WorldWideScience

Sample records for climaite project carbon

  1. Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Beier, Claus; Jonasson, S.

    2008-01-01

    a larger set of main factors are needed. We describe a new Danish climate change-related field scale experiment, CLIMAITE, in a heath/grassland ecosystem. CLIMAITE is a full factorial combination of elevated CO2, elevated temperature and prolonged summer drought. The manipulations are intended to mimic...... anticipated major environmental changes at the site by year 2075 as closely as possible. The impacts on ecosystem processes and functioning (at ecophysiological levels, through responses by individuals and communities to ecosystem-level responses) are investigated simultaneously. The increase of [CO2] closely...... corresponds with the scenarios for year 2075, while the warming treatment is at the lower end of the predictions and seems to be the most difficult treatment to increase without unwanted side effects on the other variables. The drought treatment follows predictions of increased frequency of drought periods...

  2. Drought effects on ecosystem functioning and interactions with CO2 and warming - results from CLIMAITE

    Science.gov (United States)

    Beier, Claus; Ibrom, Andreas; Linden, Leon G.; Selsted, Merete B.; Albert, Kristian R.; Kongstad, Jane; Andresen, Louise C.

    2010-05-01

    Current predictions indicate that, unless greenhouse gas emissions are significantly curtailed, atmospheric CO2 concentrations will double during the present century inducing an additional 1.4 to 5.8oC increase in mean global temperature, alterations in global and regional precipitation patterns, and increase the frequency and magnitude of severe weather events (e.g. droughts and floods). Such changes will have strong effects on the terrestrial ecosystems as CO2, temperature and water are main drivers in ecosystem processes. There is growing concern that climate driven changes in precipitation patterns and water availability will have significant effects on ecosystem processes and functioning, and in some regions may be the most influential climate change factor. Yet, it has received much less attention in recent climate change research relative to elevated CO2 and temperature. Furthermore, most precipitation experiments have focussed on water alone despite the fact that at least CO2 and temperature will change simultaneously and both of these factors will have direct or indirect effects on water status and use in the ecosystem. In the CLIMAITE project a Danish heathland has been exposed since 2005 to elevated CO2, temperature and extended drought in a full factorial experiment (Mikkelsen et al., 2008). The CO2 concentration in the canopy level is elevated by 50% by the Free Air Carbon Enrichment (FACE) technique, temperature is elevated by 1-2 °C by the passive night time warming technique and summer drought is extended for 4-6 weeks by rain out shelters. The full factor combination mimics recent climate projections for Denmark 2075. Following the experiments, responses of major ecosystem processes and functioning is recorded. Drought generally leads to hypothesised reductions in most ecosystem processes during and shortly after the drought but on the short term, many of these processes also show a strong potential to recover during rewetting. Drought reduces

  3. The VKR center of excellence CLIMAITE. Midterm report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-15

    The CLIMAITE centre was initiated in April 2004 with the aim of establishing a strong national interdisciplinary collaboration between Danish research groups in studies of climate change effects on biological processes in terrestrial ecosystems. More specifically the aim was to establish a high quality experimental climate change research facility, conduct 4 years of climatic manipulations with CO{sub 2}, temperature and water, in order to study the effects on the ecosystems organisms, structure and functioning. In 2007 the centre has been granted funds to prolong the experiment till 2012. (BA)

  4. CLIMAITE - a three factor climate change ecosystem manipulation experiment.

    Science.gov (United States)

    Mikkelsen, T. N.; Beier, C.; Albert, K.; Ro-Poulsen, H.

    2007-12-01

    The Danish multi factorial climate change effects on vegetation experiment (Climaite) have now been conducted for two years on semi-natural grassland. The day time [CO2], night time temperature and precipitation (drought) have been altered, according to a regional climate change model for the year 2075, in a full factorial split plot design. The manipulated area for each treatment is 7 m2 and it is replicated 6 times. The CO2 and temperature treatments have been conducted continuously except for periods with snow cover. The CO2 is enhanced to 510 ppm via a FACE system based on concentrated CO2 released upwind under pressure. The control of the [CO2] varies with wind speed and irradiation, but during 50 percent of the fumigation period the target concentration was kept within +/-5 percent. The temperature treatment is conducted via infrared reflective curtains covering the plots during night time, and the warming of plants and soil depends of the day irradiation, night time wind speed and factors related to seasonality. In general, the air temperature is increased during night time with 1-2 C° and negligible during the day. The soil temperature in 5 cm depth is enhanced to 0.3 - 0.6 C° during night and day. The artificial summer droughts lasted about one month and differences in soil water content were developed over time. By the end of the treatment the èv content in the soil was as low as 0.06 m3 m-3 compared to 0.20 m3 m-3 in the control. Numerous physical and biological parameters in the grassland ecosystem have been measured and several are responding to the changed environment. After 9 months of exposure enhanced [CO2] stimulated the net photosynthesis (based on dry weight) in both of the domination plant species Calluna Vulgaris and Deschampsia flexuosa. When the plants were exposed to short term saturated [CO2] during gasexchange measurements the long term CO2 treated plants also had the highest photosynthesis rate, meaning that the plants were not

  5. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    Knight, L.; Blackman, T.E.

    1994-01-01

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  6. The carbon market: major operational carbon funds and financed projects

    International Nuclear Information System (INIS)

    Markandya, A.; Nobili, V.

    2008-01-01

    The flexible mechanisms envisaged by the Kyoto Protocol have led gradually to a global carbon market that has become very appetizing for companies operating in the sector. Financial instruments such as carbon funds, and investments in greenhouse-gas-reduction projects, now operate at the international level, counting on the development of new technologies and energy efficiency, and contributing to sustainable development in the countries that host the projects [it

  7. Carbon disclosure project report 2009 : Canada 200

    International Nuclear Information System (INIS)

    Campbell, G.

    2009-01-01

    The carbon disclosure project conducts an annual survey to determine the strategies and actions of major cap companies in relation to climate change. This report discussed initiatives implemented by Canada's largest companies to prepare for a carbon-constrained future. The report documented results from 97 companies. The aim of the report was to help companies make use of the disclosures as reference points for future carbon markets and regulations relating to reporting requirements. Results of the survey demonstrated that Canada's low-carbon and high-carbon impact sectors have implemented several significant initiatives and best practices for operations. However, widespread engagement in a comprehensive manner has yet to be achieved. Many respondents were in the process of developing a more balanced risk-opportunity agenda in relation to climate change, and nearly half of all respondents have implemented governance arrangements or personal incentives in both both the high-carbon and low-carbon impact sectors. 5 tabs., 26 figs.

  8. Shallow Carbon Sequestration Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  9. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  10. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  11. An assessment of uncertainty in forest carbon budget projections

    Science.gov (United States)

    Linda S. Heath; James E. Smith

    2000-01-01

    Estimates of uncertainty are presented for projections of forest carbon inventory and average annual net carbon flux on private timberland in the US using the model FORCARB. Uncertainty in carbon inventory was approximately ±9% (2000 million metric tons) of the estimated median in the year 2000, rising to 11% (2800 million metric tons) in projection year 2040...

  12. Carbon burnout project-coal fineness effects

    Energy Technology Data Exchange (ETDEWEB)

    Mike Celechin [Powergen UK plc, Nottingham (United Kingdom)

    2004-02-01

    The aim of this DTI project is to establish good quality plant and rig data to demonstrate the effect of changing coal fineness on carbon burnout in a controlled manner, which can then be used to support computational fluid dynamics (CFD) and engineering models of the process. The modelling elements of the project were completed by Mitsui Babcock Energy Ltd., and validated using the data produced by the other partners. The full scale plant trials were successfully completed at Powergen's Kingsnorth Power Station and a full set of tests were also completed on Powergen's CTF. During these test both carbon-in-ash and NOx levels were seen to increase with increasing fuel particle size. Laboratory analysis of fly ash produced during the plant and rig trials revealed that only small differences in char morphology and reactivity could be detected in samples produced under significantly different operating conditions. Thermo Gravimetric Analysis was also undertaken on a range of PF size fractions collected form mills operating at different conditions. 3 refs., 13 figs., 1 tab.

  13. Final Project Report for "Interfacial Thermal Resistance of Carbon Nanotubes”

    Energy Technology Data Exchange (ETDEWEB)

    Cumings, John [Univ. of Maryland, College Park, MD (United States)

    2016-04-15

    This report describes an ongoing project to comprehensively study the interfacial thermal boundary resistance (Kapitza resistance) of carbon nanotubes. It includes a list of publications, personnel supported, the overall approach, accomplishments and future plans.

  14. The EC CAST project (carbon-14 source term)

    International Nuclear Information System (INIS)

    Williams, S. J.

    2015-01-01

    Carbon-14 is a key radionuclide in the assessment of the safety of underground geological disposal facilities for radioactive wastes. It is possible for carbon-14 to be released from waste packages in a variety of chemical forms, both organic and inorganic, and as dissolved or gaseous species The EC CAST (CArbon-14 Source Term) project aims to develop understanding of the generation and release of carbon-14 from radioactive waste materials under conditions relevant to packaging and disposal. It focuses on the release of carbon-14 from irradiated metals (steels and zirconium alloys), from irradiated graphite and from spent ion-exchange resins. The CAST consortium brings together 33 partners. CAST commenced in October 2013 and this paper describes progress to March 2015. The main activities during this period were reviews of the current status of knowledge, the identification and acquisition of suitable samples and the design of experiments and analytical procedures. (authors)

  15. Carbon credit of renewable energy projects in Malaysia

    Science.gov (United States)

    Lim, X.; Lam, W. H.; Shamsuddin, A. H.

    2013-06-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  16. Carbon credit of renewable energy projects in Malaysia

    International Nuclear Information System (INIS)

    Lim, X; Lam, W H; Shamsuddin, A H

    2013-01-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  17. Time for Decarbonization of Conservation and Development Projects? The Political Ecology of Carbon Projects

    Directory of Open Access Journals (Sweden)

    Pierre L. Ibisch

    2015-01-01

    Full Text Available The globe's first carbon projects were designed and implemented approximately 20 years ago following scientific insights that emissions of greenhouse gases needed to be mitigated. Visible in some of these early projects were the important aspects of social governance and local benefit sharing. The projects promised to be a panacea to environmental, social and economic problems in remote rural areas of developing countries. However, it took another decade before a wave of hundreds of carbon projects were launched. Many of the projects were offered under the mechanism of REDD+ (Reducing Emissions from Deforestation and forest Degradation, plus the role of conservation, sustainable forest management and carbon enhancement, as well as under a variety of voluntary schemes and national programs, public-private partnerships, and forestry-based investment initiatives. As decision-makers prepare the Conference of the Parties of the United Nations Framework Convention on Climatic Change in Paris (COP21, Earthscan has released a book entitled `Carbon conflicts and forest landscapes in Africa', edited by Melissa Leach and Ian Scoones. According to the editors, the focus of the book is on what happens on the ground when carbon forestry projects arrive, what types of projects work, and, equally important, what doesn’t work.

  18. Strategizing Carbon-Neutral Mines: A Case for Pilot Projects

    Directory of Open Access Journals (Sweden)

    Ian M. Power

    2014-05-01

    Full Text Available Ultramafic and mafic mine tailings are a valuable feedstock for carbon mineralization that should be used to offset carbon emissions generated by the mining industry. Although passive carbonation is occurring at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond and Mount Keith nickel mines, there remains untapped potential for sequestering CO2 within these mine wastes. There is the potential to accelerate carbonation to create economically viable, large-scale CO2 fixation technologies that can operate at near-surface temperature and atmospheric pressure. We review several relevant acceleration strategies including: bioleaching of magnesium silicates; increasing the supply of CO2 via heterotrophic oxidation of waste organics; and biologically induced carbonate precipitation, as well as enhancing passive carbonation through tailings management practices and use of CO2 point sources. Scenarios for pilot scale projects are proposed with the aim of moving towards carbon-neutral mines. A financial incentive is necessary to encourage the development of these strategies. We recommend the use of a dynamic real options pricing approach, instead of traditional discounted cash-flow approaches, because it reflects the inherent value in managerial flexibility to adapt and capitalize on favorable future opportunities in the highly volatile carbon market.

  19. Terrestrial biosphere carbon storage under alternative climate projections

    Energy Technology Data Exchange (ETDEWEB)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W. [Potsdam Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam (Germany); Prentice, I.C. [QUEST, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ (United Kingdom)

    2006-01-15

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.

  20. Terrestrial biosphere carbon storage under alternative climate projections

    International Nuclear Information System (INIS)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W.; Prentice, I.C.

    2006-01-01

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa

  1. Livelihood impacts of forest carbon project and its implications for ...

    African Journals Online (AJOL)

    This study examines the impacts of forest carbon project on the livelihoods of rural households and its implications for the sustainability of forest by focusing on a regenerated forest in Humbo district of Southwestern Ethiopia. The methods through which primary data were gathered are a triangulation of household survey, ...

  2. Biorefinery and Carbon Cycling Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  3. Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: ACase Study In Jambi Province, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan; Dasanto,Bambang D.; Makundi, Willy; Hero, Julius; Ridwan, M.; Masripatin, Nur

    2007-06-01

    Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemployment (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.

  4. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  5. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia

    Science.gov (United States)

    Hatmoko, Jati Utomo Dwi; Hidayat, Arif; Setiawati, Apsari; Prasetyo, Stefanus Catur Adi

    2018-02-01

    Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG) emissions, to quantify them in terms of carbon dioxide equivalents (CO2e) as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31%) off-site activities and 36.640 tonnes CO2e (51.687%) on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%), and material transportation accounted 24.921 (35.155%). These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.

  6. Carbon gains by conservation projects overbalance carbon losses by degradation in China's karst ecoregions

    Science.gov (United States)

    Tong, X.; Yue, Y.; Fensholt, R.; Brandt, M.

    2017-12-01

    China's ecological restoration projects are considered as "mega-engineering" activities and the most ambitious afforestation and conservation projects in human history. The highly sensitive and vulnerable karst ecosystem in Southwest China is one of the largest exposed carbonate rock areas (more than 0.54 million km2) in the world. Accelerating desertification has been reported during the last half century, caused by the increasing intensity of human exploitation of natural resources. As a result, vast karst areas (approximately 0.12 million km2) previously covered by vegetation and soil were turned into a rocky landscape. To combat this severe form of land degradation, more than 19 billion USD have been invested in mitigation initiatives since the end of the 1990s. The costs of mega-engineering as a climate change mitigation measure are however only justified if ecosystem properties can be affected at large scales. Here we study the carbon balance of the karst regions of 8 Chinese provinces over four decades, using optical and passive microwave satellite data, supported by statistical data on project implementations. We find that most areas experiencing losses in aboveground biomass carbon are located in areas with a high standing biomass ( 95 Mg C ha-1), whereas areas with a carbon gain are mostly located in regions with a low standing biomass ( 45 Mg C ha-1). However, the overall gains in carbon stocks overbalance the losses, with an average gross loss of -0.8 Pg C and a gross gain of +2.4 Pg C (1980s to 2016), resulting in a net gain of 1.6 Pg C. Areas of carbon gains are widespread and spatially coherent with conservation projects implemented after 2001, whereas areas of carbon losses show that ongoing degradation is still happening in the western parts of the karst regions. We conclude that the impact of conservation projects on the carbon balance of China's karst ecoregions is remarkable, but biomass carbon losses caused by ongoing degradation can not be

  7. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    Science.gov (United States)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  8. Carbon Disclosures: Comparability, the Carbon Disclosure Project and the Greenhouse Gas Protocol

    Directory of Open Access Journals (Sweden)

    Jane Andrew

    2011-12-01

    Full Text Available Corporate carbon disclosures have become increasingly commonplace and are often presented as a useful voluntary mechanism for internal and external decision making. The production of the data is said to assistcorporations position themselves strategically in terms of the carbon risks and opportunities they may face. External to the firm, carbon disclosures hold the promise of assisting capital allocation decisions that are ‘carbon responsible’. It is claimed that the process of disclosure can sensitise the market to globalenvironmental problems such as climate change. In order to consider these claims, the broad purpose of this paper is to question whether the voluntary information that is produced can live up to its expectations and provide a meaningful basis for climate change related decision making. To that end, this exploratory studyexamines the carbon disclosures of Australasian mining companies over three years in compliance with a voluntary carbon disclosure regime – the Carbon Disclosure Project (CDP – and assesses those disclosureswith respect to comparability, an important criterion for information usefulness.

  9. Derived crop management data for the LandCarbon Project

    Science.gov (United States)

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  10. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia

    Directory of Open Access Journals (Sweden)

    Utomo Dwi Hatmoko Jati

    2018-01-01

    Full Text Available Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG emissions, to quantify them in terms of carbon dioxide equivalents (CO2e as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31% off-site activities and 36.640 tonnes CO2e (51.687% on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%, and material transportation accounted 24.921 (35.155%. These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.

  11. Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying

    Science.gov (United States)

    Richardson, T. B.; Forster, P. M.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kirkevâg, A.; Lamarque, J.-F.; Myhre, G.; Olivié, D.; Samset, B. H.; Shawki, D.; Shindell, D.; Takemura, T.; Voulgarakis, A.

    2018-03-01

    Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.

  12. Carbon accounting and cost estimation in forestry projects using CO2Fix V.3

    OpenAIRE

    Groen, T.A.; Nabuurs, G.J.; Schelhaas, M.J.

    2006-01-01

    Carbon and financial accounting of projects in the Land Use, Land-Use Change and Forestry sector is a topic of hot debate. Large uncertainty remains concerning the carbon dynamics, the way they should be accounted and the cost efficiency of the projects. Part of the uncertainty can be alleviated by standardisation and transparency of reporting methods. For this reason we further developed CO2FIX, a forest ecosystem carbon model, with modules for carbon and financial accounting. The model is a...

  13. Rapid Carbon Assessment Project: Data Summary and Availability

    Science.gov (United States)

    Wills, Skye; Loecke, Terry; Roecker, Stephen; Beaudette, Dylan; Libohova, Zamir; Monger, Curtis; Lindbo, David

    2017-04-01

    The Rapid Carbon Assessment (RaCA) project was undertaken to estimate regional soil organic carbon (SOC) stocks across the conterminous United States (CONUS) as a one-time event. Sample locations were selected randomly using the NRI (National Resource Inventory) sampling framework covering all areas in CONUS with SSURGO certified maps as of Dec 2012. Within each of 17 regions, sites were selected by a combination of soil and land use/cover groups (LUGR). At each of more than 6,000 sites five pedons were described and sampled to a depth of 100cm (one central and 4 satellites 30m in each cardinal direction). There were 144,833 samples described from 32,084 pedons at 6, 017 sites. A combination of measurement and modeled bulk density was used for all samples. A visible near-infrared (VNIR) spectrophotometer was used to scan each sample for prediction of soil carbon contents. The samples of each central pedon were analyzed by the Kellogg Soil Survey Laboratory for combustion carbon and calcimeter inorganic carbon. SOC stocks were calculated for each pedon using a standard fixed depth technique to depths of 5, 30 and 100cm. Pedon SOC stocks were transformed to better approach normality before LUGR, regional and land use/cover summaries were calculated. The values reported are geometric means. A detailed spatial map can be produced using LUGR mean assignment to correlated pixels. LUGR values range from 1 to 3,000 Mg ha-1. While some artifacts are visible due to the stratified nature of sampling and extrapolation, the predictions are generally smooth and highlight some distinct geomorphic features including the sandhills in the Great Plains in the central US, mountainous regions in the West and coastal wetlands in the East. Regional averages range from 46 Mg ha-1 in the desert Southwest to 182 Mg ha-1 in the Northeast. Regional trends correlate to climate variables such as precipitation and potential evapotranspiration. While land use/cover classes vary in mean values

  14. North American Carbon Project (NACP) Regional Model-Model and Model-Data Intercomparison Project

    Science.gov (United States)

    Huntzinger, D. N.; Post, W. M.; Jacobson, A. R.; Cook, R. B.

    2009-05-01

    questions: 1. Do model results and observations show consistent spatial patterns in response to the 2002 drought? From measurements and model, can we infer what processes were affected by the 2002 drought? 2. What is the spatial pattern and magnitude of interannual variation in carbon sources and sinks? What are the components of carbon fluxes and pools that contribute to this variation? 3. What are the magnitudes and spatial distribution of carbon sources and sinks, and their uncertainties during the period 2000-2005? Examining and comparing results of inverse and forward model simulations with each other and with suitable benchmark spatial measurements help evaluate model strengths/weaknesses and utility, thereby providing multiple views of spatial and temporal patterns of fluxes, leading to better understandings of processes involved, and providing an improved basis for making projections.

  15. THE OPTIMAL ROTATIONS OF GMELINA STAND ON TWO CARBON PROJECTS: LENGTHENING ROTATION AND AFFORESTATION

    Directory of Open Access Journals (Sweden)

    Yonky Indrajaya

    2016-12-01

    Full Text Available Forest plantation may contribute economically and socially as a provider of wood raw materials for industry and providing jobs for local people. In addition, forest plantation may also contribute as watershed protection and carbon sequestration. Projects on carbon sequestration from plantation forest can be conducted in two types: (1 afforestation and (2 lengthening forest rotation. One of the potential carbon markets operationalized in the field is voluntary market with Verified Carbon Standard mechanism. This study aimed to analyze the optimal rotations of gmelina forests on two carbon projects: lengthening rotation and afforestation. The method used in this study was by using Hartman model ( i.e. Faustmann by maximizing profit with the revenue source from timber and carbon sequestration project. The results of this study showed that carbon price will affect the optimal rotation for lengthening forest rotation of VCS project. Meanwhile, for VCS afforestation project, carbon price had no effect on the optimal rotation on gmelina forest. The NPV value of afforestation project was relatively higher than that of NPV value of lengthening forest rotation project, since the amount of carbon that can be credited relatively higher in afforestation project.

  16. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Andresen, Louise C.; Beier, Claus

    2011-01-01

    NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments...

  17. Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects

    International Nuclear Information System (INIS)

    Robertson, Kimberly; Loza-Balbuena, Isabel; Ford-Robertson, Justin

    2004-01-01

    The Kyoto Protocol is the first step towards achieving the objectives of the United Nations Framework Convention on Climate Change and aims among others to promote 'the protection and enhancement of carbon sinks and reservoirs'. To encourage afforestation for carbon sequestration a project must be economically viable. This study uses a model to analyse the impact on project viability of a range of carbon monitoring options, international carbon credit value and discount rate, applied to a Pinus radiata afforestation project in New Zealand. Monitoring carbon in conjunction with conventional forest inventory shows the highest return. Long-term average carbon accounting has lower accounting costs, compared to annual and 5 yearly accounting, as monitoring is only required every 5-10 years until the long-term average is attained. In this study we conclude that monitoring soil carbon stocks is not economically feasible using any of the accounting methods, when carbon is valued at US$ 10/t. This conclusion may be relevant to forest carbon sequestration projects elsewhere in the world and suggests care is needed in selecting the appropriate carbon monitoring options to avoid the risk that costs could be higher than any monetary benefits from terrestrial carbon sequestration. This would remove any commercial incentive to afforest for carbon sequestration reasons and severely limit the use of forest sinks as part of any package of measures addressing the ultimate objective of the UNFCCC

  18. Carbon accounting and cost estimation in forestry projects using CO2Fix V.3

    NARCIS (Netherlands)

    Groen, T.A.; Nabuurs, G.J.; Schelhaas, M.J.

    2006-01-01

    Carbon and financial accounting of projects in the Land Use, Land-Use Change and Forestry sector is a topic of hot debate. Large uncertainty remains concerning the carbon dynamics, the way they should be accounted and the cost efficiency of the projects. Part of the uncertainty can be alleviated by

  19. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    Science.gov (United States)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  20. Assessing the appropriateness of carbon financing for micro-scale projects in terms of capabilities

    OpenAIRE

    Caitlin Trethewy

    2013-01-01

    Micro-scale development projects are currently underrepresented in global carbon markets. This paper outlines the process of becoming eligible to generate carbon credits and examines some of the barriers that may inhibit access to carbon markets. In particular, it focuses on barriers relating to the capacity and resources of the organisation developing the project. This approach represents a deviation from the standard discourse which has traditionally focused on barriers relating to the avai...

  1. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    Science.gov (United States)

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  2. Management of water extracted from carbon sequestration projects

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods

  3. The average carbon-stock approach for small-scale CDM AR projects

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Quijano, J.F.; Muys, B. [Katholieke Universiteit Leuven, Laboratory for Forest, Nature and Landscape Research, Leuven (Belgium); Schlamadinger, B. [Joanneum Research Forschungsgesellschaft mbH, Institute for Energy Research, Graz (Austria); Emmer, I. [Face Foundation, Arnhem (Netherlands); Somogyi, Z. [Forest Research Institute, Budapest (Hungary); Bird, D.N. [Woodrising Consulting Inc., Belfountain, Ontario (Canada)

    2004-06-15

    In many afforestation and reforestation (AR) projects harvesting with stand regeneration forms an integral part of the silvicultural system and satisfies local timber and/or fuelwood demand. Especially clear-cut harvesting will lead to an abrupt and significant reduction of carbon stocks. The smaller the project, the more significant the fluctuations of the carbon stocks may be. In the extreme case a small-scale project could consist of a single forest stand. In such case, all accounted carbon may be removed during a harvesting operation and the time-path of carbon stocks will typically look as in the hypothetical example presented in the report. For the aggregate of many such small-scale projects there will be a constant benefit to the atmosphere during the projects, due to averaging effects.

  4. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  5. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  6. Soil organic carbon stocks under native vegetation - revised estimates for use with the simple assessment option of the Carbon Benefits Project system

    NARCIS (Netherlands)

    Batjes, N.H.

    2011-01-01

    The Carbon Benefits Project (CBP) is developing a standardized system for sustainable land management projects to measure, model and report changes in carbon stocks and greenhouse gas (GHG) emissions for use at varying scales. A global framework of soil organic carbon (SOC) stocks under native

  7. Energy Utilization Evaluation of Carbon Performance in Public Projects by FAHP and Cloud Model

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-07-01

    Full Text Available With the low-carbon economy advocated all over the world, how to use energy reasonably and efficiently in public projects has become a major issue. It has brought many open questions, including which method is more reasonable in evaluating the energy utilization of carbon performance in public projects when the evaluation information is fuzzy; whether an indicator system can be constructed; and which indicators have more impact on carbon performance. This article aims to solve these problems. We propose a new carbon performance evaluation system for energy utilization based on project processes (design, construction, and operation. Fuzzy Analytic Hierarchy Process (FAHP is used to accumulate the indicator weights and cloud model is incorporated when the indicator value is fuzzy. Finally, we apply our indicator system to a case study of the Xiangjiang River project in China, which demonstrates the applicability and efficiency of our method.

  8. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility.

    Science.gov (United States)

    Greve, Michelle; Reyers, Belinda; Mette Lykke, Anne; Svenning, Jens-Christian

    2013-01-01

    Carbon offset projects through forestation are employed within the emissions trading framework to store carbon. Yet, information about the potential of landscapes to stock carbon, essential to the design of offset projects, is often lacking. Here, based on data on vegetation carbon, climate and soil, we quantify the potential for carbon storage in woody vegetation across tropical Africa. The ability of offset projects to produce co-benefits for ecosystems and people is then quantified. When co-benefits such as biodiversity conservation are considered, the top-ranked sites are sometimes different to sites selected purely for their carbon-stocking potential, although they still possess up to 92% of the latter carbon-stocking potential. This work provides the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from carbon storage reforestation projects at the smallest costs and risks, providing crucial information for prioritization of investments in carbon storage projects.

  9. Analysis of the production and transaction costs of forest carbon offset projects in the USA.

    Science.gov (United States)

    Galik, Christopher S; Cooley, David M; Baker, Justin S

    2012-12-15

    Forest carbon offset project implementation costs, comprised of both production and transaction costs, could present an important barrier to private landowner participation in carbon offset markets. These costs likewise represent a largely undocumented component of forest carbon offset potential. Using a custom spreadsheet model and accounting tool, this study examines the implementation costs of different forest offset project types operating in different forest types under different accounting and sampling methodologies. Sensitivity results are summarized concisely through response surface regression analysis to illustrate the relative effect of project-specific variables on total implementation costs. Results suggest that transaction costs may represent a relatively small percentage of total project implementation costs - generally less than 25% of the total. Results also show that carbon accounting methods, specifically the method used to establish project baseline, may be among the most important factors in driving implementation costs on a per-ton-of-carbon-sequestered basis, dramatically increasing variability in both transaction and production costs. This suggests that accounting could be a large driver in the financial viability of forest offset projects, with transaction costs likely being of largest concern to those projects at the margin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Historic and projected vehicle use and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Data are presented in this chapter that show a decline in total carbon dioxide emissions per vehicle of about 20 between 1970 and 1987. However, it is also shown that the fuel economy gains of the 1970s and early 1980s in many countries have begun to erode. In the US, low fuel prices combined with a failure to strengthen fuel efficiency standards have led to recent declines in new-car fuel efficiency. Even if these trends are reversed carbon dioxide in the transport sector will not be reduced if over all motor vehicle use continues along present lines

  11. Quantitative Decision Making Model for Carbon Reduction in Road Construction Projects Using Green Technologies

    Directory of Open Access Journals (Sweden)

    Woosik Jang

    2015-08-01

    Full Text Available Numerous countries have established policies for reducing greenhouse gas emissions and have suggested goals pertaining to these reductions. To reach the target reduction amounts, studies on the reduction of carbon emissions have been conducted with regard to all stages and processes in construction projects. According to a study on carbon emissions, the carbon emissions generated during the construction stage of road projects account for approximately 76 to 86% of the total carbon emissions, far exceeding the other stages, such as maintenance or demolition. Therefore, this study aims to develop a quantitative decision making model that supports the application of green technologies (GTs to reduce carbon emissions during the construction stage of road construction projects. First, the authors selected environmental soundness, economic feasibility and constructability as the key assessment indices for evaluating 20 GTs. Second, a fuzzy set/qualitative comparative analysis (FS/QCA was used to establish an objective decision-making model for the assessment of both the quantitative and qualitative characteristics of the key indices. To support the developed model, an expert survey was performed to assess the applicability of each GT from a practical perspective, which was verified with a case study using two additional GTs. The proposed model is expected to support practitioners in the application of suitable GTs to road projects and reduce carbon emissions, resulting in better decision making during road construction projects.

  12. Assessment of Carbon Emission Reduction for Buildings Projects in Malaysia-A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Klufallah Mustafa M. A.

    2014-01-01

    Full Text Available The Malaysian construction industry significantly contributes as an empowerment to its development vision of 2020 by reducing 40% of carbon emission. Moreover, this industry accounts as a threat to the environment, not only in terms of consumption of natural resources but also in emitting million tons of carbon emission annually. In fact, Malaysia is categorized the 30th in the world's ranking in carbon emission level. To mitigate the raise of carbon emission level from the buildings construction, several studies identified some of the effective carbon emission assessment tools for construction projects but it is lack of implementation in Malaysia. The green building index (GBI, Malaysian CIB Report has been introduced to assist the construction stakeholders in reducing the level of carbon emission and the impact of buildings on the environment. This paper presents an analysis of carbon emission from housing projects and office buildings in order to identify and quantify the main sources of carbon emission for each project and it proposes environmental friendly materials as replacement for conventional construction materials to achieve the implementation of sustainability in Malaysia.

  13. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...

  14. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  15. Stakeholders of Voluntary Forest Carbon Offset Projects in China: An Empirical Analysis

    Directory of Open Access Journals (Sweden)

    Derong Lin

    2015-01-01

    Full Text Available Climate change is one of the defining challenges facing the planet. Voluntary forest carbon offset project which has the potential to boost forest carbon storage and mitigate global warming has aroused the global concern. The objective of this paper is to model the game situation and analyze the game behaviors of stakeholders of voluntary forest carbon offset projects in China. A stakeholder model and a Power-Benefit Matrix are constructed to analyze the roles, behaviors, and conflicts of stakeholders including farmers, planting entities, communities, government, and China Green Carbon Foundation. The empirical analysis results show that although the stakeholders have diverse interests and different goals, a win-win solution is still possible through their joint participation and compromise in the voluntary forest carbon offset project. A wide governance structure laying emphasis on benefit balance, equality, and information exchanges and being regulated by all stakeholders has been constructed. It facilitates the agreement among the stakeholders with conflicting or different interests. The joint participation of stakeholders in voluntary forest carbon offset projects might change the government-dominated afforestation/reforestation into a market, where all participators including government are encouraged to cooperate with each other to improve the condition of fund shortage and low efficiency.

  16. Assessing the appropriateness of carbon financing for micro-scale projects in terms of capabilities

    Directory of Open Access Journals (Sweden)

    Caitlin Trethewy

    2013-08-01

    Full Text Available Micro-scale development projects are currently underrepresented in global carbon markets. This paper outlines the process of becoming eligible to generate carbon credits and examines some of the barriers that may inhibit access to carbon markets. In particular, it focuses on barriers relating to the capacity and resources of the organisation developing the project. This approach represents a deviation from the standard discourse which has traditionally focused on barriers relating to the availability of up-front finance and the capacity of local public and private sector institutions required to participate in the carbon standard certification process. The paper contains an analysis of the carbon offset project cycle from which follows a discussion of potential capacity- related barriers focusing on time, skills and resources. Recommendations are made as to how these may be overcome with a particular focus on the role of technical organisations in assisting project developers. Completed during 2012 this research comes at an interesting time for global carbon markets as the Kyoto Protocol’s first commitment period ended in 2012 and negotiations have failed to produce and agreement that would commit major emitters to reductions targets from 2013 onward. Despite this, reducing greenhouse gas emissions has gained momentum on the national level and many governments are in the process of formulating and introducing emissions trading schemes.

  17. Carbon Accounting and Cost Estimation in Forestry Projects Using CO2Fix V.3

    International Nuclear Information System (INIS)

    Groen, T.; Nabuurs, G.J.; Schelhaas, M.J.

    2006-01-01

    Carbon and financial accounting of projects in the Land Use, Land-Use Change and Forestry sector is a topic of hot debate. Large uncertainty remains concerning the carbon dynamics, the way they should be accounted and the cost efficiency of the projects. Part of the uncertainty can be alleviated by standardisation and transparency of reporting methods. For this reason we further developed CO2FIX, a forest ecosystem carbon model, with modules for carbon and financial accounting. The model is applied to four cases: (1) Joint implementation afforestation project in Romania, (2) Forest management project in Central Europe, (3) Reduced impact logging possibly under the Clean Development Mechanism (CDM) in the future, and (4) Afforestation with native species under the Clean Development Mechanism. The results show the wide applicability of CO2FIX, from degrading grasslands as baseline cases to multiple cohort forest ecosystems. Also the results show that Forest Management in the European case can generate considerable amounts of carbon emission reductions. Further, the results show that although reduced impact logging is not yet an allowed option under the Clean Development Mechanism, it shows promising results in that it is (1) very cost effective, (2) seems to be able to generate intermediate amounts of credits and (3) seems to us as a project type that is not prone to leakage issues. These results are yet another indication to seriously consider reduced impact logging as an eligible measure under the CDM

  18. Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia.

    Science.gov (United States)

    Murray, Josil P; Grenyer, Richard; Wunder, Sven; Raes, Niels; Jones, Julia P G

    2015-10-01

    There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first-generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation. © 2015 The Authors

  19. Elgon/Kibale National Parks carbon sequestration projects

    OpenAIRE

    Face Foundation

    2007-01-01

    Metadata only record In Uganda we are collaborating with the Uganda Wildlife Authority (UWA), one of whose tasks is to manage the country's national parks. We are jointly implementing forest restoration projects in Mount Elgon National Park and Kibale National Park. PES-1 (Payments for Environmental Services Associate Award)

  20. The Role of Public-Private Partnerships in Local Infrastructure: the Case of Carbon Offset Projects

    International Nuclear Information System (INIS)

    Teichmann, Dorothee

    2011-01-01

    Investment in low carbon infrastructure is considered as an important component of the fight against climate change. The mechanisms of climate regulation (such as carbon offsets) transfer to project developers the risks associated with reducing emissions of greenhouse gas (GHG) emissions, i.e. operational and technological risk, or risks associated with the environmental monitoring and the regulatory mechanism itself. The success of projects - and thus their ability to attract private capital - depends importantly on the risk sharing arrangements between the private and public partners involved in the project. We show that the delegation of tasks between the partners can create risks that affect the environmental effectiveness and economic efficiency of the project. Contracts need to be well designed to mitigate those risks. For a sample of landfill gas flaring projects financed under the Clean Development Mechanism, it is shown that the out-sourcing of the provision of technology creates additional risks. The out-sourcing of the development of the Project Design Documents as required by UNFCCC and the separation of the operation of the landfill and the CDM project appear to be manageable by risk sharing arrangements between partners. In the latter case, each partner should bear the risk associated with his own responsibility. In fact, if carbon revenues are the only income stream for the CDM project developer, the incentive to reduce GHG emissions is maintained. (author)

  1. Project of Carbon Capture in Small and Medium Farms in the Brunca Region, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gilmar Navarrete

    2013-12-01

    Full Text Available The Clean Development Mechanism (CDM of the Kyoto Protocol, allows the non Annex 1 countries to receive projects that contribute to reducing greenhouse gas emissions and sustainable development in developing countries. The CDM, since its inception, has issued credits equivalent to 1.434.737.562 tons of CO2, distributed across 7.450 projects around the world, from 15 different sectors. Sectors 14 that allow forestry projects (such as reforestation and afforestation have registered 53 projects to date; 19 of which are in Latin America. Nevertheless, the contribution of this sector currently represents less than 1% of CDM Certificates of Emissions Reduction (CERs issued. In September 2013, through their National Forestry Financing Fund (FONAFIFO, Costa Rica registered their first CDM project with the United Nations Framework Convention on Climate Change (UNFCCC, after having complied with all the project cycle processes. The project, known as "Carbon Sequestration in Small and Medium Farms, Brunca Region, Costa Rica" was a project executed by FONAFIFO under their Environmental Services Payment Program. This project was developed in Pérez Zeledón, San José, Costa Rica in partnership with the Cooperative Corporation CoopeAgri RL. The total goal of the project is to reduce the greenhouse gas emission by 176,050 ton of CO2-e, in a period of 20 years and commercialize the CERs in the regulated carbon market.

  2. For a conditional financing of low carbon risky projects

    International Nuclear Information System (INIS)

    Meunier, Guy; Ponssard, Jean-Pierre

    2016-09-01

    Subsidies are extensively used for promoting the deployment of green technologies (renewables, clean development mechanism, electric vehicles...). Such policies may generate high windfall profits: some of the projects that benefited from the subsidies would have been undertaken anyway. The paper formalizes this situation using a simple principal agent framework under adverse selection. The agent may invest or not and obtain some private benefit in case of success. The principal observes both the investment and the eventual success, which generates a social benefit. Under some conditions it is shown that a subsidy paid conditional on failure (and not on success) limits the windfall profit while encouraging a large portfolio of projects to be invested. The relevance of this policy is discussed in the context of facilitating investment for infrastructure for fuel cell electric vehicles. (authors)

  3. Projecting the climatic effects of increasing carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M C; Luther, F M [eds.

    1985-12-01

    This report presents the current knowns, unknowns, and uncertainties regarding the projected climate changes that might occur as a result of an increasing atmospheric CO/sub 2/ concentration. Further, the volume describes what research is required to estimate the magnitude and rate of a CO/sub 2/-induced clamate change with regional and seasonal resolution. Separate abstracts have been prepared for the individual papers. (ACR)

  4. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  5. Future Projections and Consequences of the Changing North American Carbon Cycle

    Science.gov (United States)

    Huntzinger, D. N.; Cooley, S. R.; Moore, D. J.

    2017-12-01

    The rise of atmospheric carbon dioxide (CO2), primarily due to human-caused fossil fuel emissions and land-use change, has been dampened by carbon uptake by the oceans and terrestrial biosphere. Nevertheless, today's atmospheric CO2 levels are higher than at any time in the past 800,000 years. Over the past decade, there has been considerable effort to understand how carbon cycle changes interact with, and influence, atmospheric CO2 concentrations and thus climate. Here, we summarize the key findings related to projected changes to the North American carbon cycle and the consequences of these changes as reported in Chapters 17 and 19 of the 2nd State of the Carbon Cycle Report (SOCCR-2). In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, plant growth, and water-use efficiency. Together, these may lead to changes in vegetation composition, carbon storage, hydrology and biogeochemical cycling. In the ocean, increased uptake of atmospheric CO2 causes ocean acidification, which leads to changes in reproduction, survival, and growth of many marine species. These direct physiological responses to acidification are likely to have indirect ecosystem-scale consequences that we are just beginning to understand. In all environments, the effects of rising CO2 also interact with other global changes. For example, nutrient availability can set limits on growth and a warming climate alters carbon uptake depending on a number of other factors. As a result, there is low confidence in the future evolution of the North American carbon cycle. For example, models project that terrestrial ecosystems could continue to be a net sink (of up to 1.19 PgC yr-1) or switch to a net source of carbon to the atmosphere (of up to 0.60 PgC yr-1) by the end of the century under business-as-usual emission scenarios. And, while North American coastal areas have historically been a sink of carbon (e.g., 2.6 to 3.5 PgC since 1995) and are projected to continue to take up

  6. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to

  7. Carbon sequestration potential in agroforestry system in India: an analysis for carbon project

    Czech Academy of Sciences Publication Activity Database

    Sharma, R.; Sanjeev, K.; Chauhan, D. K.; Tripathi, Abishek

    2016-01-01

    Roč. 90, č. 4 (2016), s. 631-644 ISSN 0167-4366 Institutional support: RVO:67179843 Keywords : Agroforestry * Biophysical and practical potential * Carbon sequestration * Poplar based agroforestry * Institutional mechanism Subject RIV: GC - Agronomy Impact factor: 1.170, year: 2016

  8. Projecting the spatiotemporal carbon dynamics of the Greater Yellowstone Ecosystem from 2006 to 2050.

    Science.gov (United States)

    Huang, Shengli; Liu, Shuguang; Liu, Jinxun; Dahal, Devendra; Young, Claudia; Davis, Brian; Sohl, Terry L; Hawbaker, Todd J; Sleeter, Ben; Zhu, Zhiliang

    2015-12-01

    Climate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario. We also incorporated projected land use change and fire occurrence into the carbon accounting. The three GCMs showed increases in maximum and minimum temperature, but precipitation projections varied among GCMs. Total ecosystem carbon increased steadily from 7,942 gC/m 2 in 2006 to 10,234 gC/m 2 in 2050 with an annual rate increase of 53 gC/m 2 /year. About 56.6% and 27% of the increasing rate was attributed to total live carbon and total soil carbon, respectively. Net Primary Production (NPP) increased slightly from 260 gC/m 2 /year in 2006 to 310 gC/m 2 /year in 2050 with an annual rate increase of 1.22 gC/m 2 /year. Forest clear-cutting and fires resulted in direct carbon removal; however, the rate was low at 2.44 gC/m 2 /year during 2006-2050. The area of clear-cutting and wildfires in the GYE would account for 10.87% of total forested area during 2006-2050, but the predictive simulations demonstrated different spatial distributions in national forests and national parks. The GYE is a carbon sink during 2006-2050. The capability of vegetation is almost double that of soil in terms of sequestering extra carbon. Clear-cutting and wildfires in GYE will affect 10.87% of total forested area, but direct carbon removal from clear-cutting and fires is 109.6 gC/m 2 , which accounts for only 1.2% of the mean ecosystem carbon level of 9,056 gC/m 2 , and thus is not significant.

  9. Site productivity and forest carbon stocks in the United States: Analysis and implications for forest offset project planning

    Science.gov (United States)

    Coeli M. Hoover; James E. Smith

    2012-01-01

    The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide...

  10. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  11. A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon

    International Nuclear Information System (INIS)

    Sathaye, J.; Norgaard, R.; Makundi, W.

    1993-07-01

    This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries

  12. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Ross [University of Central Florida; Benscoter, Brian [Florida Atlantic University; Comas, Xavier [Florida Atlantic University; Sumner, David [USGS; DeAngelis, Donald [USGS

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regional carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.

  13. Etude Climat no. 31 'Carbon offset projects in the agricultural sector'

    International Nuclear Information System (INIS)

    Foucherot, Claudine; Bellassen, Valentin

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The agricultural sector accounts for 14% of global anthropogenic greenhouse gas emissions. If we also take into account carbon emissions and sequestration from upstream - production of fertilisers, deforestation, etc. - and downstream - bio-energies, etc. - the share rises to 30%. Many practices and technologies enable agriculture's impact on climate change to be reduced. According to a number of estimates that are summarised in this research, the agricultural sector's mitigation potential is of the same order of magnitude as its emissions over a period of 30 years. However, changing agricultural practices comes at a cost, and in most cases such changes are not made without economic incentives. Carbon offsetting projects are one of the economic tools available to reduce agricultural emissions by paying for metric tons of avoided CO 2 e emissions. A summary of the emission reductions enabled by agricultural projects to date is provided in this report. It covers most projects certified by quality assurance standards, including those set up by the Kyoto Protocol (Clean Development Mechanism and Joint Implementation) and those in the voluntary market (Verified Carbon Standard, Climate Action Reserve, Gold Standard, Chicago Climate Exchange, and American Carbon Registry). The assessment drawn up on this basis shows that emission reductions enabled through carbon offsetting are thousand times lower than actual emissions and their potential mitigation. Agricultural projects have reduced emissions by 14 MtCO 2 e in 2010, i.e. 7% of the reductions generated by all carbon offset projects across all sectors for this year. Initiatives focus on three technologies: - bio-energies (crop residues), - methanation of livestock waste, - and soil carbon sequestration using no-till practices. This is very little compared with the large

  14. Wind power projects in the CDM: Methodologies and tools for baselines, carbon financing and substainability analysis

    DEFF Research Database (Denmark)

    Ringius, L.; Grohnheit, Poul Erik; Nielsen, Lars Henrik

    2002-01-01

    and implications of the various methodologies and approaches in a concrete context, Africa's largest wind farm-namely the 60 MW wind farm located in Zafarana,Egypt is examined as a hypothetical CDM wind power project The report shows that for the present case example there is a difference of about 25% between......The report is intended to be a guidance document for project developers, investors, lenders, and CDM host countries involved in wind power projects in the CDM. The report explores in particular those issues that are important in CDM project assessment anddevelopment - that is, baseline development......, carbon financing, and environmental sustainability. It does not deal in detail with those issues that are routinely covered in a standard wind power project assessment. The report tests, compares, andrecommends methodologies for and approaches to baseline development. To present the application...

  15. Learning through a portfolio of carbon capture and storage demonstration projects

    Science.gov (United States)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  16. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships

    Science.gov (United States)

    Wang, Haibin; Zhou, Peilin; Wang, Zhongcheng

    2017-06-01

    Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime (IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.

  17. U.S. China Carbon Capture and Storage Development Project at West Virginia University

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Jerald

    2013-12-31

    The original overall objective of this activity was to undertake resource evaluation and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of large-scale CCS in China’s coal sector. Several project execution barriers were encountered in the course of this project, most notably a project stop/delay due to funds availability/costing restrictions from the US State Department to the US Department of Energy at the end of CY2012, which halted project execution from January 2, 2013 to April 1, 2013. At the resolution of this project delay, it was communicated to the project team that the overall project period would also be reduced, from a completion date of February 28, 2014 to December 31, 2013. The net impact of all these changes was a reduction in the project period from 24 months (3/1/2012-2/28/2014) to 22 months (3/1/2012-12/31/2013), with a 3 month stop from 1/1/2013-3/31/2013. The project team endeavored to overcome these project time impacts, focusing heavily on technoeconomic modeling that would be deliverable under Task 3 (Ordos Basin Feasibility Study), and choosing to abandon the full investigation into the Demonstration Site (Task 4) due to the reduced project time. The ultimate focus of this project changed to work with the Chinese on a carbon atlas/geologic characterization, and on mechanisms for CO2 storage options from high-quality streams within China.

  18. Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change

    Science.gov (United States)

    Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.

    2011-12-01

    Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these

  19. A Distributed, Open Source based Data Infrastructure for the Megacities Carbon Project

    Science.gov (United States)

    Verma, R.; Crichton, D. J.; Duren, R. M.; Salameh, P.; Sparks, A.; Sloop, C.

    2014-12-01

    With the goal of assessing the anthropogenic carbon-emission impact of urban centers on local and global climates, the Megacities Carbon Project has been building carbon-monitoring capabilities for the past two years around the Los Angeles metropolitan area. Hundreds of megabytes (MB) of data are generated daily, and distributed among data centers local to the sensor networks involved. We automatically pull this remotely generated data into a centralized data infrastructure local to the Jet Propulsion Laboratory (JPL), seeking to (1) provide collaboration opportunities on the data, and (2) generate refined data products through community-requested centralized data processing pipelines. The goal of this informatics effort is to ensure near real-time access to generated data products across the Los Angeles carbon monitoring sensor network and meet the data analysis needs of carbon researchers through the production of customized products. We discuss the goals of the informatics effort, its uniqueness, and assess its effectiveness in providing an insight into the carbon sphere of Los Angeles.

  20. Draft environmental impact statement: KENETECH/PacifiCorp Windpower Project, Carbon County, Wyoming

    International Nuclear Information System (INIS)

    1995-01-01

    This Draft Environmental Impact Statement assesses the environmental consequences of a proposed windpower development project in Carbon County, between Arlington and Hanna, Wyoming. Public scoping commenced in January 1994. All issues raised during scoping and interdisciplinary team preparation of the analysis are addressed. The proposed project entails the erection of approximately 1,390 wind turbine generators and associated facilities (e.g., roads, substations, distribution and communications lines) by KENETECH Windpower, Inc. A 230-kV transmission line would be built by PacifiCorp, Inc. to connect a proposed substation on Foote Creek Rim near Arlington to the Miner's substation near Hanna. The proposed project would use standard procedures as currently employed by other right-of-way projects, plus additional project-specific and site-specific mitigation measures to ensure that project impacts are minimized on all important resources. Impacts to most resources would be negligible to moderate during the life-of-project. Potentially significant impacts resulting from the project include avian mortality; declining avian populations; threatened, endangered, candidate, and/or state sensitive species mortality and/or habitat loss; disturbance to nearby residents due to noise; changes in visual resources; disturbance of important Native American traditional sites; changes in plant community species composition due to snow redistribution; displacement of big game due to windfarm operation; and loss of sage grouse nesting habitat. The proposed project could also have numerous beneficial impacts including increased revenues generated by taxes, increased employment, and benefits derived from using a nonpolluting resource for electric power generation

  1. Final environmental impact statement Kenetech/PacifiCorp Windpower Project Carbon County, Wyoming

    International Nuclear Information System (INIS)

    1995-08-01

    The Draft and Final Environmental Impact Statements (DEIS and FEIS) assess the environmental consequences of a proposed windpower energy development in Carbon County, Wyoming. This abbreviated FEIS revises and supplements the DEIS for the project and addresses comments expressed for the DEIS. The proposed project entails the erection of approximately 1,390 wind turbine generators and associated facilities (e.g., roads, substations, distribution and communications lines) by KENETECH Windpower, Inc. A 230-kV transmission line would be built by PacifiCorp, Inc. to connect a proposed substation on Foote Creek Rim near Arlington to the Miner's substation near Hanna. The proposed project would use standard procedures as currently employed by other right-of-way projects, plus additional project-specific and site-specific mitigation measures to ensure that project impacts are minimized on all important resources. Impacts to most resources would be negligible to moderate during the life-of-project. Potentially significant impacts from the project include avian mortality; declining avian populations; threatened, endangered, candidate, and/or state sensitive species mortality and/or habitat loss; disturbance to nearby residents due to noise; changes in visual resources; disturbance of important Native American traditional sites; changes in plant community species composition due to snow redistribution; displacement of big game due to windfarm operation; and loss of sage grouse nesting habitat. The proposed project could also have numerous beneficial impacts including increased revenues generated by taxes, increased employment, and benefits derived from using a nonpolluting resource for electric power generation

  2. Temperature, salinity, nutrients, carbon, and other profile data collected worldwide as part of the CARINA project (NODC Accession 0057766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CARINA (CARbon dioxide IN the Atlantic Ocean) data synthesis project is an international collaborative effort of the EU IP CARBOOCEAN, and US partners. It has...

  3. The Role of Driving Factors in Historical and Projected Carbon Dynamics in Wetland Ecosystems of Alaska

    Science.gov (United States)

    Lyu, Z.; Helene, G.; He, Y.; Zhuang, Q.; McGuire, A. D.; Bennett, A.; Breen, A. L.; Clein, J.; Euskirchen, E. S.; Johnson, K. D.; Kurkowski, T. A.; Pastick, N. J.; Rupp, S. T.; Wylie, B. K.; Zhu, Z.

    2017-12-01

    Wetlands are important terrestrial ecosystems in Alaska. It is important to understand and assess their role in the regional carbon dynamics in response to historical and projected environmental conditions. A coupled modeling framework that incorporates a fire disturbance model and two biogeochemical models was used to assess the relative influence of changing climate, atmospheric carbon dioxide (CO2) concentration, and fire regime on the historical and future carbon balance in wetland ecosystems of the four main Landscape Conservation Cooperatives (LCCs) of Alaska. Simulations were conducted for the historical period (1950-2009) and future projection period (2010-2099). These simulations estimate that the total carbon (C) storage in wetland ecosystems of Alaska is 5556 Tg C in 2009, with 89% of the C stored in soils. An estimated 175 Tg C was lost during the historical period, which is attributed to greater C lost from the Northwest Boreal LCC than C gained from the other three LCCs. The simulations for the projection period were conducted for six different scenarios driven by climate forcings from two different climate models for each of three CO2 emission scenarios. The mean total carbon storage increased 3.94 Tg C/yr by 2099, with variability among the simulations ranging from 2.02 Tg C/yr to 4.42 Tg C/yr. Across the four LCCs, the largest relative C storage increase occurred in the Arctic and North Pacific LCCs. These increases were primarily driven by increases in net primary production (NPP) that were greater than increases in heterotrophic respiration and fire emissions. Our analysis further indicates that NPP increase was primarily driven by CO2 fertilization ( 5% per 100 ppmv increase) as well as by increases in air temperature ( 1% per ° increase). Increases air temperature were estimated to be the primary cause for a projected 47.7% mean increase in wetlands biogenic CH4 emissions among the simulations ( 15% per ° increase). The combined effects of

  4. Important accounting issues for carbon dioxide capture and storage projects under the UNFCCC

    International Nuclear Information System (INIS)

    Haefeli, S.; Bosi, M.; Philibert, C.

    2005-01-01

    Carbon dioxide capture and storage (CCS) provides options for making continued use of fossil fuels more compatible with pollution abatement policies. This paper evaluated policy issues related to CCS, with particular focus on the geological sequestration of carbon dioxide (CO 2 ) into geological storage sites. Before any carbon dioxide (CO 2 ) CCS activities can be included in the portfolio of climate change mitigation activities, several issues need to be resolved such as the development of appropriate accounting and baselines rules and monitoring modalities. Guidance and policies on baselines and the accounting of emission reductions are critical to ensure that CCS projects can benefit from CO 2 markets and are recognized under various mitigation schemes. This paper examined the major issues that should considered along with changes to current accounting approaches. Issues that need to be addressed in order to prepare national inventories for the inclusion of CCS under the United Nations Framework Convention on Climate Change (UNFCCC) and emission reduction schemes such as the European greenhouse gas emissions trading scheme were first presented, followed by an examination of CCS issues under project-based mechanisms such as the Kyoto Protocol's Clean Development Mechanism. The importance of clear definitions and monitoring guidelines for the proper accounting of CCS were also highlighted. 12 refs., 2 figs

  5. TAX TREATMENT OF CARBON CREDIT OPERATIONS IN BRAZILIAN COMPANIES WITH CDM PROJECTS

    Directory of Open Access Journals (Sweden)

    Vanderlei dos Santos

    2012-06-01

    Full Text Available The aim in this study is to identify the tax treatment applied to carbon credit operations in Brazilian companies that are developing projects in the context of the Clean Development Mechanism (CDM. Therefore, an exploratory research with a qualitative approach was developed. Data were collected with the help of questionnaire, forwarded to all Brazilian companies with CDM projects that received approval from the Inter-Ministerial Commission on Global Climate Change (CIMGC without safeguards, according to the list of the Brazilian Ministry of Science and Technology. Out of 117 companies listed, only five answered the research instrument, which represents an accessibility sample. The results show that, as for the tax treatment applied in the companies under analysis, IRPJ and CSLL should be charged on carbon credit operations. Regarding PIS, COFINS, ISS, some companies considered that these taxes are due and others that they are not. There is a consensus, though, about the fact that ICMS and IOF should not be charged. In conclusion, no uniform understanding exists as of yet about due taxes in the research sample, as no specific fiscal legislation exists yet on carbon credits in Brazil.

  6. FutureGen 2.0 Pipeline and Regional Carbon Capture Storage Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Chris [Patrick Engineering Inc., Lisle, IL (United States); Wortman, David [Patrick Engineering Inc., Lisle, IL (United States); Brown, Chris [Battelle Memorial Inst., Richland, WA (United States); Hassan, Syed [Gulf Interstate Engineering, Houston, TX (United States); Humphreys, Ken [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States); Willford, Mark [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States)

    2016-03-31

    efforts are also documented in this report. All permit applications had been submitted to all agencies for those permits or approvals required prior to the start of project construction. Most of the requisite permits were received during Phase II. This report includes information on each permitting effort. Successes and lessons learned are included in this report that will add value to the next generation of carbon storage efforts.

  7. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach

    NARCIS (Netherlands)

    Masera, O.R.; Garza-Caligaris, J.F.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.J.; Pussinen, A.; Jong de, B.H.J.; Mohren, G.M.J.

    2003-01-01

    The paper describes the Version 2 of the CO2FIX (CO2FIX V.2) model, a user-friendly tool for dynamically estimating the carbon sequestration potential of forest management, agroforesty and afforestation projects. CO2FIX V.2 is a multi-cohort ecosystem-level model based on carbon accounting of forest

  8. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project - Part 1: calibration, urban enhancements, and uncertainty estimates

    Science.gov (United States)

    Verhulst, Kristal R.; Karion, Anna; Kim, Jooil; Salameh, Peter K.; Keeling, Ralph F.; Newman, Sally; Miller, John; Sloop, Christopher; Pongetti, Thomas; Rao, Preeti; Wong, Clare; Hopkins, Francesca M.; Yadav, Vineet; Weiss, Ray F.; Duren, Riley M.; Miller, Charles E.

    2017-07-01

    We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four extra-urban sites including two marine sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one continental site located in Victorville (VIC), in the high desert northeast of LA, and one continental/mid-troposphere site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within ˜ 1 ppm CO2 and ˜ 10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. Urban and suburban sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of ˜ 20 ppm CO2 and ˜ 150 ppb CH4 during 2015 as well as ˜ 15 ppm CO2 and ˜ 80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine

  9. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  10. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP: rationale and experimental protocol for CMIP6

    Directory of Open Access Journals (Sweden)

    D. P. Keller

    2018-03-01

    Full Text Available The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention – deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR. Future emission scenarios that stay well below 2 °C, and all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6. These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage, and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.>

  11. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6

    Science.gov (United States)

    Keller, David P.; Lenton, Andrew; Scott, Vivian; Vaughan, Naomi E.; Bauer, Nico; Ji, Duoying; Jones, Chris D.; Kravitz, Ben; Muri, Helene; Zickfeld, Kirsten

    2018-03-01

    The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention - deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.>

  12. Economics of forest and forest carbon projects. Translating lessons learned into national REDD+ implementation

    Energy Technology Data Exchange (ETDEWEB)

    Zaballa Romero, M.; Traerup, S.; Wieben, E.; Ravnkilde Moeller, L.; Koch, A.

    2013-01-15

    The financial implications of implementing a new forest management paradigm have not been well understood and have often been underestimated. Resource needs for e.g., stakeholder consultation, capacity building and addressing the political economy are seldom fully accounted for in the resource needs estimates put forward in connection to REDD+. This report investigates the economics of implementing forest and REDD+ projects through eight case studies from Africa, Latin America and Asia, analyzing real forest and REDD+ investments. The report is part of efforts to share financial experiences and lessons learned with policymakers, project developers and stakeholders, with the objective to inform forest project and strategy development. It presents experiences and advice on the risks, costs and revenues of forest projects, thereby informing not only the development of future REDD+ initiatives but also the testing of advanced market commitments as a finance option for sustainable forest management. The findings in the report underline the fact that only through sound and transparent financial information will forest projects and national forest initiatives become interesting for private financial institutions and comparable with other investment opportunities. It is therefore important to include robust analysis of the operations business case and its financial attractiveness to commercial investors, early in the design process. As for the economics of forest and forest carbon projects, it appears that REDD+ payments alone, especially at current prices, will not deliver the revenues that cover all expenses of transparent and long-term mitigation of forest carbon emissions. Instead the findings underline the importance of building up forest operations which effectively manages risk and delivers several revenue streams. These findings are aligned with the advocacy efforts of UNEP and the UN-REDD Programme on multiple benefits and the combination of various funding and

  13. Idaho forest carbon projections from 2017 to 2117 under forest disturbance and climate change scenarios

    Science.gov (United States)

    Hudak, A. T.; Crookston, N.; Kennedy, R. E.; Domke, G. M.; Fekety, P.; Falkowski, M. J.

    2017-12-01

    Commercial off-the-shelf lidar collections associated with tree measures in field plots allow aboveground biomass (AGB) estimation with high confidence. Predictive models developed from such datasets are used operationally to map AGB across lidar project areas. We use a random selection of these pixel-level AGB predictions as training for predicting AGB annually across Idaho and western Montana, primarily from Landsat time series imagery processed through LandTrendr. At both the landscape and regional scales, Random Forests is used for predictive AGB modeling. To project future carbon dynamics, we use Climate-FVS (Forest Vegetation Simulator), the tree growth engine used by foresters to inform forest planning decisions, under either constant or changing climate scenarios. Disturbance data compiled from LandTrendr (Kennedy et al. 2010) using TimeSync (Cohen et al. 2010) in forested lands of Idaho (n=509) and western Montana (n=288) are used to generate probabilities of disturbance (harvest, fire, or insect) by land ownership class (public, private) as well as the magnitude of disturbance. Our verification approach is to aggregate the regional, annual AGB predictions at the county level and compare them to annual county-level AGB summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. This analysis shows that when federal lands are disturbed the magnitude is generally high and when other lands are disturbed the magnitudes are more moderate. The probability of disturbance in corporate lands is higher than in other lands but the magnitudes are generally lower. This is consistent with the much higher prevalence of fire and insects occurring on federal lands, and greater harvest activity on private lands. We found large forest carbon losses in drier southern Idaho, only partially offset by carbon gains in wetter northern Idaho, due to anticipated climate change. Public and

  14. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  15. Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia.

    Science.gov (United States)

    Fuller, Douglas O; Hardiono, Martin; Meijaard, Erik

    2011-09-01

    We evaluated three spatially explicit land use and cover change (LUCC) models to project deforestation from 2005-2020 in the carbon-rich peat swamp forests (PSF) of Central Kalimantan, Indonesia. Such models are increasingly used to evaluate the impact of deforestation on carbon fluxes between the biosphere and the atmosphere. We considered both business-as-usual (BAU) and a forest protection scenario to evaluate each model's accuracy, sensitivity, and total projected deforestation and landscape-level fragmentation patterns. The three models, Dinamica EGO (DE), GEOMOD and the Land Change Modeler (LCM), projected similar total deforestation amounts by 2020 with a mean of 1.01 million ha (Mha) and standard deviation of 0.17 Mha. The inclusion of a 0.54 Mha strict protected area in the LCM simulations reduced projected loss to 0.77 Mha over 15 years. Calibrated parameterizations of the models using nearly identical input drivers produced very different landscape properties, as measured by the number of forest patches, mean patch area, contagion, and Euclidean nearest neighbor determined using Fragstats software. The average BAU outputs of the models suggests that Central Kalimantan may lose slightly less than half (45.1%) of its 2005 PSF by 2020 if measures are not taken to reduce deforestation there. The relatively small reduction of 0.24 Mha in deforestation found in the 0.54 Mha protection scenario suggests that these models can identify potential leakage effects in which deforestation is forced to occur elsewhere in response to a policy intervention.

  16. Assessing Historical and Projected Carbon Balance of Alaska: A Synthesis of Results and Policy/Management Implications.

    Science.gov (United States)

    McGuire, A David; Genet, Hélène; Lyu, Zhou; Pastick, Neal; Stackpoole, Sarah; Birdsey, Richard; D'Amore, David; He, Yujie; Rupp, T Scott; Striegl, Robert; Wylie, Bruce K; Zhou, Xiaoping; Zhuang, Qianlai; Zhu, Zhiliang

    2018-06-20

    We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the State gained 0.4 Tg C yr -1 (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 x 10 -3 W m -2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C yr -1 (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5 to 70.0 Tg C yr -1 ), primarily because of NPP increases of 10 to 30% associated with responses to rising atmospheric CO 2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH 4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections, and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO 2 (~5% per 100 ppmv CO 2 ) saturates as CO 2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained

  17. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.

    2010-01-01

    and comparison of different carbon mitigation projects (e.g. biofuel use, sequestering plant, afforestation project, etc.). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability of characterizing all types...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane and willow). Study shows that carbon mitigation assessment through LCA is possible and that it could be a useful tool for decision makers as it can compare different projects regardless of their original context. Case...

  18. Stakeholder views on financing carbon capture and storage demonstration projects in China.

    Science.gov (United States)

    Reiner, David; Liang, Xi

    2012-01-17

    Chinese stakeholders (131) from 68 key institutions in 27 provinces were consulted in spring 2009 in an online survey of their perceptions of the barriers and opportunities in financing large-scale carbon dioxide capture and storage (CCS) demonstration projects in China. The online survey was supplemented by 31 follow-up face-to-face interviews. The National Development and Reform Commission (NDRC) was widely perceived as the most important institution in authorizing the first commercial-scale CCS demonstration project and authorization was viewed as more similar to that for a power project than a chemicals project. There were disagreements, however, on the appropriate size for a demonstration plant, the type of capture, and the type of storage. Most stakeholders believed that the international image of the Chinese Government could benefit from demonstrating commercial CCS and that such a project could also create advantages for Chinese companies investing in CCS technologies. In more detailed interviews with 16 financial officials, we found striking disagreements over the perceived risks of demonstrating CCS. The rate of return seen as appropriate for financing demonstration projects was split between stakeholders from development banks (who supported a rate of 5-8%) and those from commercial banks (12-20%). The divergence on rate alone could result in as much as a 40% difference in the cost of CO(2) abatement and 56% higher levelized cost of electricity based on a hypothetical case study of a typical 600-MW new build ultrasupercritical pulverized coal-fired (USCPC) power plant. To finance the extra operational costs, there were sharp divisions over which institutions should bear the brunt of financing although, overall, more than half of the support was expected to come from foreign and Chinese governments.

  19. Comparison of registry methodologies for reporting carbon benefits for afforestation projects in the United States

    International Nuclear Information System (INIS)

    Pearson, Timothy R.H.; Brown, Sandra; Andrasko, Kenneth

    2008-01-01

    No mandatory national program currently exists to mitigate climate change in the US Consequently, voluntary programs and mandatory state-level programs are multiplying to allow users to register emission-offset activities, creating multiple often contradictory measurement and recording standards. For the land use sector we examined a hypothetical project: tree planting on rangelands in California. We apply four sets of protocols from the following registries - the California Climate Action Registry, the Chicago Climate Exchange (CCX), the Regional Greenhouse Gas Initiative and the USDOE 1605(b) program - and compare the results to the 'actual' net sequestration and also briefly compare them to international protocols such as the relevant Clean Development Mechanism methodology. Carbon in land use can be estimated accurately, precisely and cost-effectively, but to achieve this requires good protocols. As predicted, the consequence of applying different protocols for reportable carbon was significant. The choice of measurement pools, the handling of the baseline and the issue of uncertainty led to a baseline estimate of 0-66,690 t CO 2 -e, and final sequestered carbon totals (after 60 years) that varied between 118,044 and 312,685 t CO 2 -e-a factor of 2.5 difference. The amount reported under 1605(b) is the closest to 'actual' with CCX entity reporting the most divergent

  20. The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles

    Science.gov (United States)

    Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.

    2017-01-01

    The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.

  1. Game Changing Development Program - Next Generation Life Support Project: Oxygen Recovery From Carbon Dioxide Using Ion Exchange Membrane Electrolysis Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jiao, Feng

    2016-01-01

    This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.

  2. Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China

    Science.gov (United States)

    Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.

    2011-01-01

    Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau

  3. A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics

    International Nuclear Information System (INIS)

    Mansouri, Noura Y.; Crookes, Roy J.; Korakianitis, Theodosios

    2013-01-01

    The paper examined the case study of the Saudi electricity sector and provided projections for energy use and respective carbon dioxide (CO 2 ) emissions for the period 2010–2025 with and without cleaner energy technologies. Based on two sets of 20 life cycle assessment studies for carbon capture and storage and solar photovoltaic technologies, CO 2 emission reduction rates were used for projecting future CO 2 emissions. Results showed enormous savings in CO 2 emissions, for the most likely case, year 2025 reported savings that range from 136 up to 235 MtCO 2 . Including low growth and high growth cases, these savings could range from 115 up to 468 MtCO 2 presenting such an unrivalled opportunity for Saudi Arabia. These projections were developed as a way of translating the inherent advantages that cleaner energy technologies could provide for CO 2 emissions savings. It is hoped that the results of this paper would inform energy policymaking in Saudi Arabia. - Highlights: • Electricity use in Saudi Arabia is predicted in the period 2010–2025. • Use of photovoltaic plants and carbon capture and storage are considered. • Life cycle assessment of the options is conducted. • Carbon emissions with and without the renewable energy are estimated. • The projections showcase the CO 2 emissions savings

  4. Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia

    Science.gov (United States)

    Murray, Josil P; Grenyer, Richard; Wunder, Sven; Raes, Niels; Jones, Julia PG

    2015-01-01

    There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first-generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation. Los Patrones Espaciales

  5. Public financial institutions and the low carbon transition: five case studies on low-carbon infrastructure and project investment. Environment working paper No. 72:

    International Nuclear Information System (INIS)

    Cochran, Ian; Hubert, Romain; Marchal, Virginie; Youngman, Robert; Rus, Katerina; Baker, Jade; Kynaston, Jane

    2014-01-01

    Public financial institutions (PFIs) are well-positioned to act as a key leverage point for governments' efforts to mobilise private investment in low-carbon projects and infrastructure. The study identifies the tools, instruments and approaches used by five PFIs to directly support and scale-up domestic private sector investment in sustainable transport, energy-efficiency and renewable energy in OECD countries. Between 2010-2012, these five institutions - Group Caisse des Depots in France, KfW Bankengruppe in Germany, the UK Green Investment Bank, the European Investment Bank, and the European Bank for Reconstruction and Development - have provided over 100 billion euros of equity investment and financing for energy efficiency, renewable energy and sustainable transport projects. They use both traditional and innovative approaches to link low-carbon projects with finance through enhancing access to capital; facilitating risk reduction and sharing; improving the capacity of market actors; and shaping broader market practices and conditions. (authors)

  6. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  7. Towards a comparable carbon footprint for local initiatives: The FP7 project TESS

    Science.gov (United States)

    Reusser, Dominik E.; Kropp, Jürgen P.

    2014-05-01

    TESS (Towards European Societal Sustainability -- www.tess-transition.eu) is a three-year, European-wide research project. It aims to reach an understanding of the potential for community-led initiatives to help deliver a truly sustainable, low-carbon future. Transitions to low-carbon societies take place at multiple and complementary scales. Transition processes are highly dependent on the innovative potential of community-based initiatives and their articulation with appropriate institutional architecture. Community-based initiatives are potentially more adaptable and less constrained by current structural circumstances than top-down policies and can give impetus to large-scale and technology driven changes. TESS will provide an understanding on the upscaling possibilities of such high-potential community-based initiatives by addressing two main questions: What is the impact of community-based initiatives in terms of carbon reduction potential and economic effect? What institutional structures (values, policies and mechanisms) support these initiatives in persisting beyond the initial phase and moving into an acceleration phase, spreading desired impacts? Answers will be provided through (1) a novel measuring, reporting and verification (MRV) framework for benchmarking community-based initiatives. This will enable quantifiable, comparable and standardised evaluation, and (2) the identification of success factors for the emergence, persistence and diffusion of promising initiatives, including online initiatives. We will identify these initiatives through case studies across regions and sectors and produce a systemic understanding of their impact on societal transitions towards sustainability. Our research will be integrated and transdisciplinary, with the unique opportunity to bring together social and natural scientists to foster a transition towards European societal sustainability. Our work will feed into and extend the Climate Adapt database to facilitate

  8. Wind power projects in the CDM: Methodologies and tools for baselines, carbon financing and sustainability analysis

    International Nuclear Information System (INIS)

    Ringius, L.; Grohnheit, P.E.; Nielsen, L.H.; Olivier, A.L.; Painuly, J.; Villavicencio, A.

    2002-12-01

    The report is intended to be a guidance document for project developers, investors, lenders, and CDM host countries involved in wind power projects in the CDM. The report explores in particular those issues that are important in CDM project assessment and development - that is, baseline development, carbon financing, and environmental sustainability. It does not deal in detail with those issues that are routinely covered in a standard wind power project assessment. The report tests, compares, and recommends methodologies for and approaches to baseline development. To present the application and implications of the various methodologies and approaches in a concrete context, Africa's largest wind farm-namely the 60 MW wind farm located in Zafarana, Egypt- is examined as a hypothetical CDM wind power project The report shows that for the present case example there is a difference of about 25% between the lowest (0.5496 tCO2/MWh) and the highest emission rate (0.6868 tCO 2 /MWh) estimated in accordance with these three standardized approaches to baseline development according to the Marrakesh Accord. This difference in emission factors comes about partly as a result of including hydroelectric power in the baseline scenario. Hydroelectric resources constitute around 21% of the generation capacity in Egypt, and, if excluding hydropower, the difference between the lowest and the highest baseline is reduced to 18%. Furthermore, since the two variations of the 'historical' baseline option examined result in the highest and the lowest baselines, by disregarding this baseline option altogether the difference between the lowest and the highest is reduced to 16%. The ES3-model, which the Systems Analysis Department at Risoe National Laboratory has developed, makes it possible for this report to explore the project-specific approach to baseline development in some detail. Based on quite disaggregated data on the Egyptian electricity system, including the wind power production

  9. Integrating invasive grasses into carbon cycle projections: Cogongrass spread in southern pine forests

    Science.gov (United States)

    McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.

    2017-12-01

    Forested ecosystems are currently being disrupted by invasive species. One example is the invasive grass Imperata cylindrica (cogongrass), which is widespread in southeastern US pine forests. Pines forests dominate the forest cover of the southeast, and contribute to making the Southeast the United States' largest carbon sink. Cogongrass decreases the colonization of loblolly pine fine roots. If cogongrass continues to invade,this sink could be jeopardized. However, the effects of cogongrass invasion on carbon sequestration are largely unknown. We have projected the effects of elevated CO2 and changing climate on future cogongrass invasion. To test how pine stands are affected by cogongrass, cogongrass invasions were modeled using the Ecosystem Demography 2 (ED2) model, and parameterized using the Predictive Ecosystem Analyzer (PEcAn). ED2 takes into account local meteorological data, stand populations and succession, disturbance, and geochemical pools. PEcAn is a workflow that uses Bayesian sensitivity analyses and variance decomposition to quantify the uncertainty that each parameter contributes to overall model uncertainty. ED2 was run for four NEON and Ameriflux sites in the Southeast from the earliest available census of the site into 2010. These model results were compared to site measures to test for model accuracy and bias. To project the effect of elevated CO2 on cogongrass invasions, ED was run from 2006-2100 at four sites under four separate scenarios: 1) RPC4.5 CO2 and climate, 2) RPC4.5 climate only, with constant CO2 concentrations, 3) RPC4.5 Elevated CO2 only, with climate randomly selected from 2006-2026, 4) Present Day, made from randomly selected measures of CO2 and radiation from 2006-2026. Each scenario was run three times; once with cogongrass absent, once with a low cogongrass abundance, and once with a high cogongrass abundance. Model results suggest that many relevant parameters have high uncertainty due to lack of measurement. Further field

  10. Historical and projected carbon balance of mature black spruce ecosystems across north america: The role of carbon-nitrogen interactions

    Science.gov (United States)

    Clein, Joy S.; McGuire, A.D.; Zhang, X.; Kicklighter, D.W.; Melillo, J.M.; Wofsy, S.C.; Jarvis, P.G.; Massheder, J.M.

    2002-01-01

    The role of carbon (C) and nitrogen (N) interactions on sequestration of atmospheric CO2 in black spruce ecosystems across North America was evaluated with the Terrestrial Ecosystem Model (TEM) by applying parameterizations of the model in which C-N dynamics were either coupled or uncoupled. First, the performance of the parameterizations, which were developed for the dynamics of black spruce ecosystems at the Bonanza Creek Long-Term Ecological Research site in Alaska, were evaluated by simulating C dynamics at eddy correlation tower sites in the Boreal Ecosystem Atmosphere Study (BOREAS) for black spruce ecosystems in the northern study area (northern site) and the southern study area (southern site) with local climate data. We compared simulated monthly growing season (May to September) estimates of gross primary production (GPP), total ecosystem respiration (RESP), and net ecosystem production (NEP) from 1994 to 1997 to available field-based estimates at both sites. At the northern site, monthly growing season estimates of GPP and RESP for the coupled and uncoupled simulations were highly correlated with the field-based estimates (coupled: R2= 0.77, 0.88 for GPP and RESP; uncoupled: R2 = 0.67, 0.92 for GPP and RESP). Although the simulated seasonal pattern of NEP generally matched the field-based data, the correlations between field-based and simulated monthly growing season NEP were lower (R2 = 0.40, 0.00 for coupled and uncoupled simulations, respectively) in comparison to the correlations between field-based and simulated GPP and RESP. The annual NEP simulated by the coupled parameterization fell within the uncertainty of field-based estimates in two of three years. On the other hand, annual NEP simulated by the uncoupled parameterization only fell within the field-based uncertainty in one of three years. At the southern site, simulated NEP generally matched field-based NEP estimates, and the correlation between monthly growing season field-based and

  11. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Science.gov (United States)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  12. The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean

    Science.gov (United States)

    Kwiatkowski, Lester; Aumont, Olivier; Bopp, Laurent; Ciais, Philippe

    2018-04-01

    Ocean biogeochemical models are integral components of Earth system models used to project the evolution of the ocean carbon sink, as well as potential changes in the physical and chemical environment of marine ecosystems. In such models the stoichiometry of phytoplankton C:N:P is typically fixed at the Redfield ratio. The observed stoichiometry of phytoplankton, however, has been shown to considerably vary from Redfield values due to plasticity in the expression of phytoplankton cell structures with different elemental compositions. The intrinsic structure of fixed C:N:P models therefore has the potential to bias projections of the marine response to climate change. We assess the importance of variable stoichiometry on 21st century projections of net primary production, food quality, and ocean carbon uptake using the recently developed Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean biogeochemistry model. The model simulates variable phytoplankton C:N:P stoichiometry and was run under historical and business-as-usual scenario forcing from 1850 to 2100. PISCES-QUOTA projects similar 21st century global net primary production decline (7.7%) to current generation fixed stoichiometry models. Global phytoplankton N and P content or food quality is projected to decline by 1.2% and 6.4% over the 21st century, respectively. The largest reductions in food quality are in the oligotrophic subtropical gyres and Arctic Ocean where declines by the end of the century can exceed 20%. Using the change in the carbon export efficiency in PISCES-QUOTA, we estimate that fixed stoichiometry models may be underestimating 21st century cumulative ocean carbon uptake by 0.5-3.5% (2.0-15.1 PgC).

  13. CO2 Injectivity in Geological Storages: an Overview of Program and Results of the GeoCarbone-Injectivity Project

    International Nuclear Information System (INIS)

    Lombard, J.M.; Egermann, P.; Azaroual, M.; Pironon, J.; Broseta, D.; Egermann, P.; Munier, G.; Mouronval, G.

    2010-01-01

    The objective of the GeoCarbone-Injectivity project was to develop a methodology to study the complex phenomena involved in the near well bore region during CO 2 injection. This paper presents an overview of the program and results of the project, and some further necessary developments. The proposed methodology is based on experiments and simulations at the core scale, in order to understand (physical modelling and definition of constitutive laws) and quantify (calibration of simulation tools) the mechanisms involved in injectivity variations: fluid/rock interactions, transport mechanisms, geomechanical effects. These mechanisms and the associated parameters have then to be integrated in the models at the well bore scale. The methodology has been applied for the study of a potential injection of CO 2 in the Dogger geological formation of the Paris Basin, in collaboration with the other ANR GeoCarbone projects. (authors)

  14. Carbon stored in forest plantations of Pinus caribaea, Cupressus lusitanica and Eucalyptus deglupta in Cachí Hydroelectric Project

    Directory of Open Access Journals (Sweden)

    Marylin Rojas

    2014-06-01

    Full Text Available Forest plantations are considered the main carbon sinks thought to reduce the impact of climate change. Regarding many species, however, there is a lack of information in order to establish metrics on accumulation of biomass and carbon, principally due to the level of difficulty and the cost of quantification through direct measurement and destructive sampling. In this research, it was evaluated carbon stocks of forest plantations near the dam of hydroelectric project Cachí, which belongs to Instituto Costarricense de Electricidad. 25 unit samples were evaluated along some plantations that contain three different species. 30 Pinus caribacea trees, 14 Cupressus lusitanica and 15 Eucalyptus deglupta were extracted. The biomass was quantified by means of the destructive method. First of all, every component of the tree was weighed separately; then, sampling was obtained in order to determine the dry matter and the carbon fraction. 110 biomass samples from the three species were analyzed in laboratory, including all the components (leaves, branches, shaft, and root. The carbon fraction varied between 47,5 and 48,0 for Pinus caribacea; between 32,6 and 52,7 for Cupressus lusitanica, and beween 36,4 and 50,3% for Eucalyptus deglupta. The stored carbon was 230, 123, and 69 Mg ha-1 in plantations of P. caribaea, C. lusitanica and E. deglupta, respectively. Approximately, 75% of the stored carbon was detected in the shaft.

  15. Transport of Perfluorocarbon Tracers in the Cranfield Geological Carbon Sequestration Project

    Science.gov (United States)

    Moortgat, J.; Soltanian, M. R.; Amooie, M. A.; Cole, D. R.; Graham, D. E.; Pfiffner, S. M.; Phelps, T.

    2017-12-01

    A field-scale carbon dioxide (CO2) injection pilot project was conducted by the Southeast Regional Sequestration Partnership (SECARB) at Cranfield, Mississippi. Two associated campaigns in 2009 and 2010 were carried out to co-inject perfluorocarbon tracers (PFTs) and sulfur hexafluoride (SF6) with CO2. Tracers in gas samples from two observation wells were analyzed to construct breakthrough curves. We present the compiled field data as well as detailed numerical modeling of the flow and transport of CO2, brine, and introduced tracers. A high-resolution static model of the formation geology in the Detailed Area Study (DAS) was used in order to capture the impact of connected flow pathways created by fluvial channels on breakthrough curves and breakthrough times of PFTs and SF6 tracers. We use the cubic-plus-association (CPA) equation of state, which takes into account the polar nature of water molecules, to describe the phase behavior of CO2-brine-tracer mixtures. We show how the combination of multiple tracer injection pulses with detailed numerical simulations provide a powerful tool in constraining both formation properties and how complex flow pathways develop over time.

  16. Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project

    Directory of Open Access Journals (Sweden)

    Jaime Solís-Guzmán

    2018-04-01

    Full Text Available Existing tools for environmental certification of buildings are failing in their ability to reach the general public and to create social awareness, since they require not only specialized knowledge regarding construction and energy sources, but also environmental knowledge. In this paper, an open-source online tool for the estimation of the carbon footprint of residential buildings by non-specialized users is presented as a product from the OERCO2 Erasmus + project. The internal calculations, data management and operation of this tool are extensively explained. The ten most common building typologies built in the last decade in Spain are analysed by using the OERCO2 tool, and the order of magnitude of the results is analysed by comparing them to the ranges determined by other authors. The OERCO2 tool proves itself to be reliable, with its results falling within the defined logical value ranges. Moreover, the major simplification of the interface allows non-specialized users to evaluate the sustainability of buildings. Further research is oriented towards its inclusion in other environmental certification tools and in Building Information Modeling (BIM environments.

  17. Summary of Carbon Storage Incentives and Potential Legislation: East Sub-Basin Project Task 3.1 Business and Financial Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Trabucchi, Chiara [Industrial Economics, Incorporated

    2018-05-16

    The CarbonSAFE Illinois – East Sub-Basin project is conducting a pre-feasibility assessment for commercial-scale CO2 geological storage complexes. The project aims to identify sites capable of storing more than 50 million tons of industrially-sourced CO2. To support the business development assessment of the economic viability of potential sites in the East Sub-Basin and explore conditions under which a carbon capture and storage (CCS) project therein might be revenue positive, this document provides a summary of carbon storage incentives and legislation of potential relevance to the project.

  18. Corn Belt soil carbon and macronutrient budgets with projected sustainable stover harvest

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang

    2015-01-01

    Corn (Zea mays L.) stover has been identified as a prime feedstock for biofuel production in the U.S. Corn Belt because of its perceived abundance and availability, but long-term stover harvest effects on regional nutrient budgets have not been evaluated. We defined the minimum stover requirement (MSR) to maintain current soil organic carbon levels and then estimated current and future soil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) budgets for various stover harvest scenarios. Analyses for 2006 through 2010 across the entire Corn Belt indicated that currently, 28 Tg or 1.6 Mg ha−1 of stover could be sustainably harvested from 17.95 million hectares (Mha) with N, P, and K removal of 113, 26, and 47 kg ha−1, respectively, and C removal for that period was estimated to be 4.55 Mg C ha−1. Assuming continued yield increases and a planted area of 26.74 Mha in 2050, 77.4 Tg stover (or 2.4 Mg ha−1) could be sustainably harvested with N, P, and K removal of 177, 37, and 72 kg ha−1, respectively, along with C removal of ∼6.57 Mg C ha−1. Although there would be significant variation across the region, harvesting only the excess over the MSR under current fertilization rates would result in a small depletion of soil N (−5 ± 27 kg ha−1) and K (−20 ± 31 kg ha−1) and a moderate surplus of P (36 ± 18 kg ha−1). Our 2050 projections based on continuing to keep the MSR, but having higher yields indicate that soil N and K deficits would become larger, thus emphasize the importance of balancing soil nutrient supply with crop residue removal.

  19. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility

    DEFF Research Database (Denmark)

    Greve, Michelle; Reyers, Belinda; Lykke, Anne Mette

    2013-01-01

    Carbon (C) offset projects through forestation are employed within the emissions trading framework to store C. Yet, information about the potential of landscapes to stock C, essential to the design of offset projects, is often lacking. Based on data on vegetation C, climate and soil we quantified...... the potential for C storage in woody vegetation across tropical Africa. The ability for offset projects to produce co-benefits for ecosystems and local communities was also investigated. When co-benefits such as biodiversity conservation were considered, the top-ranked sites were often different to sites...... selected purely for their C stocking potential, but they still possessed 68% of the latter’s C stocking potential. This work provides the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from C storage reforestation projects at the smallest costs...

  20. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990-2100

    International Nuclear Information System (INIS)

    Zaehle, S.; Bondeau, A.; Cramer, W.; Erhard, M.; Sitch, S.; Smith, P.C.; Zaehle, S.; Smith, P.C.; Carter, T.R.; Erhard, M.; Prentice, C.; Prentice, C.; Reginster, I.; Rounsevell, M.D.A.; Sitch, S.; Smith, B.; Sykes, M

    2007-01-01

    Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES story-lines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES story-line. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17-38 Tg C/year between 1990 and 2100, corresponding to 1.9-2.9% of the EU*s CO 2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO 2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4-10.1 Pg C between 1990 and 2100. (authors)

  1. Carbon stored in harvested wood products in Turkey and projections for 2020

    Directory of Open Access Journals (Sweden)

    Olivier Bouyer

    2016-01-01

    Full Text Available Turkey is an Annex-I country under the United Nations Framework Convention on Climate Change (UNFCCC and therefore submits its Greenhouse gases (GHG emissions and removals from anthropogenic sources to the UNFCCC secretariat on an annual basis, through a National GHG Inventory Report (NIR. GHG emissions and removals from Land Use, Land Use and Forestry (LULUCF constitute one of the main sectors in this report. One of the major land use categories in this sector is Forestland, and harvests in this category must be considered as a direct GHG emission to the atmosphere, unless the fate of the Harvested Wood Products (HWP is reported. In this study, we estimated the carbon sequestration in the HWP category of the Turkish NIR, according to the 2006 Guidelines for GHG inventory in the Agriculture, Forestry and Other Land Use (AFOLU sector, from the International Panel of Experts on Climate Change (IPCC. This is the first time such an estimate of carbon stocks and carbon stock changes in the HWP pool has been carried out in Turkey. The calculation has been done in Tier 2. We used United Nations Economic Commission for Europe (UNECE Timber database disaggregated figures for HWP produced in Turkey from 1964 to 2013. We focused on the two main HWP categories, which are sawnwood and wood-based panels. Comparing UNECE data series with Orman Genel Müdürlügü (OGM, the Republic of Turkey, General Directorate of Forestry data series for industrial roundwood over 1976-2013 (starting date for OGM data series, we noticed some anomalies (with UNECE data series as a basis: max: +47%, min = -23%, mean = +16%. Thus, the UNECE data on sawnwood and wood based panels were corrected based on OGM data. These anomalies could be due to: (i use of volume over bark for UNECE and volume under bark for OGM (+15% for volume over bark, and (ii integration of industrial roundwood coming from the private sector for UNECE. In order to ensure coherence, we then corrected the 1976

  2. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    Science.gov (United States)

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan R.; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  3. Uses of Single Photon Lidar (SPL) in the Monitoring Reporting and Verification of afforestation and carbon offset projects

    Science.gov (United States)

    Dolan, K. A.; DeCola, P.; Dubayah, R.; Huang, W.; Hurtt, G. C.; Tang, H.; Whitehurst, A.

    2017-12-01

    As societies move towards increased valuation of carbon through markets, regulations, and voluntary agreements the need to develop comprehensive, traceable and continuous, carbon monitoring, reporting and verification (MRV) systems has risen in priority locally to globally. Future landuse decisions, to conserve, develop or reforest, rests on the perceived valuation of anthropogenic and ecological benefits, as well as our ability to measure, report, verify, and "project" those benefits. Two carbon markets in the US, the Regional Green House Gas Initiative (RGGI) and the California Cap and Trade, accept carbon credits or offsets from the forestry sector from avoided emissions through forest conservation, by the enhancement land carbon sequestration through improved forest management and through reforestation projects. These investments often go beyond state, and national boundaries. For example, Blue Source a leading investment firm in forest carbon credits invested in over 20,000 acres of Pennsylvania forests in collaboration with The Nature Conservatory (TNC) Forest Conservation Program. Further local to national governments are writing their own climate policies and regulations and are setting targets for forest carbon storage and sequestration as part of their climate action portfolios. Yet, often little resources or effort is left for monitoring the success of projects such as afforestation initiatives once they have been completed. While field data is critical to monitoring efforts, covering the vast areas needed and getting accurate structural information from field campaigns alone can be difficult and costly. The use of Lidar as a supplement to other developed forest monitoring techniques has advanced significantly over the last decade. Here we evaluate the use of single photon lidar (SPL) collected in the summer of 2015, developed for rapidly collecting high-density, three-dimensional data over a variety of terrain targets, to aid in carbon offset MRV on an

  4. The present status of carbon 14 analysis and projects for beryllium 10 analysis at the Tandetron 1 accelerator, Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshio; Oda, Hirotaka; Ikeda, Akiko; Niu, Etsuko [Nagoya Univ. (Japan)

    2001-02-01

    The operation experience in 1999 of the Tandetron accelerator age estimation system, Nagoya University, is reported, after the overview and the history of the accelerator is briefly described. Total number of carbon 14 environmental samples analyzed was 8567. The project of introducing new HVEE Tandetron for C-14 analysis, and modifying the present GIC Tandetron for Be-10 analysis is presented. Ion source shall be replaced, and the heavy ion detector shall be installed. Projected geological and archaeological studies using Be-10 are enumerated. (A. Yamamoto)

  5. Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L. forests in Zala County, Hungary

    Directory of Open Access Journals (Sweden)

    Somogyi Zoltán

    2016-03-01

    Full Text Available Recent studies suggest that climate change will lead to the local extinction of many tree species from large areas during this century, affecting the functioning and ecosystem services of many forests. This study reports on projected carbon losses due to the assumed local climate change-driven extinction of European beech (Fagus sylvatica L. from Zala County, South-Western Hungary, where the species grows at the xeric limit of its distribution. The losses were calculated as a difference between carbon stocks in climate change scenarios assuming an exponentially increasing forest decline over time, and those in a baseline scenario assuming no climate change. In the climate change scenarios, three different sets of forest management adaptation measures were studied: (1 only harvesting damaged stands, (2 additionally salvaging dead trees that died due to climate change, and (3 replacing, at an increasing rate over time, beech with sessile oak (Quercus petraea Matt. Lieb. after final harvest. Projections were made using the open access carbon accounting model CASMOFOR based on modeling or assuming effects of climate change on mortality, tree growth, root-to-shoot ratio and decomposition rates. Results demonstrate that, if beech disappears from the region as projected by the end of the century, over 80% of above-ground biomass carbon, and over 60% of the carbon stocks of all pools (excluding soils of the forests will be lost by 2100. Such emission rates on large areas may have a discernible positive feedback on climate change, and can only partially be offset by the forest management adaptation measures.

  6. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature

    International Nuclear Information System (INIS)

    Jones, Chris D.; Cox, Peter; Huntingford, Chris

    2003-01-01

    Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO 2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate-carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO 2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions

  7. A Conceptual Model for Projecting Coccolithophorid Growth, Calcification and Photosynthetic Carbon Fixation Rates in Response to Global Ocean Change

    Directory of Open Access Journals (Sweden)

    Natasha A. Gafar

    2018-01-01

    Full Text Available Temperature, light and carbonate chemistry all influence the growth, calcification and photosynthetic rates of coccolithophores to a similar degree. There have been multiple attempts to project the responses of coccolithophores to changes in carbonate chemistry, but the interaction with light and temperature remains elusive. Here we devise a simple conceptual model to derive a fit equation for coccolithophorid growth, photosynthetic and calcification rates in response to simultaneous changes in carbonate chemistry, temperature and light conditions. The fit equation is able to account for up to 88% of the variability in measured metabolic rates. Equation projections indicate that temperature, light and carbonate chemistry all have different modulating effects on both optimal growth conditions and the sensitivity of responses to extreme environmental conditions. Calculations suggest that a single extreme environmental condition (CO2, temperature, light will reduce maximum rates regardless of how optimal the other environmental conditions may be. Thus, while the response of coccolithophores to ocean change depends on multiple variables, the one which is least optimal will have the most impact on overall rates. Finally, responses to ocean change are usually reported in terms of cellular rates. However, changes in cellular rates can be a poor predictor for assessing changes in production at the community level. We therefore introduce a new metric, the calcium carbonate production potential (CCPP, which combines the independent effects of changes in growth rate and cellular calcium carbonate content to assess how environmental changes will impact coccolith production. Direct comparison of CO2 impacts on cellular CaCO3 production rates and CCPP shows that while the former is still at 45% of its pre-industrial capacity at 1,000 μatm, the latter is reduced to 10%.

  8. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change.

    Science.gov (United States)

    Fan, Zhaosheng; David McGuire, Anthony; Turetsky, Merritt R; Harden, Jennifer W; Michael Waddington, James; Kane, Evan S

    2013-02-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005-2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios. © 2012 Blackwell Publishing Ltd.

  9. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change

    Science.gov (United States)

    Fan, Zhaosheng; McGuire, Anthony David; Turetsky, Merritt R.; Harden, Jennifer W.; Waddington, James Michael; Kane, Evan S.

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

  10. Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification

    Czech Academy of Sciences Publication Activity Database

    Hruška, Jakub; Krám, Pavel; Moldan, Filip; Oulehle, Filip; Evans, C. D.; Wright, R. F.; Cosby, B. J.; Kopáček, Jiří

    2014-01-01

    Roč. 225, č. 7 (2014), s. 2015 ISSN 0049-6979 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : acidification * surface waters * soils * dissolved organic carbon * magic model * preindustrial water chemistry Subject RIV: EH - Ecology, Behaviour; DA - Hydrology ; Limnology (BC-A) Impact factor: 1.554, year: 2014

  11. Mississippi Basin Carbon Project: upland soil database for sites in Nishnabotna River basin, Iowa

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Haughy, R.; Kramer, L.; Zheng, Shuhui

    2001-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton and others, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or "decomposition enhancement". Global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney and others, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor and others, 1969; Rhoton, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth (Harden et al, 1999), it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well. As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal and others (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs. If true, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil.

  12. Mississippi Basin Carbon Project; upland soil database for sites in Yazoo Basin, northern Mississippi

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Huntington, T.G.

    1999-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton et al, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or 'decomposition enhancement', and global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal et al (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that if eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil. Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney et al, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor et al, 1993; Rhoton and Tyler, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth, it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well.

  13. CO2 and H2O: Understanding Different Stakeholder Perspectives on the Use of Carbon Credits to Finance Household Water Treatment Projects.

    Directory of Open Access Journals (Sweden)

    Sarah K Summers

    Full Text Available Carbon credits are an increasingly prevalent market-based mechanism used to subsidize household water treatment technologies (HWT. This involves generating credits through the reduction of carbon emissions from boiling water by providing a technology that reduces greenhouse gas emissions linked to climate change. Proponents claim this process delivers health and environmental benefits by providing clean drinking water and reducing greenhouse gases. Selling carbon credits associated with HWT projects requires rigorous monitoring to ensure households are using the HWT and achieving the desired benefits of the device. Critics have suggested that the technologies provide neither the benefits of clean water nor reduced emissions. This study explores the perspectives of carbon credit and water, sanitation and hygiene (WASH experts on HWT carbon credit projects.Thirteen semi-structured, in-depth interviews were conducted with key informants from the WASH and carbon credit development sectors. The interviews explored perceptions of the two groups with respect to the procedures applied in the Gold Standard methodology for trading Voluntary Emission Reduction (VER credits.Agreement among the WASH and carbon credit experts existed for the concept of suppressed demand and parameters in the baseline water boiling test. Key differences, however, existed. WASH experts' responses highlighted a focus on objectively verifiable data for monitoring carbon projects while carbon credit experts called for contextualizing observed data with the need for flexibility and balancing financial viability with quality assurance.Carbon credit projects have the potential to become an important financing mechanism for clean energy in low- and middle-income countries. Based on this research we recommend that more effort be placed on building consensus on the underlying assumptions for obtaining carbon credits from HWT projects, as well as the approved methods for monitoring

  14. CO2 and H2O: Understanding Different Stakeholder Perspectives on the Use of Carbon Credits to Finance Household Water Treatment Projects.

    Science.gov (United States)

    Summers, Sarah K; Rainey, Rochelle; Kaur, Maneet; Graham, Jay P

    2015-01-01

    Carbon credits are an increasingly prevalent market-based mechanism used to subsidize household water treatment technologies (HWT). This involves generating credits through the reduction of carbon emissions from boiling water by providing a technology that reduces greenhouse gas emissions linked to climate change. Proponents claim this process delivers health and environmental benefits by providing clean drinking water and reducing greenhouse gases. Selling carbon credits associated with HWT projects requires rigorous monitoring to ensure households are using the HWT and achieving the desired benefits of the device. Critics have suggested that the technologies provide neither the benefits of clean water nor reduced emissions. This study explores the perspectives of carbon credit and water, sanitation and hygiene (WASH) experts on HWT carbon credit projects. Thirteen semi-structured, in-depth interviews were conducted with key informants from the WASH and carbon credit development sectors. The interviews explored perceptions of the two groups with respect to the procedures applied in the Gold Standard methodology for trading Voluntary Emission Reduction (VER) credits. Agreement among the WASH and carbon credit experts existed for the concept of suppressed demand and parameters in the baseline water boiling test. Key differences, however, existed. WASH experts' responses highlighted a focus on objectively verifiable data for monitoring carbon projects while carbon credit experts called for contextualizing observed data with the need for flexibility and balancing financial viability with quality assurance. Carbon credit projects have the potential to become an important financing mechanism for clean energy in low- and middle-income countries. Based on this research we recommend that more effort be placed on building consensus on the underlying assumptions for obtaining carbon credits from HWT projects, as well as the approved methods for monitoring correct and

  15. CO2 and H2O: Understanding Different Stakeholder Perspectives on the Use of Carbon Credits to Finance Household Water Treatment Projects

    Science.gov (United States)

    Summers, Sarah K.; Rainey, Rochelle; Kaur, Maneet; Graham, Jay P.

    2015-01-01

    Background Carbon credits are an increasingly prevalent market-based mechanism used to subsidize household water treatment technologies (HWT). This involves generating credits through the reduction of carbon emissions from boiling water by providing a technology that reduces greenhouse gas emissions linked to climate change. Proponents claim this process delivers health and environmental benefits by providing clean drinking water and reducing greenhouse gases. Selling carbon credits associated with HWT projects requires rigorous monitoring to ensure households are using the HWT and achieving the desired benefits of the device. Critics have suggested that the technologies provide neither the benefits of clean water nor reduced emissions. This study explores the perspectives of carbon credit and water, sanitation and hygiene (WASH) experts on HWT carbon credit projects. Methods Thirteen semi-structured, in-depth interviews were conducted with key informants from the WASH and carbon credit development sectors. The interviews explored perceptions of the two groups with respect to the procedures applied in the Gold Standard methodology for trading Voluntary Emission Reduction (VER) credits. Results Agreement among the WASH and carbon credit experts existed for the concept of suppressed demand and parameters in the baseline water boiling test. Key differences, however, existed. WASH experts’ responses highlighted a focus on objectively verifiable data for monitoring carbon projects while carbon credit experts called for contextualizing observed data with the need for flexibility and balancing financial viability with quality assurance. Conclusions Carbon credit projects have the potential to become an important financing mechanism for clean energy in low- and middle-income countries. Based on this research we recommend that more effort be placed on building consensus on the underlying assumptions for obtaining carbon credits from HWT projects, as well as the approved

  16. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Anthony [General Motors Company, Flint, MI (United States); Faruque, Omar [Ford Motor Company, Dearborn, MI (United States); Truskin, James F [FCA US LLC, Auburn Hills, MI (United States); Board, Derek [Ford Motor Company, Dearborn, MI (United States); Jones, Martin [Ford Motor Company, Dearborn, MI (United States); Tao, Jian [FCA US LLC, Auburn Hills, MI (United States); Chen, Yijung [Ford Motor Company, Dearborn, MI (United States); Mehta, Manish [M-Tech International LLC, Dubai (United Arab Emirates)

    2017-09-27

    As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared research project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing

  17. Composite Stress Rupture NDE Research and Development Project (Kevlar[R] and Carbon)

    Science.gov (United States)

    Saulsberry, Regor

    2010-01-01

    The objective was to develop and demonstrate nondestructive evaluation (NDE) techniques capable of assessing stress rupture related strength degradation for carbon composite pressure vessels, either in a structural health monitoring (SHM) or periodic inspection mode.

  18. Final report of the project 'Regeneration of activated carbon used in residual water treatment plants'

    International Nuclear Information System (INIS)

    Martinez M, I.; Hernandez M, V.

    1992-01-01

    Among the new methods used to reactivate carbon, its are the one that uses infrared light and the one that uses accelerated electrons. The technology in both processes is novel, the energy is used but efficiently, it doesn't get lost but of 5% of carbon and its are less polluting. This report presents the one method and results obtained in the irradiation of coal. (Author)

  19. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    Science.gov (United States)

    Hurteau, Matthew D

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  20. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    Directory of Open Access Journals (Sweden)

    Matthew D Hurteau

    Full Text Available Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC, but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019, mid (2050-2059, and late (2090-2099 century climate projections for a ponderosa pine (Pinus ponderosa dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  1. Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China

    International Nuclear Information System (INIS)

    Dong, Liang; Gu, Fumei; Fujita, Tsuyoshi; Hayashi, Yoshitsugu; Gao, Jie

    2014-01-01

    There is a dilemma for rapid industrializing China to balance economic growth and low carbonization. Industrial symbiosis (IS) provides a system innovation to utilize the industry to fight climate change and pursue sustainable urban development, while few attentions are paid in literatures. Under this circumstance, this study reviews the low-carbon city practice in China and conducts a case study to calculate the CO 2 emissions reduction potential under promoting IS projects in two cities of China, named Jinan and Liuzhou. With the real national project in Jinan as advanced example, new scenarios related to IS are designed for Liuzhou, including comprehensive energy network, waste plastics recycling, scrap tires recycling and flying ash recycling. The material/waste and energy exchange is quantified in the IS network, as well as the related environmental benefit. The material/energy exchange is over 10 million ton and 20 thousands tce in Jinan's case, and 2.5 million ton and 45 thousand tce in Liuzhou's case. Results highlight that IS could effectively reduce CO 2 emissions. The total reduction potential amounts to 3944.05 thousands tCO 2 /year and 2347.88 thousands tCO 2 /year in Jinan and Liuzhou. Finally, policy implications on the ever-improvement of industrial symbiosis and China's sustainable urban development are proposed and discussed. - Highlights: • Investigate two real industrial symbiosis projects in Jinan and Liuzhou of China. • Quantify the material exchange and the CO 2 reduction potential of the IS network. • CO 2 reduction potential is 3944.05 and 2347.88 ktCO 2 /year in Jinan and Liuzhou. • In current China, IS is main in term of material symbiosis. • How to coordinate IS and low-carbon city is discussed

  2. Carbon stock projection in North Sumatera using multi objective land allocation approach

    Science.gov (United States)

    Ichwani, S. N.; Wulandari, R.; Ramachandra, A.

    2018-05-01

    Nowadays, GHG emission is a critical issue for environmental management due to the large scale of land cover change, especially forest cover. This study provides a protection development strategy for North Sumatera as one way to manage the area. By using Multi Objective Land Allocation (MOLA), we evaluated two GHG emission scenarios, including a Business As Usual (BAU) scenario and Protection scenario. The result shows that the province will lose the carbon stock up to 24 million tons in the year of 2035 by using a BAU scenario. On the other hand, by implementing the Protection scenario, total carbon stock that is lost in the same period is about 5 millions tons solely. It proves that protection scenario is a good scenario and effective to reduce the carbon loss. Furthermore, this scenario can be an alternative for North Sumatera spatial plan.

  3. Implementation of forest cover and carbon mapping in the Greater Mekong subregion and Malaysia project - A case study of Thailand

    Science.gov (United States)

    Pungkul, S.; Suraswasdi, C.; Phonekeo, V.

    2014-02-01

    The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.

  4. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  5. A Global Survey and Review of the Determinants of Transaction Costs of Forestry Carbon Projects

    NARCIS (Netherlands)

    Phan, D.T.H.; Brouwer, Roy; Davidson, M.D.

    2017-01-01

    Reducing carbon emissions in the forestry sector by means of market-based schemes is considered a cost-effective measure for tackling climate change impacts. However, the transaction costs (TCs) involved are typically unknown or unquantified and therefore often neglected. In this study three types

  6. A Global Survey and Review of the Determinants of Transaction Costs of Forestry Carbon Projects

    NARCIS (Netherlands)

    Phan, T.-H.D.; Brouwer, R.; Davidson, M.D.

    Reducing carbon emissions in the forestry sector by means of market-based schemes is considered a cost-effective measure for tackling climate change impacts. However, the transaction costs (TCs) involved are typically unknown or unquantified and therefore often neglected. In this study three types

  7. Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes

    NARCIS (Netherlands)

    Shindell, D.T.; Faluvegi, G.; Stevenson, D.S.; Krol, M.C.; Emmons, L.K.; Lamarque, J.F.; Petron, G.; Dentener, F.J.; Ellingsen, K.; Schultz, M.G.; Wild, O.; Amann, M.; Atherton, C.S.; Bergmann, D.J.; Bey, I.; Butler, T.; Cofala, J.; Collins, W.J.; Derwent, R.G.; Doherty, R.M.; Drevet, J.; Eskes, H.J.; Fiore, A.M.; Gauss, M.; Hauglustaine, D.A.; Horowitz, L.W.; Isaksen, I.S.A.; Lawrence, M.G.; Montanaro, V.; Muller, J.F.; Pitari, G.; Prather, M.J.; Pyle, J.A.; Rast, S.; Rodriguez, J.M.; Sanderson, M.G.; Savage, N.H.; Strahan, S.E.; Sudo, K.; Szopa, S.; Unger, N.; Noije, van T.P.C.; Zeng, G.

    2006-01-01

    We analyze present-day and future carbon monoxide (CO) simulations in 26 state-of-the-art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show

  8. Linking Mitigation and Adaptation in Carbon Forestry Projects: Evidence from Belize

    DEFF Research Database (Denmark)

    Kongsager, Rico; Corbera, Esteve

    2015-01-01

    that linking mitigation and adaptation has not been possible, because the mandate of forest carbon markets does not incorporate adaptation concerns. The projects’ contribution to forest ecosystems’ adaptation, for instance, by reducing human encroachments and by increasing ecosystem connectivity, has been...... instead to promote more holistic and territorial-based approaches targeting both mitigation and adaptation goals....

  9. Carbon Stocks and Projections on Public Forestlands in the United States, 1952-2040

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2004-01-01

    Approximately 37% of forestlands in the conterminous United States are publicly owned; they represent a substantial area of potential carbon sequestration in US forests and in forest products. However, large areas of public forestlands traditionally have been less intensively inventoried than privately owned forests. Thus, less information is available about their role...

  10. Carbon dioxide reduction in housing: experiences in urban renewal projects in the Netherlands

    NARCIS (Netherlands)

    Waals, F.M. van der; Vermeulen, W.J.V.; Glasbergen, P.

    2003-01-01

    It is increasingly being recognised that the housing sector can contribute to reductions in the levels of carbon dioxide (CO2 ). The renewal of existing residential areas offers opportunities to reduce CO2 emissions. However, technical options for CO2-reduction, such as insulation, solar energy,

  11. Multimodel simulations of carbon monoxide: comparison with observations and projected near-future changes

    NARCIS (Netherlands)

    Shindell, D.T.; Krol, M.C.

    2006-01-01

    We analyze present-day and future carbon monoxide (CO) simulations in 26 state-ofthe- art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show

  12. U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project.

    Science.gov (United States)

    Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun

    2018-04-01

    The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.

  13. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010.

    Science.gov (United States)

    Lu, Fei; Hu, Huifeng; Sun, Wenjuan; Zhu, Jiaojun; Liu, Guobin; Zhou, Wangming; Zhang, Quanfa; Shi, Peili; Liu, Xiuping; Wu, Xing; Zhang, Lu; Wei, Xiaohua; Dai, Limin; Zhang, Kerong; Sun, Yirong; Xue, Sha; Zhang, Wanjun; Xiong, Dingpeng; Deng, Lei; Liu, Bojie; Zhou, Li; Zhang, Chao; Zheng, Xiao; Cao, Jiansheng; Huang, Yao; He, Nianpeng; Zhou, Guoyi; Bai, Yongfei; Xie, Zongqiang; Tang, Zhiyao; Wu, Bingfang; Fang, Jingyun; Liu, Guohua; Yu, Guirui

    2018-04-17

    The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China's forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country's land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country's C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 10 12 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO 2 mitigation in China.

  14. Project CLIMPEAT - Influence of global warming and drought on the carbon sequestration and biodiversity of Sphagnum peatlands

    Science.gov (United States)

    Lamentowicz, M.; Buttler, A.; Mitchell, E. A. D.; Chojnicki, B.; Słowińska, S.; Słowiński, M.

    2012-04-01

    Northern peatlands represent a globally significant pool of carbon and are subject to the highest rates of climate warming, and most of these peatlands are in continental settings. However, it is unclear if how fast peatlands respond to past and present changes in temperature and surface moisture in continental vs. oceanic climate settings. The CLIMPEAT project brings together scientists from Poland and Switzerland. Our goal is to assess the past and present vulnerability to climate change of Sphagnum peatland plant and microbial communities, peat organic matter transformations and carbon sequestration using a combination of field and mesocosm experiments simulating warming and water table changes and palaeoecological studies. Warming will be achieved using ITEX-type "Open-Top Chambers". The field studies are conducted in Poland, at the limit between oceanic and continental climates, and are part of a network of projects also including field experiments in the French Jura (sub-oceanic) and in Siberia (continental). We will calibrate the response of key biological (plants, testate amoebae) and geochemical (isotopic composition of organic compounds, organic matter changes) proxies to warming and water table changes and use these proxies to reconstruct climate changes during the last 1000 years.

  15. Carbon disclosure project report 2007 : Canada 200 : on behalf of 315 investors with assets of $41 trillion

    International Nuclear Information System (INIS)

    Greenall, D.

    2007-10-01

    The risks of climate change have shifted from the field of scientific debate to the front lines of investment risk management. This report was based on submissions received from the most valuable corporations listed on the Toronto Stock Exchange. The report was developed by the Carbon Disclosure Project (CDP) and described steps currently being taken by companies to address the challenge of climate change. Eighty-eight per cent of respondents to the survey indicated that climate change presented business risks, while a further 86 per cent suggested that climate change offered increased opportunities. Although the gap between uptake of greenhouse gas (GHG) management and corporate risk awareness has now narrowed, many companies continue to disregard the CDP investor request or provide only limited information in their responses. In this survey, important financial data such as abatement costs, contingent emissions liabilities, and revenue projections were mostly absent from company responses. A climate disclosure leadership index was presented which measured the quality of company disclosures to the CDP5 information request. Sixteen climate disclosure leaders were identified using the index. A continued lack of clear regulations was cited by respondents as a significant impediment to the implementation of a carbon emissions reduction strategy. It was concluded that only 10 per cent of respondents have undertaken a climate change risk assessment. 15 figs

  16. Carbon disclosure project report 2007 : Canada 200 : on behalf of 315 investors with assets of $41 trillion

    Energy Technology Data Exchange (ETDEWEB)

    Greenall, D. [Conference Board of Canaa, Ottawa, ON (Canada)

    2007-10-15

    The risks of climate change have shifted from the field of scientific debate to the front lines of investment risk management. This report was based on submissions received from the most valuable corporations listed on the Toronto Stock Exchange. The report was developed by the Carbon Disclosure Project (CDP) and described steps currently being taken by companies to address the challenge of climate change. Eighty-eight per cent of respondents to the survey indicated that climate change presented business risks, while a further 86 per cent suggested that climate change offered increased opportunities. Although the gap between uptake of greenhouse gas (GHG) management and corporate risk awareness has now narrowed, many companies continue to disregard the CDP investor request or provide only limited information in their responses. In this survey, important financial data such as abatement costs, contingent emissions liabilities, and revenue projections were mostly absent from company responses. A climate disclosure leadership index was presented which measured the quality of company disclosures to the CDP5 information request. Sixteen climate disclosure leaders were identified using the index. A continued lack of clear regulations was cited by respondents as a significant impediment to the implementation of a carbon emissions reduction strategy. It was concluded that only 10 per cent of respondents have undertaken a climate change risk assessment. 15 figs.

  17. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification

  18. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.

    Science.gov (United States)

    Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth

    2016-11-01

    The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO 2 from vent gas. The studies were carried out for CO 2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO 2 in vent gas to 15 vol.% of CO 2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m 2 /day. The methane yield was 386 l CH 4 /kg VS fed of Chlorella sp. whereas 228 l CH 4 /kg VS fed of the consortium of algae.

  19. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  20. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

    International Nuclear Information System (INIS)

    Ricke, K L; Caldeira, K; Orr, J C; Schneider, K

    2013-01-01

    Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 2 emissions abatement, the Ωa threshold for reefs is critical to projecting their fate. Our results indicate that to maintain a majority of reefs surrounded by waters with Ωa > 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results. (letter)

  1. Assessing European capacity for geological storage of carbon dioxide-the EU GeoCapacity project

    NARCIS (Netherlands)

    Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; Meer, B. van der; Le Gallo, Y. le; Bossie-Codreanu, D.; Wojcicki, A.; Nindre, Y.-M. le; Hendriks, C.; Dalhoff, F.; Peter Christensen, N.

    2009-01-01

    The focus of the GeoCapacity project is GIS mapping of CO2 point sources, infrastructure and geological storage in Europe. The main objective is to assess the European capacity for geological storage of CO2 in deep saline aquifers, oil and gas structures and coal beds. Other priorities are further

  2. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project)

    DEFF Research Database (Denmark)

    Breemen, N. van; Jenkins, A.; Wright, R.F.

    1998-01-01

    To evaluate the effects of climate change on boreal forest ecosystems, both atmospheric CO2 (to 560 ppmv) and air temperature (by 3 degrees-5 degrees C above ambient) were increased at a forested headwater catchment in southern Norway. The entire catchment (860 m(2)) is enclosed within...... and the growing season has been prolonged relative to the control area. This has helped to sustain an increase in plant growth relative to the control and has also promoted increased N export in stream water. Photosynthetic capacity and carbon-nitrogen ratio of new leaves of most plant species did not change...

  3. Impacts of historic and projected land-cover, land-use, and land-management change on carbon and water fluxes: The Land Use Model Intercomparison Project (LUMIP)

    Science.gov (United States)

    Lawrence, D. M.; Lombardozzi, D. L.; Lawrence, P.; Hurtt, G. C.

    2017-12-01

    Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. In the future, land-use activities are likely to intensify to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the broad question of impacts of land-use and land-cover change (LULCC) as well as more detailed science questions to get at process-level attribution, uncertainty, and data requirements in more depth and sophistication than possible in a multi-model context to date. LUMIP is multi-faceted and aims to advance our understanding of land-use change from several perspectives. In particular, LUMIP includes a factorial set of land-only simulations that differ from each other with respect to the specific treatment of land use or land management (e.g., irrigation active or not, crop fertilization active or not, wood harvest on or not), or in terms of prescribed climate. This factorial series of experiments serves several purposes and is designed to provide a detailed assessment of how the specification of land-cover change and land management affects the carbon, water, and energy cycle response to land-use change. The potential analyses that are possible through this set of experiments are vast. For example, comparing a control experiment with all land management active to an experiment with no irrigation allows a multi-model assessment of whether or not the increasing use of irrigation during the 20th century is likely to have significantly altered trends of regional water and energy fluxes (and therefore climate) and/or crop yield and carbon fluxes in agricultural regions. Here, we will present preliminary results from the factorial set of experiments utilizing the Community Land Model (CLM5). The analyses presented here will help guide multi-model analyses once the full set of LUMIP simulations are available.

  4. The Role of Environmental Driving Factors in Historical and Projected Carbon Dynamics of Wetland Ecosystems in Alaska.

    Science.gov (United States)

    Lyu, Zhou; Genet, Hélène; He, Yujie; Zhuang, Qianlai; McGuire, A David; Bennett, Alec; Breen, Amy; Clein, Joy; Euskirchen, Eugénie S; Johnson, Kristofer; Kurkowski, Tom; Pastick, Neal J; Rupp, T Scott; Wylie, Bruce K; Zhu, Zhiliang

    2018-05-29

    Wetlands are critical terrestrial ecosystems in Alaska, covering ~177,000 km 2 , an area greater than all the wetlands in the remainder of the United States. To assess the relative influence of changing climate, atmospheric carbon dioxide (CO 2 ) concentration, and fire regime on carbon balance in wetland ecosystems of Alaska, a modeling framework that incorporates a fire disturbance model and two biogeochemical models was used. Spatially explicit simulations were conducted at 1 km-resolution for the historical period (1950-2009) and future projection period (2010-2099). Simulations estimated that wetland ecosystems of Alaska lost 175 Tg carbon (C) in the historical period. Ecosystem C storage in 2009 was 5556 Tg, with 89% of the C stored in soils. The estimated loss of C as CO 2 and biogenic methane (CH 4 ) emissions resulted in wetlands of Alaska increasing the greenhouse gas forcing of climate warming. Simulations for the projection period were conducted for six climate change scenarios constructed from two climate models forced under three CO 2 emission scenarios. Ecosystem C storage averaged among climate scenarios increased 3.94 TgC/yr by 2099, with variability among the simulations ranging from 2.02 to 4.42 TgC/yr. These increases were driven primarily by increases in net primary production (NPP) that were greater than losses from increased decomposition and fire. The NPP increase was driven by CO 2 fertilization (~5% per 100 ppmv increase) and by increases in air temperature (~1% per °C increase). Increases in air temperature were estimated to be the primary cause for a projected 47.7% mean increase in biogenic CH 4 emissions among the simulations (~15% per °C increase). Ecosystem CO 2 sequestration offset the increase in CH 4 emissions during the 21 st century to decrease the greenhouse gas forcing of climate warming. However, beyond 2100, we expect that this forcing will ultimately increase as wetland ecosystems transition from being a sink to a source

  5. Cooperative research and the carbon fiber development for application in uranium centrifuges project; Pesquisa cooperativa e o desenvolvimento de fibra de carbono para aplicacao em ultracentrifugas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Paulo Cesar Beltrao [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)], e-mail: paulocbqueiroz@gmail.com; Zouain, Desiree Moraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: dmzouain@ipen.br

    2009-08-15

    This paper analyzes both the carbon fiber-based development for uranium centrifuges and the research project that supports its development effort over time. The carbon fibre-based engineering properties make it a valuable supply for high technological products, such as uranium ultracentrifuge. There is no production of such fibers in Brazil. Its trade is subject to international market restrictions due to carbon fibers' dual applications. The Centro Tecnologico da Marinha em Sao Paulo (CTMSP), the Universidade de Campinas (UNICAMP), the Universidade de Sao Paulo (USP), the RADICIFIBRAS Company, and the Financiadora de Estudos e Projetos (FINEP), which is responsible for the project financial support, established a partnership aiming the development of a domestic polyacrylonitrile (Pan)-based carbon fiber industry. Such alliances or technological partnerships are best known in developed countries, such as USA and Japan, as Cooperative Research or Research Joint Ventures (RJV). (author)

  6. Economics of forest and forest carbon projects. Translating lessons learned into national REDD+ implementation

    DEFF Research Database (Denmark)

    Zaballa Romero, Mauricio Ernesto; Trærup, Sara Lærke Meltofte; Wieben, Emilie

    The financial implications of implementing a new forest management paradigm have not been well understood and have often been underestimated. Resource needs for e.g., stakeholder consultation, capacity building and addressing the political economy are seldom fully accounted for in the resource...... but also the testing of advanced market commitments as a finance option for sustainable forest management. The findings in the report underline the fact that only through sound and transparent financial information will forest projects and national forest initiatives become interesting for private...... needs estimates put forward in connection to REDD+. This report investigates the economics of implementing forest and REDD+ projects through eight case studies from Africa, Latin America and Asia, analyzing real forest and REDD+ investments. The report is part of efforts to share financial experiences...

  7. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska

    Science.gov (United States)

    Genet, Hélène; He, Yujie; Lyu, Zhou; McGuire, A. David; Zhuang, Qianlai; Clein, Joy S.; D'Amore, David; Bennett, Alec; Breen, Amy; Biles, Frances; Euskirchen, Eugénie S.; Johnson, Kristofer; Kurkowski, Tom; Schroder, Svetlana (Kushch); Pastick, Neal J.; Rupp, T. Scott; Wylie, Bruce K.; Zhang, Yujin; Zhou, Xiaoping; Zhu, Zhiliang

    2018-01-01

    It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km2), are influencing and will influence state‐wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO2), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950–2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three of the LCCs had gains in total ecosystem C storage, while the Northwest Boreal LCC lost C (−6.01 Tg C/yr) because of increases in fire activity. Carbon exports from logging affected only the North Pacific LCC and represented less than 1% of the state's net primary production (NPP). The analysis for the future time period (2010–2099) consisted of six simulations driven by climate outputs from two climate models for three emission scenarios. Across the climate scenarios, total ecosystem C storage increased between 19.5 and 66.3 Tg C/yr, which represents 3.4% to 11.7% increase in Alaska upland's storage. We conducted additional simulations to attribute these responses to environmental changes. This analysis showed that atmospheric CO2 fertilization was the main driver of ecosystem C balance. By comparing future simulations with constant and with increasing atmospheric CO2, we estimated that the sensitivity of NPP was 4.8% per 100 ppmv, but NPP becomes less sensitive to CO2increase throughout the 21st century. Overall, our analyses suggest that the decreasing CO2 sensitivity of NPP and the increasing sensitivity of heterotrophic respiration to air temperature, in addition to the increase in C loss from wildfires weakens the C sink from upland

  8. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska.

    Science.gov (United States)

    Genet, Hélène; He, Yujie; Lyu, Zhou; McGuire, A David; Zhuang, Qianlai; Clein, Joy; D'Amore, David; Bennett, Alec; Breen, Amy; Biles, Frances; Euskirchen, Eugénie S; Johnson, Kristofer; Kurkowski, Tom; Kushch Schroder, Svetlana; Pastick, Neal; Rupp, T Scott; Wylie, Bruce; Zhang, Yujin; Zhou, Xiaoping; Zhu, Zhiliang

    2018-01-01

    It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km 2 ), are influencing and will influence state-wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO 2 ), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950-2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three of the LCCs had gains in total ecosystem C storage, while the Northwest Boreal LCC lost C (-6.01 Tg C/yr) because of increases in fire activity. Carbon exports from logging affected only the North Pacific LCC and represented less than 1% of the state's net primary production (NPP). The analysis for the future time period (2010-2099) consisted of six simulations driven by climate outputs from two climate models for three emission scenarios. Across the climate scenarios, total ecosystem C storage increased between 19.5 and 66.3 Tg C/yr, which represents 3.4% to 11.7% increase in Alaska upland's storage. We conducted additional simulations to attribute these responses to environmental changes. This analysis showed that atmospheric CO 2 fertilization was the main driver of ecosystem C balance. By comparing future simulations with constant and with increasing atmospheric CO 2 , we estimated that the sensitivity of NPP was 4.8% per 100 ppmv, but NPP becomes less sensitive to CO 2 increase throughout the 21st century. Overall, our analyses suggest that the decreasing CO 2 sensitivity of NPP and the increasing sensitivity of heterotrophic respiration to air temperature, in addition to the increase in C loss from wildfires weakens the C sink from upland

  9. Project of the borehole neutron generator for the direct determination of oxygen and carbon by activation method

    Science.gov (United States)

    Bogdanovich, B. Yu; Vovchenko, E. D.; Iliinskiy, A. V.; Isaev, A. A.; Kozlovskiy, K. I.; Nesterovich, A. V.; Senyukov, V. A.; Shikanov, A. E.

    2016-09-01

    The paper deals with application features of borehole neutron generator (BNG) based on the vacuum accelerating tube (AT) with laser-plasma ion source for determination of oxygen isotope 16O and carbon isotope 12C by direct activation. The project of pulsed BNG for realization of an activation method in the conditions of natural presence of productive hydrocarbons is offered. The diode system with radial acceleration, magnetic electron insulation and laser-plasma source of deuterons at the anode in a sealed-off vacuum accelerating tube is applied. The permanent NdFeB magnet with induction about 0.5 T for produce the insulating magnetic field in the diode gap is proposed. In the experiments on the model of BNG with the accelerating voltage source (≈350 kV), performed by the scheme of Arkadiev-Marx generator, the output of (d, d) neutrons was ∼107 pulse-1.

  10. Large Pilot-Scale Carbon Dioxide (CO2) Capture Project Using Aminosilicone Solvent.Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancu, Dan [General Electric Company, Niskayuna, NY (United States)

    2017-12-21

    GE Global Research has developed, over the last 8 years, a platform of cost effective CO2 capture technologies based on a non-aqueous aminosilicone solvent (GAP-1m). As demonstrated in previous funded DOE projects (DE-FE0007502 and DEFE0013755), the GAP-1m solvent has increased CO2 working capacity, lower volatility and corrosivity than the benchmark aqueous amine technology. Performance of the GAP-1m solvent was recently demonstrated in a 0.5 MWe pilot at National Carbon Capture Center, AL with real flue gas for over 500 hours of operation using a Steam Stripper Column (SSC). The pilot-scale PSTU engineering data were used to (i) update the techno-economic analysis, and EH&S assessment, (ii) perform technology gap analysis, and (iii) conduct the solvent manufacturability and scale-up study.

  11. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  12. Systematic assessment of wellbore integrity for geologic carbon storage projects using regulatory and industry information

    Energy Technology Data Exchange (ETDEWEB)

    Moody, Mark [Battelle Memorial Institute, Columbus, OH (United States); Sminchak, J.R. [Battelle Memorial Institute, Columbus, OH (United States)

    2015-11-01

    Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO2 test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may be wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO2 storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO2 storage applications in the Midwest United States. Realistic CO2 storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO2 storage project. Several useful products were developed under this project for examining wellbore integrity for CO2 storage applications including, a

  13. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty estimates

    Directory of Open Access Journals (Sweden)

    K. R. Verhulst

    2017-07-01

    Full Text Available We report continuous surface observations of carbon dioxide (CO2 and methane (CH4 from the Los Angeles (LA Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four extra-urban sites including two marine sites located south of LA in La Jolla (LJO and offshore on San Clemente Island (SCI, one continental site located in Victorville (VIC, in the high desert northeast of LA, and one continental/mid-troposphere site located on Mount Wilson (MWO in the San Gabriel Mountains. We find that a local marine background can be established to within  ∼  1 ppm CO2 and  ∼  10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. Urban and suburban sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California site near downtown LA exhibits median hourly enhancements of  ∼  20 ppm CO2 and  ∼  150 ppb CH4 during 2015 as well as  ∼  15 ppm CO2 and  ∼  80 ppb CH4 during mid-afternoon hours (12:00–16:00 LT, local time, which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014. The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much

  14. Carbon disclosure project report 2006 : Canada 280 on behalf of 225 investors with assets of $31 trillion

    Energy Technology Data Exchange (ETDEWEB)

    Greenall, D. [Conference Board of Canada, Ottawa, ON (Canada)

    2006-10-15

    The Conference Board of Canada carried out the Canadian component of the fourth annual Carbon Disclosure Project (CDP). Climate change is a topical issue for investors and financial institutions such as pension funds, asset management firms, banks and insurance companies that want to assess the carbon exposure and risk profiles of their investment. This report outlined recent climate-change developments in Canada and examined the state of disclosure of greenhouse gas (GHG) emissions of 280 Canadian companies and the implications for investors and corporations. In February 2006, on behalf of its 225 signatory investors, CDP requested information on corporate risks and opportunities associated with climate change from more than 2,000 companies globally. This report described the steps that respondent companies are taking to address climate change. A methodology was also presented to guide investors who want to determine a company's net carbon risk. It was noted that although awareness of the risks and opportunities posed by climate change has grown significantly among investors, it has not translated into widespread planning and action by Canada's largest companies. It was emphasized that if the negative impacts of climate change are to be avoided, investors will have to put CDP data to work. The $31.5 trillion in assets behind CDP4 includes $1 trillion by Canadian-based investors, a significant increase over the previous report. Sixty-three per cent of respondents provided data on annual GHG emissions. However, different measuring and reporting approaches made it difficult for investors to compare company emission profiles. The response from Canadian companies showed that large companies are responding to investor interests, particularly gas and electrical utilities and other carbon intensive companies in the forest products, petroleum and mining sectors. Canada compared well to the response rates of other jurisdictions, but forward-looking financial and

  15. Projection of U.S. forest sector carbon sequestration under U.S. and global timber market and wood energy consumption scenarios, 2010-2060

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This study provides a modeling framework to examine change over time in U.S. forest sector carbon inventory (in U.S. timberland tree biomass and harvested wood products) for alternative projections of U.S. and global timber markets, including wood energy consumption, based on established IPCC/RPA scenarios. Results indicated that the U.S. forest sector’s projected...

  16. Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions

    Science.gov (United States)

    Fabian B. Galvez; Andrew T. Hudak; John C. Byrne; Nicholas L. Crookston; Robert F. Keefe

    2014-01-01

    Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the...

  17. Elemental and Organic Carbon Measurements at the Kosetice Observatory, Czech Republic within EU Projects in 2009-2014

    Science.gov (United States)

    Vana, M.; Holubova, A.; Cech, J.

    2016-12-01

    Carbonaceous aerosol (TC) is a complex mixture of many organics (OC fraction) and elemental carbon (EC). EC is a product of anthropogenic activities, especially incomplete combustion of fossil fuels by transport, heating, power plants, wood and biomass burning and agriculture activities. EC could have larger health impact than other PM constituents (Cassee et al., 2013). Carbonaceous aerosols also play an important role in climate change (Boucher et al., 2013). Kosetice Observatory, operated by the Czech Hydrometeorological Institute has been carrying out long-term air quality monitoring at the background scale the Czech Republic since 1988. Regular EC-OC measurement has been implementing within EU-projects EUSAAR and ACTRIS since 2009. Sampling frequency is every 6th day in fraction PM2,5 on 2 quartz-fibre filters. Since October 2011 the sampling on filters has been implementing behind the denuder catching the organic vapor. Amount of OC on back quartz fiber filter represents positive artifact by measurement without denuder and negative artifact by measurements with denuder. The analytical method is thermal-optical analysis. The samples are analyzed in CHMI Central Laboratories in Prague-Libuš using EC-OC Sunset Lab Dual Analyzer. Charring correction is made by laser transmission monitoring. Slightly decreasing tendency of EC-OC was found in the period under review (2009-2014). The mean annual concentration of total carbon (TC) in PM2,5 was 3,73 µg.m-3. The figure for elemental carbon (0,5 µg.m-3) represents the mean annual ratio of 13% on TC. EC-OC concentrations follow an annual course that reflects their emission levels, i.e. with maximums in winter and minimums in summer. The seasonal variation of EC/TC ratio ranges between 9,6 (summer) - 14,2% (winter). Mean TC ratio on PM2,5 total mass in the period under review was 29%, the highest ratios reached 50%. EC participated on PM2,5 total mass by 3,5% in average. 3D trajectories were used for sector analysis of

  18. Forest sector carbon analyses support land management planning and projects: Assessing the influence of anthropogenic and natural factors

    Science.gov (United States)

    Alexa J. Dugan; Richard Birdsey; Sean P. Healey; Yude Pan; Fangmin Zhang; Gang Mo; Jing Chen; Christopher W. Woodall; Alexander J. Hernandez; Kevin McCullough; James B. McCarter; Crystal L. Raymond; Karen. Dante-Wood

    2017-01-01

    Management of forest carbon stocks on public lands is critical to maintaining or enhancing carbon dioxide removal from the atmosphere. Acknowledging this, an array of federal regulations and policies have emerged that requires US National Forests to report baseline carbon stocks and changes due to disturbance and management and assess how management activities and...

  19. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinskey, Anthony J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worden, Robert Mark [Michigan State Univ., East Lansing, MI (United States); Brigham, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lu, Jingnan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Quimby, John Westlake [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gai, Claudia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Speth, Daan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Elliott, Sean [Boston Univ., MA (United States); Fei, John Qiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bernardi, Amanda [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Sophia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grunwald, Stephan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grousseau, Estelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maiti, Soumen [Michigan State Univ., East Lansing, MI (United States); Liu, Chole [Michigan State Univ., East Lansing, MI (United States)

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  20. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    Science.gov (United States)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to

  1. A collaborative project on the effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, H.A.; O`Connor, M.; Stephenson, P.L.; Whitehouse, M.; Richards, D.G.; Hesselmann, G.; MacPhail, J.; Lockwood, F.C.; Williamson, J.; Williams, A.; Pourkashanian, M. [ETSU, Harwell (United Kingdom)

    1998-12-01

    This paper describes a UK Department of Trade and Industry-supported collaborative project entitled `The Effects of Coal Quality on Emission of Oxides of Nitrogen (NO{sub x}) and Carbon Burnout in Pulverised Coal-fired Utility Boilers`. The project involved extensive collaboration between the UK power generators, boiler and burner manufacturers and research groups in both industry and academia, together with several of the world`s leading computational fluid dynamics (CFD) `software houses`. The prime objectives of the project were to assess the relationship between NO{sub x} emissions and carbon burnout and to develop and validate predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon-in-ash. Results showed good correlations for NO{sub x} and carbon burnout when comparing data from full-scale and large-scale rig trials. Laboratory-scale tests were found to be useful but the influence of burner aerodynamics was more difficult to quantify. Modelling showed that predicted NO{sub x} emissions were encouragingly close to measured emissions but predicting carbon burnout was less successful. 24 refs., 4 figs., 6 tabs.

  2. Global Carbon Budget 2017

    NARCIS (Netherlands)

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frederic; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Goldewijk, Kees Klein; Koertzinger, Arne; Landschuetzer, Peter; Lefevre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Roedenbeck, Christian; Schwinger, Jorg; Seferian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Soenke; Zhu, Dan

    2018-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project

  3. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model.

    Science.gov (United States)

    Verheijen, Lieneke M; Aerts, Rien; Brovkin, Victor; Cavender-Bares, Jeannine; Cornelissen, Johannes H C; Kattge, Jens; van Bodegom, Peter M

    2015-08-01

    Earth system models demonstrate large uncertainty in projected changes in terrestrial carbon budgets. The lack of inclusion of adaptive responses of vegetation communities to the environment has been suggested to hamper the ability of modeled vegetation to adequately respond to environmental change. In this study, variation in functional responses of vegetation has been added to an earth system model (ESM) based on ecological principles. The restriction of viable mean trait values of vegetation communities by the environment, called 'habitat filtering', is an important ecological assembly rule and allows for determination of global scale trait-environment relationships. These relationships were applied to model trait variation for different plant functional types (PFTs). For three leaf traits (specific leaf area, maximum carboxylation rate at 25 °C, and maximum electron transport rate at 25 °C), relationships with multiple environmental drivers, such as precipitation, temperature, radiation, and CO2 , were determined for the PFTs within the Max Planck Institute ESM. With these relationships, spatiotemporal variation in these formerly fixed traits in PFTs was modeled in global change projections (IPCC RCP8.5 scenario). Inclusion of this environment-driven trait variation resulted in a strong reduction of the global carbon sink by at least 33% (2.1 Pg C yr(-1) ) from the 2nd quarter of the 21st century onward compared to the default model with fixed traits. In addition, the mid- and high latitudes became a stronger carbon sink and the tropics a stronger carbon source, caused by trait-induced differences in productivity and relative respirational costs. These results point toward a reduction of the global carbon sink when including a more realistic representation of functional vegetation responses, implying more carbon will stay airborne, which could fuel further climate change. © 2015 John Wiley & Sons Ltd.

  4. Prerequisites for carbon capture and storage (CCS) in Sweden - a synthesis of the Baltic Sea Project; Foerutsaettningar foer avskiljning och lagring av koldioxid (CCS) i Sverige - En syntes av Oestersjoeprojektet

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Stigson, Peter; Hoeglund, Jonas; Bingel, Eva

    2011-07-01

    This publication summarizes a project on carbon capture and storage (CCS) in the Baltic region conducted at the initiative of the Energy Agency. The project is called 'the Baltic Project' and the aim has been to highlight the prospects for CCS in Sweden and how the Baltic Sea region affects this

  5. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    Science.gov (United States)

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  7. The response of soil organic carbon of a rich fen peatland in interior Alaska to projecte climate change

    Science.gov (United States)

    Zhaosheng Fan; David McGuire; Merritt R. Turetsky; Jennifer W. Harden; James Michael Waddington; Evan S. Kane

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in...

  8. Tendances Carbone no. 89. European Offset Projects: A tool to rally Poland towards the 2030 Energy Climate Package

    International Nuclear Information System (INIS)

    Bellassen, Valentin; Alberola, Emilie

    2014-03-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. Beside some statistical figures about energy production/consumption and carbon markets, this issue specifically addresses the following points: - EUA supply: after the approbation of the back-loading regulation, the number of auctioned allowances for 2014 will be reduced by 400 million. National allocations plans of all 28 member states for the free allocation of allowances for 2013 have been approved. - 2030 climate and energy package: the EU Parliament adopted a non-binding resolution on the 2030 Climate and Energy Framework. On 20-21 March the European Council will meet to discuss this framework. - Carbon leakage list for 2015-2019: industrial stakeholders will be informed at the latest by the end of March 2014 if their sectors are included on the first draft of the new carbon leakage list

  9. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian

    2015-01-01

    Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.

  10. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    Science.gov (United States)

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  11. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    Science.gov (United States)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  12. Carbon disclosure project 2006. evaluation realized with the SBF 120 enterprises. For 225 investors managing more than 31000 milliards of active dollars

    International Nuclear Information System (INIS)

    2006-10-01

    The Carbon Disclosure Project (CDP) is an independent not-for-profit organisation aiming to create a lasting relationship between shareholders and corporations regarding the implications for shareholder value and commercial operations presented by climate change. Its goal is to facilitate a dialogue, supported by quality information, from which a rational response to climate change will emerge. Over 7 years CDP has become the gold standard for carbon disclosure methodology and process. CDP4 finds that the global investment and corporate communities have made great strides in their understanding of climate change and its competitive and financial implications, and the measurement of these implications. However, awareness and measurement are not translating into sufficient management and activity in the context of the climate change challenge. (A.L.B.)

  13. FY 1998 annual summary report on development of techniques for keeping water environments in good conditions by utilizing phenomena involving immobilization of microorganisms on soft structures of carbon fibers (abbreviated to carbon/water environment project); 1998 nendo tanso sen'i nansoshiki eno biseibutsu kochaku gensho wo riyoshita mizukankyo seibi gijutsu no kaihatsu seika hokokusho. Ryakusho tanso mizukankyo project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is aimed at creation of the new industry of keeping water environments in good conditions in wide amphitrichous areas by establishing the technical systems for applying the phenomena in which microorganisms are massively immobilized on a carbon fiber bundle suspended in water to, e.g., purification of sewage systems, rivers and ponds, and providing sites for algae to grow, and by commercializing these systems. The following 3 themes have been established. The first theme is to develop the techniques for braiding/weaving carbon fibers. The second theme is to analyze characteristics of the immobilized microorganism groups. The third theme is to establish the principles of utilization. The FY 1997 R&D efforts were directed to production of a total of 57 types of braided/woven carbon fibers, development of sizing agents, and analysis of microorganism groups. In FY 1998, the carbon fibers treated with new sizing agents have been developed, and the braided/woven carbon fibers are being tested in water purification systems and algae sites. It is found that the microorganism groups exhibit synergistic effects between the pumping function and carbon/gel materials. The simulation models are being developed for system designs. The systems which apparently show the effects of this method have been classified by analyzing the field test results. (NEDO)

  14. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of

  15. Implementation of forest cover and carbon mapping in the Greater Mekong subregion and Malaysia project – A case study of Thailand

    International Nuclear Information System (INIS)

    Pungkul, S; Suraswasdi, C; Phonekeo, V

    2014-01-01

    The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion

  16. How Much Carbon Is in the Forest? A Project-Based Science Investigation of Trees' Role in Offsetting Global Warming

    Science.gov (United States)

    Penniman, Leah

    2011-01-01

    At the start of an integrated Algebra I and Environmental Science class, students were presented with the following challenge: "How much carbon is stored in the Normanskill Preserve?" They were told they had one month to investigate and present their results, and asked, "What do you need to begin?" This hook served to introduce…

  17. Nano Structured Activated Carbon for Hydrogen Storge. Project Final Technical Report (May 2, 2005-Dec. 31, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Cabasso, Israel; Yuan, Youxin

    2013-02-27

    Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

  18. Effects of human management on black carbon sorption/desorption during a water transfer project: Recognizing impacts and identifying mitigation possibilities.

    Science.gov (United States)

    Hao, Rong; Zhang, Jinliang; Wang, Peichao; Hu, Ronggui; Song, Yantun; Wu, Yupeng; Qiu, Guohong

    2018-05-15

    Water resources management is an important public concern. In this study, we examined the extent of sorption/desorption of trace pollutants to soil black carbon (BC) in the water level fluctuation zone (WLFZ) of the middle route of the South to North Water Transfer Project in China. In addition, we investigated the main management measures affecting these processes during the project. The results showed that the pseudo second-order model adequately describes the sorption/desorption of phenanthrene on the soil BC in the WLFZ. Water level fluctuation may indirectly influenced BC sorption/desorption by altering water chemistry. Water level residence time had negative effects on BC sorption in short-term experiments (days to months), but the impact gradually diminished with increased residence time. The results suggested that long-term field monitoring of water chemistry is urgent. During the initial period of water transfer, delaying the water supplies as drinking water source or directly irrigating crops could mitigate the adverse impacts. Future research should focus on the water-soluble products of BC degradation. The findings of this study should be useful in improving sustainable management of water resources for water transfer projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Corrosion of carbon and low-alloy steel weldments in brines: A literature review: Salt Repository Project

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1988-07-01

    The literature indicates that corrosion of carbon and low-alloy steel weldments in brines should not be a major concern if the weld is properly designed and fabricated. Seven characteristics of a weld can affect the corrosion performance of the weldment including composition of the weld metal (with respect to that of the parent metal); microstructure of the weld metal, heat-affected zone (HAZ), and parent metal; size and number of defects (cracks and pores) in the weld metal and HAZ (both internal and external); size, shape composition, location, and number of nonmetallic inclusions in the weld metal and HAZ; residual stress distribution in the weld; hydrogen content of the weld; and geometry of the weld at the outer surface. The effects of these characteristics on weldment corrosion are discussed in the report. 104 refs., 14 figs

  20. Carbon disclosure project 2006. evaluation realized with the SBF 120 enterprises. For 225 investors managing more than 31000 milliards of active dollars; Carbon disclosure project 2006. Enquete menee aupres des entreprises du SBF 120. Pour le compte de 225 investisseurs gerant plus de 31000 milliards de dollars d'actifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-10-15

    The Carbon Disclosure Project (CDP) is an independent not-for-profit organisation aiming to create a lasting relationship between shareholders and corporations regarding the implications for shareholder value and commercial operations presented by climate change. Its goal is to facilitate a dialogue, supported by quality information, from which a rational response to climate change will emerge. Over 7 years CDP has become the gold standard for carbon disclosure methodology and process. CDP4 finds that the global investment and corporate communities have made great strides in their understanding of climate change and its competitive and financial implications, and the measurement of these implications. However, awareness and measurement are not translating into sufficient management and activity in the context of the climate change challenge. (A.L.B.)

  1. Carbon disclosure project 2006. evaluation realized with the SBF 120 enterprises. For 225 investors managing more than 31000 milliards of active dollars; Carbon disclosure project 2006. Enquete menee aupres des entreprises du SBF 120. Pour le compte de 225 investisseurs gerant plus de 31000 milliards de dollars d'actifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-10-15

    The Carbon Disclosure Project (CDP) is an independent not-for-profit organisation aiming to create a lasting relationship between shareholders and corporations regarding the implications for shareholder value and commercial operations presented by climate change. Its goal is to facilitate a dialogue, supported by quality information, from which a rational response to climate change will emerge. Over 7 years CDP has become the gold standard for carbon disclosure methodology and process. CDP4 finds that the global investment and corporate communities have made great strides in their understanding of climate change and its competitive and financial implications, and the measurement of these implications. However, awareness and measurement are not translating into sufficient management and activity in the context of the climate change challenge. (A.L.B.)

  2. Final report of the project CARBOFOR. Carbon sequestration in the big forest ecosystems in France. Quantification, spatialization, vulnerability and impacts of different climatic and forestry scenario

    International Nuclear Information System (INIS)

    Loustau, D.

    2004-06-01

    The main outcomes of the project allowed to revise the carbon stock estimate of the national french forests, to clarify the interactions between climate and sylviculture according to the ecological profile of main species, to describe the changes in species area distribution for forest trees and pathogens. Different approaches for estimating the national carbon stock in forest biomass were investigated such as biomass equations and architectural models. Some conclusions in terms of adaptation scenario can be drawn. The global production potential of the french forest will be changed. This change is rapid and will occur a time interval shorter than average tree life duration. Species substitution and changing practices must be considered from now. The soil water holding capacity and the nutrient availability interact strongly with the climate effects and are therefore target factors for adapting forest stands to future changes. The dramatic change in the potential area distribution of most pathogens over France lead to recommend strong regulations for avoiding dissemination of fungal diseases and to anticipate the pathogen risks through species distribution. (A.L.B.)

  3. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    Science.gov (United States)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  4. Wind power projects in the CDM: Methodologies and tools for baselines, carbon financing and substainability analysis[CDM=Clean Development Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ringius, L.; Grohnheit, P.E.; Nielsen, L.H.; Olivier, A.L.; Painuly, J.; Villavicencio, A.

    2002-12-01

    The report is intended to be a guidance document for project developers, investors, lenders, and CDM host countries involved in wind power projects in the CDM. The report explores in particular those issues that are important in CDM project assessment and development - that is, baseline development, carbon financing, and environmental sustainability. It does not deal in detail with those issues that are routinely covered in a standard wind power project assessment. The report tests, compares, and recommends methodologies for and approaches to baseline development. To present the application and implications of the various methodologies and approaches in a concrete context, Africa's largest wind farm-namely the 60 MW wind farm located in Zafarana, Egypt- is examined as a hypothetical CDM wind power project The report shows that for the present case example there is a difference of about 25% between the lowest (0.5496 tCO2/MWh) and the highest emission rate (0.6868 tCO{sub 2}/MWh) estimated in accordance with these three standardized approaches to baseline development according to the Marrakesh Accord. This difference in emission factors comes about partly as a result of including hydroelectric power in the baseline scenario. Hydroelectric resources constitute around 21% of the generation capacity in Egypt, and, if excluding hydropower, the difference between the lowest and the highest baseline is reduced to 18%. Furthermore, since the two variations of the 'historical' baseline option examined result in the highest and the lowest baselines, by disregarding this baseline option altogether the difference between the lowest and the highest is reduced to 16%. The ES3-model, which the Systems Analysis Department at Risoe National Laboratory has developed, makes it possible for this report to explore the project-specific approach to baseline development in some detail. Based on quite disaggregated data on the Egyptian electricity system, including the wind

  5. The FOODBANCS project: Introduction and sinking fluxes of organic carbon, chlorophyll- a and phytodetritus on the western Antarctic Peninsula continental shelf

    Science.gov (United States)

    Smith, Craig R.; Mincks, Sarah; DeMaster, David J.

    2008-11-01

    The impact of the highly seasonal Antarctic primary production cycle on shelf benthic ecosystems remains poorly evaluated. Here we describe a times-series research project on the West Antarctic Peninsula (WAP) shelf designed to evaluate the seafloor deposition, and subsequent ecological and biogeochemical impacts, of the summer phytoplankton bloom along a transect crossing the Antarctic shelf near Anvers Island. During this project, entitled Food for Benthos on the Antarctic Continental Shelf (FOODBANCS), we deployed replicate sediment traps 150-170 m above the seafloor (total water-column depth of 590 m) on the central shelf from December 1999 to March 2001, recovering trap samples every 3-4 months. In addition, we used a seafloor time-lapse camera system, as well as video surveys conducted at 3-4 months intervals, to monitor the presence and accumulation of phytodetritus at the sediment-water interface. The fluxes of particulate organic carbon and chlorophyll- a into sediment traps (binned over 3-4 month intervals) showed patterns consistent with seasonal variability, with average summer fluxes during the first year exceeding winter fluxes by a factor of ˜2-3. However, inter-annual variability in summer fluxes was even greater than seasonal variability, with 4-10-fold differences in the flux of organic carbon and chlorophyll- a between the summer seasons of 1999-2000 and 2000-2001. Phytodetrital accumulation at the shelf floor also exhibited intense inter-annual variability, with no visible phytodetritus from essentially December 1999 to November 2000, followed by pulsed accumulation of 1-2 cm of phytodetritus over a ˜30,000 km 2 shelf area by March 2001. Comparisons with other studies suggest that the levels of inter-annual variability we observed are typical of the Antarctic shelf over decadal time scales. We conclude that fluxes of particulate organic carbon, chlorophyll- a and phytodetritus to WAP-shelf sediments vary intensely on seasonal to inter

  6. Joint European project on underground coal gasification in Spain; Proyecto europeo conjunto de gasificacion subterranea de carbon en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.M.; Obis, A.; Menendez, E.; Albeniz, M.A.; Chandelle, V.; Mostade, M.; Bailey, A.C. [ITGE, Madrid (Spain)

    1992-09-01

    Organizations from Spain, Belgium and the United Kingdom are collaborating in a field test of underground coal gasification which is being implemented in the north of Teruel Province (Spain). The test is first phase of a European development programme on in-situ coal gasification, being carried out with financial help from the Commission of the European Communities. This paper covers a forecast of the future energy demand for Europe, the potential of in-situ coal gasification, and a summary of the recent development of in-situ coal gasification. The circumstances which led to the formation of a European organisation (UEE) which will implement the project are described, and its objectives are presented. The geological characteristics of the proposed region are detailed, together with the test programme, and its successive phases in realising the principle parameters of the operations.

  7. The Impact Response of Carbon/Epoxy Laminates (Center Director's Discretionary Fund, Project No. 94-13)

    Science.gov (United States)

    Nettles, A. T.; Hodge, A. J.

    1997-01-01

    Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45,0,-45,90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, N(sub x), applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static identation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection. The finite element technique was used to model the impact event and determine the stress field within the laminae. Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, N(sub x), was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.

  8. Carbon activity meter

    International Nuclear Information System (INIS)

    Roy, P.; Krankota, J.L.

    1975-01-01

    A carbon activity meter utilizing an electrochemical carbon cell with gaseous reference electrodes having particular application for measuring carbon activity in liquid sodium for the LMFBR project is described. The electrolyte container is electroplated with a thin gold film on the inside surface thereof, and a reference electrode consisting of CO/CO 2 gas is used. (U.S.)

  9. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Ivar Korsbakken, Jan; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian A; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M S; Munro, David R.; Nabel, Julia E M S; Nakaoka, Shin Ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Van Der Laan-Luijkx, Ingrid T.; Van Der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future

  10. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Quéré, Le Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M.S.; Munro, David R.; Nabel, Julia E.M.S.; Nakaoka, S.; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Laan-Luijkx, van der Ingrid T.; Werf, van der Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project

  11. Evolution and world-wide projections of the carbon dioxide emissions; Evolucion y proyecciones mundiales de las emisiones de bioxido de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Saravia, Marisela; Gay, Carlos [Instituto de Ingenieria, UNAM (Mexico)

    1999-07-01

    In the frame of the present preoccupation on the global climatic change and its influence in the human activities, the possible mitigation scenarios of green house effect gases are analyzed (GEG) in the world-wide scope, the contribution of carbon dioxide future emissions as main green house effect gas originating from the burning of fossil fuels; taking into account two large classifications: Developed and developing countries. In accordance with the world-wide evolution in the 1972-1995 period and to diverse adjustments of future emissions a study of the necessary levels of these emissions is made to obtain the stabilization of the greenhouse effect gases in the atmosphere in a level in the vicinity of 550 ppmv. The considered projections are: emissions in accordance with the present tendency, basic scenario of the Intergovernmental Panel of Climatic Change (Panel Intergubernamental de Cambio Climatico) (IPCC-IS92a), mitigation proposals of the Netherlands (NL-1%, NL-2%) and profiles that entail the atmospheric CO{sub 2} stabilization. In addition the reduction in the contribution of future emissions that the developing countries would have to face to obtain the stabilization are compared, emissions that will depend on changes in factors such as population growth, economic, emissions per capita and carbon content of the power fuels, changes that would have to take place in all the countries, or certain key countries, in order to arrive to the necessary atmospheric stabilization of the emissions in accordance with those profiles. [Spanish] En el marco de la preocupacion actual sobre el cambio climatico global y su influencia en las actividades humanas, se analizan los posibles escenarios de mitigacion de gases efecto invernadero (GEI) en el ambito mundial, las cuotas de emisiones futuras de dioxido de carbono como principal gas invernadero proveniente de la quema de combustibles fosiles; tomando en cuenta dos grandes clasificaciones: Paises desarrollados y paises

  12. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    Science.gov (United States)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  13. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  14. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke

    , their properties, goods and services. In: Climate change 2007. Cambridge, Cambridge University Press, p. 211-272. [2] Mikkelsen TN, Beier C, et al. (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project. Functional Ecology, 22, 185-195. [3...... will be variable (2). Modeling exercises suggest large-scale range shifts of the major biomes of the world (1). The unknown magnitude of future GHG emissions and the complexity of the climate-carbon system induce large uncertainties in the projected changes. A changed climate may result in new interactions and new...... directions of ecosystem change due to differing adaptive capacities and new species assemblages. Within the framework ‘ecosystem services’ both marketed and non-marketed utilities of the natural environment are formulated (3). Provisioning, cultural, supporting, and regulating ecosystem services have been...

  15. Project mechanisms challenges

    International Nuclear Information System (INIS)

    Perthuis, Ch. de

    2005-06-01

    The project mechanism complete the quotas systems concerning the carbon dioxide emissions market. The author explains and discusses these mechanisms and provides a panorama of the existing and developing projects. More specially she brings information on the mechanism of clean developments and renewable energies, the coordinated mechanisms, the agricultural projects, the financing of the projects and the exchange systeme of the New south Wales. (A.L.B.)

  16. Final report of the project 'Regeneration of activated carbon used in residual water treatment plants'; Informe final del proyecto 'Regeneracion de carbon activado usado en plantas de tratamiento de aguas residuales'

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, I; Hernandez M, V

    1992-01-15

    Among the new methods used to reactivate carbon, its are the one that uses infrared light and the one that uses accelerated electrons. The technology in both processes is novel, the energy is used but efficiently, it doesn't get lost but of 5% of carbon and its are less polluting. This report presents the one method and results obtained in the irradiation of coal. (Author)

  17. Final report of the project 'Regeneration of activated carbon used in residual water treatment plants'; Informe final del proyecto 'Regeneracion de carbon activado usado en plantas de tratamiento de aguas residuales'

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, I.; Hernandez M, V

    1992-01-15

    Among the new methods used to reactivate carbon, its are the one that uses infrared light and the one that uses accelerated electrons. The technology in both processes is novel, the energy is used but efficiently, it doesn't get lost but of 5% of carbon and its are less polluting. This report presents the one method and results obtained in the irradiation of coal. (Author)

  18. FLORAM project

    Energy Technology Data Exchange (ETDEWEB)

    Zulauf, W E [Sao Paolos Environmental Secretariat, Sao Paolo (Brazil); Goelho, A S.R. [Riocell, S.A. (Brazil); Saber, A [IEA-Instituto de Estudos Avancados (Brazil); and others

    1996-12-31

    The project FLORAM was formulated at the `Institute for Advanced Studies` of the University of Sao Paulo. It aims at decreasing the level of carbon dioxide in the atmosphere and thus curbing the green-house effect by way of a huge effort of forestation and reforestation. The resulting forests when the trees mature, will be responsible for the absorption of about 6 billion tons of excess carbon. It represents 5 % of the total amount of CO{sub 2} which is in excess in the earth`s atmosphere and represents 5 % of the available continental surfaces which can be forested as well. Therefore, if similar projects are implemented throughout the world, in theory all the exceeding CO{sub 2}, responsible for the `greenhouse effect`, (27 % or 115 billion tons of carbon) would be absorbed. Regarding this fact, there would be a 400 million hectar increase of growing forests. FLORAM in Brazil aims to plant 20.000.000 ha in 2 years at a cost of 20 billion dollars. If it reaches its goals that will mean that Brazil will have reforested an area almost half as big as France. (author)

  19. FLORAM project

    Energy Technology Data Exchange (ETDEWEB)

    Zulauf, W.E. [Sao Paolos Environmental Secretariat, Sao Paolo (Brazil); Goelho, A.S.R. [Riocell, S.A. (Brazil); Saber, A. [IEA-Instituto de Estudos Avancados (Brazil)] [and others

    1995-12-31

    The project FLORAM was formulated at the `Institute for Advanced Studies` of the University of Sao Paulo. It aims at decreasing the level of carbon dioxide in the atmosphere and thus curbing the green-house effect by way of a huge effort of forestation and reforestation. The resulting forests when the trees mature, will be responsible for the absorption of about 6 billion tons of excess carbon. It represents 5 % of the total amount of CO{sub 2} which is in excess in the earth`s atmosphere and represents 5 % of the available continental surfaces which can be forested as well. Therefore, if similar projects are implemented throughout the world, in theory all the exceeding CO{sub 2}, responsible for the `greenhouse effect`, (27 % or 115 billion tons of carbon) would be absorbed. Regarding this fact, there would be a 400 million hectar increase of growing forests. FLORAM in Brazil aims to plant 20.000.000 ha in 2 years at a cost of 20 billion dollars. If it reaches its goals that will mean that Brazil will have reforested an area almost half as big as France. (author)

  20. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  1. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Froelicher, Thomas L.; Joos, Fortunat [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Bern, Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2010-12-15

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO{sub 2} agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO{sub 2} given the irreversible impacts of anthropogenic carbon emissions. (orig.)

  2. Influência dos créditos de carbono na viabilidade financeira de três projetos florestais Influence of carbon credits on the financial viability of three forest projects

    Directory of Open Access Journals (Sweden)

    Marcos Hiroshi Nishi

    2005-04-01

    Full Text Available O presente trabalho teve como objetivo estudar a influência dos créditos de carbono na viabilidade financeira de três projetos florestais. Os projetos analisados foram: heveicultura, eucalipto e pinus para produção de borracha, celulose e resina, respectivamente. O Valor Presente Líquido (VPL, a Taxa Interna de Retorno (TIR, o Valor Esperado da Terra (VET e o Valor Anual Equivalente (VAE foram os indicadores utilizados na avaliação financeira, a uma taxa de desconto de 10% ao ano. Os resultados deste trabalho indicaram que, com esta taxa, os projetos de eucalipto e pinus foram viáveis sem os recursos adicionais dos CERs (Certificados de Emissões Reduzidas, ressaltando-se que a inclusão dos créditos de carbono propiciou aumento da viabilidade financeira destes. Já o projeto da heveicultura mostrou-se viável apenas com os Certificados de Carbono. A receita advinda da venda dos CERs aumentou consideravelmente a viabilidade financeira dos três projetos, mesmo considerando a tonelada de CO2 a US$3,00. Caso o Protocolo de Kyoto seja ratificado, haverá um incremento no preço pago pela tonelada de CO2, que ocasionará o aumento da contribuição dos CERs em projetos florestais.The objective of the present work was to study the influence of carbon credits on the financial viability of three forest projects. The analyzed projects were: heveiculture, eucalyptus and pinus for production of natural rubber, cellulose and resin, respectively. The Net Present Value (NPV, the Internal Return Rate (IRR, the Soil Expected Value (SEV and the Equivalent Annual Value (EAV were the indicators used in the financial evaluation, using a discount rate of 10% a year. The results of this work demonstrated that with this rate, the projects of eucalyptus and pinus were viable without additional resources from the CERs (Certificates of Emissions Reduced, and the inclusion of the carbon credits induced an increase in their financial viability. The heveiculture

  3. Projecting the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests (1851-2100)

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.

    2009-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Estimates of the carbon emissions resulting from single storms range as high as ~100 Tg C, an amount equivalent to the annual U.S. carbon sink in forest trees. Recent studies have estimated the historic regional carbon emissions from hurricane activity using an empirically based approach. Here, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by maps of mortality and damage based on historic hurricane tracks and future scenarios to predict the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests. Model estimates compare well to previous empirically based estimates, with mean annual biomass loss of 26 Tg C yr-1 (range 0 to ~225 Tg C yr-1) resulting from hurricanes during the period 1851-2000. Using the mechanistic model, we are able to include the effects of both disturbance and recovery on the net carbon flux. We find a regional carbon sink throughout much of the 20th century resulting from forest recovery following a peak in hurricane activity during the late 19th century exceeding biomass loss. Recent increased hurricane activity has resulted in the region becoming a net carbon source. For the future, several recent studies have linked increased sea surface temperatures expected with climate change to increased hurricane activity. Based on these relationships, we investigate a range of scenarios of future hurricane activity and find the potential for substantial increases in emissions from hurricane mortality and reductions in regional carbon stocks. In our scenario with the largest increase in hurricane activity, we find a 35% increase in area disturbed by 2100, but due to the reduction of standing biomass, only a 20% increase in biomass loss per year. Developing this kind of predictive modeling capability that tracks disturbance events and

  4. Carbon diffusion in carbon-supersaturated ferrite and austenite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 586, FEB (2014), s. 129-135 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * Carbon supersaturation * Carbon supersaturation * Ferrite * Austenite Subject RIV: BJ - Thermodynamics Impact factor: 2.999, year: 2014

  5. Fiscal 1996 global environmental industry technology research related project. Report on the results of the consignment project of research and development of technology for reducing carbon dioxide emissions; 1996 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu kanren jigyo. Nisanka tanso nado haishutsu teigen gijutsu kenkyu kaihatsu itaku gyomu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the purpose of reducing emissions of carbon dioxide, freon, etc., a research project was carried out of `Research and development of technology for reducing carbon dioxide emissions` which consists of 8 projects. The paper reported the results of the projects. The projects are: (1) Development of waste water treatment of submerged combustion system, (2) Development of thermoelectric generating devices, (3) Development of high performance heat insulation materials, (4) Development of methanol reformer for transportable fuel cell, (5) Development of large pressure reducing valves, (6) Development of large-scale turbo heat pump for district heating and cooling plants, (7) Development of heat pumps for transportation equipment, and (8) Development of thermoelectric cooling devices. In (1), the waste water treatment test was conducted and reached the target. In (2), the thermoelectric device using powder sintering element obtained performance twice the performance level of the existing device. In (3), (4), (5) and (6), the target was all reached. In (7), the results well agreed in a comparison between structural analysis and experiment. The cooling unit by the SPS sintering method using Bi-Te system sintered material element obtained the cooling efficiency almost the same as that by the freon compressor method. 8 refs., 161 figs., 63 tabs.

  6. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2013-03-01

    Full Text Available As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, we evaluate the historical black carbon (BC aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH and Southern Hemisphere (SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan

  7. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; hide

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  8. Projections of multi-gas emissions and carbon sinks, and marginal abatement cost functions modelling for land-use related sources

    NARCIS (Netherlands)

    Graveland C; Bouwman AF; Vries B de; Eickhout B; Strengers BJ; MNV

    2003-01-01

    This report presents estimates of the costs of abatement of greenhouse gas emissions associated with landfills as a source of methane (CH4), sewage as a source of methane and nitrous oxide (CH4 and N2O, respectively) and carbon (C) sequestration in forest plantations. This is done in the form of

  9. Forest atmosphere carbon transfer and storage (FACTS-II) the aspen Free-air CO2 and O3 Enrichment (FACE) project: an overview.

    Science.gov (United States)

    R.E. Dickson; K.F. Lewin; J.G. Isebrands; M.D. Coleman; W.E. Heilman; D.E. Riemenschneider; J. Sober; G.E. Host; D.R. Zak; G.R. Hendrey; K.S. Pregitzer; D.F. Karnosky

    2000-01-01

    This publication briefly reviews the impact of increasing atmospheric carbon dioxide and tropospheric ozone on global climate change, and the response of forest trees to these atmospheric pollutants and their interactions; points out the need for large-scale field experiments to evaluate the response of plants to these environmental stresses; and describes the...

  10. Planning level assessment of greenhouse gas emissions for alternative transportation construction projects : carbon footprint estimator, phase II, volume I - GASCAP model.

    Science.gov (United States)

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  11. Scenarios for transition towards a low-carbon world in 2050: what's at stake for heavy industries? Joint Research Project 'Carbon-constrained scenarios'. Results and final report

    International Nuclear Information System (INIS)

    2008-11-01

    The EpE-IDDRI study, Launched in 2004, explores how major industrial sectors will be impacted by a carbon constraint stabilizing atmospheric CO 2 concentration at 450 ppm. By means of an innovative hybrid modelling platform and ongoing dialogue between researchers and industrials, the study produces conclusions concerning both general climate policy as well as the economic response of industrial sectors- specifically of the steel, aluminium, cement, and sheet glass sectors, as well as of the energy sector

  12. 13C and 17O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    International Nuclear Information System (INIS)

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0 2 (CO 3 ) 3 4- and (UO 2 ) 3 (CO 3 ) 6 6- in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = -log(a H + ) versus p[H] = -log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA

  13. Projections of Ocean Acidification Under the U.N. Framework Convention of Climate Change Using a Reduced-Form Climate Carbon-Cycle Model

    Science.gov (United States)

    Hartin, C.

    2016-02-01

    Ocean chemistry is quickly changing in response to continued anthropogenic emissions of carbon to the atmosphere. Mean surface ocean pH has already decreased by 0.1 units relative to the preindustrial era. We use an open-source, simple climate and carbon cycle model ("Hector") to investigate future changes in ocean acidification (pH and calcium carbonate saturations) under the climate agreement from the United Nations Convention on Climate Change Conference (UNFCCC) of Parties in Paris 2015 (COP 21). Hector is a reduced-form, very fast-executing model that can emulate the global mean climate of the CMIP5 models, as well as the inorganic carbon cycle in the upper ocean, allowing us to investigate future changes in ocean acidification. We ran Hector under three different emissions trajectories, using a sensitivity analysis approach to quantify model uncertainty and capture a range of possible ocean acidification changes. The first trajectory is a business-as-usual scenario comparable to a Representative Concentration Pathway (RCP) 8.5, the second a scenario with the COP 21 commitments enacted, and the third an idealized scenario keeping global temperature change to 2°C, comparable to a RCP 2.6. Preliminary results suggest that under the COP 21 agreements ocean pH at 2100 will decrease by 0.2 units and surface saturations of aragonite (calcite) will decrease by 0.9 (1.4) units relative to 1850. Under the COP 21 agreement the world's oceans will be committed to a degree of ocean acidification, however, these changes may be within the range of natural variability evident in some paleo records.

  14. Climaite - a three factor climate change ecosystem manipulation study: Set up and approaches for data analysis

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Beier, C.; Kappel Schhmidt, I.

    of each of the 8 treatments organized as a split-plot design with 12 octagonal plots with a diameter of 6.5m, each divided into four 8.3-m2 quadrants. The terrain is heterogeneous because it is hilly and has patches with trees. For improvement of the statistical power the plots have been grouped in pairs...... (based on vegetation analysis) containing each of the 8 treatments. Prior to initiation of the treatments 3rd October 2005, pre treatment measurements and studies were conducted for establishing the initial status of key variables e.g. soil and air temperature, soil moisture, species composition......, the physiological status of plants, soil water chemistry and emission of green house gasses. The CO2 is enhanced all year around during daylight hours in 6 plots by the use of a FACE system (F. Miglietta design). Temperature elevation is achieved by night time warming where IR reflective curtains automatically...

  15. Tradeable carbon permits

    International Nuclear Information System (INIS)

    Koutstaal, P.R.

    1995-01-01

    The research project on tradeable carbon permits has focused on three elements. First of all, the practical implications of designing a system of tradeable emission permits for reducing CO2 has been studied. In the second part, the consequences of introducing a system of tradeable carbon permits for entry barriers have been considered. Finally, the institutional requirements and welfare effects of coordination of CO2 abatement in a second-best world have been examined

  16. Analysis and evaluation of forest carbon projects and respective certification standards for the voluntary offset of greenhouse gas emissions; Analyse und Bewertung von Waldprojekten und entsprechender Standards zur freiwilligen Kompensation von Treibhausgasemissionen

    Energy Technology Data Exchange (ETDEWEB)

    Held, Christian; Tennigkeit, Timm; Techel, Grit; Seebauer, Matthias [UNIQUE forestry consultants GmbH, Freiburg (Germany)

    2010-12-15

    Forest based CO{sub 2} sequestration projects, regardless of their methodological approach, are always defined by the interaction of two carbon pools: (a) the CO{sub 2} stored in the forest ecosys-tem and (b) the CO{sub 2} present in the atmosphere. Forests are sinks for atmospheric carbon. This holds especially true for young or immature forests, if they are not disturbed and are not yet at equilibrium of increment, harvest and/or decay and harvest. This positive net sequestration of CO{sub 2} can be traded via emission reduction certificates, e.g. to offset emissions from industrial production, travelling and energy consumption. In contrast, the atmospheric pool increases if forests are destroyed leading to the release of the stored CO{sub 2}. This occurs if forest lands are converted into other land uses such as agricul-ture, or through forest management activities like harvesting or natural disturbances like for-est fires or pests. In all these cases forests become sources of CO{sub 2}. (orig.)

  17. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium research and development in its 3rd year (Development of technology for treating aquatic environments using microorganisms fixed carbon fibers--Abbreviation: Carbon/aquatic environment project); 1999 nendo tanso sen'i nansoshiki eno biseibutsu kochaku gensho wo riyoshita mizukankyo seibi gijutsu no kaihatsu (ryakusho: tanso mizukankyo project) seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A carbon fiber has been developed, which is easy to fabricate and allows microorganisms to anchor on. For its application to purify water, the fiber should be formed into an umbrella-type fringe and used in water featuring BOD (biological oxygen demand): 5-600ppm and chlorophyll-a: 80{mu}g/L or less and flowing at an appropriate speed. Communities of microbes speedily anchor themselves in large quantities on the carbon fiber fringe, and they are difficult to remove and highly active. Inside the anchored groups, there exist, in addition to aerobic microbial phases, anaerobic microbial phases occupying 40%. In an appropriate flow the microbial communities on the fringe perform a kind of pumping motion and exhibits a great mass transfer velocity. Carboniphilic bacteria exert a great influence during the initial stage of the anchoring process. Various woven carbon fiber products are used as artificial waterweeds and provide spawning grounds which are favored by fishes. The carbon fiber products may have some attractive trait which invites them. The characteristics of the anchored microbial communities are determined by synergism between the physical/chemical peculiarities of the carbon fiber and the nature of carbon favorable toward living organisms. Principles to follow in the use of carbon fiber products are mentioned. (NEDO)

  18. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  19. The stage-classified matrix models project a significant increase in biomass carbon stocks in China's forests between 2005 and 2050.

    Science.gov (United States)

    Hu, Huifeng; Wang, Shaopeng; Guo, Zhaodi; Xu, Bing; Fang, Jingyun

    2015-06-25

    China's forests are characterized by young age, low carbon (C) density and a large plantation area, implying a high potential for increasing C sinks in the future. Using data of provincial forest area and biomass C density from China's forest inventories between 1994 and 2008 and the planned forest coverage of the country by 2050, we developed a stage-classified matrix model to predict biomass C stocks of China's forests from 2005 to 2050. The results showed that total forest biomass C stock would increase from 6.43 Pg C (1 Pg = 10(15) g) in 2005 to 9.97 Pg C (95% confidence interval: 8.98 ~ 11.07 Pg C) in 2050, with an overall net C gain of 78.8 Tg C yr(-1) (56.7 ~ 103.3 Tg C yr(-1); 1 Tg = 10(12) g). Our findings suggest that China's forests will be a large and persistent biomass C sink through 2050.

  20. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050

    Science.gov (United States)

    Hu, Huifeng; Wang, Shaopeng; Guo, Zhaodi; Xu, Bing; Fang, Jingyun

    2015-01-01

    China’s forests are characterized by young age, low carbon (C) density and a large plantation area, implying a high potential for increasing C sinks in the future. Using data of provincial forest area and biomass C density from China’s forest inventories between 1994 and 2008 and the planned forest coverage of the country by 2050, we developed a stage-classified matrix model to predict biomass C stocks of China’s forests from 2005 to 2050. The results showed that total forest biomass C stock would increase from 6.43 Pg C (1 Pg = 1015 g) in 2005 to 9.97 Pg C (95% confidence interval: 8.98 ~ 11.07 Pg C) in 2050, with an overall net C gain of 78.8 Tg C yr−1 (56.7 ~ 103.3 Tg C yr−1; 1 Tg = 1012 g). Our findings suggest that China’s forests will be a large and persistent biomass C sink through 2050. PMID:26110831

  1. Stable Isotope Signatures of Carbon and Nitrogen to Characterize Exchange Processes and Their Use for Restoration Projects along the Austrian Danube

    Energy Technology Data Exchange (ETDEWEB)

    Hein, T. [Wasser Cluster Lunz, Lunz-See and Institute of Hydrobiology and Aquatic Ecosystem Management, University for Natural Resources and Life Sciences, Vienna, (Austria); Bondar-Kunze, E. [University of Natural Resources and Applied Life Sciences, Vienna (Austria); Welti, N. [Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna (Austria)

    2013-05-15

    The size and composition of an organic matter pool and its sources is a fundamental ecosystem property of river networks. River ecosystems are known to receive large amounts of terrestrial organic matter from catchments, still the question is to what extent aquatic sources influence riverine food webs or at least some components of these food webs. To identify different sources and their potential biological availability at the ecosystem level, we propose using stable isotope signatures of carbon and nitrogen and their respective elemental ratios. In this study, we used these parameters to evaluate river restoration measures. The target of the restoration was to improve surface connectivity between the main channel of the Danube downstream from Vienna and a side arm system within a floodplain. Analyses of the natural abundance of stable isotopes revealed that the restored side arm system showed distinct differences in the particulate organic matter pool in relation to hydrological connectivity. At low water levels, aquatic sources dominate in the side arm system, while at high water levels riverine organic matter is the dominating source. At medium connectivity levels aquatic sources also prevail in the side arm, thus an export of bio-available organic matter into the main channel can be expected. Based on these measurements, the increased - but hydrologically controlled - phytoplankton production was assessed and through this information, changes in ecosystem function were evaluated. (author)

  2. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium field / Development of technology to treat aquatic environment by using microorganisms fixed on carbon fabrics (abbreviation: carbon/aquatic environment project) (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium bun`ya / tanso sen`i nansoshiki eno biseibutsu kochaku gensho wo riyoshita mizukankyo seibi gijutsu no kaihatsu (ryakusho: tanso mizu kankyo project) daiichi nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Out of the development of technology to arrange the aquatic environment using phenomena of microorganism fixation on carbon fiber soft textures, the paper stated the fiscal 1997 result. On carbon fibers in a state of swaying in water, microorganisms in water fix in an amazingly large quantity. A catalog was compiled of 58 kinds of carbon fabrics trially woven and knitted. When carbon fiber is used as activated sludge carrier, activity of microorganism lasts more than one year. Only a little amount of surplus sludge is generated. The fixed microorganisms are more active in case of carbon fiber than in case of nylon and polyester fibers. Fiber texture models of carbon fiber fixing activated sludge groups were proposed. By pump operation, the water flow inside/outside microorganism groups is being accelerated. Several new strains of bacillus carboniphilus were isolated/identified from soil and marsh. To grasp relationships of characteristics among three elements such as the state of aquatic environment, fiber, and microorganism group, the experiment was prepared. Preliminary work is conducted to derive a simple equation for facility design, and experimental directions to obtain design conditions were proposed. 6 refs., 166 figs., 47 tabs.

  3. Breaking Carbon Lock-in

    DEFF Research Database (Denmark)

    Driscoll, Patrick Arthur

    2014-01-01

    This central focus of this paper is to highlight the ways in which path dependencies and increasing returns (network effects) serve to reinforce carbon lock-in in large-scale road transportation infrastructure projects. Breaking carbon lock-in requires drastic changes in the way we plan future...

  4. The ULICE project

    CERN Multimedia

    Ballantine, A; Dixon-Altaber, H; Dosanjh, M; Kuchina, L

    2011-01-01

    ULICE is an infrastructure project funded by EC to address two different and complementary issues in cancer hadron therapy: the development of the appropriate instruments for high-performance hadrontherapy, with particular emphasis on carbon ion therapy, and the need for intensive collaboration among the existing and planned centres, as well as with the European hadrontherapy community at large.

  5. Energy-efficient houses. Scenarios, efforts and means of action with an emphasis on energy use and carbon dioxide emissions. Main Report of the KLIMATEK project 'The energy systems of the future in existing and new buildings - a higher level analysis emphasising status and scenarios'

    International Nuclear Information System (INIS)

    Gjaerde, Anne Cathrine; Livik, Klaus; Stene, Joern; Grinden, Bjoern; Tokle, Trude; Thyholt, Marit; Groenli, Morten

    1999-04-01

    The project referred to in the heading concentrated on energy use and carbon dioxide emissions relating to heating of houses in Norway. There are many ways of reducing energy use and carbon dioxide emissions, but the measures taken are often unprofitable because of high investment costs and relatively moderate energy prices. The development of society, environmental policy and technology strongly affects the development and management of the buildings, and this project could only elucidate a limited number of approaches of current interest. About 60% of the energy needed for heating houses comes from electricity, and the use of electricity for general purposes is increasing. Norway will probably become a major net importer of electric power within a few years unless strong measures are taken. Most of the carbon dioxide emission from buildings are due to oil fuel firing

  6. Carbon based prosthetic devices

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  7. Evaluation of avoided carbon dioxide emissions in cogeneration projects; Evaluacion de las emisiones evitadas de bioxido de carbono en proyectos de cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Flores Zamudio, Jesus Antonio; Fernandez Montiel, Manuel Francisco; Alcaraz Calderon, Agustin Moises [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jesus.flores@iie.org.mx; mffm@iie.org.mx; malcaraz@iie.org.mx

    2010-11-15

    In this paper, presents a methodology of how to calculate the emissions of CO{sub 2} (Carbon Dioxide) in cogeneration of plants for evaluate future cases with the type of fuel and fuel flow used in the plant. The methodology was in spreadsheets developed a series of stoichiometric balances. The methodology was done for three types of fossil fuels: solid, liquid and gas. The analysis is made only to the percentages of the items contained in the fuel flow automatically used and results in the combustion products in tons per hour. This method was compared with the results obtained in the software Thermoflow Inc. (Used in Gerencia de Procesos Termicos of Instituto de Investigaciones Electricas for evaluate various process systems that produce energy power) using different cogeneration systems, that is to say about the technology used emissions compared according to the amount of excess air for each type of technology and at one point before the gas cleaning systems. The results can be evaluated for emissions avoided through the fuel type used and developing a cogeneration plant compared to a conventional plant. [Spanish] En este articulo, se presenta una metodologia de como calcular las emisiones de CO{sub 2} (Bioxido de carbono) en plantas de cogeneracion, para evaluar casos a futuro por medio del tipo de combustible y flujo de combustible a utilizar en la planta. La metodologia se realizo en hojas de calculo, donde se desarrollaron una serie de balances estequiometricos. La metodologia se hizo para tres tipos de combustibles fosiles: solido, liquido y gas. El analisis se realiza con solo dar los porcentajes de los elementos que contiene el combustible y el flujo a utilizarse y automaticamente da como resultado los productos de la combustion en toneladas por hora. Esta metodologia se comparo con los resultados obtenidos en el software Thermoflow Inc. (Empleado en la Gerencia de Procesos Termicos del Instituto de Investigaciones Electricas para evaluar diversos

  8. Kinetics of resite carbonization

    Czech Academy of Sciences Publication Activity Database

    Kolář, František; Svítilová, Jaroslava

    11(120) (2001), s. 97-103 ISSN 1211-1929 R&D Projects: GA ČR GA104/00/1140 Institutional research plan: CEZ:AV0Z3046908 Keywords : carbonization * combustion Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  9. Family forest owners in the redwood region: management priorities and opportunities in a carbon market

    Science.gov (United States)

    Erin Clover Kelly; Joanna Di Tommaso; Arielle Weisgrau

    2017-01-01

    California’s cap-and-trade carbon market has included forest offset projects, available to all private landowners across the United States. The redwood region has been at the forefront of the market, creating the earliest forest carbon projects. From carbon registries, we compiled a database of all forest carbon projects in the market, in order to determine...

  10. Project Notes

    Science.gov (United States)

    School Science Review, 1978

    1978-01-01

    Presents sixteen project notes developed by pupils of Chipping Norton School and Bristol Grammar School, in the United Kingdom. These Projects include eight biology A-level projects and eight Chemistry A-level projects. (HM)

  11. Final report of the project CARBOFOR. Carbon sequestration in the big forest ecosystems in France. Quantification, spatialization, vulnerability and impacts of different climatic and forestry scenario; Rapport final du projet CARBOFOR. Sequestration de carbone dans les grands ecosystemes forestiers en France. Quantification, spatialisation, vulnerabilite et impacts de differents scenarios climatiques et sylvicoles

    Energy Technology Data Exchange (ETDEWEB)

    Loustau, D

    2004-06-15

    The main outcomes of the project allowed to revise the carbon stock estimate of the national french forests, to clarify the interactions between climate and sylviculture according to the ecological profile of main species, to describe the changes in species area distribution for forest trees and pathogens. Different approaches for estimating the national carbon stock in forest biomass were investigated such as biomass equations and architectural models. Some conclusions in terms of adaptation scenario can be drawn. The global production potential of the french forest will be changed. This change is rapid and will occur a time interval shorter than average tree life duration. Species substitution and changing practices must be considered from now. The soil water holding capacity and the nutrient availability interact strongly with the climate effects and are therefore target factors for adapting forest stands to future changes. The dramatic change in the potential area distribution of most pathogens over France lead to recommend strong regulations for avoiding dissemination of fungal diseases and to anticipate the pathogen risks through species distribution. (A.L.B.)

  12. Carbon Alloys-Multi-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Eiichi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)], E-mail: yasuda.e.aa.@m.titech.ac.jp; Enami, Takashi; Hoteida, Nobuyuki [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Lanticse-Diaz, L.J. [University of the Philippines (Philippines); Tanabe, Yasuhiro [Nagoya University (Japan); Akatsu, Takashi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2008-02-25

    Last decade after our proposal of the 'Carbon Alloys' concept, many different kinds of Carbon Alloys, such as carbon nanotubes, carbon nanofibers, graphene sheet with magnetism, semi-conducting BCN compounds, graphite intercalation compounds, exfoliated carbon fiber, etc. have been found and developed. To extend the concept further, it is important to make it into intelligent materials by incorporating multiple functions. One example of the multi-functionalization is the development of homo-atomic Carbon Alloys from glassy carbon (GC) that exhibits high electrical conductivity and low gas permeability after treatment at critical conditions. Glassy carbon underwent metamorphosis to graphite spheres at HIP condition, and improved resistance to oxidation after alloying with Ta. The other one is shape utilization of the nano-sized carbon by understanding the effect of its large surfaces or interfaces in nanotechnology treatment. Recently carbon nanofiber was produced by polymer blend technology (PB) which was proposed by Prof. A. Oya during the Carbon Alloy project and progressed into intelligent carbon nanofiber (CNF) materials. CNF is combined into the polymer composites which is a candidate material for the bipolar separator in fuel cell. The superior properties, i.e., high electrical conductivity, high modulus, high strength, etc., of the CNF is being utilized in the preparation of this polymer composite.

  13. Bioenergy/Biotechnology projects

    Energy Technology Data Exchange (ETDEWEB)

    Napper, Stan [Louisiana Tech Univ., Ruston, LA (United States); Palmer, James [Louisiana Tech Univ., Ruston, LA (United States); Wilson, Chester [Louisiana Tech Univ., Ruston, LA (United States); Guilbeau, Eric [Louisiana Tech Univ., Ruston, LA (United States); Allouche, Erez [Louisiana Tech Univ., Ruston, LA (United States)

    2012-06-30

    This report describes the progress of five different projects. The first is an enzyme immobilization study of cellulase to reduce costs of the cellulosic ethanol process. High reusability and use of substrates applicable to large scale production were focus areas for this study. The second project was the development of nanostructured catalysts for conversion of syngas to diesel. Cobalt nanowire catalyst was used in Fischer-Tropsch synthesis. The third project describes work on developing a microfluidic calorimeter to measure reaction rates of enzymes. The fourth project uses inorganic polymer binders that have the advantage of a lower carbon footprint than Portland cement while also providing excellent performance in elevated temperature, high corrosion resistance, high compressive and tensile strengths, and rapid strength gains. The fifth project investigates the potential of turbines in drop structures (such as sewer lines in tall buildings) to recover energy.

  14. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  15. Carbon/carbon composite materials

    International Nuclear Information System (INIS)

    Thebault, J.; Orly, P.

    2006-01-01

    Carbon/carbon composites are singular materials from their components, their manufacturing process as well as their characteristics. This paper gives a global overview of these particularities and applications which make them now daily used composites. (authors)

  16. Carbon recovery rates following different wildfire risk mitigation treatments

    Science.gov (United States)

    M. Hurteau; M. North

    2010-01-01

    Sequestered forest carbon can provide a climate change mitigation benefit, but in dry temperate forests, wildfire poses a reversal risk to carbon offset projects. Reducing wildfire risk requires a reduction in and redistribution of carbon stocks, the benefit of which is only realized when wildfire occurs. To estimate the time needed to recover carbon removed and...

  17. Carbon storage in young growth coast redwood stands

    Science.gov (United States)

    Dryw A. Jones; Kevin A. O' Hara

    2012-01-01

    Carbon sequestration is an emerging forest management objective within California and around the world. With the passage of the California's Global Warming Solutions Act (AB32) our need to understand the dynamics of carbon sequestration and to accurately measure carbon storage is essential to insure successful implementation of carbon credit projects throughout...

  18. Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Leib, Thomas [Leucadia Energy, LLC, Salt Lake City, UT (United States); Cole, Dan [Denbury Onshore, LLC, Plano, TX (United States)

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials

  19. Mainstreaming Low-Carbon Climate-Resilient growth pathways into Development Finance Institutions' activities. A research project on the standards, tools and metrics to support transition to the low-carbon climate-resilient development models. Paper 1 - Climate and development finance institutions: linking climate finance, development finance and the transition to low-carbon, climate-resilient economic models

    International Nuclear Information System (INIS)

    Eschalier, Claire; Cochran, Ian; Deheza, Mariana; Risler, Ophelie; Forestier, Pierre

    2015-10-01

    Development finance institutions (DFIs) are in a position to be key actors in aligning development and the 2 deg. challenge. One of the principal challenges today is to scale-up the financial flows to the trillions of dollars per year necessary to achieve the 2 deg. C long-term objectives. Achieving this transition to a low-carbon, climate resilient (LCCR) economic model requires the integration or 'mainstreaming' of climate issues as a prism through which all investment decisions should be made. This paper presents an overview of the opportunities and challenges of linking a LCCR transition with the objectives of development finance. It first presents the two-fold challenge of climate change and development for countries around the world. Second, the paper explores the role of development finance institutions and their support for the transition to a low-carbon, climate-resilient economic model. Finally, it examines a necessary paradigm shift to integrate climate and development objectives to establish a 'LCCR development model' able to simultaneously tackling development priorities and needs for resilient, low-carbon growth. This will necessitate a move from focusing on a 'siloed' vision of climate finance to a means of aligning activities across the economy with the LCCR objectives to ensure that the majority of investments are coherent with this long-term transition. (authors)

  20. The Mississippi CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  1. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Science.gov (United States)

    P. Ciais; A. J. Dolman; A. Bombelli; R. Duren; A. Peregon; P. J. Rayner; C. Miller; N. Gobron; G. Kinderman; G. Marland; N. Gruber; F. Chevallier; R. J. Andres; G. Balsamo; L. Bopp; F.-M. Bréon; G. Broquet; R. Dargaville; T. J. Battin; A. Borges; H. Bovensmann; M. Buchwitz; J. Butler; J. G. Canadell; R. B. Cook; R. DeFries; R. Engelen; K. R. Gurney; C. Heinze; M. Heimann; A. Held; M. Henry; B. Law; S. Luyssaert; J. Miller; T. Moriyama; C. Moulin; R. B. Myneni; C. Nussli; M. Obersteiner; D. Ojima; Y. Pan; J.-D. Paris; S. L. Piao; B. Poulter; S. Plummer; S. Quegan; P. Raymond; M. Reichstein; L. Rivier; C. Sabine; D. Schimel; O. Tarasova; R. Valentini; R. Wang; G. van der Werf; D. Wickland; M. Williams; C. Zehner

    2014-01-01

    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires...

  2. The Contemporary Carbon Cycle

    Science.gov (United States)

    Houghton, R. A.

    2003-12-01

    C). Additions of greenhouse gases to the atmosphere from industrial activity, however, are increasing the concentrations of these gases, enhancing the greenhouse effect, and starting to warm the Earth.The rate and extent of the warming depend, in part, on the global carbon cycle. If the rate at which the oceans remove CO2 from the atmosphere were faster, e.g., concentrations of CO2 would have increased less over the last century. If the processes removing carbon from the atmosphere and storing it on land were to diminish, concentrations of CO2 would increase more rapidly than projected on the basis of recent history. The processes responsible for adding carbon to, and withdrawing it from, the atmosphere are not well enough understood to predict future levels of CO2 with great accuracy. These processes are a part of the global carbon cycle.Some of the processes that add carbon to the atmosphere or remove it, such as the combustion of fossil fuels and the establishment of tree plantations, are under direct human control. Others, such as the accumulation of carbon in the oceans or on land as a result of changes in global climate (i.e., feedbacks between the global carbon cycle and climate), are not under direct human control except through controlling rates of greenhouse gas emissions and, hence, climatic change. Because CO2 has been more important than all of the other greenhouse gases under human control, combined, and is expected to continue so in the future, understanding the global carbon cycle is a vital part of managing global climate.This chapter addresses, first, the reservoirs and natural flows of carbon on the earth. It then addresses the sources of carbon to the atmosphere from human uses of land and energy and the sinks of carbon on land and in the oceans that have kept the atmospheric accumulation of CO2 lower than it would otherwise have been. The chapter describes changes in the distribution of carbon among the atmosphere, oceans, and terrestrial ecosystems over

  3. Define Project

    DEFF Research Database (Denmark)

    Munk-Madsen, Andreas

    2005-01-01

    "Project" is a key concept in IS management. The word is frequently used in textbooks and standards. Yet we seldom find a precise definition of the concept. This paper discusses how to define the concept of a project. The proposed definition covers both heavily formalized projects and informally...... organized, agile projects. Based on the proposed definition popular existing definitions are discussed....

  4. Project Management

    DEFF Research Database (Denmark)

    Project Management Theory Meets Practice contains the proceedings from the 1st Danish Project Management Research Conference (DAPMARC 2015), held in Copenhagen, Denmark, on May 21st, 2015.......Project Management Theory Meets Practice contains the proceedings from the 1st Danish Project Management Research Conference (DAPMARC 2015), held in Copenhagen, Denmark, on May 21st, 2015....

  5. Carbon sequestration leadership forum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Carbon Sequestration Leadership Forum (CSLF) is an international climate change initiative that will focus on development of carbon capture and storage technologies as a means of accomplishing long-term stabilisation of greenhouse gas levels in the atmosphere. This initiative is designed to improve these technologies through coordinated research and development with international partners and private industry. Three types of cooperation are currently envisioned within the framework of the Forum: data gathering, information exchange, and joint projects. Data gathered from participating countries will be aggregated, summarised, and distributed to all of the Forum's participants. Joint projects will be identified by member nations with the Forum serving as a mechanism for bringing together government and private sector representatives from member countries. The article also reports the inaugural meeting which was held 23-25 June 2003 in Washington.

  6. Project Management

    DEFF Research Database (Denmark)

    Pilkington, Alan; Chai, Kah-Hin; Le, Yang

    2015-01-01

    This paper identifies the true coverage of PM theory through a bibliometric analysis of the International Journal of Project Management from 1996-2012. We identify six persistent research themes: project time management, project risk management, programme management, large-scale project management......, project success/failure and practitioner development. These differ from those presented in review and editorial articles in the literature. In addition, topics missing from the PM BOK: knowledge management project-based organization and project portfolio management have become more popular topics...

  7. Exploring how the carbon market could work for the poor | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Exploring how the carbon market could work for the poor ... projects to the carbon market through the Clean Development Mechanism (CDM) might be a ... Financial barriers remain an obstacle to the full registration of this project to the CDM.

  8. Low carbon logistics through supply chain design and coordination.

    Science.gov (United States)

    2010-02-01

    "In this project, we propose to address carbon emissions in logistics through supply chain design, planning and : coordination. We argue that (1) supply chain design, planning, and coordination can help reduce carbon emissions : significantly, (2) su...

  9. Distribution of organic carbon in sediments from the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    Many earlier studies on the distribution of organic carbon in the Arabian Sea, sediments have projected contradictory opinions on the factors favouring accumulation and preservation of organic carbon in the Arabian Sea. An attempt is made...

  10. Project financing

    International Nuclear Information System (INIS)

    Cowan, A.

    1998-01-01

    Project financing was defined ('where a lender to a specific project has recourse only to the cash flow and assets of that project for repayment and security respectively') and its attributes were described. Project financing was said to be particularly well suited to power, pipeline, mining, telecommunications, petro-chemicals, road construction, and oil and gas projects, i.e. large infrastructure projects that are difficult to fund on-balance sheet, where the risk profile of a project does not fit the corporation's risk appetite, or where higher leverage is required. Sources of project financing were identified. The need to analyze and mitigate risks, and being aware that lenders always take a conservative view and gravitate towards the lowest common denominator, were considered the key to success in obtaining project financing funds. TransAlta Corporation's project financing experiences were used to illustrate the potential of this source of financing

  11. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  12. Project descriptions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This part specifies the activities and project tasks of each project broken down according to types of financing, listing the current projects Lw 1 through 3 funded by long-term provisions (budget), the current projects LB 1 and 2, LG 1 through 5, LK1, LM1, and LU 1 through 6 financed from special funds, and the planned projects ZG 1 through 4 and ZU 1, also financed from special funds. (DG) [de

  13. Carbon capture and storage (CCS)

    International Nuclear Information System (INIS)

    Martin-Amouroux, Jean-Marie

    2016-01-01

    The author first defines what carbon capture and storage (CCS)is, describes more precisely the various technologies, methods and processes involved in carbon capture, carbon transport, and carbon geological storage. He briefly evokes the various applications and uses of CCS. In the second part, he proposes an overview of advances and deadlocks of CCS in the world, of the status of installations and projects, of the development of capture practices in the industry, of some existing and important storage sites, of some pilot installations developed by various industrial actors in different countries (26 installations in the world). He indicates power stations equipped for CCS (in Canada, USA, United-Kingdom, Netherlands, Norway, China, South Korea and United Arab Emirates). He evokes projects which have been given up or postponed. He proposes an overview of policies implemented in different countries (USA, Canada, European Union, Australia, and others) to promote CCS

  14. Project studies

    DEFF Research Database (Denmark)

    Geraldi, Joana; Söderlund, Jonas

    2018-01-01

    Project organising is a growing field of scholarly inquiry and management practice. In recent years, two important developments have influenced this field: (1) the study and practice of projects have extended their level of analysis from mainly focussing on individual projects to focussing on micro......, and of the explanations of project practices they could offer. To discuss avenues for future research on projects and project practice, this paper suggests the notion of project studies to better grasp the status of our field. We combine these two sets of ideas to analyse the status and future options for advancing...... project research: (1) levels of analysis; and (2) type of research. Analysing recent developments within project studies, we observe the emergence of what we refer to as type 3 research, which reconciles the need for theoretical development and engagement with practice. Type 3 research suggests pragmatic...

  15. The NASA Carbon Monitoring System

    Science.gov (United States)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  16. Virtual projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Commisso, Trine Hald

    2012-01-01

    that the best practice knowledge has not permeated sufficiently to the practice. Furthermore, the appropriate application of information and communication technology (ICT) remains a big challenge, and finally project managers are not sufficiently trained in organizing and conducting virtual projects....... The overall implications for research and practice are to acknowledge virtual project management as very different to traditional project management and to address this difference.......Virtual projects are common with global competition, market development, and not least the financial crisis forcing organizations to reduce their costs drastically. Organizations therefore have to place high importance on ways to carry out virtual projects and consider appropriate practices...

  17. Project financing

    International Nuclear Information System (INIS)

    Alvarez, M.U.

    1990-01-01

    This paper presents the basic concepts and components of the project financing of large industrial facilities. Diagrams of a simple partnership structure and a simple leveraged lease structure are included. Finally, a Hypothetical Project is described with basic issues identified for discussion purposes. The topics of the paper include non-recourse financing, principal advantages and objectives, disadvantages, project financing participants and agreements, feasibility studies, organization of the project company, principal agreements in a project financing, insurance, and an examination of a hypothetical project

  18. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  19. Carbon-On-Carbon Manufacturing

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Buchanan, Larry (Inventor); Banzon, Jr., Jose T. (Inventor)

    2017-01-01

    The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.

  20. Economics of biofiltration for remediation projects

    International Nuclear Information System (INIS)

    Yudelson, J.M.; Tinari, P.D.

    1995-01-01

    Biofilters with granular activated carbon (GAC) filter backup units offer substantial savings compared to conventional GAC filters and catalytic/thermal oxidation (Catox) units in controlling emissions of volatile organic compounds (VOCs) from petroleum remediation projects. Provided that the biofilter supplier is willing to satisfy the client's and consultant's risk-management concerns, biofilters offer anew method for reducing the cost of remediation projects, with savings of up to $10,000 (24%) per facility in 24-month projects and up to $16,000 (32%) per facility in 36-month projects for simple gas station remediation projects. Savings will be greater for longer projects and projects with higher average contaminant loadings

  1. Porous carbons

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and ...

  2. Carbon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Konov, V I [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-11-30

    The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)

  3. Carbon sequestration in agricultural soils: a potential carbon trading opportunity?

    International Nuclear Information System (INIS)

    Cowie, Annette L.; Murphy, Brian; Rawson, Andrew; Wilson, Brian; Singh, Bhupinderpal; Young, Rick; Grange, Ian

    2007-01-01

    Full text: Emissions trading schemes emerging in Australia and internationally create a market mechanism by which release of greenhouse gases incurs a cost, and implementation of abatement measures generates a financial return. There is growing interest amongst Australian landholders in emissions trading based on sequestration of carbon in soil through modified land management practices. Intensively cropped soils have low carbon content, due to disturbance, erosion and regular periods of minimal organic matter input. Because cropping soils in Australia have lost a substantial amount of carbon there is significant potential to increase carbon stocks through improved land management practices. Evidence from long term trials and modelling indicates that modified cropping practices (direct drilling, stubble retention, controlled traffic) have limited impact on soil carbon (0 to +2 tC02e ha-' year1) whereas conversion from cropping to pasture gives greater increases. Small-increases in soil carbon over large areas can contribute significantly to mitigation of Australia's greenhouse gas emissions. Furthermore, increase in soil organic matter will improve soil health, fertility and resilience. However, the inclusion of soil carbon offsets in an emissions trading scheme cannot occur until several barriers are overcome. The first relates to credibility. Quantification of the extent to which specific land management practices can sequester carbon in different environments will provide the basis for promotion of the concept. Current research across Australia is addressing this need. Secondly, cost-effective and accepted methods of estimating soil carbon change must be available. Monitoring soil carbon to document change on a project scale is not viable due to the enormous variability in carbon stocks on micro and macro scales. Instead estimation of soil carbon change could be undertaken through a combination of baseline measurement to assess the vulnerability of soil carbon

  4. Microsoft project

    OpenAIRE

    Markić, Lucija; Mandušić, Dubravka; Grbavac, Vitomir

    2005-01-01

    Microsoft Project je alat čije su prednosti u svakodnevnom radu nezamjenjive. Pomoću Microsoft Projecta omogućeno je upravljanje resursima, stvaranje izvještaja o projektima u vremenu, te analize različitih scenarija. Pojavljuje u tri verzije: Microsoft Project Professional, Microsoft Project Server i Microsoft Project Server Client Access Licenses. Upravo je trend da suvremeni poslovni ljudi zadatke povjeravaju Microsoft Projectu jer on znatno povećava produktivnost rada. Te prednos...

  5. Project ethics

    CERN Document Server

    Jonasson, Haukur Ingi

    2013-01-01

    How relevant is ethics to project management? The book - which aims to demystify the field of ethics for project managers and managers in general - takes both a critical and a practical look at project management in terms of success criteria, and ethical opportunities and risks. The goal is to help the reader to use ethical theory to further identify opportunities and risks within their projects and thereby to advance more directly along the path of mature and sustainable managerial practice.

  6. Gates Precast Concrete User Project Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chesser, Phillip C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The primary objective of the project was to demonstrate the viability of using carbon fiber reinforced ABS plastic and the Big Area Additive Manufacturing (BAAM) technology to rapidly manufacture molds for the precast concrete industry.

  7. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    Science.gov (United States)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  8. Carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The document identifies the main sources of carbon monoxide (CO) in the general outdoor atmosphere, describes methods of measuring and monitoring its concentration levels in the United Kingdom, and discusses the effects of carbon monoxide on human health. Following its review, the Panel has put forward a recommendation for an air quality standard for carbon monoxide in the United Kingdom of 10 ppm, measured as a running 8-hour average. The document includes tables and graphs of emissions of CO, in total and by emission source, and on the increase in blood levels of carboxyhaemoglobin with continuing exposure to CO. 11 refs., 4 figs., 4 tabs.

  9. Project Temporalities

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan

    2013-01-01

    Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...... into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...... multiply in interaction with project management technologies and how conventional linear conceptions of project time may be contested with the emergence of new non-human stakeholders and temporalities. Research limitations/implications – The study draws on ANT to show how animals can become stakeholders...

  10. Optimization of the vapor/carbon rate in the project of a hydrogen generation unit from naphtha; Otimizacao da relacao vapor/carbono no projeto de uma unidade de geracao de hidrogenio a partir de nafta

    Energy Technology Data Exchange (ETDEWEB)

    Baleroni, Dirceu; Silva, Mauro [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1993-12-31

    This paper presents a study of the economic optimization of the steam to carbon ratio in the design of a 550,000 Nm{sup 3}/day plant producing hydrogen from naphtha. The effect of the steam to carbon ratio on the production cost and on the plant operational flexibility was taken into account. The process includes feed desulfurization, steal reforming, carbon monoxide conversion and pressure swing adsorption purification. The paper analyzes the influence of the steam to carbon ratio on the purity of the hydrogen product and on the operational cost of an existing 212,000 Nm{sup 3}/day hydrogen from naphtha unit. (author) 17 refs., 2 figs., 11 tabs

  11. Calcium Carbonate

    Science.gov (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  12. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  13. Carbon-nitrogen interactions in forest ecosystems

    DEFF Research Database (Denmark)

    Gundersen, Per; Berg, Bjørn; Currie, W.S.

    This report is a summary of the main results from the EU projectCarbon – Nitrogen Interactions in Forest Ecosystems” (CNTER). Since carbon (C) and nitrogen (N) are bound together in organic matter we studied both the effect of N deposition on C cycling in forest ecosystems, and the effect of C ...

  14. Human footprint affects US carbon balance more than climate change

    Science.gov (United States)

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  15. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  16. Actinide(IV) and actinide(VI) carbonate speciation studies by PAS and NMR spectroscopies. Yucca Mountain Project: Milestone report 3031-WBS 1.2.3.4.1.3.1

    International Nuclear Information System (INIS)

    Clark, D.L.; Ekberg, S.A.; Morris, D.E.; Palmer, P.D.; Tait, C.D.

    1994-09-01

    Pulsed-laser photoacoustic spectroscopy (PAS) and Fourier-transform nuclear magnetic resonance (NMR) spectroscopy were used to study speciation of actinide(IV) and actinide(VI) ions (Np, Pu, Am) in aqueous carbonate solutions vs of pH, carbonate concentration, actinide content, and temperature. PAS focused on Pu(IV) speciation. Stability fields on a pH (8.4 to 12.0) versus total carbonate content (0.003 to 1.0 M) plot for dilute Pu(IV) carbonate species ([Pu] tot = 1 mM) were mapped. Four plutonium species, with absorption peaks at 486, 492, 500, and 512 nm were found. Loss of a single carbonate ligand does not account for the difference in speciation for the 486 and 492 nm absorption peaks, nor can any of the observed species be identified as colloidal Pu(IV). NMR data have been obtained for UO 2 2+ , PuO 2 2+ and AmO 2 2+ . This report focuses on results for PuO 2 2+ . The ligand exchange reaction between free and coordinated carbonate on the PuO 2 (CO 3 ) 3 4- systems has been examined by variable temperature 13 C NMR spectroscopy. In each of the six different PuO 2 (CO 3 ) 3 4- samples, two NMR signals are present, one for the free carbonate ligand and one for the carbonate ligand coordinated to a paramagnetic plutonium metal center. The single 13 C resonance line for coordinated carbonate is consistent with expectations of a monomeric PuO 2 (CO 3 ) 3 4- species in solution. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was used for determining of ligand exchange parameters for paramagnetic actinide complexes. Eyring analysis at standard conditions provided activation parameters of ΔH = 38 KJ/M and ΔS = -60 J/K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl(VI) carbonate complex self-exc

  17. Scale-up of Carbon/Carbon Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  18. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149 ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  19. The Innavik hydroelectric project

    Energy Technology Data Exchange (ETDEWEB)

    St-Pierre, S.; McNeil, E.; Gacek, J. [RSW Inc., Montreal, PQ (Canada); Atagotaaluk, E. [Pituvik Landholding Corp., Nunavik, PQ (Canada); Henderson, C. [Lumos Energy, Ottawa, ON (Canada)

    2009-07-01

    The village of Inukjuak in northern Quebec is not connected to the main electrical grid. This remote village is one of 14 Inuit communities in the Nunavik administrative region where electricity is generated by diesel thermal power plants under the direction of Hydro-Quebec Distribution's Isolated Grid subdivision. The heating of water and buildings is supplied by heavy fuel-oil. A compensation program for the price of fuel-oil is applied in the community. This presentation discussed the need for developing renewable energy sources in order to respond to the energy demands of isolated grids. The community of Inukjuak plans on developing the water resources of the Inukjuak River in order to produce hydroelectricity and reduce the use of diesel fuel. Several possible development sites were identified. The project will contribute to a reduction in energy costs while reducing greenhouse gas emissions. Revenues generated from the power plant will help the village in their economic development by enabling the completion of various community projects. The sustainable development approach taken for the project was discussed and the project's main technical, environmental and social issues were identified. The project is expected to reduce the production of an estimated 8 tons of carbon dioxide emissions by 2011 and nearly 15 tons after 10 years of operation.

  20. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  1. Experiences of CO2 domestic projects in the world

    International Nuclear Information System (INIS)

    Dominicis, A. de

    2005-09-01

    The Kyoto protocol provides for two projects allowing the valorization, by actives carbon, the greenhouse gases emission reduction. In addition to theses two projects, other mechanisms more local are developing. If these mechanisms goal is the same (to incentive the implementation of projects of emissions reduction), the implementation is often different. This evaluation takes stock on this new domestic projects. (A.L.B.)

  2. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  3. Biophysical risks to carbon sequestration and storage in Australian drylands.

    Science.gov (United States)

    Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel

    2018-02-15

    Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Global carbon budget 2013

    International Nuclear Information System (INIS)

    Le Quere, C.; Moriarty, R.; Jones, S.D.; Boden, T.A.; Peters, G.P.; Andrew, R.M.; Andres, R.J.; Ciais, P.; Bopp, L.; Maignan, F.; Viovy, N.

    2014-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink (SOCEAN) is based on observations from the 1990's, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6±0.4 GtC yr -1 , ELUC 0.9±0.5 GtC yr -1 , GATM 4.3±0

  5. High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO2 in Combination: Results from the CLIMAITE Experiment

    DEFF Research Database (Denmark)

    Kongstad, J.; Schmidt, Inger K.; Riis-Nielsen, Torben

    2012-01-01

    of in situexposure to elevated atmospheric CO2 concentration,increased temperature and prolonged droughtperiods on the plant biomass in a dry heathland(Brandbjerg, Denmark). Results after 3 yearsshowed that drought reduced the growth of thetwo dominant species Deschampsia flexuosa and Callunavulgaris. However, both...... the standingbiomass for either D. flexuosa or the ecosystem asmore litter was produced. Treatment combinationsshowed little interactions on the measuredparameters and in particular elevated CO2 did notcounterbalance the drought effect on plant growth,as we had anticipated. The plant community didnot show any......Climate change scenarios predict simultaneouslyincrease in temperature, altered precipitation patternsand elevated atmospheric CO2 concentration,which will affect key ecosystem processes and plantgrowth and species interactions. In a large-scaleexperiment, we investigated the effects...

  6. Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Kovářová, Jana; Pfleger, Jiří; Stejskal, Jaroslav; Trchová, Miroslava; Novák, I.; Berek, D.

    2016-01-01

    Roč. 109, November (2016), s. 836-842 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : cellulose * carbon * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.337, year: 2016

  7. Carbon sequestration.

    Science.gov (United States)

    Lal, Rattan

    2008-02-27

    Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

  8. LEX Project

    DEFF Research Database (Denmark)

    Damkilde, Lars; Larsen, Torben J.; Walbjørn, Jacob

    This document is aimed at helping all parties involved in the LEX project to get a common understanding of words, process, levels and the overall concept.......This document is aimed at helping all parties involved in the LEX project to get a common understanding of words, process, levels and the overall concept....

  9. OMEGA project

    International Nuclear Information System (INIS)

    Shibuya, E.H.

    1989-01-01

    The OMEGA - Observation of Multiple particle production, Exotic Interactions and Gamma-ray Air Shower-project is presented. The project try to associate photosensitive detectors from experiences of hadronic interactions with electronic detectors used by experiences that investigate extensive atmospheric showers. (M.C.K.)

  10. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    implementation of the new stage of key ecological stewardship projects in China as well as the concern on carbon benefits brought by projects, it is necessary to make efforts to increase net carbon sequestration via reducing greenhouse gas emissions and carbon leakage. Rational planning before start-up of the projects should be promoted to avoid carbon emissions due to unnecessary consumption of materials and energy. Additionally, strengthening the control and monitoring on greenhouse gas emissions and carbon leakage during the implementation of projects are also advocated.

  11. Remote sensing mapping of carbon and energy fluxes over forests

    NARCIS (Netherlands)

    Roerink, G.J.; Wit, de A.J.W.; Pelgrum, H.; Mücher, C.A.

    2001-01-01

    This report presents the results of the EU project "Carbon and water fluxes of Mediterranean forests and impacts of land use/cover changes". The objectives of the project can be summarized as follows: (I) surface energy balance mapping using remote sensing, (ii) carbon uptake mapping using remote

  12. CRADA Carbon Sequestration in Soils and Commercial Products

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  13. Watchdog Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Rhett [Schweitzer Engineering Laboratories, Inc., Pullman, WA (United States); Campbell, Jack [CenterPoint Energy Houston Electric, TX (United States); Hadley, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-30

    The Watchdog Project completed 100% of the project Statement of Project Objective (SOPO). The Watchdog project was a very aggressive project looking to accomplish commercialization of technology that had never been commercialized, as a result it took six years to complete not the original three that were planned. No additional federal funds were requested from the original proposal and SEL contributed the additional cost share required to complete the project. The result of the Watchdog Project is the world’s first industrial rated Software Defined Network (SDN) switch commercially available. This technology achieved the SOPOO and DOE Roadmap goals to have strong network access control, improve reliability and network performance, and give the asset owner the ability to minimize attack surface before and during an attack. The Watchdog project is an alliance between CenterPoint Energy Houston Electric, Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). SEL is the world’s leader in microprocessor-based electronic equipment for protecting electric power systems. PNNL performs basic and applied research to deliver energy, environmental, and national security for our nation. CenterPoint Energy is the third largest publicly traded natural gas delivery company in the U.S and third largest combined electricity and natural gas delivery company. The Watchdog Project efforts were combined with the SDN Project efforts to produce the entire SDN system solution for the critical infrastructure. The Watchdog project addresses Topic Area of Interest 5: Secure Communications, for the DEFOA- 0000359 by protecting the control system local area network itself and the communications coming from and going to the electronic devices on the local network. Local area networks usually are not routed and have little or no filtering capabilities. Combine this with the fact control system protocols are designed with inherent trust the control

  14. Global Carbon Budget 2017

    Science.gov (United States)

    Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Klein Goldewijk, Kees; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Rödenbeck, Christian; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Sönke; Zhu, Dan

    2018-03-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the global carbon budget - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007-2016), EFF was 9.4 ± 0.5 GtC yr-1, ELUC 1.3 ± 0.7 GtC yr-1, GATM 4.7 ± 0.1 GtC yr-1, SOCEAN 2.4 ± 0.5 GtC yr-1, and SLAND 3.0 ± 0.8 GtC yr-1, with a budget imbalance BIM of 0.6 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr-1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr-1, GATM was 6.1 ± 0.2 GtC yr-1, SOCEAN was 2.6 ± 0.5 GtC yr-1, and SLAND was 2.7 ± 1.0 GtC yr-1, with a small BIM of -0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small SLAND

  15. Global Carbon Budget 2017

    Directory of Open Access Journals (Sweden)

    C. Le Quéré

    2018-03-01

    Full Text Available Accurate assessment of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC, mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN and terrestrial CO2 sink (SLAND are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM, the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016, EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be

  16. The Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  17. Freedom Project

    Directory of Open Access Journals (Sweden)

    Alejandra Suarez

    2014-02-01

    Full Text Available Freedom Project trains prisoners in nonviolent communication and meditation. Two complementary studies of its effects are reported in this article. The first study is correlational; we found decreased recidivism rates among prisoners trained by Freedom Project compared with recidivism rates in Washington state. The second study compared trained prisoners with a matched-pair control group and found improvement in self-reported anger, self-compassion, and certain forms of mindfulness among the trained group. Ratings of role-plays simulating difficult interactions show increased social skills among the group trained by Freedom Project than in the matched controls.

  18. Final technical report: Certification of low carbon farming practices

    OpenAIRE

    TUOMISTO HANNA LEENA; ANGILERI Vincenzo; DE CAMILLIS CAMILLO; LOUDJANI Philippe; PELLETIER NATHANIEL; HAASTRUP Palle; NISINI SCACCHIAFICHI Luigi

    2013-01-01

    In 2010, the European Parliament asked the European Commission to carry out a pilot project on the “certification of low-carbon farming practices in the European Union” to promote reductions of GHG emissions from farming. The overall aim of the project was to assess how efforts of European farmers to produce agricultural products with carbon-neutral or low-carbon-footprint farming practices might be incorporated into policy approaches (possibly via certification), so as to promote the reducti...

  19. Sustaining the emerging carbon trading industry development: A business ecosystem approach of carbon traders

    International Nuclear Information System (INIS)

    Hu, Guangyu; Rong, Ke; Shi, Yongjiang; Yu, Jing

    2014-01-01

    This paper explores how carbon traders nurture the business ecosystem to sustain the emerging carbon trading industry development. We collected primary data from a multinational carbon trader and its ecosystem partners in China, through the construction of interviews and documentary. The research findings show the carbon trading industry has experienced four-stage evolution with different driving forces; the carbon trader attracted and organized ecosystem partners to facilitate the CDM project owners to create carbon credits and trade them; a systematic business ecosystems approach through the lens of Context, Cooperation and Configuration, initiated by carbon traders, has facilitated the industry development. Our findings also implicate to industrial practitioners and policymakers for sustaining the emerging industry development at both the current- and the post-Kyoto protocol periods. - Highlights: • The carbon trader is a catalyst to link CDM project owner and trading market in China • The evolution of carbon trading industry has four stages with various driving forces. • Nurturing business ecosystems facilitates the carbon trading industry development. • The ecosystem approach works via the lens of Context, Configuration and Cooperation. • The ecosystem approach implicates to carbon trading industry at the post-Kyoto era

  20. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    Science.gov (United States)

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  1. EBFA project

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    An engineering project office was established during the fall of 1976 to manage and coordinate all of the activities of the Electron Beam Fusion Project. The goal of the project is to develop the Electron Beam Fusion Accelerator (EBFA) and its supporting systems, and integrate these systems into the new Electron Beam Fusion Facility (EBFF). Supporting systems for EBFA include a control/monitor system, a data acquistion/automatic data processing system, the liquid transfer systems, the insulating gas transfer systems, etc. Engineers and technicians were assigned to the project office to carry out the engineering design, initiate procurement, monitor the fabrication, perform the assembly and to assist the pulsed power research group in the activation of the EBFA

  2. Project Reptile!

    Science.gov (United States)

    Diffily, Deborah

    2001-01-01

    Integrating curriculum is important in helping children make connections within and among areas. Presents a class project for kindergarten children which came out of the students' interests and desire to build a reptile exhibit. (ASK)

  3. Project Soar.

    Science.gov (United States)

    Austin, Marion

    1982-01-01

    Project Soar, a Saturday enrichment program for gifted students (6-14 years old), allows students to work intensively in a single area of interest. Examples are cited of students' work in crewel embroidery, creative writing, and biochemistry. (CL)

  4. Bilan CarboneR - Implementation

    International Nuclear Information System (INIS)

    Wolff, Aurelie

    2015-01-01

    Bilan Carbone TM , a method for calculating greenhouse gas emissions, was developed to help companies and territorial authorities estimate emissions from their activities or on their territories. After validating the audit perimeter and determining the emission categories to be taken into account, activity data is collected and greenhouse gas emissions are calculated using the tool. Besides accounting greenhouse gas emissions at any given time, the inventory evaluates impact on climate and energy dependence. This helps organizations deal with their emissions by classifying them, implementing action plans to reduce emissions and starting a dynamic process taking into account carbon in their strategic decisions

  5. EUROFANCOLEN Project

    International Nuclear Information System (INIS)

    Bueren, J. A.

    2014-01-01

    The first follow-up report of European Project EUROFANCOLEN, the purpose of which is to develop a gene therapy clinical trial to resolve bone marrow failure in patients with a genetic disease known as Fanconi anemia (FA), was sent to the European Commission in September. The main objective of project EUROFANCOLEN is to develop a gene therapy trial for patients with Fanconi anemia Type A (FA-A), which affects 80% of the patients with FA in Spain. (Author)

  6. Project Management

    DEFF Research Database (Denmark)

    Kampf, Constance

    2009-01-01

    In this video Associate Professor Constance Kampf talks about the importance project management. Not only as a tool in implementation, but also as a way of thinking, and as something that needs to be considered from idea conception......In this video Associate Professor Constance Kampf talks about the importance project management. Not only as a tool in implementation, but also as a way of thinking, and as something that needs to be considered from idea conception...

  7. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  8. Phosphorus and nitrogen-containing carbons obtained by the carbonization of conducting polyaniline complex with phosphites

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Trchová, Miroslava; Morávková, Zuzana; Kovářová, Jana; Vulić, I.; Gavrilov, N.; Pašti, I. A.; Stejskal, Jaroslav

    2017-01-01

    Roč. 246, 20 August (2017), s. 443-450 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : carbonization * conducting polymer * nitrogen-containing carbon Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.798, year: 2016

  9. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001

    Science.gov (United States)

    L. S. Heath; R. A. Birdsey; D. W. Williams

    2002-01-01

    The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...

  10. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems

    KAUST Repository

    Lovelock, Catherine E.; Atwood, Trisha; Baldock, Jeff; Duarte, Carlos M.; Hickey, Sharyn; Lavery, Paul S.; Masque, Pere; Macreadie, Peter I.; Ricart, Aurora M.; Serrano, Oscar; Steven, Andy

    2017-01-01

    to the atmosphere in the form of CO. We present a framework to help assess the relative risk of CO emissions from degraded soils, thereby supporting inclusion of soil C into blue carbon projects and establishing a means to prioritize management for their carbon

  11. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol.

    Science.gov (United States)

    Zhang, Jinying; Wang, Rui; Zhu, Xi; Pan, Aifei; Han, Chenxiao; Li, Xin; Dan Zhao; Ma, Chuansheng; Wang, Wenjun; Su, Haibin; Niu, Chunming

    2017-09-25

    Pseudo-topotactic conversion of carbon nanotubes into one-dimensional carbon nanowires is a challenging but feasible path to obtain desired diameters and morphologies. Here, a previously predicted but experimentally unobserved carbon allotrope, T-carbon, has been produced from pseudo-topotactic conversion of a multi-walled carbon nanotube suspension in methanol by picosecond pulsed-laser irradiation. The as-grown T-carbon nanowires have the same diameter distribution as pristine carbon nanotubes, and have been characterized by high-resolution transmission electron microscopy, fast Fourier transform, electron energy loss, ultraviolet-visible, and photoluminescence spectroscopies to possess a diamond-like lattice, where each carbon is replaced by a carbon tetrahedron, and a lattice constant of 7.80 Å. The change in entropy from carbon nanotubes to T-carbon reveals the phase transformation to be first order in nature. The computed electronic band structures and projected density of states are in good agreement with the optical absorption and photoluminescence spectra of the T-carbon nanowires.T-carbon is a previously predicted but so far unobserved allotrope of carbon, with a crystal structure similar to diamond, but with each atomic lattice position replaced by a carbon tetrahedron. Here, the authors produce T-carbon nanowires via laser-irradiating a suspension of carbon nanotubes in methanol.

  12. Fiscal 1994 survey of the base arrangement promotion for foreign coal import. Project to heighten the quality of subbituminous coal by low temperature carbonization process; 1994 nendo kaigaitan yunyu kiban seibi sokushin chosa. Teion kanryuho ni yoru arekiseitan no kohinshitsuka jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The low-temperature carbonization process of coal is a technology to produce high grade reformed coal corresponding to bituminous coal and coal oil corresponding to heavy oil from subbituminous coal and supply them at prices close to the present market ones. From viewpoints of diversified sources and multiple export harbors, an initial-stage survey was conducted of the whole flow from new development of undeveloped mining areas in the northwest of Sumatra, Indonesia to bringing by ships to Japan of products reformed by LFC process of the US SGI`s low-temperature carbonization technology. Clean coal prepared after mining is produceable at a little higher than $12. At processing ability of 10,000 tons/day of raw coal, production is expected of approximately 5,700 tons/day of solid products of more than 6,500 kcal/kg and approximately 1,000 tons/day of low sulfur C heavy oil class oil. The finished cost of solid products is about $25/ton, which becomes about $40/ton at the harbor price in Japan. In conclusion, the project to enhance the quality of subbituminous coal by the low-temperature carbonization is promising as a total system. 10 refs., 54 figs., 30 tabs.

  13. Study of the potential of carbon credits to SHP CDM projects based on evolution of installed capacity (2010 - 2019); Estudo do potencial de receitas decorrentes de creditos de carbono provenientes de projetos de MDL para PCHs com base na evolucao da potencia instalada (2010 - 2019)

    Energy Technology Data Exchange (ETDEWEB)

    Pieroni, Marcela Fernandes [Centro Nacional de Referencia em Pequenas Centrais Hidreletricas (CERPCH/UNIFEI), Itajuba, MG (Brazil); Barros, Regina Mambeli; Tiago Filho, Geraldo Lucio [Universidade Federal de Itajuba (IRN/UNIFEI), MG (Brazil). Inst. de Recursos Naturais

    2011-01-15

    This study aims to assess the generation of carbon credits from projects under the clean development mechanism of small hydropower (SHP), based on studies of the evolution of installed capacity for these new developments over the next nine years. For this reason, two hypotheses and two scenarios were considered in order to better represent the reality of revenue generation over the years. The first hypothesis considers the development of small hydro power installed according to the Ten Year Plan for Expansion of Energy 2019. The second hypothesis considers the study of Tiago Filho, Barros e Silva (2009) about growth of installed capacity based on the gross national product (GNP). The simulation of revenues from carbon credits was done using the spreadsheet in Microsoft Excel for Michellis Jr (2010). The results showed that the forecast of growth of SHP performed based on GNP (hypothesis 1) is more conservative, thus leading to a lower potential of carbon credits, about 4.113.957 tCO{sub 2} avoided. Already the results of hypothesis 2 showed a total of 3.247.717 tCO{sub 2} avoided. (author)

  14. Fiscal 1997 Project related to research and development of global environment industrial technologies. Report on the results of works commissioned for research and development of technology for reducing carbon dioxide emissions; 1997 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu kanren jigyo. Nisanka tanso nado haishutsu teigen gijutsu kenkyu kaihatsu itaku gyomu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    With an objective of achieving reduction in emission of carbon dioxide and fluorocarbons, the `research and development on technologies to reduce emission of carbon dioxide and other substances` consisting of eight projects were conducted. In research and development of waste water treatment technologies using submerged combustion, studies were performed on removal by combustion of such pollutants as organic compounds, nitrogen compounds, and sulfur compounds. The development targets were achieved on each item. In research and development related with thermal electric power generation elements, semiconductor single crystals were fabricated in order to acquire technical knowledge on thermal power generation elements intended of utilizing industrial waste heat, whereas a simulation technology for designing was developed. In other projects, research and development works were carried out on high-performance heat insulating materials, and a movable methanol reformer for fuel cells. Developments were conducted on a large pressure reducing valve, and a cooling and heating turbo heat pump for regional air conditioning facilities. Research and development were made on Peltier elements, all efforts having achieved results respectively. 134 figs., 65 tabs.

  15. Project mobilisation

    International Nuclear Information System (INIS)

    Clark, J.; Limbrick, A.

    1996-01-01

    This paper identifies and reviews the issues to be addressed and the procedures to be followed during the mobilisation of projects using LFG as an energy source. Knowledge of the procedures involved in project mobilisation, their sequence and probable timescales, is essential for efficient project management. It is assumed that the majority of projects will be situated on existing, licensed landfill sites and, in addition to complying with the relevant conditions of the waste management licence and original planning consent, any proposed developments on the site will require a separate planning consent. Experience in the UK indicates that obtaining planning permission rarely constitutes a barrier to the development of schemes for the utilisation of LFG. Even so, an appreciation of the applicable environmental and planning legislation is essential as this will enable the developer to recognise the main concerns of the relevant planning authority at an early stage of the project, resulting in the preparation of an informed and well-structured application for planning permission. For a LFG utilisation scheme on an existing landfill site, the need to carry out an environmental assessment (EA) as part of the application for planning permission will, in vitually all cases, be discretionary. Even if not deemed necessary by the planning authority, an EA is a useful tool at the planning application stage, to identify and address potential problems and to support discussions with bodies such as the Environment Agency, from whom consents or authorisations may be required. Carrying out an EA can thus provide for more cost-effective project development and enhanced environmental protection. Typically, the principal contractual arrangements, such as the purchase of gas or the sale of electricity, will have been established before the project mobilisation phase. However, there are many other contractural arrangements that must be established, and consents and permits that may be

  16. Achievement report of projects in fiscal 2000 for measures on technologies to fix and utilize effectively carbon dioxide. Development of program system technologies to fix and utilize effectively carbon dioxide - researches on key technologies (Developing technology to fix carbon dioxide electrochemically); 2000 nendo program hoshiki nisanka tanso koteika yuko riyo gijutsu kaihatsu (kiban gijutsu kenkyu) seika hokokusho (kokaiyo). Nisanka tanso no denki kagakuteki koteika gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to prevent global warming, research and development has been made on a carbon dioxide fixation technology using electrochemical means. This paper summarizes the achievements in fiscal 2000. In the research of a technology to return carbon dioxide to hydrocarbon such as methane electrochemically utilizing the high concentration carbon dioxide-methanol system, basic studies were performed on electrolytic reduction of CO2 using a methanol solvent system, and experimental studies were executed on high-speed reduction of carbon dioxide using gas diffusion electrodes. In the basic property experiment on diamond electrodes, high carbon dioxide reduction activity was obtained by having copper carried in the diamond electrode. In the CO2 electrolytic reduction experiment on three-phase interface using a copper net electrode, CO, ethylene, and methane were produced, while the electrode has retained the activity for an extended period of time, and the CO2 conversion rate reached about 66%. In structuring an electrochemical carbon dioxide fixation system, specifications for the CO2 electrolytic reduction equipment were determined, design, manufacturing, and electrode materials were selected, supporting electrolytes were discussed, and the entire system flow and liquid resistance were discussed. (NEDO)

  17. Different rays of sunlight: Understanding information disclosure and carbon transparency

    International Nuclear Information System (INIS)

    Matisoff, Daniel C.

    2013-01-01

    This study assesses the effectiveness of two types information disclosure programs – state-based mandatory carbon reporting programs and the voluntary Carbon Disclosure Project, which uses investor pressure to push firms to disclose carbon emissions and carbon management strategies. I match firms in each program to control groups of firms that have not participated in each program. Using panel data methods and a difference in differences specification, I measure the impact of each program on plant-level carbon emissions, plant-level carbon intensity, and plant level output. I find that neither program has generated an impact on plant-level carbon emissions, emissions intensity, or output. Placing this study in contrast with others that demonstrate improvements from mandatory information disclosure, these results suggest that how information is reported to stakeholders has important implications for program effectiveness. - Highlights: ► This article evaluates the Carbon Disclosure Project and state carbon reporting requirements. ► Evaluation is conducted with propensity score matching and difference-in-differences. ► State Disclosure Programs fail to lead power plants to reduce carbon dioxide emissions. ► The Carbon Disclosure Project leads to decreases in carbon emissions and electricity output. ► Information disclosure and transparency may be important part of policy mix but have limitations

  18. Forest carbon trading : legal, policy, ecological and aboriginal issues

    International Nuclear Information System (INIS)

    Elgie, S.

    2005-01-01

    Canada's forest ecosystems store 88 billion tonnes of carbon, with trees alone storing 13 billion tonnes, twice the global annual carbon emissions. Carbon trading could affect forest management. Certain types of forest carbon project will offer cost-effective carbon sequestration options. This paper addresses current concerns about forest carbon trading such as phony carbon gains, biodiversity impact and increased fossil fuel emissions. Statistics were presented with information on global carbon stocks. The Kyoto Protocol requires that Canada must count all changes in forest carbon stocks resulting from afforestation, reforestation or deforestation, and that Canada has the option of counting carbon stock changes from forest management. The decision must be made by 2006, and considerations are whether to present projected net source or sink, or whether to count current commercially managed areas or all timber productive areas. An outline of federal constitutional authority power regarding Kyoto was presented, including limits and risks of trade and treaty powers. The economics of forest carbon were outlined with reference to increasing forest carbon storage. A two-pronged approach was advised, with avoided logging and plantation and intensive management securing carbon and timber benefits. Examples of pre-Kyoto pilots were presented, including the SaskPower project, the Little Red River Cree project and the Labrador Innu project. The disadvantages of offset trading were presented. It was concluded that forest carbon markets are part of a larger vision for sustainable development in Canada's north, especially for aboriginal peoples, and may indicate a growing market for ecological services. Constitutional limits to federal power to regulate carbon trading are not insurmountable, but require care. Ownerships of forest carbon rights raises important policy and legal issues, including aboriginal right, efficiency and equity. An estimated cost of forest carbon projects

  19. Carbonizing process

    Energy Technology Data Exchange (ETDEWEB)

    1923-11-22

    In the downward distillation of coal, shale, lignite, or the like, the heat is generated by the combustion of liquid or gaseous fuel above the charge the zone of carbonization thus initiated travelling downwards through the charge. The combustible gases employed are preferably those resulting from the process but gases such as natural gas may be employed. The charge is in a moistened and pervious state the lower parts being maintained at a temperature not above 212/sup 0/F until influenced by contact with the carbonization zone and steam may be admitted to increase the yield of ammonia. The combustible gases may be supplied with insufficient air so as to impart to them a reducing effect.

  20. Carbon aerogels

    International Nuclear Information System (INIS)

    Berthon-Fabry, S.; Achard, P.

    2003-06-01

    The carbon aerogel is a nano-porous material at open porosity, electrical conductor. The aerogels morphology is variable in function of the different synthesis parameters. This characteristic offers to the aerogels a better adaptability to many applications: electrodes (super condensers, fuel cells). The author presents the materials elaboration and their applications. It provides also the research programs: fundamental research, realization of super-condenser electrodes, fuel cells electrodes, gas storage materials and opaque materials for thermal insulation. (A.L.B.)

  1. Projective mapping

    DEFF Research Database (Denmark)

    Dehlholm, Christian; Brockhoff, Per B.; Bredie, Wender Laurentius Petrus

    2012-01-01

    by the practical testing environment. As a result of the changes, a reasonable assumption would be to question the consequences caused by the variations in method procedures. Here, the aim is to highlight the proven or hypothetic consequences of variations of Projective Mapping. Presented variations will include...... instructions and influence heavily the product placements and the descriptive vocabulary (Dehlholm et.al., 2012b). The type of assessors performing the method influences results with an extra aspect in Projective Mapping compared to more analytical tests, as the given spontaneous perceptions are much dependent......Projective Mapping (Risvik et.al., 1994) and its Napping (Pagès, 2003) variations have become increasingly popular in the sensory field for rapid collection of spontaneous product perceptions. It has been applied in variations which sometimes are caused by the purpose of the analysis and sometimes...

  2. Isotopes Project

    International Nuclear Information System (INIS)

    Dairiki, J.M.; Browne, E.; Firestone, R.B.; Lederer, C.M.; Shirley, V.S.

    1984-01-01

    The Isotopes Project compiles and evaluates nuclear structure and decay data and disseminates these data to the scientific community. From 1940-1978 the Project had as its main objective the production of the Table of Isotopes. Since publication of the seventh (and last) edition in 1978, the group now coordinates its nuclear data evaluation efforts with those of other data centers via national and international nuclear data networks. The group is currently responsible for the evaluation of mass chains A = 167-194. All evaluated data are entered into the International Evaluated Nuclear Structure Data File (ENSDF) and are published in Nuclear Data Sheets. In addition to the evaluation effort, the Isotopes Project is responsible for production of the Radioactivity Handbook

  3. LLAMA Project

    Science.gov (United States)

    Arnal, E. M.; Abraham, Z.; Giménez de Castro, G.; de Gouveia dal Pino, E. M.; Larrarte, J. J.; Lepine, J.; Morras, R.; Viramonte, J.

    2014-10-01

    The project LLAMA, acronym of Long Latin American Millimetre Array is very briefly described in this paper. This project is a joint scientific and technological undertaking of Argentina and Brazil on the basis of an equal investment share, whose mail goal is both to install and to operate an observing facility capable of exploring the Universe at millimetre and sub/millimetre wavelengths. This facility will be erected in the argentinean province of Salta, in a site located at 4830m above sea level.

  4. Carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, J; Halbritter, G; Neumann-Hauf, G

    1982-05-01

    This report contains a review of literature on the subjects of the carbon cycle, the increase of the atmospheric CO/sub 2/ concentration and the possible impacts of an increased CO/sub 2/ concentration on the climate. In addition to this survey, the report discusses the questions that are still open and the resulting research needs. During the last twenty years a continual increase of the atmospheric carbon dioxide concentration by about 1-2 ppm per years has been observed. In 1958 the concentration was 315 ppm and this increased to 336 ppm in 1978. A rough estimate shows that the increase of the atmospheric carbon dioxide concentration is about half of the amount of carbon dioxide added to the atmosphere by the combustion of fossil fuels. Two possible sinks for the CO/sub 2/ released into the atmosphere are known: the ocean and the biota. The role of the biota is, however, unclear, since it can act both as a sink and as a source. Most models of the carbon cycle are one-dimensional and cannot be used for accurate predictions. Calculations with climate models have shown that an increased atmospheric CO/sub 2/ concentration leads to a warming of the earth's surface and lower atmosphere. Calculations show that a doubling of the atmospheric CO/sub 2/-concentration would lead to a net heating of the lower atmosphere and earth's surface by a global average of about 4 W m/sup -2/. Greater uncertainties arise in estimating the change in surface temperature resulting from this change in heating rate. It is estimated that the global average annual surface temperature would change between 1.5 and 4.5 K. There are, however, latitudinal and seasonal variations of the impact of increased CO/sub 2/ concentration. Other meteorological variables (e.g. precipitation, wind speed etc.) would also be changed. It appears that the impacts of the other products of fossil fuel combustion are unlikely to counteract the impacts of CO/sub 2/ on the climate.

  5. Carbon stripper foils held in place with carbon fibers

    International Nuclear Information System (INIS)

    Jolivet, Connie S.; Miller, Shawn A.; Stoner, John O.; Ladd, Peter

    2008-01-01

    The Spallation Neutron Source (SNS) currently under construction at Oak Ridge National Laboratory, Oak Ridge, Tennessee, is planned to initially utilize carbon stripper foils having areal densities approximately 260 μg/cm 2 . The projected design requires that each foil be supported by only one fixed edge. For stability of the foil, additional support is to be provided by carbon fibers. The feasibility of manufacturing and shipping such mounted carbon foils produced by arc evaporation was studied using two prototypes. Production of the foils is described. Fibers were chosen for satisfactory mechanical strength consistent with minimal interference with the SNS beam. Mounting of the fibers, and packaging of the assemblies for shipping are described. Ten completed assemblies were shipped to SNS for further testing. Preliminary evaluation of the survivability of the foils in the SNS foil changer is described

  6. 15 years of Spanish participation in the international projects of R and D coal technology coordinated by OCICARBON; 15 Anos de Participacion Espanola en los foros Internacionales de I+D Tecnologico del Carbon coordinados por OCICARBON

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    As fulfillment of strategy objectives, OCICARBON ( the Spanish Management Association for Coal Research and Development Projects) has maintained a strong link with European and International entities, devoted to coal research and development activities. As consequence of these collaborations, it has been reached uncountable economical and technological benefits, from the projects carried out by Spanish industries and technological entities, under the European Programmes umbrella. In this summary report, it is informed about how the co-ordination of national and international entities, was organised and structured; and the national results, obtained as consequence of the activities carried out by OCICARBON. (Author)

  7. Project Avatar

    DEFF Research Database (Denmark)

    Juhlin, Jonas Alastair

    'Project Avatar' tager udgangspunkt i den efterretningsdisciplin, der kaldes Open Source Intelligence og indebærer al den information, som ligger frit tilgængeligt i åbne kilder. Med udbredelsen af sociale medier åbners der op for helt nye typer af informationskilder. Spørgsmålet er; hvor nyttig er...

  8. Project Baltia

    Index Scriptorium Estoniae

    2007-01-01

    Uus arhitektuuriajakiri "Project Baltia" tutvustab Baltimaade, Soome ja Peterburi regiooni arhitektuuri, linnaehitust ja disaini. Ilmub neli korda aastas inglise- ja venekeelsena. Väljaandja: kirjastus Balticum Peterburis koostöös Amsterdami ja Moskva kirjastusega A-Fond. Peatoimetaja Vladimir Frolov

  9. Tedese Project

    Science.gov (United States)

    Buforn, E.; Davila, J. Martin; Bock, G.; Pazos, A.; Udias, A.; Hanka, W.

    The TEDESE (Terremotos y Deformacion Cortical en el Sur de España) project is a joint project of the Universidad Complutense de Madrid (UCM) and Real Instituto y Observatorio de la Armada de San Fernando, Cadiz (ROA) supported by the Spanish Ministerio de Ciencia y Tecnologia with the participation of the GeoforschungZen- trum, Potsdam (GFZ). The aim is to carry out a study of the characteristics of the oc- currence and mechanism of earthquakes together with measurements of crustal struc- ture and deformations in order to obtain an integrated evaluation of seismic risk in southern Spain from. As part of this project a temporal network of 10 broad-band seismological stations, which will complete those already existing in the zone, have been installed in southern Spain and northern Africa for one year beginning in October 2001. The objectives of the project are the study in detail of the focal mechanisms of earthquakes in this area, of structural in crust and upper mantle, of seismic anisotropy in crust and mantle as indicator for tectonic deformation processed and the measure- ments of crustal deformations using techniques with permanent GPS and SLR stations and temporary GPS surveys. From these studies, seismotectonic models and maps will be elaborated and seismic risk in the zone will be evaluated.

  10. Project Boomerang

    Science.gov (United States)

    King, Allen L.

    1975-01-01

    Describes an experimental project on boomerangs designed for an undergraduate course in classical mechanics. The students designed and made their own boomerangs, devised their own procedures, and carried out suitable measurements. Presents some of their data and a simple analysis for the two-bladed boomerang. (Author/MLH)

  11. Project Narrative

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Mary C. [St. Bonaventure University, St Bonaventure, NY(United States)

    2012-07-12

    The Project Narrative describes how the funds from the DOE grant were used to purchase equipment for the biology, chemistry, physics and mathematics departments. The Narrative also describes how the equipment is being used. There is also a list of the positive outcomes as a result of having the equipment that was purchased with the DOE grant.

  12. Radiochemistry Project

    International Nuclear Information System (INIS)

    Anon.

    Researches carried out in the 'Radiochemistry Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo State, Brazil, are described. Such researches comprise: dosimetry and radiological protection; development of techniques and methods of chemical analysis and radiochemistry. (M.A.) [pt

  13. FLOAT Project

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Aarup, Bendt

    The objective of the FLOAT project is to study the reliability of high-performance fibre-reinforced concrete, also known as Compact Reinforced Composite (CRC), for the floats of wave energy converters. In order to reach a commercial breakthrough, wave energy converters need to achieve a lower price...

  14. Hydrology Project

    International Nuclear Information System (INIS)

    Anon.

    Research carried out in the 'Hydrology Project' of the Centro de Energia Nuclear na Agricultura', Piracicaba, Sao Paulo State, Brazil, are described. Such research comprises: Amazon hydrology and Northeast hydrology. Techniques for the measurement of isotope ratios are used. (M.A.) [pt

  15. CHEMVAL project

    International Nuclear Information System (INIS)

    Chandratillake, M.; Falck, W.E.; Read, D.

    1992-01-01

    This report summarises the development history of the CHEMVAL Thermodynamic Database, the criteria employed for data selection and the contents of Version 4.0, issued to participants on the completion of the project. It accompanies a listing of the database constructed using the dBase III + /IV database management package. (Author)

  16. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  17. Swedish projects

    International Nuclear Information System (INIS)

    Thunell, J.

    1993-01-01

    The main sources of the financing of Swedish research on gas technology are listed in addition to names of organizations which carry out this research. The titles and descriptions of the projects carried out are presented in addition to lists of reports published with information on prices. (AB)

  18. SDN Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Rhett [Schweitzer Engineering Laboratories Inc, Pullman, WA (United States)

    2016-12-23

    The SDN Project completed on time and on budget and successfully accomplished 100% of the scope of work outlined in the original Statement of Project Objective (SOPO). The SDN Project formed an alliance between Ameren Corporation, University of Illinois Urbana- Champaign (UIUC), Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). The objective of the SDN Project is to address Topic Area of Interest 2: Sustain critical energy delivery functions while responding to a cyber-intrusion under Funding Opportunity Announcement DE-FOA-0000797. The goal of the project is to design and commercially release technology that provides a method to sustain critical energy delivery functions during a cyber intrusion and to do this control system operators need the ability to quickly identify and isolate the affected network areas, and re-route critical information and control flows around. The objective of the SDN Project is to develop a Flow Controller that monitors, configures, and maintains the safe, reliable network traffic flows of all the local area networks (LANs) on a control system in the Energy sector. The SDN team identified the core attributes of a control system and produced an SDN flow controller that has the same core attributes enabling networks to be designed, configured and deployed that maximize the whitelisted, deny-bydefault and purpose built networks. This project researched, developed and commercially released technology that: Enables all field networks be to configured and monitored as if they are a single asset to be protected; Enables greatly improved and even precalculated response actions to reliability and cyber events; Supports pre-configured localized response actions tailored to provide resilience against failures and centralized response to cyber-attacks that improve network reliability and availability; Architecturally enables the right subject matter experts, who are usually the information

  19. Project winners - Ademe

    International Nuclear Information System (INIS)

    2015-01-01

    The French agency of environment and energy management (Ademe) is the operator in charge of innovation for accelerating the ecological and environmental transition. A credit of 3.3 billion euros is allocated to this goal in the framework of forward-looking investment. This budget aims at financing innovative projects of any size with the objective of developing tomorrow's industries. The projects cover the following topics: 1 - carbon-free energies and green chemistry: renewable energy sources (marine, solar, wind and geothermal energies), green chemistry and energy challenges (bio-resources, buildings, energy storage, hydrogen, CO_2 capture, storage and valorization, industry and agriculture), 2 - smart grids, 3 - circular economy (wastes and industrial ecology, sites and soils cleansing, water and biodiversity), 4 - future vehicles: road vehicle (mobility and logistics, electric-powered vehicles and charging facilities, hybrid and thermal engines, vehicles lightering, heavy-duty vehicles), rail and maritime transport. This document presents the financing system, a report of the previous investment campaign (2014), and the list of retained projects for the 2015 investment program

  20. Global Carbon Budget 2015

    Science.gov (United States)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global

  1. Projective geometry and projective metrics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio

  2. Projective measure without projective Baire

    DEFF Research Database (Denmark)

    Schrittesser, David; Friedman, Sy David

    We prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a ∆13 set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.......We prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a ∆13 set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal....

  3. Methodology proposal for estimation of carbon storage in urban green areas

    NARCIS (Netherlands)

    Schröder, C.; Mancosu, E.; Roerink, G.J.

    2013-01-01

    Methodology proposal for estimation of carbon storage in urban green areas; final report. Subtitle: Final report of task Task 262-5-6 "Carbon sequestration in urban green infrastructure" Project manager Marie Cugny-Seguin. Date: 15-10-2013

  4. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  5. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  6. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2012-01-01

    . Using an actor- network theory (ANT) framework, the aim is to investigate the actors who bring together the elements needed to classify their carbon emission sources and unpack the heterogeneous relations drawn on. Based on an ethnographic study of corporate agents of ecological modernisation over...... a period of 13 months, this paper provides an exploration of three cases of enacting classification. Drawing on ANT, we problematise the silencing of a range of possible modalities of consumption facts and point to the ontological ethics involved in such performances. In a context of global warming...

  7. Carbon Footprints

    OpenAIRE

    Rahel Aichele; Gabriel Felbermayr

    2011-01-01

    Lässt sich der Beitrag eines Landes zum weltweiten Klimaschutz an der Veränderung seines CO2-Ausstoßes messen, wie es im Kyoto-Abkommen implizit unterstellt wird? Oder ist aufgrund der Bedeutung des internationalen Güterhandels der Carbon Footprint – der alle CO2-Emissionen erfasst, die durch die Absorption (d.h. Konsum und Investitionen) eines Landes entstehen – das bessere Maß? Die Autoren erstellen eine Datenbank mit den Footprints von 40 Ländern für den Zeitraum 1995–2007. Die deskriptive...

  8. Sun light European Project

    Science.gov (United States)

    Soubielle, Marie-Laure

    2015-04-01

    2015 has been declared the year of light. Sunlight plays a major role in the world. From the sunbeams that heat our planet and feed our plants to the optical analysis of the sun or the modern use of sun particles in technologies, sunlight is everywhere and it is vital. This project aims to understand better the light of the Sun in a variety of fields. The experiments are carried out by students aged 15 to 20 in order to share their discoveries with Italian students from primary and secondary schools. The experiments will also be presented to a group of Danish students visiting our school in January. All experiments are carried out in English and involve teams of teachers. This project is 3 folds: part 1: Biological project = what are the mechanisms of photosynthesis? part 2: Optical project= what are the components of sunlight and how to use it? part 3: Technical project= how to use the energy of sunlight for modern devices? Photosynthesis project Biology and English Context:Photosynthesis is a process used by plants and other organisms to convert light energy, normally from the Sun, into chemical energy that can later fuel the organisms' activities. This chemical energy is stored in molecules which are synthesized from carbon dioxide and water. In most cases, oxygen is released as a waste product. Most plants perform photosynthesis. Photosynthesis maintains atmospheric oxygen levels and supplies all of the organic compounds and most of the energy necessary for life on Earth. Outcome: Our project consists in understanding the various steps of photosynthesis. Students will shoot a DVD of the experiments presenting the equipments required, the steps of the experiments and the results they have obtained for a better understanding of photosynthesis Digital pen project Electricity, Optics and English Context: Sunlight is a complex source of light based on white light that can be decomposed to explain light radiations or colours. This light is a precious source to create

  9. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  10. Interstate Electrification Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Puckette, Margaret [Shorepower Technologies, Hillsboro, OR (United States); Kim, Jeff [Shorepower Technologies, Hillsboro, OR (United States)

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by

  11. 77 FR 3459 - Cancellation of the Environmental Impact Statement for the Mountaineer Commercial Scale Carbon...

    Science.gov (United States)

    2012-01-24

    ... Commercial Scale Carbon Capture and Storage Project, Mason County, WV AGENCY: U.S. Department of Energy... Capture and Storage (CCS) Project in Mason County, WV (DOE/EIS-0445). DOE selected this project proposed... the proposed Mountaineer Commercial Scale CCS Project in Mason County, WV. DOE selected this project...

  12. Project Radon

    International Nuclear Information System (INIS)

    Ekholm, S.

    1988-01-01

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  13. PARTNER Project

    CERN Multimedia

    Ballantine, A; Dixon-Altaber, H; Dosanjh, M; Kuchina, L

    2011-01-01

    Hadrontherapy uses particle beams to treat tumours located near critical organs and tumours that respond poorly to conventional radiation therapy. It has become evident that there is an emerging need for reinforcing research in hadrontherapy and it is essential to train professionals in this rapidly developing field. PARTNER is a 4-year Marie Curie Training project funded by the European Commission with 5.6 million Euros aimed at the creation of the next generation of experts. Ten academic institutes and research centres and two leading companies are participating in PARTNER, that is coordinated by CERN, forming a unique multidisciplinary and multinational European network. The project offers research and training opportunities to 25 young biologists, engineers, physicians and physicists and is allowing them to actively develop modern techniques for treating cancer in close collaboration with leading European Institutions. For this purpose PARTNER relies on cutting edge research and technology development, ef...

  14. Swedish projects

    International Nuclear Information System (INIS)

    Thunell, J.

    1992-01-01

    A description is given of research activities, concerning heating systems, which were carried out in Sweden during 1991. The main subject areas dealt with under the gas technology group within the area of heating systems were catalytic combustion, polyethylene materials, and gas applications within the paper and pulp industries. A list is given of the titles of project reports published during 1991 and of those begun during that year. Under the Swedish Centre for Gas Technology (SGC), the main areas of research regarding gas applications were polyethylene materials, industrial applications and the reduction of pollutant emissions. A detailed list is given of research projects which were in progress or proposed by March 1992 under the heating system gas technology research group in Sweden. This list also presents the aims and descriptions of the methods, etc. (AB)

  15. AVE project

    International Nuclear Information System (INIS)

    2004-01-01

    During 1998, ANAV began to optimize Human Resources to cope with the ERE and ANA-ANV integration. Project AVE was intended to achieve an orderly transfer of know-how, skills, attitudes and experiences. The most complex part was renovation of personnel with Operating Licenses. Nearly 140 people had joined the organization by late December 2003. This opportunity was seized to draw up a new Training Manual, and a common Initial Training Plan was designed for the two plants, accounting for the singularities of each one. The plan is divided into 5 modules: Common Training, Specific Training, PEI/CAT, Management, and on-the-job Training. The training environments were defined according to the nature of the capabilities to be acquired. Project AVE resulted in the merger of the Asco and Vandellos II Training services. (Author)

  16. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  17. ARTIST Project

    CSIR Research Space (South Africa)

    Ferguson, K

    2012-10-01

    Full Text Available Biennial Conference Presented by: Keith Ferguson Date: 9 October 2012 Mobile IPTV Broadcasting Platform Consortium: CSIR, UCT, ECA Funded by TIA 2008-2011 ARTIST Project Min time - sacrifice quality Max quality - sacrifice time Application Context... idth > ARTIST Platform Advertiser Client 1 Client 2 Client 3 Client 4 Sport channel News channel Wildlife channel Advert database Transaction database Transcoder Servers Media Switching Servers INTERNET Channel viewing Advert upload...

  18. CARA project

    International Nuclear Information System (INIS)

    Bergallo, Juan E.; Brasnarof, Daniel O.

    2000-01-01

    The CARA (Advanced Fuels for Argentine Reactors) Project successfully completed its first stage, phase one, last year. The performance of this fuel has been partially examined, using CNEA and CONUAR facilities and personnel. With the results obtained in this stage, determined by the corresponding tests and verification of the fuel behavior, the performance of the second stage started immediately afterwards. Works performed and results obtained during the development of the second stage are generally described in this paper. (author)

  19. Polytope projects

    CERN Document Server

    Iordache, Octavian

    2013-01-01

    How do you know what works and what doesn't? This book contains case studies highlighting the power of polytope projects for complex problem solving. Any sort of combinational problem characterized by a large variety of possibly complex constructions and deconstructions based on simple building blocks can be studied in a similar way. Although the majority of case studies are related to chemistry, the method is general and equally applicable to other fields for engineering or science.

  20. Projection Methods

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1999-01-01

    When trying to solve a DAE problem of high index with more traditional methods, it often causes instability in some of the variables, and finally leads to breakdown of convergence and integration of the solution. This is nicely shown in [ESF98, p. 152 ff.].This chapter will introduce projection...... methods as a way of handling these special problems. It is assumed that we have methods for solving normal ODE systems and index-1 systems....

  1. Project Phaseolus

    International Nuclear Information System (INIS)

    Anon.

    Research carried out through the Phaseolus Project of the 'Centro de Energia Nuclear na Agricultura' (CENA) Piracicaba, Sao Paulo State, Brazil, is described. It comprises the following subject s: plant breeding; nitrogen fixation; tissue cultures; proteins; photosynthetic efficiency; soil-plant interactions; electron microscopy of the golden mosaic virus; pest control; production of 15 N-enriched ammonium sulfate, and determination of elements in the beans plant. (M.A.) [pt

  2. Global Carbon Budget 2016

    Science.gov (United States)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  3. Numatron project

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Hirao, Yasuo

    1977-04-01

    A project of high energy heavy ion acceleration is under consideration. The high energy heavy ions can produce highly condensed states of nuclei. A new phase of nucleus would be seen at the incident energy higher than 140 MeV/nucleon. High energy heavy ions causing high density states and meson emission will produce various new nuclides. Process of formation of atomic elements will be studied. Various fields of science can be also investigated by the high energy heavy ions. Spectroscopic study of multi-valent ions will be made high energy uranium. Study of materials for the fusion reactor is important. Impurity heavy ion from the wall of the fusion reactor may lose the energy of the reactor, and the characteristic features of heavy ions should be investigated. The highly ionized states of atoms are also produced by heavy ion injection into material. Several projects of heavy ion acceleration are in progress in the world. The Numatron project in Japan is to construct a combination machine of a Cockcroft type machine, three linear accelerator and a synchrotron. The planned energy of the machine is 670 MeV/nucleon. Technical problems are under investigation.

  4. Projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.

    2010-01-01

    This paper describes the outcomes of a study on the projected costs of generating electricity. It presents the latest data available on electricity generating costs for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. The study reaches 2 key conclusions. First, at a 5% real interest rate, nuclear energy is the most competitive solution for base-load electricity generation followed by coal-fired plants without carbon capture and natural gas-fired combined plants. It should be noted that coal with carbon capture has not reached a commercial phase. Second, at a 10% interest rate, nuclear remains the most competitive in Asia and North America but in Europe, coal without carbon capture equipment, followed by coal with carbon capture equipment, and gas-fired combined cycle turbines are overall more competitive than nuclear energy. The results highlight the paramount importance of interest rates (this dependence is a direct consequence of the nuclear energy's high capital costs) and of the carbon price. For instance if we assume a 10% interest rate and a cost of 50 dollar per tonne of CO 2 , nuclear energy would become competitive against both coal and gas. (A.C.)

  5. Carbon Capture and Storage: Model Regulatory Framework

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Energy-related carbon dioxide (CO2) emissions are set to double by 2050 unless decisive action is taken. International Energy Agency (IEA) analysis demonstrates, however, that it is possible -- in the same timeframe to 2050 -- to reduce projected greenhouse-gas emissions to half 2005 levels, but this will require an energy technology revolution, involving the aggressive deployment of a portfolio of low-carbon energy technologies.

  6. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  7. Coloss project

    International Nuclear Information System (INIS)

    2005-01-01

    The COLOSS project was a shared-cost action, co-ordinated by IRSN within the Euratom Research Framework Programme 1998-2002. Started in February 2000, the project lasted three years. The work-programme performed by 19 partners was shaped around complementary activities aimed at improving severe accident codes. Unresolved risk-relevant issues regarding H2 production, melt generation and the source term were studied, through a large number of experiments such as a) dissolution of fresh and high burn-up UO 2 and MOX by molten Zircaloy, b) simultaneous dissolution of UO 2 and ZrO 2 by molten Zircaloy, c) oxidation of U-O-Zr mixtures by steam, d) degradation-oxidation of B 4 C control rods. Significant results have been produced from separate-effects, semi-global and large-scale tests on COLOSS topics. Break-through were achieved on some issues. Nevertheless, more data are needed for consolidation of the modelling on burn-up effects on UO 2 and MOX dissolution and on oxidation of U-O-Zr and B 4 C-metal mixtures. There was experimental evidence that the oxidation of these mixtures can contribute significantly to the large H2 production observed during the reflooding of degraded cores under severe accident conditions. Based on the experimental results obtained on the COLOSS topics, corresponding models were developed and were successfully implemented in several severe accident codes. Upgraded codes were then used for plant calculations to evaluate the consequences of new models on key severe accident sequences occurring in different plants designs involving B 4 C control rods (EPR, BWR, VVER- 1000) as well as in the TMI-2 accident. The large series of plant calculations involved sensitivity studies and code benchmarks. Main severe accident codes in use in the EU for safety studies were used such as ICARE/CATHARE, SCDAP/RELAP5, ASTEC, MELCOR and MAAP4. This activity enabled: a) the assessment of codes to calculate core degradation, b) the identification of main

  8. Carbon storage in Ontario's forests, 2000-2100

    International Nuclear Information System (INIS)

    Colombo, S.J.; Chen, J.; Ter-Mikaelian, M.T.

    2007-01-01

    One of the greatest challenges facing modern society is rapid climate change resulting from greenhouse gases emissions to the atmosphere, primarily in the form of carbon dioxide from the burning of fossil fuels. The effects of climate change on natural environments will inevitably affect people as well, if left unchanged. In addition to many other societal benefits, forests store large amounts of carbon. As a result, it is necessary to understand how forest management and natural processes affect forest carbon storage. Such information can be utilized to manage forests so that they function as carbon sinks and help reduce greenhouse gas concentrations in the atmosphere. This report employed data about Ontario's forest structure and information from the forest management planning process and past harvests to describe carbon in forests and wood products today and through to the end of this century. The paper described the methods used for the study which included modification of the United States national forest carbon model, FORCARB2, to predict Ontario's forest carbon budgets in order to make carbon projections congruent with forest management plans. The modified forest carbon model, which is called FORCARB-ON, predicts carbon in live trees, understory vegetation, forest floor, standing and down dead wood, and soil. Ontario's managed forests are projected to increase carbon storage by 433 million tonnes from 2000 to 2100. The largest forest sink will be in wood products, accounting for 364 million tonnes of carbon storage over the century. 22 refs., 1 tab., 3 figs

  9. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dissolved Inorganic Carbon, Alkalinity, pH, temperature, salinity, and other variables collected from profile observations using CTD, discrete bottles, and other instruments from February 12, 1985 to June 17, 2009, as synthesized in the Pacific Ocean Interior Carbon (PACIFICA) Database (NODC Accession 0110865)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PACIFICA Data Synthesis Project PACIFICA (PACIFic ocean Interior CArbon) was an international collaborative project for the data synthesis of ocean interior carbon...

  11. The carbon footprint of global tourism

    Science.gov (United States)

    Lenzen, Manfred; Sun, Ya-Yen; Faturay, Futu; Ting, Yuan-Peng; Geschke, Arne; Malik, Arunima

    2018-06-01

    Tourism contributes significantly to global gross domestic product, and is forecast to grow at an annual 4%, thus outpacing many other economic sectors. However, global carbon emissions related to tourism are currently not well quantified. Here, we quantify tourism-related global carbon flows between 160 countries, and their carbon footprints under origin and destination accounting perspectives. We find that, between 2009 and 2013, tourism's global carbon footprint has increased from 3.9 to 4.5 GtCO2e, four times more than previously estimated, accounting for about 8% of global greenhouse gas emissions. Transport, shopping and food are significant contributors. The majority of this footprint is exerted by and in high-income countries. The rapid increase in tourism demand is effectively outstripping the decarbonization of tourism-related technology. We project that, due to its high carbon intensity and continuing growth, tourism will constitute a growing part of the world's greenhouse gas emissions.

  12. Global Carbon Budget 2016

    Science.gov (United States)

    Quéré, Corinne Le; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; hide

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  13. Project Exodus

    Science.gov (United States)

    1990-01-01

    Project Exodus is an in-depth study to identify and address the basic problems of a manned mission to Mars. The most important problems concern propulsion, life support, structure, trajectory, and finance. Exodus will employ a passenger ship, cargo ship, and landing craft for the journey to Mars. These three major components of the mission design are discussed separately. Within each component the design characteristics of structures, trajectory, and propulsion are addressed. The design characteristics of life support are mentioned only in those sections requiring it.

  14. CAREM Project

    International Nuclear Information System (INIS)

    Ishida, Viviana; Gomez, Silvia

    2001-01-01

    CAREM project consists on the development and design of an advanced nuclear power plant. CAREM is a very low power innovative reactor conceived with new generation design solutions. Based on an indirect cycle integrated light water reactor using enriched uranium, CAREM has some distinctive features that greatly simplify the reactor and also contribute to a high level of safety: integrated primary system, primary system cooling by natural convection, self pressurization, and passive safety systems. In order to verify its innovative features the construction of a prototype is planned. (author)

  15. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, ... Install one and check its batteries regularly. View Information About CO Alarms Other CO Topics Safety Tips ...

  16. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Safety Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as CO, is called the " ...

  17. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  18. Carbon-climate feedbacks accelerate ocean acidification

    Science.gov (United States)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  19. PORTNUS Project

    Energy Technology Data Exchange (ETDEWEB)

    Loyal, Rebecca E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-14

    The objective of the Portunus Project is to create large, automated offshore ports that will the pace and scale of international trade. Additionally, these ports would increase the number of U.S. domestic trade vessels needed, as the imported goods would need to be transported from these offshore platforms to land-based ports such as Boston, Los Angeles, and Newark. Currently, domestic trade in the United States can only be conducted by vessels that abide by the Merchant Marine Act of 1920 – also referred to as the Jones Act. The Jones Act stipulates that vessels involved in domestic trade must be U.S. owned, U.S. built, and manned by a crew made up of U.S. citizens. The Portunus Project would increase the number of Jones Act vessels needed, which raises an interesting economic concern. Are Jones Act ships more expensive to operate than foreign vessels? Would it be more economically efficient to modify the Jones Act and allow vessels manned by foreign crews to engage in U.S. domestic trade? While opposition to altering the Jones Act is strong, it is important to consider the possibility that ship-owners who employ foreign crews will lobby for the chance to enter a growing domestic trade market. Their success would mean potential job loss for thousands of Americans currently employed in maritime trade.

  20. SISCAL project

    Science.gov (United States)

    Santer, Richard P.; Fell, Frank

    2003-05-01

    The first "ocean colour" sensor, Coastal Zone Color Scanner (CZCS), was launched in 1978. Oceanographers learnt a lot from CZCS but it remained a purely scientific sensor. In recent years, a new generation of satellite-borne earth observation (EO) instruments has been brought into space. These instruments combine high spectral and spatial resolution with revisiting rates of the order of one per day. More instruments with further increased spatial, spectral and temporal resolution will be available within the next years. In the meantime, evaluation procedures taking advantage of the capabilities of the new instruments were derived, allowing the retrieval of ecologically important parameters with higher accuracy than before. Space agencies are now able to collect and to process satellite data in real time and to disseminate them via the Internet. It is therefore meanwhile possible to envisage using EO operationally. In principle, a significant demand for EO data products on terrestrial or marine ecosystems exists both with public authorities (environmental protection, emergency management, natural resources management, national parks, regional planning, etc) and private companies (tourist industry, insurance companies, water suppliers, etc). However, for a number of reasons, many data products that can be derived from the new instruments and methods have not yet left the scientific community towards public or private end users. It is the intention of the proposed SISCAL (Satellite-based Information System on Coastal Areas and Lakes) project to contribute to the closure of the existing gap between space agencies and research institutions on one side and end users on the other side. To do so, we intend to create a data processor that automatically derives and subsequently delivers over the Internet, in Near-Real-Time (NRT), a number of data products tailored to individual end user needs. The data products will be generated using a Geographical Information System (GIS

  1. Integral Ring Carbon-Carbon Piston

    Science.gov (United States)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  2. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  3. Project Financing

    OpenAIRE

    S. GATTI

    2005-01-01

    Στην εισαγωγή της παρούσας εργασίας δίνεται ο ορισμός του project financing, τα ιστορικά στοιχεία και οι τάσεις αγοράς του. Στο πρώτο κεφάλαιο αναφέρεται γιατί οι εταιρείες προτιμούν την χρηματοδότηση με project financing. Γίνεται λόγος για τα πλεονεκτήματά του έναντι της άμεσης χρηματοδότησης, καθώς και για τα μειονεκτήματα του project financing. Στο δεύτερο κεφάλαιο παρουσιάζονται τα χρηματοοικονομικά στοιχεία και ο ρόλος του χρηματοοικονομικού συμβούλου. Στην τρίτη ενότητα γίνεται η αναγνώ...

  4. All projects related to | Page 622 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Topic: Waste management, WASTE RECYCLING, Poverty alleviation, ENVIRONMENTAL HEALTH, CARBON DIOXIDE, GREENHOUSE EFFECT. Region: Far East Asia, Indonesia, Central Asia, South Asia. Program: Climate Change. Total Funding: CA$ 180,800.00. Replicable Waste Recycling Project in Gianyar, Bali.

  5. FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT

    International Nuclear Information System (INIS)

    O'NEIL, RC; STAMBAUGH, RD

    2002-01-01

    OAK A271 FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT. The Radiative Divertor Project originated in 1993 when the DIII-D Five Year Plan for the period 1994--1998 was prepared. The Project Information Sheet described the objective of the project as ''to demonstrate dispersal of divertor power by a factor of then with sufficient diagnostics and modeling to extend the results to ITER and TPX''. Key divertor components identified were: (1) Carbon-carbon and graphite armor tiles; (2) The divertor structure providing a gas baffle and cooling; and (3) The divertor cryopumps to pump fuel and impurities

  6. What Have We Learned About Arctic Carbon Since The First State of the Carbon Cycle Report?

    Science.gov (United States)

    Schuur, E.

    2015-12-01

    Large pools of organic carbon were reported in The First State of the Carbon Cycle Report, but measurements from high latitude ecosystems, in particular for deeper soils >1m depth, remained scarce. A newly enlarged soil carbon database with an order of magnitude more numerous deep sampling sites has verified the widespread pattern of large quantities of carbon accumulated deep in permafrost (perennially frozen) soils. The known pool of permafrost carbon across the northern circumpolar permafrost zone is now estimated to be 1330-1580 Pg C, with the potential for an additional ~400 Pg C in deep permafrost sediments. In addition, an uncertainty estimate of plus/minus 15% has now been calculated for the soil carbon pool in the surface 0-3m. Laboratory incubations of these permafrost soils reveal that a significant fraction can be mineralized by microbes upon thaw and converted to carbon dioxide and methane on time scales of years to decades, with decade-long average losses from aerobic incubations ranging from 6-34% of initial carbon. Carbon emissions from the same soils incubated in an anaerobic environment are, on average, 78-85% lower than aerobic soils. But, the more potent greenhouse gas methane released under anaerobic conditions in part increases the climate impact of these emissions. While mean quantities of methane are only 3% to 7% that of carbon dioxide emitted from anaerobic incubations (by weight of C), these mean methane values represent 25% to 45% of the overall potential impact on climate when accounting for the higher global warming potential of methane. Taken together though, in spite of the more potent greenhouse gas methane, a unit of newly thawed permafrost carbon could have a greater impact on climate over a century if it thaws and decomposes within a drier, aerobic soil as compared to an equivalent amount of carbon within a waterlogged soil or sediment. Model projections tend to estimate losses of carbon in line with empirical measurements, but

  7. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  8. Project: Ultracentrifuges

    International Nuclear Information System (INIS)

    Olea C, O.

    1990-07-01

    The trans elastic ultracentrifuge of magnetic suspension, is an instrument that arose of an interdisciplinary group directed by the Dr. James Clark Keith where it was projected, designed and built a centrifuge that didn't exist, to be applied in forced diffusion of uranium, like one of the many application fields. The written present, has as purpose to give to know the fundamental physical principles of this technology, its fundamental characteristics of design, the application of this in the separation process of isotopes, as well as the previous studies and essential control parameters in the experimental processes, the same thing that, the most outstanding results and the detection systems used in the confirmation and finally, the carried out potential applications of the principles of the ultracentrifugation technology. (Author)

  9. ENVISION Project

    CERN Multimedia

    Ballantine, A; Dixon-Altaber, H; Dosanjh, M; Kuchina, L

    2011-01-01

    Hadrontherapy is a highly advanced technique of cancer radiotherapy that uses beams of charged particles (ions) to destroy tumour cells. While conventional X-rays traverse the human body depositing radiation as they pass through, ions deliver most of their energy at one point. Hadrontherapy is most advantageous once the position of the tumour is accurately known, so that healthy tissues can be protected. Accurate positioning is a crucial challenge for targeting moving organs, as in lung cancer, and for adapting the irradiation as the tumour shrinks with treatment. Therefore, quality assurance becomes one of the most relevant issues for an effective outcome of the cancer treatment. In order to improve the quality assurance tools for hadrontherapy, the European Commission is funding ENVISION, a 4-year project that aims at developing solutions for: real-• time non invasive monitoring • quantitative imaging • precise determination of delivered dose • fast feedback for optimal treatment planning • real-t...

  10. EUROTRAC projects

    International Nuclear Information System (INIS)

    Slanina, J.; Arends, B.G.; Wyers, G.P.

    1992-07-01

    The projects discussed are BIATEX (BIosphere-ATmosphere EXchange of pollutants), ACE (Acidity in Clouds Experiment) and GCE (Ground-based Cloud Experiment). ECN also coordinates BIATEX and contributes to the coordination of EUROTRAC. Research in BIATEX is aimed at the development of equipment, by which atmosphere-surface interactions of air pollution can be quantified. A ion chromatograph, connected to a rotating denuder, is developed to be applicated in the field for on-line analysis of denuder extracts and other samples. To investigate dry deposition of ammonia a continuous-flow denuder has been developed. A thermodenuder system to measure the concentrations of HNO 3 and NH 4 NO 3 in the ambient air is optimized to determine depositions and is part of the ECN monitoring station in Zegveld, Netherlands. An aerosol separation technique, based on a cyclone separator, has also been developed. All this equipment has been used in field experiments above wheat and heather. An automated monitoring station for long-term investigations of NH 3 , HNO 3 and SO 2 dry deposition on grassland and the impact of the deposition on the presence and composition of water films has been set up and fully tested. Research in GCE concerns the uptake and conversion of air pollution in clouds (cloud chemistry). Measuring equipment from several collaborative institutes has been specified and calibrated in a cloud chamber at ECN. The ECN contribution is the determination of the gas phase composition and the micro-physical characterization of the clouds. Measurement campaigns were carried out in the Po area (Italy) in fog, and in Kleiner Feldberg near Frankfurt, Germany, in orographic clouds. Estimations are given of the deposition of fog water and cloud water on forests in the Netherlands and the low mountain range in Germany. The project ACE was not started because of financial reasons and will be reconsidered. 26 figs., 1 tab., 3 apps., 34 refs

  11. FutureGen Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Cabe, Jim; Elliott, Mike

    2010-09-30

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: • Site evaluation and selection process and environmental characterization • Underground Injection Control (UIC) Permit Application including well design and subsurface modeling • FutureGen IGCC-CCS Design Basis Document • Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report • Process flow diagrams and heat/material balance for slurry-fed gasifier configuration • Process flow diagrams and heat/material balance

  12. Carbon Nanomembranes

    Science.gov (United States)

    Angelova, Polina; Gölzhäuser, Armin

    2017-03-01

    This chapter describes the formation and properties of one nanometer thick carbon nanomembranes (CNMs), made by electron induced cross-linking of aromatic self-assembled monolayers (SAMs). The cross-linked SAMs are robust enough to be released from the surface and placed on solid support or over holes as free-standing membranes. Annealing at 1000K transforms CNMs into graphene accompanied by a change of mechanical stiffness and electrical resistance. The developed fabrication approach is scalable and provides molecular level control over thickness and homogeneity of the produced CNMs. The mechanisms of electron-induced cross-linking process are discussed in details. A variety of polyaromatic thiols: oligophenyls as well as small and extended condensed polycyclic hydrocarbons have been successfully employed, demonstrating that the structural and functional properties of the resulting nanomembranes are strongly determined by the structure of molecular monolayers. The mechanical properties of CNMs (Young's modulus, tensile strength and prestress) are characterized by bulge testing. The interpretation of the bulge test data relates the Young's modulus to the properties of single molecules and to the structure of the pristine SAMs. The gas transport through the CNM is measured onto polydimethylsiloxane (PDMS) - thin film composite membrane. The established relationship of permeance and molecular size determines the molecular sieving mechanism of permeation through this ultrathin sheet.

  13. Carbon 14

    International Nuclear Information System (INIS)

    2002-03-01

    Carbon 14 is one of the most abundant radionuclides of natural and artificial origin in the environment. The aim of this conference day organized by the French society of radioprotection (SFRP) was to take stock of our knowledge about this radionuclide (origins, production, measurement, management, effects on health..): state-of-the-art of 14 C metrology; dating use of 14 C; 14 C management and monitoring of the Hague site environment; Electricite de France (EdF) and 14 C; radiological and sanitary impact of 14 C contamination at the Ganagobie site (Haute-Provence, France); metabolism and biological effects of 14 C; 14 C behaviour in the marine environment near Cogema-La Hague plant; distribution of 14 C activities in waters, mud and sediments of the Loire river estuary; dynamical modeling of transfers in the aquatic and terrestrial environment of 14 C released by nuclear power plants in normal operation: human dose calculation using the Calvados model and application to the Loire river; 14 C distribution in continents; modeling of 14 C transfers in the terrestrial environment from atmospheric sources. (J.S.)

  14. Guidebook to financing CDM projects

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, S.

    2007-07-01

    One of the challenges facing Clean Development Mechanism (CDM) projects today is their limited ability to secure financing for the underlying greenhouse gas emission reduction activities, particularly in the least developed countries. Among the key reasons for this is the fact that most financial intermediaries in the CDM host countries have limited or no knowledge of the CDM Modalities and Procedures. Moreover, approaches, tools and skills for CDM project appraisal are lacking or are asymmetrical to the skills in comparable institutions in developed countries. Consequently, developing country financial institutions are unable to properly evaluate the risks and rewards associated with investing or lending to developers undertaking CDM projects, and therefore have, by-and-large, refrained from financing these projects. In addition, some potential project proponents lack experience in structuring arrangements for financing a project. This Guidebook - commissioned by the UNEP Risoe Centre as part of the activities of the Capacity Development for CDM (CD4CDM) project (http://www.cd4cdm.org) - addresses these barriers by providing information aimed at both developing country financial institutions and at CDM project proponents. It should be noted that while the Guidebook was developed particularly with the CDM in mind, most sections will also be relevant for Joint Implementation (JI) project activities. For more detailed information on JI modalities and procedures please consult: http://ji.unfccc.int The purpose of this Guidebook is two-fold: 1) To guide project developers on obtaining financing for the implementation of activities eligible under the CDM; and 2) To demonstrate to developing country financial institutions typical approaches and methods for appraising the viability of CDM projects and for optimally integrating carbon revenue into overall project financing. The target audiences for the Guidebook are therefore, primarily: 1) CDM project proponents in

  15. Radiation damage in carbon-carbon composites

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eartherly, W.P.; Nelson, G.E.

    1992-01-01

    Graphite and carbon-carbon composite materials are widely used in plasma facing applications in current Tokamak devices such as TFTR and DIIID in the USA, JET, Tore Supra and TEXTOR in Europe, and JT-60U in Japan. Carbon-carbon composites are attractive choices for Tokamak limiters and diverters because of their low atomic number, high thermal shock resistance, high melting point, and high thermal conductivity. Next generation machines such as the International Thermonuclear Experimental Reactor (ITER) will utilize carbon-carbon composites in their first wall and diverter. ITER will be an ignition machine and thus will produce substantial neutron fluences from the D-T fusion reaction. The resultant high energy neutrons will cause carbon atom displacements in the plasma facing materials which will markedly affect their structure and physical properties. The effect of neutron damage on graphite has been studied for over forty years. Recently the effects of neutron irradiation on the fusion relevant graphite GraphNOL N3M was reviewed. In contrast to graphite, relatively little work has been performed to elucidate the effects of neutron irradiation on carbon-carbon composites. The results of our previous irradiation experiments have been published elsewhere. Here the irradiation induced dimensional changes in 1D, 2D, and 3D carbon-carbon composites are reported for fluences up to 4.7 dpa at an irradiation temperature of 600 degree C

  16. Project Success in IT Project Management

    OpenAIRE

    Siddiqui, Farhan Ahmed

    2010-01-01

    The rate of failed and challenged Information Technology (IT) projects is too high according to the CHAOS Studies by the Standish Group and the literature on project management (Standish Group, 2008). The CHAOS Studies define project success as meeting the triple constraints of scope, time, and cost. The criteria for project success need to be agreed by all parties before the start of the project and constantly reviewed as the project progresses. Assessing critical success factors is another ...

  17. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  18. Carbon sequestration research and development

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  19. The fate of the tropical forest. Carbon or cattle?

    International Nuclear Information System (INIS)

    Coomes, Oliver T.; Grimard, Franque; Potvin, Catherin; Sima, Philip

    2008-01-01

    Small-scale afforestation/reforestation projects under the Clean Development Mechanism (CDM) of the Kyoto Protocol will sequester atmospheric carbon and facilitate carbon trading but they face significant implementation challenges among the rural poor households and communities that are meant to adopt and benefit from them. Avoiding deforestation - a controversial carbon reduction option now under climate policy discussion - shows promise though for both forest conservation and poverty alleviation among indigenous forest peoples. (author)

  20. Carbon Capture and Storage: Legal and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA has estimated that the broad deployment of low-carbon energy technologies could reduce projected 2050 emissions to half 2005 levels -- and that CCS could contribute about one-fifth of those reductions. Reaching that goal, however, would require around 100 CCS projects to be implemented by 2020 and over 3000 by 2050.

  1. An Economic Approach to Planting Trees for Carbon Storage

    Science.gov (United States)

    Peter J. Parks; David O. Hall; Bengt Kristrom; Omar R. Masera; Robert J. Multon; Andrew J. Plantinga; Joel N. Swisher; Jack K. Winjum

    1997-01-01

    Abstract: Methods are described for evaluating economic and carbon storage aspects of tree planting projects (e.g., plantations for restoration, roundwood, bioenergy, and nonwood products). Total carbon (C) stock is dynamic and comprises C in vegetation, decomposing matter, soil, products, and fuel substituted. An alternative (reference) case is...

  2. Potential carbon credit and community expectations towards viability ...

    African Journals Online (AJOL)

    Nicholaus family

    marginal (incremental) revenues from forest carbon stock as well as the conceptual trend of forest biomass indicates that, there is ... Key words: Carbon stock payments, community preferences and REDD+ project viability. INTRODUCTION .... following criteria were used in selecting respondents especially households: 1) ...

  3. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  4. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro...

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  6. International power projections and capital requirements

    International Nuclear Information System (INIS)

    Ann, H.

    1989-01-01

    This work is related to the international power projections and capital requirements of all kinds of energy and the share of electricity. It is also related to the so-called greenhouse effect carbon dioxide concentration in atmosphere. (A.C.A.S.)

  7. CO2 recovery from cogeneration projects

    International Nuclear Information System (INIS)

    Rushing, S.A.

    2001-01-01

    There is a ready market for carbon dioxide for use in industrial processes as well as in food and beverage production. Recovering this gas from flue gas exhausts can provide extra income for cogeneration projects -as well as reducing emissions. (author)

  8. The ITER Divertor Cassette Project meeting

    International Nuclear Information System (INIS)

    Akiba, M.; Tivey, R.

    2000-01-01

    The Divertor Cassette Project topical meeting took place on April 5-7, 2000 at the JAERI Naka site in Japan. The meeting focused on the progress made by the three parties under task agreements on the development of carbon-fibre composite and tungsten armored high flux plasma-facing components

  9. Mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  10. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  11. Project LASER

    Science.gov (United States)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  12. Project Longshot

    Science.gov (United States)

    West, J. Curtis; Chamberlain, Sally A.; Stevens, Robert; Pagan, Neftali

    1989-01-01

    Project Longshot is an unmanned probe to our nearest star system, Alpha Centauri, 4.3 light years away. The Centauri system is a trinary system consisting of two central stars (A and B) orbiting a barycenter, and a third (Proxima Centauri) orbiting the two. The system is a declination of -67 degrees. The goal is to reach the Centauri system in 50 years. This time space was chosen because any shorter time would be impossible of the relativistic velocities involved, and any greater time would be impossible because of the difficulty of creating a spacecraft with such a long lifetime. Therefore, the following mission profile is proposed: (1) spacecraft is assembled in Earth orbit; (2) spacecraft escapes Earth and Sun in the ecliptic with a single impulse maneuver; (3) spacecraft changed declination to point toward Centauri system; (4) spacecraft accelerates to 0.1c; (5) spacecraft coasts at 0.1c for 41 years; (6) spacecraft decelerates upon reaching Centauri system; and (7) spacecraft orbits Centauri system, conducts investigations, and relays data to Earth. The total time to reach the Centauri system, taking into consideration acceleration and deceleration, will be approximately 50 years.

  13. Procedures to enter the international market of the carbon and PEMEX electrical generation projects; Procedimientos para ingresar al mercado internacional del carbono y proyectos de generacion electrica de PEMEX

    Energy Technology Data Exchange (ETDEWEB)

    Zeferino Abundis, Yolanda [Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2006-11-15

    The consumption and production of the electrical energy contribute to the gas emission that has the property of retaining heat in the atmosphere, giving rise to an increment in the global average temperature of the Earth, and causing a climatic change that the international scientific consensus describes as important alterations in the meteorological patterns. As a result of this, international actions were taken. The most ambitious agreement and by its quantified and obligatory character is presented the Kyoto Protocol, that forces the countries listed in Annex 1 to reduce their emissions through national measures and flexible mechanisms, within these last ones is the Clean Development Mechanism (CDM) that contemplates the mutual cooperation between developed and developing countries in the participation of projects tending to the reduction of gas emissions of greenhouse effect. Petroleos Mexicanos (PEMEX) has large necessities of electrical energy and steam, and counts on projects with characteristics that under the CDM cover the characteristics to be technical and economically viable. [Spanish] El consumo y produccion de la energia electrica contribuye a la emision de gases que tienen la propiedad de retener calor en la atmosfera, dando lugar a un incremento en la temperatura promedio global de la Tierra, y provocando un cambio climatico que el consenso cientifico internacional describe como alteraciones importantes en los patrones meteorologicos. A raiz de esto, se tomaron acciones internacionales. El acuerdo mas ambicioso y por su caracter cuantificado y obligatorio lo representa el Protocolo de Kyoto, quien obliga a los paises listados en el Anexo 1 a reducir sus emisiones a traves de medidas nacionales y mecanismos flexibles, dentro de estos ultimos se encuentra el Mecanismo de Desarrollo Limpio (MDL) que contempla la cooperacion mutua entre paises desarrollados y en vias de desarrollo en la participacion de proyectos tendientes a la reduccion de emisiones

  14. Multi-wall carbon nanotubes with nitrogen-containing carbon coating

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava; Šálek, Petr; Kovářová, Jana; Zemek, Josef; Cieslar, M.; Prokeš, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1054-1065 ISSN 0366-6352 R&D Projects: GA ČR GPP108/11/P763; GA ČR GAP205/12/0911; GA ČR GA202/09/0428 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline coating * carbon ization * multi-wall carbon nanotubes Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.193, year: 2013

  15. Extremely slow carbon diffusion in carbon-supersaturated surface of ferrite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 52, č. 3 (2014), s. 125-133 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * carbon supersaturation * diffusion barrier * ferrite * P91 Subject RIV: BJ - Thermodynamics Impact factor: 0.406, year: 2014

  16. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Konyushenko, Elena; Stejskal, Jaroslav; Kovářová, Jana; Ciric-Marjanovic, G.

    2009-01-01

    Roč. 94, č. 6 (2009), s. 929-938 ISSN 0141-3910 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * carbonization * FTIR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.154, year: 2009

  17. New Carbons Made by Soft Chemistry

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    2001-01-01

    Roč. 200, Supplement (2001), s. 223-224 ISSN 0371-5345 R&D Projects: GA MŠk OC D14.10 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon * nanostructures * chemical modification Subject RIV: CF - Physical ; Theoretical Chemistry

  18. Reduction of SO{sub 2} Emissions in Coal Power Plants by means of Spray-Drying RESOX Research Project; Acondicionamiento de Gases de Combustion para la Reduccion de Emisiones de Particulas en Centrales Termicas de Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    In this experimental study, two important matters concerning the spray-drying technology for the desulphurisation of combustion gases, from pulverized coal boilers, have been analyzed: (1) the behaviour of the spray-dryer absorber under different operating conditions and (2) the behaviour of an electrostatic precipitator that operates downstream form a spray-dryer. The results of this project are of great interest for evaluating the application of this semi-dry desulphurisation technology in existing power plants that already have electrostatic precipitators. Additionally, the conclusions drawn are useful for establishing the optimum design and operating conditions for an integrated SD-ESP flue gas treatment facility. More than 45 experimental tests have been conducted on a 10,000 Nm``3/h spray-drying desulphurisation pilot plant. The effects of SO{sub 2} and fly ash concentration, Ca/S ratio, approach to saturation temperature, density of the slurry and unit load changes on both spray dryer behaviour and treated flue gas properties have been analyzed. In two additional specific tests, the effect of injecting calcium chloride and of preparing the slurry with seawater has also been studied. The impact of spray-dryer desulphurization on the behaviour of the electrostatic precipitators ha been evaluated comparing experimental data (efficiency, emission level, electrical consumption) for the behaviour of the electrostatic precipitator, obtained in two different experimental conditions: with and without desulphurization. Additionally, the possibility of reducing the power consumption of the precipitator by means of intermittent energization has been analyzed. (Author)

  19. The Lancet Countdown on PM2·5 pollution-related health impacts of China's projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: a modelling study

    Directory of Open Access Journals (Sweden)

    Wenjia Cai, PhD

    2018-04-01

    Full Text Available Summary: Background: Except for comparing the implementation costs of the Paris Agreement with potential health benefits at the national levels, previous studies have not explored the health impacts of the nationally determined contributions (NDCs by countries and in regional details. In this Lancet Countdown study, we aimed to estimate and monetise the health benefits of China's NDCs in the electric power generation sector, and then compare them with the implementation costs, both at the national and regional levels. Methods: In this modelling study, we linked the Multi-regional model for Energy Supply system and their Environmental ImpaCts, the Multi-resolution Emission Inventory for China model, the offline-coupled Weather Research and Forecasting model, the Community Multiscale Air Quality model, and the Integrated Health Impact Assessment model with a time scope from 2010 to 2050. We calculated the PM2·5 concentrations and compared the health impacts and implementation costs between two scenarios that reflect CO2 and air pollutant emissions—the reference (REF scenario (no climate policy and the NDC scenario (100% realisation of NDC targets: CO2 emission intensity needs to be about 40% below 2010 emissions by 2030 [roughly 35% below 2030 emissions in REF], and about 90% below 2010 emissions by 2050 [roughly 96% below 2050 emissions in REF]. Findings: Under a comparatively optimistic health benefits valuation condition, at the national level, 18–62% of implementation costs could be covered by the health benefits in 2030. In 2050, the overall health benefits would substantially increase to 3–9 times of the implementation costs. However, northwest China would require the highest implementation costs and will also have more premature deaths because of a more carbon-intensive energy structure than business as usual. By 2030, people in northwest China (especially in Gansu, Shaanxi, and Xinjiang provinces would need to bear worse air quality

  20. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  1. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    Science.gov (United States)

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  2. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  3. Project Success in Agile Development Software Projects

    Science.gov (United States)

    Farlik, John T.

    2016-01-01

    Project success has multiple definitions in the scholarly literature. Research has shown that some scholars and practitioners define project success as the completion of a project within schedule and within budget. Others consider a successful project as one in which the customer is satisfied with the product. This quantitative study was conducted…

  4. Ace Project as a Project Management Tool

    Science.gov (United States)

    Cline, Melinda; Guynes, Carl S.; Simard, Karine

    2010-01-01

    The primary challenge of project management is to achieve the project goals and objectives while adhering to project constraints--usually scope, quality, time and budget. The secondary challenge is to optimize the allocation and integration of resources necessary to meet pre-defined objectives. Project management software provides an active…

  5. Organizations, projects and culture

    NARCIS (Netherlands)

    J. van Cleeff; Pieter van Nispen tot Pannerden

    2016-01-01

    Purpose: to explore and demonstrate the effects of organizational culture on projects, in particular project culture and project management style. Methodology/approach: descriptive and explorative; through students’ groups. Findings: the cultural relationship between organizations, their projects

  6. The provinces and carbon pricing : three inconvenient truths

    Energy Technology Data Exchange (ETDEWEB)

    Courchene, T.J.; Allan, J.R. [Queen' s Univ., Kingston, ON (Canada). Inst. of Intergovernmental Relations

    2008-12-15

    This article discussed the role that the federal government should play in introducing a carbon price policy in Canada whereby a carbon tax would be instituted to send a price signal to those considering future investment in carbon-intensive energy projects. It focused on bridging the gap between federal and provincial jurisdictions and assessed how various carbon pricing models can play a role in environmental federalism while allowing provinces to remain involved in policy making. Policy commitments related to emissions and cap-and-trade systems were discussed along with carbon import tariffs and domestic carbon taxes. In a market-based policy on climate change, proceeds of carbon taxes will serve to reduce greenhouse gas emissions. This article also reviewed tax incentives as well as price signal systems designed to ensure successful climate change adjustments for Canadian enterprises. 1 fig.

  7. The provinces and carbon pricing : three inconvenient truths

    International Nuclear Information System (INIS)

    Courchene, T.J.; Allan, J.R.

    2008-01-01

    This article discussed the role that the federal government should play in introducing a carbon price policy in Canada whereby a carbon tax would be instituted to send a price signal to those considering future investment in carbon-intensive energy projects. It focused on bridging the gap between federal and provincial jurisdictions and assessed how various carbon pricing models can play a role in environmental federalism while allowing provinces to remain involved in policy making. Policy commitments related to emissions and cap-and-trade systems were discussed along with carbon import tariffs and domestic carbon taxes. In a market-based policy on climate change, proceeds of carbon taxes will serve to reduce greenhouse gas emissions. This article also reviewed tax incentives as well as price signal systems designed to ensure successful climate change adjustments for Canadian enterprises. 1 fig

  8. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  9. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems

    KAUST Repository

    Lovelock, Catherine E.

    2017-05-15

    "Blue carbon" ecosystems, which include tidal marshes, mangrove forests, and seagrass meadows, have large stocks of organic carbon (C) in their soils. These carbon stocks are vulnerable to decomposition and - if degraded - can be released to the atmosphere in the form of CO. We present a framework to help assess the relative risk of CO emissions from degraded soils, thereby supporting inclusion of soil C into blue carbon projects and establishing a means to prioritize management for their carbon values. Assessing the risk of CO emissions after various kinds of disturbances can be accomplished through knowledge of both the size of the soil C stock at a site and the likelihood that the soil C will decompose to CO.

  10. Carbon tetrachloride desorption from activated carbon

    International Nuclear Information System (INIS)

    Jonas, L.A.; Sansone, E.B.

    1981-01-01

    Carbon tetrachloride was desorbed from a granular activated carbon subsequent to its adsorption under various vapor exposure periods. The varied conditions of exposure resulted in a range of partially saturated carbon beds which, when followed by a constant flow rate for desorption, generated different forms of the desorbing concentration versus time curve. A method of analyzing the desorption curves is presented which permits extraction of the various desorbing rates from the different desorption and to relate this to the time required for such regeneration. The Wheeler desorption kinetic equation was used to calculate the pseudo first order desorption rate constant for the carbon. The desorption rate constant was found to increase monotonically with increasing saturation of the bed, permitting the calculation of the maximum desorption rate constant for the carbon at 100% saturation. The Retentivity Index of the carbon, defined as the dimensionless ratio of the adsorption to the desorption rate constant, was found to be 681

  11. Laboratory batch experiments and geochemical modelling of water-rock-supercritical CO2 reactions in Southern San Joaquin Valley, California oil field sediments: Implications for future carbon capture and sequestration projects.

    Science.gov (United States)

    Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.

    2015-12-01

    Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.

  12. Evaluation of Project Achievements in VOMARE -project

    OpenAIRE

    Kokkarinen, Eeva

    2011-01-01

    The purpose of the thesis is to study the achievements of VOMARE –project from the Finnish Lifeboat Institutions perspective. The organisation is a roof organisation for voluntary maritime rescue operation in Finland. The Finnish Lifeboat Institution is a lead partner in VOMARE –project which is EU funded project and the aim of the project is to start voluntary rescue operations in Estonia. The theoretical part of the work is divided into two main categories; project management and planni...

  13. Carbon composites in space vehicle structures

    Science.gov (United States)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  14. The Lancet Countdown on PM2·5 pollution-related health impacts of China's projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: a modelling study.

    Science.gov (United States)

    Cai, Wenjia; Hui, Jingxuan; Wang, Can; Zheng, Yixuan; Zhang, Xin; Zhang, Qiang; Gong, Peng

    2018-04-01

    Except for comparing the implementation costs of the Paris Agreement with potential health benefits at the national levels, previous studies have not explored the health impacts of the nationally determined contributions (NDCs) by countries and in regional details. In this Lancet Countdown study, we aimed to estimate and monetise the health benefits of China's NDCs in the electric power generation sector, and then compare them with the implementation costs, both at the national and regional levels. In this modelling study, we linked the Multi-regional model for Energy Supply system and their Environmental ImpaCts, the Multi-resolution Emission Inventory for China model, the offline-coupled Weather Research and Forecasting model, the Community Multiscale Air Quality model, and the Integrated Health Impact Assessment model with a time scope from 2010 to 2050. We calculated the PM 2·5 concentrations and compared the health impacts and implementation costs between two scenarios that reflect CO 2 and air pollutant emissions-the reference (REF) scenario (no climate policy) and the NDC scenario (100% realisation of NDC targets: CO 2 emission intensity needs to be about 40% below 2010 emissions by 2030 [roughly 35% below 2030 emissions in REF], and about 90% below 2010 emissions by 2050 [roughly 96% below 2050 emissions in REF]). Under a comparatively optimistic health benefits valuation condition, at the national level, 18-62% of implementation costs could be covered by the health benefits in 2030. In 2050, the overall health benefits would substantially increase to 3-9 times of the implementation costs. However, northwest China would require the highest implementation costs and will also have more premature deaths because of a more carbon-intensive energy structure than business as usual. By 2030, people in northwest China (especially in Gansu, Shaanxi, and Xinjiang provinces) would need to bear worse air quality, and 10 083 (95% CI 3419-16 138) more premature

  15. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    Science.gov (United States)

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  16. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  17. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  18. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Science.gov (United States)

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  19. Carbon dioxide may become a resource

    International Nuclear Information System (INIS)

    Haugneland, Petter; Areklett, Ivar

    2002-01-01

    The greenhouse gas CO 2 may become a product that the oil companies would pay for. In an extensive international resource project methods for CO 2 capture, transport and storage are being investigated. CO 2 capture means that carbon dioxide that is formed in the combustion of fossil fuels is separated out from the process, either from the fuel (decarbonization), or from the flue gas, and then stored. The article briefly describes the international joint project CO 2 Capture Project (CCP), in which eight oil companies are participating. If one can find a method for injecting CO 2 into oil reservoirs that leads to increased oil production, then part of the extra cost of removing the carbon dioxide from flue gas may be repaid

  20. The carbonate complexation of plutonium(IV)

    International Nuclear Information System (INIS)

    Hobart, D.E.; Palmer, P.D.; Newton, T.W.

    1985-01-01

    Plutonium(IV) carbonate complexes are expected to be of particular importance in typical groundwaters at the Yucca Mountain site of the candidate nuclear waste repository being studied by the Nevada Nuclear Waste Storage Investigations Project. The chemistry of these complexes is also important in the areas of nuclear fuel reprocessing and purification, actinide separations, and environmental studies. This report describes initial experiments performed to determine the identity and equilibrium quotients of plutonium(IV) carbonate complexes. These experiments were performed at pH values between 7.2 and 9.6 using a spectrophotometric method. In addition, a brief review of the published literature on Pu(IV) carbonate complexes is presented. Since Pu(IV) exhibits low solubility in the near-neutral pH range, a complex-competition reaction where citrate ligands compete with carbonate ions for the plutonium will be employed. This will permit us to study the pure carbonate system; study the mixed carbonate/citrate system, and confirm and extend the literature work on the pure citrate system. The current experiments have demonstrated the existence of at least three distinct species in the pH region studied. This work will continue in the extended study of the pure citrate system, followed by the investigation of the citrate/carbonate complex/competition reaction. 9 refs., 4 figs., 2 tabs

  1. Conductive Carbon Coatings for Electrode Materials

    International Nuclear Information System (INIS)

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-01-01

    A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO 4 and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO 4 suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10 -9 S cm -1 ). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures ( 4 , however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density

  2. Satellite Based Cropland Carbon Monitoring System

    Science.gov (United States)

    Bandaru, V.; Jones, C. D.; Sedano, F.; Sahajpal, R.; Jin, H.; Skakun, S.; Pnvr, K.; Kommareddy, A.; Reddy, A.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    Agricultural croplands act as both sources and sinks of atmospheric carbon dioxide (CO2); absorbing CO2 through photosynthesis, releasing CO2 through autotrophic and heterotrophic respiration, and sequestering CO2 in vegetation and soils. Part of the carbon captured in vegetation can be transported and utilized elsewhere through the activities of food, fiber, and energy production. As well, a portion of carbon in soils can be exported somewhere else by wind, water, and tillage erosion. Thus, it is important to quantify how land use and land management practices affect the net carbon balance of croplands. To monitor the impacts of various agricultural activities on carbon balance and to develop management strategies to make croplands to behave as net carbon sinks, it is of paramount importance to develop consistent and high resolution cropland carbon flux estimates. Croplands are typically characterized by fine scale heterogeneity; therefore, for accurate carbon flux estimates, it is necessary to account for the contribution of each crop type and their spatial distribution. As part of NASA CMS funded project, a satellite based Cropland Carbon Monitoring System (CCMS) was developed to estimate spatially resolved crop specific carbon fluxes over large regions. This modeling framework uses remote sensing version of Environmental Policy Integrated Climate Model and satellite derived crop parameters (e.g. leaf area index (LAI)) to determine vertical and lateral carbon fluxes. The crop type LAI product was developed based on the inversion of PRO-SAIL radiative transfer model and downscaled MODIS reflectance. The crop emergence and harvesting dates were estimated based on MODIS NDVI and crop growing degree days. To evaluate the performance of CCMS framework, it was implemented over croplands of Nebraska, and estimated carbon fluxes for major crops (i.e. corn, soybean, winter wheat, grain sorghum, alfalfa) grown in 2015. Key findings of the CCMS framework will be presented

  3. Highly Loaded Carbon Black Supported Pt Catalysts for Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Vít, Zdeněk; Šolcová, Olga; Soukup, Karel; Koštejn, Martin; Bonde, J.L.; Maixnerová, Lucie; Odgaard, M.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 375-383 ISSN 0920-5861 R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * fuell cell * electrocatalyst Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 4.312, year: 2015

  4. A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees

    Science.gov (United States)

    Cox, Helen M.

    2012-01-01

    Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

  5. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  6. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  7. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  8. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  9. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  10. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  11. Pathways for implementing REDD+. Experiences from carbon markets and communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X; Ravnkilde Moeller, L; Lopez, T De; Romero, M Z

    2011-07-01

    This issue of Carbon Market Perspectives on 'Pathways for implementing REDD+: Experience from carbon markets and communities' discusses the role of carbon markets in scaling up investments for REDD+ in developing countries. Nine articles authored by experienced negotiators on REDD+, carbon market actors, project developers and other leading experts share experiences and make suggestions on the key elements of a future international REDD+ regime: Architecture and underlying principles, measuring, reporting and verification (MRV), private-sector involvement, the rights of indigenous people and local communities, biodiversity conservation and environmental integrity. The articles are grouped under three main topics: the lessons of existing REDD+ projects; the future REDD+ regime and the role of carbon markets; and experiences and ideas about the involvement of indigenous people and local communities. (LN)

  12. The World Banks' BioCarbon Fund

    Energy Technology Data Exchange (ETDEWEB)

    Noble, I.

    2003-03-01

    In November 2002 the World Bank launched the BioCarbon Fund, a public/private initiative to provide finance to projects that store carbon in vegetation and soils ('sinks') while helping to reverse land degradation, conserve biodiversity and improve the livelihoods of local communities. The Fund will seek projects to sequester or conserve carbon in non-Annex I countries and in countries in transition. Sinks may be the only option for poor nations with small energy to benefit from the carbon finance business. The Fund will include a portion of assets based on reductions in emissions such as substitution of biofuels for fossil fuels. The author Ian Noble of the World Bank, is chairman of the BioCarbon Fund Technical Advisory Committee.

  13. Pathways for implementing REDD+. Experiences from carbon markets and communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Ravnkilde Moeller, L.; Lopez, T. De; Romero, M.Z.

    2011-07-01

    This issue of Carbon Market Perspectives on 'Pathways for implementing REDD+: Experience from carbon markets and communities' discusses the role of carbon markets in scaling up investments for REDD+ in developing countries. Nine articles authored by experienced negotiators on REDD+, carbon market actors, project developers and other leading experts share experiences and make suggestions on the key elements of a future international REDD+ regime: Architecture and underlying principles, measuring, reporting and verification (MRV), private-sector involvement, the rights of indigenous people and local communities, biodiversity conservation and environmental integrity. The articles are grouped under three main topics: the lessons of existing REDD+ projects; the future REDD+ regime and the role of carbon markets; and experiences and ideas about the involvement of indigenous people and local communities. (LN)

  14. Deep Carbon Observatory investigates Carbon from Crust to Core: An Academic Record of the History of Deep Carbon Science

    Science.gov (United States)

    Mitton, S. A.

    2017-12-01

    Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society's energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth's variable and uncertain climate. Yet in spite of carbon's importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth's carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a new, integrative field of deep carbon science. As a historian of science, I specialise in the history of planetary science and astronomy since 1900. This is directed toward understanding of the history of the steps on the road to discovering the internal dynamics of our planet. Within a framework that describes the historical background to the new field of Earth System Science, I present the first history of deep carbon science. This project will identifies the key discoveries of deep carbon science. It will assess the impact of new knowledge on geochemistry, geodynamics, and geobiology. The project will lead to publication, in book form in 2019, of an illuminating narrative that will highlight the engaging human stories of many remarkable scientists and natural philosophers from whom we have learned about the complexity of Earth's internal world. On this journey of discovery we will encounter not just the pioneering researchers of deep carbon science, but also their institutions, their instrumental inventiveness, and their passion for exploration. The book is organised thematically around the four communities of the Deep Carbon Observatory: Deep Life, Extreme Physics and Chemistry, Reservoirs and Fluxes, and Deep Energy. The presentation has a gallery and list of Deep Carbon

  15. The Australian terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-02-01

    Full Text Available This paper reports a study of the full carbon (C-CO2 budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP; net ecosystem production (NEP; fire; land use change (LUC; riverine export; dust export; harvest (wood, crop and livestock and fossil fuel emissions (both territorial and non-territorial. Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012, a fine-spatial-resolution (0.05° offline modelling environment in which predictions of CABLE (Wang et al., 2011, a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes, which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1 by 38 ± 30%. The interannual variability (IAV in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  16. Managing projects using a project management approach

    Directory of Open Access Journals (Sweden)

    Marko D. Andrejić

    2011-04-01

    Full Text Available Modern management theory treats all complex tasks and duties like projects and make these projects possible to be managed by a particular organizational-management concept in order to achieve a goal effectively. A large number of jobs and tasks performed in the system of defense or for defense purposes have the characteristics of projects. Project management is both a skill and a science of monitoring human, material, financial, energy and other resources to achieve required objectives within the given limits: deadlines, time, budget, possibility of realization and the satisfaction of the interests of all project participants. Project management is a traditional area of applied (or functional management focused on managing complex and uncertain situations with defined goals. Introduction In conditions of rapid change and high uncertainty, only adaptive organizations survive, i. e. those that are able not only to react quickly to changes but also to proactively take advantage of changes. Development of project management The biggest influence on the development of the area had complex jobs within the engineering profession. In parallel with the traditional approach new approaches began to develop, while the traditional one still remained in use. Contrary to the traditional engineering approach, a dynamic model first developed in order to respond to demands for greater control of costs. Project management Project management is a skill and knowledge of human and material resources to achieve set objectives within prescribed limits: deadlines, time, budget, possibility of realization, and the satisfaction of all participants in the project. In order to realize a project effectively, it is necessary to manage it rationally. Planning and project management A project plan is a document that allows all team members insight on where to go, when to start and when to arrive, what is necessary to be done in order to achieve the project objectives and what

  17. Carbon quota price and CDM potentials after Marrakesh

    International Nuclear Information System (INIS)

    Wenying Chen

    2003-01-01

    The Kyoto Protocol sets quantified GHG emission reduction commitments for Annex I Parties. But their emission reduction requirements related to BAU projections, one of the key factors to effect on future carbon market, are uncertain. Both the decisions made in Bonn and Marrakesh would have further consequences for how the future carbon market will take shape. This paper, with application of the carbon emission reduction trading model, evaluates future carbon quota price and Clean Development Mechanism (CDM) potentials under different BAU projections, and does sensitivity analysis on carry-over of AAUs, CERs and ERUs, implementation rate, transaction cost, holding of CERs in Non-Annex I Parties, etc. to assess the impacts of relevant decisions of COP6-bis and COP7 on the carbon market. Under different BAU projections, future carbon quota price and CDM potentials could vary widely. Carry over of AAUs, CERs, ERUs, and holding of CERs in Non-Annex I Parties could raise both quota price and total CDM potentials considerably. Implementation rate could have big impacts on both carbon quota price and CDM potentials, especially for the cases formerly with relatively high CDM potentials, and it could also change the regional distribution of CDM potentials. Transaction cost's effect on the carbon market would be comparatively low, but would become unignorable in the market whose quota price is low. It would lead to a downward trend in price while upward in CDM potentials when increasing the implementation rate or lowering transaction cost. Withdrawal of USA would dramatically shrink carbon price and credit amount, and large numbers of hot air and sink credits would further greatly crowd out the CDM projects; carry over of AAUs, CERs and ERUs, holding of CERs in Non-Annex I Parties, prompt start of CDM projects, etc., would, however, enhance the total CDM credits to ensure more investment and technology flow to developing countries to promote their sustainable development

  18. Carbon quota price and CDM potentials after Marrakesh

    International Nuclear Information System (INIS)

    Chen Wenying

    2003-01-01

    The Kyoto Protocol sets quantified GHG emission reduction commitments for Annex I Parties. But their emission reduction requirements related to BAU projections, one of the key factors to effect on future carbon market, are uncertain. Both the decisions made in Bonn and Marrakesh would have further consequences for how the future carbon market will take shape. This paper, with application of the carbon emission reduction trading model, evaluates future carbon quota price and Clean Development Mechanism (CDM) potentials under different BAU projections, and does sensitivity analysis on carry-over of AAUs, CERs and ERUs, implementation rate, transaction cost, holding of CERs in Non-Annex I Parties, etc. to assess the impacts of relevant decisions of COP6-bis and COP7 on the carbon market. Under different BAU projections, future carbon quota price and CDM potentials could vary widely. Carry over of AAUs, CERs, ERUs, and holding of CERs in Non-Annex I Parties could raise both quota price and total CDM potentials considerably. Implementation rate could have big impacts on both carbon quota price and CDM potentials, especially for the cases formerly with relatively high CDM potentials, and it could also change the regional distribution of CDM potentials. Transaction cost's effect on the carbon market would be comparatively low, but would become unignorable in the market whose quota price is low. It would lead to a downward trend in price while upward in CDM potentials when increasing the implementation rate or lowering transaction cost. Withdrawal of USA would dramatically shrink carbon price and credit amount, and large numbers of hot air and sink credits would further greatly crowd out the CDM projects; carry over of AAUs, CERs and ERUs, holding of CERs in Non-Annex I Parties, prompt start of CDM projects, etc., would, however, enhance the total CDM credits to ensure more investment and technology flow to developing countries to promote their sustainable development

  19. Carbon Monoxide Safety

    Science.gov (United States)

    ... with the Media Fire Protection Technology Carbon monoxide safety outreach materials Keep your community informed about the ... KB | Spanish PDF 592 KB Handout: carbon monoxide safety Download this handout and add your organization's logo ...

  20. Trading forest carbon - OSU

    Science.gov (United States)

    Issues associate with trading carbon sequestered in forests are discussed. Scientific uncertainties associated with carbon measurement are discussed with respect to proposed accounting procedures. Major issues include: (1) Establishing baselines. (2) Determining additivity from f...

  1. Geochemistry of sedimentary carbonates

    National Research Council Canada - National Science Library

    Morse, John W; Mackenzie, Fred T

    1990-01-01

    .... The last major section is two chapters on the global cycle of carbon and human intervention, and the role of sedimentary carbonates as indicators of stability and changes in Earth's surface environment...

  2. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Products that contain calcium carbonate are certain: Antacids (Tums, Chooz) Mineral supplements Hand lotions Vitamin and mineral supplements Other products may also contain ...

  3. Carbon Based Nanotechnology: Review

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation reviews publicly available information related to carbon based nanotechnology. Topics covered include nanomechanics, carbon based electronics, nanodevice/materials applications, nanotube motors, nano-lithography and H2O storage in nanotubes.

  4. Sodium carbonate poisoning

    Science.gov (United States)

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and industrial products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do NOT ...

  5. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  6. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  7. Graphitization in Carbon MEMS and Carbon NEMS

    Science.gov (United States)

    Sharma, Swati

    Carbon MEMS (CMEMS) and Carbon NEMS (CNEMS) are an emerging class of miniaturized devices. Due to the numerous advantages such as scalable manufacturing processes, inexpensive and readily available precursor polymer materials, tunable surface properties and biocompatibility, carbon has become a preferred material for a wide variety of future sensing applications. Single suspended carbon nanowires (CNWs) integrated on CMEMS structures fabricated by electrospinning of SU8 photoresist on photolithographially patterned SU8 followed by pyrolysis are utilized for understanding the graphitization process in micro and nano carbon materials. These monolithic CNW-CMEMS structures enable the fabrication of very high aspect ratio CNWs of predefined length. The CNWs thus fabricated display core---shell structures having a graphitic shell with a glassy carbon core. The electrical conductivity of these CNWs is increased by about 100% compared to glassy carbon as a result of enhanced graphitization. We explore various tunable fabrication and pyrolysis parameters to improve graphitization in the resulting CNWs. We also suggest gas-sensing application of the thus fabricated single suspended CNW-CMEMS devices by using the CNW as a nano-hotplate for local chemical vapor deposition. In this thesis we also report on results from an optimization study of SU8 photoresist derived carbon electrodes. These electrodes were applied to the simultaneous detection of traces of Cd(II) and Pb(II) through anodic stripping voltammetry and detection limits as low as 0.7 and 0.8 microgL-1 were achieved. To further improve upon the electrochemical behavior of the carbon electrodes we elucidate a modified pyrolysis technique featuring an ultra-fast temperature ramp for obtaining bubbled porous carbon from lithographically patterned SU8. We conclude this dissertation by suggesting the possible future works on enhancing graphitization as well as on electrochemical applications

  8. Contributions for the third international carbon conference CARBON '80

    International Nuclear Information System (INIS)

    Delle, W.

    1980-05-01

    This report is a compilation of 8 papers prepared by KFA Juelich GmbH for the International Carbon Conference carbon 80 in Baden-Baden. The contributions deal mainly with materials problems which arise from the application of graphite and silicon carbide in High-Temperature Gas-Cooled Reactors, HTR. Most of the results described were obtained in the framework of the HTR Projects ''Hochtemperaturreaktor-Brennstoffkreislauf'' (High Temperature Reactor Fuel Cycle), HBK, that includes the partners Gesellschaft fuer Hochtemperaturreaktor-Technik mbH, Hochtemperaturreaktor-Brennelement GmbH, Hochtemperatur-Reaktorbau GmbH, Kernforschungsanlage Juelich GmbH, NUKEM GmbH and Sigri Elektrographit GmbH/Ringsdorff-Werke GmbH and ''Prototyp Nukleare Prozesswaerme'' (Prototype Nuclear Heat), PNP, for the development of procedures for the conversion of solid fossil raw materials by means of heat from High Temperature Gas-Cooled Reactors, that includes the partners Bergbau-Forschung GmbH, Gesellschaft fuer Hochtemperaturreaktor-Technik mbH, Hochtemperatur-Reaktorbau GmbH, Kernforschungsanlage Juelich GmbH and Rheinische Braunkohlenwerke AG. Both projects are financed by the Federal Ministry for Research and Technology and the State of North Rhine-Westphalia. (orig./IHOE) [de

  9. Carbon offsetting: sustaining consumption?

    OpenAIRE

    Heather Lovell; Harriet Bulkeley; Diana Liverman

    2009-01-01

    In this paper we examine how theories of sustainable and ethical consumption help us to understand a new, rapidly expanding type of consumer product designed to mitigate climate change: carbon offsets. The voluntary carbon offset market grew by 200% between 2005 and 2006, and there are now over 150 retailers of voluntary carbon offsets worldwide. Our analysis concentrates on the production and consumption of carbon offsets, drawing on ideas from governmentality and political ecology about how...

  10. Amine Swingbed Payload Project Management

    Science.gov (United States)

    Walsch, Mary; Curley, Su

    2013-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.

  11. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  12. Terrestrial carbon turnover time constraints on future carbon cycle-climate feedback

    Science.gov (United States)

    Fan, N.; Carvalhais, N.; Reichstein, M.

    2017-12-01

    Understanding the terrestrial carbon cycle-climate feedback is essential to reduce the uncertainties resulting from the between model spread in prognostic simulations (Friedlingstein et al., 2006). One perspective is to investigate which factors control the variability of the mean residence times of carbon in the land surface, and how these may change in the future, consequently affecting the response of the terrestrial ecosystems to changes in climate as well as other environmental conditions. Carbon turnover time of the whole ecosystem is a dynamic parameter that represents how fast the carbon cycle circulates. Turnover time τ is an essential property for understanding the carbon exchange between the land and the atmosphere. Although current Earth System Models (ESMs), supported by GVMs for the description of the land surface, show a strong convergence in GPP estimates, but tend to show a wide range of simulated turnover times (Carvalhais, 2014). Thus, there is an emergent need of constraints on the projected response of the balance between terrestrial carbon fluxes and carbon stock which will give us more certainty in response of carbon cycle to climate change. However, the difficulty of obtaining such a constraint is partly due to lack of observational data on temporal change of terrestrial carbon stock. Since more new datasets of carbon stocks such as SoilGrid (Hengl, et al., 2017) and fluxes such as GPP (Jung, et al., 2017) are available, improvement in estimating turnover time can be achieved. In addition, previous study ignored certain aspects such as the relationship between τ and nutrients, fires, etc. We would like to investigate τ and its role in carbon cycle by combining observatinoal derived datasets and state-of-the-art model simulations.

  13. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    Science.gov (United States)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks

  14. Storytelling in Projects

    DEFF Research Database (Denmark)

    Munk-Madsen, Andreas; Andersen, Peter Bøgh

    2006-01-01

    project managers should not only be concerned with project plans, but also with project stories. In this paper we explore some basic principles for transforming project plans into appealing stories. We discuss what may happen to stories once they are released into public space. And we illustrate how......Plans and stories are two different ways of communicating about projects. Project plans are formalized descriptions, primarily supporting coordination. Project stories are accounts whose primary function is emotional appeal. Project stories influence the projects’ chances of success. Therefore...... the possibilities of telling favorable stories may have repercussions on the project planning....

  15. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  16. Carbon Goes To…

    Science.gov (United States)

    Savasci, Funda

    2014-01-01

    The purposes of this activity are to help middle school students understand the carbon cycle and realize how human activities affect the carbon cycle. This activity consists of two parts. The first part of the activity focuses on the carbon cycle, especially before the Industrial Revolution, while the second part of the activity focuses on how…

  17. Carbon/Carbon Pistons for Internal Combustion Engines

    Science.gov (United States)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  18. The Ethiopian Flora Project

    DEFF Research Database (Denmark)

    Demissew, Sebsebe; Brochmann, Christian; Kelbessa, Ensermu

    2011-01-01

    The account reviews and analyses the scietific projects derived from activities in connection with the Ethiopian Flora Project, including the [Ethiopian] Monocot Project, the Afro-alpine "Sky-island" project, the Vegetation and Ecological Conditions of Plantations Project, the Fire Ecology Projec...

  19. Capital projects coordination

    Directory of Open Access Journals (Sweden)

    Zubović Jovan

    2004-01-01

    Full Text Available This paper looks at the difficulties of managing modem capital projects and endeavors to reduce the complexities to simpler and more understandable terms. It examines the project environment, defines project management and discusses points of difference from traditional management. In the second part of the paper are presented fundamentals for project success for different types of projects.

  20. Preliminary assessment of potential CDM early start projects in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

    2000-11-01

    The Brazil/US Aspen Global Forum on Climate Change Policies and Programs has facilitated a dialogue between key Brazil and US public and private sector leaders on the subject of the Clean Development Mechanism (CDM). With support from the US government, a cooperative effort between Lawrence Berkeley National Laboratory and the University of Sao Paulo conducted an assessment of a number of projects put forth by Brazilian sponsors. Initially, we gathered information and conducted a screening assessment for ten projects in the energy sector and six projects in the forestry sector. Some of the projects appeared to offer greater potential to be attractive for CDM, or had better information available. We then conducted a more detailed assessment of 12 of these projects, and two other projects that were submitted after the initial screening. An important goal was to assess the potential impact of Certified Emission Reductions (CERs) on the financial performance of projects. With the exception of the two forestry-based fuel displacement projects, the impact of CERs on the internal rate of return (IRR) is fairly small. This is true for both the projects that displace grid electricity and those that displace local (diesel-based) electricity production. The relative effect of CERs is greater for projects whose IRR without CERs is low. CERs have a substantial effect on the IRR of the two short-rotation forestry energy substitution projects. One reason is that the biofuel displaces coke and oil, both of which are carbon-intensive. Another factor is that the product of these projects (charcoal and woodfuel, respectively) is relatively low value, so the revenue from carbon credits has a strong relative impact. CERs also have a substantial effect on the NPV of the carbon sequestration projects. Financial and other barriers pose a challenge for implementation of most of the projects. In most cases, the sponsor lacks sufficient capital, and loans are available only at high interest