WorldWideScience

Sample records for clifford algebra

  1. Clifford Algebra with Mathematica

    CERN Document Server

    Aragon-Camarasa, G; Aragon, J L; Rodriguez-Andrade, M A

    2008-01-01

    The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, a package for Clifford algebra calculations for the computer algebra program Mathematica is introduced through a presentation of the main ideas of Clifford algebras and illustrative examples. This package can be a useful computational tool since allows the manipulation of all these mathematical objects. It also includes the possibility of visualize elements of a Clifford algebra in the 3-dimensional space.

  2. An introduction to Clifford algebras and spinors

    CERN Document Server

    Vaz, Jayme

    2016-01-01

    This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...

  3. Cayley-Dickson and Clifford Algebras as Twisted Group Algebras

    CERN Document Server

    Bales, John W

    2011-01-01

    The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.

  4. Geometry of Spin: Clifford Algebraic Approach

    Indian Academy of Sciences (India)

    Rukhsan-Ul-Haq

    2016-12-01

    Spin is a fundamental degree of freedom of matter and radiation.In quantum theory, spin is represented by Pauli matrices.Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a geometrical and henceintuitive way to understand quantum theory of spin, and isa natural formalism to study spin. Clifford algebraic formalismhas lot of applications in every field where spin plays animportant role.

  5. The Extended Fock Basis of Clifford Algebra

    CERN Document Server

    Budinich, Marco

    2010-01-01

    We investigate the properties of the Extended Fock Basis (EFB) of Clifford algebras introduced in [1]. We show that a Clifford algebra can be seen as a direct sum of multiple spinor subspaces that are characterized as being left eigenvectors of $\\Gamma$. We also show that a simple spinor, expressed in Fock basis, can have a maximum number of non zero coordinates that equals the size of the maximal totally null plane (with the notable exception of vectorial spaces with 6 dimensions).

  6. The Extended Fock Basis of Clifford Algebra

    OpenAIRE

    2010-01-01

    We investigate the properties of the Extended Fock Basis (EFB) of Clifford algebras introduced in [1]. We show that a Clifford algebra can be seen as a direct sum of multiple spinor subspaces that are characterized as being left eigenvectors of \\Gamma. We also show that a simple spinor, expressed in Fock basis, can have a maximum number of non zero coordinates that equals the size of the maximal totally null plane (with the notable exception of vectorial spaces with 6 dimensions).

  7. On Clifford representation of Hopf algebras and Fierz identities

    CERN Document Server

    Rodríguez-Romo, S

    1996-01-01

    We present a short review of the action and coaction of Hopf algebras on Clifford algebras as an introduction to physically meaningful examples. Some q-deformed Clifford algebras are studied from this context and conclusions are derived.

  8. Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras

    Science.gov (United States)

    Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.

    2016-10-01

    We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.

  9. Algebra de clifford del espacio tiempo

    OpenAIRE

    Spinel G., Ma. Carolina

    2012-01-01

    En un artículo previo, presentamos la estructura y relaciones básicas del algebra de Clifford Gn generada por el producto geométrico de los vectores de un espacio vectorial Vn sobre el cuerpo de los reales en la versión moderna de Hestenes. Este artículo se dedica a los aspectos fundamentales algebra de Clifford del espacio-tiempo plano (A.E.T.) muestra algunos hechos interesantes relacionados con teoría de Dirac, que ponen de manifiesto la importancia sencillez de la aplicación de algebras d...

  10. Concepts of trace, determinant and inverse of Clifford algebra elements

    OpenAIRE

    Shirokov, Dmitry

    2011-01-01

    In our paper we consider the notion of determinant of Clifford algebra elements. We present some new formulas for determinant of Clifford algebra elements for the cases of dimension 4 and 5. Also we consider the notion of trace of Clifford algebra elements. We use the generalization of the Pauli's theorem for 2 sets of elements that satisfy the main anticommutation conditions of Clifford algebra.

  11. A method of quaternion typification of Clifford algebra elements

    OpenAIRE

    Shirokov, Dmitry

    2008-01-01

    We present a new classification of Clifford algebra elements. Our classification is based on the notion of quaternion type. Using this classification we develop a method of analysis of commutators and anticommutators of Clifford algebra elements. This method allows us to find out and prove a number of new properties of Clifford algebra elements.

  12. Clifford Algebras in Symplectic Geometry and Quantum Mechanics

    OpenAIRE

    Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.

    2011-01-01

    The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional s...

  13. Clifford Algebras in Symplectic Geometry and Quantum Mechanics

    CERN Document Server

    Binz, Ernst; Hiley, Basil J

    2011-01-01

    The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, Fa of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, H(F), of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realization of H(F) in terms of a Clifford algebra consisting of Hermitian operators.

  14. Multifractal vector fields and stochastic Clifford algebra

    Energy Technology Data Exchange (ETDEWEB)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr [University Paris-Est, Ecole des Ponts ParisTech, Hydrology Meteorology and Complexity HM& Co, Marne-la-Vallée (France)

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  15. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  16. On the Kostant conjecture for Clifford algebra

    CERN Document Server

    Alekseev, Anton

    2011-01-01

    Let g be a complex simple Lie algebra, and h be a Cartan subalgebra. In the end of 1990s, B. Kostant defined two filtrations on h, one using the Clifford algebras and the odd analogue of the Harish-Chandra projection $hc: Cl(g) \\to Cl(h)$, and the other one using the canonical isomorphism $\\check{h} = h^*$ (here $\\check{h}$ is the Cartan subalgebra in the simple Lie algebra corresponding to the dual root system) and the adjoint action of the principal sl2-triple. Kostant conjectured that the two filtrations coincide. The two filtrations arise in very different contexts, and comparing them proved to be a difficult task. Y. Bazlov settled the conjecture for g of type A using explicit expressions for primitive invariants in the exterior algebra of g. Up to now this approach did not lead to a proof for all simple Lie algebras. Recently, A. Joseph proved that the second Kostant filtration coincides with the filtration on h induced by the generalized Harish-Chandra projection $(Ug \\otimes g)^g \\to Sh \\otimes h$ and...

  17. Clifford algebras, noncommutative tori and universal quantum computers

    CERN Document Server

    Vlasov, A Yu

    2001-01-01

    Recently author suggested [quant-ph/0010071] an application of Clifford algebras for construction of a "compiler" for universal binary quantum computer together with later development [quant-ph/0012009] of the similar idea for a non-binary base. The non-binary case is related with application of some extension of idea of Clifford algebras. It is noncommutative torus defined by polynomial algebraic relations of order l. For l=2 it coincides with definition of Clifford algebra. Here is presented the joint consideration and comparison of both cases together with some discussion on possible physical consequences.

  18. Instantaneous Point, Line, and Plane Motions Using a Clifford Algebra

    Institute of Scientific and Technical Information of China (English)

    Kwun-Lon Ting; Yi Zhang

    2004-01-01

    The motions of points, lines, and planes, embedded in a rigid body are expressed in a unified algebraic framework using a Clifford algebra. A Clifford algebra based displacement operator is addressed and its higher derivatives from which the coordinate-independent characteristic numbers with simple geometric meaning are defined. Because of the coordinate independent feature, no tedious coordinate transformation typically found in the conventional instantaneous invariants methods is needed.

  19. The naked spinor a rewrite of Clifford algebra

    CERN Document Server

    Morris, Dennis

    2015-01-01

    This book is about spinors. The whole mathematical theory of spinors is within Clifford algebra, and so this book is about Clifford algebra. Spinor theory is really the theory of empty space, and so this book is about empty space. The whole of Clifford algebra is rewritten in a much simpler form, and so the whole of spinor theory is rewritten in a much simpler form. Not only does this book make Clifford algebra simple and obvious, but it lifts the fog and mirrors from this area of mathematics to make it clear and obvious. In doing so, the true nature of spinors is revealed to the reader, and, with that, the true nature of empty space. To understand this book you will need an elementary knowledge of linear algebra (matrices) an elementary knowledge of finite groups and an elementary knowledge of the complex numbers. From no more than that, you will gain a very deep understanding of Clifford algebra, spinors, and empty space. The book is well written with all the mathematical steps laid before the reader in a w...

  20. Obstructions to Clifford System Extensions of Algebras

    Indian Academy of Sciences (India)

    Antonio M Cegarra; Antonio R Garzón

    2001-05-01

    In this paper we do phrase the obstruction for realization of a generalized group character, and then we give a classification of Clifford systems in terms of suitable low-dimensional cohomology groups.

  1. Maximal-acceleration phase space relativity from Clifford algebras

    CERN Document Server

    Castro, C

    2002-01-01

    We present a new physical model that links the maximum speed of light with the minimal Planck scale into a maximal-acceleration Relativity principle in the spacetime tangent bundle and in phase spaces (cotangent bundle). Crucial in order to establish this link is the use of Clifford algebras in phase spaces. The maximal proper-acceleration bound is a = c^2/ \\Lambda in full agreement with the old predictions of Caianiello, the Finslerian geometry point of view of Brandt and more recent results in the literature. We present the reasons why an Extended Scale Relativity based on Clifford spaces is physically more appealing than those based on kappa-deformed Poincare algebras and the inhomogeneous quantum groups operating in quantum Minkowski spacetimes. The main reason being that the Planck scale should not be taken as a deformation parameter to construct quantum algebras but should exist already as the minimum scale in Clifford spaces.

  2. Quadratic forms and Clifford algebras on derived stacks

    OpenAIRE

    Vezzosi, Gabriele

    2013-01-01

    In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...

  3. $Z_3$-graded analogues of Clifford algebras and generalization of supersymmetry

    CERN Document Server

    Abramov, V V

    1996-01-01

    We define and study the ternary analogues of Clifford algebras. It is proved that the ternary Clifford algebra with $N$ generators is isomorphic to the subalgebra of the elements of grade zero of the ternary Clifford algebra with $N+1$ generators. In the case $N=3$ the ternary commutator of cubic matrices induced by the ternary commutator of the elements of grade zero is derived. We apply the ternary Clifford algebra with one generator to construct the $Z_3$-graded generalization of the simplest algebra of supersymmetries.

  4. Clifford algebras geometric modelling and chain geometries with application in kinematics

    CERN Document Server

    Klawitter, Daniel

    2015-01-01

    After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.  Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...

  5. Representations of Clifford algebras of ternary quartic forms

    CERN Document Server

    Coskun, Emer; Mustopa, Yusuf

    2011-01-01

    Given a nondegenerate ternary form $f=f(x_1,x_2,x_3)$ of degree 4 over an algebraically closed field of characteristic zero, we use the geometry of K3 surfaces to construct a certain positive-dimensional family of irreducible representations of the generalized Clifford algebra associated to $f.$ From this we obtain the existence of linear Pfaffian representations of the quartic surface $X_f=\\{w^4=f(x_1,x_2,x_3)\\},$ as well as information on the Brill-Noether theory of a general smooth curve in the linear system $|\\mathcal{O}_{X_f}(3)|.$

  6. The Hidden Quantum Group of the 8-vertex Free Fermion Model q-Clifford Algebras

    CERN Document Server

    Cuerno, R; López, E; Sierra, G

    1993-01-01

    We prove in this paper that the elliptic $R$--matrix of the eight vertex free fermion model is the intertwiner $R$--matrix of a quantum deformed Clifford--Hopf algebra. This algebra is constructed by affinization of a quantum Hopf deformation of the Clifford algebra.

  7. Bilinear covariants and spinor fields duality in quantum Clifford algebras

    Energy Technology Data Exchange (ETDEWEB)

    Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu [Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br [Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, SP (Brazil); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy)

    2014-10-15

    Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.

  8. Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space

    Directory of Open Access Journals (Sweden)

    Fred Brackx

    2004-01-01

    Full Text Available A new method for constructing Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space is presented. In earlier research, we only dealt with scalar-valued weight functions. Now the class of weight functions involved is enlarged to encompass Clifford algebra-valued functions. The method consists in transforming the orthogonality relation on the open unit ball into an orthogonality relation on the real axis by means of the so-called Clifford-Heaviside functions. Consequently, appropriate orthogonal polynomials on the real axis give rise to Clifford algebra-valued orthogonal polynomials in the unit ball. Three specific examples of such orthogonal polynomials in the unit ball are discussed, namely, the generalized Clifford-Jacobi polynomials, the generalized Clifford-Gegenbauer polynomials, and the shifted Clifford-Jacobi polynomials.

  9. Clifford Algebra Cℓ 3(ℂ) for Applications to Field Theories

    Science.gov (United States)

    Panicaud, B.

    2011-10-01

    The multivectorial algebras present yet both an academic and a technological interest. Difficulties can occur for their use. Indeed, in all applications care is taken to distinguish between polar and axial vectors and between scalars and pseudo scalars. Then a total of eight elements are often considered even if they are not given the correct name of multivectors. Eventually because of their simplicity, only the vectorial algebra or the quaternions algebra are explicitly used for physical applications. Nevertheless, it should be more convenient to use directly more complex algebras in order to have a wider range of application. The aim of this paper is to inquire into one particular Clifford algebra which could solve this problem. The present study is both didactic concerning its construction and pragmatic because of the introduced applications. The construction method is not an original one. But this latter allows to build up the associated real algebra as well as a peculiar formalism that enables a formal analogy with the classical vectorial algebra. Finally several fields of the theoretical physics will be described thanks to this algebra, as well as a more applied case in general relativity emphasizing simultaneously its relative validity in this particular domain and the easiness of modeling some physical problems.

  10. Coverage analysis for sensor networks based on Clifford algebra

    Institute of Scientific and Technical Information of China (English)

    XIE WeiXin; CAO WenMing; MENG Shan

    2008-01-01

    The coverage performance is the foundation of information acquisition in distrib-uted sensor networks. The previously proposed coverage work was mostly based on unit disk coverage model or ball coverage model in 2D or 3D space, respectively. However, most methods cannot give a homogeneous coverage model for targets with hybrid types. This paper presents a coverage analysis approach for sensor networks based on Clifford algebra and establishes a homogeneous coverage model for sensor networks with hybrid types of targets. The effectiveness of the approach is demonstrated with examples.

  11. Clifford Algebras, Pure Spinors and the Physics of Fermions

    CERN Document Server

    Budinich, P

    2002-01-01

    The equations defining pure spinors are interpreted as equations of motion formulated on the lightcone of a ten-dimensional, lorentzian, momentum space. Most of the equations for fermion multiplets, usually adopted by particle physics, are then naturally obtained and their properties like internal symmetries, charges, families appear to be due to the correlation of the associated Clifford algebras, with the 3 complex division algebras: complex numbers at the origin of U(1) and charges; quaternions at the origin of SU(2); families and octonions at the origin of SU(3). Pure spinors instead could be relevant not only because the underlying momentum space results compact, but also because it may throw light on some aspects of particle physics, like: masses, charges, constraint relations, supersymmetry and epistemology.

  12. Noncommutative physics on Lie algebras, Z_2^n lattices and Clifford algebras

    CERN Document Server

    Majid, S

    2004-01-01

    We survey noncommutative spacetimes with coordinates being enveloping algebras of Lie algebras. We also explain how to do differential geometry on noncommutative spaces that are obtained from commutative ones via a Moyal-product type cocycle twist, such as the noncommutative torus, $\\theta$-spaces and Clifford algebras. The latter are noncommutative deformations of the finite lattice $(Z_2)^n$ and we compute their noncommutative de Rham cohomology and moduli of solutions of Maxwell's equations. We exactly quantize noncommutative U(1)-Yang-Mills theory on $Z_2\\times Z_2$ in a path integral approach.

  13. The Clifford algebra of physical space and Dirac theory

    Science.gov (United States)

    Vaz, Jayme, Jr.

    2016-09-01

    The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein-Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.

  14. The. gamma. sub 5 -problem and anomalies - a Clifford algebra approach

    Energy Technology Data Exchange (ETDEWEB)

    Kreimer, D. (Mainz Univ. (Germany, F.R.). Inst. fuer Physik)

    1990-03-08

    It is shown that a strong correspondence between noncyclicity and anomalies exists. This allows, by fundamental properties of Clifford algebras, to build a simple and consistent scheme for treating {gamma}{sub 5} without using (d-4)-dimensional objects. (orig.).

  15. ON CAUCHY-POMPEIU FORMULA FOR FUNCTIONS WITH VALUES IN A UNIVERSAL CLIFFORD ALGEBRA

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper obtains the Cauchy-Pompeiu formula on certain distinguishedboundary for functions with values in a universal Clifford algebra. This formula is just anextension of the Cauchy's integral formula obtained in [11].

  16. On n-ary algebras, branes and poly-vector gauge theories in noncommutative Clifford spaces

    Science.gov (United States)

    Castro, Carlos

    2010-09-01

    In this paper, poly-vector-valued gauge field theories in noncommutative Clifford spaces are presented. They are based on noncommutative (but associative) star products that require the use of the Baker-Campbell-Hausdorff formula. Using these star products allows the construction of actions for noncommutative p-branes (branes moving in noncommutative spaces). Noncommutative Clifford-space gravity as a poly-vector-valued gauge theory of twisted diffeomorphisms in Clifford spaces would require quantum Hopf algebraic deformations of Clifford algebras. We proceed with the study of n-ary algebras and find an important relationship among the n-ary commutators of the noncommuting spacetime coordinates [X1, X2, ..., Xn] with the poly-vector-valued coordinates X123sdotsdotsdotn in noncommutative Clifford spaces given by [X1, X2, ..., Xn] = n!X123sdotsdotsdotn. The large N limit of n-ary commutators of n hyper-matrices {\\bf X}_{i_1 i_2 \\cdots i_n} leads to Eguchi-Schild p-brane actions for p + 1 = n. A noncomutative n-ary • product of n functions is constructed which is a generalization of the binary star product * of two functions and is associated with the deformation quantization of n-ary structures and deformations of the Nambu-Poisson brackets.

  17. Extension Theorem for Complex Clifford Algebras-Valued Functions on Fractal Domains

    Directory of Open Access Journals (Sweden)

    Bory-Reyes Juan

    2010-01-01

    Full Text Available Monogenic extension theorem of complex Clifford algebras-valued functions over a bounded domain with fractal boundary is obtained. The paper is dealing with the class of Hölder continuous functions. Applications to holomorphic functions theory of several complex variables as well as to that of the so-called biregular functions will be deduced directly from the isotonic approach.

  18. A special irreducible matrix representation of the real Clifford algebra C(3,1)

    CERN Document Server

    Scharnhorst, K

    1999-01-01

    4x4 Dirac (gamma) matrices (irreducible matrix representations of the Clifford algebras C(3,1), C(1,3), C(4,0)) are an essential part of many calculations in quantum physics. Although the final physical results do not depend on any particular representation of the Dirac matrices (e.g. due to the invariance of traces of products of Dirac matrices), the appropriate choice of the representation used may facilitate the analysis. The present paper introduces a particularly symmetric real representation of 4x4 Dirac matrices (Majorana representation) which may prove useful in the future. The consideration is based on the role played by isoclinic 2-planes in the geometry of the real Clifford algebra C(3,0) which provide an invariant geometric frame for it.

  19. From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model

    CERN Document Server

    Żenczykowski, Piotr

    2015-01-01

    We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained pha...

  20. Clifford algebra approach to pointwise convergence of Fourier series on spheres

    Institute of Scientific and Technical Information of China (English)

    FEI Minggang; QIAN Tao

    2006-01-01

    We offer an approach by means of Clifford algebra to convergence of Fourier series on unit spheres of even-dimensional Euclidean spaces. It is based on generalizations of Fueter's Theorem inducing quaternionic regular functions from holomorphic functions in the complex plane.We, especially, do not rely on the heavy use of special functions. Analogous Riemann-Lebesgue theorem, localization principle and a Dini's type pointwise convergence theorem are proved.

  1. Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra

    Directory of Open Access Journals (Sweden)

    I.Yu. Krivsky

    2010-01-01

    Full Text Available We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration is proved. In order to provide the corresponding proofs, a 64-dimensional extended real Clifford-Dirac algebra is put into consideration.

  2. Application of geometric algebra to electromagnetic scattering the Clifford-Cauchy-Dirac technique

    CERN Document Server

    Seagar, Andrew

    2016-01-01

    This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types...

  3. PT symmetry, Cartan decompositions, Lie triple systems and Krein space related Clifford algebras

    CERN Document Server

    Guenther, Uwe

    2010-01-01

    Gauged PT quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie triple structure is found and an interpretation as PT-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space related J-selfadjoint extensions for PTQM setups with ultra-localized potentials.

  4. New insights in the standard model of quantum physics in Clifford algebra

    CERN Document Server

    Daviau, Claude

    2013-01-01

    Why Clifford algebra is the true mathematical frame of the standard model of quantum physics. Why the time is everywhere oriented and why the left side shall never become the right side. Why positrons have also a positive proper energy. Why there is a Planck constant. Why a mass is not a charge. Why a system of particles implies the existence of the inverse of the individual wave function. Why a fourth neutrino should be a good candidate for black matter. Why concepts as “parity” and “reverse” are essential. Why the electron of a H atom is in only one bound state. Plus 2 very remarkable identities, and the invariant wave equations that they imply. Plus 3 generations and 4 neutrinos. Plus 5 dimensions in the space and 6 dimensions in space-time…

  5. Clifford algebra is the natural framework for root systems and Coxeter groups. Group theory: Coxeter, conformal and modular groups

    CERN Document Server

    Dechant, Pierre-Philippe

    2016-01-01

    In this paper, we make the case that Clifford algebra is the natural framework for root systems and reflection groups, as well as related groups such as the conformal and modular groups: The metric that exists on these spaces can always be used to construct the corresponding Clifford algebra. Via the Cartan-Dieudonn\\'e theorem all the transformations of interest can be written as products of reflections and thus via `sandwiching' with Clifford algebra multivectors. These multivector groups can be used to perform concrete calculations in different groups, e.g. the various types of polyhedral groups, and we treat the example of the tetrahedral group $A_3$ in detail. As an aside, this gives a constructive result that induces from every 3D root system a root system in dimension four, which hinges on the facts that the group of spinors provides a double cover of the rotations, the space of 3D spinors has a 4D euclidean inner product, and with respect to this inner product the group of spinors can be shown to be cl...

  6. Climate and weather across scales: singularities and stochastic Levy-Clifford algebra

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2016-04-01

    There have been several attempts to understand and simulate the fluctuations of weather and climate across scales. Beyond mono/uni-scaling approaches (e.g. using spectral analysis), this was done with the help of multifractal techniques that aim to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations of these equations (Royer et al., 2008, Lovejoy and Schertzer, 2013). However, these techniques were limited to deal with scalar fields, instead of dealing directly with a system of complex interactions and non trivial symmetries. The latter is unfortunately indispensable to answer to the challenging question of being able to assess the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013) or to fully address the question of the relevance of quasi-geostrophic turbulence and to define an effective, fractal dimension of the atmospheric motions (Schertzer et al., 2012). In this talk, we present a plausible candidate based on the combination of Lévy stable processes and Clifford algebra. Together they combine stochastic and structural properties that are strongly universal. They therefore define with the help of a few physically meaningful parameters a wide class of stochastic symmetries, as well as high dimensional vector- or manifold-valued fields respecting these symmetries (Schertzer and Tchiguirinskaia, 2015). Lovejoy, S. & Schertzer, D., 2013. The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge U.K. Cambridge Univeristy Press. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.81-83. Royer, J.F. et al., 2008. Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. C.R. Geoscience, 340(431-440). Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327-336. Schertzer, D

  7. Clifford Algebra-Based Voronoi Algorithm%Voronoi生成的Clifford代数实现方法

    Institute of Scientific and Technical Information of China (English)

    易琳; 袁林旺; 俞肇元; 罗文; 闾国年

    2011-01-01

    引入具有维度融合、坐标无关等特性的Clifford几何代数,构建不同维度统一Voronoi生成框架及算法流程.定义了可支撑不同维度、不同对象间距离、相交及对偶关系的几何、拓扑运算,基于多重向量设计了可支撑不同维度地理对象的统一存储结构及关系表达机制,实现了基于Clifford代数的多维统一Voronoi生成算法.以中国城市气象数据为例进行了算法验证,并分析了算法复杂度.结果表明,该算法可根据输入数据维度自适应地实现相应维度的Voronoi分析,可为以维度统一为特征的GIS分析算法实现提供借鉴.%Based on the superiority of Clifford algebra in multi-dimensional diffusion and coordinate freeing, the unified multi-dimensional generation framework and the algorithm flow of Voronoi have been constructed. Geometric operations and topological operations are defined, which can calculate the distance, intersection and dual among different dimensions and different types of geometric objects. And the unified storage structure and expression mechanism for different dimensional objects are designed with multivector. Finally,2D & 3D experiments and comparison analysis of complexity and accuracy are given to validate the algorithm. The work proves that the designed algorithm is effective and feasible to multi-dimensional Voronoi analysis,and geometric algebra provides a new math tool to establish multi-dimensional unified spatial analysis algorithms.

  8. Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S

    2004-05-01

    In a recent paper entitled 'Quantum gravity from descriptive set theory', published in Chaos, Solitons and Fractals, we considered following the P-adic quantum theory, the possibility of abandoning the Archimedean axiom and introducing a fundamental physical limitation on the smallest length in quantum spacetime. Proceeding that way we arrived at the conclusion that maximising the Hawking-Bekenstein informational content of spacetime makes the existence of a transfinite geometry for physical 'spacetime' plausible or even inevitable. Subsequently we introduced a mathematical description of a transfinite, non-Archimedean geometry using descriptive set theory where a similar conclusion regarding the transfiniteness of quantum spacetime may be drawn from the existence of the Unruh temperature. In particular we introduced a straight forward logarithmic gauge transformation linking, as far as we are aware for the first time, classical gravity with the electroweak via a version of informational entropy. That way we found using {epsilon}{sup ({infinity}}{sup )} and complexity theory that {alpha}-bar{sub G}=(2){sup {alpha}-bar{sub ew}}{sup -1}=1.7x10{sup 38} where {alpha}-bar{sub G} is the dimensionless Newton gravity constant and {alpha}-bar{sub ew}=128 is the fine structure constant at the electroweak unification scale. The present work is concerned with more or less the same category of fundamental questions pertinent to quantum gravity. However we switch our mathematical apparatus to a combination of Clifford algebras and set theory. In doing that, the central and vital role of the work of D. Finkelstein becomes much more tangible and clearer than in most of our previous works.

  9. Understanding geometric algebra Hamilton, Grassmann, and Clifford for computer vision and graphics

    CERN Document Server

    Kanatani, Kenichi

    2015-01-01

    Introduction PURPOSE OF THIS BOOK ORGANIZATION OF THIS BOOK OTHER FEATURES 3D Euclidean Geometry VECTORS BASIS AND COMPONENTS INNER PRODUCT AND NORM VECTOR PRODUCTS SCALAR TRIPLE PRODUCT PROJECTION, REJECTION, AND REFLECTION ROTATION PLANES LINES PLANES AND LINES Oblique Coordinate Systems RECIPROCAL BASIS RECIPROCAL COMPONENTS INNER, VECTOR, AND SCALAR TRIPLE PRODUCTS METRIC TENSOR RECIPROCITY OF EXPRESSIONS COORDINATE TRANSFORMATIONSHamilton's Quaternion Algebra QUATERNIONS ALGEBRA OF QUATERNIONS CONJUGATE, NORM, AND INVERSE REPRESENTATION OF ROTATION BY QUATERNION Grassmann's Outer Product

  10. Clifford numbers and spinors

    CERN Document Server

    Lounesto, Pertti

    1993-01-01

    This volume contains a facsimile reproduction of Marcel Riesz's notes of a set of lectures he delivered at the University of Maryland, College Park, between October 1957 and January 1958, which has not been formally published to date This seminal material (arranged in four chapters), which contributed greatly to the start of modern research on Clifford algebras, is supplemented in this book by notes which Riesz dictated to E Folke Bolinder in the following year and which were intended to be a fifth chapter of the Riesz lecture notes In addition, Riesz's work on Clifford algebra is put into an historical perspective in a separate review by P Lounesto As well as providing an introduction to Clifford algebra, this volume will be of value to those interested in the history of mathematics

  11. Clifford algebra and the projective model of Minkowski (pseudo-Euclidean) spaces

    OpenAIRE

    Sokolov, Andrey

    2013-01-01

    I apply the algebraic framework introduced in arXiv:1101.4542v3[math.MG] to Minkowski (pseudo-Euclidean) spaces in 2, 3, and 4 dimensions. The exposition follows the template established in arXiv:1307.2917[math.MG] for Euclidean spaces. The emphasis is on geometric structures, but some contact with special relativity is made by considering relativistic addition of velocities and Lorentz transformations, both of which can be seen as rotation applied to points and to lines. The language used in...

  12. Analysis of two-player quantum games in an EPR setting using Clifford's geometric algebra.

    Science.gov (United States)

    Chappell, James M; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of geometric algebra (GA). The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.

  13. Analysis of two-player quantum games in an EPR setting using Clifford's geometric algebra.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR type setting is investigated using the mathematical formalism of geometric algebra (GA. The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.

  14. Clifford Fibrations and Possible Kinematics

    Science.gov (United States)

    McRae, Alan S.

    2009-07-01

    Following Herranz and Santander [Herranz F.J., Santander M., Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 32 (1998), 59-84, physics/9702030] we will construct homogeneous spaces based on possible kinematical algebras and groups [Bacry H., Levy-Leblond J.-M., J. Math. Phys. 9 (1967), 1605-1614] and their contractions for 2-dimensional spacetimes. Our construction is different in that it is based on a generalized Clifford fibration: Following Penrose [Penrose R., Alfred A. Knopf, Inc., New York, 2005] we will call our fibration a Clifford fibration and not a Hopf fibration, as our fibration is a geometrical construction. The simple algebraic properties of the fibration describe the geometrical properties of the kinematical algebras and groups as well as the spacetimes that are derived from them. We develop an algebraic framework that handles all possible kinematic algebras save one, the static algebra.

  15. Face Detection Based on Adaboost and Clifford Algebra%基于Adaboost与Clifford代数的人脸检测

    Institute of Scientific and Technical Information of China (English)

    杨晋吉; 李荣兵

    2013-01-01

    In the conditions of complicated backgrounds and different illumination, as face detection based on Adaboost algorithm usually has higher false alarm rate, a new method based on the Adaboost algorithm and the Clifford vector product is proposed in this paper. Most of the non-face region is quickly excluded by the Adaboost classifier. The candidate region is verified basing on the face prior knowledge. If verification failure, according to Clifford vector product properties, searching for the region which has higher similarity with the region that need to be verified again, when their vector product is higher than threshold, this paper can judge that it is a face region. The comparison of this method with Viola-Jones method, experimental result shows that this method can detect face with high detection rate, suppresses the error detection rate, and is highly robust to face detection.%Adaboost算法在光照不均、背景复杂的条件下进行人脸检测时误检率较高。为解决该问题,提出一种基于Adaboost算法与Clifford代数矢量积性质的人脸检测方法。利用Adaboost算法初步定位人脸可能存在的区域,对该区域进行基于知识的校验,如果校验失败,根据Clifford矢量积性质,寻找与待验证区域相似度较高的人脸,当相似度大于阈值时,判断其为人脸。实验结果表明,与Viola-Jones方法相比,该方法在保持较高检测率的同时,降低了误检率,且鲁棒性较好。

  16. 正交模上Clifford代数的支配权%Dominant Weights of the Clifford Algebra over an Orthogonal Module

    Institute of Scientific and Technical Information of China (English)

    何军华; 谭友军

    2011-01-01

    This paper deals with dominant weights of the Clifford algebra C(V) over an orthogonal g-module V, where the g-module C(V) is a multiple of Kostant's spin module Spin(V). Let △(V) be the set of nonzero weights of V. The half-sum of any positive convex half of △(V) is shown to be a dominant weight of C(V). Conversely, if a half-sum is a highest weight of C(V) with multiplicity 2mV(O)+dim V/2, then it is given by a positive convex half of △(V).%研究了正交g-模V上的Clifford代数C(V)的支配权,其中G-模C(V)是Kostant给出的旋模Spin(V)的倍数.设△(V)是V的非零权组成的集合.证明了△(V)任一正凸半的半和总是C(V)的一个支配权.反之,如果某一个半和是C(V)的重数为2 mV(O)+dim V/2 的最高权,那么该半和一定是△(V)的某个正凸半的半和.

  17. The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification

    CERN Document Server

    Castro, C

    2004-01-01

    We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper and lower length scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R ) and complexified Clifford Cl_C ( 4 ) algebra related to Twistors. We proceed with an extensive review of Smith's 8D model based on the Clifford algebra Cl ( 1 ,7) that reproduces at low energies the physics of the Standard Model and Gravity; including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Further results by Smith are discussed pertaining the interplay among Clifford, Jordan, Division and Exceptional Lie algebras within the hierarchy of dimensions D = 26, 27, 28 related to bosonic string, M, F theory. Two Geometric actions are presented like the Clifford-Space extension of Maxwell's Electrodynamics, Brandt's action related the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries) followed by a...

  18. Generalized exterior algebras

    OpenAIRE

    Marchuk, Nikolay

    2011-01-01

    Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...

  19. Clifford Hopf-gebra and Bi-universal Hopf-gebra

    CERN Document Server

    Oziewicz, Z

    1997-01-01

    We consider a pair of independent scalar products, one scalar product on vectors, and another independent scalar product on dual space of co-vectors. The Clifford co-product of multivectors is calculated from the dual Clifford algebra. With respect to this co-product unit is not group-like and vectors are not primitive. The Clifford product and the Clifford co-product fits to the bi-gebra with respect to the family of the (pre)-braids. The Clifford bi-gebra is in a braided category iff at least one of these scalar products vanish.

  20. Interview of Clifford Geertz

    OpenAIRE

    Geertz, Clifford

    2004-01-01

    Clifford Geertz interviewed by Alan Macfarlane in Cambridge, 6th May 2004, the interview lasts about two hours. Clifford Geertz talks of his childhood and education. He describes various important figures in American anthropology, and the influence of Weber. he describes his fieldwork in Indonesia and Morocco. He discusses what it is to be an anthropologist.

  1. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  2. Geometric Algebra

    CERN Document Server

    Chisolm, Eric

    2012-01-01

    This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...

  3. A Digital Image Watermarking Algorithm Based on Clifford Algebra%基于Clifford代数的数字图像水印技术

    Institute of Scientific and Technical Information of China (English)

    李岩山

    2008-01-01

    本文首先讨论了Clifford代数的几何性质,探讨了3维Clifford代数空间中的几何积和投影运算,介绍了Clifford代数空间中的Fourier变换及其计算公式,进而研究了Clifford代数的存在性定理,并提出基于Clifford代数的存在性定理和Clifford-Fourier变换的数字图像水印嵌入算法.本文首次提出在Clifford代数空间中进行数字水印嵌入,实验论证了该算法的合理性,能较好的完成数字图像水印的嵌入.

  4. The Teodorescu Operator in Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    F.BRACKX; H.De SCHEPPER; M.E.LUNA-ELIZARRAR(A)S; M.SHAPIRO

    2012-01-01

    Euclidean Clifford analysis is a higher dimensional function theory centred around monogenic functions,i.e.,null solutions to a first order vector valued rotation invariant differential operator (θ) called the Dirac operator.More recently,Hermitian Clifford analysis has emerged as a new branch,offering yet a refinement of the Euclidean case; it focuses on the simultaneous null solutions,called Hermitian monogenic functions,to two Hermitian Dirac operators (θ)z_ and (θ)z_(+) which are invariant under the action of the unitary group.In Euclidean Clifford analysis,the Teodorescu operator is the right inverse of the Dirac operator (θ).In this paper,Teodorescu operators for the Hermitian Dirac operators (θ)z_ and (θ)z(+) are constructed.Moreover,the structure of the Euclidean and Hermitian Teodorescu operators is revealed by analyzing the more subtle behaviour of their components.Finally,the obtained inversion relations are still refined for the differential operators issuing from the Euclidean and Hermitian Dirac operators by splitting the Clifford algebra product into its dot and wedge parts.Their relationship with several complex variables theory is discussed.

  5. Generalized exterior algebras

    CERN Document Server

    Marchuk, Nikolay

    2011-01-01

    Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann algebra and Clifford algebra. Specialists consider models of gravity that based on a mathematical formalism with two metric tensors. We hope that the considered in this paper 2-metric exterior algebra can be useful for development of this model in gravitation theory. Especially in description of fermions in presence of a gravity field.

  6. GAUSS-MEAN VALUE FORMULA FOR TRIHARMONIC FUNCTIONS AND ITS APPLICATIONS IN CLIFFORD ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Longfei GU; Zhongxiang ZHANG

    2013-01-01

    In this paper, the integral representation for some polyharmonic functions with values in a universal Clifford algebra Cl(Vn,n) is studied and Gauss-mean value formula for triharmonic functions with values in a Clifford algebra Cl(Vn,n) are proved by using Stokes formula and higher order Cauchy-Pompeiu formula. As application some results about growth condition at infinity are obtained.

  7. Clifford Geertz: A career

    Directory of Open Access Journals (Sweden)

    Bošković Aleksandar

    2007-01-01

    Full Text Available The paper presents some concepts of the recently deceased American anthropologist Clifford Geertz, putting them into the specific context of his rich and interesting career, influences that he had, as well as some reactions to his ideas. A particular attention is placed upon the concept of culture, as the key concept in the 20th century American anthropology.

  8. Dirac matrices as elements of a superalgebraic matrix algebra

    Science.gov (United States)

    Monakhov, V. V.

    2016-08-01

    The paper considers a Clifford extension of the Grassmann algebra, in which operators are built from Grassmann variables and by the derivatives with respect to them. It is shown that a subalgebra which is isomorphic to the usual matrix algebra exists in this algebra, the Clifford exten-sion of the Grassmann algebra is a generalization of the matrix algebra and contains superalgebraic operators expanding matrix algebra and produces supersymmetric transformations.

  9. On Clifford's theorem for singular curves

    CERN Document Server

    Franciosi, Marco

    2011-01-01

    Let C be a 2-connected Gorenstein curve either reduced or contained in a smooth algebraic surface and let S be a subcanonical cluster (i.e. a 0-dim scheme such that the space H^0(C, I_S K_C) contains a generically invertible section). Under some general assumptions on S or C we show that h^0(C, I_S K_C) <= p_a(C) - deg (S)/2 and if equality holds then either S is trivial, or C is honestly hyperelliptic or 3-disconnected. As a corollary we give a generalization of Clifford's theorem for reduced curves.

  10. Real Clifford Windowed Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    Mawardi BAHRI; Sriwulan ADJI; Ji Man ZHAO

    2011-01-01

    We study the windowed Fourier transform in the framework of Clifford analysis, which we call the Clifford windowed Fourier transform (CWFT). Based on the spectral representation of the Clifford Fourier transform (CFT), we derive several important properties such as shift, modulation,reconstruction formula, orthogonality relation, isometry, and reproducing kernel. We also present an example to show the differences between the classical windowed Fourier transform (WFT) and the CWFT. Finally, as an application we establish a Heisenberg type uncertainty principle for the CWFT.

  11. Moyal deformations of Clifford gauge theories of gravity

    Science.gov (United States)

    Castro, Carlos

    2016-12-01

    A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal) Gravity is performed for canonical noncommutativity (constant Θμν parameters). In the very special case when one imposes certain constraints on the fields, there are no first-order contributions in the Θμν parameters to the Moyal deformations of Clifford gauge theories of gravity. However, when one does not impose constraints on the fields, there are first-order contributions in Θμν to the Moyal deformations in variance with the previous results obtained by other authors and based on different gauge groups. Despite that the generators of U(2, 2),SO(4, 2),SO(2, 3) can be expressed in terms of the Clifford algebra generators this does not imply that these algebras are isomorphic to the Clifford algebra. Therefore one should not expect identical results to those obtained by other authors. In particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with a cosmological constant to first-order in Θμν. Finally, we provide a mechanism which furnishes a plausible cancellation of the huge vacuum energy density.

  12. Extending coherent state transforms to Clifford analysis

    Science.gov (United States)

    Kirwin, William D.; Mourão, José; Nunes, João P.; Qian, Tao

    2016-10-01

    Segal-Bargmann coherent state transforms can be viewed as unitary maps from L2 spaces of functions (or sections of an appropriate line bundle) on a manifold X to spaces of square integrable holomorphic functions (or sections) on Xℂ. It is natural to consider higher dimensional extensions of X based on Clifford algebras as they could be useful in studying quantum systems with internal, discrete, degrees of freedom corresponding to nonzero spins. Notice that the extensions of X based on the Grassmann algebra appear naturally in the study of supersymmetric quantum mechanics. In Clifford analysis, the zero mass Dirac equation provides a natural generalization of the Cauchy-Riemann conditions of complex analysis and leads to monogenic functions. For the simplest but already quite interesting case of X = ℝ, we introduce two extensions of the Segal-Bargmann coherent state transform from L2(ℝ, dx) ⊗ ℝm to Hilbert spaces of slice monogenic and axial monogenic functions and study their properties. These two transforms are related by the dual Radon transform. Representation theoretic and quantum mechanical aspects of the new representations are studied.

  13. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  14. Algebra

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.

  15. Quregisters, Symmetry Groups and Clifford Algebras

    Science.gov (United States)

    Cervantes, D.; Morales-Luna, G.

    2016-03-01

    Natural one-to-one and two-to-one homomorphisms from SO(3) into SU(2) are built conventionally, and the collection of qubits, is identified with a subgroup of SU(2). This construction is suitable to be extended to corresponding tensor powers. The notions of qubits, quregisters and qugates are translated into the language of symmetry groups. The corresponding elements to entangled states in the tensor product of Hilbert spaces reflect entanglement properties as well, and in this way a notion of entanglement is realised in the tensor product of symmetry groups.

  16. Clifford Algebras and New Isoparametric Hypersurfaces

    CERN Document Server

    Ferus, Dirk; Münzner, Hans-Friedrich

    2011-01-01

    1. Translated by Thomas E. Cecil, Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, USA; E-mail address: cecil@mathcs.holycross.edu 2. Typed by Wenjiao Yan, School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China. E-mail address: wjyan@mail.bnu.edu.cn

  17. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  18. Initial value problems in Clifford-type analysis

    CERN Document Server

    Bolívar, Yanett M

    2011-01-01

    We consider an initial value problem of type $$ \\frac{\\partial u}{\\partial t}={\\cal F}(t,x,u,\\partial_j u), \\quad u(0,x)=\\phi(x), $$ where $t$ is the time, $x \\in \\mathbb{R}^n $ and $u_0$ is a Clifford type algebra-valued function satisfying ${\\bf D}u=\\displaystyle\\sum_{j=0}^{n}\\lambda_j(x)e_j\\partial_ju = 0$, $\\lambda_j(x)\\in \\mathbb{R} $ for all $j$. We will solve this problem using the technique of associated spaces. In order to do that, we give sufficient conditions on the coefficients of the operators ${\\cal F}$ and ${\\bf D}$, where ${\\cal F}(u)= \\displaystyle\\sum_{i=0}^{n}A^{(i)}(x)\\displaystyle\\partial_iu$ for $A^{(i)}(x) \\in \\mathbb{R}$ or $A^{(i)}(x)$ belonging to a Clifford-type algebra, such that these operators are an associated pair.

  19. Properly twisted groups and their algebras

    CERN Document Server

    Bales, John W

    2011-01-01

    A twist property is developed which imparts certain properties on the twisted group algebra. These include an involution * satisfying (xy)*=y*x* and an inner product satisfying = and =. Examples of twisted group algebras having this property are the Cayley-Dickson algebras and Clifford algebras.

  20. Clifford Geertz. In memoriam

    Directory of Open Access Journals (Sweden)

    Richard Handler

    2008-01-01

    Full Text Available En la primavera de 1991, Adam Kuper, por entonces director de Current Anthropology, y por derecho propio destacado historiador de la disciplina antropológica, me pidió realizar una entrevista a Clifford Geertz. Acepté encantado y ese mismo verano viajé a Princeton, Nueva Jersey, donde transcurrí aproximadamente tres horas con Geertz en su oficina, en el Instituto de Estudios Avanzados. Geertz me dio una cordial bienvenida y habló conmigo sin tapujos, dándome (como podrá comprobar el lector un claro y completo relato de su carrera (para una completa y exacta versión, los lectores pueden consultar ahora su autobiografía en After the Fact: Two Countries, Four Decades, one Anthropolgist, Harvard University Press, 1995. De la transcripción de la entrevista realicé un manuscrito, donde limpié las repeticiones y dubitaciones de la conversación, pero manteniendo fielmente la charla, tal y como tuvo lugar. Se lo mandé a Geertz, que propuso algunas correcciones pero que por lo demás aceptó todo.

  1. The many faces of Maxwell, Dirac and Einstein equations a Clifford bundle approach

    CERN Document Server

    Rodrigues, Jr, Waldyr A

    2016-01-01

    This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also adds three new chapters: on the Clifford bundle approach to the Riemannian or semi-Riemannian differential geometry of branes; on Komar currents in the context of the General Relativity theory; and an analysis of the similarities and main differences between Dirac, Majorana and ELKO spinor fields. The exercises with solut...

  2. The Semigroup Structure of Left Clifford Semirings

    Institute of Scientific and Technical Information of China (English)

    Yu Qi GUO; Kar Ping SHUM; M. K. SEN

    2003-01-01

    In this paper, we generalize Clifford semirings to left Clifford semirings by means of theso-called band semirings. We also discuss a special case of this kind of semirings, that is, strongdistributive lattices of left rings.

  3. Clifford theory for group representations

    CERN Document Server

    Karpilovsky, G

    1989-01-01

    Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products.The purpos

  4. Rigidity theorems of Clifford Torus

    Directory of Open Access Journals (Sweden)

    SOUSA JR. LUIZ A. M.

    2001-01-01

    Full Text Available Let M be an n-dimensional closed minimally immersed hypersurface in the unit sphere Sn + 1. Assume in addition that M has constant scalar curvature or constant Gauss-Kronecker curvature. In this note we announce that if M has (n - 1 principal curvatures with the same sign everywhere, then M is isometric to a Clifford Torus .

  5. Twist `til we tear the house down: How Clifford solved the universe in 1870

    Science.gov (United States)

    Beichler, James

    2010-02-01

    It is commonly believed that the first hyperspace theories in physics were developed in the early twentieth century - Kaluza's five-dimensional extension of relativity is the best known, but this is untrue. It is also commonly believed that W.K. Clifford `speculated' on a higher space in 1870, had no followers and never published his theory (if he even had one). Nothing could be further from the historical truth. As early as 1869, Clifford, his followers and students began to develop a physical theory of matter based on a three-dimensional space curved in four dimensions. Clifford began to publish his theory, but modern researchers have failed to recognize his theoretical work because they look for something like Einstein's theory even though Clifford developed an electromagnetic theory. Clifford may not have directly influenced Einstein's relativity, but he made plausible arguments for the reality of space curvature, rendering the rapid acceptance of Einstein's concept of curved space-time more plausible. Clifford's work is either largely ignored by historians, scientists and other scholars or considered irrelevant because the early work on hyperspaces has been associated with ether theories that were abandoned, utilized quaternion algebras that were replaced by vectors and tensors, and was unfortunately associated with spiritualism. )

  6. Degenerate Space-Time Paths and the Non-locality of Quantum Mechanics in a Clifford Substructure of Space-Time

    CERN Document Server

    Borchsenius, K

    1999-01-01

    The quantized canonical space-time coordinates of a relativistic point particle are expressed in terms of the elements of a complex Clifford algebra which combines the complex properties of SL(2.C) and quantum mechanics. When the quantum measurement principle is adapted to the generating space of the Clifford algebra we find that the transition probabilities for twofold degenerate paths in space-time equals the transition amplitudes for the underlying paths in Clifford space. This property is used to show that the apparent non-locality of quantum mechanics in a double slit experiment and in an EPR type of measurement is resolved when analyzed in terms of the full paths in the underlying Clifford space. We comment on the relationship of this model to the time symmetric formulation of quantum mechanics and to the Wheeler-Feynman model.

  7. The Closed Subsemigroups of a Clifford Semigroup

    Institute of Scientific and Technical Information of China (English)

    Fu Yin-yin; Zhao Xian-zhong

    2014-01-01

    In this paper we study the closed subsemigroups of a Clifford semigroup. It is shown that{∪}Gα | Y′ ∈ P (Y ) is the set of all closed subsemigroups ofα∈Y′a Clifford semigroup S = [Y;Gα;ϕα,β], where Y′ denotes the subsemilattice of Y generated by Y′. In particular, G is the only closed subsemigroup of itself for a group G and each one of subsemilattices of a semilattice is closed. Also, it is shown that the semiring P (S ) is isomorphic to the semiring P (Y ) for a Clifford semigroup S=[Y;Gα;ϕα,β].

  8. Diagonal gates in the Clifford hierarchy

    Science.gov (United States)

    Cui, Shawn X.; Gottesman, Daniel; Krishna, Anirudh

    2017-01-01

    The Clifford hierarchy is a set of gates that appears in the theory of fault-tolerant quantum computation, but its precise structure remains elusive. We give a complete characterization of the diagonal gates in the Clifford hierarchy for prime-dimensional qudits. They turn out to be pmth roots of unity raised to polynomial functions of the basis state to which they are applied, and we determine which level of the Clifford hierarchy a given gate sits in based on m and the degree of the polynomial.

  9. Clifford Geertzi mälestusõhtu

    Index Scriptorium Estoniae

    2006-01-01

    10. novembril toimub TLÜ-s Ameerika kultuurantropoloogi Clifford Geertzi mälestusõhtu, kus esinevad rektor Rein Raud, TLÜ Eesti Humanitaarinstituudi antropoloogia keskuse dotsent Lorenzo Cañás Bottos ja kultuuriteooria lektor Marek Tamm

  10. Constructions of Lie algebras and their modules

    CERN Document Server

    Seligman, George B

    1988-01-01

    This book deals with central simple Lie algebras over arbitrary fields of characteristic zero. It aims to give constructions of the algebras and their finite-dimensional modules in terms that are rational with respect to the given ground field. All isotropic algebras with non-reduced relative root systems are treated, along with classical anisotropic algebras. The latter are treated by what seems to be a novel device, namely by studying certain modules for isotropic classical algebras in which they are embedded. In this development, symmetric powers of central simple associative algebras, along with generalized even Clifford algebras of involutorial algebras, play central roles. Considerable attention is given to exceptional algebras. The pace is that of a rather expansive research monograph. The reader who has at hand a standard introductory text on Lie algebras, such as Jacobson or Humphreys, should be in a position to understand the results. More technical matters arise in some of the detailed arguments. T...

  11. Transversal Clifford gates on folded surface codes

    Science.gov (United States)

    Moussa, Jonathan E.

    2016-10-01

    Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surface codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. The specific application of these codes to universal quantum computation based on qubit fusion is also discussed.

  12. Algebraic Quantum Mechanics and Pregeometry

    CERN Document Server

    Hiley, D J B P G D B J

    2006-01-01

    We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points" we suggest an approach that may make it possible to dispense with an a priori given space manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford Algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra in a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.

  13. Agama dalam Tentukur Antropologi Simbolik Clifford Geertz

    Directory of Open Access Journals (Sweden)

    Yusri Mohamad Ramli

    2012-06-01

    Full Text Available Clifford Geertz can be regarded as one of the most influential figures in religious studies, particularly in the field of anthropology. His unique symbolic anthropology approach had attracted researchers because of his emphasis on deductive reasoning in explaining the meaning of religion and in viewing cultural values that exist in religion. Research based on the content analysis of his works found that Clifford Geertz thought very strongly influenced by Ibn Khaldun as both of them emphasize on the practical reality of religious phenomena in the society. These symbols are then making a cultural system of what we call religion.

  14. Thomas Clifford Allbutt and Comparative Pathology

    Science.gov (United States)

    Leung, Danny C. K.

    2008-01-01

    This paper reconceptualizes Thomas Clifford Allbutt's contributions to the making of scientific medicine in late nineteenth-century England. Existing literature on Allbutt usually describes his achievements, such as his design of the pocket thermometer and his advocacy of the use of the ophthalmoscope in general medicine, as independent events;…

  15. The monomial representations of the Clifford group

    CERN Document Server

    Appleby, D M; Brierley, Stephen; Gross, David; Larsson, Jan-Ake

    2011-01-01

    We show that the Clifford group - the normaliser of the Weyl-Heisenberg group - can be represented by monomial phase-permutation matrices if and only if the dimension is a square number. This simplifies expressions for SIC vectors, and has other applications to SICs and to Mutually Unbiased Bases.

  16. The Anthropologist as Essayist: Clifford Geertz.

    Science.gov (United States)

    Page, Miriam Dempsey

    Based on the premise that the most viable form of discovery for the ethnographer is the personal essay--which has been called "the expression of the self thinking" (Alfred Kazin) or writing as learning and thinking--this paper examines the work of anthropologist Clifford Geertz in the light of that definition. Particular attention is…

  17. The standard model of quantum physics in Clifford algebra

    CERN Document Server

    Daviau, Claude

    2016-01-01

    We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.

  18. A boundary value problem for hypermonogenic functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    QIAO; Yuying

    2005-01-01

    This paper deals with a boundary value problem for hypermonogenic functions in Clifford analysis. Firstly we discuss integrals of quasi-Cauchy's type and get the Plemelj formula for hypermonogenic functions in Clifford analysis, and then we address Riemman boundary value problem for hypermonogenic functions.

  19. The Extended Relativity Theory in Clifford Spaces

    Directory of Open Access Journals (Sweden)

    Castro C.

    2005-04-01

    Full Text Available An introduction to some of the most important features of the Extended Relativity theory in Clifford-spaces (C-spaces is presented whose “point” coordinates are non-commuting Clifford-valued quantities which incorporate lines, areas, volumes, hyper-volumes. . . degrees of freedom associated with the collective particle, string, membrane, p-brane. . . dynamics of p-loops (closed p-branes in target D-dimensional spacetime backgrounds. C-space Relativity naturally incorporates the ideas of an invariant length (Planck scale, maximal acceleration, non-commuting coordinates, supersymmetry, holography, higher derivative gravity with torsion and variable dimensions/signatures. It permits to study the dynamics of all (closed p-branes, for all values of p, on a unified footing. It resolves the ordering ambiguities in QFT, the problem of time in Cosmology and admits superluminal propagation (tachyons without violations of causality. A discussion of the maximal-acceleration Relativity principle in phase-spaces follows and the study of the invariance group of symmetry transformations in phase-space allows to show why Planck areas are invariant under acceleration-boosts transformations. This invariance feature suggests that a maximal-string tension principle may be operating in Nature. We continue by pointing out how the relativity of signatures of the underlying n-dimensional spacetime results from taking different n-dimensional slices through C-space. The conformal group in spacetime emerges as a natural subgroup of the Clifford group and Relativity in C-spaces involves natural scale changes in the sizes of physical objects without the introduction of forces nor Weyl’s gauge field of dilations. We finalize by constructing the generalization of Maxwell theory of Electrodynamics of point charges to a theory in C-spaces that involves extended charges coupled to antisymmetric tensor fields of arbitrary rank. In the concluding remarks we outline briefly

  20. A generalized Clifford theorem of semigroups

    Institute of Scientific and Technical Information of China (English)

    SHUM; K.P.

    2010-01-01

    A U-abundant semigroup S in which every H-class of S contains an element in the set of projections U of S is said to be a U-superabundant semigroup.This is an analogue of regular semigroups which are unions of groups and an analogue of abundant semigroups which are superabundant.In 1941,Clifford proved that a semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups.Several years later,Fountain generalized this result to the class of superabundant semigroups.In this paper,we extend their work to U-superabundant semigroups.

  1. A remarkable representation of the Clifford group

    CERN Document Server

    Bengtsson, Ingemar

    2012-01-01

    The finite Heisenberg group knows when the dimension of Hilbert space is a square number. Remarkably, it then admits a representation such that the entire Clifford group --- the automorphism group of the Heisenberg group --- is represented by monomial phase-permutation matrices. This has a beneficial influence on the amount of calculation that must be done to find Symmetric Informationally Complete POVMs. I make some comments on the equations obeyed by the absolute values of the components of the SIC vectors, and on the fact that the representation partly suggests a preferred tensor product structure.

  2. Reply to da Rocha and Rodrigues' comments on the orientation congruent algebra and twisted forms in electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Demers, D.G. [Everybody Reads Independent Bookstore, Lansing, MI (United States)

    2010-07-15

    The recent claim by da Rocha and Rodrigues that the nonassociative orientation congruent algebra (OC algebra) and native Clifford algebra are incompatible with the Clifford bundle approach is false. The new native Clifford bundle approach, in fact, subsumes the ordinary Clifford bundle one. Associativity is an unnecessarily too strong a requirement for physical applications. Consequently, we obtain a new principle of nonassociative irrelevance for physically meaningful formulas. In addition, the adoption of formalisms that respect the native representation of twisted (or odd) objects and physical quantities is required for the advancement of mathematics, physics, and engineering because they allow equations to be written in sign-invariant form. This perspective simplifies the analysis of, resolves questions about, and ends needless controversies over the signs, orientations, and parities of physical quantities. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates.

    Science.gov (United States)

    Bravyi, Sergey; Gosset, David

    2016-06-24

    We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates.

  4. The vector algebra war: A historical perspective

    CERN Document Server

    Chappell, James M; Hartnett, John G; Abbott, Derek

    2015-01-01

    There are a wide variety of different vector formalisms currently utilized in science. For example, Gibbs three-vectors, spacetime four-vectors, complex spinors for quantum mechanics, quaternions used for rigid body rotations and Clifford multivectors. With such a range of vector formalisms in use, it thus appears that there is as yet no general agreement on a vector formalism suitable for the whole of science. This surprising situation exists today, despite the fact that one of the main goals of nineteenth century science was to correctly describe vectors and the algebra of three-dimensional space. This situation has also had the unfortunate consequence of fragmenting knowledge across many disciplines and requiring a very significant amount of time and effort in learning the different formalisms. We thus review historically the development of our various vector systems and conclude that the Clifford algebra multivector fulfills the goal of correctly describing vectorial quantities in three dimensions.

  5. Aspects of the Supersymmetry Algebra in Four Dimensional Euclidean Space

    CERN Document Server

    McKeon, D G C

    1998-01-01

    The simplest supersymmetry (SUSY) algebra in four dimensional Euclidean space ($4dE$) has been shown to closely resemble the $N = 2$ SUSY algebra in four dimensional Minkowski space ($4dM$). The structure of the former algebra is examined in greater detail in this paper. We first present its Clifford algebra structure. This algebra shows that the momentum Casimir invariant of physical states has an upper bound which is fixed by the central charges. Secondly, we use reduction of the $N = 1$ SUSY algebra in six dimensional Minkowski space ($6dM$) to $4dE$; this reproduces our SUSY algebra in $4dE$. Moreover, this same reduction of supersymmetric Yang-Mills theory (SSYM) in $6dM$ reproduces Zumino's SSYM in $4dE$. We demonstrate how this dimensional reduction can be used to introduce additional generators into the SUSY algebra in $4dE$.

  6. The Clifford Deformation of the Hermite Semigroup

    Directory of Open Access Journals (Sweden)

    Hendrik De Bie

    2013-02-01

    Full Text Available This paper is a continuation of the paper [De Bie H., Ørsted B., Somberg P., Souček V., Trans. Amer. Math. Soc. 364 (2012, 3875–3902], investigating a natural radial deformation of the Fourier transform in the setting of Clifford analysis. At the same time, it gives extensions of many results obtained in [Ben Saïd S., Kobayashi T., Ørsted B., Compos. Math. 148 (2012, 1265–1336]. We establish the analogues of Bochner's formula and the Heisenberg uncertainty relation in the framework of the (holomorphic Hermite semigroup, and also give a detailed analytic treatment of the series expansion of the associated integral transform.

  7. Geometric algebra with applications in science and engineering

    CERN Document Server

    Sobczyk, Garret

    2001-01-01

    The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer­ ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar­ ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math­ ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling ...

  8. Kultuurantropoloog Clifford Geertzi mälestusõhtu

    Index Scriptorium Estoniae

    2006-01-01

    Tallinna Ülikoolis peetakse homme Ameerika kultuurantropoloogi Clifford Geertzi mälestusõhtut, esinevad rektor Rein Raud, Eesti Humanitaarinstituudi dotsent Lorenzo Cañás Bottos ja kultuuriteooria lektor Marek Tamm

  9. Cliffordized NAC supersymmetry and PT-symmetric Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: toppan@cbpf.br

    2007-07-01

    It is shown that non-anti commutative supersymmetry can be described through a Cliffordization of the superspace fermionic coordinates. A NAC supersymmetric quantum mechanical model is shown to be a PT-symmetric Hamiltonian. (author)

  10. On continuity of homomorphisms between topological Clifford semigroups

    Directory of Open Access Journals (Sweden)

    I. Pastukhova

    2014-07-01

    Full Text Available Generalizing an old result of Bowman we prove that a homomorphism $f:X\\to Y$ between topological Clifford semigroups is continuous if the idempotent band $E_X=\\{x\\in X:xx=x\\}$ of $X$ is a $V$-semilattice;the topological Clifford semigroup $Y$ is ditopological;the restriction $f|E_X$ is continuous;for each subgroup $H\\subset X$ the restriction $f|H$ is continuous.

  11. The Mehler Formula for the Generalized Clifford-Hermite Polynomials

    Institute of Scientific and Technical Information of China (English)

    F.BRACKX; N.DE SCHEPPER; K.I.KOU; F.SOMMEN

    2007-01-01

    The Mehler formula for the Hermite polynomials allows for an integral representation of the one-dimensional Fractional Fourier transform.In this paper,we introduce a multi-dimensional Fractional Fourier transform in the framework of Clifford analysis.By showing that it coincides with the classical tensorial approach we are able to prove Mehler ’s formula for the generalized Clifford –Hermitepolynomials of Cli ord analysis.

  12. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  13. Supersymmetry algebra cohomology. IV. Primitive elements in all dimensions from D= 4 to D= 11

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Friedemann [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)

    2013-05-15

    The primitive elements of the supersymmetry algebra cohomology as defined in previous work are derived for standard supersymmetry algebras in dimensions D= 5, Horizontal-Ellipsis , 11 for all signatures of the related Clifford algebras of gamma matrices and all numbers of supersymmetries. The results are presented in a uniform notation along with results of previous work for D= 4, and derived by means of dimensional extension from D= 4 up to D= 11.

  14. Space-time algebra

    CERN Document Server

    Hestenes, David

    2015-01-01

    This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...

  15. THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Zhongwei SI; Jinyuan DU

    2013-01-01

    Let R0,n be the real Clifford algebra generated by e1,e2,…,en satisfying eiej +ejei =-2δij,i,j =1,2,…,n.e0 is the unit element.Let Ω be an open set.A function f is called left generalized analytic in Ω if f satisfies the equation Lf =0,(0.1)where L =q0e0(δ)x0 + q1e1(δ)x1 + … +qnen(δ)xn,qi > 0,i =0,1,…,n.In this article,we first give the kernel function.for the generalized analytic function.Further,the Hilbert boundary value problem for generalized analytic functions in Rn+1+ will be investigated.

  16. Construction of the fermionic vacuum and of fermionic operators of creation and annihilation in the theory of algebraic spinors

    CERN Document Server

    Monakhov, Vadim V

    2016-01-01

    We introduced fermionic variables in complex modules over real Clifford algebras of even dimension which are analog of the Witt basis. We built primitive idempotents which are a set of equivalent Clifford vacuums. It is shown that the modules are decomposed into direct sum of minimal left ideals generated by these idempotents and that the fermionic variables can be considered as more fundamental mathematical objects than spinors.

  17. Left Artinian Algebraic Algebras

    Institute of Scientific and Technical Information of China (English)

    S. Akbari; M. Arian-Nejad

    2001-01-01

    Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.

  18. Algebraic partial Boolean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)

    2003-04-04

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.

  19. Spin Singularities: Clifford Kaleidoscopes and Particle Masses

    CERN Document Server

    Cohen, Marcus S

    2009-01-01

    Are particles singularities- vortex lines, tubes, or sheets in some global ocean of dark energy? We visit the zoo of Lagrangian singularities, or caustics in a spin(4,C) phase flow over compactifed Minkowsky space, and find that their varieties and energies parallel the families and masses of the elementary particles. Singularities are classified by tensor products of J Coxeter groups s generated by reflections. The multiplicity, s, is the number reflections needed to close a cycle of null zigzags: nonlinear resonances of J chiral pairs of lightlike matter spinors with (4-J) Clifford mirrors: dyads in the remaining unperturbed vacuum pairs. Using singular perturbations to "peel" phase-space singularities by orders in the vacuum intensity, we find that singular varieties with quantized mass, charge, and spin parallel the families of leptons (J=1), mesons (J=2), and hadrons (J=3). Taking the symplectic 4 form - the volume element in the 8- spinor phase space- as a natural Lagrangian, these singularities turn ou...

  20. Algebraic Statistics

    OpenAIRE

    Norén, Patrik

    2013-01-01

    Algebraic statistics brings together ideas from algebraic geometry, commutative algebra, and combinatorics to address problems in statistics and its applications. Computer algebra provides powerful tools for the study of algorithms and software. However, these tools are rarely prepared to address statistical challenges and therefore new algebraic results need often be developed. This way of interplay between algebra and statistics fertilizes both disciplines. Algebraic statistics is a relativ...

  1. Born-infeld electrodynamics: Clifford number and spinor representations

    Directory of Open Access Journals (Sweden)

    Alexander A. Chernitskii

    2002-01-01

    Full Text Available The Clifford number formalism for Maxwell equations is considered. The Clifford imaginary unit for space-time is introduced as coordinate independent form of fully antisymmetric fourth-rank tensor. The representation of Maxwell equations in massless Dirac equation form is considered; we also consider two approaches to the invariance of Dirac equation with respect to the Lorentz transformations. According to the first approach, the unknown column is invariant and according to the second approach it has the transformation properties known as spinorial ones. The Clifford number representation for nonlinear electrodynamics equations is obtained. From this representation, we obtain the nonlinear like Dirac equation which is the form of nonlinear electrodynamics equations. As a special case we have the appropriate representations for Born-Infeld nonlinear electrodynamics.

  2. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  3. SPHERICAL MEANS, DISTRIBUTIONS AND CONVOLUTION OPERATORS IN CLIFFORD ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    New higher dimensional distributions are introduced in the framework of Clifford analysis.They complete the picture already established in previous work, offering unity and structuralclarity. Amongst them are the building blocks of the principal value distribution, involvingspherical harmonics, considered by Horvath and Stein.

  4. Nonlinear boundary value problem for biregular functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    黄沙

    1996-01-01

    The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.

  5. Antropologie tussen wetenschap en kunst : Essays over Clifford Geertz

    NARCIS (Netherlands)

    Kuiper, Yme; Bakker, Jan Willem; Miedema, Jelle

    1987-01-01

    Clifford Geertz (*1926) is one of the most influential anthropologists of his generation. His most famous monographs and collection of essays are The Religion of Java, Agricultural Involution, Islam Observed, The Interpretation of Cultures, Local Knowledge, Negara: The Balinese Theatre State in Nine

  6. Conversation with Clifford Geertz, 4th May 2004

    OpenAIRE

    Geertz, Clifford

    2004-01-01

    Although filmed, the low light makes this work better as a sound file, lasting about one hour. Filmed by Alan Macfarlane. An informal evening conversation between members of the Department of Social Anthropology in Cambridge and Clifford Geertz about his life and work.

  7. Algebra, Logic and Qubits Quantum Abacus

    CERN Document Server

    Vlasov, A Yu

    2000-01-01

    The canonical anticommutation relations (CAR) for fermion systems can be represented by finite-dimensional matrix algebra, but it is impossible for canonical commutation relations (CCR) for bosons. After description of more simple case with representation CAR and (bounded) quantum computational networks via Clifford algebras in the paper are discussed CCR. For representation of the algebra it is not enough to use quantum networks with fixed number of qubits and it is more convenient to consider Turing machine with essential operation of appending new cells for description of infinite tape in finite terms --- it has straightforward generalization for quantum case, but for CCR it is necessary to work with symmetrized version of the quantum Turing machine. The system is called here quantum abacus due to understanding analogy with the ancient counting devices (abacus).

  8. Translating cosmological special relativity into geometric algebra

    Science.gov (United States)

    Horn, Martin Erik

    2012-11-01

    Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.

  9. Kaluza-Klein Theory without Extra Dimensions: Curved Clifford Space

    CERN Document Server

    Pavsic, M

    2005-01-01

    A theory in which 16-dimensional curved Clifford space (C-space) provides realization of Kaluza-Klein theory is investigated. No extra dimensions of spacetime are needed: "extra dimensions" are in C-space. It is shown that the covariant Dirac equation in C-space contains Yang-Mills fields of the U(1)xSU(2)xSU(3) group as parts of the generalized spin connection of the C-space.

  10. On the Fourier Spectra of Distributions in Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    Fred BRACKX; Bram De KNOCK; Hennie De SCHEPPER

    2006-01-01

    In recent papers by Brackx, Delanghe and Sommen, some fundamental higher dimensional distributions have been reconsidered in the framework of Clifford analysis,eventually leading to the introduction of four broad classes of new distributions in Euclidean space. In the current paper we continue the in-depth study of these distributions, more specifically the study of their behaviour in frequency space, thus extending classical results of harmonic analysis.

  11. Computer Algebra.

    Science.gov (United States)

    Pavelle, Richard; And Others

    1981-01-01

    Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)

  12. Algebraic Topology

    OpenAIRE

    2013-01-01

    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.

  13. Algebraic circuits

    CERN Document Server

    Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio

    2014-01-01

    This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.

  14. Hom-Akivis algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Non-Hom-associative algebras and Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms.

  15. Elliptic algebras

    Energy Technology Data Exchange (ETDEWEB)

    Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2002-12-31

    This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.

  16. The Fischer-Clifford Matrices of a Maximal Subgroup of the Sporadic Simple Group of Held(Dedicated to Professor Jamshid Moori on the occasion of his 60th birthday)

    Institute of Scientific and Technical Information of China (English)

    Faryad Ali

    2007-01-01

    The Held group He discovered by Held [10] is a sporadic simple group of order 4030387200 = 210.3a.52.73.17. The group He has 11 conjugacy classes of maximal subgroups as determined by Butler [5] and listed in the ATLAS. Held himself determined much of the local structure of He as well as the conjugacy classes of its elements. Thompson calculated the character table of He. In the present paper, we determine the Fischer Clifford matrices and hence compute the character table of the non-split extension 3.S7,which is a maximal subgroups of He of index 226560 using the technique of Fischer-Clifford matrices. Most of the computations were carried out with the aid of the computer algebra system GAP.

  17. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  18. Kiddie Algebra

    Science.gov (United States)

    Cavanagh, Sean

    2009-01-01

    As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…

  19. Algebra-Geometry of Piecewise Algebraic Varieties

    Institute of Scientific and Technical Information of China (English)

    Chun Gang ZHU; Ren Hong WANG

    2012-01-01

    Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.

  20. The Spinor spaces of the Clifford algebras%Clifford代数的Spinor表示空间

    Institute of Scientific and Technical Information of China (English)

    霍新霞

    2002-01-01

    讨论了Clifford代数的结构,证明Clifford代数的Pinor或Spinor空间都可以表示为它们的子空间,且都可以由一个元素生成.选取不可约表示空间的基,具体建立了Clifford代数与矩阵代数之间的同构.

  1. Clifford代数的spinor表示空间%The Spinor Spaces of the Clifford Algebras

    Institute of Scientific and Technical Information of China (English)

    霍新霞

    2002-01-01

    讨论了Clifford代数的结构,证明Clifford代数的pinor或spinor空间都可以表示为其子空间,且都可以由一个元素生成.选取不可约表示空间的基,具体建立了Cliford代数与矩阵代数之间的同构.

  2. On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_{2}

    Directory of Open Access Journals (Sweden)

    Sergii Kuzhel

    2012-01-01

    \\(\\Sigma_{J_{\\vec{\\beta}}}\\ are unitarily equivalent for different \\(\\vec{\\alpha}, \\vec{\\beta} \\in \\mathbb{S}^2\\ and describe in detail the structure of operators \\(A \\in \\Sigma_{J_{\\vec{\\alpha}}}\\ with empty resolvent set.

  3. Dirac-Kaehler Fermion from Clifford Product with Noncommutative Differential Form on a Lattice

    CERN Document Server

    Kanamori, I; Kanamori, Issaku; Kawamoto, Noboru

    2004-01-01

    We formulate Dirac-Kaehler fermion action by introducing a new Clifford product with noncommutative differential form on a lattice. Hermiticity of the Dirac-Kaehler action requires to choose the lattice structure having both orientabilities on a link. The Kogut-Susskind fermion and the staggered fermion actions are derived directly from the Dirac-Kaehler fermion formulated by the Clifford product. The lattice QCD action with Dirac-Kaehler matter fermion is also derived via an inner product defined by the Clifford product.

  4. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  5. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  6. A Geometric Algebra Perspective On Quantum Computational Gates And Universality In Quantum Computing

    CERN Document Server

    Cafaro, Carlo

    2010-01-01

    We investigate the utility of geometric (Clifford) algebras (GA) methods in two specific applications to quantum information science. First, using the multiparticle spacetime algebra (MSTA, the geometric algebra of a relativistic configuration space), we present an explicit algebraic description of one and two-qubit quantum states together with a MSTA characterization of one and two-qubit quantum computational gates. Second, using the above mentioned characterization and the GA description of the Lie algebras SO(3) and SU(2) based on the rotor group Spin+(3, 0) formalism, we reexamine Boykin's proof of universality of quantum gates. We conclude that the MSTA approach does lead to a useful conceptual unification where the complex qubit space and the complex space of unitary operators acting on them become united, with both being made just by multivectors in real space. Finally, the GA approach to rotations based on the rotor group does bring conceptual and computational advantages compared to standard vectoria...

  7. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1981-01-01

    Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e

  8. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1986-01-01

    Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra

  9. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  10. Piecewise algebraic varieties

    Institute of Scientific and Technical Information of China (English)

    WANG Renhong; ZHU Chungang

    2004-01-01

    The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.

  11. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  12. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group......-theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology...... of homogeneous varieties, \\item representation categories and their connections to orbits and flag varieties. \\end{itemize} The first three days started with survey talks that will help to make the subject accessible to the next generation. The talks on the last day introduced to several recent advances...

  13. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  14. Boolean Algebra of C-Algebras

    Directory of Open Access Journals (Sweden)

    G.C. Rao

    2012-11-01

    Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.

  15. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  16. Basic algebra

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  17. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  18. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  19. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  20. Algebraic Topology

    CERN Document Server

    Oliver, Bob; Pawałowski, Krzystof

    1991-01-01

    As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.

  1. Spacetime algebra as a powerful tool for electromagnetism

    CERN Document Server

    Dressel, Justin; Nori, Franco

    2014-01-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual ...

  2. Central simple Poisson algebras

    Institute of Scientific and Technical Information of China (English)

    SU Yucai; XU Xiaoping

    2004-01-01

    Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.

  3. Double conformal space-time algebra

    Science.gov (United States)

    Easter, Robert Benjamin; Hitzer, Eckhard

    2017-01-01

    contraction effect of special relativity. DCSTA is an algebra for computing with quadrics and their cyclide inversions in spacetime. For applications or testing, DCSTA G 4,8 can be computed using various software packages, such as Gaalop, the Clifford Multivector Toolbox (for MATLAB), or the symbolic computer algebra system SymPy with the G Algebra module.

  4. Physical Applications of a Generalized Clifford Calculus (Papapetrou equations and Metamorphic Curvature)

    CERN Document Server

    Pezzaglia, W M

    1997-01-01

    A generalized Clifford manifold is proposed in which there are coordinates not only for the basis vector generators, but for each element of the Clifford group, including the identity scalar. These new quantities are physically interpreted to represent internal structure of matter (e.g. classical or quantum spin). The generalized Dirac operator must now include differentiation with respect to these higher order geometric coordinates. In a Riemann space, where the magnitude and rank of geometric objects are preserved under displacement, these new terms modify the geodesics. One possible physical interpretation is natural coupling of the classical spin to linear motion, providing a new derivation of the Papapetrou equations. A generalized curvature is proposed for the Clifford manifold in which the connection does not preserve the rank of a multivector under parallel transport, e.g. a vector may be ``rotated'' into a scalar.

  5. On supergroups with odd Clifford parameters and non-anticommutative supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, Z. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Inst. de Ciencias Exatas]. E-mail: zhanna@cbpf.br; Rojas, M.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: mrojas@cbpf.br; toppan@cbpf.br

    2007-07-01

    We investigate super groups with Grassmann parameters replaced by odd Clifford parameters. The connection with non-anti commutative supersymmetry is discussed. A Berezin-like calculus for odd Clifford variables is introduced. Fermionic covariant derivatives for super groups with odd Clifford variables are derived. Applications to supersymmetric quantum mechanics are made. Deformations of the original supersymmetric theories are encountered when the fermionic covariant derivatives do not obey the graded Leibniz property. The simplest non-trivial example is given by the N = 2 SQM with a real (1, 2, 1) multiplet and a cubic potential. The action is real. Depending on the overall sign ('Euclidean' or 'Lorentzian') of the deformation, a Bender-Boettcher pseudo-hermitian Hamiltonian is encountered when solving the equation of motion of the auxiliary field. A possible connection of our framework with the Drinfeld twist deformation of supersymmetry is pointed out. (author)

  6. Nonmonotonic logics and algebras

    Institute of Scientific and Technical Information of China (English)

    CHAKRABORTY Mihir Kr; GHOSH Sujata

    2008-01-01

    Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.

  7. Algebraic theory of molecules

    CERN Document Server

    Iachello, F

    1995-01-01

    1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters

  8. Fundaments of Quaternionic Clifford Analysis III: Fischer Decomposition in Symplectic Harmonic Analysis

    OpenAIRE

    Brackx, Fred; De Schepper, Hennie; Eelbode, David; Lavicka, Roman; Soucek, Vladimir

    2014-01-01

    In the framework of quaternionic Clifford analysis in Euclidean space $\\mathbb{R}^{4p}$, which constitutes a refinement of Euclidean and Hermitian Clifford analysis, the Fischer decomposition of the space of complex valued polynomials is obtained in terms of spaces of so--called (adjoint) symplectic spherical harmonics, which are irreducible modules for the symplectic group Sp$(p)$. Its Howe dual partner is determined to be $\\mathfrak{sl}(2,\\mathbb{C}) \\oplus \\mathfrak{sl}(2,\\mathbb{C}) = \\ma...

  9. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  10. Solvable quadratic Lie algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU; Linsheng

    2006-01-01

    A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.

  11. Symmetric Boolean Algebras

    OpenAIRE

    DÍaz, R.; Rivas, M.

    2010-01-01

    In order to study Boolean algebras in the category of vector spaces we introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean algebras is provided. An advantage of defining Boolean algebras in the linear category is that we are able to study its symmetric powers. We give explicit formulae for products in symmetric and cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion principle.

  12. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.

  13. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  14. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    Zheng Lijing

    2015-11-01

    Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].

  15. Advancing Scholarship and Intellectual Productivity: An Interview with Clifford A. Lynch

    Science.gov (United States)

    Hawkins, Brian L.

    2006-01-01

    In this second part of a two-part interview with Clifford A. Lynch, Executive Director of the Coalition for Networked Information, Lynch talks to Hawkins about the most provocative and exciting projects that are being developed in the field of networked information worldwide. He also talks on how institutional repositories are being currently…

  16. Beyond War Stories: Clifford G. Christians' Influence on the Teaching of Media Ethics, 1976-1984.

    Science.gov (United States)

    Peck, Lee Anne

    Clifford Glenn Christians' work in the area of media ethics education from 1976 through 1984 has influenced the way media ethics is taught to many college students today. This time period includes, among his other accomplishments, Christians' work on an extensive survey of how media ethics was taught in the late 1970s, his work on the Hastings…

  17. The Social Scientist as Author: Clifford Geertz on Ethnography and Social Construction.

    Science.gov (United States)

    Olson, Gary A.

    1991-01-01

    Outlines and comments on the views of Clifford Geertz with regard to ethnography and social construction. Provides a transcript of an interview with Geertz, in which Geertz comments on his technical anthropological writings. Discusses his recent book "Works and Lives," his writing process, persuasive writing, and literary criticism,…

  18. The Concept of Person in American Anthroplogy : The Cultural Perspective of Clifford Geertz

    NARCIS (Netherlands)

    Kuiper, Yme; Kippenberg, Hans G.; Kuiper, Yme B.; Sanders, Andy F.

    1990-01-01

    The 'meanings-and-symbols' anthropologist Clifford Geertz wrote one of the most influential articles in anthropology: 'Religion as a Cultural System'. Some years later he published his collection of essays 'The Interpretation of Culture', that had a great impact on the humanities in the late 20th ce

  19. Clifford Geertz and Beyond: The Interpretive Interview/Essay and Reflexive Ethnography.

    Science.gov (United States)

    Page, Miriam Dempsey

    In "The Uses of Diversity," the interpretive anthropologist, Clifford Geertz, says that it is impossible to completely get inside the point of view of another culture. Geertz contends, however, that despite multiple voices in the growing body of reflexive ethnographies there is still an author composing the work. Besides Geertz,…

  20. WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY

    Institute of Scientific and Technical Information of China (English)

    TaoChangli; LuShijie; ChenPeixin

    2002-01-01

    Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.

  1. Rigidification of algebras over essentially algebraic theories

    CERN Document Server

    Rosicky, J

    2012-01-01

    Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.

  2. The Yoneda algebra of a K_2 algebra need not be another K_2 algebra

    OpenAIRE

    Cassidy, T.; Phan, Van C.; Shelton, B.

    2008-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  3. Algebraic cobordism theory attached to algebraic equivalence

    CERN Document Server

    Krishna, Amalendu

    2012-01-01

    After the algebraic cobordism theory of Levine-Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence. We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the zero-th semi-topological K-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory. We compute our cobordism theory for some low dimensional or special types of varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.

  4. Workshop on Commutative Algebra

    CERN Document Server

    Simis, Aron

    1990-01-01

    The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.

  5. Probabilistic Concurrent Kleene Algebra

    Directory of Open Access Journals (Sweden)

    Annabelle McIver

    2013-06-01

    Full Text Available We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The algebra yields a unified framework containing nondeterminism, concurrency and probability and is sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the resulting algebra to generalise the algebraic formulation of a variant of Jones' rely/guarantee calculus.

  6. Generalized Quantum Current Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liu

    2001-01-01

    Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.

  7. The Onsager Algebra

    CERN Document Server

    El-Chaar, Caroline

    2012-01-01

    In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. Using this fourth realization, we explicitly describe all its ideals.

  8. Perturbations of planar algebras

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2010-01-01

    We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...

  9. Yangians and transvector algebras

    OpenAIRE

    Molev, A. I.

    1998-01-01

    Olshanski's centralizer construction provides a realization of the Yangian for the Lie algebra gl(n) as a subalgebra in the projective limit of a chain of centralizers in the universal enveloping algebras. We give a modified version of this construction based on a quantum analog of Sylvester's theorem. We then use it to get an algebra homomorphism from the Yangian to the transvector algebra associated with the general linear Lie algebras. The results are applied to identify the elementary rep...

  10. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    Jia-feng; Lü

    2007-01-01

    [1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995

  11. Uniform Frechet algebras

    CERN Document Server

    Goldmann, H

    1990-01-01

    The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.

  12. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  13. Linear associative algebras

    CERN Document Server

    Abian, Alexander

    1973-01-01

    Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix

  14. Normed BCI-algebras

    Institute of Scientific and Technical Information of China (English)

    PENG Jia-yin

    2011-01-01

    The notions of norm and distance in BCI-algebras are introduced,and some basic properties in normed BCI-algebras are given.It is obtained that the isomorphic(homomorphic)image and inverse image of a normed BCI-algebra are still normed BCI-algebras.The relations of normaled properties between BCI-algebra and Cartesian product of BCIalgebras are investigated.The limit notion of sequence of points in normed BCI-algebras is introduced,and its related properties are investigated.

  15. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  16. Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Planat, Michel [Institut FEMTO-ST, CNRS, 32 Avenue de l' Observatoire, F-25044 Besancon (France); Sole, Patrick [CNRS I3S, Les Algorithmes, Euclide B, 2000 route des Lucioles, BP 121, 06903 Sophia Antipolis (France)

    2009-01-30

    The recent proposal (Planat and Kibler 2008 arXiv:0807.3650 [quant-ph]) of representing Clifford quantum gates in terms of unitary reflections is revisited. In this communication, the geometry of a Clifford group G is expressed as a BN-pair, i.e. a pair of subgroups B and N that generate G, is such that intersection H = B intersection N is normal in G, the group W = N/H is a Coxeter group and two extra axioms are satisfied by the double cosets acting on B. The BN-pair used in this decomposition relies on the swap and match gates already introduced for classically simulating quantum circuits (Jozsa and Miyake 2008 arXiv:0804.4050 [quant-ph]). The two- and three-qubit cases are related to the configuration with 27 lines on a smooth cubic surface. (fast track communication)

  17. Regular Functions with Values in Ternary Number System on the Complex Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2013-01-01

    Full Text Available We define a new modified basis i^ which is an association of two bases, e1 and e2. We give an expression of the form z=x0+ i ^z0-, where x0 is a real number and z0- is a complex number on three-dimensional real skew field. And we research the properties of regular functions with values in ternary field and reduced quaternions by Clifford analysis.

  18. Hom-alternative algebras and Hom-Jordan algebras

    CERN Document Server

    Makhlouf, Abdenacer

    2009-01-01

    The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.

  19. Cellularity of diagram algebras as twisted semigroup algebras

    CERN Document Server

    Wilcox, Stewart

    2010-01-01

    The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.

  20. Upper bounds on fault tolerance thresholds of noisy Clifford-based quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Plenio, M B [Institut fuer Theoretische Physik, Albert-Einstein-Allee 11, Universitaet Ulm, D-89069 Ulm (Germany); Virmani, S [Department of Physics SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)], E-mail: shashank.virmani@strath.ac.uk

    2010-03-15

    We consider the possibility of adding noise to a quantum circuit to make it efficiently simulatable classically. In previous works, this approach has been used to derive upper bounds to fault tolerance thresholds-usually by identifying a privileged resource, such as an entangling gate or a non-Clifford operation, and then deriving the noise levels required to make it 'unprivileged'. In this work, we consider extensions of this approach where noise is added to Clifford gates too and then 'commuted' around until it concentrates on attacking the non-Clifford resource. While commuting noise around is not always straightforward, we find that easy instances can be identified in popular fault tolerance proposals, thereby enabling sharper upper bounds to be derived in these cases. For instance we find that if we take Knill's (2005 Nature 434 39) fault tolerance proposal together with the ability to prepare any possible state in the XY plane of the Bloch sphere, then not more than 3.69% error-per-gate noise is sufficient to make it classical, and 13.71% of Knill's {gamma} noise model is sufficient. These bounds have been derived without noise being added to the decoding parts of the circuits. Introducing such noise in a toy example suggests that the present approach can be optimized further to yield tighter bounds.

  1. Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor.

    Science.gov (United States)

    Lu, Dawei; Li, Hang; Trottier, Denis-Alexandre; Li, Jun; Brodutch, Aharon; Krismanich, Anthony P; Ghavami, Ahmad; Dmitrienko, Gary I; Long, Guilu; Baugh, Jonathan; Laflamme, Raymond

    2015-04-10

    One of the major experimental achievements in the past decades is the ability to control quantum systems to high levels of precision. To quantify the level of control we need to characterize the dynamical evolution. Full characterization via quantum process tomography is impractical and often unnecessary. For most practical purposes, it is enough to estimate more general quantities such as the average fidelity. Here we use a unitary 2-design and twirling protocol for efficiently estimating the average fidelity of Clifford gates, to certify a 7-qubit entangling gate in a nuclear magnetic resonance quantum processor. Compared with more than 10^{8} experiments required by full process tomography, we conducted 1656 experiments to satisfy a statistical confidence level of 99%. The average fidelity of this Clifford gate in experiment is 55.1%, and rises to at least 87.5% if the signal's decay due to decoherence is taken into account. The entire protocol of certifying Clifford gates is efficient and scalable, and can easily be extended to any general quantum information processor with minor modifications.

  2. The ZX-calculus is complete for the single-qubit Clifford+T group

    Directory of Open Access Journals (Sweden)

    Miriam Backens

    2014-12-01

    Full Text Available The ZX-calculus is a graphical calculus for reasoning about pure state qubit quantum mechanics. It is complete for pure qubit stabilizer quantum mechanics, meaning any equality involving only stabilizer operations that can be derived using matrices can also be derived pictorially. Stabilizer operations include the unitary Clifford group, as well as preparation of qubits in the state |0>, and measurements in the computational basis. For general pure state qubit quantum mechanics, the ZX-calculus is incomplete: there exist equalities involving non-stabilizer unitary operations on single qubits which cannot be derived from the current rule set for the ZX-calculus. Here, we show that the ZX-calculus for single qubits remains complete upon adding the operator T to the single-qubit stabilizer operations. This is particularly interesting as the resulting single-qubit Clifford+T group is approximately universal, i.e. any unitary single-qubit operator can be approximated to arbitrary accuracy using only Clifford operators and T.

  3. Spacetime algebra as a powerful tool for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Dressel, Justin, E-mail: prof.justin.dressel@gmail.com [Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Konstantin Y. [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Interdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Nori, Franco [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-08

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann–Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric–magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  4. Application of geometric algebra for the description of polymer conformations.

    Science.gov (United States)

    Chys, Pieter

    2008-03-14

    In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.

  5. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  6. Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra

    CERN Document Server

    Lagraa, M

    1997-01-01

    We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.

  7. Categories and Commutative Algebra

    CERN Document Server

    Salmon, P

    2011-01-01

    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  8. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  9. Connecting Arithmetic to Algebra

    Science.gov (United States)

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  10. Algebra of timed frames

    NARCIS (Netherlands)

    Bergstra, J.A.; Fokkink, W.J.; Middelburg, C.A.

    2008-01-01

    Timed frames are introduced as objects that can form a basis of a model theory for discrete time process algebra. An algebraic setting for timed frames is proposed and results concerning its connection with discrete time process algebra are given. The presented theory of timed frames captures the ba

  11. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  12. REAL PIECEWISE ALGEBRAIC VARIETY

    Institute of Scientific and Technical Information of China (English)

    Ren-hong Wang; Yi-sheng Lai

    2003-01-01

    We give definitions of real piecewise algebraic variety and its dimension. By using the techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal with the dimension of the real piecewise algebraic variety and real Nullstellensatz in Cμ spline ring.

  13. Bases of Schur algebras associated to cellularly stratified diagram algebras

    CERN Document Server

    Bowman, C

    2011-01-01

    We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.

  14. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  15. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  16. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  17. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  18. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  19. Octonionic M-theory and D=11 Generalized Conformal and Superconformal Algebras

    CERN Document Server

    Lukierski, J

    2003-01-01

    Following [1] we further apply the octonionic structure to supersymmetric D=11 $M$-theory. We consider the octonionic $2^{n+1} \\times 2^{n+1}$ Dirac matrices describing the sequence of Clifford algebras with signatures ($9+n,n$) ($n=0,1,2, ...$) and derive the identities following from the octonionic multiplication table. The case $n=1$ ($4\\times 4$ octonion-valued matrices) is used for the description of the D=11 octonionic $M$-superalgebra with 52 real bosonic charges; the $n=2$ case ($8 \\times 8$ octonion-valued matrices) for the D=11 conformal $M$-algebra with 232 real bosonic charges. The octonionic structure is described explicitly for $n=1$ by the relations between the 512 Abelian O(10,1) tensorial charges $Z_\\mu$, $Z_{\\mu\

  20. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  1. The Hall Algebra of Cyclic Serial Algebra

    Institute of Scientific and Technical Information of China (English)

    郭晋云

    1994-01-01

    In this paper, orders <1 and <2 on ((Z)+)nm are introduced and also regarded as orders on the isomorphism classes of finite modules of finite .cyclic algebra R with n simple modules and all the indecomposable projective modules have length m through a one-to-one correspondence between ((Z)+)nm and the isomorphism classes of finite R modules. Using this we prove that the Hall algebra of a cyclic serial algebra is identified with its Loewy subalgebra, and its rational extension has a basis of BPW type, and is a (((Z)+)nm, <2) filtered ring with the associated graded ring as an iterated skew polynomial ring. These results are also generalized to the Hall algebra of a tube over a finite field.

  2. On Yang's Noncommutative Space Time Algebra, Holography, Area Quantization and C-space Relativity

    CERN Document Server

    Castro, C

    2004-01-01

    An isomorphism between Yang's Noncommutative space-time algebra (involving two length scales) and the holographic-area-coordinates algebra of C-spaces (Clifford spaces) is constructed via an AdS_5 space-time which is instrumental in explaining the origins of an extra (infrared) scale R in conjunction to the (ultraviolet) Planck scale lambda characteristic of C-spaces. Yang's space-time algebra allowed Tanaka to explain the origins behind the discrete nature of the spectrum for the spatial coordinates and spatial momenta which yields a minimum length-scale lambda (ultraviolet cutoff) and a minimum momentum p = (\\hbar / R) (maximal length R, infrared cutoff). The double-scaling limit of Yang's algebra : lambda goes to 0, and R goes to infinity, in conjunction with the large n infinity limit, leads naturally to the area quantization condition : lambda R = L^2 = n lambda^2 (in Planck area units) given in terms of the discrete angular-momentum eigenvalues n . The generalized Weyl-Heisenberg algebra in C-spaces is ...

  3. Octonionic M-theory and /D=11 generalized conformal and superconformal algebras

    Science.gov (United States)

    Lukierski, Jerzy; Toppan, Francesco

    2003-08-01

    Following [Phys. Lett. B 539 (2002) 266] we further apply the octonionic structure to supersymmetric D=11 M-theory. We consider the octonionic 2n+1×2n+1 Dirac matrices describing the sequence of Clifford algebras with signatures (9+n,n) (n=0,1,2,…) and derive the identities following from the octonionic multiplication table. The case n=1 (4×4 octonion-valued matrices) is used for the description of the D=11 octonionic M-superalgebra with 52 real bosonic charges; the n=2 case (8×8 octonion-valued matrices) for the D=11 conformal M-algebra with 232 real bosonic charges. The octonionic structure is described explicitly for n=1 by the relations between the 528 Abelian O(10,1) tensorial charges Zμ, Zμν, Zμ…μ5 of the M-superalgebra. For n=2 we obtain 2080 real non-Abelian bosonic tensorial charges Zμν, Zμ1μ2μ3, Zμ1…μ6 which, suitably constrained describe the generalized D=11 octonionic conformal algebra. Further, we consider the supersymmetric extension of this octonionic conformal algebra which can be described as D=11 octonionic superconformal algebra with a total number of 64 real fermionic and 239 real bosonic generators.

  4. Space and time dimensions of algebras with applications to Lorentzian noncommutative geometry and the standard model

    CERN Document Server

    Bizi, Nadir; Besnard, Fabien

    2016-01-01

    An analogy with real Clifford algebras on even-dimensional vector spaces suggests to assign a space dimension and a time dimension (modulo 8) to an algebra (represented over a complex Hilbert space) containing two self-adjoint involutions and an anti-unitary operator with specific commutation relations. It is shown that this assignment is compatible with the tensor product, in the sense that a tensor product of such algebras corresponds to the addition of the space and time dimensions. This could provide an interpretation of the presence of such algebras in PT-symmetric Hamiltonians or the description of topological matter. This construction is used to build the tensor product of Lorentzian (and more generally pseudo-Riemannian) spectral triples, defined over a Krein space. The application to the standard model of particles suggests the identity of the time and space dimensions of the total (manifold+finite algebra) spectral triple. It also suggests the emergence of the pseudo-orthogonal group SO(4,6) in a gr...

  5. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  6. On positive definite functions and representations of Clifford ω-semigroups

    Directory of Open Access Journals (Sweden)

    Liliana Pavel

    1995-11-01

    Full Text Available It is known that a complex valued function f on a Clifford ω-semigroup, T=UnGn is positive definite if and only if its restriction fn to Gn, is positive definite for any positive integer n. Then, by the usual Gelfand-Naimark-Segal construction, f and fn (n\\in ℕ give rise to the representations πf of T, respectively πfn of Gn. In this note we study the relationship between the restriction of πf to Gn and the representation of πfn (n\\in ℕ .

  7. Analytical error analysis of Clifford gates by the fault-path tracer method

    Science.gov (United States)

    Janardan, Smitha; Tomita, Yu; Gutiérrez, Mauricio; Brown, Kenneth R.

    2016-08-01

    We estimate the success probability of quantum protocols composed of Clifford operations in the presence of Pauli errors. Our method is derived from the fault-point formalism previously used to determine the success rate of low-distance error correction codes. Here we apply it to a wider range of quantum protocols and identify circuit structures that allow for efficient calculation of the exact success probability and even the final distribution of output states. As examples, we apply our method to the Bernstein-Vazirani algorithm and the Steane [[7,1,3

  8. Multi-vector Spherical Monogenics, Spherical Means and Distributions in Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    Fred BRACKX; Bram De KNOCK Hennie; De SCHEPPER

    2005-01-01

    New higher-dimensional distributions have been introduced in the framework of Clifford analysis in previous papers by Brackx, Delanghe and Sommen. Those distributions were defined using spherical co-ordinates, the "finite part" distribution Fp xμ+ on the real line and the generalized spherical means involving vector-valued spherical monogenics. In this paper, we make a second generalization,leading to new families of distributions, based on the generalized spherical means involving a multivector-valued spherical monogenic. At the same time, as a result of our attempt at keeping the paper self-contained, it offers an overview of the results found so far.

  9. Finite-dimensional (*)-serial algebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.

  10. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  11. On hyper BCC-algebras

    OpenAIRE

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

    2006-01-01

    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  12. On the Toroidal Leibniz Algebras

    Institute of Scientific and Technical Information of China (English)

    Dong LIU; Lei LIN

    2008-01-01

    Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.

  13. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  14. Developable algebraic surfaces

    Institute of Scientific and Technical Information of China (English)

    CHEN Dongren; WANG Guojin

    2004-01-01

    An algebraic surface can be defined by an implicit polynomial equation F(x,y,z)=0. In this paper, general characterizations of developable algebraic surfaces of arbitrary degree are presented. Using the shift operators of the subscripts of Bézier ordinates, the uniform apparent discriminants of developable algebraic surfaces to their Bézier ordinates are given directly. To degree 2 algebraic surfaces, which are widely used in computer aided geometric design and graphics, all possible developable surface types are obtained. For more conveniently applying algebraic surfaces of high degree to computer aided geometric design, the notion of ε-quasi-developable surfaces is introduced, and an example of using a quasi-developable algebraic surface of degree 3 to interpolate three curves of degree 2 is given.

  15. Algebra Automorphisms of Quantized Enveloping Algebras Uq(■)

    Institute of Scientific and Technical Information of China (English)

    查建国

    1994-01-01

    The algebra automorphisms of the quantized enveloping algebra Uq(g) are discussed, where q is generic. To some extent, all quantum deformations of automorphisms of the simple Lie algebra g have been determined.

  16. Symmetric Extended Ockham Algebras

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; Jie Fang

    2003-01-01

    The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30

  17. Lax operator algebras

    OpenAIRE

    Krichever, Igor M.; Sheinman, Oleg K.

    2007-01-01

    In this paper we develop a general concept of Lax operators on algebraic curves introduced in [1]. We observe that the space of Lax operators is closed with respect to their usual multiplication as matrix-valued functions. We construct the orthogonal and symplectic analogs of Lax operators, prove that they constitute almost graded Lie algebras and construct local central extensions of those Lie algebras.

  18. Prediction of Algebraic Instabilities

    Science.gov (United States)

    Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael

    2016-11-01

    A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.

  19. Cohomology of Effect Algebras

    Directory of Open Access Journals (Sweden)

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  20. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  1. On coalgebras over algebras

    CERN Document Server

    Balan, Adriana

    2010-01-01

    We extend Barr's well-known characterization of the final coalgebra of a $Set$-endofunctor as the completion of its initial algebra to the Eilenberg-Moore category of algebras for a $Set$-monad $\\mathbf{M}$ for functors arising as liftings. As an application we introduce the notion of commuting pair of endofunctors with respect to the monad $\\mathbf{M}$ and show that under reasonable assumptions, the final coalgebra of one of the endofunctors involved can be obtained as the free algebra generated by the initial algebra of the other endofunctor.

  2. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  3. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  4. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  5. Relations Between BZMVdM-Algebra and Other Algebras

    Institute of Scientific and Technical Information of China (English)

    高淑萍; 邓方安; 刘三阳

    2003-01-01

    Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.

  6. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    Hijligenberg, N.W. van den; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g

  7. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.

  8. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    Zheng-xin CHEN; Ya-nan LIN

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.

  9. Fields and Forms on -Algebras

    Indian Academy of Sciences (India)

    Cătălin Ciupală

    2005-02-01

    In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.

  10. Schwinger's Measurement Algebra, Preons and the Lepton Masses

    Science.gov (United States)

    Brannen, Carl

    2006-04-01

    In the 1950s and 1960s, Julian Schwinger developed an elegant general scheme for quantum kinematics and dynamics appropriate to systems with a finite number of dynamical variables, now knowns as ``Schwinger's Measurement Algebra'' (SMA). The SMA has seen little use, largely because it is non relativistic in that it does not allow for particle creation. In this paper, we apply the SMA to the problem of modeling tightly bound subparticles (preons) of the leptons and quarks. We discuss the structure of the ideals of Clifford algebras and, applying this to the elementary fermions, derive a preon substructure for the quarks and leptons. We show that matrices of SMA type elements can be used to model the quarks and leptons under the assumption that the preons are of such high energy that they cannot be created in normal interactions. This gives a definition of the SMA for the composite particle in terms of the SMA of its constituents. We solve the resulting matrix equation for the quarks and leptons. We show that the mass operator for the charged leptons is related to the democratic mass matrix used in the Koide mass formula.

  11. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).

  12. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).

  13. Derived equivalence of algebras

    Institute of Scientific and Technical Information of China (English)

    杜先能

    1997-01-01

    The derived equivalence and stable equivalence of algebras RmA and RmB are studied It is proved, using the tilting complex, that RmA and RmB are derived-equivalent whenever algebras A and B are derived-equivalent

  14. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  15. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  16. Who Takes College Algebra?

    Science.gov (United States)

    Herriott, Scott R.; Dunbar, Steven R.

    2009-01-01

    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  17. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  18. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    Science.gov (United States)

    Chappell, James M; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.

  19. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.

  20. Introduction to noncommutative algebra

    CERN Document Server

    Brešar, Matej

    2014-01-01

    Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

  1. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  2. The Anthropology of Clifford Geertz. Cultural Theory and the Interpretative Analysis of Cultures by Gordana Gorunović

    Directory of Open Access Journals (Sweden)

    Marija Krstić

    2016-03-01

    Full Text Available Gordana Gorunović. Antropologija Kliforda Gerca. Kulturna teorija i interpretativna analiza kultura. 2010. Beograd: Srpski genealoški centar i Odeljenje za etnologiju i antropologiju Filozofskog fakulteta. str. 286. [The Anthropology of Clifford Geertz. Cultural Theory and the Interpretative Analysis of Cultures

  3. ClIfford Geertz’e Göre Kültürel Bir Sistem Olarak Din Religion as a Cultural System by Clifford Geertz

    OpenAIRE

    HASANOV, BEHRAM

    2015-01-01

    ÖZETBu makale Clifford Geertz’in, dini kültürel bir sistem olarak incelemek üzere geliştirdiğikendi tanım ve metotlarına dayanan görüşlerini ele almaktadır. Makale Geertz’inyorumlayıcı yaklaşımını ve kültürü yorumlama yöntemi üzerine yoğunlaşmaktadır.Çalışma aynı zamanda Geertz’in dine nasıl yaklaştığını ve dinle toplumsal hayatı nasılilişkilendirdiğini incelemektedir. Makalede Geertz’in düşüncelerinin ve metodolojisininönemi ve dini yorumlamada başarısız olduğu noktalar da genel hatlarıyla b...

  4. The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; V S Sunder

    2006-11-01

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.

  5. Graded Lie Algebra Generating of Parastatistical Algebraic Relations

    Institute of Scientific and Technical Information of China (English)

    JING Si-Cong; YANG Wei-Min; LI Ping

    2001-01-01

    A new kind of graded Lie algebra (We call it Z2,2 graded Lie algebra) is introduced as a framework for formulating parasupersymmetric theories. By choosing suitable Bose subspace of the Z2,2 graded Lie algebra and using relevant generalized Jacobi identities, we generate the whole algebraic structure of parastatistics.

  6. Leibniz algebras associated with representations of filiform Lie algebras

    Science.gov (United States)

    Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.

    2015-12-01

    In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.

  7. On Linear Algebra Education

    Directory of Open Access Journals (Sweden)

    Sinan AYDIN

    2009-04-01

    Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.

  8. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  9. On dibaric and evolution algebras

    CERN Document Server

    Ladra, M; Rozikov, U A

    2011-01-01

    We find conditions on ideals of an algebra under which the algebra is dibaric. Dibaric algebras have not non-zero homomorphisms to the set of the real numbers. We introduce a concept of bq-homomorphism (which is given by two linear maps $f, g$ of the algebra to the set of the real numbers) and show that an algebra is dibaric if and only if it admits a non-zero bq-homomorphism. Using the pair $(f,g)$ we define conservative algebras and establish criteria for a dibaric algebra to be conservative. Moreover, the notions of a Bernstein algebra and an algebra induced by a linear operator are introduced and relations between these algebras are studied. For dibaric algebras we describe a dibaric algebra homomorphism and study their properties by bq-homomorphisms of the dibaric algebras. We apply the results to the (dibaric) evolution algebra of a bisexual population. For this dibaric algebra we describe all possible bq-homomorphisms and find conditions under which the algebra of a bisexual population is induced by a ...

  10. Classification of Noncommutative Domain Algebras

    CERN Document Server

    Arias, Alvaro

    2012-01-01

    Noncommutative domain algebras are noncommutative analogues of the algebras of holomorphic functions on domains of $\\C^n$ defined by holomorphic polynomials, and they generalize the noncommutative Hardy algebras. We present here a complete classification of these algebras based upon techniques inspired by multivariate complex analysis, and more specifically the classification of domains in hermitian spaces up to biholomorphic equivalence.

  11. Process algebra for Hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, Chap. 4, 2002] and the process algebra with propositional signals from Baeten and Bergstra [Theoretical Computer

  12. Process algebra for hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2005-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg (Process Algebra with Timing, Springer,Berlin, 2002, Chapter 4), and the process algebra with propositional signals from Baeten and Bergstra(Theoret. Com

  13. Brauer algebras of type B

    NARCIS (Netherlands)

    Cohen, A.M.; Liu, S.

    2015-01-01

    For each n ≥ 1, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular struc

  14. Symplectic algebraic dynamics algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the algebraic dynamics solution of ordinary differential equations andintegration of  ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.

  15. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    J. W. Kitchen

    1994-01-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  16. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  17. H(o)lder Norm Estimate for a Hilbert Transform in Hermitean Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    Ricardo ABREU-BLAYA; Juan BORY-REYES; Fred BRACKX; Hennie DE SCHEPPER

    2012-01-01

    A Hilbert transform for H(o)lder continuous circulant (2 × 2) matrix functions,on the dsummable (or fractal) boundary T of a Jordan domain Ω in R2n,has recently been introduced within the framework of Hermitean Clifford analysis.The main goal of the present paper is to estimate the H(o)lder norm of this Hermitean Hilbert transform.The expression for the upper bound of this norm is given in terms of the H(o)lder exponents,the diameter of T and a specific d-sum (d > d) of the Whitney decomposition of Ω.The result is shown to include the case of a more standard Hilbert transform for domains with left Ahlfors-David regular boundary.

  18. q-deformed harmonic and Clifford analysis and the q-Hermite and Laguerre polynomials

    CERN Document Server

    Coulembier, Kevin

    2010-01-01

    We define a q-deformation of the Dirac operator, inspired by the one dimensional q-derivative. This implies a q-deformation of the partial derivatives. By taking the square of this Dirac operator we find a q-deformation of the Laplace operator. This allows to construct q-deformed Schroedinger equations in higher dimensions. The equivalence of these Schroedinger equations with those defined on q-Euclidean space in quantum variables is shown. We also define the m-dimensional q-Clifford-Hermite polynomials and show their connection with the q-Laguerre polynomials. These polynomials are orthogonal with respect to an m-dimensional q-integration, which is related to integration on q-Euclidean space. The q-Laguerre polynomials are the eigenvectors of an su_q(1|1)-representation.

  19. q-deformed harmonic and Clifford analysis and the q-Hermite and Laguerre polynomials

    Science.gov (United States)

    Coulembier, K.; Sommen, F.

    2010-03-01

    We define a q-deformation of the Dirac operator, inspired by the one-dimensional q-derivative. This implies a q-deformation of the partial derivatives. By taking the square of this Dirac operator we find a q-deformation of the Laplace operator. This allows us to construct q-deformed Schrödinger equations in higher dimensions. The equivalence of these Schrödinger equations with those defined on q-Euclidean space in quantum variables is shown. We also define the m-dimensional q-Clifford-Hermite polynomials and show their connection with the q-Laguerre polynomials. These polynomials are orthogonal with respect to an m-dimensional q-integration, which is related to integration on q-Euclidean space. The q-Laguerre polynomials are the eigenvectors of an suq(1|1)-representation.

  20. Clifford and Riemann-Finsler structures in geometric mechanics and gravity

    CERN Document Server

    Vacaru, S; Gaburov, E

    2006-01-01

    The book contains a collection of works on Riemann-Cartan and metric-affine manifolds provided with nonlinear connection structure and on generalized Finsler-Lagrange and Cartan-Hamilton geometries and Clifford structures modelled on such manifolds. The choice of material presented has evolved from various applications in modern gravity and geometric mechanics and certain generalizations to noncommutative Riemann-Finsler geometry. The authors develop and use the method of anholonomic frames with associated nonlinear connection structure and apply it to a number of concrete problems: constructing of generic off-diagonal exact solutions, in general, with nontrivial torsion and nonmetricity, possessing noncommutative symmetries and describing black ellipsoid/torus configurations, locally anisotropic wormholes, gravitational solitons and warped factors and investigation of stability of such solutions; classification of Lagrange/ Finsler -- affine spaces; definition of nonholonomic Dirac operators and their applic...

  1. P-Loop Oscillator on Clifford Manifolds and Black Hole Entropy

    CERN Document Server

    Castro, C; Castro, Carlos; Granik, Alex

    2000-01-01

    A new relativity theory, or more concretely an extended relativity theory, actively developed by one of the authors incorporated 3 basic concepts. They are the old Chu's idea about bootstarpping, Nottale's scale relativity, and enlargement of the conventional time-space by inclusion of noncommutative Clifford manifolds where all p-branes are treated on equal footing. The latter allowed one to write a master action functional. The resulting functional equation is simplified and applied to the p-loop oscillator. Its respective solution is a generalization of the conventional point oscillator. In addition , it exhibits some novel features: an emergence of two explicit scales delineating the asymptotic regimes (Planck scale region and a smooth region of a conventional point oscillator). In the most interesting Planck scale regime, the solution reproduces in an elementary fashion the basic relations of string theory (including string tension quantization). In addition, it is shown that comparing the massive (super...

  2. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-04-01

    Full Text Available It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric [1], and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy’s spiraling motion and redshift data as these have been done by Carmeli and Hartnett [4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  3. On isomorphisms of integral table algebras

    Institute of Scientific and Technical Information of China (English)

    FAN; Yun(樊恽); SUN; Daying(孙大英)

    2002-01-01

    For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.

  4. Introduction to algebra

    CERN Document Server

    Cameron, Peter J

    2007-01-01

    This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,. new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. - ;Developed to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with. applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the th...

  5. The Algebra of -relations

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; R Srinivasan; V S Sunder

    2000-08-01

    In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).

  6. Weyl n-Algebras

    Science.gov (United States)

    Markarian, Nikita

    2017-03-01

    We introduce Weyl n-algebras and show how their factorization complex may be used to define invariants of manifolds. In the appendix, we heuristically explain why these invariants must be perturbative Chern-Simons invariants.

  7. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  8. Parametrizing Algebraic Curves

    OpenAIRE

    Lemmermeyer, Franz

    2011-01-01

    We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.

  9. Beginning algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division

  10. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  11. Summing Boolean Algebras

    Institute of Scientific and Technical Information of China (English)

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA

    2004-01-01

    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  12. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  13. Noncommutative algebra and geometry

    CERN Document Server

    De Concini, Corrado; Vavilov, Nikolai 0

    2005-01-01

    Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.

  14. Generalized braided Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    LU Zhong-jian; FANG Xiao-li

    2009-01-01

    The concept of (f, σ)-pair (B, H)is introduced, where B and H are Hopf algebras. A braided tensor category which is a tensor subcategory of the category HM of left H-comodules through an (f, σ)-pair is constructed. In particularly, a Yang-Baxter equation is got. A Hopf algebra is constructed as well in the Yetter-Drinfel'd category HHYD by twisting the multiplication of B.

  15. Elementary linear algebra

    CERN Document Server

    Andrilli, Stephen

    2010-01-01

    Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl

  16. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  17. Differential Hopf algebra structures on the universal enveloping algebra of a lie algebra

    OpenAIRE

    Hijligenberg, van den, N.W.; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.

  18. Topological ∗-algebras with *-enveloping Algebras II

    Indian Academy of Sciences (India)

    S J Bhatt

    2001-02-01

    Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.

  19. L-o cto-algebras

    Institute of Scientific and Technical Information of China (English)

    An Hui-hui; Wang Zhi-chun

    2016-01-01

    L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.

  20. Universal Algebra Applied to Hom-Associative Algebras, and More

    OpenAIRE

    Hellström, Lars; Makhlouf, Abdenacer; Silvestrov, Sergei D.

    2014-01-01

    The purpose of this paper is to discuss the universal algebra theory of hom-algebras. This kind of algebra involves a linear map which twists the usual identities. We focus on hom-associative algebras and hom-Lie algebras for which we review the main results. We discuss the envelopment problem, operads, and the Diamond Lemma; the usual tools have to be adapted to this new situation. Moreover we study Hilbert series for the hom-associative operad and free algebra, and describe them up to total...

  1. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  2. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A[D]=A[D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra [D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D-simple and A[D] acts faithfully on A. Thus we obtain a lot of simple algebras.

  3. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  4. Simple Algebras of Invariant Operators

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Shen; J.D.H. Smith

    2001-01-01

    Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.

  5. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  6. Oblique superposition of two elliptically polarized lightwaves using geometric algebra: is energy-momentum conserved?

    Science.gov (United States)

    Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J

    2010-11-01

    In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.

  7. Structure of Solvable Quadratic Lie Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin-sheng

    2005-01-01

    @@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.

  8. Algebraic orders on $K_{0}$ and approximately finite operator algebras

    CERN Document Server

    Power, S C

    1993-01-01

    This is a revised and corrected version of a preprint circulated in 1990 in which various non-self-adjoint limit algebras are classified. The principal invariant is the scaled $K_0$ group together with the algebraic order on the scale induced by partial isometries in the algebra.

  9. Approximate Preservers on Banach Algebras and C*-Algebras

    Directory of Open Access Journals (Sweden)

    M. Burgos

    2013-01-01

    Full Text Available The aim of the present paper is to give approximate versions of Hua’s theorem and other related results for Banach algebras and C*-algebras. We also study linear maps approximately preserving the conorm between unital C*-algebras.

  10. The Planar Algebra Associated to a Kac Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; Zeph Landau; V S Sunder

    2003-02-01

    We obtain (two equivalent) presentations – in terms of generators and relations-of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  11. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  12. Derived Algebraic Geometry II: Noncommutative Algebra

    CERN Document Server

    Lurie, Jacob

    2007-01-01

    In this paper, we present an infinity-categorical version of the theory of monoidal categories. We show that the infinity category of spectra admits an essentially unique monoidal structure (such that the tensor product preserves colimits in each variable), and thereby recover the classical smash-product operation on spectra. We develop a general theory of algebras in a monoidal infinity category, which we use to (re)prove some basic results in the theory of associative ring spectra. We also develop an infinity-categorical theory of monads, and prove a version of the Barr-Beck theorem.

  13. Resonant algebras and gravity

    CERN Document Server

    Durka, R

    2016-01-01

    We explore the $S$-expansion framework to analyze freedom in closing the multiplication tables for the abelian semigroups. Including possibility of the zero element in the resonant decomposition and relating the Lorentz generator with the semigroup identity element leads to the wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results we find not only all the Maxwell algebras of type $\\mathfrak{B}_m$, $\\mathfrak{C}_m$, and recently introduced $\\mathfrak{D}_m$, but we also produce new examples. We discuss some prospects concerning further enlarging the algebras and provide all necessary constituents for constructing the gravity actions based on the obtained results.

  14. Resonant algebras and gravity

    Science.gov (United States)

    Durka, R.

    2017-04-01

    The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.

  15. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  16. Adaptive Algebraic Multigrid Methods

    Energy Technology Data Exchange (ETDEWEB)

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  17. Algebraic totality, towards completeness

    CERN Document Server

    Tasson, Christine

    2009-01-01

    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${\\mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${\\mathcal{B}}^n\\to{\\mathcal{B}}$ for every n by an algebraic metho...

  18. Nearly projective Boolean algebras

    CERN Document Server

    Heindorf, Lutz; Shapiro, Leonid B

    1994-01-01

    The book is a fairly complete and up-to-date survey of projectivity and its generalizations in the class of Boolean algebras. Although algebra adds its own methods and questions, many of the results presented were first proved by topologists in the more general setting of (not necessarily zero-dimensional) compact spaces. An appendix demonstrates the application of advanced set-theoretic methods to the field. The intended readers are Boolean and universal algebraists. The book will also be useful for general topologists wanting to learn about kappa-metrizable spaces and related classes. The text is practically self-contained but assumes experience with the basic concepts and techniques of Boolean algebras.

  19. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  20. Order Units in a *-Algebra

    Indian Academy of Sciences (India)

    Anil K Karn

    2003-02-01

    Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  1. Linear Mappings of Quaternion Algebra

    OpenAIRE

    Kleyn, Aleks

    2011-01-01

    In the paper I considered linear and antilinear automorphisms of quaternion algebra. I proved the theorem that there is unique expansion of R-linear mapping of quaternion algebra relative to the given set of linear and antilinear automorphisms.

  2. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  3. Algebra for Gifted Third Graders.

    Science.gov (United States)

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  4. Automorphism groups of pointed Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    YANG Shilin

    2007-01-01

    The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.

  5. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  6. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  7. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  8. Recollements of extension algebras

    Institute of Scientific and Technical Information of China (English)

    CHEN; Qinghua(陈清华); LIN; Yanan(林亚南)

    2003-01-01

    Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).

  9. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  10. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2010-01-01

    Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator

  11. Linear Algebra Thoroughly Explained

    CERN Document Server

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  12. Division algebras and supersymmetry

    CERN Document Server

    Baez, John C

    2009-01-01

    Supersymmetry is deeply related to division algebras. Nonabelian Yang--Mills fields minimally coupled to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4, 6 or 10. The same is true for the Green--Schwarz superstring. In both cases, supersymmetry relies on the vanishing of a certain trilinear expression involving a spinor field. The reason for this, in turn, is the existence of normed division algebras in dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternions and octonions. Here we provide a self-contained account of how this works.

  13. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  14. Algebraic Topology, Rational Homotopy

    CERN Document Server

    1988-01-01

    This proceedings volume centers on new developments in rational homotopy and on their influence on algebra and algebraic topology. Most of the papers are original research papers dealing with rational homotopy and tame homotopy, cyclic homology, Moore conjectures on the exponents of the homotopy groups of a finite CW-c-complex and homology of loop spaces. Of particular interest for specialists are papers on construction of the minimal model in tame theory and computation of the Lusternik-Schnirelmann category by means articles on Moore conjectures, on tame homotopy and on the properties of Poincaré series of loop spaces.

  15. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  16. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  17. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  18. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  19. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  20. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  1. Derivations of generalized Weyl algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(苏育才)

    2003-01-01

    A class of the associative and Lie algebras A[D] = A × F[D] of Weyl type are studied, where Ais a commutative associative algebra with an identity element over a field F of characteristic zero, and F[D] isthe polynomial algebra of a finite dimensional commutative subalgebra of locally finite derivations of A suchthat A is D-simple. The derivations of these associative and Lie algebras are precisely determined.

  2. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  3. Optimal Algorithm for Algebraic Factoring

    Institute of Scientific and Technical Information of China (English)

    支丽红

    1997-01-01

    This paper presents on optimized method for factoring multivariate polynomials over algebraic extension fields defined by an irreducible ascending set. The basic idea is to convert multivariate polynomials to univariate polynomials and algebraic extension fields to algebraic number fields by suitable integer substituteions.Then factorize the univariate polynomials over the algebraic number fields.Finally,construct mulativariate factors of the original polynomial by Hensel lemma and TRUEFACTOR test.Some examples with timing are included.

  4. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  5. Perturbation semigroup of matrix algebras

    OpenAIRE

    Neumann, N.; Suijlekom, W.D. van

    2016-01-01

    In this article we analyze the structure of the semigroup of inner perturbations in noncommutative geometry. This perturbation semigroup is associated to a unital associative *-algebra and extends the group of unitary elements of this *-algebra. We compute the perturbation semigroup for all matrix algebras.

  6. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  7. Some Hopf algebras of trees

    NARCIS (Netherlands)

    Laan, P. van der

    2001-01-01

    In the literature several Hopf algebras that can be described in terms of trees have been studied. This paper tries to answer the question whether one can understand some of these Hopf algebras in terms of a single mathematical construction. The starting point is the Hopf algebra of rooted trees as

  8. An algebra of reversible computation

    OpenAIRE

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  9. The Maximal Graded Left Quotient Algebra of a Graded Algebra

    Institute of Scientific and Technical Information of China (English)

    Gonzalo ARANDA PINO; Mercedes SILES MOLINA

    2006-01-01

    We construct the maximal graded left quotient algebra of every graded algebra A without homogeneous total right zero divisors as the direct limit of graded homomorphisms (of left A-modules)from graded dense left ideals of A into a graded left quotient algebra of A. In the case of a superalgebra,and with some extra hypothesis, we prove that the component in the neutral element of the group of the maximal graded left quotient algebra coincides with the maximal left quotient algebra of the component in the neutral element of the group of the superalgebra.

  10. The plays of Lillian Hellman, Clifford Odets and William Inge on Slovene stages

    Directory of Open Access Journals (Sweden)

    Mateja Slunjski

    2002-12-01

    Full Text Available After the Second World War, Slovene theatres started to include in their repertoires more and more American authors and their plays. Their choice were varied, from serious dramas by Eugene O'Neill, Tennessee Williams and Arthur Miller, to comedies by Norman Krasna and John Van Druten dependant mostly on the availability of the texts. In the immediate postwar years the theatres liked to present playwrights with progressive ideas in their plays, such as Lillian Hellman and her "The Little Foxes", which was successfully produced at three Slovene theatres, while her "The Children's Hour" received negative reviews. In the fifties, three theatres chose two plays by Clifford Odets, "Golden Boy" and "Country Girl", mainly because of his socially critical ideas and his admiration of humanity. His plays were rather well received; however, the critics doubted his literary genius. William Inge and his plays, "Come Back, Little Sheba", "Picnic" and "Bus Stop", chosen mainly because of the warmth with which the author depicted the tragedy and the beauty of life, were produced at three Slovene theatres. The author received rather wide-ranging opinions from the critics. Some thought him to be an unoriginal depicter of dull American life, while others praised his lyricism and new dramatic techniques.

  11. Observable Algebra in Field Algebra of G-spin Models

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.

  12. On the simplicity of Lie algebras associated to Leavitt algebras

    CERN Document Server

    Abrams, Gene

    2009-01-01

    For any field $K$ and integer $n\\geq 2$ we consider the Leavitt algebra $L = L_K(n)$. $L$ is an associative algebra, but we view $L$ as a Lie algebra using the bracket $[a,b]=ab-ba$ for $a,b \\in L$. We denote this Lie algebra as $L^-$, and consider its Lie subalgebra $[L^-,L^-]$. In our main result, we show that $[L^-,L^-]$ is a simple Lie algebra if and only if char$(K)$ divides $n-1$. For any positive integer $d$ we let $S = M_d(L_K(n))$ be the $d\\times d$ matrix algebra over $L_K(n)$. We give sufficient conditions for the simplicity and non-simplicity of the Lie algebra $[S^-,S^-]$.

  13. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  14. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(

    2001-01-01

    [1] Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J., 1986, 16: 417.[2] Osborn, J. M., New simple infinite-dimensional Lie algebras of characteristic 0, J. Alg., 1996, 185: 820.[3] Dokovic, D. Z., Zhao, K., Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. of Amer. Math. Soc., 1998, 350(2): 643.[4] Dokovic, D. Z., Zhao, K., Generalized Cartan type W Lie algebras in characteristic zero, J. Alg., 1997, 195: 170.[5] Osborn, J. M., Zhao, K., Generalized Poisson bracket and Lie algebras of type H in characteristic 0, Math. Z., 1999, 230: 107.[6] Osborn, J. M., Zhao, K., Generalized Cartan type K Lie algebras in characteristic 0, Comm. Alg., 1997, 25: 3325.[7] Zhao, K., Isomorphisms between generalized Cartan type W Lie algebras in characteristic zero, Canadian J. Math., 1998, 50: 210.[8] Passman, D. P., Simple Lie algebras of Witt type, J. Algebra, 1998, 206: 682.[9] Jordan, D. A., On the simplicity of Lie algebras of derivations of commutative algebras, J. Alg., 2000, 206: 682.[10] Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Alg., 2000, 244: 23.[11] Su, Y., Xu, X., Zhang, H., Derivation-simple algebras and the structures of Lie algebras of generalized Witt type, J. Alg., 2000, 233: 642.[12] Dixmer, J., Enveloping Algebras, Amsterdam: North Holland, 1977.

  15. Quantitative Algebraic Reasoning

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...

  16. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...

  17. Operation of Algebraic Fractions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The first step in factorizing algebraic expressions is to take out the common factors of all the terms of the expression.For example,2x~2+14x+24=2(x~2+7x+12)=2(x+3)(x+4) The three identities are also useful in factorizing some quadratic expressions:

  18. Restructuring College Algebra

    Science.gov (United States)

    Mayes, Robert

    2004-01-01

    There is a call for change in College Algebra. The traditional focus on skill development is failing, resulting in withdrawal and failure rates that are excessive. In addition, too many students who are successful do not continue on to take a successive mathematics course. The Institute for Mathematics Learning at West Virginia University has been…

  19. Algebraic Thinking through Origami.

    Science.gov (United States)

    Higginson, William; Colgan, Lynda

    2001-01-01

    Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)

  20. Lineaire algebra: deel 1

    NARCIS (Netherlands)

    Pipekaru, T.

    1975-01-01

    Deze handleiding, geschreven in opdracht van het bestuur van de Afdeling der Algemene Wetenschappen van de T.H. te Delft, is bedoeld als collegedictaat Lineaire Algebra voor het eerste studiejaar van vrijwel alle technische afdelingen. Hopelijk wordt hiermee voorzien in een behoefte die is ontstaan

  1. The Green formula and heredity of algebras

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math. 1995, 120: 361-377.[2]Ringel, C. M., Green's theorem on Hall algebras, in Representations of Algebras and Related Topics, CMS Conference Proceedings 19, Providence, 1996, 185-245.[3]Xiao J., Drinfeld double and Ringel-Green theory of Hall Algebras, J. Algebra, 1997, 190: 100-144.[4]Sevenhant, B., Van den Bergh, M., A relation between a conjecture of Kac and the structure of the Hall algebra,J. Pure Appl. Algebra, 2001, 160: 319-332.[5]Deng B., Xiao, J., On double Ringel-Hall algebras, J. Algebra, 2002, 251: 110-149.

  2. Notes on Piecewise-Koszul Algebras

    Institute of Scientific and Technical Information of China (English)

    Jia Feng L(U); Xiao Lan YU

    2011-01-01

    The relationships between piecewise-Koszul algebras and other "Koszul-type" algebras are discussed.. The Yoneda-Ext algebra and the dual algebra of a piecewise-Koszul algebra are studied, and a sufficient condition for the dual algebra A to be piecewise-Koszul is given. Finally, by studying the trivial extension algebras of the path algebras of Dynkin quivers in bipartite orientation, we give explicit constructions for piecewise-Koszul algebras with arbitrary "period" and piecewise-Koszul algebras with arbitrary "jump-degree".

  3. On ultraproducts of operator algebras

    Institute of Scientific and Technical Information of China (English)

    LI; Weihua

    2005-01-01

    Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.

  4. Ockham Algebras Arising from Monoids

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; H.J. Silva; J.C. Varlet

    2001-01-01

    An Ockham algebra (L; f) is of boolean shape if its lattice reduct L is boolean and f is not the complementation. We investigate a natural construction of Ockham algebras of boolean shape from any given monoid. Of particular interest is the question of when such algebras are subdirectly irreducible. In settling this, we obtain what is probably the first example of a subdirectly irreducible Ockham algebra that does not belong to the generalized variety Kω. We also prove that every semigroup can be embedded in the monoid of endomorphisms of an Ockham algebra of boolean shape.

  5. Twisted derivations of Hopf algebras

    CERN Document Server

    Davydov, Alexei

    2012-01-01

    In the paper we introduce the notion of twisted derivation of a bialgebra. Twisted derivations appear as infinitesimal symmetries of the category of representations. More precisely they are infinitesimal versions of twisted automorphisms of bialgebras. Twisted derivations naturally form a Lie algebra (the tangent algebra of the group of twisted automorphisms). Moreover this Lie algebra fits into a crossed module (tangent to the crossed module of twisted automorphisms). Here we calculate this crossed module for universal enveloping algebras and for the Sweedler's Hopf algebra.

  6. $A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras

    Indian Academy of Sciences (India)

    Hongliang Yao

    2010-04-01

    Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.

  7. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  8. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  9. Twin TQFTs and Frobenius Algebras

    Directory of Open Access Journals (Sweden)

    Carmen Caprau

    2013-01-01

    Full Text Available We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on a twin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra (C,W,z,z∗ consists of a commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an algebra homomorphism z:C→W with dual z∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.

  10. Hopf algebras in noncommutative geometry

    CERN Document Server

    Varilly, J C

    2001-01-01

    We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.

  11. Constructive version of Boolean algebra

    CERN Document Server

    Ciraulo, Francesco; Toto, Paola

    2012-01-01

    The notion of overlap algebra introduced by G. Sambin provides a constructive version of complete Boolean algebra. Here we first show some properties concerning overlap algebras: we prove that the notion of overlap morphism corresponds classically to that of map preserving arbitrary joins; we provide a description of atomic set-based overlap algebras in the language of formal topology, thus giving a predicative characterization of discrete locales; we show that the power-collection of a set is the free overlap algebra join-generated from the set. Then, we generalize the concept of overlap algebra and overlap morphism in various ways to provide constructive versions of the category of Boolean algebras with maps preserving arbitrary existing joins.

  12. James Clifford's Influence on Bronislaw Malinowski: The Moral Implications of Intertemporal Heterarchy

    Directory of Open Access Journals (Sweden)

    Miloš Milenković

    2016-02-01

    Full Text Available Drawing on the explanation already offered for the confusion of positivism with realism in the epistemological imagination of the author and founder of postmodern anthropology, the paper analyzes the moral implications of dealing with problems characteristic of the philosophy of science by literary-theoretical means. The transdisciplinary migration of "realism" from literary theory to social science methodology has produced a whole new history of anthropology. The history of pre-postmodern anthropology constructed in this manner can be said to fit the register of some sort of comparative-cultural theory of retroactive moral judgement, complementing postmodern anthropology as a general theory of writing by political subjects, so that the theoretical-methodological dilemmas of postmodern anthropology do not constitute proof of the legitimacy of a holistic interpretation of the discipline’s founders’ intentions, but rather lead to neo-pyrrhonic, formalistic endeavours to uphold, by respecting academic trappings, the academic authority of the discipline whose subject, method and purpose, as a rule, even colleagues from adjacent departments for various reasons fail to understand. In the paper, evidence for this is derived from Clifford's writing of Malinowski, and the moral implications of the unfortunate analogy between the writing of political subjects and the writing of disciplinary founders are followed through. The paper then goes on to explain that the critique of the possibilities of misuse, particularly through political instrumentalization, of anthropological fictions as evidence of Others did not have to come at the cost of sacrificing the semblance of continuity in the establishment of anthropology as a proper academic discipline.

  13. Stable Recursive Subhomogeneous Algebras

    CERN Document Server

    Liang, Hutian

    2011-01-01

    In this paper, we introduce stable recursive subhomogeneous algebras (SRSHAs), which is analogous to recursive subhomogeneous algebras (RSHAs) introduced by N. C. Phillips in the studies of free minimal integer actions on compact metric spaces. The difference between the stable version and the none stable version is that the irreducible representations of SRSHAs are infinite dimensional, but the irreducible representations of the RSHAs are finite dimensional. While RSHAs play an important role in the study of free minimal integer actions on compact metric spaces, SRSHAs play an analogous role in the study of free minimal actions by the group of the real numbers on compact metric spaces. In this paper, we show that simple inductive limits of SRSHAs with no dimension growth in which the connecting maps are injective and non-vanishing have topological stable rank one.

  14. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  15. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  16. Topological convolution algebras

    CERN Document Server

    Alpay, Daniel

    2012-01-01

    In this paper we introduce a new family of topological convolution algebras of the form $\\bigcup_{p\\in\\mathbb N} L_2(S,\\mu_p)$, where $S$ is a Borel semi-group in a locally compact group $G$, which carries an inequality of the type $\\|f*g\\|_p\\le A_{p,q}\\|f\\|_q\\|g\\|_p$ for $p > q+d$ where $d$ pre-assigned, and $A_{p,q}$ is a constant. We give a sufficient condition on the measures $\\mu_p$ for such an inequality to hold. We study the functional calculus and the spectrum of the elements of these algebras, and present two examples, one in the setting of non commutative stochastic distributions, and the other related to Dirichlet series.

  17. Structure of Chinese algebras

    CERN Document Server

    Jaszunska, Joanna

    2010-01-01

    The structure of the algebra K[M] of the Chinese monoid M over a field K is studied. The minimal prime ideals are described. They are determined by certain homogeneous congruences on M and they are in a one to one correspondence with diagrams of certain special type. There are finitely many such ideals. It is also shown that the prime radical B(K[M]) of K[M] coincides with the Jacobson radical and the monoid M embeds into the algebra K[M]/B(K[M]). A new representation of M as a submonoid of the direct product of finitely many copies of the bicyclic monoid and finitely many copies of the infinite cyclic monoid is derived. Consequently, M satisfies a nontrivial identity.

  18. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2009-01-01

    Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  19. Practical Algebraic Renormalization

    CERN Document Server

    Grassi, P A; Steinhauser, M

    1999-01-01

    A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the Standard Model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustra...

  20. Operator product expansion algebra

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jan [CPHT, Ecole Polytechnique, Paris-Palaiseau (France)

    2014-07-01

    The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.

  1. Combinatorics and commutative algebra

    CERN Document Server

    Stanley, Richard P

    1996-01-01

    Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special ...

  2. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  3. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. The author examines the problem and constructs alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the FORTRAN portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers. 13 references.

  4. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. In this paper we examine the problem and construct alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the Fortran portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers.

  5. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  6. Lie algebraic noncommutative gravity

    Science.gov (United States)

    Banerjee, Rabin; Mukherjee, Pradip; Samanta, Saurav

    2007-06-01

    We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.

  7. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  8. The Algebra Artist

    Science.gov (United States)

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  9. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  10. Semisimple Metacyclic Group Algebras

    Indian Academy of Sciences (India)

    Gurmeet K Bakshi; Shalini Gupta; Inder Bir S Passi

    2011-11-01

    Given a group of order $p_1p_2$, where $p_1,p_2$ are primes, and $\\mathbb{F}_q$, a finite field of order coprime to $p_1p_2$, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra $\\mathbb{F}_q[G]$. As a consequence, we obtain the structure of $\\mathbb{F}_q[G]$ and its group of automorphisms.

  11. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  12. Ext algebra of Nichols algebras of type $A_2$

    CERN Document Server

    Yu, Xiaolan

    2011-01-01

    We give the full structure of the Ext algebra of a Nichols algebra of type $A_2$ by using the Hochschild-Serre spectral sequence. As an application, we show that the pointed Hopf algebras $u(\\mathcal{D}, \\lmd, \\mu)$ with Dynkin diagrams of type $A$, $D$, or $E$, except for $A_1$ and $A_1\\times A_1$ with the order $N_{J}>2$ for at least one component $J$, are wild.

  13. LOCAL AUTOMORPHISMS OF SEMISIMPLE ALGEBRAS AND GROUP ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Wang Dengyin; Guan Qi; Zhan9 Dongju

    2011-01-01

    Let F be a field of characteristic not 2,and let A be a finite-dimensional semisimple F-algebra.All local automorphisms of A are characterized when all the degrees of A are larger than 1.If F is further assumed to be an algebraically closed field of characteristic zero,K a finite group,FK the group algebra of K over F,then all local automorphisms of FK are also characterized.

  14. Stability of functional equations in Banach algebras

    CERN Document Server

    Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza

    2015-01-01

    Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l...

  15. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  16. The tensor hierarchy algebra

    Energy Technology Data Exchange (ETDEWEB)

    Palmkvist, Jakob, E-mail: palmkvist@ihes.fr [Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, FR-91440 Bures-sur-Yvette (France)

    2014-01-15

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.

  17. DERIVATIONS ON DIFFERENTIAL OPERATOR ALGEBRA AND WEYL ALGEBRA

    Institute of Scientific and Technical Information of China (English)

    CHENCAOYU

    1996-01-01

    Let L be an n-dimensional nilpotent Lie algebra with a basis{x1…,xn),and every xi acts as a locally nilpotent derivation on algebra A. This paper shows that there exists a set of derivations{y1,…,yn}on U(L) such that (A#U(L))#k{y,1,…,yn] is ismorphic to the Weyl algebra An(A).The author also uses the de4rivations to obtain a necessary and sufficient condition for a finite dimesional Lie algebra to be nilpotent.

  18. On the cohomology of Leibniz conformal algebras

    Science.gov (United States)

    Zhang, Jiao

    2015-04-01

    We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.

  19. Assessing Algebraic Solving Ability: A Theoretical Framework

    Science.gov (United States)

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  20. Basic weak Hopf algebra and weak covering quiver%基本弱Hopf代数和弱覆盖箭图.

    Institute of Scientific and Technical Information of China (English)

    穆尼尔·艾哈迈德; 李方

    2016-01-01

    研究了代数闭域K上具有强分次Jacobson根r的有限维基本可裂弱Hopf代数,并刻画了有限维基本可裂半格分次弱Hopf代数H,即存在有限Clifford半群S,使得H/r≌kS倡.还引入了弱覆盖箭图的概念,其路代数具有半格分次弱Hopf代数的结构,其箭图作为弱覆盖箭图被刻画.进一步地,证明了对上述H存在弱覆盖箭图Г和由长度大于2的路生成的理想I,使得kГ/I≌H.%We introduce a finite‐dimensional basic and split weak Hopf algebra H over an algebraically closed field k with strongly graded Jacobson radical r .We obtain some structures of a finite‐dimensional basic and split semilattice graded weak Hopf algebra ,and observe that there exists a finite Clifford monoid S which is isomorphic to the set of all the isomorphism classes of 1‐dimensional H‐modules such that H/r≌ kS* .We also introduce the notion of weak covering quiver whose path algebra admits a structure of semilattice graded weak Hopf algebra ,and classify the path algebra corresponding to the weak covering quiver .Furthermore ,we prove that ,for a finite‐dimensional basic semilattice graded weak Hopf algebra H over an algebraically closed field k with strongly graded radical ,there exists a weak covering quiver Γ such that kΓ/I≌ H ,where the ideal I is generated by the paths of length l≥2 .

  1. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  2. Cardinal invariants on Boolean algebras

    CERN Document Server

    Monk, J Donald

    2014-01-01

    This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the...

  3. NON-COMMUTATIVE POISSON ALGEBRA STRUCTURES ON LIE ALGEBRA sln(fCq) WITH NULLITY M

    Institute of Scientific and Technical Information of China (English)

    Jie TONG; Quanqin JIN

    2013-01-01

    Non-commutative Poisson algebras are the algebras having both an associa-tive algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures on the Lie algebras sln(fCq) are determined.

  4. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    Science.gov (United States)

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  5. ALGEBRAIC EXTENSION OF *-A OPERATOR

    Institute of Scientific and Technical Information of China (English)

    左红亮; 左飞

    2014-01-01

    In this paper, we study various properties of algebraic extension of∗-A operator. Specifically, we show that every algebraic extension of∗-A operator has SVEP and is isoloid. And if T is an algebraic extension of∗-A operator, then Weyl’s theorem holds for f (T ), where f is an analytic functions on some neighborhood of σ(T ) and not constant on each of the components of its domain.

  6. Algebraic geometric codes with applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2007-01-01

    The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.

  7. Notes on noncommutative algebraic topology

    CERN Document Server

    Nikolaev, Igor

    2010-01-01

    An operator (AF-) algebra A_f is assigned to each Anosov diffeomorphism f of a manifold M. The assignment is a functor on the category of (mapping tori of) all such diffeomorphisms, which sends continuous maps between the manifolds to the stable homomorphisms of the corresponding AF-algebras. We use the functor to prove non-existence of continuous maps between the hyperbolic torus bundles, an obstruction being the so-called Galois group of algebra A_f.

  8. Applications of algebraic grid generation

    Science.gov (United States)

    Eiseman, Peter R.; Smith, Robert E.

    1990-01-01

    Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an interactive environment, called the control point form of algebraic grid generation is described. The applications discussed are three-dimensional grids constructed about airplane and submarine configurations.

  9. COCLEFT EXTENSIONS OF HOPF ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    祝家贵

    2006-01-01

    Let B and H be finitely generated projective Hopf algebras over a commutative ring R,with B cocommutative and H commutative. In this paper we investigate cocleft extensions of Hopf algebras, and prove that the isomorphism classes of cocleft Hopf algebras extensions of B by H are determined uniquely by the group C(B, H) = ZC(B, H)/d(B, H) .

  10. Differential Equations with Linear Algebra

    CERN Document Server

    Boelkins, Matthew R; Potter, Merle C

    2009-01-01

    Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t

  11. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  12. Linear algebra and projective geometry

    CERN Document Server

    Baer, Reinhold

    2005-01-01

    Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra

  13. Experience and Universal Judgements: William Kingdon Clifford and Non-Euclidean Geometries Expérience et jugements universels : William Kingdon Clifford et les géométries non-euclidiennes

    Directory of Open Access Journals (Sweden)

    Christophe Duvey

    2009-05-01

    Full Text Available La pensée de W. K. Clifford se distingue par un questionnement radical de la valeur de la connaissance humaine. Fondée sur une doctrine exclusivement empiriste, elle n’adhère cependant pas pleinement aux conceptions de l’expérience alors défendues par des philosophes comme J. S. Mill ou H. Spencer. Récusant l’apriorisme kantien ainsi que toute proposition universelle et nécessaire, Clifford défend un relativisme, dont l’origine est fortement marquée par son étude des mathématiques, et notamment par son enthousiasme pour les géométries non-euclidiennes alors en plein essor. C’est précisément cet intérêt qui fait de ce mathématicien philosophe l’un des penseurs les plus originaux de la période victorienne.

  14. Planar Para Algebras, Reflection Positivity

    CERN Document Server

    Jaffe, Arthur

    2016-01-01

    We define the notion of a planar para algebra, which arises naturally from combining planar algebras with the idea of $\\Z_{N}$ para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects, that are invariant under isotopy. For each $\\Z_{N}$, we construct a family of subfactor planar para algebras which play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra. Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras which one can use in the study of quantum information. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivi...

  15. Algebraic Theories over Nominal Sets

    CERN Document Server

    Kurz, Alexander; Velebil, Jiří

    2010-01-01

    We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to recover the logics of Gabbay-Mathijssen and Clouston-Pitts, and apply classical results from universal algebra.

  16. The Algebra of Conformal Blocks

    CERN Document Server

    Manon, Christopher A

    2009-01-01

    We study and generalize the connection between the phylogenetic Hilbert functions of Buczynska and Wisniewski \\cite{BW} and the Verlinde formula, as discovered by Sturmfels and Xu in \\cite{StXu}. In order to accomplish this we introduce deformations of algebras of non-abelian theta functions for a general simple complex Lie algebra $\\mathfrak{g}$ structured on the moduli stack of stable punctured curves. We also study the relationship between these algebras and branching algebras, coming from the representation theory of the associated reductive group $G.$

  17. REPETITIVE CLUSTER-TILTED ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shunhua; Zhang Yuehui

    2012-01-01

    Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected.

  18. Algebra I Essentials For Dummies

    CERN Document Server

    Sterling, Mary Jane

    2010-01-01

    With its use of multiple variables, functions, and formulas algebra can be confusing and overwhelming to learn and easy to forget. Perfect for students who need to review or reference critical concepts, Algebra I Essentials For Dummies provides content focused on key topics only, with discrete explanations of critical concepts taught in a typical Algebra I course, from functions and FOILs to quadratic and linear equations. This guide is also a perfect reference for parents who need to review critical algebra concepts as they help students with homework assignments, as well as for adult learner

  19. Introduction to algebraic independence theory

    CERN Document Server

    Philippon, Patrice

    2001-01-01

    In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

  20. Congruence Kernels of Orthoimplication Algebras

    Directory of Open Access Journals (Sweden)

    I. Chajda

    2007-10-01

    Full Text Available Abstracting from certain properties of the implication operation in Boolean algebras leads to so-called orthoimplication algebras. These are in a natural one-to-one correspondence with families of compatible orthomodular lattices. It is proved that congruence kernels of orthoimplication algebras are in a natural one-to-one correspondence with families of compatible p-filters on the corresponding orthomodular lattices. Finally, it is proved that the lattice of all congruence kernels of an orthoimplication algebra is relatively pseudocomplemented and a simple description of the relative pseudocomplement is given.

  1. On triangular algebras with noncommutative diagonals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.

  2. Construction of complete generalized algebraic groups

    Institute of Scientific and Technical Information of China (English)

    WANG; Dengyin

    2005-01-01

    With one exception, the holomorph of a finite dimensional abelian connectedalgebraic group is shown to be a complete generalized algebraic group. This result on algebraic group is an analogy to that on Lie algebra.

  3. On triangular algebras with noncommutative diagonals

    Institute of Scientific and Technical Information of China (English)

    DONG AiJu

    2008-01-01

    We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections.Moreover we prove that our triangular algebra is maximal.

  4. Algebras related to posets of hyperplanes

    NARCIS (Netherlands)

    Jeurnink, G.A.M.

    2000-01-01

    We compare two noncommutative algebras which are related to arrangements of hyperplanes. For three special arrangements the induced approximately finite dimensional $C^*$-algebra and the graded Orlik-Solomon-algebra are investigated.

  5. Tilting mutation of Brauer tree algebras

    CERN Document Server

    Aihara, T

    2010-01-01

    We define tilting mutations of symmetric algebras as the endomorphism algebras of Okuyama-Rickard complexes. For Brauer tree algebras, we give an explicit description of the change of Brauer trees under mutation.

  6. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...

  7. A unified description of particles, strings and branes in Clifford spaces and p-brane/polyparticle duality

    Science.gov (United States)

    Castro, Carlos

    2016-10-01

    It is described how the Extended Relativity Theory in C-spaces (Clifford spaces) allows a unified formulation of point particles, strings, membranes and p-branes, moving in ordinary target spacetime backgrounds, within the description of a single polyparticle moving in C-spaces. The degrees of freedom of the latter are provided by Clifford polyvector-valued coordinates (antisymmetric tensorial coordinates). A correspondence between the p-brane (p-loop) “Schrödinger-like” equations of Ansoldi-Aurilia-Spallucci and the polyparticle wave equation in C-spaces is found via the polyparticle/p-brane correspondence. This correspondence might provide another unexplored avenue to quantize p-branes (a notoriously difficult and unsolved problem) from the more straightforward quantization of the polyparticle in C-spaces, even in the presence of external interactions. We conclude with comments about the compositeness nature of the polyvector-valued coordinate operators in terms of ordinary p-brane coordinates via the evaluation of n-ary commutators.

  8. Algebraic dynamics solution and algebraic dynamics algorithm of Burgers equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Algebraic dynamics solution and algebraic dynamics algorithm of nonlinear partial differential evolution equations in the functional space are applied to Burgers equation. The results indicate that the approach is effective for analytical solutions to Burgers equation, and the algorithm for numerical solutions of Burgers equation is more stable, with higher precision than other existing finite difference algo-rithms.

  9. Algebra and Algebraic Thinking in School Math: 70th YB

    Science.gov (United States)

    National Council of Teachers of Mathematics, 2008

    2008-01-01

    Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…

  10. Abstract Algebra to Secondary School Algebra: Building Bridges

    Science.gov (United States)

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  11. Dimer models and Calabi-Yau algebras

    CERN Document Server

    Broomhead, Nathan

    2008-01-01

    In this thesis we study dimer models, as introduced in string theory, which give a way of writing down a class of non-commutative `superpotential' algebras. Some examples are 3-dimensional Calabi-Yau algebras, as defined by Ginzburg, and some are not. We consider two types of `consistency' condition on dimer models, and show that a `geometrically consistent' model is `algebraically consistent'. Finally we prove that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras.

  12. On Quantizing Nilpotent and Solvable Basic Algebras

    OpenAIRE

    1999-01-01

    We prove an algebraic ``no-go theorem'' to the effect that a nontrivial Poisson algebra cannot be realized as an associative algebra with the commutator bracket. Using this, we show that there is an obstruction to quantizing the Poisson algebra of polynomials generated by a nilpotent basic algebra on a symplectic manifold. Finally, we explicitly construct a polynomial quantization of a symplectic manifold with a solvable basic algebra, thereby showing that the obstruction in the nilpotent cas...

  13. Semi-Hopf Algebra and Supersymmetry

    OpenAIRE

    Gunara, Bobby Eka

    1999-01-01

    We define a semi-Hopf algebra which is more general than a Hopf algebra. Then we construct the supersymmetry algebra via the adjoint action on this semi-Hopf algebra. As a result we have a supersymmetry theory with quantum gauge group, i.e., quantised enveloping algebra of a simple Lie algebra. For the example, we construct the Lagrangian N=1 and N=2 supersymmetry.

  14. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2015-01-01

    Advanced Linear Algebra, Second Edition takes a gentle approach that starts with familiar concepts and then gradually builds to deeper results. Each section begins with an outline of previously introduced concepts and results necessary for mastering the new material. By reviewing what students need to know before moving forward, the text builds a solid foundation upon which to progress. The new edition of this successful text focuses on vector spaces and the maps between them that preserve their structure (linear transformations). Designed for advanced undergraduate and beginning graduate stud

  15. Optical linear algebra

    Energy Technology Data Exchange (ETDEWEB)

    Casasent, D.; Ghosh, A.

    1983-01-01

    Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.

  16. Light Cone Current Algebra

    CERN Document Server

    Fritzsch, Harald

    2003-01-01

    This talk follows by a few months a talk by the same authors on nearly the same subject at the Coral Gables Conference. The ideas presented here are basically the same, but with some amplification, some change of viewpoint, and a number of new questions for the future. For our own convenience, we have transcribed the Coral Gables paper, but with an added ninth section, entitled "Problems of light cone current algebra", dealing with our present views and emphasizing research topics that require study.

  17. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  18. Handbook of algebra

    CERN Document Server

    Hazewinkel, M

    2008-01-01

    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  19. Lie algebraic Noncommutative Gravity

    CERN Document Server

    Banerjee, R; Samanta, S; Banerjee, Rabin; Mukherjee, Pradip; Samanta, Saurav

    2007-01-01

    The minimal (unimodular) formulation of noncommutative general relativity, based on gauging the Poincare group, is extended to a general Lie algebra valued noncommutative structure. We exploit the Seiberg -- Witten map technique to formulate the theory as a perturbative Lagrangian theory. Detailed expressions of the Seiberg -- Witten maps for the gauge parameters, gauge potentials and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.

  20. Elements of abstract algebra

    CERN Document Server

    Clark, Allan

    1984-01-01

    This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)

  1. The algebraic escher

    OpenAIRE

    Senechal, Marjorie

    1988-01-01

    Les pavages monoédriques et coloriés du plan réalisé par M.C. Escher constituent un outil utile dans I'exploration de plusieurs concepts d'algèbre abstraite : les groupes, les sous-groupes, les classes, les conjugués, les orbites, et les extensions de groupe. M.C. Escher's colored monohedral tessellations of the plane are a useful tool for exploring many concepts of abstract algebra, including groups, subgroups, cosets, conjugates, orbits, and group extensions. Peer Reviewed

  2. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  3. Using geometric algebra to understand pattern rotations in multiple mirror optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, J.; Ziock, H.

    1997-05-01

    Geometric Algebra (GA) is a new formulation of Clifford Algebra that includes vector analysis without notation changes. Most applications of Ga have been in theoretical physics, but GA is also a very good analysis tool for engineering. As an example, the authors use GA to study pattern rotation in optical systems with multiple mirror reflections. The common ways to analyze pattern rotations are to use rotation matrices or optical ray trace codes, but these are often inconvenient. The authors use GA to develop a simple expression for pattern rotation that is useful for designing or tolerancing pattern rotations in a multiple mirror optical system by inspection. Pattern rotation is used in many optical engineering systems, but it is not normally covered in optical system engineering texts. Pattern rotation is important in optical systems such as: (1) the 192 beam National ignition Facility (NIF), which uses square laser beams in close packed arrays to cut costs; (2) visual optical systems, which use pattern rotation to present the image to the observer in the appropriate orientation, and (3) the UR90 unstable ring resonator, which uses pattern rotation to fill a rectangular laser gain region and provide a filled-in laser output beam.

  4. An Introduction to Geometric Algebra with some Preliminary Thoughts on the Geometric Meaning of Quantum Mechanics

    Science.gov (United States)

    Horn, Martin Erik

    2014-10-01

    It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics.

  5. (s, t, d)-bi-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    SI JunRu

    2009-01-01

    The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called (s, t, d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An (s, t, d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an (s, t, d)-bi-Koszul algebra is discussed. Based on it, the notion of strongly (s, t, d)-bi-Koszul algebras is raised and their homological properties are further discussed.

  6. (s,t,d)-bi-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called(s,t,d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An(s,t,d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an(s,t,d)-bi-Koszul algebra is discussed. Based on it,the notion of strongly(s,t,d)-bi-Koszul algebras is raised and their homological properties are further discussed.

  7. Predicting Grades in Basic Algebra.

    Science.gov (United States)

    Newman, Elise

    1994-01-01

    Data from (n=470) students at Owens Technical College in Fall 1991 showed that high school GPA was the best predictor of grades in Basic Algebra, followed by high school rank, college GPA, ACT natural sciences, ASSET numerical skills, and ASSET elementary algebra scores. (11 references) (SW)

  8. Structure of the Enveloping Algebras

    Directory of Open Access Journals (Sweden)

    Č. Burdík

    2007-01-01

    Full Text Available The adjoint representations of several small dimensional Lie algebras  on their universal enveloping algebras  are explicitly decomposed. It is shown that commutants of raising operators are generated as polynomials in several basic elements. The explicit form of these elements is given and the general method for obtaining  these elements is described. 

  9. Smarandache hyper BCC-algebra

    OpenAIRE

    A. Ahadpanah; Borumand Saeid, A.

    2011-01-01

    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  10. Quantum Heisenberg--Weyl Algebras

    OpenAIRE

    Ballesteros, Angel; Herranz, Francisco J.; Parashar, Preeti

    1996-01-01

    All Lie bialgebra structures on the Heisenberg--Weyl algebra $[A_+,A_-]=M$ are classified and explicitly quantized. The complete list of quantum Heisenberg--Weyl algebras so obtained includes new multiparameter deformations, most of them being of the non-coboundary type.

  11. Online Algebraic Tools for Teaching

    Science.gov (United States)

    Kurz, Terri L.

    2011-01-01

    Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)

  12. Toeplitz Algebras on Dirichlet Spaces

    Institute of Scientific and Technical Information of China (English)

    TAN Yan-hua; WANG Xiao-feng

    2001-01-01

    In the present paper, some properties of Toeplitz algebras on Dirichlet spaces for several complex variables are discussed; in particular, the automorphism group of the Toeplitz C* -algebra, (C1), generated by Toeplitz operators with C1-symbols is discussed. In addition, the first cohomology group of (C1) is computed.

  13. The Algebra of Complex Numbers.

    Science.gov (United States)

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  14. Algebraic solution of master equations

    OpenAIRE

    R. Rangel; L. Carvalho

    2003-01-01

    We present a simple analytical method to solve master equations for finite temperatures and any initial conditions, which consists in the expansion of the density operator into normal modes. These modes and the expansion coefficients are obtained algebraically by using ladder superoperators. This algebraic technique is successful in cases in which the Liouville superoperator is quadratic in the creation and annihilation operators.

  15. Six Lectures on Commutative Algebra

    CERN Document Server

    Elias, J; Miro-Roig, Rosa Maria; Zarzuela, Santiago

    2009-01-01

    Interest in commutative algebra has surged over the years. In order to survey and highlight the developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. This title offers a synthesis of the lectures presented at the Summer School

  16. On Homomorphism of Valuation Algebras

    Institute of Scientific and Technical Information of China (English)

    GUAN XUE-CHONG; LI YONG-MING

    2011-01-01

    In this paper, firstly, a necessary condition and a sufficient condition for an isomorphism between two semiring-inducod valuation algebras to exist are presented respectively. Then a general valuation homomorphism based on different domains is defined, and the corresponding homomorphism theorem of valuation algebra is proved.

  17. What's Wrong with College Algebra?

    Science.gov (United States)

    Gordon, Sheldon P.

    2008-01-01

    Most college algebra courses are offered in the spirit of preparing the students to move on toward calculus. In reality, only a vanishingly small fraction of the million students a year who take these courses ever get to calculus. This article builds a strong case for the need to change the focus in college algebra to one that better meets the…

  18. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    2001-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and eig

  19. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  20. In Defence of Geometrical Algebra

    OpenAIRE

    Blasjo, V.N.E.

    2016-01-01

    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.

  1. Deciding isomorphism of Lie algebras

    NARCIS (Netherlands)

    Graaf, W.A. de

    2001-01-01

    When doing calculations with Lie algebras one of the main problems is to decide whether two given Lie algebras are isomorphic. A partial solution to this problem is obtained by calculating structural invariants. There is also a direct method available which involves the computation of Grobner bases.

  2. Graded contractions of Virasoro algebras

    CERN Document Server

    Kostyakov, I V; Kuratov, V V

    2001-01-01

    We describe graded contractions of Virasoro algebra. The highest weight representations of Virasoro algebra are constructed. The reducibility of representations is analysed. In contrast to standart representations the contracted ones are reducible except some special cases. Moreover we find an exotic module with null-plane on fifth level.

  3. Algebraic zip data

    CERN Document Server

    Pink, Richard; Ziegler, Paul

    2010-01-01

    An algebraic zip datum is a tuple $\\CZ := (G,P,Q,\\phi)$ consisting of a reductive group $G$ together with parabolic subgroups $P$ and $Q$ and an isogeny $\\phi\\colon P/R_uP\\to Q/R_uQ$. We study the action of the group $E := \\{(p,q)\\in P{\\times}Q | \\phi(\\pi_{P}(p)) =\\pi_Q(q)\\}$ on $G$ given by $((p,q),g)\\mapsto pgq^{-1}$. We define certain smooth $E$-invariant subvarieties of $G$, show that they define a stratification of $G$. We determine their dimensions and their closures and give a description of the stabilizers of the $E$-action on $G$. We also generalize all results to non-connected groups. We show that for special choices of $\\CZ$ the algebraic quotient stack $[E \\backslash G]$ is isomorphic to $[G \\backslash Z]$ or to $[G \\backslash Z']$, where $Z$ is a $G$-variety studied by Lusztig and He in the theory of character sheaves on spherical compactifications of $G$ and where $Z'$ has been defined by Moonen and the second author in their classification of $F$-zips. In these cases the $E$-invariant subvariet...

  4. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory textto algebraic coding theory. In the first chapter, you'll gain insideknowledge of coding fundamentals, which is essential for a deeperunderstanding of state-of-the-art coding systems.This book is a quick reference for those who are unfamiliar withthis topic, as well as for use with specific applications such as cryptographyand communication. Linear error-correcting block codesthrough elementary principles span eleven chapters of the text.Cyclic codes, some finite field algebra, Goppa codes, algebraic decodingalgorithms, and applications in public-key cryptography andsecret-key cryptography are discussed, including problems and solutionsat the end of each chapter. Three appendices cover the Gilbertbound and some related derivations, a derivation of the Mac-Williams' identities based on the probability of undetected error,and two important tools for algebraic decoding-namely, the finitefield Fourier transform and the Euclidean algorithm for polynomials.

  5. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  6. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  7. 偶数维复Clifford代数中的Dirac旋量空间%Dirac Spinor Spaces in Complex Clifford Algebras of Even Dimension

    Institute of Scientific and Technical Information of China (English)

    吴水成; 曹诗禹; 谭盛; 贺福利

    2014-01-01

    本文引入了偶数维欧氏空间的复结构及Witt基,在此基础上讨论了偶数维复Clifford代数中的Dirac 旋量空间.由Fock空间的结果我们得到了Dirac.旋量空间视为复Clifford代数中极小左理想,最后我们研究了Dirac旋量空间的对偶空间.

  8. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    Science.gov (United States)

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  9. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  10. Quaternionen and Geometric Algebra (Quaternionen und Geometrische Algebra)

    CERN Document Server

    Horn, Martin Erik

    2007-01-01

    In the last one and a half centuries, the analysis of quaternions has not only led to further developments in mathematics but has also been and remains an important catalyst for the further development of theories in physics. At the same time, Hestenes geometric algebra provides a didactically promising instrument to model phenomena in physics mathematically and in a tangible manner. Quaternions particularly have a catchy interpretation in the context of geometric algebra which can be used didactically. The relation between quaternions and geometric algebra is presented with a view to analysing its didactical possibilities.

  11. Operator algebras for analytic varieties

    CERN Document Server

    Davidson, Kenneth R; Shalit, Orr Moshe

    2012-01-01

    We study the isomorphism problem for the multiplier algebras of irreducible complete Pick kernels. These are precisely the restrictions $\\cM_V$ of the multiplier algebra $\\cM$ of Drury-Arveson space to a holomorphic subvariety $V$ of the unit ball. The related algebras of continuous multipliers are also considered. We find that $\\cM_V$ is completely isometrically isomorphic to $\\cM_W$ if and only if $W$ is the image of $V$ under a biholomorphic automorphism of the ball. A similar condition characterizes when there exists a unital completely contractive homomorphism from $\\cM_V$ to $\\cM_W$. If one of the varieties is a homogeneous algebraic variety, then isometric isomorphism is shown to imply completely isometric isomorphism of the algebras. The problem of characterizing when two such algebras are (algebraically) isomorphic is also studied. It is shown that if there is an isomorphism between $\\cM_V$ and $\\cM_W$, then there is a biholomorphism (with multiplier coordinates) between the varieties. We present a n...

  12. Bicrossproducts of algebraic quantum groups

    CERN Document Server

    Delvaux, Lydia; Wang, Shuanhong

    2012-01-01

    Let $A$ and $B$ be two algebraic quantum groups (i.e. multiplier Hopf algebras with integrals). Assume that $B$ is a right $A$-module algebra and that $A$ is a left $B$-comodule coalgebra. If the action and coaction are matched, it is possible to define a coproduct $\\Delta_#$ on the smash product $A # B$ making the pair $(A # B,\\Delta_#)$ into an algebraic quantum group. In this paper, we continue the study of these objects. First, we study the various data of the bicrossproduct $A # B$, such as the modular automorphisms, the modular elements, ... and obtain formulas in terms of the data of the components $A$ and $B$. Secondly, we look at the dual of $A # B$ (in the sense of algebraic quantum groups) and we show it is itself a bicrossproduct (of the second type) of the duals $\\hatA$ and $\\hatB$. The result is immediate for finite-dimensional Hopf algebras and therefore it is expected also for algebraic quantum groups. However, it turns out that some aspects involve a careful argument, mainly due to the fact t...

  13. Decomposition of semigroup algebras

    CERN Document Server

    Boehm, Janko; Nitsche, Max Joachim

    2011-01-01

    Let A \\subseteq B be cancellative abelian semigroups, and let R be an integral domain. We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension of positive affine semigroup rings we obtain an algorithm computing the decomposition. When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.

  14. Applications of computer algebra

    CERN Document Server

    1985-01-01

    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  15. Algebra for cryptologists

    CERN Document Server

    Meijer, Alko R

    2016-01-01

    This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...

  16. Constraint algebra in bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V. O., E-mail: Vladimir.Soloviev@ihep.ru [National Research Center Kurchatov Institute, Institute for High Energy Physics (Russian Federation)

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  17. On some generalizations of BCC-algebras

    CERN Document Server

    Dudek, Wieslaw A

    2012-01-01

    We describe weak BCC-algebras (also called BZ-algebras) in which the condition $(xy)z=(xz)y$ is satisfied only in the case when elements $x,y$ belong to the same branch. We also characterize branchwise commutative and branchwise implicative weak BCC-algebras satisfying this condition. We also describe connections between various types of implicative weak BCC-algebras.

  18. Network algebra for synchronous and asynchronous dataflow

    NARCIS (Netherlands)

    Bergstra, J.A.; Stefanescu, G.

    2008-01-01

    Network algebra (NA) is proposed as a uniform algebraic framework for the description (and analysis) of dataflow networks. The core of this algebraic setting is provided by an equational theory called Basic Network Algebra (BNA). It constitutes a selection of primitives and identities from the algeb

  19. (Fuzzy Ideals of BN-Algebras

    Directory of Open Access Journals (Sweden)

    Grzegorz Dymek

    2015-01-01

    set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained.

  20. On Nambu-Lie 3-algebra representations

    CERN Document Server

    Sochichiu, Corneliu

    2008-01-01

    We propose a recipe to construct matrix representations of Nambu--Lie 3-algebras in terms of irreducible representations of underlying Lie algebra. The case of Euclidean four-dimensional 3-algebra is considered in details. We find that representations of this 3-algebra are not possible in terms of only Hermitian matrices in spite of its Euclidean nature.

  1. Located Actions in Process Algebra with Timing

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a kn

  2. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  3. A Specialization of Prinjective Ringel-Hall Algebra and the associated Lie algebra

    Institute of Scientific and Technical Information of China (English)

    Justyna KOSAKOWSKA

    2008-01-01

    In the present paper we describe a specialization of prinjective Ringel-Hall algebra to 1, for prinjective modules over incidence algebras of posets of finite prinjective type,by generators and relations.This gives us a generalisation of Serre relations for semisimple Lie algebras.Connections of prinjective Ringel-Hall algebras with classical Lie algebras are also discussed.

  4. A remark on BMW algebra, q-Schur algebras and categorification

    CERN Document Server

    Vaz, Pedro

    2012-01-01

    We prove that the 2-variable BMW algebra embeds into an algebra constructed from the HOMFLY-PT polynomial. We also prove that the so(2N)-BMW algebra embeds in the q-Schur algebra of type A. We use these results to construct categorifications of the so(2N)-BMW algebra.

  5. Extension of a quantized enveloping algebra by a Hopf algebra

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Suppose that H is a Hopf algebra,and g is a generalized Kac-Moody algebra with Cartan matrix A =(aij)I×I,where I is an index set and is equal to either {1,2,...,n} or the natural number set N.Let f,g be two mappings from I to G(H),the set of group-like elements of H,such that the multiplication of elements in the set {f(i),g(i)|i ∈I} is commutative.Then we define a Hopf algebra Hgf Uq(g),where Uq(g) is the quantized enveloping algebra of g.

  6. Splitting full matrix algebras over algebraic number fields

    CERN Document Server

    Ivanyos, Gábor; Schicho, Joseph

    2011-01-01

    Let K be an algebraic number field of degree d and discriminant D over Q. Let A be an associative algebra over K given by structure constants such that A is siomorphic to the algebra M_n(K) of n by n matrices over K for some positive integer n. Suppose that d, n and D are bounded. Then an isomorphism of A with M_n(K) can be constructed by a polynomial time ff-algorithm. (An ff-algorithm is a deterministic procedure which is allowed to call oracles for factoring integers and factoring univariate polynomials over finite fields.) As a consequence, we obtain a polynomial time ff-algorithm to compute isomorphisms of central simple algebras of bounded degree over K.

  7. Practical approach to linear algebra

    CERN Document Server

    Choudhary, Prabhat

    2009-01-01

    ""Linear Algebra is the heart of applied science but there are divergent views concerning its meaning. The field of Linear Algebra is more beautiful and more fundamental than its rather dull name may suggest. More beautiful because it is full of powerful ideas that are quite unlike those normally emphasized in a linear algebra course in a mathematics department. Throughout the book the author follows the practice of first presenting required background material, which is then used to develop the results. The book is divided in ten chapters. Relevant material is included in each chapter from ot

  8. Quantum Algebras in Nuclear Structure

    OpenAIRE

    Bonatsos, Dennis; Daskaloyannis, C.; Kolokotronis, P.; Lenis, D.

    1995-01-01

    Quantum algebras are a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction to the necessary mathematical tools ($q$-numbers, $q$-analysis, $q$-oscillators, $q$-algebras), the su$_q$(2) rotator model and its extensions, the construction of deformed exactly soluble models (Interacting Boson Model, Moszkowski model), the use of deformed bosons in the description of...

  9. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  10. Introduction to algebra and trigonometry

    CERN Document Server

    Kolman, Bernard

    1981-01-01

    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  11. Study guide for college algebra

    CERN Document Server

    Snow, James W; Shapiro, Arnold

    1981-01-01

    Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what

  12. Lectures on Algebraic Geometry I

    CERN Document Server

    Harder, Gunter

    2012-01-01

    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  13. Homology theory on algebraic varieties

    CERN Document Server

    Wallace, Andrew H

    1958-01-01

    Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n

  14. Weierstrass preparation and algebraic invariants

    CERN Document Server

    Harbater, David; Krashen, Daniel

    2011-01-01

    We prove a form of the Weierstrass Preparation Theorem for normal algebraic curves over complete discrete valuation rings. While the more traditional algebraic form of Weierstrass Preparation applies just to the projective line over a base, our version allows more general curves. This result is then used to obtain applications concerning the values of u-invariants, and on the period-index problem for division algebras, over fraction fields of complete two-dimensional rings. Our approach uses patching methods and matrix factorization results that can be viewed as analogs of Cartan's Lemma.

  15. Test bank for college algebra

    CERN Document Server

    Kolman, Bernard; Levitan, Michael L

    1985-01-01

    Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.

  16. A book of abstract algebra

    CERN Document Server

    Pinter, Charles C

    2009-01-01

    Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Suc

  17. Loop Virasoro Lie conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Henan, E-mail: wuhenanby@163.com; Chen, Qiufan; Yue, Xiaoqing [Department of Mathematics, Tongji University, Shanghai 200092 (China)

    2014-01-15

    The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.

  18. Introduction to applied algebraic systems

    CERN Document Server

    Reilly, Norman R

    2009-01-01

    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  19. Mapa denso de disparidade para imagem estereoscópica no domínio de Clifford

    OpenAIRE

    Pasquali, André Luiz; Romero Romero,Milton Ernesto; Mazina Martins,Evandro

    2013-01-01

    Extensões do Quad-tree para a estimação do mapa denso de disparidade utilizando a luminância no domínio real foram propostas na literatura. A contribuição deste trabalho é a comparação do processamento de imagens estéreo entre o algoritmo que é uma extensão do Quad-tree para processar imagens no domínio real utilizando a luminância, com o algoritmo, aqui proposto, que é a extensão do Quad-tree para processar imagens codificadas no domínio da álgebra de Clifford utilizando imagens coloridas do...

  20. Handlung, Text, Kultur. Überlegungen zur hermeneutischen Anthropologie zwischen Clifford Geertz und Paul Ricœur

    Directory of Open Access Journals (Sweden)

    Thiemo Breyer

    2013-06-01

    Full Text Available The paper investigates the phenomenon of foreignness and its understanding in ethnographic and philosophical context. The role of a phenomenologicalhermeneutic conception of text and action in bridging the gap between the native’s and the observer’s points of view with respect to the description of cultural phenomena is elucidated by way of comparing the theories of anthropologist Clifford Geertz and philosopher Paul Ricoeur. Hidden links between the two authors, who make sparse references to one another, but should be connected more thoroughly, are followed. The methods of “thick description” (Geertz and of taking the “text as a model” (Ricoeur for understanding social and cultural performances are analysed to attain a new notion of culture as context.