Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
SATA II - Stochastic Algebraic Topology and Applications
2017-01-30
AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications... Topology and Applications Continuation of, and associated with SATA: Stochastic Algebraic Topology and Applications FA8655-11-1-3039, 09/1/2011–08/31/2014
Okpube, Nnaemeka Michael; Anugwo, M. N.
2016-01-01
This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…
Zeta functional equation on Jordan algebras of type II
International Nuclear Information System (INIS)
Kayoya, J.B.
2003-10-01
Using the Jordan algebras method, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of Type II. As particular cases of our result, we can cite the case of V M (n, R) studied by Gelbart and Godement-Jacquet, and the case of V Herm(3, O s ) studied by Muro. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one to one correspondence with simple Jordan algebras. The method used in this paper is a direct application of specific properties of Jordan algebras of Type H. (author)
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Topological أ-algebras with Cأ-enveloping algebras II
Indian Academy of Sciences (India)
necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.
Building Students' Reasoning Skills by Promoting Student-Led Discussions in an Algebra II Class
DeJarnette, Anna F.; González, Gloriana
2013-01-01
Current research and professional organizations call for greater emphasis on reasoning and sense making in algebra (Chazan, 2000; Cuoco, Goldenberg, & Mark, 1996; Harel & Sowder, 2005; National Council of Teachers of Mathematics [NCTM], 2009, 2010). This paper illustrates how students in an Algebra II class had opportunities to develop…
Stoker, Ginger; Mellor, Lynn; Sullivan, Kate
2018-01-01
This study examines Algebra II completion and failure rates for students entering Texas public high schools from 2007/08 through 2014/15. This period spans the time when Texas students, beginning with the 2007/08 grade 9 cohort, were required to take four courses each in English, math (including Algebra II), science, and social studies (called the…
Algebra II textbook for students of mathematics
Gorodentsev, Alexey L
2017-01-01
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Stoker, Ginger; Mellor, Lynn
2018-01-01
This study examines the impact of providing parents with an informational brochure about the role of algebra II in college access on students' grade 11 algebra II completion rates in Texas. One hundred nine schools, covering all 20 Educational Service Center regions in Texas, participated in the study. Parents in the 54 treatment schools were…
The formal theory of Hopf algebras part II: the case of Hopf algebras ...
African Journals Online (AJOL)
The category HopfR of Hopf algebras over a commutative unital ring R is analyzed with respect to its categorical properties. The main results are: (1) For every ring R the category HopfR is locally presentable, it is coreflective in the category of bialgebras over R, over every R-algebra there exists a cofree Hopf algebra. (2) If ...
Generalized Galilean algebras and Newtonian gravity
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Von Neumann algebras as complemented subspaces of B(H)
DEFF Research Database (Denmark)
Christensen, Erik; Wang, Liguang
2014-01-01
Let M be a von Neumann algebra of type II1 which is also a complemented subspace of B( H). We establish an algebraic criterion, which ensures that M is an injective von Neumann algebra. As a corollary we show that if M is a complemented factor of type II1 on a Hilbert space H, then M is injective...
Srinivas, V
1996-01-01
Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...
Additive derivations on algebras of measurable operators
International Nuclear Information System (INIS)
Ayupov, Sh.A.; Kudaybergenov, K.K.
2009-08-01
Given a von Neumann algebra M we introduce the so-called central extension mix(M) of M. We show that mix(M) is a *-subalgebra in the algebra LS(M) of all locally measurable operators with respect to M, and this algebra coincides with LS(M) if and only if M does not admit type II direct summands. We prove that if M is a properly infinite von Neumann algebra then every additive derivation on the algebra mix(M) is inner. This implies that on the algebra LS(M), where M is a type I ∞ or a type III von Neumann algebra, all additive derivations are inner derivations. (author)
On graded algebras of global dimension 3
International Nuclear Information System (INIS)
Piontkovskii, D I
2001-01-01
Assume that a graded associative algebra A over a field k is minimally presented as the quotient algebra of a free algebra F by the ideal I generated by a set f of homogeneous elements. We study the following two extensions of A: the algebra F-bar=F/I oplus I/I 2 oplus ... associated with F with respect to the I-adic filtration, and the homology algebra H of the Shafarevich complex Sh(f,F) (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the A-algebra H in this case is free, and the algebra F-bar is isomorphic to the quotient algebra of a free A-algebra by the ideal generated by a so-called strongly free (or inert) set
Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.
Sialaros, Michalis; Christianidis, Jean
2016-06-01
Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.
Operator theory, operator algebras and applications
Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya
2014-01-01
This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...
Quantum algebras in phenomenological description of particle properties
International Nuclear Information System (INIS)
Gavrilik, A.M.
2001-01-01
Quantum and q-deformed algebras find their application not only in mathematical physics and field theoretical context, but also in phenomenology of particle properties. We describe (i) the use of quantum algebras U q (su n ) corresponding to Lie algebras of the groups SU n , taken for flavor symmetries of hadrons, in deriving new high-accuracy hadron mass sum rules, and (ii) the use of (multimode) q-oscillator algebras along with q-Bose gas picture in modelling the properties of the intercept λ of two-pion (two-kaon) correlations in heavy-ion collisions, as λ shows sizable observed deviation from the expected Bose-Einstein type behavior. The deformation parameter q is in case (i) argued and in case (ii) conjectured to be connected with the Cabibbo angle θ c
Strong Bisimilarity of Simple Process Algebras
DEFF Research Database (Denmark)
Srba, Jirí
2003-01-01
We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used...
The planar algebra associated to a Kac algebra
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Given a Kac algebra H and a II1 factor M, there is a well-known construction of a ... We have attempted to render this paper 'accessible' and self-contained to a person ..... Define Pk(L) to be the vector-space with basis given by the collection of 'k-tangles ..... The assertions (i), (iii) and (iv) are immediate consequences of the ...
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
A note on derivations of Murray-von Neumann algebras.
Kadison, Richard V; Liu, Zhe
2014-02-11
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
Logarithmic sℓ-hat (2) CFT models from Nichols algebras: I
International Nuclear Information System (INIS)
Semikhatov, A M; Tipunin, I Yu
2013-01-01
We construct chiral algebras that centralize rank-2 Nichols algebras with at least one fermionic generator. This gives ‘logarithmic’ W-algebra extensions of a fractional-level sℓ-hat (2) algebra. We discuss crucial aspects of the emerging general relation between Nichols algebras and logarithmic conformal field theory (CFT) models: (i) the extra input, beyond the Nichols algebra proper, needed to uniquely specify a conformal model; (ii) a relation between the CFT counterparts of Nichols algebras connected by Weyl groupoid maps; and (iii) the common double bosonization U(X) of such Nichols algebras. For an extended chiral algebra, candidates for its simple modules that are counterparts of the U(X) simple modules are proposed, as a first step toward a functorial relation between U(X) and W-algebra representation categories. (paper)
Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana
2015-01-01
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras
International Nuclear Information System (INIS)
Gebert, R.W.
1993-09-01
The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)
Algebraic structure of chiral anomalies
International Nuclear Information System (INIS)
Stora, R.
1985-09-01
I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories
Quantum W-algebras and elliptic algebras
International Nuclear Information System (INIS)
Feigin, B.; Kyoto Univ.; Frenkel, E.
1996-01-01
We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)
Recoupling Lie algebra and universal ω-algebra
International Nuclear Information System (INIS)
Joyce, William P.
2004-01-01
We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure
Refined algebraic quantisation in a system with nonconstant gauge invariant structure functions
International Nuclear Information System (INIS)
Martínez-Pascual, Eric
2013-01-01
In a previous work [J. Louko and E. Martínez-Pascual, “Constraint rescaling in refined algebraic quantisation: Momentum constraint,” J. Math. Phys. 52, 123504 (2011)], refined algebraic quantisation (RAQ) within a family of classically equivalent constrained Hamiltonian systems that are related to each other by rescaling one momentum-type constraint was investigated. In the present work, the first steps to generalise this analysis to cases where more constraints occur are developed. The system under consideration contains two momentum-type constraints, originally abelian, where rescalings of these constraints by a non-vanishing function of the coordinates are allowed. These rescalings induce structure functions at the level of the gauge algebra. Providing a specific parametrised family of real-valued scaling functions, the implementation of the corresponding rescaled quantum momentum-type constraints is performed using RAQ when the gauge algebra: (i) remains abelian and (ii) undergoes into an algebra of a nonunimodular group with nonconstant gauge invariant structure functions. Case (ii) becomes the first example known to the author where an open algebra is handled in refined algebraic quantisation. Challenging issues that arise in the presence of non-gauge invariant structure functions are also addressed
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
N.W. van den Hijligenberg; R. Martini
1995-01-01
textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra
String field theory. Algebraic structure, deformation properties and superstrings
International Nuclear Information System (INIS)
Muenster, Korbinian
2013-01-01
This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the
The Yoneda algebra of a K2 algebra need not be another K2 algebra
Cassidy, T.; Phan, C.; Shelton, B.
2010-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Matrix algebra theory, computations and applications in statistics
Gentle, James E
2017-01-01
This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory. Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matrices encountered in statistics, such as...
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
International Nuclear Information System (INIS)
Marquette, Ian
2013-01-01
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
An introduction to algebraic geometry and algebraic groups
Geck, Meinolf
2003-01-01
An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups
Quadratic PBW-Algebras, Yang-Baxter Equation and Artin-Schelter Regularity
International Nuclear Information System (INIS)
Gateva-Ivanova, Tatiana
2010-08-01
We study quadratic algebras over a field k. We show that an n-generated PBW-algebra A has finite global dimension and polynomial growth iff its Hilbert series is H A (z) = 1/(1-z) n . A surprising amount can be said when the algebra A has quantum binomial relations, that is the defining relations are binomials xy - c xy zt, c xy is an element of k x , which are square-free and nondegenerate. We prove that in this case various good algebraic and homological properties are closely related. The main result shows that for an n-generated quantum binomial algebra A the following conditions are equivalent: (i) A is a PBW-algebra with finite global dimension; (ii) A is PBW and has polynomial growth; (iii) A is an Artin-Schelter regular PBW-algebra; (iv) A is a Yang-Baxter algebra; (v) H A (z) = 1/(1-z) n ; (vi) The dual A ! is a quantum Grassman algebra; (vii) A is a binomial skew polynomial ring. This implies that the problem of classification of Artin-Schelter regular PBW-algebras of global dimension n is equivalent to the classification of square-free set-theoretic solutions of the Yang-Baxter equation (X,r), on sets X of order n.| (author)
Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).
Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.
Morris, J. Richard
This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…
The relation between quantum W algebras and Lie algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1994-01-01
By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)
2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras
International Nuclear Information System (INIS)
Ayupov, Shavkat; Kudaybergenov, Karimbergen
2016-01-01
The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)
Simple skew category algebras associated with minimal partially defined dynamical systems
DEFF Research Database (Denmark)
Nystedt, Patrik; Öinert, Per Johan
2013-01-01
In this article, we continue our study of category dynamical systems, that is functors s from a category G to Topop, and their corresponding skew category algebras. Suppose that the spaces s(e), for e∈ob(G), are compact Hausdorff. We show that if (i) the skew category algebra is simple, then (ii) G...
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
Regularity of C*-algebras and central sequence algebras
DEFF Research Database (Denmark)
Christensen, Martin S.
The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...
Real division algebras and other algebras motivated by physics
International Nuclear Information System (INIS)
Benkart, G.; Osborn, J.M.
1981-01-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
AIR Tools II: algebraic iterative reconstruction methods, improved implementation
DEFF Research Database (Denmark)
Hansen, Per Christian; Jørgensen, Jakob Sauer
2017-01-01
with algebraic iterative methods and their convergence properties. The present software is a much expanded and improved version of the package AIR Tools from 2012, based on a new modular design. In addition to improved performance and memory use, we provide more flexible iterative methods, a column-action method...
Teachers' Understanding of Algebraic Generalization
Hawthorne, Casey Wayne
Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive
Algebraic structure of Robinson–Trautman and Kundt geometries in arbitrary dimension
International Nuclear Information System (INIS)
Podolský, J; Švarc, R
2015-01-01
We investigate the Weyl tensor algebraic structure of a fully general family of D-dimensional geometries that admit a non-twisting and shear-free null vector field k. From the coordinate components of the curvature tensor we explicitly derive all Weyl scalars of various boost weights. This enables us to give a complete algebraic classification of the metrics in the case when the optically privileged null direction k is a (multiple) Weyl aligned null direction (WAND). No field equations are applied, so the results are valid not only in Einstein's gravity, including its extension to higher dimensions, but also in any metric gravitation theory that admits non-twisting and shear-free spacetimes. We prove that all such geometries are of type I(b), or more special, and we derive surprisingly simple necessary and sufficient conditions under which k is a double, triple or quadruple WAND. All possible algebraically special types, including the refinement to subtypes, are thus identified, namely II(a), II(b), II(c), II(d), III(a), III(b), N, O, II i , III i , D, D(a), D(b), D(c), D(d), and their combinations. Some conditions are identically satisfied in four dimensions. We discuss both important subclasses, namely the Kundt family of geometries with the vanishing expansion (Θ=0) and the Robinson–Trautman family (Θ ≠ 0, and in particular Θ=1/r). Finally, we apply Einstein's field equations and obtain a classification of all Robinson–Trautman vacuum spacetimes. This reveals fundamental algebraic differences in the D>4 and D=4 cases, namely that in higher dimensions there only exist such spacetimes of types D(a) ≡ D(abd), D(c) ≡ D(bcd) and O. (paper)
Extended Virasoro algebra and algebra of area preserving diffeomorphisms
International Nuclear Information System (INIS)
Arakelyan, T.A.
1990-01-01
The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs
An application of the division algebras, Jordan algebras and split composition algebras
International Nuclear Information System (INIS)
Foot, R.; Joshi, G.C.
1992-01-01
It has been established that the covering group of the Lorentz group in D = 3, 4, 6, 10 can be expressed in a unified way, based on the four composition division algebras R, C, Q and O. In this paper, the authors discuss, in this framework, the role of the complex numbers of quantum mechanics. A unified treatment of quantum-mechanical spinors is given. The authors provide an explicit demonstration that the vector and spinor transformations recently constructed from a subgroup of the reduced structure group of the Jordan algebras M n 3 are indeed the Lorentz transformations. The authors also show that if the division algebras in the construction of the covering groups of the Lorentz groups in D = 3, 4, 6, 10 are replaced by the split composition algebras, then the sequence of groups SO(2, 2), SO(3, 3) and SO(5, 5) result. The analysis is presumed to be self-contained as the relevant aspects of the division algebras and Jordan algebras are reviewed. Some applications to physical theory are indicated
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
On a Fuzzy Algebra for Querying Graph Databases
Pivert , Olivier; Thion , Virginie; Jaudoin , Hélène; Smits , Grégory
2014-01-01
International audience; This paper proposes a notion of fuzzy graph database and describes a fuzzy query algebra that makes it possible to handle such database, which may be fuzzy or not, in a flexible way. The algebra, based on fuzzy set theory and the concept of a fuzzy graph, is composed of a set of operators that can be used to express preference queries on fuzzy graph databases. The preferences concern i) the content of the vertices of the graph and ii) the structure of the graph. In a s...
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Iwahori-Hecke algebras and Schur algebras of the symmetric group
Mathas, Andrew
1999-01-01
This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the q-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and q-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in Chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the q-Schur algebras. T...
Singular dimensions of the N=2 superconformal algebras II: The twisted N=2 algebra
International Nuclear Information System (INIS)
Doerrzapf, M.; Gato-Rivera, B.
2001-01-01
We introduce a suitable adapted ordering for the twisted N=2 superconformal algebra (i.e. with mixed boundary conditions for the fermionic fields). We show that the ordering kernels for complete Verma modules have two elements and the ordering kernels for G-closed Verma modules just one. Therefore, spaces of singular vectors may be two-dimensional for complete Verma modules whilst for G-closed Verma modules they can only be one-dimensional. We give all singular vectors for the levels (1)/(2), 1, and (3)/(2) for both complete Verma modules and G-closed Verma modules. We also give explicite examples of degenerate cases with two-dimensional singular vector spaces in complete Verma modules. General expressions are conjectured for the relevant terms of all (primitive) singular vectors, i.e. for the coefficients with respect to the ordering kernel. These expressions allow to identify all degenerate cases as well as all G-closed singular vectors. They also lead to the discovery of subsingular vectors for the twisted N=2 superconformal algebra. Explicit examples of these subsingular vectors are given for the levels (1)/(2), 1, and (3)/(2). Finally, the multiplication rules for singular vector operators are derived using the ordering kernel coefficients. This sets the basis for the analysis of the twisted N=2 embedding diagrams. (orig.)
Algebra of pseudo-differential operators over C*-algebra
International Nuclear Information System (INIS)
Mohammad, N.
1982-08-01
Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Killing vectors in empty space algebraically special metrics. II
International Nuclear Information System (INIS)
Held, A.
1976-01-01
Empty space algebraically special metrics possessing an expanding degenerate principal null vector and Killing vectors are investigated. Attention is centered on that class of Killing vector (called nonpreferred) which is necessarily spacelike in the asymptotic region. A detailed analysis of the relationship between the Petrov--Penrose classification and these Killing vectors is carried out
Jordan algebras versus C*- algebras
International Nuclear Information System (INIS)
Stormer, E.
1976-01-01
The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)
African Journals Online (AJOL)
Tadesse
In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Generalized EMV-Effect Algebras
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
Algebraic isomorphism in two-dimensional anomalous gauge theories
International Nuclear Information System (INIS)
Carvalhaes, C.G.; Belvedere, L.V.; Filho, H.B.; Natividade, C.P.
1997-01-01
The operator solution of the anomalous chiral Schwinger model is discussed on the basis of the general principles of Wightman field theory. Some basic structural properties of the model are analyzed taking a careful control on the Hilbert space associated with the Wightman functions. The isomorphism between gauge noninvariant and gauge invariant descriptions of the anomalous theory is established in terms of the corresponding field algebras. We show that (i) the Θ-vacuum representation and (ii) the suggested equivalence of vector Schwinger model and chiral Schwinger model cannot be established in terms of the intrinsic field algebra. copyright 1997 Academic Press, Inc
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Converting nested algebra expressions into flat algebra expressions
Paredaens, J.; Van Gucht, D.
1992-01-01
Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
The elliptic quantum algebra Uq,p(sl-hatN) and its vertex operators
International Nuclear Information System (INIS)
Chang Wenjing; Ding Xiangmao
2009-01-01
We construct a realization of the elliptic quantum algebra U q,p (sl-hat N ) for any given level k in terms of free boson fields and their twisted partners. It can be considered as the elliptic deformation of the Wakimoto realization of the quantum affine algebra U q (sl-hat N ). We also construct a family of screening currents, which commute with the currents of U q,p (sl-hat N ) up to total q-differences. And we give explicit twisted expressions for the type I and type II vertex operators of U q,p (sl-hat N ) by twisting the known results of the type I vertex operators of the quantum affine algebra U q (sl-hat N ) and the new results of the type II vertex operators of U q (sl-hat N ) we obtained in this paper.
The bubble algebra: structure of a two-colour Temperley-Lieb Algebra
International Nuclear Information System (INIS)
Grimm, Uwe; Martin, Paul P
2003-01-01
We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley-Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang-Baxter equations
Awange, Joseph L
2004-01-01
While preparing and teaching 'Introduction to Geodesy I and II' to - dergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taughtrequiredsomeskillsinalgebra,andinparticular,computeral- bra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we haveattemptedtoputtogetherbasicconceptsofabstractalgebra which underpin the techniques for solving algebraic problems. Algebraic c- putational algorithms useful for solving problems which require exact solutions to nonlinear systems of equations are presented and tested on various problems. Though the present book focuses mainly on the two ?elds,theconceptsand techniquespresented hereinarenonetheless- plicable to other ?elds where algebraic computational problems might be encountered. In Engineering for example, network densi?cation and robo...
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
Approximation of complex algebraic numbers by algebraic numbers of bounded degree
Bugeaud, Yann; Evertse, Jan-Hendrik
2007-01-01
We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...
Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras
International Nuclear Information System (INIS)
Huang Yizhi
1994-01-01
We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)
A comparison of equality in computer algebra and correctness in mathematical pedagogy (II)
Bradford, Russell; Davenport, James H; Sangwin, C
2010-01-01
A perennial problem in computer-aided assessment is that “a right answer”, pedagogically speaking, is not the same thing as “a mathematically correct expression”, as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was “the right answer”, typically calculus questions. Here we look at some other cases, notably in linear algebra, where there can be many “right answers”, but still th...
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
The vacuum preserving Lie algebra of a classical W-algebra
International Nuclear Information System (INIS)
Feher, L.; Tsutsui, I.
1993-07-01
We simplify and generalize an argument due to Bowcock and Watts showing that one can associate a finite Lie algebra (the 'classical vacuum preserving algebra') containing the Moebius sl(2) subalgebra to any classical W-algebra. Our construction is based on a kinematical analysis of the Poisson brackets of quasi-fields. In the case of the W S G -subalgebra S of a simple Lie algebra G, we exhibit a natural isomorphism between this finite Lie algebra and G whereby the Moebius sl(2) is identified with S. (orig.)
On the representation of generalized Dirac (Clifford) algebras
International Nuclear Information System (INIS)
Srivastava, T.
1981-10-01
Some results of Brauer and Weyl and of Jordan and Wigner on irreducible representations of generalized Dirac (Clifford) algebras have been proved, adopting a new and simple approach which (i) makes the whole subject straightforward for physicists and (ii) simplifies the demonstration of the fundamental theorem of Pauli. (author)
Nonflexible Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1978-01-01
We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Rohlin flows on Von Neumann algebras
Masuda, Toshihiko
2016-01-01
The authors will classify Rohlin flows on von Neumann algebras up to strong cocycle conjugacy. This result provides alternative approaches to some preceding results such as Kawahigashi's classification of flows on the injective type II_1 factor, the classification of injective type III factors due to Connes, Krieger and Haagerup and the non-fullness of type III_0 factors. Several concrete examples are also studied.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
International Nuclear Information System (INIS)
Martin, J.; Shore, B.W.; Bergmann, K.
1995-01-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
Martin, J.; Shore, B. W.; Bergmann, K.
1995-07-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Clark, Allan
1984-01-01
This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Iterated Leavitt Path Algebras
International Nuclear Information System (INIS)
Hazrat, R.
2009-11-01
Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
Algebraic aspects of exact models
International Nuclear Information System (INIS)
Gaudin, M.
1983-01-01
Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method
Quantum deformed su(mvertical stroke n) algebra and superconformal algebra on quantum superspace
International Nuclear Information System (INIS)
Kobayashi, Tatsuo
1993-01-01
We study a deformed su(mvertical stroke n) algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. From the deformed su(1vertical stroke 4) algebra, we derive deformed Lorentz, translation of Minkowski space, iso(2,2) and its supersymmetric algebras as closed subalgebras with consistent automorphisms. (orig.)
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
International Nuclear Information System (INIS)
Dragon, N.
1979-01-01
The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Galilean contractions of W-algebras
Directory of Open Access Journals (Sweden)
Jørgen Rasmussen
2017-09-01
Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.
Quantum affine algebras and deformations of the virasoro and W-algebras
International Nuclear Information System (INIS)
Frenkel, E.; Reshetikhin, N.
1996-01-01
Using the Wakimoto realization of quantum affine algebras we define new Poisson algebras, which are q-deformations of the classical W-algebras. We also define their free field realizations, i.e. homomorphisms into some Heisenberg-Poisson algebras. The formulas for these homomorphisms coincide with formulas for spectra of transfer-matrices in the corresponding quantum integrable models derived by the Bethe-Ansatz method. (orig.)
Algebraic entropy for algebraic maps
International Nuclear Information System (INIS)
Hone, A N W; Ragnisco, Orlando; Zullo, Federico
2016-01-01
We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
The BRS algebra of a free differential algebra
International Nuclear Information System (INIS)
Boukraa, S.
1987-04-01
We construct in this work, the Weil and the universal BRS algebras of theories that can have as a gauge symmetry a free differential (Sullivan) algebra, the natural extension of Lie algebras allowing the definition of p-form gauge potentials (p>1). The finite gauge transformations of these potentials are deduced from the infinitesimal ones and the group structure is shown. The geometrical meaning of these p-form gauge potentials is given by the notion of a Quillen superconnection. (author). 19 refs
Pseudo-Riemannian Novikov algebras
Energy Technology Data Exchange (ETDEWEB)
Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn
2008-08-08
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language
International Nuclear Information System (INIS)
Takao, Masaru
1989-01-01
We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)
(Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras
Directory of Open Access Journals (Sweden)
Dusko Pavlovic
2017-01-01
Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.
An algorithm to construct the basic algebra of a skew group algebra
Horobeţ, E.
2016-01-01
We give an algorithm for the computation of the basic algebra Morita equivalent to a skew group algebra of a path algebra by obtaining formulas for the number of vertices and arrows of the new quiver Qb. We apply this algorithm to compute the basic algebra corresponding to all simple quaternion
Compact quantum group C*-algebras as Hopf algebras with approximate unit
International Nuclear Information System (INIS)
Do Ngoc Diep; Phung Ho Hai; Kuku, A.O.
1999-04-01
In this paper, we construct and study the representation theory of a Hopf C*-algebra with approximate unit, which constitutes quantum analogue of a compact group C*-algebra. The construction is done by first introducing a convolution-product on an arbitrary Hopf algebra H with integral, and then constructing the L 2 and C*-envelopes of H (with the new convolution-product) when H is a compact Hopf *-algebra. (author)
Intervals in Generalized Effect Algebras and their Sub-generalized Effect Algebras
Directory of Open Access Journals (Sweden)
Zdenka Riečanová
2013-01-01
Full Text Available We consider subsets G of a generalized effect algebra E with 0∈G and such that every interval [0, q]G = [0, q]E ∩ G of G (q ∈ G , q ≠ 0 is a sub-effect algebra of the effect algebra [0, q]E. We give a condition on E and G under which every such G is a sub-generalized effect algebra of E.
International Nuclear Information System (INIS)
Kanakoglou, K; Daskaloyannis, C
2008-01-01
Parabosonic algebra in finite or infinite degrees of freedom is considered as a Z 2 -graded associative algebra, and is shown to be a Z 2 -graded (or super) Hopf algebra. The super-Hopf algebraic structure of the parabosonic algebra is established directly without appealing to its relation to the osp(1/2n) Lie superalgebraic structure. The notion of super-Hopf algebra is equivalently described as a Hopf algebra in the braided monoidal category CZ 2 M. The bosonization technique for switching a Hopf algebra in the braided monoidal category H M (where H is a quasitriangular Hopf algebra) into an ordinary Hopf algebra is reviewed. In this paper, we prove that for the parabosonic algebra P B , beyond the application of the bosonization technique to the original super-Hopf algebra, a bosonization-like construction is also achieved using two operators, related to the parabosonic total number operator. Both techniques switch the same super-Hopf algebra P B to an ordinary Hopf algebra, thus producing two different variants of P B , with an ordinary Hopf structure
Effective constraint algebras with structure functions
International Nuclear Information System (INIS)
Bojowald, Martin; Brahma, Suddhasattwa
2016-01-01
This article presents the result that fluctuations and higher moments of a state, by themselves, do not imply quantum corrections in structure functions of constrained systems. Moment corrections are isolated from other types of quantum effects, such as factor-ordering choices and regularization, by introducing a new condition with two parts: (i) having a direct (or faithful) quantization of the classical structure functions, (ii) free of factor-ordering ambiguities. In particular, it is assumed that the classical constraints can be quantized in an anomaly free way, so that properties of the resulting constraint algebras can be derived. If the two-part condition is not satisfied, effective constraints can still be evaluated, but quantum effects may be stronger. Consequences for canonical quantum gravity, whose structure functions encode space–time structure, are discussed. In particular, deformed algebras found in models of loop quantum gravity provide reliable information even in the Planck regime. (paper)
The C*-algebra of a vector bundle and fields of Cuntz algebras
Vasselli, Ezio
2004-01-01
We study the Pimsner algebra associated with the module of continuous sections of a Hilbert bundle, and prove that it is a continuous bundle of Cuntz algebras. We discuss the role of such Pimsner algebras w.r.t. the notion of inner endomorphism. Furthermore, we study bundles of Cuntz algebras carrying a global circle action, and assign to them a class in the representable KK-group of the zero-grade bundle. We compute such class for the Pimsner algebra of a vector bundle.
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction
Directory of Open Access Journals (Sweden)
Andrea Bonfiglioli
2014-12-01
Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.
Combinatorial commutative algebra
Miller, Ezra
2005-01-01
Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.
Davidson, Kenneth R
1996-01-01
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea
Non-freely generated W-algebras and construction of N=2 super W-algebras
International Nuclear Information System (INIS)
Blumenhagen, R.
1994-07-01
Firstly, we investigate the origin of the bosonic W-algebras W(2, 3, 4, 5), W(2, 4, 6) and W(2, 4, 6) found earlier by direct construction. We present a coset construction for all three examples leading to a new type of finitely, non-freely generated quantum W-algebras, which we call unifying W-algebras. Secondly, we develop a manifest covariant formalism to construct N = 2 super W-algebras explicitly on a computer. Applying this algorithm enables us to construct the first four examples of N = 2 super W-algebras with two generators and the N = 2 super W 4 algebra involving three generators. The representation theory of the former ones shows that all examples could be divided into four classes, the largest one containing the N = 2 special type of spectral flow algebras. Besides the W-algebra of the CP(3) Kazama-Suzuki coset model, the latter example with three generators discloses a second solution which could also be explained as a unifying W-algebra for the CP(n) models. (orig.)
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
International Nuclear Information System (INIS)
Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA
1992-01-01
The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)
Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra
Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio
2018-03-01
By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.
Introduction to quantum algebras
International Nuclear Information System (INIS)
Kibler, M.R.
1992-09-01
The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs
Second-Order Systems of ODEs Admitting Three-Dimensional Lie Algebras and Integrability
Directory of Open Access Journals (Sweden)
Muhammad Ayub
2013-01-01
the case of k≥3. We discuss the singular invariant representations of canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras. Furthermore, we give an integration procedure for canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras which comprises of two approaches, namely, division into four types I, II, III, and IV and that of integrability of the invariant representations. We prove that if a system of two second-order ODEs has a three-dimensional solvable Lie algebra, then, its general solution can be obtained from a partially linear, partially coupled or reduced invariantly represented system of equations. A natural extension of this result is provided for a system of two kth-order (k≥3 ODEs. We present illustrative examples of familiar integrable physical systems which admit three-dimensional Lie algebras such as the classical Kepler problem and the generalized Ermakov systems that give rise to closed trajectories.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Kimura, Taro; Pestun, Vasily
2018-06-01
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Pre-Algebra Essentials For Dummies
Zegarelli, Mark
2010-01-01
Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra
Representations of quantum bicrossproduct algebras
International Nuclear Information System (INIS)
Arratia, Oscar; Olmo, Mariano A del
2002-01-01
We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Abstract Algebra to Secondary School Algebra: Building Bridges
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Infinite dimension algebra and conformal symmetry
International Nuclear Information System (INIS)
Ragoucy-Aubezon, E.
1991-04-01
A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
DEFF Research Database (Denmark)
Ara, Pere; Dykema, Kenneth J.; Rørdam, Mikael
2013-01-01
The proofs of Theorem 2.2 of K. J. Dykema and M. Rørdam, Purely infinite simple C∗-algebras arising from free product constructions}, Canad. J. Math. 50 (1998), 323--341 and of Theorem 3.1 of K. J. Dykema, Purely infinite simple C∗-algebras arising from free product constructions, II, Math. Scand...
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
Essays in the history of Lie groups and algebraic groups
Borel, Armand
2001-01-01
Lie groups and algebraic groups are important in many major areas of mathematics and mathematical physics. We find them in diverse roles, notably as groups of automorphisms of geometric structures, as symmetries of differential systems, or as basic tools in the theory of automorphic forms. The author looks at their development, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. Starting from Lie's theory of local analytic transformation groups and early work on Lie algebras, he follows the process of globalization in its two main frameworks: differential geometry and topology on one hand, algebraic geometry on the other. Chapters II to IV are devoted to the former, Chapters V to VIII, to the latter. The essays in the first part of the book survey various proofs of the full reducibility of linear representations of \\mathbf{SL}_2{(\\mathbb{C})}, the contributions of H. Weyl to representations and invariant theory for semisimple Lie groups, and con...
Enveloping σ-C C C-algebra of a smooth Frechet algebra crossed ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 2. Enveloping -*-Algebra of a Smooth Frechet Algebra Crossed Product by R R , K -Theory and Differential Structure in *-Algebras. Subhash J Bhatt. Regular Articles Volume 116 Issue 2 May 2006 pp 161-173 ...
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Dynamical entropy of C* algebras and Von Neumann algebras
International Nuclear Information System (INIS)
Connes, A.; Narnhofer, H.; Thirring, W.
1986-01-01
The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)
The elliptic quantum algebra U{sub q,p}(sl-hat{sub N}) and its vertex operators
Energy Technology Data Exchange (ETDEWEB)
Chang Wenjing [School of Mathematical Science, Capital Normal University, Beijing 100048 (China); Ding Xiangmao [Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: wjchang@amss.ac.cn, E-mail: xmding@amss.ac.cn
2009-10-23
We construct a realization of the elliptic quantum algebra U{sub q,p}(sl-hat{sub N}) for any given level k in terms of free boson fields and their twisted partners. It can be considered as the elliptic deformation of the Wakimoto realization of the quantum affine algebra U{sub q}(sl-hat{sub N}). We also construct a family of screening currents, which commute with the currents of U{sub q,p}(sl-hat{sub N}) up to total q-differences. And we give explicit twisted expressions for the type I and type II vertex operators of U{sub q,p}(sl-hat{sub N}) by twisting the known results of the type I vertex operators of the quantum affine algebra U{sub q}(sl-hat{sub N}) and the new results of the type II vertex operators of U{sub q}(sl-hat{sub N}) we obtained in this paper.
Gradings on simple Lie algebras
Elduque, Alberto
2013-01-01
Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.
Type II1 factors satisfying the spatial isomorphism conjecture
DEFF Research Database (Denmark)
Cameron, Jan; Christensen, Erik; Sinclair, Allan M.
2012-01-01
Det vises at hvis et par af von Neumann algebraer er tilstrækkeligt tæt på hinanden i Hausdorff-metrikken, og den ene er en II1 faktor, som er et krydset produkt af en abelsk von Neumann algebra med en gruuppvirkning af en gruppe men triviel begrænset kohomologi, så er de to algebraer unitært...
Topological conformal algebra and BRST algebra in non-critical string theories
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Suzuki, Hiroshi.
1991-03-01
The operator algebra in non-critical string theories is studied by treating the cosmological term as a perturbation. The algebra of covariantly regularized BRST and related currents contains a twisted N = 2 superconformal algebra only at d = -2 in bosonic strings, and a twisted N = 3 superconformal algebra only at d = ±∞ in spinning strings. The bosonic string at d = -2 is examined by replacing the string coordinate by a fermionic matter with c = -2. The resulting bc-βγ system accommodates various forms of BRST cohomology, and the ghost number assignment and BRST cohomology are different in the c = -2 string theory and two-dimensional topological gravity. (author)
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Novikov algebras with associative bilinear forms
Energy Technology Data Exchange (ETDEWEB)
Zhu Fuhai; Chen Zhiqi [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)
2007-11-23
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.
Lie algebra in quantum physics by means of computer algebra
Kikuchi, Ichio; Kikuchi, Akihito
2017-01-01
This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Profinite algebras and affine boundedness
Schneider, Friedrich Martin; Zumbrägel, Jens
2015-01-01
We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...
Double-partition Quantum Cluster Algebras
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Zhang, Hechun
2012-01-01
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....
Very true operators on MTL-algebras
Directory of Open Access Journals (Sweden)
Wang Jun Tao
2016-01-01
Full Text Available The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized and an analogous of representation theorem for very true MTL-algebras is proved. Then, the left and right stabilizers of very true MTL-algebras are introduced and some related properties are given. As applications of stabilizer of very true MTL-algebras, we produce a basis for a topology on very true MTL-algebras and show that the generated topology by this basis is Baire, connected, locally connected and separable. Finally, the corresponding logic very true MTL-logic is constructed and the soundness and completeness of this logic are proved based on very true MTL-algebras.
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
W-realization of Lie algebras. Application to so(4,2) and Poincare algebras
International Nuclear Information System (INIS)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1996-05-01
The property of some finite W-algebras to appear as the commutant of a particular subalgebra in a simple Lie algebra G is exploited for the obtention of new G-realizations from a 'canonical' differential one. The method is applied to the conformal algebra so(4,2) and therefore yields also results for its Poincare subalgebra. Unitary irreducible representations of these algebras are recognized in this approach, which is naturally compared -or associated to - the induced representation technique. (author)
Extended Kac-Moody algebras and applications
International Nuclear Information System (INIS)
Ragoucy, E.; Sorba, P.
1991-04-01
The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
Non-relativistic Bondi-Metzner-Sachs algebra
Batlle, Carles; Delmastro, Diego; Gomis, Joaquim
2017-09-01
We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein-Gordon field.
The Unitality of Quantum B-algebras
Han, Shengwei; Xu, Xiaoting; Qin, Feng
2018-02-01
Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
G-identities of non-associative algebras
International Nuclear Information System (INIS)
Bakhturin, Yu A; Zaitsev, M V; Sehgal, S K
1999-01-01
The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group G acts on such an algebra A by automorphisms and anti-automorphisms and A satisfies an essential G-identity, then A satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of G. We show in the case of ordinary Lie algebras that if L is a Lie algebra, a finite group G acts on L by automorphisms and anti-automorphisms, and the order of G is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of L, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution
W-realization of Lie algebras. Application to so(4,2) and Poincare algebras
Energy Technology Data Exchange (ETDEWEB)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1996-05-01
The property of some finite W-algebras to appear as the commutant of a particular subalgebra in a simple Lie algebra G is exploited for the obtention of new G-realizations from a `canonical` differential one. The method is applied to the conformal algebra so(4,2) and therefore yields also results for its Poincare subalgebra. Unitary irreducible representations of these algebras are recognized in this approach, which is naturally compared -or associated to - the induced representation technique. (author). 12 refs.
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
International Nuclear Information System (INIS)
MacCallum, M.A.H.
1990-01-01
The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)
Cox, David A; O'Shea, Donal
2015-01-01
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geom...
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Abstract algebra for physicists
International Nuclear Information System (INIS)
Zeman, J.
1975-06-01
Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)
Early Algebra with Graphics Software as a Type II Application of Technology
Abramovich, Sergei
2006-01-01
This paper describes the use of Kid Pix-graphics software for creative activities of young children--in the context of early algebra as determined by the mathematics core curriculum of New York state. It shows how grade-two appropriate pedagogy makes it possible to bring about a qualitative change in the learning process of those commonly…
Shafarevich, Igor Rostislavovich
2005-01-01
This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches
Characterizations of locally C*-algebras
International Nuclear Information System (INIS)
Mohammad, N.; Somasundaram, S.
1991-08-01
We seek the generalization of the Gelfand-Naimark theorems for locally C*-algebras. Precisely, if A is a unital commutative locally C*-algebra, then it is shown that A is *-isomorphic (topologically and algebraically) to C(Δ). Further, if A is any locally C*-algebra, then it is realized as a closed *-subalgebra of some L(H) up to a topological algebraic *-isomorphism. Also, a brief exposition of the Gelfand-Naimark-Segal construction is given and some of its consequences are discussed. (author). 16 refs
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Cohen, A.M.; Liu, S.
2011-01-01
For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular
Mukkamala, Sambasiva Rao
2018-01-01
This book presents a unified course in BE-algebras with a comprehensive introduction, general theoretical basis and several examples. It introduces the general theoretical basis of BE-algebras, adopting a credible style to offer students a conceptual understanding of the subject. BE-algebras are important tools for certain investigations in algebraic logic, because they can be considered as fragments of any propositional logic containing a logical connective implication and the constant "1", which is considered as the logical value “true”. Primarily aimed at graduate and postgraduate students of mathematics, it also helps researchers and mathematicians to build a strong foundation in applied abstract algebra. Presenting insights into some of the abstract thinking that constitutes modern abstract algebra, it provides a transition from elementary topics to advanced topics in BE-algebras. With abundant examples and exercises arranged after each section, it offers readers a comprehensive, easy-to-follow int...
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
The Linear Span of Projections in AH Algebras and for Inclusions of C*-Algebras
Directory of Open Access Journals (Sweden)
Dinh Trung Hoa
2013-01-01
Full Text Available In the first part of this paper, we show that an AH algebra A=lim→(Ai,ϕi has the LP property if and only if every element of the centre of Ai belongs to the closure of the linear span of projections in A. As a consequence, a diagonal AH-algebra has the LP property if it has small eigenvalue variation in the sense of Bratteli and Elliott. The second contribution of this paper is that for an inclusion of unital C*-algebras P⊂A with a finite Watatani index, if a faithful conditional expectation E:A→P has the Rokhlin property in the sense of Kodaka et al., then P has the LP property under the condition thatA has the LP property. As an application, let A be a simple unital C*-algebra with the LP property, α an action of a finite group G onto Aut(A. If α has the Rokhlin property in the sense of Izumi, then the fixed point algebra AG and the crossed product algebra A ⋊α G have the LP property. We also point out that there is a symmetry on the CAR algebra such that its fixed point algebra does not have the LP property.
Non-commutative multiple-valued logic algebras
Ciungu, Lavinia Corina
2014-01-01
This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects. A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing. Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.
Automorphic Lie algebras with dihedral symmetry
International Nuclear Information System (INIS)
Knibbeler, V; Lombardo, S; A Sanders, J
2014-01-01
The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)
Certain number-theoretic episodes in algebra
Sivaramakrishnan, R
2006-01-01
Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Computations in finite-dimensional Lie algebras
Directory of Open Access Journals (Sweden)
A. M. Cohen
1997-12-01
Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.
Coset realization of unifying W-algebras
International Nuclear Information System (INIS)
Blumenhagen, R.; Huebel, R.
1994-06-01
We construct several quantum coset W-algebras, e.g. sl(2,R)/U(1) and sl(2,R)+sl(2,R)/sl(2,R), and argue that they are finitely nonfreely generated. Furthermore, we discuss in detail their role as unifying W-algebras of Casimir W-algebras. We show that it is possible to give coset realizations of various types of unifying W-algebras, e.g. the diagonal cosets based on the symplectic Lie algebras sp(2n) realize the unifying W-algebras which have previously been introduced as 'WD -n '. In addition, minimal models of WD -n are studied. The coset realizations provide a generalization of level-rank-duality of dual coset pairs. As further examples of finitely nonfreely generated quantum W-algebras we discuss orbifolding of W-algebras which on the quantum level has different properties than in the classical case. We demonstrate in some examples that the classical limit according to Bowcock and Watts of these nonfreely finitely generated quantum W-algebras probably yields infinitely nonfreely generated classical W-algebras. (orig.)
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
Principles of linear algebra with Mathematica
Shiskowski, Kenneth M
2013-01-01
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,
Einstein algebras and general relativity
International Nuclear Information System (INIS)
Heller, M.
1992-01-01
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Tang, Xiaomin
2016-01-01
In this paper, we characterize the biderivations of W-algebra $W(2,2)$ and Virasoro algebra $Vir$ without skewsymmetric condition. We get two classes of non-inner biderivations. As applications, we also get the forms of linear commuting maps on W-algebra $W(2,2)$ and Virasoro algebra $Vir$.
Evolution algebras generated by Gibbs measures
International Nuclear Information System (INIS)
Rozikov, Utkir A.; Tian, Jianjun Paul
2009-03-01
In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure μ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces have a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures are assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. (author)
Classical algebraic chromodynamics
International Nuclear Information System (INIS)
Adler, S.L.
1978-01-01
I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance
On the classification of quantum W-algebras
International Nuclear Information System (INIS)
Bowcock, P.; Watts, G.T.M.
1992-01-01
In this paper we consider the structure of general quantum W-algebras. We introduce the notions of deformability, positive-definiteness, and reductivity of a W-algebra. We show that one can associate a reductive finite Lie algebra to each reductive W-algebra. The finite Lie algebra is also endowed with a preferred sl(2) subalgebra, which gives the conformal weights of the W-algebra. We extend this to cover W-algebras containing both bosonic and fermionic fields, and illustrate our ideas with the Poisson bracket algebras of generalised Drinfeld-Sokolov hamiltonian systems. We then discuss the possibilities of classifying deformable W-algebras which fall outside this class in the context of automorphisms of Lie algebras. In conclusion we list the cases in which the W-algebra has no weight-one fields, and further, those in which it has only one weight-two field. (orig.)
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Semiprojectivity of universal -algebras generated by algebraic elements
DEFF Research Database (Denmark)
Shulman, Tatiana
2012-01-01
Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....
Macdonald index and chiral algebra
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
International Nuclear Information System (INIS)
Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA
1991-01-01
We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Comments on N=4 superconformal algebras
International Nuclear Information System (INIS)
Rasmussen, J.
2001-01-01
We present a new and asymmetric N=4 superconformal algebra for arbitrary central charge, thus completing our recent work on its classical analogue with vanishing central charge. Besides the Virasoro generator and 4 supercurrents, the algebra consists of an internal SU(2)xU(1) Kac-Moody algebra in addition to two spin 1/2 fermions and a bosonic scalar. The algebra is shown to be invariant under a linear twist of the generators, except for a unique value of the continuous twist parameter. At this value, the invariance is broken and the algebra collapses to the small N=4 superconformal algebra. The asymmetric N=4 superconformal algebra may be seen as induced by an affine SL(2 vertical bar 2) current superalgebra. Replacing SL(2 vertical bar 2) with the coset SL(2 vertical bar 2)/U(1), results directly in the small N=4 superconformal algebra
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Quantum Heisenberg groups and Sklyanin algebras
International Nuclear Information System (INIS)
Andruskiewitsch, N.; Devoto, J.; Tiraboschi, A.
1993-05-01
We define new quantizations of the Heisenberg group by introducing new quantizations in the universal enveloping algebra of its Lie algebra. Matrix coefficients of the Stone-von Neumann representation are preserved by these new multiplications on the algebra of functions on the Heisenberg group. Some of the new quantizations provide also a new multiplication in the algebra of theta functions; we obtain in this way Sklyanin algebras. (author). 23 refs
Classification of simple flexible Lie-admissible algebras
International Nuclear Information System (INIS)
Okubo, S.; Myung, H.C.
1979-01-01
Let A be a finite-dimensional flexible Lie-admissible algebra over the complex field such that A - is a simple Lie algebra. It is shown that either A is itself a Lie algebra isomorphic to A - or A - is a Lie algebra of type A/sub n/ (n greater than or equal to 2). In the latter case, A is isomorphic to the algebra defined on the space of (n + 1) x (n + 1) traceless matrices with multiplication given by x * y = μxy + (1 - μ)yx - (1/(n + 100 Tr (xy) E where μ is a fixed scalar, xy denotes the matrix operators in Lie algebras which has been studied in theoretical physics. We also discuss a broader class of Lie algebras over arbitrary field of characteristic not equal to 2, called quasi-classical, which includes semisimple as well as reductive Lie algebras. For this class of Lie algebras, we can introduce a multiplication which makes the adjoint operator space into an associative algebra. When L is a Lie algebra with nondegenerate killing form, it is shown that the adjoint operator algebra of L in the adjoint representation becomes a commutative associative algebra with unit element and its dimension is 1 or 2 if L is simple over the complex field. This is related to the known result that a Lie algebra of type A/sub n/ (n greater than or equal to 2) alone has a nonzero completely symmetric adjoint operator in the adjoint representation while all other algebras have none. Finally, Lie-admissible algebras associated with bilinear form are investigated
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have ﬁnitary and continuous versions. The four cases are: Hausdorﬀ metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...
Anyons, deformed oscillator algebras and projectors
International Nuclear Information System (INIS)
Engquist, Johan
2009-01-01
We initiate an algebraic approach to the many-anyon problem based on deformed oscillator algebras. The formalism utilizes a generalization of the deformed Heisenberg algebras underlying the operator solution of the Calogero problem. We define a many-body Hamiltonian and an angular momentum operator which are relevant for a linearized analysis in the statistical parameter ν. There exists a unique ground state and, in spite of the presence of defect lines, the anyonic weight lattices are completely connected by the application of the oscillators of the algebra. This is achieved by supplementing the oscillator algebra with a certain projector algebra.
Alternative algebraic approaches in quantum chemistry
International Nuclear Information System (INIS)
Mezey, Paul G.
2015-01-01
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed
Alternative algebraic approaches in quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)
2015-01-22
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.
Unipotent and nilpotent classes in simple algebraic groups and lie algebras
Liebeck, Martin W
2012-01-01
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of...
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Liu, S.
2012-01-01
We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.
Liu, S.
2013-01-01
We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.
Group characters, symmetric functions, and the Hecke algebra
Goldschmidt, David M
1993-01-01
Directed at graduate students and mathematicians, this book covers an unusual set of interrelated topics, presenting a self-contained exposition of the algebra behind the Jones polynomial along with various excursions into related areas. The book is made up of lecture notes from a course taught by Goldschmidt at the University of California at Berkeley in 1989. The course was organized in three parts. Part I covers, among other things, Burnside's Theorem that groups of order p^aq^b are solvable, Frobenius' Theorem on the existence of Frobenius kernels, and Brauer's characterization of characters. Part II covers the classical character theory of the symmetric group and includes an algorithm for computing the character table of S^n ; a construction of the Specht modules; the "determinant form" for the irreducible characters; the hook-length formula of Frame, Robinson, and Thrall; and the Murnaghan-Nakayama formula. Part III covers the ordinary representation theory of the Hecke algebra, the construction of the ...
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
DEFF Research Database (Denmark)
Schmidt, Thomas Lundsgaard
such a map, generalising the transformation groupoid of a local homeomorphism first introduced by Renault in \\cite{re}. We conduct a detailed study of the relationship between the dynamics of $\\phi$, the properties of these groupoids, the structure of their corresponding reduced groupoid $C^*$-algebras, and......, for certain classes of maps, the K-theory of these algebras. When the map $\\phi$ is transitive, we show that the algebras $C^*_r(\\Gamma_\\phi)$ and $C^*_r(\\Gamma_\\phi^+)$ are purely infinite and satisfy the Universal Coefficient Theorem. Furthermore, we find necessary and sufficient conditions for simplicity...... of these algebras in terms of dynamical properties of $\\phi$. We proceed to consider the situation when the algebras are non-simple, and describe the primitive ideal spectrum in this case. We prove that any irreducible representation factors through the $C^*$-algebra of the reduction of the groupoid to the orbit...
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a ...
Differential operators and W-algebra
International Nuclear Information System (INIS)
Vaysburd, I.; Radul, A.
1992-01-01
The connection between W-algebras and the algebra of differential operators is conjectured. The bosonized representation of the differential operator algebra with c=-2n and all the subalgebras are examined. The degenerate representations and null-state classifications for c=-2 are presented. (orig.)
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
Quantum algebra of N superspace
International Nuclear Information System (INIS)
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-01-01
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra
Directory of Open Access Journals (Sweden)
Hiroshi Ogawara
2017-01-01
Full Text Available This paper gives conditions for algebraic independence of a collection of functions satisfying a certain kind of algebraic difference relations. As applications, we show algebraic independence of two collections of special functions: (1 Vignéras' multiple gamma functions and derivatives of the gamma function, (2 the logarithmic function, \\(q\\-exponential functions and \\(q\\-polylogarithm functions. In a similar way, we give a generalization of Ostrowski's theorem.
A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)
Bradford, Russell; Davenport, James H.; Sangwin, Chris
2010-01-01
A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
On an extension of the Weil algebra
International Nuclear Information System (INIS)
Palev, Ch.
An extension of the Weil algebra Wsub(n), generated by an appropriate topology is considered. The topology is introduced in such a way that algebraic operations in Wsub(n) to be continuous. The algebraic operations in Wsub(n) are extended by a natural way to a complement, which is noted as an extended Weil algebra. It turns out that the last algebra contains isomorphically the Heisenberg group. By the same way an arbitrary enveloping algebra of a Lie group may be extended. The extended algebra will contain the initial Lie group. (S.P.)
Exponentiation and deformations of Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1982-01-01
The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one
Clifford algebras and the minimal representations of the 1D N-extended supersymmetry algebra
International Nuclear Information System (INIS)
Toppan, Francesco
2008-01-01
The Atiyah-Bott-Shapiro classification of the irreducible Clifford algebra is used to derive general properties of the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. (author)
Contraction of graded su(2) algebra
International Nuclear Information System (INIS)
Patra, M.K.; Tripathy, K.C.
1989-01-01
The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)
Atomic effect algebras with compression bases
International Nuclear Information System (INIS)
Caragheorgheopol, Dan; Tkadlec, Josef
2011-01-01
Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.
A twisted generalization of Novikov-Poisson algebras
Yau, Donald
2010-01-01
Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Process algebra and Markov chains
Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.
2001-01-01
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Vertex ring-indexed Lie algebras
International Nuclear Information System (INIS)
Fairlie, David; Zachos, Cosmas
2005-01-01
Infinite-dimensional Lie algebras are introduced, which are only partially graded, and are specified by indices lying on cyclotomic rings. They may be thought of as generalizations of the Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras of the loop algebras associated with sl(n). In a particular interesting case associated with sl(3), their indices lie on the Eisenstein integer triangular lattice, and these algebras are expected to underlie vertex operator combinations in CFT, brane physics, and graphite monolayers
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
International Nuclear Information System (INIS)
Kedem, Rinat
2008-01-01
Q-systems first appeared in the analysis of the Bethe equations for the XXX model and generalized Heisenberg spin chains (Kirillov and Reshetikhin 1987 Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov. 160 211-21, 301). Such systems are known to exist for any simple Lie algebra and many other Kac-Moody algebras. We formulate the Q-system associated with any simple, simply-laced Lie algebras g in the language of cluster algebras (Fomin and Zelevinsky 2002 J. Am. Math. Soc. 15 497-529), and discuss the relation of the polynomiality property of the solutions of the Q-system in the initial variables, which follows from the representation-theoretical interpretation, to the Laurent phenomenon in cluster algebras (Fomin and Zelevinsky 2002 Adv. Appl. Math. 28 119-44)
Waterloo Workshop on Computer Algebra
Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday
2018-01-01
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
The Cuntz algebra Q_N and C*-algebras of product systems
DEFF Research Database (Denmark)
Hong, Jeong Hee; Larsen, Nadia S.; Szymanski, Wojciech
2011-01-01
We consider a product system over the multiplicative group semigroup N^x of Hilbert bimodules which is implicit in work of S. Yamashita and of the second named author. We prove directly, using universal properties, that the associated Nica-Toeplitz algebra is an extension of the C*-algebra Q...
Lectures on algebraic quantum field theory and operator algebras
International Nuclear Information System (INIS)
Schroer, Bert
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
International Nuclear Information System (INIS)
Dobrev, V.K.
1992-01-01
We review and explain a canonical procedure for the q-deformation of the real forms G of complex Lie (super-) algebras associated with (generalized) Cartan matrices. Our procedure gives different q-deformations for the non-conjugate Cartan subalgebras of G. We give several in detail the q-deformed Lorentz and conformal (super-) algebras. The q-deformed conformal algebra contains as a subalgebra a q-deformed Poincare algebra and as Hopf subalgebras two conjugate 11-generator q-deformed Weyl algebras. The q-deformed Lorentz algebra in Hopf subalgebra of both Weyl algebras. (author). 24 refs
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Paragrassmann analysis and covariant quantum algebras
International Nuclear Information System (INIS)
Filippov, A.T.; Isaev, A.P.; Kurdikov, A.B.; Pyatov, P.N.
1993-01-01
This report is devoted to the consideration from the algebraic point of view the paragrassmann algebras with one and many paragrassmann generators Θ i , Θ p+1 i = 0. We construct the paragrassmann versions of the Heisenberg algebra. For the special case, this algebra is nothing but the algebra for coordinates and derivatives considered in the context of covariant differential calculus on quantum hyperplane. The parameter of deformation q in our case is (p+1)-root of unity. Our construction is nondegenerate only for even p. Taking bilinear combinations of paragrassmann derivatives and coordinates we realize generators for the covariant quantum algebras as tensor products of (p+1) x (p+1) matrices. (orig./HSI)
CLASSIFICATION OF 4-DIMENSIONAL GRADED ALGEBRAS
Armour, Aaron; Chen, Hui-Xiang; ZHANG, Yinhuo
2009-01-01
Let k be an algebraically closed field. The algebraic and geometric classification of finite dimensional algebras over k with ch(k) not equal 2 was initiated by Gabriel in [6], where a complete list of nonisomorphic 4-dimensional k-algebras was given and the number of irreducible components of the variety Alg(4) was discovered to be 5. The classification of 5-dimensional k-algebras was done by Mazzola in [10]. The number of irreducible components of the variety Alg(5) is 10. With the dimensio...
Banana Algebra: Compositional syntactic language extension
DEFF Research Database (Denmark)
Andersen, Jacob; Brabrand, Claus; Christiansen, David Raymond
2013-01-01
We propose an algebra of languages and transformations as a means of compositional syntactic language extension. The algebra provides a layer of high-level abstractions built on top of languages (captured by context-free grammars) and transformations (captured by constructive catamorphisms...... algebra as presented in the paper is implemented as the Banana Algebra Tool which may be used to syntactically extend languages in an incremental and modular fashion via algebraic composition of previously defined languages and transformations. We demonstrate and evaluate the tool via several kinds...
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
JB*-Algebras of Topological Stable Rank 1
Directory of Open Access Journals (Sweden)
Akhlaq A. Siddiqui
2007-01-01
Full Text Available In 1976, Kaplansky introduced the class JB*-algebras which includes all C*-algebras as a proper subclass. The notion of topological stable rank 1 for C*-algebras was originally introduced by M. A. Rieffel and was extensively studied by various authors. In this paper, we extend this notion to general JB*-algebras. We show that the complex spin factors are of tsr 1 providing an example of special JBW*-algebras for which the enveloping von Neumann algebras may not be of tsr 1. In the sequel, we prove that every invertible element of a JB*-algebra is positive in certain isotope of ; if the algebra is finite-dimensional, then it is of tsr 1 and every element of is positive in some unitary isotope of . Further, it is established that extreme points of the unit ball sufficiently close to invertible elements in a JB*-algebra must be unitaries and that in any JB*-algebras of tsr 1, all extreme points of the unit ball are unitaries. In the end, we prove the coincidence between the λ-function and λu-function on invertibles in a JB*-algebra.
(Super)conformal algebra on the (super)torus
International Nuclear Information System (INIS)
Mezincescu, L.; Nepomechie, R.I.; Zachos, C.K.
1989-01-01
A generalization of the Virasoro algebra has recently been introduced by Krichever and Novikov (KN). The KN algebra describes the algebra of general conformal transformations in a basis appropriate to a genus-g Riemann surface. We examine in detail the genus-one KN algebra, and find explicit expressions for the central extension. We, further, construct explicitly the superconformal algebra of the supertorus, which yields supersymmetric generalizations of the genus-one KN algebra. A novel feature of the odd-spin-structure case is that the algebra includes a central element which is anticommuting. We comment on possible applications to string theory. (orig.)
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra
International Nuclear Information System (INIS)
Gerdt, V.P.; Kostov, N.A.
1989-01-01
In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs
Filiform Lie algebras of order 3
Navarro, R. M.
2014-04-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, "Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes," Bull. Soc. Math. France 98, 81-116 (1970)]. Also we give the dimension, using an adaptation of the {sl}(2,{C})-module Method, and a basis of such infinitesimal deformations in some generic cases.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Applications of Computer Algebra Conference
Martínez-Moro, Edgar
2017-01-01
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.
2015-01-01
Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.
Homotopy Theory of C*-Algebras
Ostvaer, Paul Arne
2010-01-01
Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It
Computational aspects of algebraic curves
Shaska, Tanush
2005-01-01
The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove
The algebras of large N matrix mechanics
Energy Technology Data Exchange (ETDEWEB)
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
Directory of Open Access Journals (Sweden)
Fu-Gui Shi
2010-01-01
Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.
Explicit field realizations of W algebras
Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2009-01-01
The fact that certain non-linear $W_{2,s}$ algebras can be linearized by the inclusion of a spin-1 current can provide a simple way to realize $W_{2,s}$ algebras from linear $W_{1,2,s}$ algebras. In this paper, we first construct the explicit field realizations of linear $W_{1,2,s}$ algebras with double-scalar and double-spinor, respectively. Then, after a change of basis, the realizations of $W_{2,s}$ algebras are presented. The results show that all these realizations are Romans-type realiz...
Explicit field realizations of W algebras
International Nuclear Information System (INIS)
Wei Shaowen; Liu Yuxiao; Ren Jirong; Zhang Lijie
2009-01-01
The fact that certain nonlinear W 2,s algebras can be linearized by the inclusion of a spin-1 current can provide a simple way to realize W 2,s algebras from linear W 1,2,s algebras. In this paper, we first construct the explicit field realizations of linear W 1,2,s algebras with double scalar and double spinor, respectively. Then, after a change of basis, the realizations of W 2,s algebras are presented. The results show that all these realizations are Romans-type realizations.
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
On d -Dimensional Lattice (co)sine n -Algebra
International Nuclear Information System (INIS)
Yao Shao-Kui; Zhang Chun-Hong; Zhao Wei-Zhong; Ding Lu; Liu Peng
2016-01-01
We present the (co)sine n-algebra which is indexed by the d-dimensional integer lattice. Due to the associative operators, this generalized (co)sine n-algebra is the higher order Lie algebra for the n even case. The particular cases are the d-dimensional lattice sine 3 and cosine 5-algebras with the special parameter values. We find that the corresponding d-dimensional lattice sine 3 and cosine 5-algebras are the Nambu 3-algebra and higher order Lie algebra, respectively. The limiting case of the d-dimensional lattice (co)sine n-algebra is also discussed. Moreover we construct the super sine n-algebra, which is the super higher order Lie algebra for the n even case. (paper)
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos
2016-01-01
This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…
n-ary algebras: a review with applications
International Nuclear Information System (INIS)
De Azcarraga, J A; Izquierdo, J M
2010-01-01
This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two-entry Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the role of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity, and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity. 3-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. As a result, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (it turns out that Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the Lie or n-Lie algebra bracket is relaxed, one is led to a more general type of n-algebras, the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose generalized Jacobi identity reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the Filippov identity and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A 4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization. (topical
Asveld, P.R.J.
1976-01-01
Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.
Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
International Nuclear Information System (INIS)
Ammar, F; Makhlouf, A; Silvestrov, S
2010-01-01
In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.
Algebraic Methods to Design Signals
2015-08-27
to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Homological methods, representation theory, and cluster algebras
Trepode, Sonia
2018-01-01
This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...
Jurco, Branislav
2011-01-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, which is simply connected in each simplicial level. We use the 1-jet of the classifying space of G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The res...
Classification and identification of Lie algebras
Snobl, Libor
2014-01-01
The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...
Sugawara operators for classical Lie algebras
Molev, Alexander
2018-01-01
The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical \\mathcal{W}-algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connec...
Filiform Lie algebras of order 3
International Nuclear Information System (INIS)
Navarro, R. M.
2014-01-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases
Algebraic Systems and Pushdown Automata
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
Block diagonalization for algebra's associated with block codes
D. Gijswijt (Dion)
2009-01-01
htmlabstractFor a matrix *-algebra B, consider the matrix *-algebra A consisting of the symmetric tensors in the n-fold tensor product of B. Examples of such algebras in coding theory include the Bose-Mesner algebra and Terwilliger algebra of the (non)binary Hamming cube, and algebras arising in
Grassmann, super-Kac-Moody and super-derivation algebras
International Nuclear Information System (INIS)
Frappat, L.; Ragoucy, E.; Sorba, P.
1989-05-01
We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra
International Nuclear Information System (INIS)
Jacob, M.
1967-01-01
The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
A type of loop algebra and the associated loop algebras
International Nuclear Information System (INIS)
Tam Honwah; Zhang Yufeng
2008-01-01
A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out
Spin-zero mesons and current algebras
International Nuclear Information System (INIS)
Wellner, M.
1977-01-01
Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
The $W_{3}$ algebra modules, semi-infinite cohomology and BV algebras
Bouwknegt, Peter; Pilch, Krzysztof
1996-01-01
The noncritical D=4 W_3 string is a model of W_3 gravity coupled to two free scalar fields. In this paper we discuss its BRST quantization in direct analogy with that of the D=2 (Virasoro) string. In particular, we calculate the physical spectrum as a problem in BRST cohomology. The corresponding operator cohomology forms a BV-algebra. We model this BV-algebra on that of the polyderivations of a commutative ring on six variables with a quadratic constraint, or equivalently, on the BV-algebra of (polynomial) polyvector fields on the base affine space of SL(3,C). In this paper we attempt to present a complete summary of the progress made in these studies. [...
Normed algebras and the geometric series test
Directory of Open Access Journals (Sweden)
Robert Kantrowitz
2017-11-01
Full Text Available The purpose of this article is to survey a class of normed algebras that share many central features of Banach algebras, save for completeness. The likeness of these algebras to Banach algebras derives from the fact that the geometric series test is valid, whereas the lack of completeness points to the failure of the absolute convergence test for series in the algebra. Our main result is a compendium of conditions that are all equivalent to the validity of the geometric series test for commutative unital normed algebras. Several examples in the final section showcase some incomplete normed algebras for which the geometric series test is valid, and still others for which it is not.
Representations of affine Hecke algebras
Xi, Nanhua
1994-01-01
Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
A modal characterization of Peirce algebras
M. de Rijke (Maarten)
1995-01-01
textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.
On δ-derivations of n-ary algebras
International Nuclear Information System (INIS)
Kaygorodov, Ivan B
2012-01-01
We give a description of δ-derivations of (n+1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial δ-derivations of Filippov algebras and show that there are no non-trivial δ-derivations of the simple ternary Mal'tsev algebra M 8 .
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
The central extensions of Kac-Moody-Malcev algebras
International Nuclear Information System (INIS)
Osipov, E.P.
1989-01-01
The authors introduce a class of infinite-dimensional Kac-Moody-Malcev algebras. The Kac-Moody-Malcev algebras are the generalization of Lie algebras of Kac-Moody type to the Malcev algebras. They demonstrate that the central extensions of Kac-Moody-Malcev algebras are given by the same cocycles as in the case of Lie algebras. It is given a construction of Virasoro algebra in terms of bilinear combinations of currents satisfying the Kac-Moody-Malcev commutation relations. Thus, it is given the generalization of the Sugawara Construction to the case of Kac-Moody-Malcev algebras. Analogues of Kac-Moody-Malcev algebras may be also introduced in the case of arbitrary Riemann surface
Using Max-Plus Algebra for the Evaluation of Stochastic Process Algebra Prefixes
Cloth, L.; de Alfaro, L.; Gilmore, S.; Bohnenkamp, H.C.; Haverkort, Boudewijn R.H.M.
2001-01-01
In this paper, the concept of complete finite prefixes for process algebra expressions is extended to stochastic models. Events are supposed to happen after a delay that is determined by random variables assigned to the preceding conditions. Max-plus algebra expressions are shown to provide an
The structure of relation algebras generated by relativizations
Givant, Steven R
1994-01-01
The foundation for an algebraic theory of binary relations was laid by De Morgan, Peirce, and Schröder during the second half of the nineteenth century. Modern development of the subject as a theory of abstract algebras, called "relation algebras", was undertaken by Tarski and his students. This book aims to analyze the structure of relation algebras that are generated by relativized subalgebras. As examples of their potential for applications, the main results are used to establish representation theorems for classes of relation algebras and to prove existence and uniqueness theorems for simple closures (i.e., for minimal simple algebras containing a given family of relation algebras as relativized subalgebras). This book is well written and accessible to those who are not specialists in this area. In particular, it contains two introductory chapters on the arithmetic and the algebraic theory of relation algebras. This book is suitable for use in graduate courses on algebras of binary relations or algebraic...
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
P-commutative topological *-algebras
International Nuclear Information System (INIS)
Mohammad, N.; Thaheem, A.B.
1991-07-01
If P(A) denotes the set of all continuous positive functionals on a unital complete Imc *-algebra and S(A) the extreme points of P(A), and if the spectrum of an element χ Ε A coincides with the set {f(χ): f Ε S(A)}, then A is shown to be P-commutative. Moreover, if A is unital symmetric Frechet Q Imc *-algebra, then this spectral condition is, in fact, necessary. Also, an isomorphism theorem between symmetric Frechet P-commutative Imc *-algebras is established. (author). 12 refs
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Generalized NLS hierarchies from rational W algebras
International Nuclear Information System (INIS)
Toppan, F.
1993-11-01
Finite rational W algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. The problem of relating these algebras to integrable hierarchies of equations is studied by showing how to associate to a rational W algebra its corresponding hierarchy. Two examples are worked out, the sl(2)/U(1) coset, leading to the Non-Linear Schroedinger hierarchy, and the U(1) coset of the Polyakov-Bershadsky W algebra, leading to a 3-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies. (author). 19 refs
Some Aspects of -Units in BCK-Algebras
Directory of Open Access Journals (Sweden)
Hee Sik Kim
2012-01-01
Full Text Available We explore properties of the set of d-units of a -algebra. A property of interest in the study of -units in -algebras is the weak associative property. It is noted that many other -algebras, especially -algebras, are in fact weakly associative. The existence of -algebras which are not weakly associative is demonstrated. Moreover, the notions of a -integral domain and a left-injectivity are discussed.
Bases in Lie and quantum algebras
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2008-01-01
Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su q (2).
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
On Deformations and Contractions of Lie Algebras
Directory of Open Access Journals (Sweden)
Marc de Montigny
2006-05-01
Full Text Available In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is not true in general. Also we note that some Lie algebras belonging to parameterized families are singled out by the irreversibility of deformations and contractions. After reminding that global deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve Lie algebras of Krichever-Novikov type, we contract the latter to find new infinite dimensional Lie algebras.
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
Deformation of the exterior algebra and the GLq (r, included in) algebra
International Nuclear Information System (INIS)
El Hassouni, A.; Hassouni, Y.; Zakkari, M.
1993-06-01
The deformation of the associative algebra of exterior forms is performed. This operation leads to a Y.B. equation. Its relation with the braid group B n-1 is analyzed. The correspondence of this deformation with the GL q (r, included in) algebra is developed. (author). 9 refs
The Universal Askey-Wilson Algebra
Directory of Open Access Journals (Sweden)
Paul Terwilliger
2011-07-01
Full Text Available In 1992 A. Zhedanov introduced the Askey-Wilson algebra AW=AW(3 and used it to describe the Askey-Wilson polynomials. In this paper we introduce a central extension Δ of AW, obtained from AW by reinterpreting certain parameters as central elements in the algebra. We call Δ the universal Askey-Wilson algebra. We give a faithful action of the modular group PSL_2(Z on Δ as a group of automorphisms. We give a linear basis for Δ. We describe the center of Δ and the 2-sided ideal Δ[Δ,Δ]Δ. We discuss how Δ is related to the q-Onsager algebra.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2017-02-01
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
Feature-Oriented Programming with Object Algebras
B.C.d.S. Oliveira (Bruno); T. van der Storm (Tijs); A. Loh; W.R. Cook
2013-01-01
htmlabstractObject algebras are a new programming technique that enables a simple solution to basic extensibility and modularity issues in programming languages. While object algebras excel at deﬁning modular features, the composition mechanisms for object algebras (and features) are still
Representations of fundamental groups of algebraic varieties
Zuo, Kang
1999-01-01
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
Located actions in process algebra with timing
Bergstra, J.A.; Middelburg, C.A.
2004-01-01
We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a
Lie Algebras Associated with Group U(n)
International Nuclear Information System (INIS)
Zhang Yufeng; Dong Huanghe; Honwah Tam
2007-01-01
Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A 1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.
Ahadpanah, A.; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
ASYS: a computer algebra package for analysis of nonlinear algebraic equations systems
International Nuclear Information System (INIS)
Gerdt, V.P.; Khutornoj, N.V.
1992-01-01
A program package ASYS for analysis of nonlinear algebraic equations based on the Groebner basis technique is described. The package is written in REDUCE computer algebra language. It has special facilities to treat polynomial ideals of positive dimension, corresponding to algebraic systems with infinitely many solutions. Such systems can be transformed to an equivalent set of subsystems with reduced number of variables in completely automatic way. It often allows to construct the explicit form of a solution set in many problems of practical importance. Some examples and results of comparison with the standard Reduce package GROEBNER and special-purpose systems FELIX and A1PI are given. 21 refs.; 2 tabs
International Nuclear Information System (INIS)
Romans, L.J.
1992-01-01
We present the complete structure of the N=2 super-W 3 algebra, a non-linear extended conformal algebra containing the usual N=2 superconformal algebra (with generators of spins 1, 3/2, 3/2 and 2) and a higher-spin multiplet of generators with spins 2, 5/2, 5/2 and 3. We investigate various sub-algebras and related algebras, and find necessary conditions upon possible unitary representations of the algebra. In particular, the central charge c is restricted to two discrete series, one ascending and one descending to a common accumulation point c=6. The results suggest that the algebra is realised in certain (compact or non-compact) Kazama-Suzuki coset models, including a c=9 model proposed by Bars based on SU(2, 1)/U(2). (orig.)
Quantization and representation theory of finite W algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1993-01-01
In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)
Finite W-algebras and intermediate statistics
International Nuclear Information System (INIS)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1995-01-01
New realizations of finite W-algebras are constructed by relaxing the usual constraint conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. ((orig.))
Quantized Matrix Algebras and Quantum Seeds
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Pagani, Chiara
2015-01-01
We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....
Simple Lie algebras and Dynkin diagrams
International Nuclear Information System (INIS)
Buccella, F.
1983-01-01
The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
Basic algebraic topology and its applications
Adhikari, Mahima Ranjan
2016-01-01
This book provides an accessible introduction to algebraic topology, a ﬁeld at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book oﬀers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. T...
International Nuclear Information System (INIS)
Hohm, Olaf; Zwiebach, Barton
2017-01-01
We review and develop the general properties of L_∞ algebras focusing on the gauge structure of the associated field theories. Motivated by the L_∞ homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L_∞ structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L_∞ algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L_∞ algebra for the interacting theory. The analysis suggests that L_∞ algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Lie algebra of conformal Killing–Yano forms
International Nuclear Information System (INIS)
Ertem, Ümit
2016-01-01
We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases. (paper)
Constructing Meanings and Utilities within Algebraic Tasks
Ainley, Janet; Bills, Liz; Wilson, Kirsty
2004-01-01
The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…
Algebraic groups and their birational invariants
Voskresenskiĭ, V E
2011-01-01
Since the late 1960s, methods of birational geometry have been used successfully in the theory of linear algebraic groups, especially in arithmetic problems. This book--which can be viewed as a significant revision of the author's book, Algebraic Tori (Nauka, Moscow, 1977)--studies birational properties of linear algebraic groups focusing on arithmetic applications. The main topics are forms and Galois cohomology, the Picard group and the Brauer group, birational geometry of algebraic tori, arithmetic of algebraic groups, Tamagawa numbers, R-equivalence, projective toric varieties, invariants of finite transformation groups, and index-formulas. Results and applications are recent. There is an extensive bibliography with additional comments that can serve as a guide for further reading.
The classical limit of W-algebras
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Ramos, E.
1992-01-01
We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
A trace formula for the Iwahori-Hecke algebra
Opdam, E.M.
1999-01-01
The Iwahori-Hecke algebra has a canonicaltrace $\\tau$. The trace is the evaluation at the identity element in the usual interpretation of the Iwahori-Hecke algebra as a sub-algebra of the convolution algebra of a p-adic semi-simple group. The Iwahori-Hecke algebra contains an important commutative
Diamond lemma for the group graded quasi-algebras
Indian Academy of Sciences (India)
Introduction. The term quasi-algebra was introduced in [2] as an algebra in a monoidal category. Since the associativity constraints in these categories are allowed to be nontrivial, the class of quasi-algebras contains various important examples of non-associative algebras like the octonions and other Cayley algebras [2].
The Centroid of a Lie Triple Algebra
Directory of Open Access Journals (Sweden)
Xiaohong Liu
2013-01-01
Full Text Available General results on the centroids of Lie triple algebras are developed. Centroids of the tensor product of a Lie triple algebra and a unitary commutative associative algebra are studied. Furthermore, the centroid of the tensor product of a simple Lie triple algebra and a polynomial ring is completely determined.
The structure of the super-W∞(λ) algebra
International Nuclear Information System (INIS)
Bergshoeff, E.; Wit, B. de; Vasiliev, M.
1991-01-01
We give a comprehensive treatment of the super-W ∞ (λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin S ≥ 1/2. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W ∞ (λ) algebra from the associative algebra of superspace differential operators. We discuss the structure of this associative algebra and its relation with the so-called wedge algebra, in which the generators for given spin are restricted to finite-dimensional representations of sl(2). From the super-W ∞ (λ) algebra one can obtain a variety of W ∞ algebras by consistent truncations for specific values of λ. Without truncation the algebras are formally isomorphic for different values of λ. We present a realization in terms of the currents of a supersymmetric bc system. (orig.)
Won, Chang-Hee; Michel, Anthony N
2008-01-01
This volume - dedicated to Michael K. Sain on the occasion of his seventieth birthday - is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. Written by experts in their respective fields, the chapters are thematically organized into four parts: Part I focuses on statistical control theory, where the cost function is viewed as a random variable and performance is shaped through cost cumulants. In this respect, statistical control generalizes linear-quadratic-Gaussian and H-infinity control. Part II addresses algebraic systems th
Finite W-algebras and intermediate statistics
International Nuclear Information System (INIS)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1994-09-01
New realizations of finite W-algebras are constructed by relaxing the usual conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. (author). 13 refs
Asymptotic aspect of derivations in Banach algebras
Directory of Open Access Journals (Sweden)
Jaiok Roh
2017-02-01
Full Text Available Abstract We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
Algebraic renormalization of parity-preserving QED3 coupled to scalar matter II: broken case
International Nuclear Information System (INIS)
Cima, O.M. del; Franco, D.H.T.; Helayel-Neto, J.A.; Piguet, O.
1996-11-01
In this letter the algebraic renormalization method, which is independent of any kind of regularization scheme, is presented for the parity-preserving QED 3 coupled to scalar matter in the broken regime, where the scalar assumes a finite vacuum expectation value, =v. The model shows to be stable under radiative corrections and anomaly free. (author)
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
Implementing the Standards: Teaching Informal Algebra.
Schultz, James E.
1991-01-01
Presents suggestions for developing algebraic concepts beginning in the early grades to develop a gradual building from informal to formal algebraic concepts that progresses over the K-12 curriculum. Includes suggestions for representing relationships, solving equations, employing meaningful applications of algebra, and using of technology. (MDH)
Building bridges between algebra and topology
Pitsch, Wolfgang; Zarzuela, Santiago
2018-01-01
This volume presents an elaborated version of lecture notes for two advanced courses: (Re)Emerging Methods in Commutative Algebra and Representation Theory and Building Bridges Between Algebra and Topology, held at the CRM in the spring of 2015. Homological algebra is a rich and ubiquitous subject; it is both an active field of research and a widespread toolbox for many mathematicians. Together, these notes introduce recent applications and interactions of homological methods in commutative algebra, representation theory and topology, narrowing the gap between specialists from different areas wishing to acquaint themselves with a rapidly growing field. The covered topics range from a fresh introduction to the growing area of support theory for triangulated categories to the striking consequences of the formulation in the homotopy theory of classical concepts in commutative algebra. Moreover, they also include a higher categories view of Hall algebras and an introduction to the use of idempotent functors in al...
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Quantum ergodicity and a quantum measure algebra
International Nuclear Information System (INIS)
Stechel, E.B.
1985-01-01
A quantum ergodic theory for finite systems (such as isolated molecules) is developed by introducing the concept of a quantum measure algebra. The basic concept in classical ergodic theory is that of a measure space. A measure space is a set M, together with a specified sigma algebra of subsets in M and a measure defined on that algebra. A sigma algebra is closed under the formation of intersections and symmetric differences. A measure is a nonnegative and countably additive set function. For this to be further classified as a dynamical system, a measurable transformation is introduced. A measurable transformation is a mapping from a measure space into a measure space, such that the inverse image of every measurable set is measurable. In conservative dynamical systems, a measurable transformation is measure preserving, which is to say that the inverse image of every measurable set has the same measure as the original set. Once the measure space and the measurable transformation are defined, ergodic theory can be investigated on three levels: describable as analytic, geometric and algebraic. The analytic level studies linear operators induced by a transformation. The geometric level is concerned directly with transformations on a measure space and the algebraic treatments substitute a measure algebra for the measure space and basically equate sets that differ only by sets of measure zero. It is this latter approach that is most directly paralleled here. A measure algebra for a quantum dynamical system is defined within which stochastic concepts in quantum mechanics can be investigated. The quantum measure algebra differs from a normal measure algebra only in that multiplication is noncommutative and addition is nonassociative. Nonetheless, the quantum measure algebra preserves the essence of a normal measure algebra
The Leibniz-Hopf algebra and Lyndon words
M. Hazewinkel (Michiel)
1996-01-01
textabstractLet ${cal Z$ denote the free associative algebra ${ol Z langle Z_1 , Z_2 , ldots rangle$ over the integers. This algebra carries a Hopf algebra structure for which the comultiplication is $Z_n mapsto Sigma_{i+j=n Z_i otimes Z_j$. This the noncommutative Leibniz-Hopf algebra. It carries a
Strongly \\'etale difference algebras and Babbitt's decomposition
Tomašić, Ivan; Wibmer, Michael
2015-01-01
We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Particle-like structure of coaxial Lie algebras
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
The Lie algebra of the N=2-string
International Nuclear Information System (INIS)
Kugel, K.
2006-01-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
The Lie algebra of the N=2-string
Energy Technology Data Exchange (ETDEWEB)
Kugel, K
2006-07-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
Krichever-Novikov type algebras theory and applications
Schlichenmaier, Martin
2014-01-01
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are
The Das-Popowicz Moyal momentum algebra
International Nuclear Information System (INIS)
Boulahoual, A.; Sedra, M.B.
2002-08-01
We introduce in this short note some aspects of the Moyal momentum algebra that we call the Das-Popowicz Mm algebra. Our interest on this algebra is motivated by the central role that it can play in the formulation of integrable models and in higher conformal spin theories. (author)
Teaching Strategies to Improve Algebra Learning
Zbiek, Rose Mary; Larson, Matthew R.
2015-01-01
Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…
Constraint-Referenced Analytics of Algebra Learning
Sutherland, Scot M.; White, Tobin F.
2016-01-01
The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…
Computers in nonassociative rings and algebras
Beck, Robert E
1977-01-01
Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str
Basic matrix algebra and transistor circuits
Zelinger, G
1963-01-01
Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de
Casimir elements of epsilon Lie algebras
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)
Comments on two-loop Kac-Moody algebras
Energy Technology Data Exchange (ETDEWEB)
Ferreira, L A; Gomes, J F; Zimerman, A H [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Schwimmer, A [Istituto Nazionale di Fisica Nucleare, Trieste (Italy)
1991-10-01
It is shown that the two-loop Kac-Moody algebra is equivalent to a two variable loop algebra and a decouple {beta}-{gamma} system. Similarly WZNW and CSW models having as algebraic structure the Kac-Moody algebra are equivalent to an infinity to versions of the corresponding ordinary models and decoupled Abelian fields. (author). 15 refs.
More on the linearization of W-algebras
International Nuclear Information System (INIS)
Krivonos, S.; Sorin, A.
1995-01-01
We show that a wide class of W-(super)algebras, including W N (N-1) , U(N)-superconformal as well as W N nonlinear algebras, can be linearized by embedding them as subalgebras into some linear (super)conformal algebras with finite sets of currents. The general construction is illustrated by the example of W 4 algebra. 16 refs
Learning Activity Package, Algebra.
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Algebraic special functions and SO(3,2)
International Nuclear Information System (INIS)
Celeghini, E.; Olmo, M.A. del
2013-01-01
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L 2 functions defined on (−1,1)×Z and on the sphere S 2 , respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L 2 functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L 2 functions
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
of Pauli matrices follow from the underlying algebra. Clif- ford algebraic approach provides a geometrical and hence intuitive way to understand quantum theory of spin, and is a natural formalism to study spin. Clifford algebraic formal- ism has lot of applications in every field where spin plays an important role. Introduction.
Algebra in Dutch education, 1600-2000
Krüger, Jenneke
2015-01-01
Algebra became part of mathematics education in the Netherlands in course of the seventeenth century. At first in the form of cossic algebra, but by the end of the century, the influence of the notation of Descartes was noticeable. In the eighteenth century, algebra was part of the basic curriculum
A master identity for homotopy Gerstenhaber algebras
International Nuclear Information System (INIS)
Akman, F.
2000-01-01
We produce a master identity {m}{m,m,..}=0 for a certain type of homotopy Gerstenhaber algebras, in particular suitable for the prototype, namely the Hochschild complex of an associative algebra. This algebraic master identity was inspired by the work of Getzler-Jones and Kimura-Voronov-Zuckerman in the context of topological conformal field theories. To this end, we introduce the notion of a ''partitioned multilinear map'' and explain the mechanics of composing such maps. In addition, many new examples of pre-Lie algebras and homotopy Gerstenhaber algebras are given. (orig.)
Directory of Open Access Journals (Sweden)
Deena Al-Kadi
2016-01-01
Full Text Available We introduce the notion of fq-derivation as a new derivation of G-algebra. For an endomorphism map f of any G-algebra X, we show that at least one fq-derivation of X exists. Moreover, for such a map, we show that a self-map dqf of X is fq-derivation of X if X is an associative medial G-algebra. For a medial G-algebra X, dqf is fq-derivation of X if dqf is an outside fq-derivation of X. Finally, we show that if f is the identity endomorphism of X then the composition of two fq-derivations of X is a fq-derivation. Moreover, we give a condition to get a commutative composition.
Upper bound for the length of commutative algebras
International Nuclear Information System (INIS)
Markova, Ol'ga V
2009-01-01
By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field one means the least positive integer k such that the words of length not exceeding k span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, an upper bound for the length of a commutative algebra in terms of a function of two invariants of the algebra, the dimension and the maximal degree of the minimal polynomial for the elements of the algebra, is obtained. As a corollary, a formula for the length of the algebra of diagonal matrices over an arbitrary field is obtained. Bibliography: 8 titles.
Construction of the K=8 fractional superconformal algebras
International Nuclear Information System (INIS)
Argyres, P.C.; Grochocinski, J.M.; Tye, S.H.H.
1993-01-01
We construct the K=8 fractional superconformal algebras. There are two such extended Virasoro algebras, one of which was constructed earlier, involving a fractional spin (equivalently, conformal dimension) 6/5 current. The new algebra involves two additional fractional spin currents with spin 13/5. Both algebras are non-local and satisfy non-abelian braiding relations. The construction of the algebras uses the ismorphism between the Z 8 parafermion theory and the tensor product of two tricritical Ising models. For the special value of the central charge c=52/55, corresponding to the eighth member of the unitary minimal series, the 13/5 currents of the new algebra decouple, while two spin 23/5 currents (level-2 current algebra descendants of the 13/5 currents) emerge. In addition, it is shown that the K=8 algebra involving the spin 13/5 currents at central charge c=12/5 is the appropriate algebra for the construction of the K=8 (four-dimensional) fractional superstring. (orig.)
Adaptive algebraic reconstruction technique
International Nuclear Information System (INIS)
Lu Wenkai; Yin Fangfang
2004-01-01
Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency
Introductory modern algebra a historical approach
Stahl, Saul
2013-01-01
Praise for the First Edition ""Stahl offers the solvability of equations from the historical point of view...one of the best books available to support a one-semester introduction to abstract algebra.""-CHOICE Introductory Modern Algebra: A Historical Approach, Second Edition presents the evolution of algebra and provides readers with the opportunity to view modern algebra as a consistent movement from concrete problems to abstract principles. With a few pertinent excerpts from the writings of some of the greatest mathematicians, the Second Edition uniquely facilitates the understanding of pi
A note on p-semisimple BCI-algebras
International Nuclear Information System (INIS)
Aslam, M.; Thaheem, A.B.
1989-07-01
In this note we prove some equivalent conditions for p-semisimple BCI-algebras. We also show that if X is a p-semisimple BCI-algebra then Hom(X), the set of all homomorphisms of X is a (p-semisimple) BCI-algebra, thus extending the class of BCI-algebras with this property as proposed. We also study some duality conditions. (author). 11 refs
Uniform topology on EQ-algebras
Directory of Open Access Journals (Sweden)
Yang Jiang
2017-04-01
Full Text Available In this paper, we use filters of an EQ-algebra E to induce a uniform structure (E, , and then the part induce a uniform topology in E. We prove that the pair (E, is a topological EQ-algebra, and some properties of (E, are investigated. In particular, we show that (E, is a first-countable, zero-dimensional, disconnected and completely regular space. Finally, by using convergence of nets, the convergence of topological EQ-algebras is obtained.
Type II Superstring Field Theory: Geometric Approach and Operadic Description
Jurco, Branislav
2013-01-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a $\\mathcal{N}=1$ generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Brauer algebras of simply laced type
Cohen, A.M.; Frenk, B.J.; Wales, D.B.
2009-01-01
The diagram algebra introduced by Brauer that describes the centralizer algebra of the n-fold tensor product of the natural representation of an orthogonal Lie group has a presentation by generators and relations that only depends on the path graph A n - 1 on n - 1 nodes. Here we describe an algebra
Discrete event systems in dioid algebra and conventional algebra
Declerck, Philippe
2013-01-01
This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i
Enveloping algebras of Lie groups with descrete series
International Nuclear Information System (INIS)
Nguyen huu Anh; Vuong manh Son
1990-09-01
In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs
Quasi exactly solvable operators and abstract associative algebras
International Nuclear Information System (INIS)
Brihaye, Y.; Kosinski, P.
1998-01-01
We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra
On an infinite-dimensional Lie algebra of Virasoro-type
International Nuclear Information System (INIS)
Pei Yufeng; Bai Chengming
2012-01-01
In this paper, we study an infinite-dimensional Lie algebra of Virasoro-type which is realized as an affinization of a two-dimensional Novikov algebra. It is a special deformation of the Lie algebra of differential operators on a circle of order at most 1. There is an explicit construction of a vertex algebra associated with the Lie algebra. We determine all derivations of this Lie algebra in terms of some derivations and centroids of the corresponding Novikov algebra. The universal central extension of this Lie algebra is also determined. (paper)
Classical algebra its nature, origins, and uses
Cooke, Roger L
2008-01-01
This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more,...
States and Measures on Hyper BCK-Algebras
Directory of Open Access Journals (Sweden)
Xiao-Long Xin
2014-01-01
Full Text Available We define the notions of Bosbach states and inf-Bosbach states on a bounded hyper BCK-algebra (H,∘,0,e and derive some basic properties of them. We construct a quotient hyper BCK-algebra via a regular congruence relation. We also define a ∘-compatibled regular congruence relation θ and a θ-compatibled inf-Bosbach state s on (H,∘,0,e. By inducing an inf-Bosbach state s^ on the quotient structure H/[0]θ, we show that H/[0]θ is a bounded commutative BCK-algebra which is categorically equivalent to an MV-algebra. In addition, we introduce the notions of hyper measures (states/measure morphisms/state morphisms on hyper BCK-algebras, and present a relation between hyper state-morphisms and Bosbach states. Then we construct a quotient hyper BCK-algebra H/Ker(m by a reflexive hyper BCK-ideal Ker(m. Further, we prove that H/Ker(m is a bounded commutative BCK-algebra.
q-Derivatives, quantization methods and q-algebras
International Nuclear Information System (INIS)
Twarock, Reidun
1998-01-01
Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Algebraic K-theory and algebraic topology
Energy Technology Data Exchange (ETDEWEB)
Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)
2003-09-15
This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.
Supersymmetrization schemes of D=4 Maxwell algebra
International Nuclear Information System (INIS)
Kamimura, Kiyoshi; Lukierski, Jerzy
2012-01-01
The Maxwell algebra, an enlargement of Poincaré algebra by Abelian tensorial generators, can be obtained in arbitrary dimension D by the suitable contraction of O(D-1,1)⊕O(D-1,2) (Lorentz algebra ⊕ AdS algebra). We recall that in D=4 the Lorentz algebra O(3,1) is described by the realification Sp R (2|C) of complex algebra Sp(2|C)≃Sl(2|C) and O(3,2)≃Sp(4). We study various D=4N-extended Maxwell superalgebras obtained by the contractions of real superalgebras OSp R (2N-k;2|C)⊕OSp(k;4) (k=0,1,2,…,2N); (extended Lorentz superalgebra ⊕ extended AdS superalgebra). If N=1 (k=0,1,2) one arrives at three different versions of simple Maxwell superalgebra. For any fixed N we get 2N different superextensions of Maxwell algebra with n-extended Poincaré superalgebras (1⩽n⩽N) and the internal symmetry sectors obtained by suitable contractions of the real algebra O R (2N-k|C)⊕O(k). Finally the comments on possible applications of Maxwell superalgebras are presented.
Characteristic Dynkin diagrams and W algebras
International Nuclear Information System (INIS)
Ragoucy, E.
1993-01-01
We present a classification of characteristic Dynkin diagrams for the A N , B N , C N and D N algebras. This classification is related to the classification of W(G, K) algebras arising from non-abelian Toda models, and we argue that it can give new insight on the structure of W algebras. (orig.)
Unifying the Algebra for All Movement
Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.
2015-01-01
There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…
On Elementary and Algebraic Cellular Automata
Gulak, Yuriy
In this paper we study elementary cellular automata from an algebraic viewpoint. The goal is to relate the emergent complex behavior observed in such systems with the properties of corresponding algebraic structures. We introduce algebraic cellular automata as a natural generalization of elementary ones and discuss their applications as generic models of complex systems.
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Neutrosophic filters in BE-algebras
Directory of Open Access Journals (Sweden)
Akbar Rezaei
2015-12-01
Full Text Available Inthispaper, weintroducethenotionof(implicativeneutrosophicfilters in BE-algebras. The relation between implicative neutrosophic filters and neutrosophic filters is investigated and we show that in self distributive BE-algebras these notions are equivalent.
Coherent states and classical limit of algebraic quantum models
International Nuclear Information System (INIS)
Scutaru, H.
1983-01-01
The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines
Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras
International Nuclear Information System (INIS)
Khadzhiivanov, L.K.; Todorov, I.T.; Isaev, A.P.; Pyatov, P.N.; Ogievetskij, O.V.
1998-01-01
The quantum dynamical Yang-Baxter (or Gervais-Neveu-Felder) equation defines an R-matrix R cap (p), where p stands for a set of mutually commuting variables. A family of SL (n)-type solutions of this equation provides a new realization of the Hecke algebra. We define quantum antisymmetrizers, introduce the notion of quantum determinant and compute the inverse quantum matrix for matrix algebras of the type R cap (p) a 1 a 2 = a 1 a 2 R cap. It is pointed out that such a quantum matrix algebra arises in the operator realization of the chiral zero modes of the WZNW model
An inner product for a Banach-algebra
International Nuclear Information System (INIS)
Mohammad, N.; Verjovsky, A.
1988-07-01
An inner product is defined on a commutative Banach algebra with an essential involution and the resultant inner product space is shown to be a topological algebra. Several conditions for its completeness are established and moreover, a decomposition theorem is proved. It is shown that every commutative Banach algebra with an essential involution has an auxiliary norm which turns it into an A*-algebra. (author). 6 refs
Parts of the Whole: An Algebra Lesson
Directory of Open Access Journals (Sweden)
Dorothy Wallace
2011-07-01
Full Text Available This column draws on research of Eon Harper to demonstrate how an understanding of his proposed stages of algebra acquisition would inform a systemic overhaul of algebra education. Harper's stages also explain why students may pass a series of algebra courses yet still be unable to make sense of calculus, as well as offering insight on what aspects of algebra support quantitative literacy.
Inhomogeneous linear equation in Rota-Baxter algebra
Pietrzkowski, Gabriel
2014-01-01
We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.
Lectures on W algebras and W gravity
International Nuclear Information System (INIS)
Pope, C.N.
1992-01-01
We give a review of the extended conformal algebras, known as W algebras, which contain currents of spins higher than 2 in addition to the energy-momentum tensor. These include the non-linear W N algebras; the linear W ∞ and W 1+∞ algebras; and their super-extensions. We discuss their applications to the construction of W-gravity and W-string theories. (author). 46 refs
Generalized module extension Banach algebras: Derivations and ...
African Journals Online (AJOL)
Let A and X be Banach algebras and let X be an algebraic Banach A-module. Then the ℓ-1direct sum A x X equipped with the multiplication (a; x)(b; y) = (ab; ay + xb + xy) (a; b ∈ A; x; y ∈ X) is a Banach algebra, denoted by A ⋈ X, which will be called "a generalized module extension Banach algebra". Module extension ...
On PR group classes and PR algebra membership
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The necessary and sufficient conditions are found for the membership of Lee algebras to PR algebra class, to algebras with commutation relations of [Hsub(i), Hsub(j)]=rsub(ij)Hsub(i) (i< j) type. Due to this, a criterion is obtained for the membership of the Lee froups to PR group classes, connected and simply connected Lee groups, which Lee algebras are PR algebras
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
Introduction to algebra and trigonometry
Kolman, Bernard
1981-01-01
Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Projector bases and algebraic spinors
International Nuclear Information System (INIS)
Bergdolt, G.
1988-01-01
In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors
Toda theories, W-algebras, and minimal models
International Nuclear Information System (INIS)
Mansfield, P.; Spence, B.
1991-01-01
We discuss the classical W-algebra symmetries of Toda field theories in terms of the pseudo-differential Lax operator associated with the Toda Lax pair. We then show how the W-algebra transformations can be understood as the non-abelian gauge transformations which preserve the form of the Lax pair. This provides a new understanding of the W-algebras, and we discuss their closure and co-cycle structure using this approach. The quantum Lax operator is investigated, and we show that this operator, which generates the quantum W-algebra currents, is conserved in the conformally extended Toda theories. The W-algebra minimal model primary fields are shown to arise naturally in these theories, leading to the conjecture that the conformally extended Toda theories provide a lagrangian formulation of the W-algebra minimal models. (orig.)
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
Nomi, Takako; Raudenbush, Stephen W.
2014-01-01
Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…
Fuzzy logic of quasi-truth an algebraic treatment
Di Nola, Antonio; Turunen, Esko
2016-01-01
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Łukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV –algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate s...
Automorphism modular invariants of current algebras
International Nuclear Information System (INIS)
Gannon, T.; Walton, M.A.
1996-01-01
We consider those two-dimensional rational conformal field theories (RCFTs) whose chiral algebras, when maximally extended, are isomorphic to the current algebra formed from some untwisted affine Lie algebra at fixed level. In this case the partition function is specified by an automorphism of the fusion ring and corresponding symmetry of the Kac-Peterson modular matrices. We classify all such partition functions when the underlying finite-dimensional Lie algebra is simple. This gives all possible spectra for this class of RCFTs. While accomplishing this, we also find the primary fields with second smallest quantum dimension. (orig.). With 3 tabs
Cellularity of certain quantum endomorphism algebras
DEFF Research Database (Denmark)
Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.
Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...
W algebra in the SU(3) parafermion model
International Nuclear Information System (INIS)
Ding, X.; Fan, H.; Shi, K.; Wang, P.; Zhu, C.
1993-01-01
A construction of W 3 algebra for the SU(3) parafermion model is proposed, in which a Z algebra technique is used instead of the popular free-field realization. The central charge of the underlying algebra is different from known W algebras
The algebraic collective model
International Nuclear Information System (INIS)
Rowe, D.J.; Turner, P.S.
2005-01-01
A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei
The super-W sub infinity (. lambda. ) algebra
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, E; Vasiliev, M [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Wit, B de [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica
1991-03-07
We present the super-W{sub {infinity}}({lambda}) algebra, an extension of the Virasoro algebra that contains operators of al spins s {ge} 1/2 and depends on an arbitrary parameter {lambda}. It encompasses all previously known versions of W{sub {infinity}}-type algebras as special cases. We discuss various properties and truncations of the algebra and present a realization in terms of the currents of a supersymmetric bc system. (orig.).
K-theory for group C*-algebras and semigroup C*-algebras
Cuntz, Joachim; Li, Xin; Yu, Guoliang
2017-01-01
This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions.
Kolman, Bernard; Levitan, Michael L
1985-01-01
Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.
Twisted boundary states and representation of generalized fusion algebra
International Nuclear Information System (INIS)
Ishikawa, Hiroshi; Tani, Taro
2006-01-01
The mutual consistency of boundary conditions twisted by an automorphism group G of the chiral algebra is studied for general modular invariants of rational conformal field theories. We show that a consistent set of twisted boundary states associated with any modular invariant realizes a non-negative integer matrix representation (NIM-rep) of the generalized fusion algebra, an extension of the fusion algebra by representations of the twisted chiral algebra associated with the automorphism group G. We check this result for several concrete cases. In particular, we find that two NIM-reps of the fusion algebra for su(3) k (k=3,5) are organized into a NIM-rep of the generalized fusion algebra for the charge-conjugation automorphism of su(3) k . We point out that the generalized fusion algebra is non-commutative if G is non-Abelian and provide some examples for G-bar S 3 . Finally, we give an argument that the graph fusion algebra associated with simple current extensions coincides with the generalized fusion algebra for the extended chiral algebra, and thereby explain that the graph fusion algebra contains the fusion algebra of the extended theory as a subalgebra
Algebra of pseudo-differential C*-operators
International Nuclear Information System (INIS)
Mohammad, N.
1987-11-01
In this paper the algebra of pseudo-differential operators is studied in the framework of C * -algebras. It is proved that every pseudo-differential operator of order m admits an adjoint operator, in this case, which is again a pseudo-differential operator. Consequently, the space of all pseudo-differential operators on a compact manifold is an involutive algebra. 10 refs
Applications of Soft Sets in -Algebras
Directory of Open Access Journals (Sweden)
N. O. Alshehri
2013-01-01
Full Text Available In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty and vagueness. In this paper, we apply the concept of soft sets to K-algebras and investigate some properties of Abelian soft K-algebras. We also introduce the concept of soft intersection K-algebras and investigate some of their properties.
New family of Maxwell like algebras
International Nuclear Information System (INIS)
Concha, P.K.; Durka, R.; Merino, N.; Rodríguez, E.K.
2016-01-01
We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.
New family of Maxwell like algebras
Energy Technology Data Exchange (ETDEWEB)
Concha, P.K., E-mail: patillusion@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile); Durka, R., E-mail: remigiuszdurka@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Merino, N., E-mail: nemerino@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Rodríguez, E.K., E-mail: everodriguezd@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile)
2016-08-10
We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.
Prime alternative algebras that are nearly commutative
International Nuclear Information System (INIS)
Pchelintsev, S V
2004-01-01
We prove that by deforming the multiplication in a prime commutative alternative algebra using a C-operation we obtain a prime non-commutative alternative algebra. Under certain restrictions on non-commutative algebras this relation between algebras is reversible. Isotopes are special cases of deformations. We introduce and study a linear space generated by the Bruck C-operations. We prove that the Bruck space is generated by operations of rank 1 and 2 and that 'general' Bruck operations of rank 2 are independent in the following sense: a sum of n operations of rank 2 cannot be written as a linear combination of (n-1) operations of rank 2 and an arbitrary operation of rank 1. We describe infinite series of non-isomorphic prime non-commutative algebras of bounded degree that are deformations of a concrete prime commutative algebra
Algebra I textbook for students of mathematics
Gorodentsev, Alexey L
2016-01-01
This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
On (co)homology of Frobenius Poisson algebras
Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo
2014-01-01
In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...
Algebra success in 20 minutes a day
LearningExpress, LLC
2014-01-01
Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.
Energy Technology Data Exchange (ETDEWEB)
Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)
2017-03-16
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Launey, Warwick De
2011-01-01
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf
1992-01-01
The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
Coxeter groups and Hopf algebras
Aguiar, Marcelo
2011-01-01
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
Laoues, M.
1991-01-01
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
DEFF Research Database (Denmark)
Schmidt, Thomas Lundsgaard; Thomsen, Klaus
2015-01-01
We consider a construction of $C^*$-algebras from continuous piecewise monotone maps on the circle which generalizes the crossed product construction for homeomorphisms and more generally the construction of Renault, Deaconu and Anantharaman-Delaroche for local homeomorphisms. Assuming that the map...... is surjective and not locally injective we give necessary and sufficient conditions for the simplicity of the $C^*$-algebra and show that it is then a Kirchberg algebra. We provide tools for the calculation of the K-theory groups and turn them into an algorithmic method for Markov maps....
Exact WKB analysis and cluster algebras
International Nuclear Information System (INIS)
Iwaki, Kohei; Nakanishi, Tomoki
2014-01-01
We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Critical analysis of algebraic collective models
International Nuclear Information System (INIS)
Moshinsky, M.
1986-01-01
The author shall understand by algebraic collective models all those based on specific Lie algebras, whether the latter are suggested through simple shell model considerations like in the case of the Interacting Boson Approximation (IBA), or have a detailed microscopic foundation like the symplectic model. To analyze these models critically, it is convenient to take a simple conceptual example of them in which all steps can be implemented analytically or through elementary numerical analysis. In this note he takes as an example the symplectic model in a two dimensional space i.e. based on a sp(4,R) Lie algebra, and show how through its complete discussion we can get a clearer understanding of the structure of algebraic collective models of nuclei. In particular he discusses the association of Hamiltonians, related to maximal subalgebras of our basic Lie algebra, with specific types of spectra, and the connections between spectra and shapes
Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems
Directory of Open Access Journals (Sweden)
Ahmed Bendjeddou
2017-03-01
Full Text Available In the work by Gine and Grau [11], a planar differential system of degree nine admitting a nested configuration formed by an algebraic and a non-algebraic limit cycles explicitly given was presented. As an improvement, we obtain by a new method a similar result for a family of quintic polynomial differential systems.
Towards a structure theory for Lie-admissible algebras
International Nuclear Information System (INIS)
Wene, G.P.
1981-01-01
The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras
On character amenability of Banach algebras
Kaniuth, E.; Lau, A. T.; Pym, J.
2008-08-01
We continue our work [E. Kaniuth, A.T. Lau, J. Pym, On [phi]-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008) 85-96] in the study of amenability of a Banach algebra A defined with respect to a character [phi] of A. Various necessary and sufficient conditions of a global and a pointwise nature are found for a Banach algebra to possess a [phi]-mean of norm 1. We also completely determine the size of the set of [phi]-means for a separable weakly sequentially complete Banach algebra A with no [phi]-mean in A itself. A number of illustrative examples are discussed.
On the Directly and Subdirectly Irreducible Many-Sorted Algebras
Directory of Open Access Journals (Sweden)
Climent Vidal J.
2015-03-01
Full Text Available A theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.
Parsing with Regular Expressions & Extensions to Kleene Algebra
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge
. In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu......-operator completely axiomatize the equational theory of the context-free languages. KAT+B! is an extension to Kleene algebra with tests (KAT) that adds mutable state. We describe a test algebra B! for mutable tests and give a commutative coproduct between KATs. Combining the axioms of B! with those of KAT and some...
Wigner oscillators, twisted Hopf algebras and second quantization
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: pgcastro@cbpf.br; toppan@cbpf.br; Chakraborty, B. [S. N. Bose National Center for Basic Sciences, Kolkata (India)]. E-mail: biswajit@bose.res.in
2008-07-01
By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U{sup F}(h) is shown to be induced from a more 'fundamental' Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of a given superalgebra. We also discuss the possible implications in the context of quantum statistics. (author)
From CML to its Process Algebra
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
1996-01-01
and behaviours may lose prefixes as well as decrease. As the syntax of behaviours is rather similar to that of a process algebra, our main result may therefore be viewed as regarding the semantics of a process algebra as an abstraction of the semantics of an underlying programming language. This establishes...... a new kind of connection between "realistic" concurrent programming languages and "theoretical" process algebras...
Color-charge algebras in Adler's chromodynamics
International Nuclear Information System (INIS)
Cvitanovic, P.; Gonsalves, R.J.; Neville, D.E.
1978-01-01
We show that the color-charge algebra in the three-quark sector generated by the matrices of the fundamental representation of U(n) does not have the trace properties required in Adler's extension of chromodynamics. We also discuss a diagrammatic representation of algebras generated by quark and antiquark charges in general, and an embedding of the N-quark algebra in the symmetric group S/sub N/+1
String field representation of the Virasoro algebra
Energy Technology Data Exchange (ETDEWEB)
Mertes, Nicholas [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic); Department of Physics, University of Miami,Coral Gables, FL (United States); Schnabl, Martin [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic)
2016-12-29
We construct a representation of the zero central charge Virasoro algebra using string fields in Witten’s open bosonic string field theory. This construction is used to explore extensions of the KBc algebra and find novel algebraic solutions of open string field theory.
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Contractions of quantum algebraic structures
International Nuclear Information System (INIS)
Doikou, A.; Sfetsos, K.
2010-01-01
A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
The large N=4 superconformal W∞ algebra
International Nuclear Information System (INIS)
Beccaria, Matteo; Candu, Constantin; Gaberdiel, Matthias R.
2014-01-01
The most general large N=4 superconformal W ∞ algebra, containing in addition to the superconformal algebra one supermultiplet for each integer spin, is analysed in detail. It is found that the W ∞ algebra is uniquely determined by the levels of the two su(2) algebras, a conclusion that holds both for the linear and the non-linear case. We also perform various cross-checks of our analysis, and exhibit two different types of truncations in some detail.
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Area-preserving diffeomorphisms and higher-spin algebras
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, E [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Blencowe, M P; Stelle, K S [Imperial Coll. of Science and Technology, London (UK). Blackett Lab.
1990-03-01
We show that there exists a one-parameter family of infinite-dimensional algebras that includes the bosonic d=3 Fradkin-Vasiliev higher-spin algebra and the non-Euclidean version of the algebra of area-preserving diffeomorphisms of the two-sphere S{sup 2} as two distinct members. The non-Euclidean version of the area preserving algebra corresponds to the algebra of area-preserving diffeomorphisms of the hyperbolic space S{sup 1,1}, and can be rewritten as lim{sub Nyieldsinfinity} su(N,N). As an application of our results, we formulate a new d=2+1 massless higher-spin field theory as the gauge theory of the area-preserving diffeomorphisms of S{sup 1,1}. (orig.).
Semicrossed products of operator algebras by semigroups
Davidson, Kenneth R; Kakariadis, Evgenios T A
2017-01-01
The authors examine the semicrossed products of a semigroup action by *-endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. The authors seek quite general conditions which will allow them to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action. Their analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
Implicative Algebras | Kolluru | Momona Ethiopian Journal of Science
African Journals Online (AJOL)
In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Keywords: Implicative ...
An inner product for a Banach-algebra
International Nuclear Information System (INIS)
Noor, M.; Verjovsky, A.
1987-10-01
An intrinsic inner product for a commutative Banach*-algebra is defined. Several conditions for its completeness are established. It is shown that any Banach*-algebra with proper and continuous involution has an auxiliary norm that turns it into an A*-algebra. (author). 7 refs
Fermionic constructions of exceptional Kac-Moody algebras
International Nuclear Information System (INIS)
Schwimmer, A.
1985-01-01
The author discusses the fermionic representations of SO(2n) Kac Moody algebras. He describes construction of the E/sub 8/ algebra in terms of free fermionic operators, and generalises procedures for the basic representations of the Kac-Moody algebras appearing in Freudenthal's magic square
General distributions in process algebra
Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
2001-01-01
This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential
Differential Equation over Banach Algebra
Kleyn, Aleks
2018-01-01
In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.
A concrete introduction to higher algebra
Childs, Lindsay N
1995-01-01
This book is written as an introduction to higher algebra for students with a background of a year of calculus. The first edition of this book emerged from a set of notes written in the 1970sfor a sophomore-junior level course at the University at Albany entitled "Classical Algebra." The objective of the course, and the book, is to give students enough experience in the algebraic theory of the integers and polynomials to appre ciate the basic concepts of abstract algebra. The main theoretical thread is to develop algebraic properties of the ring of integers: unique factorization into primes, congruences and congruence classes, Fermat's theorem, the Chinese remainder theorem; and then again for the ring of polynomials. Doing so leads to the study of simple field extensions, and, in particular, to an exposition of finite fields. Elementary properties of rings, fields, groups, and homomorphisms of these objects are introduced and used as needed in the development. Concurrently with the theoretical development,...
W∞ and the Racah-Wigner algebra
International Nuclear Information System (INIS)
Pope, C.N.; Shen, X.; Romans, L.J.
1990-01-01
We examine the structure of a recently constructed W ∞ algebra, an extension of the Virasoro algebra that describes an infinite number of fields with all conformal spins 2,3..., with central terms for all spins. By examining its underlying SL(2,R) structure, we are able to exhibit its relation to the algebas of SL(2,R) tensor operators. Based upon this relationship, we generalise W ∞ to a one-parameter family of inequivalent Lie algebras W ∞ (μ), which for general μ requires the introduction of formally negative spins. Furthermore, we display a realisation of the W ∞ (μ) commutation relations in terms of an underlying associative product, which we denote with a lone star. This product structure shares many formal features with the Racah-Wigner algebra in angular-momentum theory. We also discuss the relation between W ∞ and the symplectic algebra on a cone, which can be viewed as a co-adjoint orbit of SL(2,R). (orig.)
Algebraic non-integrability of magnetic billiards
International Nuclear Information System (INIS)
Bialy, Misha; Mironov, Andrey E
2016-01-01
We consider billiard ball motion in a convex domain of the Euclidean plane bounded by a piece-wise smooth curve under the action of a constant magnetic field. We show that if there exists a first integral polynomial in the velocities of the magnetic billiard flow, then every smooth piece γ of the boundary must be algebraic, and either is a circle or satisfies very strong restrictions. In particular, it follows that any non-circular magnetic Birkhoff billiard is not algebraically integrable for all but finitely many values of the magnitude of the magnetic field. Moreover, a magnetic billiard in ellipse is not algebraically integrable for all values of the magnitude of the magnetic field. We conjecture that the circle is the only integrable magnetic billiard, not only in the algebraic sense, but also for a broader meaning of integrability. We also introduce what we call outer magnetic billiards. As an application of our method, we prove analogous results on algebraically integrable outer magnetic billiards. (paper)
Computational linear and commutative algebra
Kreuzer, Martin
2016-01-01
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...
International Nuclear Information System (INIS)
Curado, E.M.F.; Hassouni, Y.; Rego-Monteiro, M.A.; Rodrigues, Ligia M.C.S.
2008-01-01
We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements
Contemporary developments in algebraic K-theory
International Nuclear Information System (INIS)
Karoubi, M.; Kuku, A.O.; Pedrini, C.
2003-01-01
The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory
Contemporary developments in algebraic K-theory
Energy Technology Data Exchange (ETDEWEB)
Karoubi, M [Univ. Paris (France); Kuku, A O [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Pedrini, C [Univ. Genova (Italy)
2003-09-15
The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory
The $K$-theory of real graph $C*$-algebras
Boersema, Jeffrey L.
2014-01-01
In this paper, we will introduce real graph algebras and develop the theory to the point of being able to calculate the $K$-theory of such algebras. The $K$-theory situation is significantly more complicated than in the case for complex graph algebras. To develop the long exact sequence to compute the $K$-theory of a real graph algebra, we need to develop a generalized theory of crossed products for real C*-algebras for groups with involution. We also need to deal with the additional algebrai...
L{sub ∞} algebras and field theory
Energy Technology Data Exchange (ETDEWEB)
Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2017-03-15
We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
An introduction to Clifford algebras and spinors
Vaz, Jayme
2016-01-01
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...
Kac-Moody algebras and controlled chaos
International Nuclear Information System (INIS)
Wesley, Daniel H
2007-01-01
Compactification can control chaotic Mixmaster behaviour in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac-Moody algebras. We show that different compactifications define 'mutations' of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by Lorentzian (but not hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi-Yau, or M theory on a manifold of G 2 holonomy. (fast track communication)
Reductive Lie-admissible algebras applied to H-spaces and connections
International Nuclear Information System (INIS)
Sagle, A.A.
1982-01-01
An algebra A with multiplication xy is Lie-admissible if the vector space A with new multiplication [x,y] = xy-yx is a Lie algebra; we denote this Lie algebra by A - . Thus, an associative algebra is Lie-admissible but a Cayley algebra is not Lie-admissible. In this paper we show how Lie-admissible algebras arise from Lie groups and their application to differential geometry on Lie groups via the following theorem. Let A be an n-dimensional Lie-admissible algebra over the reals. Let G be a Lie group with multiplication function μ and with Lie algebra g which is isomorphic to A - . Then there exiss a corrdinate system at the identify e in G which represents μ by a function F:gxg→g defined locally at the origin, such that the second derivative, F 2 , at the origin defines on the vector space g the structure of a nonassociative algebra (g, F 2 ). Furthermore this algebra is isomorphic to A and (g, F 2 ) - is isomorphic to A - . Thus roughly, any Lie-admissible algebra is isomorphic to an algebra obtained from a Lie algebra via a change of coordinates in the Lie group. Lie algebras arise by using canonical coordinates and the Campbell-Hausdorff formula. Applications of this show that any G-invariant psuedo-Riemannian connection on G is completely determined by a suitable Lie-admissible algebra. These results extend to H-spaces, reductive Lie-admissible algebras and connections on homogeneous H-spaces. Thus, alternative and other non-Lie-admissible algebras can be utilized
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Representations of Lie algebras and partial differential equations
Xu, Xiaoping
2017-01-01
This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students. Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...
Hatem, Neil
2010-01-01
This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…
The Jordan structure of lie and Kac-Moody algebras
International Nuclear Information System (INIS)
Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.
1989-01-01
A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)