of Earth around the sun, the planet's climate has been continuously changing over periods of tens of thousands of years. However, the warming that has been detected in the Earth's atmosphere over the last century is occurring at a rate that cannot be explained by any known natural cycle. Main-stream science has indeed reached consensus that the 'enhanced green house effect', caused by the interplay of incoming short-wave irradiation, outgoing long-wave radiation and the absorption of energy by enhanced levels of CO2 and water vapour in the troposphere, is the main forcing mechanism responsible for the phenomena of global warming. The enhanced greenhouse effect strengthens the 'natural green house effect' that results from the CO2 and water vapour occurring naturally in the atmosphere. The continuous burning of fossil fuels since the industrial revolution and the simultaneous degradation of large forests, are the main reasons for the increase in CO2 concentrations in the atmosphere. The availability of climate change projection data varies considerably for different areas on Earth. Whereas the data centres storing climate change projections for Europe and North America now store petabytes of data, regionally downscaled projections for Africa are rarely available. In the context of the research project CLUVA, (Assessing vulnerability of urban systems, populations and goods in relation to natural and man-made disasters in Africa, co-funded by the European Commission under grant agreement no: 265137), the Council for Industrial and Scientific Research (CSIR) in South Africa and the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) in Italy have produced a large set of projections of climate change over Africa, covering the time period 1950 to 2100. Through the collaboration between CMCC and CSIR, a multi-model ensemble of eight high-resolution simulations of climate change over parts of West and East

  3. Rapid adaptation to climate change.

    Science.gov (United States)

    Hancock, Angela M

    2016-08-01

    In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations. PMID:27463237

  4. Climate Change Adaptation in the Water Sector

    NARCIS (Netherlands)

    Ludwig, F.; Kabat, P.; Schaik, van H.; Valk, van der M.

    2009-01-01

    Today’s climate variability already has a large impact on water supply and protection. Millions of people are affected every year by droughts and floods. Future climate change is likely to make things worse. Many people within the water sector are aware that climate change is affecting water resourc

  5. Contributions of Psychology to Limiting Climate Change

    Science.gov (United States)

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  6. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  7. Science Teachers' Perspectives about Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  8. Climate change and the ethics of discounting

    NARCIS (Netherlands)

    M.D. Davidson

    2015-01-01

    Climate policy-making requires a balancing, however rudimentary, of the costs of reducing greenhouse gas emissions against the benefits of reduced risks of climate change. Since those creating and those facing the risks of climate change belong to different generations, striking the balance is preem

  9. Climate Change and Poverty : An Analytical Framework

    OpenAIRE

    Hallegatte, Stephane; Bangalore, Mook; Bonzanigo, Laura; Fay, Marianne; Narloch, Ulf; Rozenberg, Julie; Vogt-Schilb, Adrien

    2014-01-01

    Climate change and climate policies will affect poverty reduction efforts through direct and immediate impacts on the poor and by affecting factors that condition poverty reduction, such as economic growth. This paper explores this relation between climate change and policies and poverty outcomes by examining three questions: the (static) impact on poor people's livelihood and well-being; ...

  10. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered. PMID:23185568

  11. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  12. Climate change: believing and seeing implies adapting.

    Directory of Open Access Journals (Sweden)

    Kristina Blennow

    Full Text Available Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01 to 0.81 (SD ± 0.03 for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008 to 0.91 (SD ± 0.02. We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  13. Rethinking climate change as a security threat

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, Corinne

    2011-10-15

    Once upon a time climate change was a strictly environment and development issue. Today it has become a matter of national and international security. Efforts to link climate change with violent conflict may not be based on solid evidence, but they have certainly captured the attention of governments. They have played a vital role in raising the much-needed awareness of climate change as an issue that deserves global action. But at what cost? Focusing on climate change as a security threat alone risks devolving humanitarian responsibilities to the military, ignoring key challenges and losing sight of those climate-vulnerable communities that stand most in need of protection.

  14. Pacific Islands Climate Change Virtual Library

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virtual Library provides access to web based climate variability and climate change information and tools relevant to the Pacific Islands including case...

  15. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  16. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  17. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  18. Economic Consequences Of Climate Change

    Science.gov (United States)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  19. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  20. Making Cities Resilient to Climate Change

    OpenAIRE

    Dulal, Hari Bansha

    2016-01-01

    Urbanization is truly a global phenomenon. Starting at 39% in 1980, the urbanization level rose to 52% in 2011. Ongoing rapid urbanization has led to increase in urban greenhouse gas (GHG) emissions. Urban climate change risks have also increased with more low-income urban dwellers living in climate sensitive locations. Despite increased emissions, including GHGs and heightened climate change vulnerability, climate mitigation and adaptation actions are rare in the cities of developing countri...

  1. The transnational regime complex for climate change

    OpenAIRE

    Kenneth W Abbott

    2012-01-01

    In climate change, as in other areas, recent years have produced a ‘Cambrian explosion’ of transnational institutions, standards, financing arrangements, and programs. As a result, climate governance has become complex, fragmented, and decentralized, operating without central coordination. Most studies of climate governance focus on inter­state institutions. In contrast, I map a different realm of climate change governance: the diverse array of transnational schemes. I analyze this emerging s...

  2. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  3. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  4. Forests and climate change - lessons from insects

    OpenAIRE

    Battisti A

    2008-01-01

    The climate change may indirectly affects the forest ecosystems through the activity of phytophagous insects. The climate change has been claimed to be responsible of the range expansion northward and upward of several insect species of northern temperate forests, as well as of changes in the seasonal phenology. Several papers have dealt with the prediction of the most likely consequences of the climate change on the phytophagous insects, including some of the most important forest pests. Inc...

  5. Climatic change: possible impacts on human health

    OpenAIRE

    Beniston, Martin

    2005-01-01

    This paper addresses a number of problems relating climatic change and human health. Following an introduction that outlines the over-arching issues, a short summary is given on climatic change and its anthropogenic causes. The rest of the paper then focuses on the direct and indirect impacts of global climatic change on health. Direct effects comprise changes in the hygrothermal stress response of humans, atmospheric pollution, water quality and availability; indirect effects include the pot...

  6. Covering Climate Change in Wikipedia

    Science.gov (United States)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  7. Climate change mitigation and electrification

    International Nuclear Information System (INIS)

    An increasing number of mitigation scenarios with deep cuts in greenhouse gas emissions have focused on expanded use of demand-side electric technologies, including battery electric vehicles, plug-in hybrid vehicles, and heat pumps. Here we review such “electricity scenarios” to explore commonalities and differences. Newer scenarios are produced by various interests, ranging from environmental organizations to industry to an international organization, and represent a variety of carbon-free power generation technologies on the supply side. The reviewed studies reveal that the electrification rate, defined here as the ratio of electricity to final energy demand, rises in baseline scenarios, and that its increase is accelerated under climate policy. The prospect of electrification differs from sector to sector, and is the most robust for the buildings sector. The degree of transport electrification differs among studies because of different treatment and assumptions about technology. Industry does not show an appreciable change in the electrification rate. Relative to a baseline scenario, an increase in the electrification rate often implies an increase in electricity demand but does not guarantee it. - Highlights: ► Until recently few mitigation scenarios paid attention to electrification. ► Recent scenarios show an increasing focus on demand-side electric technologies. ► They are represented by various interests. ► Level of electrification increases with stringency of climate policy. ► Prospect of electrification differs across sectors.

  8. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    OpenAIRE

    Michal Belda; Petr Skalák; Aleš Farda; Tomáš Halenka; Michel Déqué; Gabriella Csima; Judit Bartholy; Csaba Torma; Constanta Boroneant; Mihaela Caian; Valery Spiridonov

    2015-01-01

    Regional climate models (RCMs) are important tools used for downscaling climate simulations from global scale models. In project CECILIA, two RCMs were used to provide climate change information for regions of Central and Eastern Europe. Models RegCM and ALADIN-Climate were employed in downscaling global simulations from ECHAM5 and ARPEGE-CLIMAT under IPCC A1B emission scenario in periods 2021–2050 and 2071–2100. Climate change signal present in these simulations is consistent with respective...

  9. Climatic change controls productivity variation in global grasslands.

    Science.gov (United States)

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A; Li, Yue

    2016-05-31

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2-71.2% during 1982-2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  10. Abrupt climate change:Debate or action

    Institute of Scientific and Technical Information of China (English)

    CHENG Hai

    2004-01-01

    Global abrupt climate changes have been documented by various climate records, including ice cores,ocean sediment cores, lake sediment cores, cave deposits,loess deposits and pollen records. The climate system prefers to be in one of two stable states, i.e. interstadial or stadial conditions, but not in between. The transition between two states has an abrupt character. Abrupt climate changes are,in general, synchronous in the northern hemisphere and tropical regions. The timescale for abrupt climate changes can be as short as a decade. As the impacts may be potentially serious, we need to take actions such as reducing CO2emissions to the atmosphere.

  11. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, J.-C.; Olesen, Jørgen E;

    2009-01-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular...... interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change...

  12. Climate change and shareholder value

    International Nuclear Information System (INIS)

    During 2005, the Carbon Trust worked with Cairneagle Associates to develop a methodology for analysing shareholder value at risk from climate change. The model developed offers a robust, replicable, top-down approach to analysing such value at risk. In addition to a company's own energy linked ('direct' and electricity linked 'indirect') carbon emissions, it looks further along the value chain and considers broader potential risk. In calculating the financial impact, the analysis quantifies the potential impact on profits, using the shape of the business in 2004, but applying a potential 2013 emissions regulatory regime. 2013 was chosen as the first year after the end of the 2008-2012 Kyoto compliance period (which also equates to Phase Two in the EU Emissions Trading Scheme). A major uncertainty is to what extent countries not currently regulated by the Kyoto Protocol (particularly the USA, India and China) will be brought into committed emission reduction targets from 2013. 2013 therefore represents the earliest year under this uncertain, but likely tougher, regulatory regime. However, although this report focuses on 2013, it needs to be recognised that, for many sectors, financial impacts will be seen significantly before this time. Ten 'case study companies' have been studied, from a range of sectors. In some cases, the 'case study company' analysed is strictly linked to a single company within that sector. In others, just a single corporate division has been reviewed, and in others yet again, characteristics from several companies have been combined to produce a more representative example. In order to enable analysis on a strictly like-for-like basis, the research has been based entirely upon public sources of information. This analysis illustrates what a determined shareholder (or other onlooker) could derive about value at risk from climate change, based upon what companies disclose today. A summary of the analysis for each sector case study is given, with

  13. Climate change and forest ecosystem dynamics

    International Nuclear Information System (INIS)

    Effects of climate change on water relations in forests were studied using several modelling approaches. Of several models tested, the FORGRO model had the highest potential for a reliable estimation of effects of climate change on forests. An evaluation of process-based models of forest growth showed that several models, including FORGRO, were able to produce accurate estimates of carbon and water fluxes at several forest sites of Europe. Responses were in relatively good agreement with the expected responses obtained by experimental studies, and models were able to deal with new conditions and explore the likely effects of climate change. The effect of climate change on forest development was assessed for three forests stands in the Netherlands using a gap model which was made climate sensitive by including the effects of climate change scenario IPCC IS92A on growth (FORGRO results), phenology (FORGRO results), and seed production (regression analysis). Results showed that climate change is likely to cause subtle changes rather than abrupt changes in forest development in the Netherlands, and that forest development on sandy soils in the Netherlands is not likely to be influenced significantly by climate change over the coming 50 years. The impact of climate change on the production, nature and recreation values of forests was studied using a simple economic model, and showed that response are likely to be relatively small during the first century, and are related to the successional status of the forest. Linking of detailed process-based models with gap models enables interpretation of climate change effects beyond a change in tree growth only, and is an important tool for investigating the effects of climate change on the development of mixed forests. The modelling approach presented in this project (process-based growth models -> gap models -> economic model) is a useful tool to support policy decisions in the light of climate change and forests. refs

  14. Active Learning about Climate Change

    OpenAIRE

    Hwang, I.C.; Tol, R.S.J.; Hofkes, M.W.

    2013-01-01

    We develop a climate-economy model with active learning. We consider three ways of active learning: improved observations, adding observations from the past and improved theory from climate research. From the model, we find that the decision maker invests a significant amount of money in climate research. Expenditures to increase the rate of learning are far greater than the current level of expenditure on climate research, as it helps in taking improved decisions. The optimal carbon tax for ...

  15. Wealth reallocation and sustainability under climate change

    Science.gov (United States)

    Fenichel, Eli P.; Levin, Simon A.; McCay, Bonnie; St. Martin, Kevin; Abbott, Joshua K.; Pinsky, Malin L.

    2016-03-01

    Climate change is often described as the greatest environmental challenge of our time. In addition, a changing climate can reallocate natural capital, change the value of all forms of capital and lead to mass redistribution of wealth. Here we explain how the inclusive wealth framework provides a means to measure shifts in the amounts and distribution of wealth induced by climate change. Biophysical effects on prices, pre-existing institutions and socio-ecological changes related to shifts in climate cause wealth to change in ways not correlated with biophysical changes. This implies that sustainable development in the face of climate change requires a coherent approach that integrates biophysical and social measurement. Inclusive wealth provides a measure that indicates sustainability and has the added benefit of providing an organizational framework for integrating the multiple disciplines studying global change.

  16. Ringing and recovery data prove poor at detecting migratory short-stopping of diving ducks associated with climate change throughout Europe

    DEFF Research Database (Denmark)

    Tománková, Irena; Reid, Neil; Enlander, Ian;

    2013-01-01

    Climate change has been shown to affect the distribution of many bird species. International Waterbird Census (IWC) data revealed that Tufted Duck Aythya fuligula and Goldeneye Bucephala clangula have shifted their European wintering distributions northeastwards as a direct response to increased...

  17. Spatial information technologies for climate change impact on ecosystems: detecting and mapping invasive weeds in the Rio Grande River system of south Texas

    Science.gov (United States)

    Wetlands and aquatic ecosystems are vulnerable to climate change. Exotic invasive weeds are a serious problem in the Rio Grande River system of Texas. The river extends 3,040 km from its source in the San Juan Mountains of Colorado to the mouth at the Gulf of Mexico on the United States-Mexico borde...

  18. Geographical Information Systems, Urban Forestry and Climate Change: A Review

    Directory of Open Access Journals (Sweden)

    O.S. Eludoyin

    2012-06-01

    Full Text Available The paper unfolds the use of urban forestry in controlling climate change and presents the use Geographical Information System (GIS as an adequate and efficient modern tool for analyzing and mapping the forest inventories for use in ameliorating the scourge of climate change in the society. The paper concludes that a holistic approach which involves the integrating urban forestry, GIS and elements of climate will go a long way to assist in saving the livelihood of mankind from being seriously affected by climate change. More so, adequate awareness should be given on the roles of urban forestry and GIS in reducing climate change. In addition, continual assessment of landuse and land cover should be done in order to detect the percentage change of urban forest resources over time with the use of GIS and remote sensing.

  19. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting......This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  20. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  1. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:26504134

  2. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo;

    a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...... on population size and range of the polar bear, for example, are scarce, whereas data on the pollen season are extensive. Each indicator is evaluated using a number of quality criteria, including sensitivity to climate change, policy relevance and methodology. Although the indicator framework presented here has......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...

  3. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud

    IPCC climate change scenarios, which also consider possible changes in urban population, have been developed. Innovative strategies to land use and spatial planning are proposed that seek synergies between the adaptation to climate change and the need to solve social problems. Furthermore, the book......Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  4. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  5. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects. PMID:26580230

  6. Mental health effects of climate change

    OpenAIRE

    Susanta Kumar Padhy; Sidharth Sarkar; Mahima Panigrahi; Surender Paul

    2015-01-01

    We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more numb...

  7. The Economic Impact of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2008-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  8. The Economic Effects of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2009-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  9. Ukraine's Participation In Solving Climate Change Problems

    OpenAIRE

    Irina Dubovich; Mariana Bulgakova

    2011-01-01

    Attention is paid to some problems of climate change. The main international agreements on climate change are overviewed. Ukraine's participation in solving global problems of climate change is described. Ukraine's statement about plans to reduce greenhouse gas emissions is analyzed. Characteristic of environmental political and legal prerequisites for the need to create a general agreement on environmental security of the planet – World Environmental Constitution is provided.

  10. Gender mainstreaming and EU climate change policy

    OpenAIRE

    Allwood, Gill

    2014-01-01

    This article uses feminist institutionalism to examine how gender mainstreaming has been sidelined in European Union (EU) climate change policy. It finds that, with a few exceptions largely emanating from the European Parliament's Committee on Women's Rights and Gender Equality, EU responses to climate change are gender-blind. This is despite the Treaty obligations to gender mainstream policy in all areas and despite the intersections between climate change and development policy, which is re...

  11. Challenges of Climate Change and Bioenergy

    OpenAIRE

    Jahangir, Daniyal

    2008-01-01

    Atmospheric concentration of the Green House Gases, Carbon Dioxide, Methane and Nitrous Oxide has increased largely since Industrial Revolution. Continued GHG emissions at or above current rates would cause further warming and induce many changes in global climate system. Climate changes will lead to more intense and longer droughts, water scarcity and many other problems then have been observed. For these reasons concept of development of bioenergy came into existance for climate change miti...

  12. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies Through this initiative, USDA will ...

  13. Climate Change and European Union Member Economies

    OpenAIRE

    Margaux Tharin; Alina Gabriela Brezoi; Livia–Irina Olaru

    2010-01-01

    Climate change affects us all both global and personal level. In recent years, we have seen an increase in extreme weather phenomena such as floods, droughts, tornadoes, increased shoreline erosion seas and oceans. The phenomenon of climate change that changed the globe is an irreversible process. Due to extreme weather events to human civilization began to be in danger.

  14. Gender angle to the climate change negotiations

    NARCIS (Netherlands)

    Wamukonya, Njeri; Skutsch, Margaret

    2002-01-01

    The South is likely to suffer more from climate change than the North due to its already vulnerable situation and lack of the necessary resources to adapt to change. But do the interests of men and of women differ as regards climate change and does this have a South-North dimension? This paper attem

  15. Fostering Hope in Climate Change Educators

    Science.gov (United States)

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  16. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  17. Climate variability and climate change in Mexico: A review

    OpenAIRE

    E. Jáuregui

    1997-01-01

    A review of research on climate variability, fluctuations and climate change in Mexico is presented. Earlier approaches include different time scales from paleoclimatic to historical and instrumental. The nature and causes of variability in Mexico have been attributed to large-scale southward/northward shifts of the mid-latitude major circulation and more recently to the ENSO cycle. Global greenhouse warming has become a major environmental issue and has spawned a large number of climate-chan...

  18. Applied climate-change analysis: the climate wizard tool.

    Directory of Open Access Journals (Sweden)

    Evan H Girvetz

    Full Text Available BACKGROUND: Although the message of "global climate change" is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. METHODOLOGY/PRINCIPAL FINDINGS: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951-2002 occurred in northern hemisphere countries (especially during January-April, but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50 degrees N during February-March to 10 degrees N during August-September. Precipitation decreases occurred most commonly in countries between 0-20 degrees N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs for 2070-2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. CONCLUSIONS/SIGNIFICANCE: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally

  19. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  20. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  1. EMS adaptation for climate change

    Science.gov (United States)

    Pan, C.; Chang, Y.; Wen, J.; Tsai, M.

    2010-12-01

    The purpose of this study was to find an appropriate scenario of pre-hospital transportation of an emergency medical service (EMS) system for burdensome casualties resulting from extreme climate events. A case of natural catastrophic events in Taiwan, 88 wind-caused disasters, was reviewed and analyzed. A sequential-conveyance method was designed to shorten the casualty transportation time and to promote the efficiency of ambulance services. A proposed mobile emergency medical center was first constructed in a safe area, but nearby the disaster area. The Center consists of professional medical personnel who process the triage of incoming patients and take care of casualties with minor injuries. Ambulances in the Center were ready to sequentially convey the casualties with severer conditions to an assigned hospital that is distant from the disaster area for further treatment. The study suggests that if we could construct a spacious and well-equipped mobile emergency medical center, only a small portion of casualties would need to be transferred to distant hospitals. This would reduce the over-crowding problem in hospital ERs. First-line ambulances only reciprocated between the mobile emergency medical center and the disaster area, saving time and shortening the working distances. Second-line ambulances were highly regulated between the mobile emergency medical center and requested hospitals. The ambulance service of the sequential-conveyance method was found to be more efficient than the conventional method and was concluded to be more profitable and reasonable on paper in adapting to climate change. Therefore, additional practical work should be launched to collect more precise quantitative data.

  2. Road Infrastructure and Climate Change in Vietnam

    Directory of Open Access Journals (Sweden)

    Paul S. Chinowsky

    2015-05-01

    Full Text Available Climate change is a potential threat to Vietnam’s development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam by evaluating the potential impact of changes from stressors, including: sea level rise, precipitation, temperature and flooding. Across 56 climate scenarios, the mean additional cost of maintaining the same road network through 2050 amount to US$10.5 billion. The potential scale of these impacts establishes climate change adaptation as an important component of planning and policy in the current and near future.

  3. Detecting Urban Warming Signals in Climate Records

    Institute of Scientific and Technical Information of China (English)

    HE Yuting; JIA Gensuo; HU Yonghong; ZHOU Zijiang

    2013-01-01

    Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale.With support of historical remote sensing data,this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing,Tianjin,and Hebei Province over the last three decades.There were significant positive relations between the two factors at all stations.Stronger warming was detected at the meteorological stations that experienced greater urbanization,i.e.,those with a higher urbanization rate.While the total urban area affects the absolute temperature values,the change of the urban area (urbanization rate) likely affects the temperature trend.Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13℃ rise in air temperature records in addition to regional climate warming.This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions.Generally,the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years,and the regional climate warming was 0.30℃ (10 yr)-1 in the last three decades.

  4. Climate - Understanding climate change in order to act

    International Nuclear Information System (INIS)

    In a first part, the author proposes an overview of considerations about climate change and global warming. He discusses greenhouse gas emissions and their perspectives of evolution (IPCC scenarios, recent assessments, unreachable objectives). He comments and discusses the consequences and effects of climate change and global warming (impact on the biosphere and predictable consequences, the largely unknown issue of oceans). He comments the relationship between warming and meteorological evolutions (what is sure and what is not, what is due to climate change and what is not), and the associated risks and hazards

  5. Cave temperatures and global climatic change.

    OpenAIRE

    Badino Giovanni

    2004-01-01

    The physical processes that establish the cave temperature are briefly discussed, showing that cave temperature is generally strictly connected with the external climate. The Global Climatic changes can then influence also the underground climate. It is shown that the mountain thermal inertia causes a delay between the two climates and then a thermal unbalance between the cave and the atmosphere. As a consequence there is a net energy flux from the atmosphere to the mountain, larger than the ...

  6. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.)

  7. Change detection: training and transfer.

    Directory of Open Access Journals (Sweden)

    John G Gaspar

    Full Text Available Observers often fail to notice even dramatic changes to their environment, a phenomenon known as change blindness. If training could enhance change detection performance in general, then it might help to remedy some real-world consequences of change blindness (e.g. failing to detect hazards while driving. We examined whether adaptive training on a simple change detection task could improve the ability to detect changes in untrained tasks for young and older adults. Consistent with an effective training procedure, both young and older adults were better able to detect changes to trained objects following training. However, neither group showed differential improvement on untrained change detection tasks when compared to active control groups. Change detection training led to improvements on the trained task but did not generalize to other change detection tasks.

  8. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  9. Climate Change and Oil Depletion

    International Nuclear Information System (INIS)

    2 atmospheric content and of the average earth surface temperature are being considered to be interrelated. Carbon dioxide, water vapour and clouds all act as greenhouse forcing agents; cloud cover on account of its high solar reflectivity also acts as a direct cooling agent. Aerosols are of great importance in the processes of cloud formation and in precipitation initiation, thereby affecting the hydrological cycle; they also exhibit radiative forcing properties both direct and indirect, by the way of the clouds, either positive or negative, according to their particular composition. These particular influences are not yet well known and not yet properly incorporated in the simulations of climate scenarios adopted by the IPCC. And uncertainty brackets are still rather large. Notwithstanding, the results of these still incomplete climate scenarios have been taken as enough scientific evidence to decide upon imposing limits to greenhouse gas emissions. The European Union has already approved an European Climate Change Programme and took the political initiative in the Marrakech COP of the UNFCCC in November 2001, to the effect of the implementation of the Kyoto Protocol (1997). This is a political option which, besides setting emissions targets and energy policy terms of reference, also sets emission taxes and opens a new financial market for the trade of emission rights or permits. Evidence for the actual strain put upon the fossil energy supply is rather stronger than the evidence for anthropogenic climate changes. Rather more attention should be drawn to the supply of alternative energy sources, to the development of new energy carriers, to the improvement of technologies of energy conversion and storage as well as to the rationalization and moderation of demand at end use, so that a severe fossil energy supply crises might be avoided. In doing so, environmental and climatic consequences of any kind due to the rising worldwide level of energy demand would be

  10. Forced migrations caused by climate change

    Directory of Open Access Journals (Sweden)

    Neven Tandarić

    2014-06-01

    Full Text Available The consequences of climate change are becoming more and more pronounced, causing various environmental and social changes. One of the major and globally most noticeable changes is the intensification of forced migration caused by climate change. Such forced migrants, due to international legislation that has no built-in criteria to regulate the status of refugees due to environmental reasons and also climate change, cannot achieve this status and are becoming a problem of the entire international community, leading to significant social, economic, political and cultural changes at a global scale.

  11. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  12. River Restoration for a Changing Climate

    Science.gov (United States)

    Beechie, T. J.; Pollock, M. M.; Pess, G. R.; Roni, P.

    2012-12-01

    Future climate scenarios suggest that riverine habitats will be significantly altered in the next few decades, forcing managers to ask whether and how river restoration activities should be altered to accommodate climate change. Obvious questions include: Will climate change alter river flow and temperature enough to reduce action effectiveness? What types of restoration actions are more likely to remain effective in a climate altered future? To help address these questions, we reviewed literature on habitat restoration actions and river processes to determine the degree to which different restoration actions are likely to either ameliorate a climate effect or increase habitat diversity and resilience. Key findings are that restoring floodplain connectivity and re-aggrading incised channels ameliorate both stream flow and temperature changes and increase lateral connectivity, whereas restoring in-stream flows can ameliorate decreases in low flows as well as stream temperature increases. Other restoration actions (e.g., reducing sediment supply, in-stream rehabilitation) are much less likely to ameliorate climate change effects. In general, actions that restore watershed and ecosystem processes are most likely to be robust to climate change effects because they allow river channels and riverine ecosystems to evolve in response to shifting stream flow and temperature regimes. We offer a decision support process to illustrate how to evaluate whether a project design should be altered to accommodate climate change effects, and show examples of restoration actions that are likely to be resilient to a changing climate.

  13. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, Jens-Christian; Olesen, Jørgen E;

    2009-01-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5–7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular...... interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change......; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference...

  14. Undocumented migration in response to climate change

    Science.gov (United States)

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  15. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  16. Climate change: turning up the heat

    Energy Technology Data Exchange (ETDEWEB)

    Pittock, A. Barrie

    2005-12-15

    Climate change has been described as the most pressing issue for the future of Earth, dramatically affecting all aspects of our lives and civilization, yet many people remain baffled by what is going on. A. Barrie Pittock, one of the world's leading researchers on climate change, demystifies the issues and explains both sides of the current debates on this 'hot' topic. This timely book sorts fact from fiction as the author examines the arguments surrounding the reality of climate change and the divergent views of greenhouse sceptics and doom-and-gloom alarmists. The book discusses the major impacts of climate change on natural ecosystems and past civilizations, and describes how scientists are predicting future change. It also outlines the options for living with climate change, from mitigation to adaptation. Beyond the scientific facts, the book tackles the politics of climate change, including the apparent clash of interests between richer, developed countries and poorer, less-developed countries, climate change sceptics, and the current international action on climate change, including the Kyoto Protocol. Pittock also examines individual action, emphasizing the need for us to contribute to solutions through constructive political and personal action. (Author)

  17. Climate change and skin cancer.

    Science.gov (United States)

    van der Leun, Jan C; de Gruijl, Frank R

    2002-05-01

    Depletion of the ozone layer and climate change by the increasing greenhouse effect are distinctly different processes. It is becoming quite clear, however, that the two global environmental problems are interlinked in several ways [D. L. Albritton, P. J Aucamp, G. Mégie, R. T. Watson, Scientific Assessment of Ozone Depletion, 1998, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 44 (WMO, Geneva, 1998)]. In the present analysis we deal with the possibility of such an interlinkage within one effect on human health, namely, skin cancer. The increase in the incidence of skin cancer is one of the most extensively studied effects of increasing ultraviolet radiation by ozone depletion (F. R. de Gruijl, Skin cancer and solar radiation, Eur. J Cancer, 1999, 35, 2003-2009). We wondered if this impact could also be influenced by increasing environmental temperatures. Here we show that it is likely that such an influence will occur. For the same reason, it is likely that the baseline incidence of skin cancer will be augmented by rising temperatures, which may become significant in magnitude. PMID:12653470

  18. EU Climate Change Exhibition Held

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On April 25, the CPAFFC, the China-EU Association (CEUA) and the Delegation of the European Commission to China jointly held the opening ceremony for the EU Exhibition on Climate Change in the CPAFFC. He Luli, former vice chairperson of the NPC Standing Committee and honorary president of the CEUA, Jose Manuel Barroso, president of the European Commission, and Li Jianping, vice president of the CPAFFC, attended the opening ceremony and made speeches. Honorary President He Luli highly praised the achievements made by China and the EU in their longtime cooperation of mutual benefits in various fields including environmental protection. She said, for many years China and EU have both committed to the development of all-round strategic partnership and establishment of a multi-level mechanism of political dialogue. She expressed, with increasing enthusiasm the CEUA would continue to actively carry out nongovernmental exchanges between China and the EU, and promote cooperation between the two sides in the fields of economy, society, environmental protection, science and technology, culture, etc.

  19. Climate change threatens European conservation areas

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Alagador, Diogo; Cabeza, Mar;

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura...... 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring...

  20. Climate change and the permafrost carbon feedback

    Science.gov (United States)

    Schuur, E.A.G.; McGuire, Anthony; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, S.M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  1. Environmental impact of climate change in pakistan

    International Nuclear Information System (INIS)

    Climate change results in the increase or decrease in temperature and rainfall. These have significant impact on environment - impinge agricultural crop yields, affect human health, cause changes to forests and other ecosystems, and even impact our energy supply. Climate change is a global phenomenon and its impact can be observed on Pakistan's economy and environment. This paper contains details concerning the climate change and environmental impacts. It takes into account current and projected key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and environment. The purpose of the study is to devise national policies and incentive systems combined with national level capacity-building programs to encourage demand-oriented conservation technologies. Recommendations are also made to abate the climate change related issues in country. (author)

  2. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.;

    2011-01-01

    climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...... between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non...... sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies...

  3. Flowering phenological changes in relation to climate change in Hungary.

    Science.gov (United States)

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species (Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering. PMID:26768142

  4. Flowering phenological changes in relation to climate change in Hungary

    Science.gov (United States)

    Szabó, Barbara; Vincze, Enikő; Czúcz, Bálint

    2016-09-01

    The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species ( Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9-4.4 days per decade. We found that it was the mean temperature of the 2-3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January-March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February-April) has some effect on Tilia flowering.

  5. Climate Change Effects Overwintering of Insects

    DEFF Research Database (Denmark)

    Vukasinovic, Dragana

    Climate change is modifying winter conditions rapidly and predicting species’ reactions to global warming has been the “the holy grail” of climate sciences, especially for managed systems, like agro-ecosystems. Intuitively, increased winter temperatures should release insects from coldinduced...... of a rapid, contemporary evolution, optimal formeasuring species response under constant selection pressure, including organismal physiology.Thus, the methodological approach applied in this study, could prove a valuable tool for improving predictability of field population dynamics during climate change....

  6. El Nino in a changing climate

    OpenAIRE

    Yeh, S. W.; Kug, J.S.; Dewitte, Boris; Kwon, M. H.; Kirtman, B. P.; Jin, F.F.

    2009-01-01

    El Nino events, characterized by anomalous warming in the eastern equatorial Pacific Ocean, have global climatic teleconnections and are the most dominant feature of cyclic climate variability on subdecadal timescales. Understanding changes in the frequency or characteristics of El Nino events in a changing climate is therefore of broad scientific and socioeconomic interest. Recent studies(1-5) show that the canonical El Nino has become less frequent and that a different kind of El Nino has b...

  7. Global climate change and US agriculture

    Science.gov (United States)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  8. Tropical reforestation and climate change: beyond carbon

    OpenAIRE

    Locatelli, Bruno; Catterall, Carla; Imbach, Pablo; Kumar, Chetan; Lasco, Rodel; Marín-Spiotta, Erika; Mercer, Bernard; Powers, Jennifer S.; Schwartz, Naomi; Uriarte, Maria

    2015-01-01

    Tropical reforestation (TR) has been highlighted as an important intervention for climate change mitigation because of its carbon storage potential. TR can also play other frequently overlooked, but significant, roles in helping society and ecosystems adapt to climate variability and change. For example, reforestation can ameliorate climate-associated impacts of altered hydrological cycles in watersheds, protect coastal areas from increased storms, and provide habitat to reduce the probabilit...

  9. Study on climate change in Southwestern China

    International Nuclear Information System (INIS)

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  10. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  11. Implications of spatial scale on climate change assessments

    Directory of Open Access Journals (Sweden)

    Pingale Santosh

    2015-09-01

    Full Text Available While assessing the effects of climate change at global or regional scales, local factors responsible for climate change are generalized, which results in the averaging of effects. However, climate change assessment is required at a micro-scale to determine the severity of climate change. To ascertain the impact of spatial scales on climate change assessments, trends and shifts in annual and seasonal (monsoon and non-monsoon, rainfall and temperature (minimum, average and maximum were determined at three different spatial resolutions in India (Ajmer city, Ajmer District and Rajasthan State. The Mann–Kendall (MK, MK test with pre-whitening of series (MK–PW, and Modified Mann–Kendall (MMK test, along with other statistical techniques were used for the trend analysis. The Pettitt–Mann–Whitney (PMW test was applied to detect the temporal shift in climatic parameters. The Sen’s slope and % change in rainfall and temperature were also estimated over the study period (35 years. The annual and seasonal average temperature indicates significant warming trends, when assessed at a fine spatial resolution (Ajmer city compared to a coarser spatial resolution (Ajmer District and Rajasthan State resolutions. Increasing trend was observed in minimum, mean and maximum temperature at all spatial scales; however, trends were more pronounced at a finer spatial resolution (Ajmer city. The PMW test indicates only the significant shift in non-monsoon season rainfall, which shows an increase in rainfall after 1995 in Ajmer city. The Kurtosis and coefficient of variation also revealed significant climate change, when assessed at a finer spatial resolution (Ajmer city compared to a coarser resolution. This shows the contribution of land use/land cover change and several other local anthropogenic activities on climate change. The results of this study can be useful for the identification of optimum climate change adaptation and mitigation strategies based on

  12. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  13. Climate changes - To understand and to react

    International Nuclear Information System (INIS)

    The first part of this report recalls the definition of the greenhouse effect, comments the climate past variations, outlines that climate changes are already here and that greenhouse effect has a human origin, and discusses the expected impacts during the 21. century. The second part presents the basis of international action in the struggle against climate change, outlines the necessity to strengthen this international action, describes the role of Europe in international negotiations on climate, outlines the need of an international agreement on climate, proposes an overview of the French climate policy (national and local actions), and outlines that some political responses do not match with sustainable development (nuclear energy, agro-fuels, carbon capture and storage, shale gas and oil). The third part indicates how one can compute his own impact on climate, and presents some collective and citizen innovative initiatives in the fields of agriculture and food, of energy, of transports and mobility, and of wastes

  14. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  15. Harnessing Homophily to Improve Climate Change Education

    Science.gov (United States)

    Monroe, Martha C.; Plate, Richard R.; Adams, Damian C.; Wojcik, Deborah J.

    2015-01-01

    The Cooperative Extension Service (Extension) in the United States is well positioned to educate the public, particularly farmers and foresters, about climate change and to encourage responsible adoption of adaptation and mitigation strategies. However, the climate change attitudes and perceptions of Extension professionals have limited…

  16. The climatic change; Le rechauffement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, R.

    2002-07-01

    This book takes stock on the scientific knowledge on the factors and the mechanisms of the climatic change. The historical aspects of the international meeting, concerning the climatic change and the energy policy, are also recalled showing the increase interest of the public opinion on the domain. A reflection is done on the possibility of a new direction. (A.L.B.)

  17. How Does Climate Change Affect Biodiversity?

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Rahbek, Carsten

    2006-01-01

    The most recent and complex bioclimate models excel at describing species' current distributions. Yet, it is unclear which models will best predict how climate change will affect their future distributions.......The most recent and complex bioclimate models excel at describing species' current distributions. Yet, it is unclear which models will best predict how climate change will affect their future distributions....

  18. Impacts of Climate Change on Brazilian Agriculture

    OpenAIRE

    Assad, Eduardo; Pinto, Hilton S.; Nassar, Andre; Harfuch, Leila; Freitas, Saulo; Farinelli, Barbara; Lundell, Mark; Erick C.M. Fernandes

    2013-01-01

    This report evaluates the requirements for an assessment of climate change impacts on agriculture to guide policy makers on investment priorities and phasing. Because agriculture is vital for national food security and is a strong contributor to Brazil's GDP growth, there is growing concern that Brazilian agriculture is increasingly vulnerable to climate variability and change. To meet nat...

  19. Bacteria in ice may record climate change

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ To many people, bacteria and climate change are like chalk and cheese: the srnallest creature versus one of the biggest phenomena on Earth. Not really.Scientists with the CAS Institute of Tibetan Plateau Research (ITP) and coworkers recently reported that small bugs deposited in ice and snow might tell how our climate has been changing.

  20. Singapore Students' Misconceptions of Climate Change

    Science.gov (United States)

    Chang, Chew-Hung; Pascua, Liberty

    2016-01-01

    Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…

  1. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.

  2. Climate change consequences for the indoor environment

    NARCIS (Netherlands)

    Ariës, M.B.C.; Bluyssen, P.M.

    2009-01-01

    Scientists warn us about climate change and its effects on the outdoor environment. These effects can have significant consequences for the indoor environment, also in the Netherlands. Climate changes will affect different aspects of the indoor environment as well as the stakeholders of that indoor

  3. International business and global climate change

    NARCIS (Netherlands)

    J. Pinkse; A. Kolk

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and clima

  4. The response of glaciers to climate change

    NARCIS (Netherlands)

    Klok, Elisabeth Jantina

    2003-01-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glac

  5. Climate change: Update on international negotiations

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, L. [Dept. of Energy, Washington, DC (United States). Office of Policy

    1997-12-31

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  6. Climate Change Position Statement, Dissenting View

    Science.gov (United States)

    Pielke, R. A.

    2013-08-01

    I served on the AGU panel to draft the updated position statement on climate change. We were charged by AGU to provide "an up-to-date statement [that] will assure that AGU members, the public, and policy makers have a more current point of reference for discussion of climate change science that is intrinsically relevant to national and international policy."

  7. Climate change adaptation planning in large cities

    NARCIS (Netherlands)

    Araos, Malcolm; Berrang-Ford, Lea; Ford, James D.; Austin, Stephanie E.; Biesbroek, Robbert; Lesnikowski, Alexandra

    2016-01-01

    Cities globally face significant risks from climate change, and are taking an increasingly active role in formulating and implementing climate change adaptation policy. However, there are few, if any, global assessments of adaptation taking place across cities. This study develops and applies a f

  8. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke;

    , their properties, goods and services. In: Climate change 2007. Cambridge, Cambridge University Press, p. 211-272. [2] Mikkelsen TN, Beier C, et al. (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project. Functional Ecology, 22, 185-195. [3...

  9. European climate change policy beyond 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    There is an increasing scientific consensus that human activities do trigger climate changes. Actual forecasts predict temperature increases that are likely to be beyond the adaptation potential of ecosystems. These considerations play a major role in shaping public opinion and the media landscape, culminating in the view that Europe needs to play a leading role in combating climate change.

  10. Climate Change: Global Risks, Challenges and Decisions

    NARCIS (Netherlands)

    Richardson, K.; Steffen, W.; Liverman, D.; Barker, T.; Jotzo, F.; Kammen, D.M.; Leemans, R.; Lenton, T.M.; Munasinghe, M.; Osman-Elasha, B.; Schellnhuber, H.J.; Stern, N.; Vogel, C.; Waever, O.

    2011-01-01

    Providing an up-to-date synthesis of knowledge relevant to the climate change issue, this book ranges from the basic science documenting the need for policy action to the technologies, economic instruments and political strategies that can be employed in response to climate change. Ethical and cultu

  11. Challenging conflicting discourses of climate change

    NARCIS (Netherlands)

    Fleming, Aysha; Vanclay, Frank; Hiller, Claire; Wilson, Stephen

    2014-01-01

    The influence of language on communication about climate change is well recognised, but this understanding is under-utilised by those seeking to increase uptake of action for climate change. We discuss the terms, discourse, resistance, and agency, to assist in developing ways to progress social acti

  12. Adapting to Climate Change in ECA

    OpenAIRE

    Fay, Marianne; Block, Rachel; Carrington, Tim; Ebinger, Jane

    2009-01-01

    Contrary to popular perception, Europe and Central Asia (ECA) countries are significantly threatened by climate change, with serious risks already in evidence. The vulnerability and adaptive capacity of ECA countries to climate change over the next two decades will be dominated by socio-economic factors and legacy issues. The next decade offers a window of opportunity for ECA to make its d...

  13. Climate change and corn susceptibility to mycotoxins

    Science.gov (United States)

    Maize is an essential part of the world’s grain supply, but climate change has the potential to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce food security and safety. While rising atmospheric [CO2] is a driving force of climate change, our understanding of how elevated ...

  14. The Poverty Impacts of Climate Change

    OpenAIRE

    Skoufias, Emmanuel; Rabassa, Mariano; Olivieri, Sergio; Brahmbhatt, Milan

    2011-01-01

    Over the last century, the world has seen a sustained decline in the proportion of people living in poverty. However, there is an increasing concern that climate change could slow or possibly even reverse poverty reduction progress. Given the complexities involved in analyzing climate change impacts on poverty, different approaches can be helpful; this note surveys the results of recent re...

  15. A climate for development. Climate change policy options for Africa

    International Nuclear Information System (INIS)

    The seriousness of the potential impacts of climate change on development in Africa is now well recognized within, and increasingly outside, scientific circles. The United Nations Framework Convention on Climate Change is a landmark in international environmental governance, providing a mechanism for exchange, negotiation and institution-building to re-direct development towards more efficient use of resources, especially energy. The message of 'A climate for Development' is that unless policy-makers fully understand both the international commitments made under the Convention and the essential national development priorities of their own countries, effective action on climate change is unlikely to be realized. The action needed, however, can at the same time stimulate capacity-building, planning and policy change which would strengthen the economic and ecological base of African countries. The climate change issue has hence brought us face to face with the urgency of the basic issues of sustainable development in Africa. The book discusses key issues that cut across all African countries, such as emissions and their impacts, financial resources and technology transfer for emissions abatement strategies. It then provides a sectoral analysis of greenhouse gas emissions and abatement options focusing on energy, industry, agriculture, forestry and transportation. The book concludes with guidelines for options which may be considered by African countries to ensure that climate change concerns are effectively dealt with in the context of their development priorities. 113 refs

  16. Global Climate Change and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    EK Shuman

    2010-12-01

    Full Text Available Climate change is occurring as a result of warming of the earth’s atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  17. Mitigating climate change: The Philippine case

    International Nuclear Information System (INIS)

    The Government of the Philippines signed the UN Framework Convention on Climate change on June 12, 1992 and the Philippine Congress ratified it in 1994. The Philippine Government has also subsequently created the Inter-Agency Committee on Climate Change (IACCC). The GOP is currently preparing the Philippine Country Study to address climate change. The first phase of the work was financed by a grant from the US Country Studies Program which is led by the US Department of Energy. The Study includes the following elements: a) development of a National Inventory of GHG emission and Sinks; b) vulnerability assessment and evaluation of adaptations of coastal resources; c) identification of alternative programs and measures to promote mitigation and/or adaptation to climate change; d) public information and education campaign; and e) development of the National Action Plan on Climate Change. (au)

  18. Creating Effective Dialogue Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  19. Mesocosms Reveal Ecological Surprises from Climate Change.

    Directory of Open Access Journals (Sweden)

    Damien A Fordham

    2015-12-01

    Full Text Available Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  20. Climate change in EIA - Inspiration from practice

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2013-01-01

    taking place. For exploring the praxis of integrating climate change in practice a document study of 100 Danish EIA reports is carried out. From these reports, statistics and examples are drawn. The study shows an emphasis on integration of climate change mitigation, using various quantitative tools......Climate change integration has been a topic of much interest in the field of impact assessment for a period, and thus far quite some emphasis has been put on discussions of purpose, relevance and overall approaches in both Environmental Impact Assessment of projects (EIA) and Strategic...... Environmental Assessments of plans and programmes (SEA). However, EIAs and SEAs are already being made, which integrate climate change, and for some aspects this practice has evolved over a long period. This paper seeks to explore this practice and find inspiration from the work with climate change already...

  1. The french researches on the climatic change

    International Nuclear Information System (INIS)

    Scientists were the first to prevent decision makers on the risk of the climatic change bond to the greenhouse gases emissions. The results of the third GIEC report confirmed that the main part of the global warming of the last 50 years is due to the human activities. This document presents the major results of the french researches during the last five years: the planet observation, the climate evolution study, the simulation of the future climate, the climatic change in France, the impacts of the climatic change on the marine and earth biosphere, the climatic risks and the public policies, the health impacts, the 2003 heat and the research infrastructures. (A.L.B.)

  2. Mirador - Climate Variability and Change

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. NASA's role in climate variability study is centered around providing the global scale observational data sets on oceans and...

  3. Appropriate technology and climate change adaptation

    Science.gov (United States)

    Bandala, Erick R.; Patiño-Gomez, Carlos

    2016-02-01

    Climate change is emerging as the greatest significant environmental problem for the 21st Century and the most important global challenge faced by human kind. Based on evidence recognized by the international scientific community, climate change is already an unquestionable reality, whose first effects are beginning to be measured. Available climate projections and models can assist in anticipating potential far-reaching consequences for development processes. Climatic transformations will impact the environment, biodiversity and water resources, putting several productive processes at risk; and will represent a threat to public health and water availability in quantity and quality.

  4. Global climate change and children's health.

    Science.gov (United States)

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  5. Climate change and species interactions: ways forward.

    Science.gov (United States)

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide.

  6. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  7. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  8. Technologies for climate change adaptation. Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. (ed.) (UNEP Risoe Centre, Roskilde (Denmark)); Clements, R.; Quezada, A.; Torres, J. (Practical Action Latin America, Lima (Peru)); Haggar, J. (Univ. of Greenwich, London (United Kingdom))

    2011-08-15

    This guidebook presents a selection of technologies for climate change adaptation in the agriculture sector. A set of 22 adaptation technologies are showcased. These are based primarily on the principles of agroecology, but also include scientific technologies of climate and biological sciences complemented by important sociological and institutional capacity building processes that are required for climate change to function. The technologies cover: 1) Planning for climate change and variability. 2) Sustainable water use and management. 3) Soil management. 4) Sustainable crop management. 5) Sustainable livestock management. 6) Sustainable farming systems. 7) Capacity building and stakeholder organisation. Technologies that tend to homogenise the natural environment and agricultural production have low possibilities of success in environmental stress conditions that are likely to result from climate change. On the other hand, technologies that allow for, and promote diversity are more likely to provide a strategy which strengthens agricultural production in the face of uncertain future climate change scenarios. The 22 technologies showcased in this guidebook have been selected because they facilitate the conservation and restoration of diversity while also providing opportunities for increasing agricultural productivity. Many of these technologies are not new to agricultural production practices, but they are implemented based on the assessment of current and possible future impacts of climate change in a particular location. agroecology is an approach that encompasses concepts of sustainable production and biodiversity promotion and therefore provides a useful framework for identifying and selecting appropriate adaptation technologies for the agriculture sector. The guidebook provides a systematic analysis of the most relevant information available on climate change adaptation technologies in the agriculture sector. It has been compiled based on a literature

  9. Methods for assessment of climate variability and climate changes in different time-space scales

    International Nuclear Information System (INIS)

    Main problem of hydrology and design support for water projects connects with modern climate change and its impact on hydrological characteristics as observed as well as designed. There are three main stages of this problem: - how to extract a climate variability and climate change from complex hydrological records; - how to assess the contribution of climate change and its significance for the point and area; - how to use the detected climate change for computation of design hydrological characteristics. Design hydrological characteristic is the main generalized information, which is used for water management and design support. First step of a research is a choice of hydrological characteristic, which can be as a traditional one (annual runoff for assessment of water resources, maxima, minima runoff, etc) as well as a new one, which characterizes an intra-annual function or intra-annual runoff distribution. For this aim a linear model has been developed which has two coefficients connected with an amplitude and level (initial conditions) of seasonal function and one parameter, which characterizes an intensity of synoptic and macro-synoptic fluctuations inside a year. Effective statistical methods have been developed for a separation of climate variability and climate change and extraction of homogeneous components of three time scales from observed long-term time series: intra annual, decadal and centural. The first two are connected with climate variability and the last (centural) with climate change. Efficiency of new methods of decomposition and smoothing has been estimated by stochastic modeling and well as on the synthetic examples. For an assessment of contribution and statistical significance of modern climate change components statistical criteria and methods have been used. Next step has been connected with a generalization of the results of detected climate changes over the area and spatial modeling. For determination of homogeneous region with the same

  10. Regional Climate Change Hotspots over Africa

    Science.gov (United States)

    Anber, U.; Zakey, A.; Abd El Wahab, M.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation (P % , of present day value ), change in regional surface air temperature interannual variability (T % ,of present day value), change in regional precipitation interannual variability (P % ,of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter

  11. Global change and climate-vegetation classification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three phrases of the quantitative study of climate-vegetation classification and their characteristics are presented based on the review of advance in climate-vegetation interaction, a key issue of "global change and terrestrial ecosystems (GCTE)" which is the core project of International Geosphere-Biosphere Programme (IGBP): (ⅰ) characterized by the correlation between natural vegetation types and climate; (ⅱ) characterized by climatic indices which have obviously been restricted to plant ecophysiology; (ⅲ) characterized by coupling both structure and function of vegetation. Thus, the prospective of climate-vegetation classification for global change study in China was proposed, especially the study coupling climate-vegetation classification models with atmospheric general circulation models (GCMs) was emphasized.

  12. Ecological response to global climatic change

    Science.gov (United States)

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  13. Vulnerabilities of macrophytes distribution due to climate change

    Science.gov (United States)

    Hossain, Kaizar; Yadav, Sarita; Quaik, Shlrene; Pant, Gaurav; Maruthi, A. Y.; Ismail, Norli

    2016-06-01

    The rise in the earth's surface and water temperature is part of the effect of climatic change that has been observed for the last decade. The rates of climate change are unprecedented, and biological responses to these changes have also been prominent in all levels of species, communities and ecosystems. Aquatic-terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have contributed severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Most researches on climate change effects on biodiversity are contemplating on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have been detected in response to climate change. This is unfortunate, given the importance of aquatic systems for providing ecosystem goods and services. Thus, if researchers were able to identify early-warning indicators of anthropogenic environmental changes on aquatic species, communities and ecosystems, it would certainly help to manage and conserve these systems in a sustainable way. One of such early-warning indicators concerns the expansion of emergent macrophytes in aquatic-terrestrial ecotones. Hence, this review highlights the impact of climatic changes towards aquatic macrophytes and their possible environmental implications.

  14. Turning points in climate change adaptation

    Directory of Open Access Journals (Sweden)

    Saskia Elisabeth. Werners

    2015-12-01

    Full Text Available Concerned decision makers increasingly pose questions as to whether current management practices are able to cope with climate change and increased climate variability. This signifies a shift in the framing of climate change from asking what its potential impacts are to asking whether it induces policy failure and unacceptable change. In this paper, we explore the background, feasibility, and consequences of this new framing. We focus on the specific situation in which a social-political threshold of concern is likely to be exceeded as a result of climate change, requiring consideration of alternative strategies. Action is imperative when such a situation is conceivable, and at this point climate change becomes particularly relevant to decision makers. We call this situation an "adaptation turning point." The assessment of adaptation turning points converts uncertainty surrounding the extent of a climate impact into a time range over which it is likely that specific thresholds will be exceeded. This can then be used to take adaptive action. Despite the difficulty in identifying adaptation turning points and the relative newness of the approach, experience so far suggests that the assessment generates a meaningful dialogue between stakeholders and scientists. Discussion revolves around the amount of change that is acceptable; how likely it is that unacceptable, or more favorable, conditions will be reached; and the adaptation pathways that need to be considered under these circumstances. Defining and renegotiating policy objectives under climate change are important topics in the governance of adaptation.

  15. How does climate change cause extinction?

    Science.gov (United States)

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-01

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  16. Multinational enterprises and climate change strategies

    OpenAIRE

    Kolk, A.; Pinkse, J.

    2012-01-01

    Climate change is often perceived as the most pressing environmental problem of our time, as reflected in the large public, policy, and corporate attention it has received, and the concerns expressed about the (potential) consequences. Particularly due to temperature increases, climate change affects physical and biological systems by changing ecosystems and causing extinction of species, and is expected to have a negative social impact and adversely affect human health (IPCC, 2007). Moreover...

  17. How Will Climate Change Affect Globalization?

    DEFF Research Database (Denmark)

    Dilyard, John Raymond; Bals, Lydia; Zhuplev, Anatoly;

    2011-01-01

    , it will effect globalization. Businesses, if they want to be sustained, will have to adjust to climate change. This panel will examine two topics within which the relationship between climate change and globalization can be assessed - the sourcing of resources and services when the location of those resources...... is subject to change and the nature of competition in agriculture-based business, focusing on wine....

  18. Oceans, microbes, and global climate change

    OpenAIRE

    Danovaro, Roberto

    2016-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine life and on microbial components. Prokaryotes (Bacteria and Archaea), viruses and other microbial life forms are impacted by ...

  19. Marine Ecosystems and Climate Change: Economic Issues

    OpenAIRE

    Tisdell, Clem

    2015-01-01

    Marine ecosystems, and the services they provide, are predicted to alter considerably as a result of climate change. This paper outlines important expected alterations in these ecosystems, considers their economic consequences, and examines economic policies that may be adopted in response to these changes. In doing so, it focuses on two main cases, namely findings about the impact of ocean acidification (and climate change generally) on the Norwegian fisheries and predictions about alteratio...

  20. Climate change, human health, and sustainable development.

    OpenAIRE

    Martens, W J; Slooff, R.; Jackson, E K

    1997-01-01

    Human-induced climate change threatens ecosystems and human health on a global scale. In order to withstand the worldwide threats to ecosystems, the concept of sustainable development was introduced during the 1980s. Since then, this concept has been widely applied to guide and focus policy-making. The present article reviews the health consequences of human-induced climate change on sustainable development, particularly the potential impact of such change of food supply, natural disasters, i...

  1. Comment 5 - agricultural response to climate change

    International Nuclear Information System (INIS)

    The complex interrelationship between global climate change and agricultural production will become one of the most significant policy issues, in both developed and developing countries, in the first decades of the 21st century. Global and regional climate change will modify both agricultural production capacity and its location. And the intensity of agricultural production will contribute to environmental change at both the regional and global levels

  2. An Astronomer's View of Climate Change

    CERN Document Server

    Morton, Donald C

    2014-01-01

    This paper describes some of the astronomical effects that could be important for understanding the ice ages, historic climate changes and the recent temperature increase. These include changes in the sun's luminosity, periodic changes in the earth's orbital parameters, the sun's orbit around our galaxy, the variability of solar activity and the anticorrelation of cosmic ray flux with that activity. Finally recent trends in solar activity and global temperatures are compared with the predictions of climate models.

  3. Climate Change Creates Trade Opportunity in India

    OpenAIRE

    Dinda, Soumyananda

    2013-01-01

    Climate change is an emerging challenge to developing economy like India however it also creates opportunity to grow through climate friendly goods production and new direction of trade. This paper focuses India’s potential export trade in climate friendly goods. The estimated gravity model is defined as the potential trade and potential trade gap is measured as how well a bilateral trade flow performs relative to the mean as predicted by the model. Potential trade gap means that actual trade...

  4. Tools for Teaching Climate Change Studies

    Energy Technology Data Exchange (ETDEWEB)

    Maestas, A.M.; Jones, L.A.

    2005-03-18

    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Western Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders

  5. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO. Compa

  6. Conservation and adaptation to climate change.

    Science.gov (United States)

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change. PMID:18759775

  7. Assessing Climate Change Induced Turnover in Bird Communities Using Climatically Analogous Regions

    Directory of Open Access Journals (Sweden)

    Janine Sybertz

    2015-02-01

    Full Text Available It is crucial to define and quantify possible impacts of climate change on wildlife in order to be able to pre-adapt management strategies for nature conservation. Thus, it is necessary to assess which species might be affected by climatic changes, especially at the regional scale. We present a novel approach to estimate possible climate change induced turnovers in bird communities and apply this method to Lüneburg Heath, a region in northern Germany. By comparing species pools of future climatically analogous regions situated in France with the Lüneburg Heath species pool, we detected possible trends for alterations within the regional bird community in the course of climate change. These analyses showed that the majority of bird species in Lüneburg Heath will probably be able to tolerate the projected future climate conditions, but that bird species richness, in general, may decline. Species that might leave the community were often significantly associated with inland wetland habitats, but the proportion of inland wetlands within the regions had a significant influence on the magnitude of this effect. Our results suggest that conservation efforts in wetlands have to be strengthened in light of climate change because many species are, in principle, able to tolerate future climate conditions if sufficient habitat is available.

  8. Can increased organic consumption mitigate climate changes?

    DEFF Research Database (Denmark)

    Heerwagen, Lennart Ravn; Andersen, Laura Mørch; Christensen, Tove;

    2014-01-01

    consumers. As some consumers believe that climate change can be mitigated by consuming organic food, the authors propose that this is taken into account in the development of organic farming. Originality/value – The authors propose a shift from analysing the climate-friendliness of production to addressing......Purpose – The purpose of this paper is to investigate the evidence for a positive correlation between increased consumption of organic products and potential climate change mitigation via decreased consumption of meat and it is discussed to what extent organic consumption is motivated by climate...... correlation between increasing organic budget shares and decreasing meat budget shares is found. People include food-related behaviour such as the purchase of organic food and reduced meat consumption as ways to mitigate climate change. However, other behavioural modifications such as reduction of car usage...

  9. Detecting hydrological changes through conceptual model

    Science.gov (United States)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General

  10. The deep ocean under climate change

    Science.gov (United States)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  11. The deep ocean under climate change.

    Science.gov (United States)

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  12. Winds of change: corporate strategy, climate change and oil multinationals

    NARCIS (Netherlands)

    A. Kolk; D.L. Levy

    2001-01-01

    Behind pessimistic expectations regarding the future of an international climate treaty, substantial changes can be observed in company positions. Multinationals in the oil and car industries are increasingly moving toward support for the Kyoto Protocol, and take measures to address climate change.

  13. Influence of Climate Changes on Health (Review).

    Science.gov (United States)

    Pop-Jordanova, Nada; Grigorova, Evgenija

    2015-01-01

    Although climate changes are one of the most serious public health risks for all nations, it appears that the medical society in the East European countries is not too much concerned. The aim of this paper is to point out the main treats on health provoked by climate changes. The literature review was the source of information. Based on the PubMed where in 2015 more than 65,000 papers were dedicated to different aspects of the influence of the climate changes on the human health, as well as 3,500 articles for the pediatric population, we present a review of the main health risks. Especially, the impact of the climate changes on the children's health is overviewed. In separate parts, the thermal stress, extreme weather events, changes of infection's pattern, how to measure health risks as well as some mitigation measures are discussed. PMID:27442405

  14. Climate Change: The Evidence and Our Options

    Science.gov (United States)

    Thompson, Lonnie G.

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low…

  15. Likely Ranges of Climate Change in Bolivia

    NARCIS (Netherlands)

    Seiler, C.; Hutjes, R.W.A.; Kabat, P.

    2013-01-01

    Bolivia is facing numerous climate-related threats, ranging from water scarcity due to rapidly retreating glaciers in the Andes to a partial loss of the Amazon forest in the lowlands. To assess what changes in climate may be expected in the future, 35 global circulation models (GCMs) from the third

  16. Agrometeorological Learning: Coping Better with Climate Change

    NARCIS (Netherlands)

    Winarto, Y.T.; Stigter, C.J.

    2011-01-01

    Farmers in poor countries are among the most vulnerable victims of increasing climate variability and climate change. They receive, however, little assistance from governments and scholars alike. Those working in the hard agricultural sciences often don’t know the actual needs and potentials for gra

  17. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Evidence of the impacts of anthropogenic climate change on marine ecosystems is accumulating, but must be evaluated in the context of the "normal" climate cycles and variability which have caused fluctuations in fisheries throughout human history. The impacts on fisheries are due to a variety...

  18. Bangladesh : Climate Change and Sustainable Development

    OpenAIRE

    World Bank

    2000-01-01

    The study examines Bangladesh's extreme vulnerability to climate change, whose low-lying topography, and funnel-shaped coast, further exposes the land to cyclones, and tidal surges, resulting in seasonal floods. These factors, and the large population base, widespread poverty, aggravated by the lack of strong institutional development, makes the country particularly vulnerable to climate v...

  19. Diagnosis Earth: The Climate Change Debate

    Science.gov (United States)

    Anderegg, William R. L.

    2010-01-01

    In the scrum of popular and political discourse on global warming, the scholarship of climate science is often left sitting on the sideline. Yet understanding the science and the scientists presents the best chance of developing an informed opinion about climate change. Confusion about the science, misunderstanding of risk assessment and…

  20. Andean highlands: Implications of climate change

    OpenAIRE

    Seth, Anji; Thibeault, J.M.; García, Magali

    2007-01-01

    This presentation provides background on the SANREM CRSP project "Adapting to Change in the Andean Highlands: Practices and Strategies to Address Climate and Market Risks in Vulnerable Agro-Eco Systems" and discusses the means, variability and projections for the Altiplano climate. available in SANREM office, ESIILTRA-4 (Practices and Strategies for Vulnerable Agro-Ecosystems)

  1. Preparing for resettlement associated with climate change

    NARCIS (Netherlands)

    Sherbinin, de A.; Castro, M.; Gemenne, F.; Cernea, M.M.; Adamo, S.; Fearnside, P.M.; Krieger, G.; Lahmani, S.; Oliver-Smith, A.; Pankhurst, A.S.A.

    2011-01-01

    Although there is agreement that climate change will result in population displacements and migration, there are differing views on the potential volume of flows, the likely source and destination areas, the relative role of climatic versus other factors in precipitating movements, and whether migra

  2. A Record of Climate Change

    Science.gov (United States)

    Smith, Zach

    2007-01-01

    The hydrologic cycle is a very basic scientific principle. In this article, background information is presented on how the hydrologic cycle provides scientists with clues to understanding the history of Earth's climate. Also detailed is a web-based activity that allows students to learn about how scientists are able to piece together a record of…

  3. Climate Change, Conflict, and Children

    Science.gov (United States)

    Akresh, Richard

    2016-01-01

    We have good reason to predict that a warming climate will produce more conflict and violence. A growing contingent of researchers has been examining the relationship in recent years, and they've found that hotter temperatures and reduced rainfall are linked to increases in conflict at all scales, from interpersonal violence to war. Children are…

  4. Polar ices: rapid climatic changes

    International Nuclear Information System (INIS)

    The recent successes of the European GRIP (GReenland Ice core Project) and American GISP 2 (Greenland Ice Sheet Project) drillings which have reached in 1992 and 1993 the basement rocks of central Greenland (SUMMIT site, 3250 m of altitude) have allow to reconstruct the climate evolution for the last 100,000 years or more. A comparison of climatic informations deduced from these two drillings with records from Vostok (Antarctica) is given in this paper. The δD and δ18O isotopic approach have been used for the reconstruction of climatic series and paleotemperatures in polar regions. Empirical relationships explained by Rayleigh's isotopic models are used as a base for paleotemperature reconstructions from isotopic analyses of ice. A one degree Celsius cooling corresponds to an oxygen 18 decay of 0.67 per thousand and to a 6 per thousand deuterium decay. The GRIP and GISP 2 drillings have demonstrated the exceptional stability of Greenland climate during the last 10.000 years in comparison with strong instabilities encountered during the last 100.000 years and also recorded in North Atlantic marine sediments. The time scales associated with these instabilities are of the order of a few decades for the warming phase. Thanks to Vostok ice-trapped air bubbles analyses, it is now well demonstrated that the strongest instabilities (cooling during the last deglaciation and major glaciation inter stages) are also recorded but less pronounced in Antarctica. GRIP data for the last interglacial stage have been interpreted in terms of climate instabilities but neither GISP 2 results nor Vostok results allow to confirm this interpretation. (J.S.). 29 refs, 3 figs

  5. Cave temperatures and global climatic change.

    Directory of Open Access Journals (Sweden)

    Badino Giovanni

    2004-12-01

    Full Text Available The physical processes that establish the cave temperature are briefly discussed, showing that cave temperature is generally strictly connected with the external climate. The Global Climatic changes can then influence also the underground climate. It is shown that the mountain thermal inertia causes a delay between the two climates and then a thermal unbalance between the cave and the atmosphere. As a consequence there is a net energy flux from the atmosphere to the mountain, larger than the geothermal one, which is deposited mainly in the epidermal parts of caves.

  6. Climate change and developing country interests

    DEFF Research Database (Denmark)

    Arndt, Channing; Chinowsky, Paul; Fant, Charles;

    We consider the interplay of climate change impacts, global mitigation policies, and the interests of developing countries to 2050. Focusing on Malawi, Mozambique, and Zambia, we employ a structural approach to biophysical and economic modeling that incorporates climate uncertainty and allows...... for rigorous comparison of climate, biophysical, and economic outcomes across global mitigation regimes. We find that effective global mitigation policies generate two sources of benefit. First, less distorted climate outcomes result in typically more favourable economic outcomes. Second, successful global...... developing countries in effective global mitigation policies, even in the relatively near term, with the likelihood of much larger benefits post 2050....

  7. Understanding the school 'climate': secondary school children and climate change

    International Nuclear Information System (INIS)

    This interdisciplinary study analyzes the production, circulation and reception of messages on climate change in secondary schools in France. The objective is to understand how political and educational policy initiatives influence the ways in which schools contribute to creating youngsters' perceptions and opinions about climate change. In order to study the conditions of production and reception of information about climate change, a survey was conducted in four French secondary schools, in the 'Bas Rhin' and 'Nord' departments, and local political actors in each department were interviewed. The cross disciplinary analytical and methodological approach uses the tools of sociological inquiry, information science, and political science: questionnaires and interviews were conducted with members of the educational and governmental communities of each school and department, semiotic and discursive analyses of corpuses of documents were carried out, in order to characterize documents used by students and teachers at school or in more informal contexts; the nature and extent of the relations between the political contexts and school directives and programs were also discussed. This interdisciplinary approach, combining sociological, communicational, and political methods, was chosen in response to the hypothesis that three types of variables (social, communicational and political) contribute to the structuring and production of messages about climate change in schools. This report offers a contextualized overview of activities developed within the four secondary schools to help sensitize children to the risks associated with climate change. A study of the networks of individuals (teachers, staff, members of associations, etc.) created in and around the school environment is presented. The degree of involvement of these actors in climate change programs is analyzed, as it is related to their motives and objectives, to the school discipline taught, and to the position

  8. Rural perspectives of climate change: a study from Saurastra and Kutch of Western India.

    Science.gov (United States)

    Moghariya, Dineshkumar P; Smardon, Richard C

    2014-08-01

    This research reports on rural people's beliefs and understandings of climate change in the Saurastra/ Kutch region of Western India. Results suggest that although most rural respondents have not heard about the scientific concept of climate change, they have detected changes in the climate. They appear to hold divergent understandings about climate change and have different priorities for causes and solutions. Many respondents appear to base their understandings of climate change upon a mix of ideas drawn from various sources and rely on different kinds of reasoning in relation to both causes of and solutions to climate change to those used by scientists. Environmental conditions were found to influence individuals' understanding of climate change, while demographic factors were not. The results suggest a need to learn more about people's conceptual models and understandings of climate change and a need to include local climate research in communication efforts.

  9. Climate Change and Maize Yield in Iowa.

    Science.gov (United States)

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

  10. Green cities, smart people and climate change

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Harrison, T.

    2014-12-01

    Climate change will require substantial changes to urban environments. Cities are huge sources of greenhouse gases. Further, cities will suffer tremendously under climate change due to heat stresses, urban flooding, energy and water supply and demand changes, transportation problems, resource supply and demand and a host of other trials and tribulations. Cities that evolve most quickly and efficiently to deal with climate change will likely take advantage of the changes to create enjoyable, healthy and safer living spaces for families and communities. Technology will provide much of the capability to both mitigate and adapt our cities BUT education and coordination of citizen and community lifestyle likely offers equal opportunities to make our cities more sustainable and more enjoyable places to live. This work is the first phase of a major project evaluating urban mitigation and adaptation policies, programs and technologies. All options are considered, from changes in engineering, planning and management; and including a range of citizen and population-based lifestyle practices.

  11. The computational future for climate change research

    International Nuclear Information System (INIS)

    The development of climate models has a long history starting with the building of atmospheric models and later ocean models. The early researchers were very aware of the goal of building climate models which could integrate our knowledge of complex physical interactions between atmospheric, land-vegetation, hydrology, ocean, cryospheric processes, and sea ice. The transition from climate models to earth system models is already underway with coupling of active biochemical cycles. Progress is limited by present computer capability which is needed for increasingly more complex and higher resolution climate models versions. It would be a mistake to make models too complex or too high resolution. Arriving at a 'feasible' and useful model is the challenge for the climate model community. Some of the climate change history, scientific successes, and difficulties encountered with supercomputers will be presented

  12. Climate change and health in Earth's future

    Science.gov (United States)

    Bowles, Devin C.; Butler, Colin D.; Friel, Sharon

    2014-02-01

    Threats to health from climate change are increasingly recognized, yet little research into the effects upon health systems is published. However, additional demands on health systems are increasingly documented. Pathways include direct weather impacts, such as amplified heat stress, and altered ecological relationships, including alterations to the distribution and activity of pathogens and vectors. The greatest driver of demand on future health systems from climate change may be the alterations to socioeconomic systems; however, these "tertiary effects" have received less attention in the health literature. Increasing demands on health systems from climate change will impede health system capacity. Changing weather patterns and sea-level rise will reduce food production in many developing countries, thus fostering undernutrition and concomitant disease susceptibility. Associated poverty will impede people's ability to access and support health systems. Climate change will increase migration, potentially exposing migrants to endemic diseases for which they have limited resistance, transporting diseases and fostering conditions conducive to disease transmission. Specific predictions of timing and locations of migration remain elusive, hampering planning and misaligning needs and infrastructure. Food shortages, migration, falling economic activity, and failing government legitimacy following climate change are also "risk multipliers" for conflict. Injuries to combatants, undernutrition, and increased infectious disease will result. Modern conflict often sees health personnel and infrastructure deliberately targeted and disease surveillance and eradication programs obstructed. Climate change will substantially impede economic growth, reducing health system funding and limiting health system adaptation. Modern medical care may be snatched away from millions who recently obtained it.

  13. European climate change experiments on precipitation change

    DEFF Research Database (Denmark)

    Beier, Claus

    Presentation of European activities and networks related to experiments and databases within precipitation change......Presentation of European activities and networks related to experiments and databases within precipitation change...

  14. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  15. Chikungunya, climate change, and human rights.

    Science.gov (United States)

    Meason, Braden; Paterson, Ryan

    2014-06-14

    Chikungunya is a re-emerging arbovirus that causes significant morbidity and some mortality. Global climate change leading to warmer temperatures and changes in rainfall patterns allow mosquito vectors to thrive at altitudes and at locations where they previously have not, ultimately leading to a spread of mosquito-borne diseases. While mutations to the chikungunya virus are responsible for some portion of the re-emergence, chikungunya epidemiology is closely tied with weather patterns in Southeast Asia. Extrapolation of this regional pattern, combined with known climate factors impacting the spread of malaria and dengue, summate to a dark picture of climate change and the spread of this disease from south Asia and Africa into Europe and North America. This review describes chikungunya and collates current data regarding its spread in which climate change plays an important part. We also examine human rights obligations of States and others to protect against this disease.

  16. A unified narrative for climate change

    Science.gov (United States)

    Bushell, Simon; Colley, Thomas; Workman, Mark

    2015-11-01

    There is a significant 'action gap' between what scientists argue is necessary to prevent potentially dangerous climate change and what the government and public are doing. A coherent strategic narrative is key to making meaningful progress.

  17. SATELLITE OBSERVATIONS FOR EDUCATION OF CLIMATE CHANGE

    Directory of Open Access Journals (Sweden)

    ILONA PAJTÓK-TARI

    2011-03-01

    Full Text Available This paper surveys the key statements of the IPCC (2007 Reportbased mainly on the satellite-borne observations to support teaching climatechange and geography by using the potential of this technology. In theIntroduction we briefly specify the potential and the constraints of remote sensing.Next the key climate variables for indicating the changes are surveyed. Snow andsea-ice changes are displayed as examples for these applications. Testing theclimate models is a two-sided task involving satellites, as well. Validation of theability of reconstructing the present climate is the one side of the coin, whereassensitivity of the climate system is another key task, leading to consequences onthe reality of the projected changes. Finally some concluding remarks arecompiled, including a few ideas on the ways how these approaches can be appliedfor education of climate change.

  18. Climate change: Carbon losses in the Alps

    Science.gov (United States)

    Kirk, Guy

    2016-07-01

    Soil carbon stocks depend on inputs from decomposing vegetation and return to the atmosphere as CO2. Monitoring of carbon stocks in German alpine soils has shown large losses linked to climate change and a possible positive feedback loop.

  19. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    such as deltas, estuaries and wetlands, where many large cities and industrial areas are located. Integrated risk assessment tools for considering the effects of climate change and related uncertainties. Presents latest insights on coastal engineering defenses. Provides integrated guidelines for setting up......Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, "Coastal Risk...... Management in a Changing Climate" provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...

  20. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    , precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies......Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now....... Congruent results of meta-analyses based on warming experiments, however, do not reflect a better general understanding of temperature effects, because the potential effects of more complex changes in temperature, including extreme events, are not yet covered well. Heat, frost, seasonality, and spatial...