WorldWideScience

Sample records for clifford algebra

  1. Metric Clifford Algebra

    OpenAIRE

    Fernández, V. V.; Moya, A. M.; Rodrigues Jr., W. A.

    2002-01-01

    In this paper we introduce the concept of metric Clifford algebra $\\mathcal{C\\ell}(V,g)$ for a $n$-dimensional real vector space $V$ endowed with a metric extensor $g$ whose signature is $(p,q)$, with $p+q=n$. The metric Clifford product on $\\mathcal{C\\ell}(V,g)$ appears as a well-defined \\emph{deformation}(induced by $g$) of an euclidean Clifford product on $\\mathcal{C\\ell}(V)$. Associated with the metric extensor $g,$ there is a gauge metric extensor $h$ which codifies all the geometric inf...

  2. Clifford Algebras and Spinors

    International Nuclear Information System (INIS)

    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  3. Circles and Clifford Algebras

    OpenAIRE

    Timorin, Vladlen

    2002-01-01

    Consider a smooth map from a neighborhood of the origin in a real vector space to a neighborhood of the origin in a Euclidean space. Suppose that this map takes all germs of lines passing through the origin to germs of Euclidean circles, or lines, or a point. We prove that under some simple additional assumptions this map takes all lines passing though the origin to the same circles as a Hopf map coming from a representation of a Clifford algebra does. We also describe a connection between ou...

  4. Clifford algebra, geometric algebra, and applications

    CERN Document Server

    Lundholm, Douglas

    2009-01-01

    These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The various applications presented include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

  5. Braided Clifford algebras as braided quantum groups

    CERN Document Server

    Durdevic, M

    1995-01-01

    The paper deals with braided Clifford algebras, understood as Chevalley-Kahler deformations of braided exterior algebras. It is shown that Clifford algebras based on involutive braids can be naturally endowed with a braided quantum group structure. Basic group entities are constructed explicitly.

  6. An introduction to Clifford algebras and spinors

    CERN Document Server

    Vaz, Jayme

    2016-01-01

    This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...

  7. Algebraic spinors on Clifford manifolds

    International Nuclear Information System (INIS)

    A Clifford manifold of n dimensions is defined by the fundamental relation {eμ(x), eν(x)}=2gμν(x)1 between the n frame field components {eμ(x)} and the metric matrix {gμν(x)}. At any point x, the tangent space, orthonormal frames and the spin group are defined in terms of the frame field. Different types of field are classified in terms of their properties under the general linear coordinate transformation group on the manifold, and under spin group transformations. Connections for different types of field are determined by their covariance properties under these two groups. The bivector spin connection is then uniquely determined by the 'uniformity assumption' for Clifford algebraic grades. A key result is established, that the frame field is necessarily covariantly constant on a Clifford manifold, with both vector and spin connections. 'Spin elements' are formed by contracting the frame field with Riemannian vector fields, and possess a 'two-sided' commutator covariant derivative. A set of Riemannian fields orthonormal with respect to the manifold defines an orthonormal set of spin elements in the tangent space, from which idempotents can be constructed. If S is an asymptotically flat (n-1)-dimensional submanifold on which a constant idempotent is defined in terms of a constant spin frame, parallel transport along geodesics from each point of S defines a unique position-dependent extension of the idempotent in a patch P of the manifold. In an earlier model which describes the electroweak interactions of leptons, with a simplification of the Glashow Lagrangian, the 'right-hand' part of the two-sided spin connection gives rise to new gravitational terms. The nature of these new terms is discussed. (author)

  8. On Clifford representation of Hopf algebras and Fierz identities

    CERN Document Server

    Rodríguez-Romo, S

    1996-01-01

    We present a short review of the action and coaction of Hopf algebras on Clifford algebras as an introduction to physically meaningful examples. Some q-deformed Clifford algebras are studied from this context and conclusions are derived.

  9. Algebra de clifford del espacio tiempo

    OpenAIRE

    Spinel G., Ma. Carolina

    2012-01-01

    En un artículo previo, presentamos la estructura y relaciones básicas del algebra de Clifford Gn generada por el producto geométrico de los vectores de un espacio vectorial Vn sobre el cuerpo de los reales en la versión moderna de Hestenes. Este artículo se dedica a los aspectos fundamentales algebra de Clifford del espacio-tiempo plano (A.E.T.) muestra algunos hechos interesantes relacionados con teoría de Dirac, que ponen de manifiesto la importancia sencillez de la aplicación de algebras d...

  10. Adinkras for Clifford Algebras, and Worldline Supermultiplets

    CERN Document Server

    Doran, C F; Gates, S J; Hübsch, T; Iga, K M; Landweber, G D; Miller, R L

    2008-01-01

    Adinkras are a graphical depiction of representations of the N-extended supersymmetry algebra in one dimension, on the worldline. These diagrams represent the component fields in a supermultiplet as vertices, and the action of the supersymmetry generators as edges. In a previous work, we showed that the chromotopology (topology with colors) of an Adinkra must come from a doubly even binary linear code. Herein, we relate Adinkras to Clifford algebras, and use this to construct, for every such code, a supermultiplet corresponding to that code. In this way, we correlate the well-known classification of representations of Clifford algebras to the classification of Adinkra chromotopologies.

  11. Gravitoelectromagnetism in a complex Clifford algebra

    OpenAIRE

    Ulrych, S.

    2006-01-01

    A linear vector model of gravitation is introduced in the context of quantum physics as a generalization of electromagnetism. The gravitoelectromagnetic gauge symmetry corresponds to a hyperbolic unitary extension of the usual complex phase symmetry of electromagnetism. The reversed sign for the gravitational coupling is obtained by means of the pseudoscalar of the underlying complex Clifford algebra.

  12. Twin bent functions and Clifford algebras

    OpenAIRE

    Leopardi, Paul C.

    2015-01-01

    This paper examines a pair of bent functions on $\\mathbb{Z}_2^{2m}$ and their relationship to a necessary condition for the existence of an automorphism of an edge-coloured graph whose colours are defined by the properties of a canonical basis for the real representation of the Clifford algebra $\\mathbb{R}_{m,m}.$ Some other necessary conditions are also briefly examined.

  13. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  14. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality. PMID:26723166

  15. Multifractal vector fields and stochastic Clifford algebra

    Energy Technology Data Exchange (ETDEWEB)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr [University Paris-Est, Ecole des Ponts ParisTech, Hydrology Meteorology and Complexity HM& Co, Marne-la-Vallée (France)

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  16. Instantaneous Point, Line, and Plane Motions Using a Clifford Algebra

    Institute of Scientific and Technical Information of China (English)

    Kwun-Lon Ting; Yi Zhang

    2004-01-01

    The motions of points, lines, and planes, embedded in a rigid body are expressed in a unified algebraic framework using a Clifford algebra. A Clifford algebra based displacement operator is addressed and its higher derivatives from which the coordinate-independent characteristic numbers with simple geometric meaning are defined. Because of the coordinate independent feature, no tedious coordinate transformation typically found in the conventional instantaneous invariants methods is needed.

  17. Extending Fourier transformations to Hamilton's quaternions and Clifford's geometric algebras

    Science.gov (United States)

    Hitzer, Eckhard

    2013-10-01

    We show how Fourier transformations can be extended to Hamilton's algebra of quaternions. This was initially motivated by applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider range of applications in color image and signal processing. Hamilton's algebra of quaternions is only one example of the larger class of Clifford's geometric algebras, complete algebras encoding a vector space and all its subspace elements. We introduce how Fourier transformations are extended to Clifford algebras and applied in electromagnetism, and in the processing of images, color images, vector field and climate data.

  18. On generalized Clifford algebras and their physical applications

    OpenAIRE

    Jagannathan, R.

    2010-01-01

    Generalized Clifford algebras (GCAs) and their physical applications were extensively studied for about a decade from 1967 by Alladi Ramakrishnan and his collaborators under the name of L-matrix theory. Some aspects of GCAs and their physical applications are outlined here. The topics dealt with include: GCAs and projective representations of finite abelian groups, Alladi Ramakrishnan's sigma operation approach to the representation theory of Clifford algebra and GCAs, Dirac's positive energy...

  19. The naked spinor a rewrite of Clifford algebra

    CERN Document Server

    Morris, Dennis

    2015-01-01

    This book is about spinors. The whole mathematical theory of spinors is within Clifford algebra, and so this book is about Clifford algebra. Spinor theory is really the theory of empty space, and so this book is about empty space. The whole of Clifford algebra is rewritten in a much simpler form, and so the whole of spinor theory is rewritten in a much simpler form. Not only does this book make Clifford algebra simple and obvious, but it lifts the fog and mirrors from this area of mathematics to make it clear and obvious. In doing so, the true nature of spinors is revealed to the reader, and, with that, the true nature of empty space. To understand this book you will need an elementary knowledge of linear algebra (matrices) an elementary knowledge of finite groups and an elementary knowledge of the complex numbers. From no more than that, you will gain a very deep understanding of Clifford algebra, spinors, and empty space. The book is well written with all the mathematical steps laid before the reader in a w...

  20. Square Roots of -1 in Real Clifford Algebras

    CERN Document Server

    Hitzer, Eckhard; Ablamowicz, Rafal

    2012-01-01

    It is well known that Clifford (geometric) algebra offers a geometric interpretation for square roots of -1 in the form of blades that square to minus 1. This extends to a geometric interpretation of quaternions as the side face bivectors of a unit cube. Systematic research has been done [1] on the biquaternion roots of -1, abandoning the restriction to blades. Biquaternions are isomorphic to the Clifford (geometric) algebra $Cl(3,0)$ of $\\mathbb{R}^3$. Further research on general algebras $Cl(p,q)$ has explicitly derived the geometric roots of -1 for $p+q \\leq 4$ [2]. The current research abandons this dimension limit and uses the Clifford algebra to matrix algebra isomorphisms in order to algebraically characterize the continuous manifolds of square roots of -1 found in the different types of Clifford algebras, depending on the type of associated ring ($\\mathbb{R}$, $\\mathbb{H}$, $\\mathbb{R}^2$, $\\mathbb{H}^2$, or $\\mathbb{C}$). At the end of the paper explicit computer generated tables of representative sq...

  1. Obstructions to Clifford System Extensions of Algebras

    Indian Academy of Sciences (India)

    Antonio M Cegarra; Antonio R Garzón

    2001-05-01

    In this paper we do phrase the obstruction for realization of a generalized group character, and then we give a classification of Clifford systems in terms of suitable low-dimensional cohomology groups.

  2. Maximal-acceleration phase space relativity from Clifford algebras

    CERN Document Server

    Castro, C

    2002-01-01

    We present a new physical model that links the maximum speed of light with the minimal Planck scale into a maximal-acceleration Relativity principle in the spacetime tangent bundle and in phase spaces (cotangent bundle). Crucial in order to establish this link is the use of Clifford algebras in phase spaces. The maximal proper-acceleration bound is a = c^2/ \\Lambda in full agreement with the old predictions of Caianiello, the Finslerian geometry point of view of Brandt and more recent results in the literature. We present the reasons why an Extended Scale Relativity based on Clifford spaces is physically more appealing than those based on kappa-deformed Poincare algebras and the inhomogeneous quantum groups operating in quantum Minkowski spacetimes. The main reason being that the Planck scale should not be taken as a deformation parameter to construct quantum algebras but should exist already as the minimum scale in Clifford spaces.

  3. Hochschild Cohomology and Deformations of Clifford-Weyl Algebras

    Directory of Open Access Journals (Sweden)

    Ian M. Musson

    2009-03-01

    Full Text Available We give a complete study of the Clifford-Weyl algebra C(n,2k from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself. We show that C(n,2k is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2 and study their representations.

  4. Clifford algebras geometric modelling and chain geometries with application in kinematics

    CERN Document Server

    Klawitter, Daniel

    2015-01-01

    After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.  Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...

  5. Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space

    Directory of Open Access Journals (Sweden)

    Fred Brackx

    2004-01-01

    Full Text Available A new method for constructing Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space is presented. In earlier research, we only dealt with scalar-valued weight functions. Now the class of weight functions involved is enlarged to encompass Clifford algebra-valued functions. The method consists in transforming the orthogonality relation on the open unit ball into an orthogonality relation on the real axis by means of the so-called Clifford-Heaviside functions. Consequently, appropriate orthogonal polynomials on the real axis give rise to Clifford algebra-valued orthogonal polynomials in the unit ball. Three specific examples of such orthogonal polynomials in the unit ball are discussed, namely, the generalized Clifford-Jacobi polynomials, the generalized Clifford-Gegenbauer polynomials, and the shifted Clifford-Jacobi polynomials.

  6. Bilinear covariants and spinor fields duality in quantum Clifford algebras

    Energy Technology Data Exchange (ETDEWEB)

    Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu [Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br [Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, SP (Brazil); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy)

    2014-10-15

    Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.

  7. Coverage analysis for sensor networks based on Clifford algebra

    Institute of Scientific and Technical Information of China (English)

    XIE WeiXin; CAO WenMing; MENG Shan

    2008-01-01

    The coverage performance is the foundation of information acquisition in distrib-uted sensor networks. The previously proposed coverage work was mostly based on unit disk coverage model or ball coverage model in 2D or 3D space, respectively. However, most methods cannot give a homogeneous coverage model for targets with hybrid types. This paper presents a coverage analysis approach for sensor networks based on Clifford algebra and establishes a homogeneous coverage model for sensor networks with hybrid types of targets. The effectiveness of the approach is demonstrated with examples.

  8. Clifford Algebras, Pure Spinors and the Physics of Fermions

    CERN Document Server

    Budinich, P

    2002-01-01

    The equations defining pure spinors are interpreted as equations of motion formulated on the lightcone of a ten-dimensional, lorentzian, momentum space. Most of the equations for fermion multiplets, usually adopted by particle physics, are then naturally obtained and their properties like internal symmetries, charges, families appear to be due to the correlation of the associated Clifford algebras, with the 3 complex division algebras: complex numbers at the origin of U(1) and charges; quaternions at the origin of SU(2); families and octonions at the origin of SU(3). Pure spinors instead could be relevant not only because the underlying momentum space results compact, but also because it may throw light on some aspects of particle physics, like: masses, charges, constraint relations, supersymmetry and epistemology.

  9. Quantum ring in the eyes of geometric (Clifford) algebra

    Science.gov (United States)

    Dargys, A.

    2013-01-01

    The quantum ring with spin-orbit interaction included is analyzed in a nonstandard way using Clifford or geometric algebra (GA). The solution of the Schrödinger-Pauli equation is presented in terms of rotors having clear classical mechanics interpretation, i.e., in GA the rotors act in 3D Euclidean space rather than as operators in an abstract Hilbert space. This classical-like property of spin control in GA provides a more transparent approach in designing and understanding spintronic devices. The aim of the paper is to attract readers attention to new possibilities in spin physics and to demonstrate how the quantum ring problem can be solved by GA methods.

  10. The Clifford algebra of physical space and Dirac theory

    Science.gov (United States)

    Vaz, Jayme, Jr.

    2016-09-01

    The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein-Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.

  11. The Clifford algebra of physical space and Dirac theory

    Science.gov (United States)

    Vaz, Jayme, Jr.

    2016-09-01

    The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein–Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.

  12. The. gamma. sub 5 -problem and anomalies - a Clifford algebra approach

    Energy Technology Data Exchange (ETDEWEB)

    Kreimer, D. (Mainz Univ. (Germany, F.R.). Inst. fuer Physik)

    1990-03-08

    It is shown that a strong correspondence between noncyclicity and anomalies exists. This allows, by fundamental properties of Clifford algebras, to build a simple and consistent scheme for treating {gamma}{sub 5} without using (d-4)-dimensional objects. (orig.).

  13. ON CAUCHY-POMPEIU FORMULA FOR FUNCTIONS WITH VALUES IN A UNIVERSAL CLIFFORD ALGEBRA

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper obtains the Cauchy-Pompeiu formula on certain distinguishedboundary for functions with values in a universal Clifford algebra. This formula is just anextension of the Cauchy's integral formula obtained in [11].

  14. A Clifford Algebra approach to the Discretizable Molecular Distance Geometry Problem

    OpenAIRE

    Andrioni, Alessandro

    2013-01-01

    The Discretizable Molecular Distance Geometry Problem (DMDGP) consists in a subclass of the Molecular Distance Geometry Problem for which an embedding in ${\\mathbb{R}^3}$ can be found using a Branch & Prune (BP) algorithm in a discrete search space. We propose a Clifford Algebra model of the DMDGP with an accompanying version of the BP algorithm.

  15. From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model

    CERN Document Server

    Żenczykowski, Piotr

    2015-01-01

    We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained pha...

  16. Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra

    Directory of Open Access Journals (Sweden)

    I.Yu. Krivsky

    2010-01-01

    Full Text Available We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration is proved. In order to provide the corresponding proofs, a 64-dimensional extended real Clifford-Dirac algebra is put into consideration.

  17. Maximum-rate, Minimum-Decoding-Complexity STBCs from Clifford Algebras

    CERN Document Server

    Karmakar, Sanjay

    2007-01-01

    It is well known that Space-Time Block Codes (STBCs) from orthogonal designs (ODs) are single-symbol decodable/symbol-by-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not orthogonal also. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). Codes from ODs, CIODs and MDC-QODs are mutually non-intersecting classes of codes. The class of CIODs have {\\it non-unitary weight matrices} when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas several known SSD codes including CODs have {\\it unitary weight matrices}. In this paper, we obtain SSD codes with unitary weight matrices (that are not CODs) called Clifford Unitary Weight SSDs (CUW-SSDs) from matrix representations of Clifford algebras. A main result of this paper is the derivation of an ach...

  18. Application of geometric algebra to electromagnetic scattering the Clifford-Cauchy-Dirac technique

    CERN Document Server

    Seagar, Andrew

    2016-01-01

    This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types...

  19. On Clifford-algebraic dimensional extension and SUSY holography

    Science.gov (United States)

    Gates, S. J.; Hübsch, T.; Stiffler, K.

    2015-03-01

    We analyze the group of maximal automorphisms of the N-extended worldline supersymmetry algebra, and its action on off-shell supermultiplets. This defines a concept of "holoraumy" that extends the notions of holonomy and curvature in a novel way and provides information about the geometry of the supermultiplet field-space. In turn, the "holoraumy" transformations of 0-brane dimensionally reduced supermultiplets provide information about Lorentz transformations in the higher-dimensional space-time from which the 0-brane supermultiplets are descended. Specifically, Spin(3) generators are encoded within 0-brane "holoraumy" tensors. Worldline supermultiplets are thus able to holographically encrypt information about higher-dimensional space-time geometry.

  20. On Clifford-Algebraic "Holoraumy", Dimensional Extension, and SUSY Holography

    CERN Document Server

    Gates, S J; Stiffler, K

    2014-01-01

    We analyze the group of maximal automorphisms of the N-extended world-line supersymmetry algebra, and its action on off-shell supermultiplets. This defines a concept of "holoraumy" that extends the notions of holonomy and curvature in a novel way and provides information about the geometry of the supermultiplet field-space. In turn, the "holoraumy" transformations of 0-brane dimensionally reduced supermultiplets provide information about Lorentz transformations in the higher-dimensional spacetime from which the 0-brane supermultiplets are descended. World-line supermultiplets are thus able to holographically encrypt information about higher dimensional spacetime geometry.

  1. Geometrical treatment of Clifford algebras and spinors with applications to the dynamics of spin particles

    International Nuclear Information System (INIS)

    The algebraic structure of the real Clifford algebras (CA) of vector spaces with non-degenerated scalar product of arbitrary signature is studied, and a classification formula for this is obtained. The latter is based on three sequences of integer numbers from which one is the Radon-Harwitz sequence. A new representation method of real CA is constructed. This leads to a geometrical representation of real Clifford algebras in which the representation spaces are subspaces of the CA itself (''spinor spaces''). One of these spinor spaces is a subalgebra of the original CA. The relation between CA and external algebras is studied. Each external algebra with a scalar product possesses the structure of a CA. From the geometric representation developed here then follows that spinors are inhomogeneous external forms. The transformation behaviour of spinors under the orthogonal, as well as under the general linear group is studied. By means of these algebraic results the spinor connexion and the covariant Dirac operator on a differential manifold are introduced. In the geometrical representation a further in ternal SL(2,R) symmetry of the Dirac equation (DE) is shown. Furthermore other equivalent formulations of the DE can be obtained. Of special interest is the tetrade formulation of the DE. A generalization of the DE is introduced. The equations of motion of the classical relativistic spin particle are derived by means of spinors and CA from a variational principle. From this interesting formal analogies with the supersymmetric theories of the spin particle result. Finally the DE in the curved space-time is established and studied in the tetrade formulation. Using the methods developed here a new exact solution of the coupled Einstein-Curtan-Dirac theory was found (massice ''Ghost-Dirac fields''). (orig.)

  2. First order differential operator associated to the Cauchy-Riemann operator in a Clifford algebra

    International Nuclear Information System (INIS)

    The complex differentiation transforms holomorphic functions into holomorphic functions. Analogously, the conjugate Cauchy-Riemann operator of the Clifford algebra transforms regular functions into regular functions. This paper determines more general first order operator L (matrix-type) for which Lu is regular provided u is regular. For such operator L, the initial value problem ∂u / ∂t = L (t, x, u, ∂u / ∂x) (1) u(0, x) = φ(x) (2) is solvable for an arbitrary regular function φ and the solution is regular in x for each t. (author)

  3. PT symmetry, Cartan decompositions, Lie triple systems and Krein space related Clifford algebras

    CERN Document Server

    Guenther, Uwe

    2010-01-01

    Gauged PT quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie triple structure is found and an interpretation as PT-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space related J-selfadjoint extensions for PTQM setups with ultra-localized potentials.

  4. Clifford代数Clp,q的中心子代数%The Central Subalgebra of Clifford Algebra Clp,q

    Institute of Scientific and Technical Information of China (English)

    宋元凤; 李武明; 丁宝霞

    2011-01-01

    (p,q)型Minkowski空间Rp,q的Clifford代数Clp-q是一类2p+q维的实结合代数,当p+q〉1时是非交换代数.文中讨论了Clp-q的中心Cen(Clp,q)的相关性质,利用基元的Clifford积导出由p,q确定Clp,q中心的公式.%Clifford algebra Clp,q of (p,q) Minkowski space R p,qare a class of2p+qdimension real associative algebra, as p + q 〉 1 , they are non - commutative algebra. The properties of Clp,q center Cen (Clp,q) are discussed by using Clifford product to derive the formula of Clp,q center.

  5. Clifford algebra is the natural framework for root systems and Coxeter groups. Group theory: Coxeter, conformal and modular groups

    CERN Document Server

    Dechant, Pierre-Philippe

    2016-01-01

    In this paper, we make the case that Clifford algebra is the natural framework for root systems and reflection groups, as well as related groups such as the conformal and modular groups: The metric that exists on these spaces can always be used to construct the corresponding Clifford algebra. Via the Cartan-Dieudonn\\'e theorem all the transformations of interest can be written as products of reflections and thus via `sandwiching' with Clifford algebra multivectors. These multivector groups can be used to perform concrete calculations in different groups, e.g. the various types of polyhedral groups, and we treat the example of the tetrahedral group $A_3$ in detail. As an aside, this gives a constructive result that induces from every 3D root system a root system in dimension four, which hinges on the facts that the group of spinors provides a double cover of the rotations, the space of 3D spinors has a 4D euclidean inner product, and with respect to this inner product the group of spinors can be shown to be cl...

  6. Climate and weather across scales: singularities and stochastic Levy-Clifford algebra

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2016-04-01

    There have been several attempts to understand and simulate the fluctuations of weather and climate across scales. Beyond mono/uni-scaling approaches (e.g. using spectral analysis), this was done with the help of multifractal techniques that aim to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations of these equations (Royer et al., 2008, Lovejoy and Schertzer, 2013). However, these techniques were limited to deal with scalar fields, instead of dealing directly with a system of complex interactions and non trivial symmetries. The latter is unfortunately indispensable to answer to the challenging question of being able to assess the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013) or to fully address the question of the relevance of quasi-geostrophic turbulence and to define an effective, fractal dimension of the atmospheric motions (Schertzer et al., 2012). In this talk, we present a plausible candidate based on the combination of Lévy stable processes and Clifford algebra. Together they combine stochastic and structural properties that are strongly universal. They therefore define with the help of a few physically meaningful parameters a wide class of stochastic symmetries, as well as high dimensional vector- or manifold-valued fields respecting these symmetries (Schertzer and Tchiguirinskaia, 2015). Lovejoy, S. & Schertzer, D., 2013. The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge U.K. Cambridge Univeristy Press. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.81-83. Royer, J.F. et al., 2008. Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. C.R. Geoscience, 340(431-440). Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327-336. Schertzer, D

  7. High-rate, Multi-Symbol-Decodable STBCs from Clifford Algebras

    CERN Document Server

    Karmakar, Sanjay

    2007-01-01

    It is well known that Space-Time Block Codes (STBCs) obtained from Orthogonal Designs (ODs) are single-symbol-decodable (SSD) and from Quasi-Orthogonal Designs (QODs) are double-symbol decodable. However, there are SSD codes that are not obtainable from ODs and DSD codes that are not obtainable from QODs. In this paper a method of constructing $g$-symbol decodable ($g$-SD) STBCs using representations of Clifford algebras are presented which when specialized to $g=1,2$ gives SSD and DSD codes respectively. For the number of transmit antennas $2^a$ the rate (in complex symbols per channel use) of the $g$-SD codes presented in this paper is $\\frac{a+1-g}{2^{a-g}}$. The maximum rate of the DSD STBCs from QODs reported in the literature is $\\frac{a}{2^{a-1}}$ which is smaller than the rate $\\frac{a-1}{2^{a-2}}$ of the DSD codes of this paper, for $2^a$ transmit antennas. In particular, the reported DSD codes for 8 and 16 transmit antennas offer rates 1 and 3/4 respectively whereas the known STBCs from QODs offer o...

  8. Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows

    Directory of Open Access Journals (Sweden)

    Henrik Aratyn

    2007-02-01

    Full Text Available We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the $2n$-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for $nimes n$ matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions.

  9. Understanding geometric algebra Hamilton, Grassmann, and Clifford for computer vision and graphics

    CERN Document Server

    Kanatani, Kenichi

    2015-01-01

    Introduction PURPOSE OF THIS BOOK ORGANIZATION OF THIS BOOK OTHER FEATURES 3D Euclidean Geometry VECTORS BASIS AND COMPONENTS INNER PRODUCT AND NORM VECTOR PRODUCTS SCALAR TRIPLE PRODUCT PROJECTION, REJECTION, AND REFLECTION ROTATION PLANES LINES PLANES AND LINES Oblique Coordinate Systems RECIPROCAL BASIS RECIPROCAL COMPONENTS INNER, VECTOR, AND SCALAR TRIPLE PRODUCTS METRIC TENSOR RECIPROCITY OF EXPRESSIONS COORDINATE TRANSFORMATIONSHamilton's Quaternion Algebra QUATERNIONS ALGEBRA OF QUATERNIONS CONJUGATE, NORM, AND INVERSE REPRESENTATION OF ROTATION BY QUATERNION Grassmann's Outer Product

  10. Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra

    OpenAIRE

    I.Yu. Krivsky; Simulik, V. M.

    2010-01-01

    We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance) the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration ...

  11. Analysis of two-player quantum games in an EPR setting using Clifford's geometric algebra.

    Science.gov (United States)

    Chappell, James M; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of geometric algebra (GA). The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.

  12. Analysis of two-player quantum games in an EPR setting using Clifford's geometric algebra.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR type setting is investigated using the mathematical formalism of geometric algebra (GA. The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.

  13. Clifford superanalysis

    Science.gov (United States)

    Sommen, Franciscus C.

    2013-10-01

    A survey of superanalysis with emphasis on superforms, superchains, superboundaries and integration is given. Moreover, the basic concepts for Clifford analysis on superspace, including the super-Dirac operator and Cauchy's integral formula, are given and the calculus of Clifford superforms, leading to a general Cauchy integral formula, is presented.

  14. Clifford Geometrodynamics

    OpenAIRE

    Lisi, A. Garrett

    2002-01-01

    Classical anti-commuting spinor fields and their dynamics are derived from the geometry of the Clifford bundle over spacetime via the BRST formulation. In conjunction with Kaluza-Klein theory, this results in a geometric description of all the fields and dynamics of the standard model coupled to gravity and provides the starting point for a new approach to quantum gravity.

  15. Face Detection Based on Adaboost and Clifford Algebra%基于Adaboost与Clifford代数的人脸检测

    Institute of Scientific and Technical Information of China (English)

    杨晋吉; 李荣兵

    2013-01-01

    In the conditions of complicated backgrounds and different illumination, as face detection based on Adaboost algorithm usually has higher false alarm rate, a new method based on the Adaboost algorithm and the Clifford vector product is proposed in this paper. Most of the non-face region is quickly excluded by the Adaboost classifier. The candidate region is verified basing on the face prior knowledge. If verification failure, according to Clifford vector product properties, searching for the region which has higher similarity with the region that need to be verified again, when their vector product is higher than threshold, this paper can judge that it is a face region. The comparison of this method with Viola-Jones method, experimental result shows that this method can detect face with high detection rate, suppresses the error detection rate, and is highly robust to face detection.%Adaboost算法在光照不均、背景复杂的条件下进行人脸检测时误检率较高。为解决该问题,提出一种基于Adaboost算法与Clifford代数矢量积性质的人脸检测方法。利用Adaboost算法初步定位人脸可能存在的区域,对该区域进行基于知识的校验,如果校验失败,根据Clifford矢量积性质,寻找与待验证区域相似度较高的人脸,当相似度大于阈值时,判断其为人脸。实验结果表明,与Viola-Jones方法相比,该方法在保持较高检测率的同时,降低了误检率,且鲁棒性较好。

  16. 正交模上Clifford代数的支配权%Dominant Weights of the Clifford Algebra over an Orthogonal Module

    Institute of Scientific and Technical Information of China (English)

    何军华; 谭友军

    2011-01-01

    This paper deals with dominant weights of the Clifford algebra C(V) over an orthogonal g-module V, where the g-module C(V) is a multiple of Kostant's spin module Spin(V). Let △(V) be the set of nonzero weights of V. The half-sum of any positive convex half of △(V) is shown to be a dominant weight of C(V). Conversely, if a half-sum is a highest weight of C(V) with multiplicity 2mV(O)+dim V/2, then it is given by a positive convex half of △(V).%研究了正交g-模V上的Clifford代数C(V)的支配权,其中G-模C(V)是Kostant给出的旋模Spin(V)的倍数.设△(V)是V的非零权组成的集合.证明了△(V)任一正凸半的半和总是C(V)的一个支配权.反之,如果某一个半和是C(V)的重数为2 mV(O)+dim V/2 的最高权,那么该半和一定是△(V)的某个正凸半的半和.

  17. Design and Implementation of GIS Temporal Spatial Analysis System Based on Clifford Algebra%GIS时空分析系统的Clifford代数设计与实现

    Institute of Scientific and Technical Information of China (English)

    俞肇元; 袁林旺; 罗文; 易琳

    2011-01-01

    以Clifford代数为理论基础与数学工具,构建了时空分析原型系统:①在兼容多类常用GIS数据格式的基础上,根据Clifford代数空间构建的思想,对现有时空数据模型进行扩展,实现了时间、空间与属性的一体化表达;②定义了可支撑多维度时空分析的几何、度量等Clifford代数算子库;③基于插件的时空分析模型算法构建及集成框架,实现了高维邻域分析、网络分析以及时空栅格数据分析等地学分析算法。实验结果显示,根据Clifford代数所构建的时空分析系统可有效支撑多维时空分析。%By introducing Clifford Algebra as the theoretical foundation and mathematical tools,a prototype temporal spatial analysis software system was proposed.The characteristics of this system can be summarized as following.① Under the premise of keeping the compatibilities with the commonly used GIS data,a new type of temporal-spatial data model,which unified the expression of both temporal,spatial and attribution components within the multivector structure,was proposed.② Geometric and metric operator libraries were defined,which can support multidimensional temporal spatial analysis.③ Plugging based temporal spatial analysis model constructing and integrating framework was implemented.Typical GIS temporal spatial analysis algorithms like multidimensional V-neighbor analysis,minimum union analysis and unified spatial-temporal process analyses with spacetime algebra were implemented and integrated.Results suggest that the proposed system can support multidimensional temporal spatial analysis effectively,which can also provide reference on improving research on unified temporal spatial analysis methods and GIS systems.

  18. Clifford Hopf-gebra and Bi-universal Hopf-gebra

    CERN Document Server

    Oziewicz, Z

    1997-01-01

    We consider a pair of independent scalar products, one scalar product on vectors, and another independent scalar product on dual space of co-vectors. The Clifford co-product of multivectors is calculated from the dual Clifford algebra. With respect to this co-product unit is not group-like and vectors are not primitive. The Clifford product and the Clifford co-product fits to the bi-gebra with respect to the family of the (pre)-braids. The Clifford bi-gebra is in a braided category iff at least one of these scalar products vanish.

  19. On bundles of rank 3 computing Clifford indices

    CERN Document Server

    Lange, H

    2012-01-01

    Let $C$ be a smooth irreducible projective algebraic curve defined over the complex numbers. The notion of the Clifford index of $C$ was extended a few years ago to semistable bundles of any rank. Recent work has been focussed mainly on the rank-2 Clifford index, although interesting results have also been obtained for the case of rank 3. In this paper we extend this work, obtaining improved lower bounds for the rank-3 Clifford index. This allows the first computations of the rank-3 index in non-trivial cases and examples for which the rank-3 index is greater than the rank-2 index.

  20. A Digital Image Watermarking Algorithm Based on Clifford Algebra%基于Clifford代数的数字图像水印技术

    Institute of Scientific and Technical Information of China (English)

    李岩山

    2008-01-01

    本文首先讨论了Clifford代数的几何性质,探讨了3维Clifford代数空间中的几何积和投影运算,介绍了Clifford代数空间中的Fourier变换及其计算公式,进而研究了Clifford代数的存在性定理,并提出基于Clifford代数的存在性定理和Clifford-Fourier变换的数字图像水印嵌入算法.本文首次提出在Clifford代数空间中进行数字水印嵌入,实验论证了该算法的合理性,能较好的完成数字图像水印的嵌入.

  1. Geometric Algebra

    CERN Document Server

    Chisolm, Eric

    2012-01-01

    This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...

  2. The Teodorescu Operator in Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    F.BRACKX; H.De SCHEPPER; M.E.LUNA-ELIZARRAR(A)S; M.SHAPIRO

    2012-01-01

    Euclidean Clifford analysis is a higher dimensional function theory centred around monogenic functions,i.e.,null solutions to a first order vector valued rotation invariant differential operator (θ) called the Dirac operator.More recently,Hermitian Clifford analysis has emerged as a new branch,offering yet a refinement of the Euclidean case; it focuses on the simultaneous null solutions,called Hermitian monogenic functions,to two Hermitian Dirac operators (θ)z_ and (θ)z_(+) which are invariant under the action of the unitary group.In Euclidean Clifford analysis,the Teodorescu operator is the right inverse of the Dirac operator (θ).In this paper,Teodorescu operators for the Hermitian Dirac operators (θ)z_ and (θ)z(+) are constructed.Moreover,the structure of the Euclidean and Hermitian Teodorescu operators is revealed by analyzing the more subtle behaviour of their components.Finally,the obtained inversion relations are still refined for the differential operators issuing from the Euclidean and Hermitian Dirac operators by splitting the Clifford algebra product into its dot and wedge parts.Their relationship with several complex variables theory is discussed.

  3. Clifford Geertz: A career

    Directory of Open Access Journals (Sweden)

    Bošković Aleksandar

    2007-01-01

    Full Text Available The paper presents some concepts of the recently deceased American anthropologist Clifford Geertz, putting them into the specific context of his rich and interesting career, influences that he had, as well as some reactions to his ideas. A particular attention is placed upon the concept of culture, as the key concept in the 20th century American anthropology.

  4. On Clifford's theorem for singular curves

    CERN Document Server

    Franciosi, Marco

    2011-01-01

    Let C be a 2-connected Gorenstein curve either reduced or contained in a smooth algebraic surface and let S be a subcanonical cluster (i.e. a 0-dim scheme such that the space H^0(C, I_S K_C) contains a generically invertible section). Under some general assumptions on S or C we show that h^0(C, I_S K_C) <= p_a(C) - deg (S)/2 and if equality holds then either S is trivial, or C is honestly hyperelliptic or 3-disconnected. As a corollary we give a generalization of Clifford's theorem for reduced curves.

  5. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  6. Algebra

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.

  7. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  8. Clifford Geertz. In memoriam

    Directory of Open Access Journals (Sweden)

    Richard Handler

    2008-01-01

    Full Text Available En la primavera de 1991, Adam Kuper, por entonces director de Current Anthropology, y por derecho propio destacado historiador de la disciplina antropológica, me pidió realizar una entrevista a Clifford Geertz. Acepté encantado y ese mismo verano viajé a Princeton, Nueva Jersey, donde transcurrí aproximadamente tres horas con Geertz en su oficina, en el Instituto de Estudios Avanzados. Geertz me dio una cordial bienvenida y habló conmigo sin tapujos, dándome (como podrá comprobar el lector un claro y completo relato de su carrera (para una completa y exacta versión, los lectores pueden consultar ahora su autobiografía en After the Fact: Two Countries, Four Decades, one Anthropolgist, Harvard University Press, 1995. De la transcripción de la entrevista realicé un manuscrito, donde limpié las repeticiones y dubitaciones de la conversación, pero manteniendo fielmente la charla, tal y como tuvo lugar. Se lo mandé a Geertz, que propuso algunas correcciones pero que por lo demás aceptó todo.

  9. The many faces of Maxwell, Dirac and Einstein equations a Clifford bundle approach

    CERN Document Server

    Rodrigues, Jr, Waldyr A

    2016-01-01

    This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also adds three new chapters: on the Clifford bundle approach to the Riemannian or semi-Riemannian differential geometry of branes; on Komar currents in the context of the General Relativity theory; and an analysis of the similarities and main differences between Dirac, Majorana and ELKO spinor fields. The exercises with solut...

  10. The Semigroup Structure of Left Clifford Semirings

    Institute of Scientific and Technical Information of China (English)

    Yu Qi GUO; Kar Ping SHUM; M. K. SEN

    2003-01-01

    In this paper, we generalize Clifford semirings to left Clifford semirings by means of theso-called band semirings. We also discuss a special case of this kind of semirings, that is, strongdistributive lattices of left rings.

  11. Rigidity theorems of Clifford Torus

    Directory of Open Access Journals (Sweden)

    SOUSA JR. LUIZ A. M.

    2001-01-01

    Full Text Available Let M be an n-dimensional closed minimally immersed hypersurface in the unit sphere Sn + 1. Assume in addition that M has constant scalar curvature or constant Gauss-Kronecker curvature. In this note we announce that if M has (n - 1 principal curvatures with the same sign everywhere, then M is isometric to a Clifford Torus .

  12. Decomposition numbers for Brauer algebras of type G(m,p,n) in characteristic zero

    OpenAIRE

    Bowman, C.; Cox, A.

    2013-01-01

    We introduce Brauer algebras associated to complex reflection groups of type $G(m,p,n)$, and study their representation theory via Clifford theory. In particular, we determine the decomposition numbers of these algebras in characteristic zero.

  13. The Closed Subsemigroups of a Clifford Semigroup

    Institute of Scientific and Technical Information of China (English)

    Fu Yin-yin; Zhao Xian-zhong

    2014-01-01

    In this paper we study the closed subsemigroups of a Clifford semigroup. It is shown that{∪}Gα | Y′ ∈ P (Y ) is the set of all closed subsemigroups ofα∈Y′a Clifford semigroup S = [Y;Gα;ϕα,β], where Y′ denotes the subsemilattice of Y generated by Y′. In particular, G is the only closed subsemigroup of itself for a group G and each one of subsemilattices of a semilattice is closed. Also, it is shown that the semiring P (S ) is isomorphic to the semiring P (Y ) for a Clifford semigroup S=[Y;Gα;ϕα,β].

  14. Clifford Geertzi mälestusõhtu

    Index Scriptorium Estoniae

    2006-01-01

    10. novembril toimub TLÜ-s Ameerika kultuurantropoloogi Clifford Geertzi mälestusõhtu, kus esinevad rektor Rein Raud, TLÜ Eesti Humanitaarinstituudi antropoloogia keskuse dotsent Lorenzo Cañás Bottos ja kultuuriteooria lektor Marek Tamm

  15. A new description of space and time using Clifford multivectors

    CERN Document Server

    Chappell, James M; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    Following the development of the special theory of relativity in 1905, Minkowski sought to provide a physical basis for Einstein's two fundamental postulates of special relativity, proposing a four dimensional spacetime structure consisting of three space and one time dimension, with the relativistic effects then being straightforward consequences of this spacetime geometry. As an alternative to Minkowski's approach, we produce the results of special relativity directly from three space ($ \\Re_3 $) without the addition of an extra dimension, through identifying the local time with the three rotational degrees of freedom of this space. The natural mathematical formalism within which to describe this definition of spacetime is found to be Clifford's geometric algebra, and specifically a three-dimensional multivector. With time now identified with the three rotational degrees of freedom of space, time becomes three-dimensional, which provides a natural symmetry between space and time in the form of a complex-typ...

  16. Constructions of Lie algebras and their modules

    CERN Document Server

    Seligman, George B

    1988-01-01

    This book deals with central simple Lie algebras over arbitrary fields of characteristic zero. It aims to give constructions of the algebras and their finite-dimensional modules in terms that are rational with respect to the given ground field. All isotropic algebras with non-reduced relative root systems are treated, along with classical anisotropic algebras. The latter are treated by what seems to be a novel device, namely by studying certain modules for isotropic classical algebras in which they are embedded. In this development, symmetric powers of central simple associative algebras, along with generalized even Clifford algebras of involutorial algebras, play central roles. Considerable attention is given to exceptional algebras. The pace is that of a rather expansive research monograph. The reader who has at hand a standard introductory text on Lie algebras, such as Jacobson or Humphreys, should be in a position to understand the results. More technical matters arise in some of the detailed arguments. T...

  17. Transversal Clifford gates on folded surface codes

    Science.gov (United States)

    Moussa, Jonathan E.

    2016-10-01

    Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surface codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. The specific application of these codes to universal quantum computation based on qubit fusion is also discussed.

  18. Agama dalam Tentukur Antropologi Simbolik Clifford Geertz

    Directory of Open Access Journals (Sweden)

    Yusri Mohamad Ramli

    2012-06-01

    Full Text Available Clifford Geertz can be regarded as one of the most influential figures in religious studies, particularly in the field of anthropology. His unique symbolic anthropology approach had attracted researchers because of his emphasis on deductive reasoning in explaining the meaning of religion and in viewing cultural values that exist in religion. Research based on the content analysis of his works found that Clifford Geertz thought very strongly influenced by Ibn Khaldun as both of them emphasize on the practical reality of religious phenomena in the society. These symbols are then making a cultural system of what we call religion.

  19. The monomial representations of the Clifford group

    CERN Document Server

    Appleby, D M; Brierley, Stephen; Gross, David; Larsson, Jan-Ake

    2011-01-01

    We show that the Clifford group - the normaliser of the Weyl-Heisenberg group - can be represented by monomial phase-permutation matrices if and only if the dimension is a square number. This simplifies expressions for SIC vectors, and has other applications to SICs and to Mutually Unbiased Bases.

  20. Thomas Clifford Allbutt and Comparative Pathology

    Science.gov (United States)

    Leung, Danny C. K.

    2008-01-01

    This paper reconceptualizes Thomas Clifford Allbutt's contributions to the making of scientific medicine in late nineteenth-century England. Existing literature on Allbutt usually describes his achievements, such as his design of the pocket thermometer and his advocacy of the use of the ophthalmoscope in general medicine, as independent events;…

  1. The standard model of quantum physics in Clifford algebra

    CERN Document Server

    Daviau, Claude

    2016-01-01

    We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.

  2. The general form of the star-product on the Grassman algebra

    OpenAIRE

    Tyutin, I. V.

    2001-01-01

    We study the general form of the noncommutative associative product (the star-product) on the Grassman algebra; the star-product is treated as a deformation of the usual "pointwise" product. We show that up to a similarity transformation, there is only one such product. The relation of the algebra ${\\cal F}$, the algebra of elements of the Grassman algebra with the star-product as a product, to the Clifford algebra is discussed.

  3. Star products and geometric algebra

    International Nuclear Information System (INIS)

    The formalism of geometric algebra can be described as deformed super analysis. The deformation is done with a fermionic star product, that arises from deformation quantization of pseudoclassical mechanics. If one then extends the deformation to the bosonic coefficients of superanalysis one obtains quantum mechanics for systems with spin. This approach clarifies on the one hand the relation between Grassmann and Clifford structures in geometric algebra and on the other hand the relation between classical mechanics and quantum mechanics. Moreover it gives a formalism that allows to handle classical and quantum mechanics in a consistent manner

  4. A boundary value problem for hypermonogenic functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    QIAO; Yuying

    2005-01-01

    This paper deals with a boundary value problem for hypermonogenic functions in Clifford analysis. Firstly we discuss integrals of quasi-Cauchy's type and get the Plemelj formula for hypermonogenic functions in Clifford analysis, and then we address Riemman boundary value problem for hypermonogenic functions.

  5. A remarkable representation of the Clifford group

    CERN Document Server

    Bengtsson, Ingemar

    2012-01-01

    The finite Heisenberg group knows when the dimension of Hilbert space is a square number. Remarkably, it then admits a representation such that the entire Clifford group --- the automorphism group of the Heisenberg group --- is represented by monomial phase-permutation matrices. This has a beneficial influence on the amount of calculation that must be done to find Symmetric Informationally Complete POVMs. I make some comments on the equations obeyed by the absolute values of the components of the SIC vectors, and on the fact that the representation partly suggests a preferred tensor product structure.

  6. The Clifford Deformation of the Hermite Semigroup

    Directory of Open Access Journals (Sweden)

    Hendrik De Bie

    2013-02-01

    Full Text Available This paper is a continuation of the paper [De Bie H., Ørsted B., Somberg P., Souček V., Trans. Amer. Math. Soc. 364 (2012, 3875–3902], investigating a natural radial deformation of the Fourier transform in the setting of Clifford analysis. At the same time, it gives extensions of many results obtained in [Ben Saïd S., Kobayashi T., Ørsted B., Compos. Math. 148 (2012, 1265–1336]. We establish the analogues of Bochner's formula and the Heisenberg uncertainty relation in the framework of the (holomorphic Hermite semigroup, and also give a detailed analytic treatment of the series expansion of the associated integral transform.

  7. The vector algebra war: A historical perspective

    CERN Document Server

    Chappell, James M; Hartnett, John G; Abbott, Derek

    2015-01-01

    There are a wide variety of different vector formalisms currently utilized in science. For example, Gibbs three-vectors, spacetime four-vectors, complex spinors for quantum mechanics, quaternions used for rigid body rotations and Clifford multivectors. With such a range of vector formalisms in use, it thus appears that there is as yet no general agreement on a vector formalism suitable for the whole of science. This surprising situation exists today, despite the fact that one of the main goals of nineteenth century science was to correctly describe vectors and the algebra of three-dimensional space. This situation has also had the unfortunate consequence of fragmenting knowledge across many disciplines and requiring a very significant amount of time and effort in learning the different formalisms. We thus review historically the development of our various vector systems and conclude that the Clifford algebra multivector fulfills the goal of correctly describing vectorial quantities in three dimensions.

  8. Kultuurantropoloog Clifford Geertzi mälestusõhtu

    Index Scriptorium Estoniae

    2006-01-01

    Tallinna Ülikoolis peetakse homme Ameerika kultuurantropoloogi Clifford Geertzi mälestusõhtut, esinevad rektor Rein Raud, Eesti Humanitaarinstituudi dotsent Lorenzo Cañás Bottos ja kultuuriteooria lektor Marek Tamm

  9. Algebraic Methods for Quantum Codes on Lattices

    OpenAIRE

    Haah, Jeongwan

    2016-01-01

    This is a note from a series of lectures at Encuentro Colombiano de Computacion Cuantica, Universidad de los Andes, Bogota, Colombia, 2015. The purpose is to introduce additive quantum error correcting codes, with emphasis on the use of binary representation of Pauli matrices and modules over a translation group algebra. The topics include symplectic vector spaces, Clifford group, cleaning lemma, an error correcting criterion, entanglement spectrum, implications of the locality of stabilizer ...

  10. The Mehler Formula for the Generalized Clifford-Hermite Polynomials

    Institute of Scientific and Technical Information of China (English)

    F.BRACKX; N.DE SCHEPPER; K.I.KOU; F.SOMMEN

    2007-01-01

    The Mehler formula for the Hermite polynomials allows for an integral representation of the one-dimensional Fractional Fourier transform.In this paper,we introduce a multi-dimensional Fractional Fourier transform in the framework of Clifford analysis.By showing that it coincides with the classical tensorial approach we are able to prove Mehler ’s formula for the generalized Clifford –Hermitepolynomials of Cli ord analysis.

  11. The Pauli algebra approach to special relativity

    International Nuclear Information System (INIS)

    The Pauli algebra P, in which the usual dot and cross products of 3-space vectors are combined in an associative, invertible, but non-commutative multiplication, provides a simple but powerful approach to problems in special relativity. Even though the Pauli algebra is the Clifford algebra for Euclidean 3-space, Minkowski 4-vectors and their products in the Minkowski metric appear in a natural and covariant way as elements of P. We review the algebra and develop a formulation which, although closely tied to elementary vector and functional analysis, nevertheless allows a compact coordinate-free treatment of essentially all problems in special relativity. We derive a number of useful results and show how the elements are related both to traditional Minkowski-space tensors and to elements of the Dirac algebra. (author)

  12. Geometric algebra with applications in science and engineering

    CERN Document Server

    Sobczyk, Garret

    2001-01-01

    The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer­ ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar­ ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math­ ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling ...

  13. Supersymmetry algebra cohomology. IV. Primitive elements in all dimensions from D= 4 to D= 11

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Friedemann [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)

    2013-05-15

    The primitive elements of the supersymmetry algebra cohomology as defined in previous work are derived for standard supersymmetry algebras in dimensions D= 5, Horizontal-Ellipsis , 11 for all signatures of the related Clifford algebras of gamma matrices and all numbers of supersymmetries. The results are presented in a uniform notation along with results of previous work for D= 4, and derived by means of dimensional extension from D= 4 up to D= 11.

  14. Construction of the fermionic vacuum and of fermionic operators of creation and annihilation in the theory of algebraic spinors

    CERN Document Server

    Monakhov, Vadim V

    2016-01-01

    We introduced fermionic variables in complex modules over real Clifford algebras of even dimension which are analog of the Witt basis. We built primitive idempotents which are a set of equivalent Clifford vacuums. It is shown that the modules are decomposed into direct sum of minimal left ideals generated by these idempotents and that the fermionic variables can be considered as more fundamental mathematical objects than spinors.

  15. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  16. Space-time algebra

    CERN Document Server

    Hestenes, David

    2015-01-01

    This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...

  17. Spin Singularities: Clifford Kaleidoscopes and Particle Masses

    CERN Document Server

    Cohen, Marcus S

    2009-01-01

    Are particles singularities- vortex lines, tubes, or sheets in some global ocean of dark energy? We visit the zoo of Lagrangian singularities, or caustics in a spin(4,C) phase flow over compactifed Minkowsky space, and find that their varieties and energies parallel the families and masses of the elementary particles. Singularities are classified by tensor products of J Coxeter groups s generated by reflections. The multiplicity, s, is the number reflections needed to close a cycle of null zigzags: nonlinear resonances of J chiral pairs of lightlike matter spinors with (4-J) Clifford mirrors: dyads in the remaining unperturbed vacuum pairs. Using singular perturbations to "peel" phase-space singularities by orders in the vacuum intensity, we find that singular varieties with quantized mass, charge, and spin parallel the families of leptons (J=1), mesons (J=2), and hadrons (J=3). Taking the symplectic 4 form - the volume element in the 8- spinor phase space- as a natural Lagrangian, these singularities turn ou...

  18. Left Artinian Algebraic Algebras

    Institute of Scientific and Technical Information of China (English)

    S. Akbari; M. Arian-Nejad

    2001-01-01

    Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.

  19. Schematic limits of rank 4 Azuyama bundles are the locally-Witt algebras

    CERN Document Server

    Venkata-Balaji, T E

    2002-01-01

    It is shown that the schematic image of the scheme of Azumaya algebra structures on a vector bundle of rank 4 over any base scheme is separated, of finite type, smooth of relative dimension 13 and geometrically irreducible over that base and that this construction basechanges well. This generalises the main theorem of Part I of an earlier work and clarifies it by showing that the algebraic operation of forming the even Clifford algebra (=Witt algebra) of a rank 3 quadratic module essentially translates to performing the geometric operation of taking the schematic image of the scheme of Azumaya algebra structures.

  20. Born-infeld electrodynamics: Clifford number and spinor representations

    Directory of Open Access Journals (Sweden)

    Alexander A. Chernitskii

    2002-01-01

    Full Text Available The Clifford number formalism for Maxwell equations is considered. The Clifford imaginary unit for space-time is introduced as coordinate independent form of fully antisymmetric fourth-rank tensor. The representation of Maxwell equations in massless Dirac equation form is considered; we also consider two approaches to the invariance of Dirac equation with respect to the Lorentz transformations. According to the first approach, the unknown column is invariant and according to the second approach it has the transformation properties known as spinorial ones. The Clifford number representation for nonlinear electrodynamics equations is obtained. From this representation, we obtain the nonlinear like Dirac equation which is the form of nonlinear electrodynamics equations. As a special case we have the appropriate representations for Born-Infeld nonlinear electrodynamics.

  1. Nonlinear boundary value problem for biregular functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    黄沙

    1996-01-01

    The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.

  2. SPHERICAL MEANS, DISTRIBUTIONS AND CONVOLUTION OPERATORS IN CLIFFORD ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    New higher dimensional distributions are introduced in the framework of Clifford analysis.They complete the picture already established in previous work, offering unity and structuralclarity. Amongst them are the building blocks of the principal value distribution, involvingspherical harmonics, considered by Horvath and Stein.

  3. Cliffordization, spin, and fermionic star products

    International Nuclear Information System (INIS)

    Deformation quantization is a powerful tool for quantizing theories with bosonic and fermionic degrees of freedom. The star products involved generate the mathematical structures which have recently been used in attempts to analyze the algebraic properties of quantum field theory. In the context of quantum mechanics they provide a quantization procedure for systems with either bosonic or fermionic degrees of freedom. We illustrate this procedure for a number of physical examples, including bosonic, fermionic, and supersymmetric oscillators. We show how non-relativistic and relativistic particles with spin can be naturally described in this framework

  4. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2012-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  5. Algebra, Logic and Qubits Quantum Abacus

    CERN Document Server

    Vlasov, A Yu

    2000-01-01

    The canonical anticommutation relations (CAR) for fermion systems can be represented by finite-dimensional matrix algebra, but it is impossible for canonical commutation relations (CCR) for bosons. After description of more simple case with representation CAR and (bounded) quantum computational networks via Clifford algebras in the paper are discussed CCR. For representation of the algebra it is not enough to use quantum networks with fixed number of qubits and it is more convenient to consider Turing machine with essential operation of appending new cells for description of infinite tape in finite terms --- it has straightforward generalization for quantum case, but for CCR it is necessary to work with symmetrized version of the quantum Turing machine. The system is called here quantum abacus due to understanding analogy with the ancient counting devices (abacus).

  6. Translating cosmological special relativity into geometric algebra

    Science.gov (United States)

    Horn, Martin Erik

    2012-11-01

    Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.

  7. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  8. On the Fourier Spectra of Distributions in Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    Fred BRACKX; Bram De KNOCK; Hennie De SCHEPPER

    2006-01-01

    In recent papers by Brackx, Delanghe and Sommen, some fundamental higher dimensional distributions have been reconsidered in the framework of Clifford analysis,eventually leading to the introduction of four broad classes of new distributions in Euclidean space. In the current paper we continue the in-depth study of these distributions, more specifically the study of their behaviour in frequency space, thus extending classical results of harmonic analysis.

  9. Computer Algebra.

    Science.gov (United States)

    Pavelle, Richard; And Others

    1981-01-01

    Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)

  10. Supertropical algebra

    OpenAIRE

    Izhakian, Zur; Rowen, Louis

    2008-01-01

    We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...

  11. Geometric Algebra: A natural representation of three-space

    CERN Document Server

    Chappell, James M; Abbott, Derek

    2011-01-01

    Historically, there have been many attempts to define the correct algebra for modeling the properties of three dimensional physical space, such as Descartes' system of Cartesian coordinates in 1637, the quaternions of Hamilton representing rotation in three-space that built on the Argand diagram for two-space, and Gibbs' vector calculus employing the dot and cross products. We illustrate however, that Clifford's geometric algebra developed in 1873, but largely overlooked by the science community, provides the simplest and most natural algebra for three-space and hence has general applicability to all fields of science and engineering. To support this thesis, we firstly show how geometric algebra naturally produces all the properties of complex numbers and quaternions and the vector cross product in a single formalism, whilst still maintaining a strictly real field and secondly we show in two specific cases how it simplifies analysis in regards to electromagnetism and Dirac's equation of quantum mechanics. Thi...

  12. The Application of Aristotle's Theory of Tragedy in the Analysis of Clifford

    Institute of Scientific and Technical Information of China (English)

    陈美林

    2005-01-01

    Clifford, a wealthy but paralyzed baronet, is always criticized without any compromise and is regarded hypocritical, cruel, in a word, a half-human and half-machine monster. However, the author believes that Clifford is a tragic character. This paper will analyze this character according to Aristotle's theory on tragedy, which is presented in his masterpiece Poetics.

  13. The Riesz-Clifford Functional Calculus for Non-Commuting Operators and Quantum Field Theory

    OpenAIRE

    Kisil, Vladimir V.; de Arellano, Enrique Ramírez

    1995-01-01

    We present a Riesz-like hyperholomorphic functional calculus for a set of non-commuting operators based on the Clifford analysis. Applications to the quantum field theory are described. Keywords: Functional calculus, Weyl calculus, Riesz calculus, Clifford analysis, quantization, quantum field theory. AMSMSC Primary:47A60, Secondary: 81T10

  14. Linear series on curves: stability and Clifford index

    CERN Document Server

    Mistretta, Ernesto C

    2011-01-01

    We study concepts of stabilities associated to a smooth complex curve together with a linear series on it. In particular we investigate the relation between stability of the associated Dual Span Bundle and linear stability. Our result implies a stability condition related to the Clifford index of the curve. Furthermore, in some of the cases, we prove that a stronger stability holds: cohomological stability. Eventually using our results we obtain stable vector bundles of integral slope 3, and prove that they admit theta-divisors.

  15. Elliptic algebras

    Energy Technology Data Exchange (ETDEWEB)

    Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2002-12-31

    This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.

  16. Euclidean Geometric Objects in the Clifford Geometric Algebra of {Origin, 3-Space, Infinity}

    OpenAIRE

    Hitzer, Eckhard

    2013-01-01

    This paper concentrates on the homogeneous (conformal) model of Euclidean space (Horosphere) with subspaces that intuitively correspond to Euclidean geometric objects in three dimensions. Mathematical details of the construction and (useful) parametrizations of the 3D Euclidean object models are explicitly demonstrated in order to show how 3D Euclidean information on positions, orientations and radii can be extracted.

  17. The Spinor spaces of the Clifford algebras%Clifford代数的Spinor表示空间

    Institute of Scientific and Technical Information of China (English)

    霍新霞

    2002-01-01

    讨论了Clifford代数的结构,证明Clifford代数的Pinor或Spinor空间都可以表示为它们的子空间,且都可以由一个元素生成.选取不可约表示空间的基,具体建立了Clifford代数与矩阵代数之间的同构.

  18. Clifford代数的spinor表示空间%The Spinor Spaces of the Clifford Algebras

    Institute of Scientific and Technical Information of China (English)

    霍新霞

    2002-01-01

    讨论了Clifford代数的结构,证明Clifford代数的pinor或spinor空间都可以表示为其子空间,且都可以由一个元素生成.选取不可约表示空间的基,具体建立了Cliford代数与矩阵代数之间的同构.

  19. On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_{2}

    Directory of Open Access Journals (Sweden)

    Sergii Kuzhel

    2012-01-01

    \\(\\Sigma_{J_{\\vec{\\beta}}}\\ are unitarily equivalent for different \\(\\vec{\\alpha}, \\vec{\\beta} \\in \\mathbb{S}^2\\ and describe in detail the structure of operators \\(A \\in \\Sigma_{J_{\\vec{\\alpha}}}\\ with empty resolvent set.

  20. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  1. Algebra-Geometry of Piecewise Algebraic Varieties

    Institute of Scientific and Technical Information of China (English)

    Chun Gang ZHU; Ren Hong WANG

    2012-01-01

    Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.

  2. The algebraic structure of the Onsager algebra

    OpenAIRE

    DATE, ETSURO; Roan, Shi-shyr

    2000-01-01

    We study the Lie algebra structure of the Onsager algebra from the ideal theoretic point of view. A structure theorem of ideals in the Onsager algebra is obtained with the connection to the finite-dimensional representations. We also discuss the solvable algebra aspect of the Onsager algebra through the formal Lie algebra theory.

  3. A Geometric Algebra Perspective On Quantum Computational Gates And Universality In Quantum Computing

    CERN Document Server

    Cafaro, Carlo

    2010-01-01

    We investigate the utility of geometric (Clifford) algebras (GA) methods in two specific applications to quantum information science. First, using the multiparticle spacetime algebra (MSTA, the geometric algebra of a relativistic configuration space), we present an explicit algebraic description of one and two-qubit quantum states together with a MSTA characterization of one and two-qubit quantum computational gates. Second, using the above mentioned characterization and the GA description of the Lie algebras SO(3) and SU(2) based on the rotor group Spin+(3, 0) formalism, we reexamine Boykin's proof of universality of quantum gates. We conclude that the MSTA approach does lead to a useful conceptual unification where the complex qubit space and the complex space of unitary operators acting on them become united, with both being made just by multivectors in real space. Finally, the GA approach to rotations based on the rotor group does bring conceptual and computational advantages compared to standard vectoria...

  4. Hom-Akivis algebras

    OpenAIRE

    Issa, A. Nourou

    2010-01-01

    Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-M...

  5. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  6. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  7. Zonotopal algebra

    OpenAIRE

    Holtz, Olga; Ron, Amos

    2007-01-01

    A wealth of geometric and combinatorial properties of a given linear endomorphism $X$ of $\\R^N$ is captured in the study of its associated zonotope $Z(X)$, and, by duality, its associated hyperplane arrangement ${\\cal H}(X)$. This well-known line of study is particularly interesting in case $n\\eqbd\\rank X \\ll N$. We enhance this study to an algebraic level, and associate $X$ with three algebraic structures, referred herein as {\\it external, central, and internal.} Each algebraic structure is ...

  8. Revisiting special relativity: A natural algebraic alternative to Minkowski spacetime

    CERN Document Server

    Iannella, James M Chappell Nicolangelo; Abbott, Derek

    2011-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging three dimensional space with an imaginary time dimension represented by $ i c t $, a framework which naturally produced the correct spacetime interval $ x^2 - c^2 t^2 $, and the results of Einstein's theory of special relativity. As an alternative to Minkowski space-time, we replace the unit imaginary $ i = \\sqrt{-1} $, with the Clifford bivector $ \\iota = e_1 e_2 $ for the plane, which also has the property of squaring to minus one, but which can be included without the addition of an extra dimension, as it is a natural part of Clifford's real Cartesian-type plane with the orthonormal basis $ e_1 $ and $ e_2 $. We find that with the ansatz of spacetime represented by a Clifford multivector, the spacetime metric and the Lorentz transformations, follow immediately as properties of the algebra. Based on the structure of the multivector, a simple semi-classical model is also produced for representing massive particles, giving a ...

  9. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1986-01-01

    Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra

  10. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1981-01-01

    Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e

  11. Which multiplier algebras are $W^*$-algebras?

    OpenAIRE

    Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B.

    2013-01-01

    We consider the question of when the multiplier algebra $M(\\mathcal{A})$ of a $C^*$-algebra $\\mathcal{A}$ is a $ W^*$-algebra, and show that it holds for a stable $C^*$-algebra exactly when it is a $C^*$-algebra of compact operators. This implies that if for every Hilbert $C^*$-module $E$ over a $C^*$-algebra $\\mathcal{A}$, the algebra $B(E)$ of adjointable operators on $E$ is a $ W^*$-algebra, then $\\mathcal{A}$ is a $C^*$-algebra of compact operators. Also we show that a unital $C^*$-algebr...

  12. Piecewise algebraic varieties

    Institute of Scientific and Technical Information of China (English)

    WANG Renhong; ZHU Chungang

    2004-01-01

    The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.

  13. Word Hopf algebras

    OpenAIRE

    Hazewinkel, Michiel

    2004-01-01

    Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging further generaliz...

  14. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  15. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  16. GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA

    OpenAIRE

    Labourie, François

    2012-01-01

    We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...

  17. Boolean Algebra of C-Algebras

    Directory of Open Access Journals (Sweden)

    G.C. Rao

    2012-11-01

    Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.

  18. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  19. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  20. Abstract algebra

    CERN Document Server

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  1. Basic algebra

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  2. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  3. Algebraic Topology

    CERN Document Server

    Oliver, Bob; Pawałowski, Krzystof

    1991-01-01

    As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.

  4. Physical Applications of a Generalized Clifford Calculus (Papapetrou equations and Metamorphic Curvature)

    CERN Document Server

    Pezzaglia, W M

    1997-01-01

    A generalized Clifford manifold is proposed in which there are coordinates not only for the basis vector generators, but for each element of the Clifford group, including the identity scalar. These new quantities are physically interpreted to represent internal structure of matter (e.g. classical or quantum spin). The generalized Dirac operator must now include differentiation with respect to these higher order geometric coordinates. In a Riemann space, where the magnitude and rank of geometric objects are preserved under displacement, these new terms modify the geodesics. One possible physical interpretation is natural coupling of the classical spin to linear motion, providing a new derivation of the Papapetrou equations. A generalized curvature is proposed for the Clifford manifold in which the connection does not preserve the rank of a multivector under parallel transport, e.g. a vector may be ``rotated'' into a scalar.

  5. The Kustaanheimo-Stiefel transformation in geometric algebra

    CERN Document Server

    Bartsch, T

    2003-01-01

    The Kustaanheimo-Stiefel (KS) transformation maps the non-linear and singular equations of motion of the three-dimensional Kepler problem to the linear and regular equations of a four-dimensional harmonic oscillator. It is used extensively in studies of the perturbed Kepler problem in celestial mechanics and atomic physics. In contrast to the conventional matrix-based approach, the formulation of the KS transformation in the language of geometric Clifford algebra offers the advantages of a clearer geometrical interpretation and greater computational simplicity. It is demonstrated that the geometric algebra formalism can readily be used to derive a Lagrangian and Hamiltonian description of the KS dynamics in arbitrary static electromagnetic fields. For orbits starting at the Coulomb centre, initial conditions are derived and a framework is set up that allows a discussion of the stability of these orbits.

  6. Central simple Poisson algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai; XU; Xiaoping

    2004-01-01

    Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.

  7. The Onsager Algebra

    OpenAIRE

    El-Chaar, Caroline

    2012-01-01

    In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. U...

  8. Algebraic field descriptions in three-dimensional Euclidean space

    Science.gov (United States)

    Salingaros, Nikos; Ilamed, Yehiel

    1984-08-01

    In this paper, we use the differential forms of three-dimensional Euclidean space to realize a Clifford algebra which is isomorphic to the algebra of the Pauli matrices or the complex quaternions. This is an associative vector-antisymmetric tensor algebra with division: We provide the algebraic inverse of an eight-component spinor field which is the sum of a scalar + vector + pseudovector + pseudoscalar. A surface of singularities is defined naturally by the inverse of an eight-component spinor and corresponds to a generalized Minkowski “double” light cone in the parameter space. A general description of finite spatial rotations, which utilizes the Baker-Campbell-Hausdorff formula, generalizes the usual infinitesimal treatments of the rotation group. We derive an explicit expression for the angle corresponding to two successive finite rotations in any direction. We also discuss Lorentz transformations and duality rotations of the electromagnetic field and exhibit a relationship between the algebraic inverse and a duality rotated field. Using a combined transformation, one can always transform an arbitrary electromagnetic field ( E≠0) into a pure electric field, but never into a pure magnetic field.

  9. Exotic Elliptic Algebras

    OpenAIRE

    Chirvasitu, Alex; Smith, S. Paul

    2015-01-01

    This paper examines a general method for producing twists of a comodule algebra by tensoring it with a torsor then taking co-invariants. We examine the properties that pass from the original algebra to the twisted algebra and vice versa. We then examine the special case where the algebra is a 4-dimensional Sklyanin algebra viewed as a comodule algebra over the Hopf algebra of functions on the non-cyclic group of order 4 with the torsor being the 2x2 matrix algebra. The twisted algebra is an "...

  10. Nonmonotonic logics and algebras

    Institute of Scientific and Technical Information of China (English)

    CHAKRABORTY Mihir Kr; GHOSH Sujata

    2008-01-01

    Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.

  11. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  12. Advancing Scholarship and Intellectual Productivity: An Interview with Clifford A. Lynch

    Science.gov (United States)

    Hawkins, Brian L.

    2006-01-01

    In this second part of a two-part interview with Clifford A. Lynch, Executive Director of the Coalition for Networked Information, Lynch talks to Hawkins about the most provocative and exciting projects that are being developed in the field of networked information worldwide. He also talks on how institutional repositories are being currently…

  13. Beyond War Stories: Clifford G. Christians' Influence on the Teaching of Media Ethics, 1976-1984.

    Science.gov (United States)

    Peck, Lee Anne

    Clifford Glenn Christians' work in the area of media ethics education from 1976 through 1984 has influenced the way media ethics is taught to many college students today. This time period includes, among his other accomplishments, Christians' work on an extensive survey of how media ethics was taught in the late 1970s, his work on the Hastings…

  14. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  15. Solvable quadratic Lie algebras

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.

  16. Graded cluster algebras

    OpenAIRE

    Grabowski, Jan

    2015-01-01

    In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...

  17. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.

  18. On vertex Leibniz algebras

    OpenAIRE

    Li, Haisheng; Tan, Shaobin; Wang, Qing

    2012-01-01

    In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra with...

  19. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  20. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    Zheng Lijing

    2015-11-01

    Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].

  1. WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY

    Institute of Scientific and Technical Information of China (English)

    TaoChangli; LuShijie; ChenPeixin

    2002-01-01

    Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.

  2. Rigidification of algebras over essentially algebraic theories

    CERN Document Server

    Rosicky, J

    2012-01-01

    Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.

  3. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  4. Short Distance Operator Product Expansion of the 1D, N = 4 Extended GR Super Virasoro Algebra by Use of Coadjoint Representations

    CERN Document Server

    Chappell, Isaac

    2009-01-01

    Using the previous construction of the geometrical representation (GR) of the centerless 1D, N = 4 extended Super Virasoro algebra, we construct the corresponding Short Distance Operation Product Expansions for the deformed version of the algebra. This algebra differs from the regular algebra by the addition of terms containing the Levi-Civita tensor. How this addition changes the super-commutation relations and affects the Short Distance Operation Product Expansions (OPEs) of the associated fields is investigated. The Method of Coadjoint Orbits, which removes the need first to find Lagrangians invariant under the action of the symmetries, is used to calculate the expansions. Finally, an alternative method involving Clifford algebras is investigated for comparison.

  5. Enveloping algebras of some quantum Lie algebras

    OpenAIRE

    Pourkia, Arash

    2014-01-01

    We define a family of Hopf algebra objects, $H$, in the braided category of $\\mathbb{Z}_n$-modules (known as anyonic vector spaces), for which the property $\\psi^2_{H\\otimes H}=id_{H\\otimes H}$ holds. We will show that these anyonic Hopf algebras are, in fact, the enveloping (Hopf) algebras of particular quantum Lie algebras, also with the property $\\psi^2=id$. Then we compute the braided periodic Hopf cyclic cohomology of these Hopf algebras. For that, we will show the following fact: analog...

  6. Novikov-Jordan algebras

    OpenAIRE

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  7. Historical Topics in Algebra.

    Science.gov (United States)

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…

  8. Workshop on Commutative Algebra

    CERN Document Server

    Simis, Aron

    1990-01-01

    The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.

  9. Probabilistic Concurrent Kleene Algebra

    Directory of Open Access Journals (Sweden)

    Annabelle McIver

    2013-06-01

    Full Text Available We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The algebra yields a unified framework containing nondeterminism, concurrency and probability and is sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the resulting algebra to generalise the algebraic formulation of a variant of Jones' rely/guarantee calculus.

  10. Generalized Quantum Current Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liu

    2001-01-01

    Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.

  11. The Onsager Algebra

    CERN Document Server

    El-Chaar, Caroline

    2012-01-01

    In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. Using this fourth realization, we explicitly describe all its ideals.

  12. Perturbations of planar algebras

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2010-01-01

    We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...

  13. Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Planat, Michel [Institut FEMTO-ST, CNRS, 32 Avenue de l' Observatoire, F-25044 Besancon (France); Sole, Patrick [CNRS I3S, Les Algorithmes, Euclide B, 2000 route des Lucioles, BP 121, 06903 Sophia Antipolis (France)

    2009-01-30

    The recent proposal (Planat and Kibler 2008 arXiv:0807.3650 [quant-ph]) of representing Clifford quantum gates in terms of unitary reflections is revisited. In this communication, the geometry of a Clifford group G is expressed as a BN-pair, i.e. a pair of subgroups B and N that generate G, is such that intersection H = B intersection N is normal in G, the group W = N/H is a Coxeter group and two extra axioms are satisfied by the double cosets acting on B. The BN-pair used in this decomposition relies on the swap and match gates already introduced for classically simulating quantum circuits (Jozsa and Miyake 2008 arXiv:0804.4050 [quant-ph]). The two- and three-qubit cases are related to the configuration with 27 lines on a smooth cubic surface. (fast track communication)

  14. Multiparameter Twisted Weyl Algebras

    OpenAIRE

    Futorny, Vyacheslav; Hartwig, Jonas T.

    2011-01-01

    We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs...

  15. An explanation for galaxy rotation curves using a Clifford multivector spacetime framework

    CERN Document Server

    Chappell, James M; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    We explore the consequences of space and time described within the Clifford multivector of three dimensions $ Cl_{3,0}$, where space consists of three-vectors and time is described with the three bivectors of this space. When describing the curvature around massive bodies, we show that this model of spacetime when including the Hubble expansion naturally produces the correct galaxy rotation curves without the need for dark matter.

  16. Unified Bessel, Modified Bessel, Spherical Bessel and Bessel-Clifford Functions

    OpenAIRE

    Yaşar, Banu Yılmaz; Özarslan, Mehmet Ali

    2016-01-01

    In the present paper, unification of Bessel, modified Bessel, spherical Bessel and Bessel-Clifford functions via the generalized Pochhammer symbol [ Srivastava HM, Cetinkaya A, K{\\i}ymaz O. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Applied Mathematics and Computation, 2014, 226 : 484-491] is defined. Several potentially useful properties of the unified family such as generating function, integral representation, Laplace transform and Mellin tran...

  17. Regular Functions with Values in Ternary Number System on the Complex Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2013-01-01

    Full Text Available We define a new modified basis i^ which is an association of two bases, e1 and e2. We give an expression of the form z=x0+ i ^z0-, where x0 is a real number and z0- is a complex number on three-dimensional real skew field. And we research the properties of regular functions with values in ternary field and reduced quaternions by Clifford analysis.

  18. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    Jia-feng; Lü

    2007-01-01

    [1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995

  19. Maps from the enveloping algebra of the positive Witt algebra to regular algebras

    OpenAIRE

    Sierra, Susan J.; Walton, Chelsea

    2015-01-01

    We construct homomorphisms from the universal enveloping algebra of the positive (part of the) Witt algebra to several different Artin-Schelter regular algebras, and determine their kernels and images. As a result, we produce elementary proofs that the universal enveloping algebras of the Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither left nor right noetherian.

  20. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  1. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  2. Representations of twisted current algebras

    OpenAIRE

    Lau, Michael

    2013-01-01

    We use evaluation representations to give a complete classification of the finite-dimensional simple modules of twisted current algebras. This generalizes and unifies recent work on multiloop algebras, current algebras, equivariant map algebras, and twisted forms.

  3. Application of geometric algebra for the description of polymer conformations.

    Science.gov (United States)

    Chys, Pieter

    2008-03-14

    In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.

  4. Spacetime algebra as a powerful tool for electromagnetism

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  5. Spacetime algebra as a powerful tool for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Dressel, Justin, E-mail: prof.justin.dressel@gmail.com [Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Konstantin Y. [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Interdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Nori, Franco [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-08

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann–Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric–magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  6. Hom-alternative algebras and Hom-Jordan algebras

    CERN Document Server

    Makhlouf, Abdenacer

    2009-01-01

    The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.

  7. Clifford代数与时空平面的Lorentz变换%Clifford Algebra and Lorentz Transformation of Spacetime Plane

    Institute of Scientific and Technical Information of China (English)

    张淑娜

    2013-01-01

    文中利用Clifford代数的双曲虚单位表述时空平面,给出时空平面cl1+1上向量的双曲函数式,用于表述旋量群Spin(1,1)及其子群Spin+(1,1),进而导出时空平面的Lorentz变换.

  8. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  9. Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra

    OpenAIRE

    Lagraa, M.; Touhami, N.

    1997-01-01

    We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.

  10. Categories and Commutative Algebra

    CERN Document Server

    Salmon, P

    2011-01-01

    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  11. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  12. REAL PIECEWISE ALGEBRAIC VARIETY

    Institute of Scientific and Technical Information of China (English)

    Ren-hong Wang; Yi-sheng Lai

    2003-01-01

    We give definitions of real piecewise algebraic variety and its dimension. By using the techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal with the dimension of the real piecewise algebraic variety and real Nullstellensatz in Cμ spline ring.

  13. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  14. Bases of Schur algebras associated to cellularly stratified diagram algebras

    CERN Document Server

    Bowman, C

    2011-01-01

    We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.

  15. Group identities on the units of algebraic algebras with applications to restricted enveloping algebras

    OpenAIRE

    Jespers, Eric; Riley, David; Siciliano, Salvatore

    2007-01-01

    An algebra is called a GI-algebra if its group of units satisfies a group identity. We provide positive support for the following two open problems. 1. Does every algebraic GI-algebra satisfy a polynomial identity? 2. Is every algebraically generated GI-algebra locally finite?

  16. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  17. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  18. A Note on Z* algebras

    OpenAIRE

    Taghavi, Ali

    2013-01-01

    We study some properies of $Z^{*}$ algebras, thos C^* algebra which all positive elements are zero divisors. We show by means of an example that an extension of a Z* algebra by a Z* algebra is not necessarily Z* algebra. However we prove that an extension of a non Z* algebra by a non Z* algebra is again a Z^* algebra. As an application of our methods, we prove that evey compact subset of the positive cones of a C* algebra has an upper bound in the algebra.

  19. Analytical error analysis of Clifford gates by the fault-path tracer method

    Science.gov (United States)

    Janardan, Smitha; Tomita, Yu; Gutiérrez, Mauricio; Brown, Kenneth R.

    2016-08-01

    We estimate the success probability of quantum protocols composed of Clifford operations in the presence of Pauli errors. Our method is derived from the fault-point formalism previously used to determine the success rate of low-distance error correction codes. Here we apply it to a wider range of quantum protocols and identify circuit structures that allow for efficient calculation of the exact success probability and even the final distribution of output states. As examples, we apply our method to the Bernstein-Vazirani algorithm and the Steane [[7,1,3

  20. Multi-vector Spherical Monogenics, Spherical Means and Distributions in Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    Fred BRACKX; Bram De KNOCK Hennie; De SCHEPPER

    2005-01-01

    New higher-dimensional distributions have been introduced in the framework of Clifford analysis in previous papers by Brackx, Delanghe and Sommen. Those distributions were defined using spherical co-ordinates, the "finite part" distribution Fp xμ+ on the real line and the generalized spherical means involving vector-valued spherical monogenics. In this paper, we make a second generalization,leading to new families of distributions, based on the generalized spherical means involving a multivector-valued spherical monogenic. At the same time, as a result of our attempt at keeping the paper self-contained, it offers an overview of the results found so far.

  1. On positive definite functions and representations of Clifford ω-semigroups

    Directory of Open Access Journals (Sweden)

    Liliana Pavel

    1995-11-01

    Full Text Available It is known that a complex valued function f on a Clifford ω-semigroup, T=UnGn is positive definite if and only if its restriction fn to Gn, is positive definite for any positive integer n. Then, by the usual Gelfand-Naimark-Segal construction, f and fn (n\\in ℕ give rise to the representations πf of T, respectively πfn of Gn. In this note we study the relationship between the restriction of πf to Gn and the representation of πfn (n\\in ℕ .

  2. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  3. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  4. On Derivations Of Genetic Algebras

    International Nuclear Information System (INIS)

    A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two

  5. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  6. Stable endomorphism algebras of modules over special biserial algebras

    OpenAIRE

    Schröer, Jan; Zimmermann, Alexander

    2002-01-01

    We prove that the stable endomorphism algebra of a module without self-extensions over a special biserial algebra is a gentle algebra. In particular, it is again special biserial. As a consequence, any algebra which is derived equivalent to a gentle algebra is gentle.

  7. $L_{\\infty}$ algebra structures of Lie algebra deformations

    OpenAIRE

    Gao, Jining

    2004-01-01

    In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or $L_{\\infty}$ algebra. All such obstructions have been transfered to the revelvant $L_{\\infty}$ algebras which contain only three terms

  8. Omni-Lie Color Algebras and Lie Color 2-Algebras

    OpenAIRE

    Zhang, Tao

    2013-01-01

    Omni-Lie color algebras over an abelian group with a bicharacter are studied. The notions of 2-term color $L_{\\infty}$-algebras and Lie color 2-algebras are introduced. It is proved that there is a one-to-one correspondence between Lie color 2-algebras and 2-term color $L_{\\infty}$-algebras.

  9. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  10. Finite-dimensional (*)-serial algebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.

  11. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  12. On the Toroidal Leibniz Algebras

    Institute of Scientific and Technical Information of China (English)

    Dong LIU; Lei LIN

    2008-01-01

    Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.

  13. Developable algebraic surfaces

    Institute of Scientific and Technical Information of China (English)

    CHEN Dongren; WANG Guojin

    2004-01-01

    An algebraic surface can be defined by an implicit polynomial equation F(x,y,z)=0. In this paper, general characterizations of developable algebraic surfaces of arbitrary degree are presented. Using the shift operators of the subscripts of Bézier ordinates, the uniform apparent discriminants of developable algebraic surfaces to their Bézier ordinates are given directly. To degree 2 algebraic surfaces, which are widely used in computer aided geometric design and graphics, all possible developable surface types are obtained. For more conveniently applying algebraic surfaces of high degree to computer aided geometric design, the notion of ε-quasi-developable surfaces is introduced, and an example of using a quasi-developable algebraic surface of degree 3 to interpolate three curves of degree 2 is given.

  14. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  15. Symmetric Extended Ockham Algebras

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; Jie Fang

    2003-01-01

    The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30

  16. A quantum field algebra

    OpenAIRE

    Brouder, Christian

    2002-01-01

    The Laplace Hopf algebra created by Rota and coll. is generalized to provide an algebraic tool for combinatorial problems of quantum field theory. This framework encompasses commutation relations, normal products, time-ordered products and renormalisation. It considers the operator product and the time-ordered product as deformations of the normal product. In particular, it gives an algebraic meaning to Wick's theorem and it extends the concept of Laplace pairing to prove that the renormalise...

  17. Algebraic nonlinear collective motion

    OpenAIRE

    Troupe, J.; Rosensteel, G.

    1999-01-01

    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $\\Lambda$. The $\\Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear g...

  18. Geometric Algebras and Extensors

    OpenAIRE

    Fernandez, V. V.; Moya, A. M.; Rodrigues Jr., W. A.

    2007-01-01

    This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to met...

  19. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  20. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  1. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  2. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  3. Relations Between BZMVdM-Algebra and Other Algebras

    Institute of Scientific and Technical Information of China (English)

    高淑萍; 邓方安; 刘三阳

    2003-01-01

    Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.

  4. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    Hijligenberg, N.W. van den; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g

  5. Schwinger's Measurement Algebra, Preons and the Lepton Masses

    Science.gov (United States)

    Brannen, Carl

    2006-04-01

    In the 1950s and 1960s, Julian Schwinger developed an elegant general scheme for quantum kinematics and dynamics appropriate to systems with a finite number of dynamical variables, now knowns as ``Schwinger's Measurement Algebra'' (SMA). The SMA has seen little use, largely because it is non relativistic in that it does not allow for particle creation. In this paper, we apply the SMA to the problem of modeling tightly bound subparticles (preons) of the leptons and quarks. We discuss the structure of the ideals of Clifford algebras and, applying this to the elementary fermions, derive a preon substructure for the quarks and leptons. We show that matrices of SMA type elements can be used to model the quarks and leptons under the assumption that the preons are of such high energy that they cannot be created in normal interactions. This gives a definition of the SMA for the composite particle in terms of the SMA of its constituents. We solve the resulting matrix equation for the quarks and leptons. We show that the mass operator for the charged leptons is related to the democratic mass matrix used in the Koide mass formula.

  6. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    Zheng-xin CHEN; Ya-nan LIN

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.

  7. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.

  8. Universal Algebras of Hurwitz Numbers

    OpenAIRE

    A. Mironov; Morozov, A; Natanzon, S.

    2009-01-01

    Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model.

  9. Fields and Forms on -Algebras

    Indian Academy of Sciences (India)

    Cătălin Ciupală

    2005-02-01

    In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.

  10. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.

  11. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    Science.gov (United States)

    Chappell, James M; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane. PMID:23300566

  12. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yuan YAO; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  13. On algebraic volume density property

    OpenAIRE

    Kaliman, Shulim; Kutzschebauch, Frank

    2012-01-01

    A smooth affine algebraic variety $X$ equipped with an algebraic volume form $\\omega$ has the algebraic volume density property (AVDP) if the Lie algebra generated by completely integrable algebraic vector fields of $\\omega$-divergence zero coincides with the space of all algebraic vector fields of $\\omega$-divergence zero. We develop an effective criterion of verifying whether a given $X$ has AVDP. As an application of this method we establish AVDP for any homogeneous space $X=G/R$ that admi...

  14. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).

  15. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).

  16. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  17. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  18. On Hadamard algebras

    Directory of Open Access Journals (Sweden)

    Carlos C. Peña

    2000-05-01

    Full Text Available Topological algebras of sequences of complex numbers are introduced, endowed with a Hadamard product type. The complex homomorphisms on these algebras are characterized, and units, prime cyclic ideals, prime closed ideals, and prime minimal ideals, discussed. Existence of closed and maximal ideals are investigated, and it is shown that the Jacobson and nilradicals are both trivial.

  19. Computer algebra in gravity

    CERN Document Server

    Heinicke, C; Heinicke, Christian; Hehl, Friedrich W.

    2001-01-01

    We survey the application of computer algebra in the context of gravitational theories. After some general remarks, we show of how to check the second Bianchi-identity by means of the Reduce package Excalc. Subsequently we list some computer algebra systems and packages relevant to applications in gravitational physics. We conclude by presenting a couple of typical examples.

  20. P-Loop Oscillator on Clifford Manifolds and Black Hole Entropy

    CERN Document Server

    Castro, C; Castro, Carlos; Granik, Alex

    2000-01-01

    A new relativity theory, or more concretely an extended relativity theory, actively developed by one of the authors incorporated 3 basic concepts. They are the old Chu's idea about bootstarpping, Nottale's scale relativity, and enlargement of the conventional time-space by inclusion of noncommutative Clifford manifolds where all p-branes are treated on equal footing. The latter allowed one to write a master action functional. The resulting functional equation is simplified and applied to the p-loop oscillator. Its respective solution is a generalization of the conventional point oscillator. In addition , it exhibits some novel features: an emergence of two explicit scales delineating the asymptotic regimes (Planck scale region and a smooth region of a conventional point oscillator). In the most interesting Planck scale regime, the solution reproduces in an elementary fashion the basic relations of string theory (including string tension quantization). In addition, it is shown that comparing the massive (super...

  1. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-04-01

    Full Text Available It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric [1], and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy’s spiraling motion and redshift data as these have been done by Carmeli and Hartnett [4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  2. Clifford and Riemann-Finsler structures in geometric mechanics and gravity

    CERN Document Server

    Vacaru, S; Gaburov, E

    2006-01-01

    The book contains a collection of works on Riemann-Cartan and metric-affine manifolds provided with nonlinear connection structure and on generalized Finsler-Lagrange and Cartan-Hamilton geometries and Clifford structures modelled on such manifolds. The choice of material presented has evolved from various applications in modern gravity and geometric mechanics and certain generalizations to noncommutative Riemann-Finsler geometry. The authors develop and use the method of anholonomic frames with associated nonlinear connection structure and apply it to a number of concrete problems: constructing of generic off-diagonal exact solutions, in general, with nontrivial torsion and nonmetricity, possessing noncommutative symmetries and describing black ellipsoid/torus configurations, locally anisotropic wormholes, gravitational solitons and warped factors and investigation of stability of such solutions; classification of Lagrange/ Finsler -- affine spaces; definition of nonholonomic Dirac operators and their applic...

  3. H(o)lder Norm Estimate for a Hilbert Transform in Hermitean Clifford Analysis

    Institute of Scientific and Technical Information of China (English)

    Ricardo ABREU-BLAYA; Juan BORY-REYES; Fred BRACKX; Hennie DE SCHEPPER

    2012-01-01

    A Hilbert transform for H(o)lder continuous circulant (2 × 2) matrix functions,on the dsummable (or fractal) boundary T of a Jordan domain Ω in R2n,has recently been introduced within the framework of Hermitean Clifford analysis.The main goal of the present paper is to estimate the H(o)lder norm of this Hermitean Hilbert transform.The expression for the upper bound of this norm is given in terms of the H(o)lder exponents,the diameter of T and a specific d-sum (d > d) of the Whitney decomposition of Ω.The result is shown to include the case of a more standard Hilbert transform for domains with left Ahlfors-David regular boundary.

  4. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-04-01

    Full Text Available It was known for quite long time that {a} quaternion space can be generalized to {a} Clifford space, and vice versa; but how to find its neat link with more convenient metric form in {the} General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric, and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy's spiraling motion and redshift data as these have been done by Carmeli and Hartnett. In subsequent section we explain Podkletnov's rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  5. Introduction to noncommutative algebra

    CERN Document Server

    Brešar, Matej

    2014-01-01

    Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

  6. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  7. Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

    OpenAIRE

    Ashihara, Takahiro; Miyamoto, Masahiko

    2008-01-01

    If a vertex operator algebra $V=\\oplus_{n=0}^{\\infty}V_n$ satisfies $\\dim V_0=1, V_1=0$, then $V_2$ has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set $Sym_d(\\C)$ of symmetric matrices of degree $d$ becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In t...

  8. The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; V S Sunder

    2006-11-01

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.

  9. Graded Lie Algebra Generating of Parastatistical Algebraic Relations

    Institute of Scientific and Technical Information of China (English)

    JING Si-Cong; YANG Wei-Min; LI Ping

    2001-01-01

    A new kind of graded Lie algebra (We call it Z2,2 graded Lie algebra) is introduced as a framework for formulating parasupersymmetric theories. By choosing suitable Bose subspace of the Z2,2 graded Lie algebra and using relevant generalized Jacobi identities, we generate the whole algebraic structure of parastatistics.

  10. Semigroups and computer algebra in algebraic structures

    Science.gov (United States)

    Bijev, G.

    2012-11-01

    Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.

  11. On Linear Algebra Education

    Directory of Open Access Journals (Sweden)

    Sinan AYDIN

    2009-04-01

    Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.

  12. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  13. Super Linear Algebra

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader. These new class of super linear algebras which can be thought of as a set of linear algebras, following a stipulated condition, will find applications in several fields using computers. The authors feel that such a paradigm shift is essential in this computerized world. Some other structures ought to replace linear algebras which are over a century old. Super linear algebras that use super matrices can store data not only in a block but in multiple blocks so it is certainly more powerful than the usual matrices. This book has 3 chapters. Chapter one introduces the notion of super vector spaces and enumerates a number of properties. Chapter two defines the notion of sup...

  14. Equational axioms of test algebra

    NARCIS (Netherlands)

    Hollenberg, M.

    2008-01-01

    We present a complete axiomatization of test algebra ([24,18,29]), the two-sorted algebraic variant of Propositional Dynamic Logic (PDL,[21,7]). The axiomatization consists of adding a finite number of equations to any axiomatization of Kleene algebra ([15,26,17,4]) and algebraic translations of the

  15. Process algebra for Hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, Chap. 4, 2002] and the process algebra with propositional signals from Baeten and Bergstra [Theoretical Computer

  16. Process algebra for hybrid systems

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2005-01-01

    We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg (Process Algebra with Timing, Springer,Berlin, 2002, Chapter 4), and the process algebra with propositional signals from Baeten and Bergstra(Theoret. Com

  17. Symplectic algebraic dynamics algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the algebraic dynamics solution of ordinary differential equations andintegration of  ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.

  18. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  19. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    J. W. Kitchen

    1994-01-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  20. On Griess Algebras

    OpenAIRE

    Michael Roitman

    2003-01-01

    In this paper we prove that for any commutative (but in general non-associative) algebra $A$ with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra $V = V_0 \\oplus V_2 \\oplus V_3\\oplus ...$, such that $\\dim V_0 = 1$ and $V_2$ contains $A$. We can choose $V$ so that if $A$ has a unit $e$, then $2e$ is the Virasoro element of $V$, and if $G$ is a finite group of automorphisms of $A$, then $G$ acts on $V$ as well. In addition, the algebra $V$ can be chosen with...

  1. Meadow enriched ACP process algebras

    OpenAIRE

    J.A. Bergstra; Middelburg, C.A.

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization of the notion of an ACP process algebra to processes in which data are involved. In meadow enriched ACP process algebras, the mathematical structure for data is a meadow.

  2. Algebraic Properties of Propositional Calculus

    OpenAIRE

    Schuh, Bernd R.

    2009-01-01

    In this short note we relate some known properties of propositional calculus to purely algebraic considerations of a Boolean algebra. Classes of formulas of propositional calculus are considered as elements of a Boolean algebra. As such they can be represented by uniquely defined elements of this algebra which we call "logical primes". The algebraic notations appear useful because they make it possible to derive well known properties of propositional calculus by simple calculations or to subs...

  3. Hom-power associative algebras

    OpenAIRE

    Yau, Donald

    2010-01-01

    A generalization of power associative algebra, called Hom-power associative algebra, is studied. The main result says that a multiplicative Hom-algebra is Hom-power associative if and only if it satisfies two identities of degrees three and four. It generalizes Albert's result that power associativity is equivalent to third and fourth power associativity. In particular, multiplicative right Hom-alternative algebras and non-commutative Hom-Jordan algebras are Hom-power associative.

  4. On isomorphisms of integral table algebras

    Institute of Scientific and Technical Information of China (English)

    FAN; Yun(樊恽); SUN; Daying(孙大英)

    2002-01-01

    For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.

  5. Introduction to algebra

    CERN Document Server

    Cameron, Peter J

    2007-01-01

    This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,. new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. - ;Developed to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with. applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the th...

  6. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  7. The Algebra of -relations

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; R Srinivasan; V S Sunder

    2000-08-01

    In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).

  8. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  9. Summing Boolean Algebras

    Institute of Scientific and Technical Information of China (English)

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA

    2004-01-01

    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  10. Geometric Algebra for Physicists

    Science.gov (United States)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  11. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  12. Elementary linear algebra

    CERN Document Server

    Andrilli, Stephen

    2010-01-01

    Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl

  13. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  14. Hopf Algebra of Sashes

    OpenAIRE

    Law, Shirley

    2014-01-01

    International audience A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has a natural basis given by permutations that we call Pell permutations. The...

  15. Holomorphically Equivalent Algebraic Embeddings

    OpenAIRE

    Feller, Peter; Stampfli, Immanuel

    2014-01-01

    We prove that two algebraic embeddings of a smooth variety $X$ in $\\mathbb{C}^m$ are the same up to a holomorphic coordinate change, provided that $2 \\dim X + 1$ is smaller than or equal to $m$. This improves an algebraic result of Nori and Srinivas. For the proof we extend a technique of Kaliman using generic linear projections of $\\mathbb{C}^m$.

  16. Beginning algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division

  17. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    OpenAIRE

    Hijligenberg, van den, N.W.; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.

  18. Topological ∗-algebras with *-enveloping Algebras II

    Indian Academy of Sciences (India)

    S J Bhatt

    2001-02-01

    Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.

  19. L-o cto-algebras

    Institute of Scientific and Technical Information of China (English)

    An Hui-hui; Wang Zhi-chun

    2016-01-01

    L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.

  20. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  1. Oblique superposition of two elliptically polarized lightwaves using geometric algebra: is energy-momentum conserved?

    Science.gov (United States)

    Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J

    2010-11-01

    In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.

  2. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A[D]=A[D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra [D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D-simple and A[D] acts faithfully on A. Thus we obtain a lot of simple algebras.

  3. Simple Algebras of Invariant Operators

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Shen; J.D.H. Smith

    2001-01-01

    Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.

  4. The plays of Lillian Hellman, Clifford Odets and William Inge on Slovene stages

    Directory of Open Access Journals (Sweden)

    Mateja Slunjski

    2002-12-01

    Full Text Available After the Second World War, Slovene theatres started to include in their repertoires more and more American authors and their plays. Their choice were varied, from serious dramas by Eugene O'Neill, Tennessee Williams and Arthur Miller, to comedies by Norman Krasna and John Van Druten dependant mostly on the availability of the texts. In the immediate postwar years the theatres liked to present playwrights with progressive ideas in their plays, such as Lillian Hellman and her "The Little Foxes", which was successfully produced at three Slovene theatres, while her "The Children's Hour" received negative reviews. In the fifties, three theatres chose two plays by Clifford Odets, "Golden Boy" and "Country Girl", mainly because of his socially critical ideas and his admiration of humanity. His plays were rather well received; however, the critics doubted his literary genius. William Inge and his plays, "Come Back, Little Sheba", "Picnic" and "Bus Stop", chosen mainly because of the warmth with which the author depicted the tragedy and the beauty of life, were produced at three Slovene theatres. The author received rather wide-ranging opinions from the critics. Some thought him to be an unoriginal depicter of dull American life, while others praised his lyricism and new dramatic techniques.

  5. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  6. Rings of quotients of incidence algebras and path algebras

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega

    2006-01-01

    We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets...

  7. The Planar Algebra Associated to a Kac Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; Zeph Landau; V S Sunder

    2003-02-01

    We obtain (two equivalent) presentations – in terms of generators and relations-of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  8. Structure of Solvable Quadratic Lie Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin-sheng

    2005-01-01

    @@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.

  9. Algebraic totality, towards completeness

    CERN Document Server

    Tasson, Christine

    2009-01-01

    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${\\mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${\\mathcal{B}}^n\\to{\\mathcal{B}}$ for every n by an algebraic metho...

  10. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  11. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  12. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  13. On Griess Algebras

    Directory of Open Access Journals (Sweden)

    Michael Roitman

    2008-08-01

    Full Text Available In this paper we prove that for any commutative (but in general non-associative algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V_0 oplus V2 oplus V3 oplus ..., such that dim V_0 = 1 and V_2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  14. On Griess Algebras

    Science.gov (United States)

    Roitman, Michael

    2008-08-01

    In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  15. Algebra for Gifted Third Graders.

    Science.gov (United States)

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  16. Order Units in a *-Algebra

    Indian Academy of Sciences (India)

    Anil K Karn

    2003-02-01

    Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  17. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  18. Energy Conservation Law in Industrial Architecture: An Approach through Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Juan C. Bravo

    2016-09-01

    Full Text Available Since 1892, the electrical engineering scientific community has been seeking a power theory for interpreting the power flow within electric networks under non-sinusoidal conditions. Although many power theories have been proposed regarding non-sinusoidal operation, an adequate solution is yet to be found. Using the framework based on complex algebra in non-sinusoidal circuit analysis (frequency domain, the verification of the energy conservation law is only possible in sinusoidal situations. In this case, reactive energy turns out to be proportional to the energy difference between the average electric and magnetic energies stored in the loads and its cancellation is mathematically trivial. However, in industrial architecture, apparent power definition of electric loads (non-sinusoidal conditions is inconsistent with the energy conservation law. Up until now, in the classical complex algebra approach, this goal is only valid in the case of purely resistive loads. Thus, in this paper, a new circuit analysis approach using geometric algebra is used to develop the most general proof of energy conservation in industrial building loads. In terms of geometric objects, this powerful tool calculates the voltage, current, and apparent power in electrical systems in non-sinusoidal, linear/nonlinear situations. In contrast to the traditional method developed by Steinmetz, the suggested powerful tool extends the concept of phasor to multivector-phasors and is performed in a new Generalized Complex Geometric Algebra structure (CGn, where Gn is the Clifford algebra in n-dimensional real space and C is the complex vector space. To conclude, a numerical example illustrates the clear advantages of the approach suggested in this paper.

  19. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  20. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  1. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  2. Recollements of extension algebras

    Institute of Scientific and Technical Information of China (English)

    CHEN; Qinghua(陈清华); LIN; Yanan(林亚南)

    2003-01-01

    Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).

  3. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  4. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2010-01-01

    Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator

  5. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  6. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  7. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  8. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  9. Lie 2-algebra models

    International Nuclear Information System (INIS)

    In this paper, we begin the study of zero-dimensional field theories with fields taking values in a semistrict Lie 2-algebra. These theories contain the IKKT matrix model and various M-brane related models as special cases. They feature solutions that can be interpreted as quantized 2-plectic manifolds. In particular, we find solutions corresponding to quantizations of ℝ3, S3 and a five-dimensional Hpp-wave. Moreover, by expanding a certain class of Lie 2-algebra models around the solution corresponding to quantized ℝ3, we obtain higher BF-theory on this quantized space

  10. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  11. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  12. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  13. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  14. Automorphism groups of pointed Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    YANG Shilin

    2007-01-01

    The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.

  15. Derivations of generalized Weyl algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(苏育才)

    2003-01-01

    A class of the associative and Lie algebras A[D] = A × F[D] of Weyl type are studied, where Ais a commutative associative algebra with an identity element over a field F of characteristic zero, and F[D] isthe polynomial algebra of a finite dimensional commutative subalgebra of locally finite derivations of A suchthat A is D-simple. The derivations of these associative and Lie algebras are precisely determined.

  16. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  17. Optimal Algorithm for Algebraic Factoring

    Institute of Scientific and Technical Information of China (English)

    支丽红

    1997-01-01

    This paper presents on optimized method for factoring multivariate polynomials over algebraic extension fields defined by an irreducible ascending set. The basic idea is to convert multivariate polynomials to univariate polynomials and algebraic extension fields to algebraic number fields by suitable integer substituteions.Then factorize the univariate polynomials over the algebraic number fields.Finally,construct mulativariate factors of the original polynomial by Hensel lemma and TRUEFACTOR test.Some examples with timing are included.

  18. Meadow enriched ACP process algebras

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization o

  19. Some Hopf algebras of trees

    NARCIS (Netherlands)

    Laan, P. van der

    2001-01-01

    In the literature several Hopf algebras that can be described in terms of trees have been studied. This paper tries to answer the question whether one can understand some of these Hopf algebras in terms of a single mathematical construction. The starting point is the Hopf algebra of rooted trees as

  20. Computer Algebra in Particle Physics

    OpenAIRE

    Weinzierl, Stefan

    2002-01-01

    These lectures given to graduate students in theoretical particle physics, provide an introduction to the ``inner workings'' of computer algebra systems. Computer algebra has become an indispensable tool for precision calculations in particle physics. A good knowledge of the basics of computer algebra systems allows one to exploit these systems more efficiently.

  1. An Algebra of Reversible Computation

    OpenAIRE

    Wang, Yong

    2014-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  2. The Maximal Graded Left Quotient Algebra of a Graded Algebra

    Institute of Scientific and Technical Information of China (English)

    Gonzalo ARANDA PINO; Mercedes SILES MOLINA

    2006-01-01

    We construct the maximal graded left quotient algebra of every graded algebra A without homogeneous total right zero divisors as the direct limit of graded homomorphisms (of left A-modules)from graded dense left ideals of A into a graded left quotient algebra of A. In the case of a superalgebra,and with some extra hypothesis, we prove that the component in the neutral element of the group of the maximal graded left quotient algebra coincides with the maximal left quotient algebra of the component in the neutral element of the group of the superalgebra.

  3. Certain associative algebras similar to $U(sl_{2})$ and Zhu's algebra $A(V_{L})$

    OpenAIRE

    Dong, Chongying; Li, Haisheng; Mason, Geoffrey

    1996-01-01

    It is proved that Zhu's algebra for vertex operator algebra associated to a positive-definite even lattice of rank one is a finite-dimensional semiprimitive quotient algebra of certain associative algebra introduced by Smith. Zhu's algebra for vertex operator algebra associated to any positive-definite even lattice is also calculated and is related to a generalization of Smith's algebra.

  4. Observable Algebra in Field Algebra of G-spin Models

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.

  5. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  6. The Power of Algebra.

    Science.gov (United States)

    Boiteau, Denise; Stansfield, David

    This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…

  7. Finitary Algebraic Superspace

    CERN Document Server

    Zapatrin, R R

    1998-01-01

    An algebraic scheme is suggested in which discretized spacetime turns out to be a quantum observable. As an example, a toy model producing spacetimes of four points with different topologies is presented. The possibility of incorporating this scheme into the framework of non-commutative differential geometry is discussed.

  8. Questions on Algebraic Varieties

    CERN Document Server

    Marchionna, E

    2011-01-01

    P. Dolbeault: Residus et courants.- D. Mumford: Varieties defined by quadratic equations.- A. Neron: Hauteurs et theorie des intersections.- A. Seidenberg: Report on analytic product.- C.S. Seshadri: Moduli of p-vector bundles over an algebraic curve.- O. Zariski: Contributions to the problem of equi-singularity.

  9. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy, giv...

  10. Operation of Algebraic Fractions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The first step in factorizing algebraic expressions is to take out the common factors of all the terms of the expression.For example,2x~2+14x+24=2(x~2+7x+12)=2(x+3)(x+4) The three identities are also useful in factorizing some quadratic expressions:

  11. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(

    2001-01-01

    [1] Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J., 1986, 16: 417.[2] Osborn, J. M., New simple infinite-dimensional Lie algebras of characteristic 0, J. Alg., 1996, 185: 820.[3] Dokovic, D. Z., Zhao, K., Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. of Amer. Math. Soc., 1998, 350(2): 643.[4] Dokovic, D. Z., Zhao, K., Generalized Cartan type W Lie algebras in characteristic zero, J. Alg., 1997, 195: 170.[5] Osborn, J. M., Zhao, K., Generalized Poisson bracket and Lie algebras of type H in characteristic 0, Math. Z., 1999, 230: 107.[6] Osborn, J. M., Zhao, K., Generalized Cartan type K Lie algebras in characteristic 0, Comm. Alg., 1997, 25: 3325.[7] Zhao, K., Isomorphisms between generalized Cartan type W Lie algebras in characteristic zero, Canadian J. Math., 1998, 50: 210.[8] Passman, D. P., Simple Lie algebras of Witt type, J. Algebra, 1998, 206: 682.[9] Jordan, D. A., On the simplicity of Lie algebras of derivations of commutative algebras, J. Alg., 2000, 206: 682.[10] Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Alg., 2000, 244: 23.[11] Su, Y., Xu, X., Zhang, H., Derivation-simple algebras and the structures of Lie algebras of generalized Witt type, J. Alg., 2000, 233: 642.[12] Dixmer, J., Enveloping Algebras, Amsterdam: North Holland, 1977.

  12. On ultraproducts of operator algebras

    Institute of Scientific and Technical Information of China (English)

    LI Weihua

    2005-01-01

    Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.

  13. Ockham Algebras Arising from Monoids

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; H.J. Silva; J.C. Varlet

    2001-01-01

    An Ockham algebra (L; f) is of boolean shape if its lattice reduct L is boolean and f is not the complementation. We investigate a natural construction of Ockham algebras of boolean shape from any given monoid. Of particular interest is the question of when such algebras are subdirectly irreducible. In settling this, we obtain what is probably the first example of a subdirectly irreducible Ockham algebra that does not belong to the generalized variety Kω. We also prove that every semigroup can be embedded in the monoid of endomorphisms of an Ockham algebra of boolean shape.

  14. Quantum algebra of $N$ superspace

    CERN Document Server

    Hatcher, N; Stephany, J

    2006-01-01

    We identify the quantum algebra of position and momentum operators for a quantum system in superspace bearing an irreducible representation of the super Poinca\\'e algebra. This algebra is noncommutative for the position operators. We use the properties of superprojectors in D=4 $N$ superspace to construct explicit position and momentum operators satisfying the algebra. They act on wave functions corresponding to different supermultiplets classified by its superspin. We show that the quantum algebra associated to the massive superparticle is a particular case described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently.

  15. Algebraic Approach to Algorithmic Logic

    Directory of Open Access Journals (Sweden)

    Bancerek Grzegorz

    2014-09-01

    Full Text Available We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure which is an extension of language signature and program algebra. While-if algebra of generator set and algebraic signature is bialgebra with appropriate properties and is used as basic type of algebraic logic.

  16. Notes on Piecewise-Koszul Algebras

    Institute of Scientific and Technical Information of China (English)

    Jia Feng L(U); Xiao Lan YU

    2011-01-01

    The relationships between piecewise-Koszul algebras and other "Koszul-type" algebras are discussed.. The Yoneda-Ext algebra and the dual algebra of a piecewise-Koszul algebra are studied, and a sufficient condition for the dual algebra A to be piecewise-Koszul is given. Finally, by studying the trivial extension algebras of the path algebras of Dynkin quivers in bipartite orientation, we give explicit constructions for piecewise-Koszul algebras with arbitrary "period" and piecewise-Koszul algebras with arbitrary "jump-degree".

  17. The Green formula and heredity of algebras

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math. 1995, 120: 361-377.[2]Ringel, C. M., Green's theorem on Hall algebras, in Representations of Algebras and Related Topics, CMS Conference Proceedings 19, Providence, 1996, 185-245.[3]Xiao J., Drinfeld double and Ringel-Green theory of Hall Algebras, J. Algebra, 1997, 190: 100-144.[4]Sevenhant, B., Van den Bergh, M., A relation between a conjecture of Kac and the structure of the Hall algebra,J. Pure Appl. Algebra, 2001, 160: 319-332.[5]Deng B., Xiao, J., On double Ringel-Hall algebras, J. Algebra, 2002, 251: 110-149.

  18. Operator algebras and topology

    International Nuclear Information System (INIS)

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L2-cohomology, L2-Betti numbers and other L2-invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  19. $A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras

    Indian Academy of Sciences (India)

    Hongliang Yao

    2010-04-01

    Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.

  20. Proposition Algebra with Projective Limits

    CERN Document Server

    Bergstra, J A

    2008-01-01

    Sequential logic deviates from propositional logic by taking into account that atomic propositions yield different Boolean values at different times during the sequential evaluation of a single proposition. Reactive valuations capture this dynamics of a proposition's environment. This logic is phrased as an equationally specified algebra rather than in the form of proof rules. It is strictly more general than Boolean algebra to the extent that the classical connectives fail to be expressively complete in the sequential case. The proposition algebra PRA is developed in a fashion similar to the process algebra ACP and the program algebra PGA via an algebraic specification which has a meaningful initial algebra for which a range of courser congruences are considered important as well. In addition infinite objects (that is propositions, processes and programs respectively) are preferably dealt with by means of an inverse limit construction which allows the transfer of knowledge concerning finite objects to facts ...

  1. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  2. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  3. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  4. Free Malcev algebra of rank three

    OpenAIRE

    Kornev, Alexandr

    2011-01-01

    We find a basis of the free Malcev algebra on three free generators over a field of characteristic zero. The specialty and semiprimity of this algebra are proved. In addition, we prove the decomposability of this algebra into subdirect sum of the free Lie algebra rank three and the free algebra of rank three of variety of Malcev algebras generated by a simple seven-dimensional Malcev algebra.

  5. Vertex Algebras, Kac-Moody Algebras, and the Monster

    Science.gov (United States)

    Borcherds, Richard E.

    1986-05-01

    It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.

  6. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  7. Combinatorics and commutative algebra

    CERN Document Server

    Stanley, Richard P

    1996-01-01

    Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special ...

  8. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  9. Topological convolution algebras

    CERN Document Server

    Alpay, Daniel

    2012-01-01

    In this paper we introduce a new family of topological convolution algebras of the form $\\bigcup_{p\\in\\mathbb N} L_2(S,\\mu_p)$, where $S$ is a Borel semi-group in a locally compact group $G$, which carries an inequality of the type $\\|f*g\\|_p\\le A_{p,q}\\|f\\|_q\\|g\\|_p$ for $p > q+d$ where $d$ pre-assigned, and $A_{p,q}$ is a constant. We give a sufficient condition on the measures $\\mu_p$ for such an inequality to hold. We study the functional calculus and the spectrum of the elements of these algebras, and present two examples, one in the setting of non commutative stochastic distributions, and the other related to Dirichlet series.

  10. Operator product expansion algebra

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jan [CPHT, Ecole Polytechnique, Paris-Palaiseau (France)

    2014-07-01

    The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.

  11. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2009-01-01

    Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  12. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  13. The Algebra Artist

    Science.gov (United States)

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  14. Light Cone Current Algebra

    OpenAIRE

    Fritzsch, H.; Gell-Mann, M.

    2003-01-01

    This talk follows by a few months a talk by the same authors on nearly the same subject at the Coral Gables Conference. The ideas presented here are basically the same, but with some amplification, some change of viewpoint, and a number of new questions for the future. For our own convenience, we have transcribed the Coral Gables paper, but with an added ninth section, entitled "Problems of light cone current algebra", dealing with our present views and emphasizing research topics that requir...

  15. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  16. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. The author examines the problem and constructs alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the FORTRAN portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers. 13 references.

  17. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. In this paper we examine the problem and construct alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the Fortran portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers.

  18. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  19. Semisimple Metacyclic Group Algebras

    Indian Academy of Sciences (India)

    Gurmeet K Bakshi; Shalini Gupta; Inder Bir S Passi

    2011-11-01

    Given a group of order $p_1p_2$, where $p_1,p_2$ are primes, and $\\mathbb{F}_q$, a finite field of order coprime to $p_1p_2$, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra $\\mathbb{F}_q[G]$. As a consequence, we obtain the structure of $\\mathbb{F}_q[G]$ and its group of automorphisms.

  20. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  1. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  2. A unified description of particles, strings and branes in Clifford spaces and p-brane/polyparticle duality

    Science.gov (United States)

    Castro, Carlos

    2016-10-01

    It is described how the Extended Relativity Theory in C-spaces (Clifford spaces) allows a unified formulation of point particles, strings, membranes and p-branes, moving in ordinary target spacetime backgrounds, within the description of a single polyparticle moving in C-spaces. The degrees of freedom of the latter are provided by Clifford polyvector-valued coordinates (antisymmetric tensorial coordinates). A correspondence between the p-brane (p-loop) “Schrödinger-like” equations of Ansoldi-Aurilia-Spallucci and the polyparticle wave equation in C-spaces is found via the polyparticle/p-brane correspondence. This correspondence might provide another unexplored avenue to quantize p-branes (a notoriously difficult and unsolved problem) from the more straightforward quantization of the polyparticle in C-spaces, even in the presence of external interactions. We conclude with comments about the compositeness nature of the polyvector-valued coordinate operators in terms of ordinary p-brane coordinates via the evaluation of n-ary commutators.

  3. Algebraic volume density property of affine algebraic manifolds

    OpenAIRE

    Kaliman, Shulim; Kutzschebauch, Frank

    2009-01-01

    We introduce the notion of algebraic volume density property for affine algebraic manifolds and prove some important basic facts about it, in particular that it implies the volume density property. The main results of the paper are producing two big classes of examples of Stein manifolds with volume density property. One class consists of certain affine modifications of $\\C^n$ equipped with a canonical volume form, the other is the class of all Linear Algebraic Groups equipped with the left i...

  4. LOCAL AUTOMORPHISMS OF SEMISIMPLE ALGEBRAS AND GROUP ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Wang Dengyin; Guan Qi; Zhan9 Dongju

    2011-01-01

    Let F be a field of characteristic not 2,and let A be a finite-dimensional semisimple F-algebra.All local automorphisms of A are characterized when all the degrees of A are larger than 1.If F is further assumed to be an algebraically closed field of characteristic zero,K a finite group,FK the group algebra of K over F,then all local automorphisms of FK are also characterized.

  5. Exceptional Vertex Operator Algebras and the Virasoro Algebra

    OpenAIRE

    Tuite, Michael P.

    2008-01-01

    We consider exceptional vertex operator algebras for which particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendants of the vacuum. We discuss constraints on these theories that follow from an analysis of appropriate genus zero and genus one two point correlation functions. We find explicit differential equations for the partition function in the cases where the lowest weight primary vectors form a Lie algebra or a Griess algebra. Exam...

  6. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  7. The tensor hierarchy algebra

    Energy Technology Data Exchange (ETDEWEB)

    Palmkvist, Jakob, E-mail: palmkvist@ihes.fr [Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, FR-91440 Bures-sur-Yvette (France)

    2014-01-15

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.

  8. Priority in Process Algebras

    Science.gov (United States)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  9. Stability of functional equations in Banach algebras

    CERN Document Server

    Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza

    2015-01-01

    Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l...

  10. The Affine q-Schur algebra

    OpenAIRE

    Green, R. M.

    1997-01-01

    We introduce an analogue of the $q$-Schur algebra associated to Coxeter systems of type $\\hat A_{n-1}$. We give two constructions of this algebra. The first construction realizes the algebra as a certain endomorphism algebra arising from an affine Hecke algebra of type $\\hat A_{r-1}$, where $n \\geq r$. This generalizes the original $q$-Schur algebra as defined by Dipper and James, and the new algebra contains the ordinary $q$-Schur algebra and the affine Hecke algebra as subalgebras. Using th...

  11. DERIVATIONS ON DIFFERENTIAL OPERATOR ALGEBRA AND WEYL ALGEBRA

    Institute of Scientific and Technical Information of China (English)

    CHENCAOYU

    1996-01-01

    Let L be an n-dimensional nilpotent Lie algebra with a basis{x1…,xn),and every xi acts as a locally nilpotent derivation on algebra A. This paper shows that there exists a set of derivations{y1,…,yn}on U(L) such that (A#U(L))#k{y,1,…,yn] is ismorphic to the Weyl algebra An(A).The author also uses the de4rivations to obtain a necessary and sufficient condition for a finite dimesional Lie algebra to be nilpotent.

  12. Assessing Algebraic Solving Ability: A Theoretical Framework

    Science.gov (United States)

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  13. Minimal ambient nuclear C*-algebras

    OpenAIRE

    Suzuki, Yuhei

    2015-01-01

    We provide examples of ambient nuclear C*-algebras of non-nuclear C*-algebras with no proper intermediate C*-algebras. In particular this gives the first examples of minimal ambient nuclear C*-algebras of non-nuclear C*-algebras. For this purpose, we study generic Cantor systems of infinite free product groups.

  14. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  15. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075

  16. Quantum computation using geometric algebra

    Science.gov (United States)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  17. Linear algebra and projective geometry

    CERN Document Server

    Baer, Reinhold

    2005-01-01

    Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra

  18. Higher theories of algebraic structures

    OpenAIRE

    Matsuoka, Takuo

    2016-01-01

    The notion of (symmetric) coloured operad or "multicategory" can be obtained from the notion of commutative algebra through a certain general process which we call "theorization" (where our term comes from an analogy with William Lawvere's notion of algebraic theory). By exploiting the inductivity in the structure of higher associativity, we obtain the notion of "$n$-theory" for every integer $n\\ge 0$, which inductively "theorizes" $n$ times, the notion of commutative algebra. As a result, (c...

  19. Differential Equations with Linear Algebra

    CERN Document Server

    Boelkins, Matthew R; Potter, Merle C

    2009-01-01

    Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t

  20. COCLEFT EXTENSIONS OF HOPF ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    祝家贵

    2006-01-01

    Let B and H be finitely generated projective Hopf algebras over a commutative ring R,with B cocommutative and H commutative. In this paper we investigate cocleft extensions of Hopf algebras, and prove that the isomorphism classes of cocleft Hopf algebras extensions of B by H are determined uniquely by the group C(B, H) = ZC(B, H)/d(B, H) .

  1. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  2. Algebraic Independence and Mahler's method

    OpenAIRE

    Zorin, Evgeniy

    2011-01-01

    We give some new results on algebraic independence within Mahler's method, including algebraic independence of values at transcendental points. We also give some new measures of algebraic independence for infinite series of numbers. In particular, our results furnishes, for $n\\geq 1$ arbitrarily large, new examples of sets $(\\theta_1,...,\\theta_n)\\in\\mrr^n$ normal in the sense of definition formulated by Grigory Chudnovsky (1980).

  3. Algebraic geometric codes with applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2007-01-01

    The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.

  4. NON-COMMUTATIVE POISSON ALGEBRA STRUCTURES ON LIE ALGEBRA sln(fCq) WITH NULLITY M

    Institute of Scientific and Technical Information of China (English)

    Jie TONG; Quanqin JIN

    2013-01-01

    Non-commutative Poisson algebras are the algebras having both an associa-tive algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures on the Lie algebras sln(fCq) are determined.

  5. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    Science.gov (United States)

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  6. Planar Para Algebras, Reflection Positivity

    CERN Document Server

    Jaffe, Arthur

    2016-01-01

    We define the notion of a planar para algebra, which arises naturally from combining planar algebras with the idea of $\\Z_{N}$ para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects, that are invariant under isotopy. For each $\\Z_{N}$, we construct a family of subfactor planar para algebras which play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra. Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras which one can use in the study of quantum information. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivi...

  7. Congruence Kernels of Orthoimplication Algebras

    Directory of Open Access Journals (Sweden)

    I. Chajda

    2007-10-01

    Full Text Available Abstracting from certain properties of the implication operation in Boolean algebras leads to so-called orthoimplication algebras. These are in a natural one-to-one correspondence with families of compatible orthomodular lattices. It is proved that congruence kernels of orthoimplication algebras are in a natural one-to-one correspondence with families of compatible p-filters on the corresponding orthomodular lattices. Finally, it is proved that the lattice of all congruence kernels of an orthoimplication algebra is relatively pseudocomplemented and a simple description of the relative pseudocomplement is given.

  8. Introduction to algebraic independence theory

    CERN Document Server

    Philippon, Patrice

    2001-01-01

    In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

  9. Hochschild homology of structured algebras

    DEFF Research Database (Denmark)

    Wahl, Nathalie; Westerland, Craig Christopher

    2016-01-01

    We give a general method for constructing explicit and natural operations on the Hochschild complex of algebras over any prop with A∞-multiplication—we think of such algebras as A∞-algebras “with extra structure”. As applications, we obtain an integral version of the Costello......–Kontsevich–Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler–Zeinalian and Kaufmann actions of Sullivan diagrams on the Hochschild complex of strict Frobenius algebras, and give applications to string topology in characteristic zero. Our main tool is a generalization of the Hochschild complex....

  10. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    Science.gov (United States)

    Ayupov, Shavkat; Kudaybergenov, Karimbergen

    2016-03-01

    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation.

  11. An Introduction to Geometric Algebra with some Preliminary Thoughts on the Geometric Meaning of Quantum Mechanics

    International Nuclear Information System (INIS)

    It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics

  12. Construction of complete generalized algebraic groups

    Institute of Scientific and Technical Information of China (English)

    WANG Dengyin

    2005-01-01

    With one exception, the holomorph of a finite dimensional abelian connectedalgebraic group is shown to be a complete generalized algebraic group. This result on algebraic group is an analogy to that on Lie algebra.

  13. On triangular algebras with noncommutative diagonals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.

  14. Tilting mutation of Brauer tree algebras

    CERN Document Server

    Aihara, T

    2010-01-01

    We define tilting mutations of symmetric algebras as the endomorphism algebras of Okuyama-Rickard complexes. For Brauer tree algebras, we give an explicit description of the change of Brauer trees under mutation.

  15. Algebraic dynamics solution and algebraic dynamics algorithm of Burgers equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Algebraic dynamics solution and algebraic dynamics algorithm of nonlinear partial differential evolution equations in the functional space are applied to Burgers equation. The results indicate that the approach is effective for analytical solutions to Burgers equation, and the algorithm for numerical solutions of Burgers equation is more stable, with higher precision than other existing finite difference algo-rithms.

  16. Abstract Algebra to Secondary School Algebra: Building Bridges

    Science.gov (United States)

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  17. Dynamical entropy of C* algebras and Von Neumann algebras

    International Nuclear Information System (INIS)

    The definition of the dynamical entropy is extended for automorphism groups of C* algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)

  18. Simplicity of a vertex operator algebra whose Griess algebra is the Jordan algebra of symmetric matrices

    OpenAIRE

    Niibori, Hidekazu; Sagaki, Daisuke

    2009-01-01

    Let $r \\in \\BC$ be a complex number, and $d \\in \\BZ_{\\ge 2}$ a positive integer greater than or equal to 2. Ashihara and Miyamoto introduced a vertex operator algebra $\\Vam$ of central charge $dr$, whose Griess algebra is isomorphic to the simple Jordan algebra of symmetric matrices of size $d$. In this paper, we prove that the vertex operator algebra $\\Vam$ is simple if and only if $r$ is not an integer. Further, in the case that $r$ is an integer (i.e., $\\Vam$ is not simple), we give a gene...

  19. Semi-Hopf Algebra and Supersymmetry

    OpenAIRE

    Gunara, Bobby Eka

    1999-01-01

    We define a semi-Hopf algebra which is more general than a Hopf algebra. Then we construct the supersymmetry algebra via the adjoint action on this semi-Hopf algebra. As a result we have a supersymmetry theory with quantum gauge group, i.e., quantised enveloping algebra of a simple Lie algebra. For the example, we construct the Lagrangian N=1 and N=2 supersymmetry.

  20. Stable flatness of nonarchimedean hyperenveloping algebras

    OpenAIRE

    Schmidt, Tobias

    2008-01-01

    Let L be a p-adic local field and g a finite dimensional Lie algebra over L. We show that its hyperenveloping algebra F(g) is a stably flat completion of its universal enveloping algebra. As a consequence the relative cohomology for the locally convex algebra F(g) coincides with the underlying Lie algebra cohomology. Final version. Some minor items corrected. Appeared in Journal of Algebra (2010).

  1. Dimer models and Calabi-Yau algebras

    CERN Document Server

    Broomhead, Nathan

    2008-01-01

    In this thesis we study dimer models, as introduced in string theory, which give a way of writing down a class of non-commutative `superpotential' algebras. Some examples are 3-dimensional Calabi-Yau algebras, as defined by Ginzburg, and some are not. We consider two types of `consistency' condition on dimer models, and show that a `geometrically consistent' model is `algebraically consistent'. Finally we prove that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras.

  2. Handbook of algebra

    CERN Document Server

    Hazewinkel, M

    2008-01-01

    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  3. Light Cone Current Algebra

    CERN Document Server

    Fritzsch, Harald

    2003-01-01

    This talk follows by a few months a talk by the same authors on nearly the same subject at the Coral Gables Conference. The ideas presented here are basically the same, but with some amplification, some change of viewpoint, and a number of new questions for the future. For our own convenience, we have transcribed the Coral Gables paper, but with an added ninth section, entitled "Problems of light cone current algebra", dealing with our present views and emphasizing research topics that require study.

  4. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2015-01-01

    Advanced Linear Algebra, Second Edition takes a gentle approach that starts with familiar concepts and then gradually builds to deeper results. Each section begins with an outline of previously introduced concepts and results necessary for mastering the new material. By reviewing what students need to know before moving forward, the text builds a solid foundation upon which to progress. The new edition of this successful text focuses on vector spaces and the maps between them that preserve their structure (linear transformations). Designed for advanced undergraduate and beginning graduate stud

  5. Optical linear algebra

    Energy Technology Data Exchange (ETDEWEB)

    Casasent, D.; Ghosh, A.

    1983-01-01

    Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.

  6. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  7. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  8. Statecharts Via Process Algebra

    Science.gov (United States)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  9. 偶数维复Clifford代数中的Dirac旋量空间%Dirac Spinor Spaces in Complex Clifford Algebras of Even Dimension

    Institute of Scientific and Technical Information of China (English)

    吴水成; 曹诗禹; 谭盛; 贺福利

    2014-01-01

    本文引入了偶数维欧氏空间的复结构及Witt基,在此基础上讨论了偶数维复Clifford代数中的Dirac 旋量空间.由Fock空间的结果我们得到了Dirac.旋量空间视为复Clifford代数中极小左理想,最后我们研究了Dirac旋量空间的对偶空间.

  10. (s,t,d)-bi-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called(s,t,d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An(s,t,d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an(s,t,d)-bi-Koszul algebra is discussed. Based on it,the notion of strongly(s,t,d)-bi-Koszul algebras is raised and their homological properties are further discussed.

  11. (s, t, d)-bi-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    SI JunRu

    2009-01-01

    The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called (s, t, d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An (s, t, d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an (s, t, d)-bi-Koszul algebra is discussed. Based on it, the notion of strongly (s, t, d)-bi-Koszul algebras is raised and their homological properties are further discussed.

  12. New criterion for algebraic volume density property

    CERN Document Server

    Kaliman, Shulim

    2012-01-01

    A smooth affine algebraic variety $X$ equipped with an algebraic volume form $\\omega$ has the algebraic volume density property (AVDP) if the Lie algebra generated by completely integrable algebraic vector fields of $\\omega$-divergence zero coincides with the space of all algebraic vector fields of $\\omega$-divergence zero. We develop an effective criterion of verifying whether a given $X$ has AVDP. As an application of this method we establish AVDP for any homogeneous space $X=G/R$ that admits a $G$-invariant algebraic volume form where $G$ is a linear algebraic group and $R$ is a closed reductive subgroup of $G$.

  13. Algebraic solution of master equations

    OpenAIRE

    R. Rangel; L. Carvalho

    2003-01-01

    We present a simple analytical method to solve master equations for finite temperatures and any initial conditions, which consists in the expansion of the density operator into normal modes. These modes and the expansion coefficients are obtained algebraically by using ladder superoperators. This algebraic technique is successful in cases in which the Liouville superoperator is quadratic in the creation and annihilation operators.

  14. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  15. Toeplitz Algebras on Dirichlet Spaces

    Institute of Scientific and Technical Information of China (English)

    TAN Yan-hua; WANG Xiao-feng

    2001-01-01

    In the present paper, some properties of Toeplitz algebras on Dirichlet spaces for several complex variables are discussed; in particular, the automorphism group of the Toeplitz C* -algebra, (C1), generated by Toeplitz operators with C1-symbols is discussed. In addition, the first cohomology group of (C1) is computed.

  16. On crossed product of algebras

    OpenAIRE

    Borowiec, A.; Marcinek, W.

    2000-01-01

    The concept of a crossed tensor product of algebras is studied from a few points of views. Some related constructions are considered. Crossed enveloping algebras and their representations are discussed. Applications to the noncommutative geometry and particle systems with generalized statistics are indicated.

  17. Exploring Algebraic Patterns through Literature.

    Science.gov (United States)

    Austin, Richard A.; Thompson, Denisse R.

    1997-01-01

    Presents methods for using literature to develop algebraic thinking in an environment that connects algebra to various situations. Activities are based on the book "Anno's Magic Seeds" with additional resources listed. Students express a constant function, exponential function, and a recursive function in their own words as well as writing about…

  18. Algebraic Squares: Complete and Incomplete.

    Science.gov (United States)

    Gardella, Francis J.

    2000-01-01

    Illustrates ways of using algebra tiles to give students a visual model of competing squares that appear in algebra as well as in higher mathematics. Such visual representations give substance to the symbolic manipulation and give students who do not learn symbolically a way of understanding the underlying concepts of completing the square. (KHR)

  19. Algebraic Connectivity of Interdependent Networks

    NARCIS (Netherlands)

    Martin-Hernandez, J.; Wang, H.; Van Mieghem, P.; D'Agostino, G.

    2014-01-01

    The algebraic connectivity UN-1, i.e. the second smallest eigenvalue of the Laplacian matrix, plays a crucial role in dynamic phenomena such as diffusion processes, synchronization stability, and network robustness. In this work we study the algebraic connectivity in the general context of interdepe

  20. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    2001-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and eig

  1. Baxter Algebras and Umbral Calculus

    OpenAIRE

    Guo, Li

    2004-01-01

    We apply recent constructions of free Baxter algebras to the study of the umbral calculus. We give a characterization of the umbral calculus in terms of Baxter algebra. This characterization leads to a natural generalization of the umbral calculus that include the classical umbral calculus in a family of $\\lambda$-umbral calculi parameterized by $\\lambda$ in the base ring.

  2. On Homomorphism of Valuation Algebras

    Institute of Scientific and Technical Information of China (English)

    GUAN XUE-CHONG; LI YONG-MING

    2011-01-01

    In this paper, firstly, a necessary condition and a sufficient condition for an isomorphism between two semiring-inducod valuation algebras to exist are presented respectively. Then a general valuation homomorphism based on different domains is defined, and the corresponding homomorphism theorem of valuation algebra is proved.

  3. Program For Simple Algebra

    International Nuclear Information System (INIS)

    PFSA (Program For Simple Algebra) is designed to be helpful to people doing algebra and calculus with polynomial expressions. It is written entirely in Fortran and hence is portable and easily modified. It is much (approximately 90 times) faster than Macsyma. PFSA uses Fortran integer arithmetic to compute coefficients, and so the occurrence of an excessively large number in a numerator or denominator during a computation bombs the computation. The program was developed to enable a computation (of a canonical transformation for a Hamiltonian system) which was too big to be run in other systems available at the time. The intent in creating PFSA was to make a program which would do the Hamiltonian computation and similar computations easily and fast. The only language available (on the Cray) was Fortran. Example C in Section III is a very simple canonical transformation. In running the problem for which PFSA was written some intermediate expressions have more than 20,000 terms and some answers have more than 1000 terms

  4. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  5. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory textto algebraic coding theory. In the first chapter, you'll gain insideknowledge of coding fundamentals, which is essential for a deeperunderstanding of state-of-the-art coding systems.This book is a quick reference for those who are unfamiliar withthis topic, as well as for use with specific applications such as cryptographyand communication. Linear error-correcting block codesthrough elementary principles span eleven chapters of the text.Cyclic codes, some finite field algebra, Goppa codes, algebraic decodingalgorithms, and applications in public-key cryptography andsecret-key cryptography are discussed, including problems and solutionsat the end of each chapter. Three appendices cover the Gilbertbound and some related derivations, a derivation of the Mac-Williams' identities based on the probability of undetected error,and two important tools for algebraic decoding-namely, the finitefield Fourier transform and the Euclidean algorithm for polynomials.

  6. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  7. Rota-Baxter algebras and the Hopf algebra of renormalization

    International Nuclear Information System (INIS)

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  8. On the Lie-algebraic origin of metric 3-algebras

    OpenAIRE

    de Medeiros, Paul; Figueroa-O'Farrill, José; Méndez-Escobar, E.; Ritter, Patricia

    2008-01-01

    Since the pioneering work of Bagger-Lambert and Gustavsson, there has been a proliferation of three-dimensional superconformal Chern-Simons theories whose main ingredient is a metric 3-algebra. On the other hand, many of these theories have been shown to allow for a reformulation in terms of standard gauge theory coupled to matter, where the 3-algebra does not appear explicitly. In this paper we reconcile these two sets of results by pointing out the Lie-algebraic origin of some metric 3-alge...

  9. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  10. Quaternionen and Geometric Algebra (Quaternionen und Geometrische Algebra)

    CERN Document Server

    Horn, Martin Erik

    2007-01-01

    In the last one and a half centuries, the analysis of quaternions has not only led to further developments in mathematics but has also been and remains an important catalyst for the further development of theories in physics. At the same time, Hestenes geometric algebra provides a didactically promising instrument to model phenomena in physics mathematically and in a tangible manner. Quaternions particularly have a catchy interpretation in the context of geometric algebra which can be used didactically. The relation between quaternions and geometric algebra is presented with a view to analysing its didactical possibilities.

  11. Algebraic volume density property of affine algebraic manifolds

    CERN Document Server

    Kaliman, Shulim

    2009-01-01

    We introduce the notion of algebraic volume density property for affine algebraic manifolds and prove some important basic facts about it, in particular that it implies the volume density property. The main results of the paper are producing two big classes of examples of Stein manifolds with volume density property. One class consists of certain affine modifications of $\\C^n$ equipped with a canonical volume form, the other is the class of all Linear Algebraic Groups equipped with the left invariant volume form.

  12. On atomicity of free algebras in Boolean algebras with operators, and a new result on Pinter's free algebras

    OpenAIRE

    Ahmed, Tarek Sayed

    2013-01-01

    We give some general theorems on free algebras of varieties of Boolean algebras with operators; a hitherto new result is obtained for Pinter's substitution algebras. For n\\geq 3, and m>1, there is a generating set of the free algebra freely generated by m elements, which is not a free set of generators.

  13. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    Science.gov (United States)

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  14. Color Hom-Akivis algebras, Color Hom-Leibniz algebras and Modules over Color Hom-Leibniz algebras

    OpenAIRE

    Bakayoko, Ibrahima; Bangoura, Momo; Manga, Bakary

    2014-01-01

    In this paper we introduce color Hom-Akivis algebras and prove that the commutator of any color non-associative Hom-algebra structure map leads to a color Hom-akivis algebra. We give various constructions of color Hom-Akivis algebras. Next we study flexible and alternative color Hom-Akivis algebras. Likewise color Hom-Akivis algebras, we introduce non-commutative color Hom-Leibniz-Poisson algebras and presente several constructions. Moreover we give the relationship between Hom-dialgebras and...

  15. Quantum algebra of N superspace

    International Nuclear Information System (INIS)

    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra

  16. Bicrossproducts of algebraic quantum groups

    CERN Document Server

    Delvaux, Lydia; Wang, Shuanhong

    2012-01-01

    Let $A$ and $B$ be two algebraic quantum groups (i.e. multiplier Hopf algebras with integrals). Assume that $B$ is a right $A$-module algebra and that $A$ is a left $B$-comodule coalgebra. If the action and coaction are matched, it is possible to define a coproduct $\\Delta_#$ on the smash product $A # B$ making the pair $(A # B,\\Delta_#)$ into an algebraic quantum group. In this paper, we continue the study of these objects. First, we study the various data of the bicrossproduct $A # B$, such as the modular automorphisms, the modular elements, ... and obtain formulas in terms of the data of the components $A$ and $B$. Secondly, we look at the dual of $A # B$ (in the sense of algebraic quantum groups) and we show it is itself a bicrossproduct (of the second type) of the duals $\\hatA$ and $\\hatB$. The result is immediate for finite-dimensional Hopf algebras and therefore it is expected also for algebraic quantum groups. However, it turns out that some aspects involve a careful argument, mainly due to the fact t...

  17. Operator algebras for analytic varieties

    CERN Document Server

    Davidson, Kenneth R; Shalit, Orr Moshe

    2012-01-01

    We study the isomorphism problem for the multiplier algebras of irreducible complete Pick kernels. These are precisely the restrictions $\\cM_V$ of the multiplier algebra $\\cM$ of Drury-Arveson space to a holomorphic subvariety $V$ of the unit ball. The related algebras of continuous multipliers are also considered. We find that $\\cM_V$ is completely isometrically isomorphic to $\\cM_W$ if and only if $W$ is the image of $V$ under a biholomorphic automorphism of the ball. A similar condition characterizes when there exists a unital completely contractive homomorphism from $\\cM_V$ to $\\cM_W$. If one of the varieties is a homogeneous algebraic variety, then isometric isomorphism is shown to imply completely isometric isomorphism of the algebras. The problem of characterizing when two such algebras are (algebraically) isomorphic is also studied. It is shown that if there is an isomorphism between $\\cM_V$ and $\\cM_W$, then there is a biholomorphism (with multiplier coordinates) between the varieties. We present a n...

  18. Interval Algebraic Bistructures

    CERN Document Server

    Kandasamy, W B Vasantha

    2011-01-01

    This book has four chapters. In the first chapter interval bistructures (biinterval structures) such as interval bisemigroup, interval bigroupoid, interval bigroup and interval biloops are introduced. Throughout this book we work only with the intervals of the form [0, a] where a \\in Zn or Z+ \\cup {0} or R+ \\cup {0} or Q+ \\cup {0} unless otherwise specified. Also interval bistructures of the form interval loop-group, interval groupgroupoid so on are introduced and studied. In chapter two n-interval structures are introduced. n-interval groupoids, n-interval semigroups, n-interval loops and so on are introduced and analysed. Using these notions n-interval mixed algebraic structure are defined and described. Some probable applications are discussed. Only in due course of time several applications would be evolved by researchers as per their need. The final chapter suggests around 295 problems of which some are simple exercises, some are difficult and some of them are research problems.

  19. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  20. Decomposition of semigroup algebras

    CERN Document Server

    Boehm, Janko; Nitsche, Max Joachim

    2011-01-01

    Let A \\subseteq B be cancellative abelian semigroups, and let R be an integral domain. We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension of positive affine semigroup rings we obtain an algorithm computing the decomposition. When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.

  1. Applications of computer algebra

    CERN Document Server

    1985-01-01

    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  2. Algebra for cryptologists

    CERN Document Server

    Meijer, Alko R

    2016-01-01

    This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...

  3. Constraint algebra in bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V. O., E-mail: Vladimir.Soloviev@ihep.ru [National Research Center Kurchatov Institute, Institute for High Energy Physics (Russian Federation)

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  4. $A_{\\infty}$-algebra Structures Associated to $\\mathcal{K}_2$-algebras

    OpenAIRE

    Conner, Andrew; Goetz, Pete

    2010-01-01

    The notion of a $\\mathcal{K}_2$-algebra was recently introduced by Cassidy and Shelton as a generalization of the notion of a Koszul algebra. The Yoneda algebra of any connected graded algebra admits a canonical $A_{\\infty}$-algebra structure. This structure is trivial if the algebra is Koszul. We study the $A_{\\infty}$-structure on the Yoneda algebra of a $\\mathcal{K}_2$-algebra. For each non-negative integer $n$ we prove the existence of a $\\mathcal{K}_2$-algebra $B$ and a canonical $A_{\\in...

  5. Brauer algebra of type F4

    OpenAIRE

    Liu, Shoumin

    2012-01-01

    We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.

  6. A Partition Temperley-Lieb Algebra

    OpenAIRE

    Juyumaya, Jesús

    2013-01-01

    We introduce a generalization of the Temperley--Lieb algebra. This generalization is defined by adding certain relations to the algebra of braids and ties. A specialization of this last algebra corresponds to one small Ramified Partition algebra, this fact is the motivation for the name of our generalization.

  7. On Nambu-Lie 3-algebra representations

    CERN Document Server

    Sochichiu, Corneliu

    2008-01-01

    We propose a recipe to construct matrix representations of Nambu--Lie 3-algebras in terms of irreducible representations of underlying Lie algebra. The case of Euclidean four-dimensional 3-algebra is considered in details. We find that representations of this 3-algebra are not possible in terms of only Hermitian matrices in spite of its Euclidean nature.

  8. Located Actions in Process Algebra with Timing

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a kn

  9. Turner doubles and generalized Schur algebras

    OpenAIRE

    Evseev, Anton; Kleshchev, Alexander

    2016-01-01

    Turner's Conjecture describes all blocks of symmetric groups and Hecke algebras up to derived equivalence in terms of certain double algebras. With a view towards a proof of this conjecture, we develop a general theory of Turner doubles. In particular, we describe doubles as explicit maximal symmetric subalgebras of certain generalized Schur algebras and establish a Schur-Weyl duality with wreath product algebras.

  10. A Specialization of Prinjective Ringel-Hall Algebra and the associated Lie algebra

    Institute of Scientific and Technical Information of China (English)

    Justyna KOSAKOWSKA

    2008-01-01

    In the present paper we describe a specialization of prinjective Ringel-Hall algebra to 1, for prinjective modules over incidence algebras of posets of finite prinjective type,by generators and relations.This gives us a generalisation of Serre relations for semisimple Lie algebras.Connections of prinjective Ringel-Hall algebras with classical Lie algebras are also discussed.

  11. A remark on BMW algebra, q-Schur algebras and categorification

    CERN Document Server

    Vaz, Pedro

    2012-01-01

    We prove that the 2-variable BMW algebra embeds into an algebra constructed from the HOMFLY-PT polynomial. We also prove that the so(2N)-BMW algebra embeds in the q-Schur algebra of type A. We use these results to construct categorifications of the so(2N)-BMW algebra.

  12. Extension of a quantized enveloping algebra by a Hopf algebra

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Suppose that H is a Hopf algebra,and g is a generalized Kac-Moody algebra with Cartan matrix A =(aij)I×I,where I is an index set and is equal to either {1,2,...,n} or the natural number set N.Let f,g be two mappings from I to G(H),the set of group-like elements of H,such that the multiplication of elements in the set {f(i),g(i)|i ∈I} is commutative.Then we define a Hopf algebra Hgf Uq(g),where Uq(g) is the quantized enveloping algebra of g.

  13. Splitting full matrix algebras over algebraic number fields

    CERN Document Server

    Ivanyos, Gábor; Schicho, Joseph

    2011-01-01

    Let K be an algebraic number field of degree d and discriminant D over Q. Let A be an associative algebra over K given by structure constants such that A is siomorphic to the algebra M_n(K) of n by n matrices over K for some positive integer n. Suppose that d, n and D are bounded. Then an isomorphism of A with M_n(K) can be constructed by a polynomial time ff-algorithm. (An ff-algorithm is a deterministic procedure which is allowed to call oracles for factoring integers and factoring univariate polynomials over finite fields.) As a consequence, we obtain a polynomial time ff-algorithm to compute isomorphisms of central simple algebras of bounded degree over K.

  14. Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.

    Science.gov (United States)

    Leitze, Annette Ricks; Kitt, Nancy A.

    2000-01-01

    Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)

  15. Test bank for college algebra

    CERN Document Server

    Kolman, Bernard; Levitan, Michael L

    1985-01-01

    Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.

  16. Handbook of algebra Vol. 1

    CERN Document Server

    1996-01-01

    Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear d

  17. Practical approach to linear algebra

    CERN Document Server

    Choudhary, Prabhat

    2009-01-01

    ""Linear Algebra is the heart of applied science but there are divergent views concerning its meaning. The field of Linear Algebra is more beautiful and more fundamental than its rather dull name may suggest. More beautiful because it is full of powerful ideas that are quite unlike those normally emphasized in a linear algebra course in a mathematics department. Throughout the book the author follows the practice of first presenting required background material, which is then used to develop the results. The book is divided in ten chapters. Relevant material is included in each chapter from ot

  18. Study guide for college algebra

    CERN Document Server

    Snow, James W; Shapiro, Arnold

    1981-01-01

    Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what

  19. Unique Tensor Factorization of Algebras

    OpenAIRE

    Nüsken, Michael

    1998-01-01

    Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restr...

  20. Introduction to algebra and trigonometry

    CERN Document Server

    Kolman, Bernard

    1981-01-01

    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  1. Loop Virasoro Lie conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Henan, E-mail: wuhenanby@163.com; Chen, Qiufan; Yue, Xiaoqing [Department of Mathematics, Tongji University, Shanghai 200092 (China)

    2014-01-15

    The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.

  2. Operator algebras for multivariable dynamics

    OpenAIRE

    Davidson, Kenneth R.; Katsoulis, Elias G.

    2007-01-01

    Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\\tau_i:X \\to X$ for $1 \\le i \\le n$. To this we associate two topological conjugacy algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\\A(X, \\tau)$ and the semicrossed product $\\rC_0(X)\\times_\\tau\\Fn$. We introduce a concept of conjugacy for multidimensional systems, which we coin piecewise conjugacy. We prove that the piecewise conjugacy class of the sy...

  3. Congruence Permutable Symmetric Extended de Morgan Algebras

    Institute of Scientific and Technical Information of China (English)

    Jie FANG

    2006-01-01

    An algebra A is said to be congruence permutable if any two congruences on it are per-mutable. This property has been investigated in several varieties of algebras, for example, de Morgan algebras, p-algebras, Kn,o-algebras. In this paper, we study the class of symmetric extended de Morgan algebras that are congruence permutable. In particular we consider the case where A is finite, and show that A is congruence permutable if and only if it is isomorphic to a direct product of finitely many simple algebras.

  4. Modules Over Color Hom-Poisson Algebras

    OpenAIRE

    Bakayoko, Ibrahima

    2014-01-01

    In this paper we introduce color Hom-Poisson algebras and show that every color Hom-associative algebra has a non-commutative Hom-Poisson algebra structure in which the Hom-Poisson bracket is the commutator bracket. Then we show that color Poisson algebras (respectively morphism of color Poisson algebras) turn to color Hom-Poisson algebras (respectively morphism of Color Hom-Poisson algebras) by twisting the color Poisson structure. Next we prove that modules over color Hom–associative algebr...

  5. Semiprojectivity of universal -algebras generated by algebraic elements

    DEFF Research Database (Denmark)

    Shulman, Tatiana

    2012-01-01

    Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....

  6. Lectures on algebraic quantum field theory and operator algebras

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br

    2001-04-01

    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  7. A Jacobi identity for intertwining operator algebras

    CERN Document Server

    Huang, Y Z

    1997-01-01

    We find a Jacobi identity for intertwining operator algebras. Most of the main properties of genus-zero conformal field theories, including the main properties of vertex operator algebras, modules, intertwining operators, Verlinde algebras, and fusing and braiding matrices, are incorporated into this identity. We prove that intertwining operators for a suitable vertex operator algebra satisfy this Jacobi identity. Two equivalent definitions of intertwining operator algebra in terms of this Jacobi identity are given.

  8. Reflexive Operator Algebras on Banach Spaces

    OpenAIRE

    Merlevède, Florence; Peligrad, Costel; Peligrad, Magda

    2012-01-01

    In this paper we study the reflexivity of a unital strongly closed algebra of operators with complemented invariant subspace lattice on a Banach space. We prove that if such an algebra contains a complete Boolean algebra of projections of finite uniform multiplicity and with the direct sum property, then it is reflexive, i.e. it contains every operator that leaves invariant every closed subspace in the invariant subspace lattice of the algebra. In particular, such algebras coincide with their...

  9. Algebraic density property of homogeneous spaces

    OpenAIRE

    Donzelli, Fabrizio; Dvorsky, Alexander; Kaliman, Shulim

    2008-01-01

    Let $X$ be an affine algebraic variety with a transitive action of the algebraic automorphism group. Suppose that $X$ is equipped with several non-degenerate fixed point free $SL_2$-actions satisfying some mild additional assumption. Then we show that the Lie algebra generated by completely integrable algebraic vector fields on $X$ coincides with the set of all algebraic vector fields. In particular, we show that apart from a few exceptions this fact is true for any homogeneous space of form ...

  10. On Monotone Product of Operator Algebras

    Institute of Scientific and Technical Information of China (English)

    Wen Ming WU; Li Guang WANG

    2007-01-01

    In this note, we give complete descriptions of the structure of the monotone product of two yon Neumann algebras and two C*-algebras. We show that the monotone product of two simple yon Neumann algebras and C*-algebras aren't simple again. We also show that the monotone product of two hyperfinite von Neumann algebras is again hyperfinite and determine the type of the monotone product of two factors.

  11. Homology of L_{\\infty}-Algebras and Cyclic Homology

    OpenAIRE

    Khalkhali, Masoud

    1998-01-01

    A classical result of Loday-Quillen and Tsygan states that the Lie algebra homology of the algebra of stable matrices over an associative algebra is isomorphic, as a Hopf algebra, to the exterior algebra of the cyclic homology of the algebra. In this paper we develop the necessary tools needed to extend extend this result to the category of L_{\\infty} algebras.

  12. Cartooning in Algebra and Calculus

    Science.gov (United States)

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  13. On Nilpotent Extensions of Algebras

    Institute of Scientific and Technical Information of China (English)

    Adam W. Marczak; Jerzy Plonka

    2007-01-01

    In this paper, we investigate essentially n-ary term operations of nilpotent extensions of algebras. We detect the connection between term operations of an original algebra and its nilpotent extensions. This structural point of view easily leads to the conclusion that the number of distinct essentially n-ary term operations of a proper algebraic nilpotent extension (ひ) of an algebra (ワ) is given by the formula pn(ひ)={pn(ワ)+1 for n=1,{pn(ワ) otherwise. We show that in general the converse theorem is not true. However, we suppose that if a variety V is uniquely determined by its pn-sequences, the converse theorem is also satisfied. In the second part of the paper, we characterize generics of nilpotent shifts of varieties and describe cardinalities of minimal generics. We give a number of examples and pose some problems.

  14. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  15. Semiclassical states on Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Tsobanjan, Artur, E-mail: artur.tsobanjan@gmail.com [King’s College, 133 North River Street, Kingston, Pennsylvania 18702 (United States)

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following the methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.

  16. GCD, LCM, and Boolean Algebra?

    Science.gov (United States)

    Cohen, Martin P.; Juraschek, William A.

    1976-01-01

    This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)

  17. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  18. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  19. Asymptotic algebra of quantum electrodynamics

    OpenAIRE

    Herdegen, Andrzej

    2004-01-01

    The Staruszkiewicz quantum model of the long-range structure in electrodynamics is reviewed in the form of a Weyl algebra. This is followed by a personal view on the asymptotic structure of quantum electrodynamics.

  20. Drinfeld center of planar algebra

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2012-01-01

    We introduce fusion and contragadient of affine representations of a planar algebra $P$ (not necessarily having finite depth). We prove that if $N \\subset M$ is a subfactor realization of $P$, then the Drinfeld center of the $N$-$N$-bimodule category generated by $_N L^2 (M)_M$, is equivalent to the category Hilbert affine representations of $P$ satisfying certain finiteness criterion. As a consequence, we prove Kevin Walker's conjecture for planar algebras.

  1. Ternary generalizations of Grassmann algebra

    CERN Document Server

    Abramov, V V

    1996-01-01

    We propose the ternary generalization of the classical anti-commutativity and study the algebras whose generators are ternary anti-commutative. The integral over an algebra with an arbitrary number of generators N is defined and the formula of a change of variables is proved. In analogy with the fermion integral we define an analogue of the Pfaffian for a cubic matrix by means of Gaussian type integral and calculate its explicit form in the case of N=3.

  2. Distribution theory of algebraic numbers

    CERN Document Server

    Yang, Chung-Chun

    2008-01-01

    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  3. FOUNDATION OF NUCLEAR ALGEBRAIC MODELS

    Institute of Scientific and Technical Information of China (English)

    周孝谦

    1990-01-01

    Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.

  4. Cluster algebras and Poisson geometry

    OpenAIRE

    Gekhtman, M.; Shapiro, M.; Vainshtein, A.

    2002-01-01

    We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of connected components of refined open Bruhat cells in Grassmanians G(k,n) over real numbers.

  5. Process algebra for synchronous communication

    OpenAIRE

    Bergstra, J. A.; Klop, Jan Willem

    1984-01-01

    Within the context of an algebraic theory of processes, an equational specification of process cooperation is provided. Four cases are considered: free merge or interleaving, merging with communication, merging with mutual exclusion of tight regions, and synchronous process cooperation. The rewrite system behind the communication algebra is shown to be confluent and terminating (modulo its permutative reductions). Further, some relationships are shown to hold between the four concepts of merg...

  6. GNSS algebraic structures

    Science.gov (United States)

    Lannes, A.; Teunissen, P. J. G.

    2011-05-01

    The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is

  7. The derivation algebra and automorphism group of the (generalized) twisted N=2 superconformal algebra

    OpenAIRE

    Fa, Huanxia

    2013-01-01

    In this paper, we determine the derivation algebra and automorphism group of the twisted N=2 superconformal algebra. Then we generalize the relative results to the generalized twisted N=2 superconformal algebra in the final section.

  8. A note on the "logarithmic-W_3" octuplet algebra and its Nichols algebra

    OpenAIRE

    Semikhatov, A M

    2013-01-01

    We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a "W_3-counterpart" of the triplet algebra of (p,1) logarithmic models of two-dimensional conformal field theory.

  9. Stability of -Jordan Homomorphisms from a Normed Algebra to a Banach Algebra

    Directory of Open Access Journals (Sweden)

    Yang-Hi Lee

    2013-01-01

    Full Text Available We establish the hyperstability of -Jordan homomorphisms from a normed algebra to a Banach algebra, and also we show that an -Jordan homomorphism between two commutative Banach algebras is an -ring homomorphism.

  10. Algebraic Systems and Pushdown Automata

    Science.gov (United States)

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  11. Algebras with actions and automata

    Directory of Open Access Journals (Sweden)

    W. Kühnel

    1982-01-01

    Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed “scalar” or “input” object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed “natural numbers object” has been studied by the authors in [23].

  12. 格蕴涵代数与MV-代数%Lattice Implication Algebras and MV-algebras

    Institute of Scientific and Technical Information of China (English)

    郭天榜

    1999-01-01

    Lattice implication algebras is an algebraic structure which is established by combining lattice and implication algebras. In this paper,the relationship between lattice implication algebras and MV-algebra was discussed,and then proved that both of the categorys of the two algebras are categorical equivalence. Finally,the infinitely distributivity in lattice implication algebras were proved.

  13. Quantum Deformed $su(m|n)$ Algebra and Superconformal Algebra on Quantum Superspace

    OpenAIRE

    Kobayashi, Tatsuo

    1993-01-01

    We study a deformed $su(m|n)$ algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. {}From the deformed $su(1|4)$ algebra, we derive deformed Lorentz, translation of Minkowski space, $iso(2,2)$ and its supersymmetric algebras as closed subalgebras with consistent automorphisms.

  14. Algebras in genetics

    CERN Document Server

    Wörz-Busekros, Angelika

    1980-01-01

    The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par­ ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...

  15. On Algebra and Tachyons

    Directory of Open Access Journals (Sweden)

    M. Sivasubramanian

    2009-01-01

    Full Text Available Problem statement: After formulating the special theory of relativity in 1905, Albert Einstein politely remarked: “for velocities that are greater than light our deliberations become meaningless”. In 1962, Sudarshan and his co-researchers proposed a hypothesis that particles/objects whose rest mass is imaginary can travel by birth faster than light. After the publication of Sudarshan’s research, many scholars began to probe into faster than light phenomena. In extended relativity, many properties of tachyons have been found. But still this micro second, the velocity of a free tachyon with respect to us is unknown. In this research the researchers found tachyon velocity. Approach: In this research, Einstein’s variation of mass with velocity equation was transformed into quadratic equation. We introduced a new hypothesis to find the roots of the quadratic equation. Results: By introducing a new hypothesis in tachyon algebra, the researchers found that the velocity of superluminal objects with respect to us is v = c√3 where c is the velocity of the light. Conclusion/Recommendations: But the road to tachyon is too long. Hereafter it is up to experimental physicists to establish the existence/generation of tachyons.

  16. Certain number-theoretic episodes in algebra

    CERN Document Server

    Sivaramakrishnan, R

    2006-01-01

    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  17. Congruences on Balanced Pseudocomplemented Ockham Algebras

    Institute of Scientific and Technical Information of China (English)

    Jie FANG

    2009-01-01

    The variety bpO consists of those algebras (L;∧,∨, f,* ) of type where (L; ∧, ∨, f, 0, 1) is an Ockham algebra, (L; ∧, ∨, *, 0, 1) is a p-algebra, and the operations x→f(x) and x →x* satisfy the identities f(x*) = x** and [f(x)]* = f2(x). In this note, we show that the compact congruences on a bpO-algebra form a dual Stone lattice. Using this, we characterize the algebras in which every principal congruence is complemented. We also give a description of congruence coherent bpO-algebras.

  18. Double-partition Quantum Cluster Algebras

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Zhang, Hechun

    2012-01-01

    A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....

  19. Harmonic functions on groups and Fourier algebras

    CERN Document Server

    Chu, Cho-Ho

    2002-01-01

    This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.

  20. ISOMORPHISMS AND DERIVATIONS IN C*-ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Lee Jung-Rye; Shin Dong-Yun

    2011-01-01

    In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:||f(x) + f(y) + 2f(z) + 2f(w)|| ≤ ||2f (x +y /2+ z +w)|| (0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation2f(x+y/2+z+w)=f(x)+f(y)+2f(z)+2f(w).(0.2)