WorldWideScience

Sample records for clic main beam

  1. Impact of Dynamic Magnetic fields on the CLIC Main Beam

    CERN Document Server

    Snuverink, J; Jach, C; Jeanneret, JB; Schulte, D; Stulle, F

    2010-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

  2. A prototype cavity beam position monitor for the CLIC Main Beam

    CERN Document Server

    Cullinany , F; Joshi, N; Lyapin, A; Bastard, D; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Wendt, M; Lunin, A; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) places unprecedented demands on its diagnostics systems. A large number of cavity beam position monitors (BPMs) throughout the main linac and beam delivery system (BDS) must routinely perform with 50 nm spatial resolution. Multiple position measurements within a single 156 ns bunch train are also required. A prototype low-Q cavity beam position monitor has been designed and built to be tested on the CLIC Test Facility (CTF3) probe beam. This paper presents the latest measurements of the prototype cavity BPM and the design and simulation of the radio frequency (RF) signal processing electronics with regards to the final performance. Installation of the BPM in the CTF3 probe beamline is also discussed.

  3. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  4. Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications

    CERN Document Server

    Oeftiger, Adrian

    2011-01-01

    Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...

  5. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  6. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    CERN Document Server

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  7. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  8. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, Andre

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GuineaPig and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam background hitting the vertex detector.

  9. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  10. Drive beam stabilisation in the CLIC Test Facility 3

    Science.gov (United States)

    Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.

    2018-06-01

    The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.

  11. Technical Specification for the CLIC Two-Beam Module

    CERN Document Server

    Riddone, G; Nousiainen, R; Samoshkin, A; Schulte, D; Syratchev, I; Wuensch, W; Zennaro, R

    2008-01-01

    A high-energy (0.5-3 TeV centre-of-mass), highluminosity Compact Linear Collider (CLIC) is being studied at CERN [1]. The CLIC main linacs, 21-km long each, are composed of 2-m long two beam modules. This paper presents their current layout, the main requirements for the different sub-systems (alignment, supporting, stabilization, cooling and vacuum) as well as the status of their integration.

  12. CLIC main beam quadrupole active pre-alignment based on cam movers

    CERN Document Server

    Kemppinen, J; Leuxe, R; Mainaud Durand, H; Sandomierski, J; Sosin, M

    2012-01-01

    Compact Linear Collider (CLIC) is a study for a future 48 km long linear electron-positron collider in the multi TeV range. Its target luminosity can only be reached if the main beam quadrupoles (MB quads) are actively pre-aligned within 17 µm in sliding windows of 200 m with respect to a straight reference line. In addition to the positioning requirement, the pre-alignment system has to provide a rigid support for the nano-stabilization system to ensure that the first eigenfrequency is above 100 Hz. Re-adjustment based on cam movers was chosen for detailed studies to meet the stringent pre-alignment requirements. There are four different types of MB quads in CLIC. Their lengths and masses vary so that at least two types of cam movers have to be developed. The validation of the cams with less stringent space restrictions has proceeded to a test setup in 5 degrees of freedom (DOF). Prototypes of the more demanding, smaller cams have been manufactured and they are under tests in 1 DOF. This paper describes the...

  13. Experimental verification of the CLIC Decelerator with the test Beam Line in the CLIC test facility 3

    CERN Document Server

    Lillestøl, R L; Olvegård, M; Rabiller, A N; Sterbini, G; Adli, E

    2012-01-01

    The Test Beam Line in the CLIC Test Facility 3 is the first prototype of the CLIC drive beam decelerator. The main purpose of the experiment is to demonstrate efficient 12 GHz rf power production and stable transport of an electron drive beam during deceleration. The Test Beam Line consists of a FODO structure with high precision BPMs and quadrupoles mounted on mechanical movers for precisebeam alignment. Nine out of the planned 16 Power Extraction and Transfer Structures have currently been installed and commissioned. We correlate rf power production measurements with the drive beam deceleration measurements, and compare the two measurements to the theoretical predictions. We also discuss the impact of the drive beam bunch length and bunch combination on the measurements.

  14. Collective effects and experimental verification of the CLIC drive beam and decelerator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00418229; Stapnes, Steinar; Adli, Erik

    The Compact Linear Collider (CLIC) is a potential next-generation particle collider, in which electrons and positrons collide at a center-of-mass energy of up to 3 TeV. In order to reach a high accelerating gradient and reduce the length of the machine, CLIC uses a novel two-beam scheme. Here, the acceleration energy for the main beam is provided by energy extraction from a secondary electron drive beam, by the use of Power Extraction and Transfer Structures (PETS). This Ph.D. thesis describes deceleration measurements from the CLIC Test Facility 3 at CERN, from a beam that had up to 37 % of its kinetic energy converted into 12 GHz rf power. The results are part of the feasibility demonstration of the CLIC scheme. The measured difference in beam energy of the decelerated beam is correlated with particle tracking simulations and with predictions based on analytical formulae, and a very good agreement is demonstrated. The evolution of the transverse emittance was also studied, since it is critical to contain th...

  15. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  16. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  17. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  18. Online optimisation of the CLIC Drive Beam bunch train recombination at CTF3

    CERN Document Server

    AUTHOR|(CDS)2082483; Tecker, Frank

    The Compact Linear Collider (CLIC) design is the leading alternative for a future multi-TeV "e^+e^−" linear collider. One of the key aspects of the design is the use of a Drive Beam as power source for the acceleration of the colliding beams. This work is focused on the optimisation of the set-up and the operations of the CLIC Drive Beam recombination at the CLIC Test Facility (CTF3) at CERN. The main effects that may affect the beam quality during the recombination are studied, with emphasis on orbit, transverse dynamics and beam energy effects. A custom methodology is used to analyse the problem, both from a theoretical and a numerical point of view. The aim is to provide first-order orbit and transverse optics constraints, which can be used as guidelines during the set-up of the beam recombination process. The developed techniques are applied at the CTF3, and the results are reported. The non-linear beam energy effects have been investigated by means of MAD-X simulations. The results show that these effe...

  19. Study of the supporting system for the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nick; Mainaud-Durand, Hélène; Gudkov, Dmitry; Samoshkin, Alexandre; Simopoulos, Simos; Hinis, Evangelos; Alexopoulos, Theodoros

    2010-01-01

    The Compact Linear Collider (CLIC) study aims at the development of a Multi-TeV e+ e-collider. The micro-precision CLIC structures will have an accelerating gradient of 100 MV/m and will be aligned on so-called girders. The girder construction constrains are mainly dictated by the beam physics and RF requirements. The study of such girders is a challenging case involving material choice, mechanical design as well as prototype fabrication and experimental testing.

  20. Development of a Beam-based Phase Feedforward Demonstration at the CLIC Test Facility (CTF3)

    CERN Document Server

    AUTHOR|(CDS)2083344; Christian, Glenn

    The Compact Linear Collider (CLIC) is a proposal for a future linear electron--positron collider that could achieve collision energies of up to 3~TeV. In the CLIC concept the main high energy beam is accelerated using RF power extracted from a high intensity drive beam, achieving an accelerating gradient of 100~MV/m. This scheme places strict tolerances on the drive beam phase stability, which must be better than $0.2^\\circ$ at 12~GHz. To achieve the required phase stability CLIC proposes a high bandwidth (${>}17.5$~MHz), low latency drive beam ``phase feedforward'' (PFF) system. In this system electromagnetic kickers, powered by 500~kW amplifiers, are installed in a chicane and used to correct the phase by deflecting the beam on to longer or shorter trajectories. A prototype PFF system has been installed at the CLIC Test Facility, CTF3; the design, operation and commissioning of which is the focus of this work. Two kickers have been installed in the pre-existing chicane in the TL2 transfer line at CTF3 for t...

  1. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  2. CLIC Luminosity Monitoring

    CERN Document Server

    Apyan, Armen; Gschwendtner, Edda; Lefevre, Thibault; Tygier, Sam; Appleby, Robert B

    2012-01-01

    The CLIC post-collision line is designed to transport the un-collided beams and the products of the collided beams with a total power of 14 MW to the main beam dump. Luminosity monitoring for CLIC is based on high energy muons produced by beamstrahlung photons in the main dump. Threshold Cherenkov counters are proposed for the detection of these muons. The expected rates and layout for these detectors is presented. Another method for luminosity monitoring is to directly detect the beamstrahlung photons in the post-collision line. Full Monte Carlo simulation has been performed to address its feasibility.

  3. Stability of the drive beam in the decelerator of CLIC

    CERN Document Server

    Schulte, Daniel

    2002-01-01

    The RF power necessary to accelerate the main beam in the compact linear collider (CLIC) is generated by decelerating high-intensity low energy drive beams in 44 decelerators. Recently new decelerating structures (PETS, power extraction and transfer structures) have been developed. In these structures the RF energy travels with particularly high group velocity, which can affect efficiency and transverse stability. The paper considers the transverse beam stability in the decelerator as well as the longitudinal effects in the presence of dynamic and static imperfections.

  4. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  5. Beam Stability in the Drive-Beam Decelerator of CLIC Using Structures of High-Order Symmetry

    CERN Document Server

    Millich, Antonio; Schulte, Daniel

    1999-01-01

    The RF power necessary to accelerate the main beam of the Compact Linear Collider (CLIC) is produced by decelerating a high-current drive beam in Power Extraction and Transfer Structures (PETS). The reference structure is not cylindrically symmetric but has longitudinal waveguides carved into the inner surface. This gives rise to a transverse component of the main longitudinal mode which can not be damped, in contrast to the transverse dipole wake- field. The field is non-linear and couples the motion of the particles in the two planes. Limits of the stability of the decelerated beam are investigated for different structures.

  6. Technological challenges of CLIC

    CERN Multimedia

    CERN. Geneva; Döbert, Steffen; Arnau-Izquierdo, G; Redaelli, Stefano; Mainaud, Helène; Lefèvre, Thibaut

    2006-01-01

    Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&D effort is presently developed by the CLIC international collaboration to demonstrate its feasibility by 2010, when the first physics results from LHC should be available to guide the choice of the centre-of-mass energy better suited to explore the futu...

  7. Beam dynamic simulations of the CLIC crab cavity and implications on the BDS

    Energy Technology Data Exchange (ETDEWEB)

    Shinton, I.R.R., E-mail: ian.shinton@stfc.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Burt, G. [Engineering Department, Lancaster University, Lancaster (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Glasman, C.J.; Jones, R.M. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Wolski, A. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom)

    2011-11-21

    The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as 'Crab cavities', are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.

  8. Design and characterization of a prototype stripline beam position monitor for the Clic Drive Beam*

    CERN Document Server

    Benot-Morell, A; Wendt, M; Nappa, J M; Tassan-Viol, J; Vilalte, S; Smith, S

    2012-01-01

    The prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics is under development at CERN, in collaboration with SLAC, LAPP and IFIC. The anticipated position resolution and accuracy are expected to be below 2μm and 20μm respectively for operation of the BPM in the CLIC drive beam (DB) linac. This paper describes the particular CLIC DB conditions with respect to the beam position monitoring, presents the measurement concept, and summarizes electromagnetic simulations and RF measurements performed on the prototype.

  9. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aicheler, M [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Burrows, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Draper, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garvey, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lebrun, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Peach, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Phinney, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schmickler, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schulte, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Toge, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-02-13

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.

  10. Development of an Eccentric CAM Based Active Pre-Alignment System for the CLIC Main Beam Quadrupole Magnet

    CERN Document Server

    Lackner, F; Collette, C; Mainaud Durand, H; Hauviller, C; Kemppinen, J; Leuxe, R

    2010-01-01

    CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in stringent alignment and a nanometre stability requirement. In the current feasibility study, the main beam quadrupole magnets have to be actively pre-aligned with a precision of 1 µm in 5 degrees of freedom (d.o.f.) before being mechanically stabilized to the nm scale above 1 Hz. This contribution describes the approach of performing this active pre-alignment based on an eccentric cam system. In order to limit the amplification of the vibration sources at resonant frequencies a sufficiently high Eigenfrequency is required. Therefore the contact region between cam and support was optimized for adequate stiffness based on the Hertzian theory. Furthermore, practical tests performed on a single degree of freedom mock-up wil...

  11. Academic Training - Technological challenges of CLIC

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15 and 16 June 11:00-12:00 - Auditorium, bldg 500 Technological challenges of CLIC R. Corsini, S. Doebert, S. Redaelli, T.Lefevre, CERN-AB and G. Arnau Izquierdo, H. Mainaud, CERN-TS Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&...

  12. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  13. Physics and Detectors at CLIC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    CLIC represents an attractive option for the future particle physics programme at the energy frontier. CLIC is a proposed electron-positron linear collider, based on a novel two beam accelerating structure, with the capability of operating at centre-of-mass energies of up to 3 TeV. The Physics and Detector volume of the CLIC conceptual design report was recently published as a CERN yellow report. In this seminar, I will review the conclusions of this report, focussing on four main areas. Firstly, I will give an overview of the physics potential at CLIC, and will place this in the context of a possible scenario for the staged construction of the machine. Secondly, I will discuss the challenges for a detector operating in the CLIC machine environment. I will then present detailed studies of possible detector concepts, based on high granularity particle flow calorimetry, which demonstrate that the required detector performance goals at CLIC can be met. Finally, I will highlight the main issues for the future R&a...

  14. Status of Ground Motion Mitigation Techniques for CLIC

    CERN Document Server

    Snuverink, J; Collette, C; Duarte Ramos, F; Gaddi, A; Gerwig, H; Janssens, S; Pfingstner, J; Schulte, D; Balik, G; Brunetti, L; Jeremie, A; Burrows, P; Caron, B; Resta-Lopez, J

    2011-01-01

    The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques are proposed - quadrupole stabilisation and positioning, final doublet stabilisation as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of the ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) have been performed, which model the hardware and beam performance in detail. Based on the results future improvements of the mitigation techniques are suggested and simulated. It is shown that with the current design the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed.

  15. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  16. Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures

    CERN Document Server

    Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

    2013-01-01

    RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

  17. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  18. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  19. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  20. The CLIC Multi-Drive Beam Scheme

    CERN Document Server

    Corsini, R

    1998-01-01

    The CLIC study of an e+ / e- linear collider in the TeV energy range is based on Two-Beam Acceleration (TBA) in which the RF power needed to accelerate the beam is extracted from high intensity relativistic electron beams, the so-called drive beams. The generation, acceleration and transport of the high-intensity drive beams in an efficient and reliable way constitute a challenging task. An overview of a potentially very effective scheme is presented. It is based on the generation of trains of short bunches, accelerated sequentially in low frequency superconducting cavities in a c.w. mode, stored in an isochronous ring and combined at high energy by funnelling before injection by sectors into the drive linac for RF power production. The various systems of the complex are discussed.

  1. CLIC accelerator modules under construction at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    The Compact LInear Collider (CLIC) study is dedicated to the design of an electron-positron (e- e+) linear accelerator, colliding particle beams at the energy of 3 TeV. The CLIC required luminosity can be reached with powerful particle beams (14 MW each) colliding with extremely small dimensions and high beam stability at the interaction point. The accelerated particle beams must have dimensions of 45 nm in the horizontal plane and 1 nm in the vertical plane. CLIC relies upon a novel two-beam acceleration concept in which the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, called Drive Beam (DB), and transferred to a parallel high energy accelerating particle beam, called Main Beam (MB). The extraction and transfer of the RF power is achieved by the Power Extraction and Transfer Structures (PETS) and the particle beam acceleration is achieved with high precision RF-Accelerating Structures (AS), operating at 11.9942 GHz with an accelerating gradient of 100 MV/m, whi...

  2. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  3. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  4. LHC and CLIC LLRF final reports

    CERN Document Server

    Dexter, A; Woolley, B; Ambattu, P; Tahir, I; Syratchev, Igor; Wuensch, Walter

    2013-01-01

    Crab cavities rotate bunches from opposing beams to achieve effective head-on collision in CLIC or collisions at an adjustable angle in LHC. Without crab cavities 90% of achievable luminosity at CLIC would be lost. In the LHC, the crab cavities allow the same or larger integrated luminosity while reducing significantly the requested dynamic range of physics detectors. The focus for CLIC is accurate phase synchronisation of the cavities, adequate damping of wakefields and modest amplitude stability. For the LHC, the main LLRF issues are related to imperfections: beam offsets in cavities, RF noise, measurement noise in feedback loops, failure modes and mitigations. This report develops issues associated with synchronising the CLIC cavities. It defines an RF system and experiments to validate the approach. It reports on the development of hardware for measuring the phase performance of the RF distributions system and cavities. For the LHC, the hardware being very close to the existing LLRF, the report focuses on...

  5. CLIC Overview

    CERN Document Server

    Tomás, R

    2010-01-01

    The CLIC study is exploring the scheme for an electronpositron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for lepton physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum considerably boosting the CLIC study.

  6. CLIC OVERVIEW

    CERN Document Server

    Tomas, R

    2009-01-01

    The CLIC study is exploring the scheme for an electronpositron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for lepton physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum considerably boosting the CLIC study.

  7. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Candel, Arno

    2010-01-01

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  8. Two frequency beam-loading compensation in the drive-beam accelerator of the CLIC Test Facility

    CERN Document Server

    Braun, Hans Heinrich

    1999-01-01

    The CLIC Test Facility (CTF) is a prototype two-beam accelerator, in which a high-current "drive beam" is used to generate the RF power for the main-beam accelerator. The drive-beam accelerator consists of two S-band structures which accelerate a bunch train with a total charge of 500 nC. The substantial beam loading is compensated by operating the two accelerating structures at 7.81 MHz above and below the bunch repetition frequency, respectively. This introduces a change of RF phase from bunch to bunch, which leads, together with off-crest injection into the accelerator, to an approximate compensation of the beam loading. Due to the sinusoidal time-dependency of the RF field, an energy spread of about 7% remains in the bunch train. A set of idler cavities has been installed to reduce this residual energy spread further. In this paper, the considerations that motivated the choice of the parameters of the beam-loading compensation system, together with the experimental results, are presented.

  9. New clic-g structure design

    CERN Document Server

    AUTHOR|(CDS)2082335

    2016-01-01

    The baseline design of the Compact Linear Collider main linac accelerating structure is called ‘CLIC-G’. It is described in the CLIC Conceptual Design Report (CDR) [1]. As shown in Fig. 1, a regular cell of the structure has four waveguides to damp unwanted high-order-modes (HOMs). These waveguides are dimensioned to cut off the fundamental working frequency in order to prevent the degradation of the fundamental mode Q-factor. The cell geometry and HOM damping loads had been extensively optimized in order to maximize the RF-to-beam efficiency, to minimize the cost, and to meet the beam dynamics and the high gradient RF constraints [2

  10. Engineering study, development and prototype fabrication of the supporting system for the CLIC Two-Beam Module

    CERN Document Server

    AUTHOR|(CDS)2068725; Karyotakis, Yannis; Dahoo, Pierre Richard; Alexopoulos, Theo; MEIS, Costantin; De Conto, Jean Marie; Jeremie, Andrea; Puzot, Patrique

    CERN, the European Organization for Nuclear Research, is based on the international collaboration in the field of high-energy particle physics research. The experiments carried out in its facilities are achieved through the existing particle accelerators. In addition, advanced accelerator research and development is one of the goals of CERN. For this reason, CLIC (the Compact LInear Collider) a new electron-positron linear accelerator is being studied at CERN. CLIC is built by the assembly of the Two-Beam Modules and takes advantage of an innovative acceleration principle, the Two-Beam acceleration. Each Module contains several technical systems that contribute to its successful operation. This thesis presents the development of the prototype supporting system for the CLIC Two-Beam Module. At first, the physics requirements are translated into technical specifications and the fundamental parts of the supporting system are defined. The CLIC operational conditions are identified and the corresponding boundaries...

  11. CLIC: Status and Plan

    CERN Document Server

    Sailer, Andre

    2014-01-01

    The Compact Linear Collider (CLIC) is a high energy electron–positron col- lider with a maximal centre-of-mass energy of 3 TeV. In order to achieve high luminosity small bunches with high intensity are necessary. These lead to strong beam-beam forces, which create a challenging background environment. The accelerator concept and the detectors designed for CLIC are presented. Results from detector benchmark studies presented in the CLIC conceptual design report are summarised.

  12. Results from the CLIC Test Facility

    CERN Document Server

    Braun, H; Bossart, Rudolf; Chautard, F; Corsini, R; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Madsen, J H B; Rinolfi, Louis; Rossat, G; Schreiber, S; Suberlucq, Guy; Thorndahl, L; Wilson, Ian H; Wuensch, Walter

    1996-01-01

    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and acceleratin...

  13. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  14. Validation of CLIC Re-Adjustment System Based on Eccentric Cam Movers One Degree of Freedom Mock-Up

    CERN Document Server

    Kemppinen, J; Lackner, F

    2011-01-01

    Compact Linear Collider (CLIC) is a 48 km long linear accelerator currently studied at CERN. It is a high luminosity electron-positron collider with an energy range of 0.5-3 TeV. CLIC is based on a two-beam technology in which a high current drive beam transfers RF power to the main beam accelerating structures. The main beam is steered with quadrupole magnets. To reach CLIC target luminosity, the main beam quadrupoles have to be actively pre-aligned within 17 µm in 5 degrees of freedom and actively stabilised at 1 nm in vertical above 1 Hz. To reach the pre-alignment requirement as well as the rigidity required by nano-stabilisation, a system based on eccentric cam movers is proposed for the re-adjustment of the main beam quadrupoles. Validation of the technique to the stringent CLIC requirements was started with tests in one degree of freedom on an eccentric cam mover. This paper describes the dedicated mock-up as well as the tests and measurements carried out with it. Finally, the test results are present...

  15. Beam-based alignment of CLIC drive beam decelerator using girders movers

    CERN Document Server

    Sterbini, G

    2011-01-01

    The CLIC drive beams will provide the rf power to accelerate the colliding beams: in order to reach the design performance, an efficient transport of the drive beam has to be ensured in spite of its challenging energy spread and large current intensity. As shown in previous studies, the specifications can be met by coupling a convenient optics design with the state-of-the-art of pre-alignment and beambased alignment techniques. In this paper we consider a novel beam-based alignment scheme that does not require quadrupole movers or dipole correctors but uses the motors already foreseen for the pre-alignment system. This implies potential savings in terms of complexity and cost at the expense of the alignment flexibility: the performance, limitations and sensitivity to pre-alignment tolerances of this method are discussed.

  16. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  17. A Multi-TeV Linear Collider Based on CLIC Technology

    Energy Technology Data Exchange (ETDEWEB)

    Aicheler, M [European Organ. ization for Nuclear Research, Geneva (Switzerland); Burrows, P [Oxford University (United Kingdom); Draper, M; Garvey, T; Lebrun, P [European Organization for Nuclear Research, Geneva (Switzerland); Peach, K [Oxford University (United Kingdom); Phinney, N [SLAC (United States); Schmickler, H; Schulte, D [European Organization for Nuclear Research, Geneva (Switzerland); Toge, N [KEK, Tsukuba (Japan)

    2012-07-01

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there. (author)

  18. A Multi-TeV Linear Collider Based on CLIC Technology

    International Nuclear Information System (INIS)

    Aicheler, M; Burrows, P; Draper, M; Garvey, T; Lebrun, P; Peach, K; Phinney, N; Schmickler, H; Schulte, D; Toge, N

    2012-01-01

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there. (author)

  19. Overview of CLIC and CTF3

    CERN Document Server

    Corsini, R

    2002-01-01

    The CLIC study aims at the design of a high-energy (0.5-5 TeV), high luminosity e+e- linear collider, as a possible facility for the post-LHC era. The beams are accelerated using high-frequency (30 GHz) normal-conducting structures operating at high accelerating gradients to reduce the length and, in consequence, the cost of the linac. The RF power for these structures is generated using the so-called Two-Beam Acceleration (TBA) scheme, where a low-energy, high-intensity electron beam (drive beam) runs parallel to the main linacs and is decelerated in resonant structures, which extract RF power from the drive beam. The drive beam is first accelerated in a low-frequency fully-loaded normal-conducting linac. Its time structure is then obtained by funneling in isochronous rings using transverse RF deflectors. CTF3, a new generation CLIC Test Facility, is being built at CERN to demonstrate the technical feasibility of this novel drive beam generation and RF power production scheme, albeit on a much smaller scale....

  20. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  1. Acquisition system for the CLIC Module

    CERN Document Server

    Vilalte, Sebastien

    2011-01-01

    The status of R&D activities for CLIC module acquisition are discussed [1]. LAPP is involved in the design of the local CLIC module acquisition crate, described in the document Study of the CLIC Module Front-End Acquisition and Evaluation Electronics [2]. This acquisition system is a project based on a local crate, assigned to the CLIC module, including several mother boards. These motherboards are foreseen to hold mezzanines dedicated to the different subsystems. This system has to work in radiation environment. LAPP is involved in the development of Drive Beam stripline position monitors read-out, described in the document Drive Beam Stripline BPM Electronics and Acquisition [3]. LAPP also develops a generic acquisition mezzanine that allows to perform all-around acquisition and components tests for drive beam stripline BPM read-out.

  2. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  3. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  4. A Trajectory Correction based on Multi-Step Lining-up for the CLIC Main Linac

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory method described in this Note retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mai...

  5. CLIC: developing a linear collider

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Compact Linear Collider (CLIC) is a CERN project to provide high-energy electron-positron collisions. Instead of conventional radio-frequency klystrons, CLIC will use a low-energy, high-intensity primary beam to produce acceleration.

  6. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  7. Accelerator Physics for ILC and CLIC

    CERN Document Server

    Zimmermann, F

    2010-01-01

    This paper summarizes the second part of the “accelerator physics lectures” delivered at the Ambleside Linear Collider School 2009. It discusses more specific linear-collider issues: superconducting and room-temperature linear accelerators, particle sources for electrons and positrons, synchrotron radiation and damping, intensity limits, beam stability, and beam delivery system – including final focus, collimation, and beam-beam effects. It also presents an overview of the International Linear Collider (ILC), a description of the two beam acceleration scheme of the Compact Linear Collider (CLIC), and a comparison of the ILC and CLIC parameters.

  8. Permanent magnet quadrupoles for the CLIC Drive Beam decelerator

    CERN Document Server

    Shepherd, Ben; Collomb, Norbert

    2012-01-01

    STFC in collaboration with CERN has developed a new type of adjustable permanent magnet based quadrupole for the CLIC Drive Beam Decelerator. It uses vertical movement of the permanent magnets to achieve an integrated gradient range of 3.6-14.6T, which will allow it to be used for the first 60% of the decelerator line. Construction of a prototype of this magnet has begun; following this, it will be measured magnetically at CERN and Daresbury Laboratory.

  9. Standardization of the Experimental Methodology for Quality Assurance and Quality Control (QA-QC of the CLIC Structural Materials

    Directory of Open Access Journals (Sweden)

    N. Gazis

    2015-04-01

    Full Text Available The main linear accelerators (linacs of the Compact LInear Collider (CLIC are constituted of sequential two-beam modules (of approximate length of two meters. The CLIC linacs need to be firmly stabilized on their supports with a micron-level requirement, essential for maintaining the final target luminosity close to the required XXX value. Real scale two-beam prototype modules have been designed, manufactured and commissioned to study their behaviour under different operation modes and experimental conditions. The CLIC machine will work for continuous runs under conditions of high radiation background. The structural materials of the systems of the accelerator have to sustain the significant fatigue and activation due to the radiation, generated mainly by the losses of the particle beam. Extensive testing has taken place with a combination of mechanical experiments and irradiation sessions on samples of structural materials, focusing on the micro-precise CLIC module supporting system. The followed experimentally strategy was standardized in a series of sequential steps.

  10. Material studies for CLIC RF cavities

    CERN Document Server

    Taborelli, M

    2004-01-01

    Following the EST/SM suggestion of replacing copper by molybdenum or tungsten for the construction of the RF cavity irises, different CLIC main beam accelerating structures were produced, extensively operated and disassembled for iris surface inspection. The observed surface modifications were found to be very similar to those obtained by sparking in a dedicated laboratory set-up, showing the superior behaviour of both Mo and W with respect to Cu, in terms of surface erosion and conditioning. The iris thermomechanical fatigue due to RF heating was simulated by high power pulsed laser irradiation. A CuZr alloy was found to be much more resistant than pure Cu. Measurements at higher pulse number will be performed on CuZr in order to extrapolate its fatigue behaviour up to the nominal CLIC duration. Finally a possible future development of a hybrid probe beam acceleration structure will be presented.

  11. Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Devasena Ponnalagu

    2016-06-01

    Full Text Available Chloride intracellular channel (CLICs proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016 [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.

  12. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  13. Test of the beam effect on vacuum arc occurrence in a high-gradient accelerating structure for the CLIC project

    CERN Document Server

    AUTHOR|(CDS)2130409; Gagliardi, Martino

    A new generation of lepton colliders capable of reaching TeV energies is pres- ently under development, and to succeed in this task it is necessary to show that the technology for such a machine is available. The Compact Linear Collider (CLIC) is a possible design option among the future lepton collider projects. It consists of two normal-conducting linacs. Accelerating structures with a gradient of the order of 100 MV/m are necessary to reach the required high energies within a reasonable machine length. One of the strictest require- ments for such accelerating structures is a relatively low occurrence of vacuum arcs. CLIC prototype structures have been tested in the past, but only in absence of beam. In order to proof the feasibility of the high gradient technology for building a functional collider, it is necessary to understand the effect of the beam presence on the vacuum breakdowns. Tests of this type have never been performed previously. The main goal of this work is to provide a first measurement of t...

  14. CLICdp Overview. Overview of physics potential at CLIC

    Directory of Open Access Journals (Sweden)

    Levy Aharon

    2015-01-01

    Full Text Available CLICdp, the CLIC detector and physics study, is an international collaboration presently composed of 23 institutions. The collaboration is addressing detector and physics issues for the future Compact Linear Collider (CLIC, a high-energy electron-positron accelerator which is one of the options for the next collider to be built at CERN. Precision physics under challenging beam and background conditions is the key theme for the CLIC detector studies. This leads to a number of cutting-edge R&D activities within CLICdp. The talk includes a brief introduction to CLIC, accelerator and detectors, hardware R&D as well as physics studies at CLIC.

  15. Strategy and validation of fiducialisation for the pre-alignment of CLIC components

    CERN Document Server

    Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    The feasibility of the high energy e+ e- linear collider CLIC (Compact Linear Collider) is very dependent on the ability to accurately pre-align its components. There are two 20 km long Main Linacs which meet in an interaction point (IP). The Main Linacs are composed of thousands of 2 m long modules. One of the challenges is to meet very tight alignment tolerances at the level of CLIC module: for example, the magnetic centre of a Drive Beam Quad needs to be aligned within 20 µm rms with respect to a straight line. Such accuracies cannot be achieved using usual measurement devices. Thus it is necessary to work in close collaboration with the metrology lab. To test and improve many critical points, including alignment, a CLIC mock-up is being assembled at CERN. This paper describes the application of the strategy of fiducialisation for the pre-alignment of CLIC mock-up components. It also deals with the first results obtained by performing measurements using a CMM (Coordinate Measuring Machine) to ensure the f...

  16. Mechanical integration studies for the CLIC vertex and inner tracking detectors

    CERN Document Server

    Villarejo Bermudez, M.A.; Gerwig, H.

    2015-01-01

    Since the publication of the CLIC Conceptual Design Report, work has proceeded in order to establish a preliminary mechanical design for the innermost CLIC detector region. This note proposes a design for the main Carbon-Fibre Reinforced Polymer (CFRP) structural elements of the inner detectors, for the beam pipe and their supports. It also describes an assembly sequence for the integration of the sensors and the mechanical components. Mechanical simulations of different structural elements and a material budget estimation are appended. Details of a proposed cabling layout for all the subdetectors are included.

  17. Achievements and Future Plans of CLIC Test Facilities

    CERN Document Server

    Braun, Hans Heinrich

    2001-01-01

    CTF2 was originally designed to demonstrate the feasibility of two-beam acceleration with high current drive beams and a string of 30 GHz CLIC accelerating structure prototypes (CAS). This goal was achieved in 1999 and the facility has since been modified to focus on high gradient testing of CAS's and 30 GHz single cell cavities (SCC). With these modifications, it is now possible to provide 30 GHz RF pulses of more than 150 MW and an adjustable pulselength from 3 to 15 ns. While the SCC results are promising, the testing of CAS's revealed problems of RF breakdown and related surface damage. As a consequence, a new R&D program has been launched to advance the understanding of RF breakdown processes, to improve surface properties, investigate new materials and to optimise the structure geometries of the CAS's. In parallel the construction of a new facility named CTF3 has started. CTF3 will mainly serve two purposes. The first is the demonstration of the CLIC drive beam generation scheme. CTF3 will acceler-a...

  18. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  19. Light-flavor squark reconstruction at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)548062; Weuste, Lars

    2015-01-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light- flavored right-handed squark at a 3 TeV e+e collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two- photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  20. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  1. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  2. Occupancy in the CLIC ILD Time Projection Chamber using Pixelised Readout

    CERN Document Server

    Killenberg, Martin

    2013-01-01

    The occupancy in the CLIC ILD TPC caused by the beam induced background from gamma gamma -> hadrons, e+e- pairs and beam halo muons is very high for conventional pad readout. We show that the occupancy for a pixelised TPC readout is moderate and might be a viable solution to operate a TPC at CLIC.

  3. Physics at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)669060; Roloff, Philipp Gerhard

    2015-01-01

    CLIC is a concept for a future linear collider which would use two-beam acceleration to produce e+e- collisions with a centre-of-mass energy of 3 TeV. A staging scenario would also provide collisions at lower centre-of-mass energies, provisionally 350 GeV and 1.4 TeV. In order to demonstrate the wide range of physics processes available at such a linear collider, and to benchmark the performance of proposed detector models, a campaign of simulated physics analyses including Higgs, top and beyond the Standard Model processes has been undertaken at these three energy stages. These proceedings present the current status of these studies and illustrate the potential for precision physics measurements at CLIC.

  4. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  5. CLIC Project Overview (In Conjunction with the Muon Collider Workshop)

    International Nuclear Information System (INIS)

    Latina, Andrea

    2009-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  6. CLIC: Detector technology R&D for CLIC

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  7. CLIC: The CLIC accelerator design and performance

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  8. High performance electronics for alignment regulation on the CLIC 30GHz modules

    International Nuclear Information System (INIS)

    Carrica, D.; Coosemans, W.; Pittin, R.

    1999-01-01

    CERN is studying a linear collider (CLIC) to obtain electron-positron collisions with centre-of-mass energies in the TeV range. To demonstrate the feasibility of CLIC, a test facility (CTF2) is being constructed. CTF2 consists of 4 identical modules, each 1.4 m long module consists of 2 linac with a girder and a doublet or a triplet quadrupole. Girders are elements that support mechanically the cavities of the accelerator while the main objective of the quadrupole is to focus particle beams. The alignment system has 2 principal utilities. The first is to pre-align the elements to make the beam pass through the aperture and produce signals in beam position monitors. In respect to these signals the girders and the quadrupoles are moved for making the definitive alignment. The second utility is to maintain the elements in this position. The alignment control system of CTF2 must regulate the position of the girders and quadrupoles with a precision < 10 μm. In fact an accuracy of 1 μ has been obtained on CTF2. Thanks to its flexibility and its simplicity, the system is expected to adapt easily to CLIC even if it means to control modules that involve up to a maximum of 384 motors and 896 sensors

  9. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  10. R and D for the Feasibility Study of CLIC Technology

    CERN Document Server

    Braun, H; Geschonke, Günther; Guignard, Gilbert; Hübner, K; Wilson, Ian H

    2004-01-01

    An overview is given of the necessary R&D and particularly of the CLIC test facility CTF3 which is presently under construction for demonstrating the key issues related to the CLIC technology and to the two-beam scheme. The results concerning the commissioning of the injector and of the first part of the linac already built are summarized. The main R&D topics to be covered with this test infrastructure are described and the planned road-map in order to reach the pre-defined goals is indicated. The potential of CTF3 for checking the bunch-train recombination, testing RF accelerating structures, investigating the use of a drive-beam for RF power production, for bench-marking simulation codes and possibly making low-energy experiments related to linear collider R&D is presented. The activities required for the feasibility programme planned are given in the form of work packages, together with the needed but not available resources and the time schedule.

  11. ISSUES AND FEASIBILITY DEMONSTRATION OF CLIC SUPPORTING SYSTEM CHAIN ACTIVE PRE-ALIGNMENT USING A MULTI-MODULE TEST SETUP (MOCK-UP)

    CERN Document Server

    Sosin, Mateusz

    2016-01-01

    The implementation study of the CLIC (Compact LInear Collider) is under way at CERN with a focus on the challenging issues. The pre-alignment precision and accuracy requirements are part of these technical challenges: the permissible transverse position errors of the linac components are typically 14 micrometers over sliding windows of 200m. To validate the proposed methods and strategies, the Large Scale Metrology section at CERN has performed campaigns of measurements on the CLIC Two Beam Test Modules, focusing inter alia on the alignment performance of the CLIC “snake”- girders configuration and the Main Beam Quadrupoles supporting structures. This paper describes the activities and results of tests which were performed on the test mock-up for the qualification of the CLIC supporting system chain for active pre-alignment. The lessons learnt (“know how”), the issues encountered in the girder position determination as well as the behaviour of the mechanical components are presented.

  12. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; Linde, Frank; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  13. CLIC: Key technology developments for the CLIC accelerator

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  14. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  15. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  16. CLIC e+e- Linear Collider Studies

    CERN Document Server

    Dannheim, Dominik; Linssen, Lucie; Schulte, Daniel; Simon, Frank; Stapnes, Steinar; Toge, Nobukazu; Weerts, Harry; Wells, James

    2012-01-01

    This document provides input from the CLIC e+e- linear collider studies to the update process of the European Strategy for Particle Physics. It is submitted on behalf of the CLIC/CTF3 collaboration and the CLIC physics and detector study. It describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technique. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a \\sim125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up t...

  17. First phase of CLIC R&D complete

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Let’s turn back the clocks to 2002: the LHC is still under construction, the wrap-up of the LEP physics programme is still in recent memory and the future of electron-positron accelerators at CERN is ambiguous. It was then that CLIC set out to prove the feasibility of their novel accelerator design in the CTF3 test facility. Though once a tall order for the collaboration, the recently released CLIC Conceptual Design Report has proven many of the major design elements… bringing to an end the first phase of CLIC R&D and pointing toward detailed performance optimisation studies in the next phase.   Streak camera images of the final beam, illustrating the combination of beams in the Combiner Ring. Over a decade ago, the CTF3 team set up shop in the vacated LIL injector site, once home to the weathered machine that delivered electrons and positrons to LEP. Rebuilding and upgrading the machine piece by piece, the CTF3 team converted this mA linac into a high-current drive b...

  18. Silicon Technologies for the CLIC Vertex Detector

    CERN Document Server

    Spannagel, Simon

    2017-01-01

    CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...

  19. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  20. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  1. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  2. Transverse stability in multibunch mode for CLIC

    International Nuclear Information System (INIS)

    Guignard, G.

    1993-01-01

    In order to reach the desired luminosity with 250 GeV per beam, multibunch operation (limited to 4 bunches, say) might have to be considered in the CERN linear collider (CLIC). One limitation comes from the coupling of the bunch motion with the long-range transverse wake fields that may induce beam breakup. These wake fields have therefore to be controlled, and means of reducing their effects on the beam are discussed in a companion paper. One possibility consists in detuning the dipole modes in the cells to obtain decoherent contributions and hence reduce the field amplitude at the downstream bunch location. The important question is to know below which value this amplitude must be limited to prevent intolerable beam breakup. In a first attempt at estimating this threshold for CLIC two approaches are considered, i.e. the criterion developed at SLAC and based on the convergence of the multibunch-motion solution, and numerical simulations of two-bunch motion in a focusing lattice

  3. Drive Beam Quadrupoles for the CLIC Project: a Novel Method of Fiducialisation and a New Micrometric Adjustment System

    CERN Document Server

    AUTHOR|(SzGeCERN)411678; Duquenne, Mathieu; Sandomierski, Jacek; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    This paper presents a new method of fiducialisation applied to determine the magnetic axis of the Drive Beam quadrupole of the CLIC project with respect to external alignment fiducials, within a micrometric accuracy and precision. It introduces also a new micrometric adjustment system along 5 Degrees of Freedom, developed for the same Drive Beam quadrupole. The combination of both developments opens very interesting perspectives to get a more simple and accurate alignment of the quadrupoles.

  4. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  5. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  6. Feasibility study of multipoint based laser alignment system for CLIC

    CERN Document Server

    Stern, G; Mainaud-Durand, H; Piedigrossi, D; Geiger, A

    2012-01-01

    CLIC (Compact LInear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities oftoday’s particle accelerators. Alignment is one of the major challenges within the CLIC study in order to achieve the high requirement of a multi-TeV center of mass colliding beam energy range (nominal 3 TeV). To reach this energy in a realistic and cost efficient scenario all accelerator components have to be aligned with an accuracy of 10 μm over a sliding window of 200 m. The demand for a straight line reference is so far based on stretched wires coupled with Wire Positioning Sensors (WPS). These solutions are currently further developed inorder to reduce the drawbacks which are mainly given by their costs and difficult implementation. However, it should be validated through inter-comparison with a solution ideally based on a different physical principle. Therefore, a new metrological approach is proposed using a laser beam as straight lin...

  7. Occupancy in the CLIC_ILD Time Projection Chamber

    CERN Document Server

    KILLENBERG, M.

    2011-01-01

    We report on the occupancy in the CLIC ILD TPC caused by the beam induced background from gg !hadrons, e+e- pairs and beam halo muons. In addition the particle composition of the backgrounds and the origin of back-scattering particles have been studied.

  8. Golden Jubilee Photos: A CLIC for the future

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ Prototype copper accelerating structures for CLIC. New accelerator projects take many years to make and mature. When the LHC project was still only a twinkle in CERN's eye, research was already starting on a new machine. A small team at CERN was setting about the task of studying a high-energy, compact, lepton linear collider, known as CLIC. This is possibly set to become the collider of the future. A machine of this kind has all the advantages of a collider (the total collision energy is equal to the sum of the energies of the two colliding beams) without the drawback of synchrotron radiation, which is produced when particles are accelerated around a ring and thus puts a limit on the energy of such colliders. But in a project as technically challenging as CLIC, considerable technological hurdles must be overcome. To limit the linear collider's length to some tens of kilometres, the beams must acquire a considerable quantity of energy per metre travelled. The collision rate (lumi...

  9. SM-like Higgs decay into two muons at 1.4 TeV CLIC

    CERN Document Server

    Milutinovic-Dumbelovic, Gordana

    2016-06-02

    The branching fraction measurement of the SM-like Higgs boson decay into two muons at 1.4 TeV CLIC will be described in this paper contributed to the LCWS13. The study is performed in the fully simulated ILD detector concept for CLIC, taking into consideration all the relevant physics and the beam-induced backgrounds, as well as the instrumentation of the very forward region to tag the high-energy electrons. Higgs couplings are known to be sensitive to BSM physics and we prove that BR times the Higgs production cross section can be measured with approximately 35.5% statistical accuracy in four years of the CLIC operation at 1.4 TeV centre-of-mass energy with unpolarised beams. The result is preliminary as the equivalent photon approximation is not considered in the cross-section calculations. This study complements the Higgs physics program foreseen at CLIC.

  10. CLIC Physics Potential

    CERN Document Server

    Pandurovic, Mila

    2017-01-01

    The CLICdp is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC) and performs research and development of the CLIC detector. CLIC is a future multi-TeV linear electron-positron collider, designed to cover a physics program of the Standard model physics, with the emphasis on Higgs and top as well as to address the wide range of open questions of the phenomena beyond the Standard model with high precision. The CLIC is designed to be build and operated at three discrete energy stages, sort(s) = 380 GeV, 1.5 and 3.0 TeV, which are optimized for the foreseen physics program. In this talk the CLIC accelerator, detector and experimental environment of CLIC will be presented, as well as, the number of the full-simulation measurements in the Higgs, top and beyond Standard model sector, presenting the capabilities of CLIC for high precision measurements.

  11. Proposition d'une méthode d'alignement de l'accélérateur linéaire CLIC

    CERN Document Server

    Touzé, Thomas; Mainaud-Durand, H

    2011-01-01

    The compact linear collider (CLIC) is the particles accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nanometric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required : 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active prealignment but shows the way to the last developments that have to be done for that purpose. A metho...

  12. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  13. First Full Beam Loading Operation with the CTF3 Linac

    CERN Multimedia

    Corsini, R; Bienvenu, G; Braun, H; Carron, G; Ferrari, A; Forstner, O; Garvey, Terence; Geschonke, Günther; Groening, L; Jensen, E; Koontz, R; Lefèvre, T; Miller, R; Rinolfi, Louis; Roux, R; Ruth, Ronald D; Schulte, Daniel; Tecker, F A; Thorndahl, L; Yeremian, A D

    2004-01-01

    The aim of the CLIC (Compact Linear Collider) Study is to investigate the feasibility of a high luminosity, multi-TeV linear e+e- collider. CLIC is based on a two-beam method, in which a high current drive beam is decelerated to produce 30 GHz RF power needed for high-gradient acceleration of the main beam running parallel to it. To demonstrate the outstanding feasibility issues of the scheme a new CLIC Test Facility, CTF3, is being constructed at CERN by an international collaboration. In its final configuration CTF3 will consist of a 150 MeV drive beam linac followed by a 42 m long delay loop and an 84 m combiner ring. The installation will include a 30 GHz high power test stand, a representative CLIC module and a test decelerator. The first part of the linac was installed and commissioned with beam in 2003. The first issue addressed was the generation and acceleration of a high-current drive beam in the "full beam loading" condition where RF power is converted into beam power with an efficiency of more tha...

  14. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  15. Successful start for new CLIC test facility

    CERN Document Server

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  16. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  17. Proposal for an alignment method of the CLIC linear accelerator - From geodesic networks to the active pre-alignment

    International Nuclear Information System (INIS)

    Touze, T.

    2011-01-01

    The compact linear collider (CLIC) is the particle accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nano-metric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved before. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required: 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active pre-alignment but shows the way to the last developments that have to be done for that purpose. A method is proposed. Based on the management of the Helmert transformations between Euclidean coordinate systems, from the geodetic networks to the metrological measurements, this method is likely to solve the CLIC pre-alignment problem. Large scale facilities have been built and Monte-Carlo simulations have been made in order to validate the mathematical modeling of the measurement systems and of the alignment references. When this is done, it will be possible to extrapolate the modeling to the entire CLIC length. It will be the last step towards the demonstration of the CLIC pre-alignment feasibility. (author)

  18. Physics at CLIC

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The Compact Linear Collider (CLIC) is a high-energy e+e- collider under development. The CLIC conceptual design report, published in 2012, concentrated on 3 TeV centre-of-mass energy. At that time operation at lower energies was not yet studied at the same level. Following the discovery of the Higgs boson, the CLIC potential for precision Higgs measurements was addressed for several centre-of-mass energies. In parallel, the scope for precision top quark physics was further explored. As a result an optimised CLIC staging scenario was defined in collaboration between accelerator and detector experts. The staging scenario aims at a maximum physics output and maximum luminosity yield with a collider built and operated in three energy steps: 380 GeV, 1.5 TeV, 3 TeV. The seminar will comprise a short status report on the CLIC accelerator and detector. Emphasis will be on the CLIC physics potential for Higgs, top quark and BSM physics in the new staging scenario.

  19. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  20. Beam dynamics simulations in the photo-cathode RF gun for the CLIC test facility

    International Nuclear Information System (INIS)

    Marchand, P.; Rinolfi, L.

    1992-01-01

    The CERN CLIC Test Facility (CTF) uses an RF gun with a laser driven photo-cathode in order to generate electron pulses of high charge (≥10 nC) and short duration (≤20 ps). The RF gun consists of a 3 GHz 1 + 1/2 cell cavity based on the design originally proposed at BNL which minimizes the non-linearities in the transverse field. The beam dynamics in the cavity is simulated by means of the multiparticle tracking code PARMELA. The results are compared to previous simulations as well as to the first experimental data. (author). 4 refs., 4 tabs., 4 figs

  1. Particle Identification algorithm for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the algorithm presently used to determine the particle identification performance for single particles for the CLIC ILD and CLIC SiD detector concepts as prepared in the CLIC Conceptual Design Report.

  2. Study of the ALICE Investigator chip in view of the requirements at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303; Dannheim, Dominik; Fiergolski, Adrian; Van Hoorne, Jacobus Willem; Hynds, Daniel; Klempt, Wolfgang; Nurnberg, Andreas Matthias; Sielewicz, Krzysztof Marek; Snoeys, Walter

    2017-01-01

    CLIC is an option for a future high energy linear $e^{+}e^{−}$ collider at CERN in the post-LHC era. The CLIC machine is designed to reach centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. To achieve high precision measurements, e.g. of the Higgs- width, challenging requirements are imposed on the CLIC detector. A single point tracking resolution of 7 μm and a material budget of 1-2%$X_{0}$ per layer are required for the tracker. Moreover, to suppress background hits from beam-beam interactions, a precise time slicing of hits of 10 ns is needed. To address these requirements, a large area silicon tracker is foreseen for the detector at CLIC. In this context, integrated technologies are promising candidates to achieve large scale production and low material budget. The Investigator chip is a test chip developed for the ALICE Inner Tracking System upgrade, implemented in a 180 nm CMOS process on a high resistivity substrate. It contains various test-matrices with analogue functionality, whi...

  3. Preliminary design of the pulse generator for the CLIC damping ring extraction system

    CERN Document Server

    Holma, Janne; Ovaska, Seppo

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  4. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server

    AUTHOR|(SzGeCERN)752526

    2015-01-01

    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  5. The CLIC programme: Towards a staged $e^{+}e^{−}$ linear collider exploring the terascale CLIC conceptual design report

    CERN Document Server

    Lebrun, P.; Lucaci-Timoce, A.; Schulte, D.; Simon, F.; Stapnes, S.; Toge, N.; Weerts, H.; Wells, J.

    2012-01-01

    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale $e^+e^-$ linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy $e^+e^-$ collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear $e^+e^-$ collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in th...

  6. Validation of the CLIC alignment strategy on short range

    CERN Document Server

    Mainaud Durand, H; Griffet, S; Kemppinen, J; Rude, V; Sosin, M

    2012-01-01

    The pre-alignment of CLIC consists of aligning the components of linacs and beam delivery systems (BDS) in the most accurate possible way, so that a first pilot beam can circulate and allow the implementation of the beam based alignment. Taking into account the precision and accuracy needed: 10 µm rms over sliding windows of 200m, this pre-alignment must be active and it can be divided into two parts: the determination of a straight reference over 20 km, thanks to a metrological network and the determination of the component positions with respect to this reference, and their adjustment. The second part is the object of the paper, describing the steps of the proposed strategy: firstly the fiducialisation of the different components of CLIC; secondly, the alignment of these components on common supports and thirdly the active alignment of these supports using sensors and actuators. These steps have been validated on a test setup over a length of 4m, and the obtained results are analysed.

  7. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  8. CLIC-ACM: Acquisition and Control System

    CERN Document Server

    Bielawski, B; Magnoni, S

    2014-01-01

    CLIC [1] (Compact Linear Collider) is a world-wide collaboration to study the next terascale lepton collider, relying upon a very innovative concept of two-beamacceleration. In this scheme, the power is transported to the main accelerating structures by a primary electron beam. The Two Beam Module (TBM) is a compact integration with a high filling factor of all components: RF, Magnets, Instrumentation, Vacuum, Alignment and Stabilization. This paper describes the very challenging aspects of designing the compact system to serve as a dedicated Acquisition & Control Module (ACM) for all signals of the TBM. Very delicate conditions must be considered, in particular radiation doses that could reach several kGy in the tunnel. In such severe conditions shielding and hardened electronics will have to be taken into consideration. In addition, with more than 300 ADC&DAC channels per ACM and about 21000 ACMs in total, it appears clearly that power consumption will be an important issue. It is also obvious that...

  9. Common ground in ILC and CLIC detector concepts

    CERN Multimedia

    Daisy Yuhas

    2013-01-01

    The Compact Linear Collider and the International Linear Collider will accelerate particles and create collisions in different ways. Nonetheless, the detector concepts under development share many commonalities.   Timepix chips under scrutiny in the DESY test beam with the help of the beam telescope. CERN physicist Dominik Dannheim explains that the CLIC detector plans are adaptations of the ILC detector designs with a few select modifications. “When we started several years ago, we did not want to reinvent the wheel,” says Dannheim. “The approved ILC detector concepts served as an excellent starting point for our designs.” Essential differences Both CLIC and ILC scientists foresee general-purpose detectors that make measurements with exquisite precision. These colliders, however, have very different operating parameters, which will have important consequences for the various detector components. The ILC’s collision energy is set at 500 GeV ...

  10. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  11. Multi-step lining-up correction of the CLIC trajectory

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction dep...

  12. Particle mis-identification rate algorithm for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the algorithm presently used to determine the particle mis- identification rate and gives results for single particles for the CLIC ILD and CLIC SiD detector concepts as prepared for the CLIC Conceptual Design Report.

  13. Summary of the BDS and MDI CLIC08 Working Group

    CERN Document Server

    Tomás, R; Ahmed, I; Ambatu, PK; Angal-Kalinin, D; Barlow, R; Baud, J P; Bolzon, B; Braun, H; Burkhardt, H; Burt, GC; Corsini, R; Dalena, B; Dexter, AC; Dolgashev, V; Elsener, K; Fernandez Hernando, JL; Gaillard, G; Geffroy, N; Jackson, F; Jeremie, A; Jones, RM; McIntosh, P; Moffeit, K; Peltier, F; Resta-López, J; Rumolo, G; Schulte, D; Seryi, A; Toader, A; Zimmermann, F

    2008-01-01

    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis.

  14. Simulation and Optimisation of CLIC's recombination complex

    CERN Document Server

    Costa, Raul; Barroso, Manuel

    In this thesis we present the first Placet2 recombination simulations of the drive beam recombination complex (DBRC) design for the compact linear collider (CLIC). We start by presenting a review of the CLIC project and the DBRC’s role and design within it. We then discuss some of the core principles of beam dynamics and how tracking codes like Placet2 implement them. We follow that by presenting the design issues raised by our simulations and our proposed strategy to address them, key among which is a previously unknown parabolic dependency of the longitudinal position to the momentum (T 566 ), which threat- ens the efficiency of the power extraction structures. Through iterative opti- misation of the design, we eliminated this aberration both in the delay loop and in combiner ring 1. We also found the beam’s horizontal emittance to be significantly over the design budget (150 μm) and attempted to meet that budget, reaching 157 μm. In order to obtain this emittance value, an update to the combiner ring...

  15. An Injector for the CLIC Test Facility (CTF3)

    CERN Document Server

    Braun, H; Rinolfi, Louis; Zhou, F; Mouton, B; Miller, R; Yeremian, A D

    2000-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  16. An Injector for the CLIC Test Facility (CTF3)

    International Nuclear Information System (INIS)

    Miller, Roger H.

    2001-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed

  17. An injector for the CLIC test Facility (CTF3)

    CERN Document Server

    Braun, Hans-Heinrich; Rinolfi, L.; Zhou, F.; Mouton, B.; Miller, R.; Yeremian, D.

    2008-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  18. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  19. Status of vertex and tracking detector R&D at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754272

    2015-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the bunch train structure of the beam and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few micron, ultra-low mass (~0.2% X0 per layer for the inner vertex region), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. An overview of the R&D program for pixel and tracking detectors at CLIC will be presented, including recent results on an innovative hybridisation concept based on capacitive coupling between active sensors (HV-CMOS) and readout ASICs (CLICpix).

  20. Numerical Verification of the Power Transfer and Wakefield Coupling in the CLIC Two-Beam Accelerator

    CERN Document Server

    Candel, Arno; NG, C; Rawat, V; Schussman, G; Ko, K; Syratchev, I; Grudiev, A; Wuensch, W

    2011-01-01

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC’s parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  1. Production of high power microwaves for particle acceleration with an FEL bunched electron beam

    CERN Document Server

    Gardelle, J; Marchese, G; Padois, M; Rullier, J L; Donohue, J T

    1999-01-01

    Among the studies in the framework of high gradient linear electron-positron collider research, the Two-Beam Accelerator (TBA) is a very promising concept, and two projects are in progress, the Compact Linear Collider project at CERN (W. Schnell, Report no. CERN SL/92-51 and CLIC note 184; K. Huebner, CERN/PS 92-43, CLIC note 176; S. Van der Meer, CERN/PS 89-50, CLIC note 97.) and the Relativistic Klystron-TBA project at LBNL (Technical Review Committee, International Linear Collider Technical Review Committee Report 1995, SLAC-R-95-471, 1995). In a TBA an extremely intense low-energy electron beam, called the drive beam, is bunched at the desired operating frequency, and upon passing through resonant cavities generates radio-frequency power for accelerating the main beam. Among the different approaches to the production of a suitable drive beam, the use of an FEL has been proposed and is under active study at CEA/CESTA.

  2. Studies of Cs3Sb cathodes for the CLIC drive beam photo injector option

    CERN Document Server

    Martini, Irene; Doebert, Steffen; Fedosseev, Valentine; Hessler, Christoph; Martyanov, Mikhail

    2013-01-01

    Within the CLIC (Compact Linear Collider) project, feasibility studies of a photo injector option for the drive beam as an alternative to its baseline design using a thermionic electron gun are on-going. This R&D program covers both the laser and the photocathode side. Whereas the available laser pulse energy in ultra-violet (UV) is currently limited by the optical defects in the 4thharmonics frequency conversion crystal induced by the0.14 ms long pulse trains, recent measurements of Cs3Sbphotocathodes sensitive to green light showed their potential to overcome this limitation. Moreover, using visible laser beams leads to better stability of produced electron bunches and one can take advantages of the availability of higher quality optics. The studied Cs3Sbphotocathodes have been produced in the CERN photo emission laboratory using the co-deposition technique and tested in a DC gun set-up. The analysis of data acquired during the cathode production process will be presented in this paper, as well as the r...

  3. Demonstration of two-beam acceleration in CTF II

    CERN Document Server

    Bossart, Rudolf; Carron, G; Chanudet, M; Chautard, F; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Martínez, C; Suberlucq, Guy; Tenenbaum, P G; Thorndahl, L; Valentini, M; Wilson, Ian H; Wuensch, Walter

    1999-01-01

    The second phase of the Compact LInear Collider (CLIC) Test Facility (CTF II) at CERN has demon-strated the feasibility of two-beam acceleration at 30 GHz using a high-charge drive beam, running paral lel to the main beam, as the RF power source. To date accelerating gradients of 59 MV/m at 30 GHz have been achieved. In CTF II, the two beams are generated by 3 GHz RF photo-injectors and are acceler ated in 3 GHz linacs, before injection into the 30 GHz modules. The drive beam linac has to accelerate a 16 ns long train of 48 bunches, each with a nominal charge of 13.4 nC. To cope with the very su bstantial beam-loading special accelerating structures are used (running slightly off the bunch repetition frequency). A magnetic chicane compresses the bunches to less than 5 ps fwhm, this is needed for efficient 30 GHz power generation. The 30 GHz modules are fully-engineered representative sections of CLIC, they include a 30 GHz decelerator for the drive beam, a 30 GHz accelerator for the main beam, high resolution...

  4. Study and application of micrometric alignment on the prototype girders of the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nikolaos; Mainaud-Durand, Hélène; Samochkine, Alexandre; Anastasopoulos, Michail

    2011-01-01

    The Compact LInear Collider (CLIC), currently under study at CERN, aims at the development of a Multi-TeV e+ e- collider. The micro-precision CLIC RF-structures will have an accelerating gradient of 100 MV/m and will be mounted and aligned on specially developed supporting girders. The girder fabrication constraints are dictated by stringent physics requirements. The micrometric pre-alignment over several kilometers of girders, allow for the CLIC structures to fulfill their acceleration and collision functionality. Study of such girders and their sophisticated alignment method, is a challenging case involving dedicated mechanical design as well as prototype production and experimental testing.

  5. CLIC project R&D studies: the magnet system for the 3 TEV

    CERN Document Server

    Modena, Michele

    2017-01-01

    This Note presents the R&D activities done and coordinated by TE-MSC Group on the magnetic system for the CLIC (Compact Linear Collider) project. The main aspects investigated are: the magnetic system definition, basic design for all magnets (i.e. a CLIC Magnet Catalogue), powering and cost evaluation, advanced design and prototyping for the most critical magnet variants. The CLIC layout here considered is the one for the highest collision energy of 3 TeV. This layout was the one studied in detail as baseline for the CLIC Conceptual Design Report that was released in 2012. This Note summarize the activities of about 6 years (2010-2016) done with the contribution of CERN staff (part-time), the contribution of some CERN Project Associates sponsored by the CLIC Project and in collaboration with STCF Daresbury Laboratory (UK).

  6. Performance-Optimization Studies for the CLIC Vertex Detector

    CERN Document Server

    AUTHOR|(CDS)2085406; Roloff, Philipp

    The Compact Linear Collider (CLIC) is a mutli-TeV linear e+e- collider currently under development at CERN. In the post-LHC era, CLIC will allow to explore a great number of searches for New Physics such as the precise measurements of the Higgs boson. In this master thesis, we mainly focus on the development and the improvement of the vertex detector. The vertex detector requires excellent spatial resolution, low mass, geometrical coverage down to low polar angles, high rate readout for the sensors and new cooling technologies for heat removal. Considering such requirements, the CLIC vertex detector technology is far more advanced in comparison to the technologies currently used in particle physics. This project consists of two main parts. In the first part, we study the vertex detector and optimize its geometry for the use of airflow cooling techniques and also for flavor tagging. In the second part, we implement a decoder which can respect the timing constraints for the CLICpix chip, a silicon pixel detect...

  7. Beam Dynamics Simulation for the CTF3 Drive Beam Accelerator

    CERN Document Server

    Schulte, Daniel

    2000-01-01

    A new CLIC Test Facility (CTF3) at CERN will serve to study the drive beam generation for the Compact Linear Collider (CLIC). CTF3 has to accelerate a 3.5 A electron beam in almost fully-loaded structures. The pulse contains more than 2000 bunches, one in every second RF bucket, and has a length of more than one microsecond. Different options for the lattice of the drive-beam accelerator are presented, based on FODO-cells and triplets as well as solenoids. The transverse stability is simulated, including the effects of beam jitter, alignment and beam-based correction.

  8. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    CERN Document Server

    Eliasson, Peder

    2008-01-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Fina...

  9. Particle Identification performance for leptons in jets for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the particle identification performance for particles in jets for the CLIC ILD and CLIC SiD detector concepts as prepared in the CLIC Conceptual Design Report. The results are presented with and without the presence of the γγ → hadrons background events.

  10. Status of the CLIC study on magnet stabilisation and time-dependent luminosity

    CERN Document Server

    Assmann, R W; Guignard, Gilbert; Leros, Nicolas; Redaelli, S; Schnell, Wolfgang; Schulte, Daniel; Wilson, Ian H; Zimmermann, Frank

    2002-01-01

    The nanometer beam size at the CLIC interaction point imposes magnet vibration tolerances that range from 0.2 nm to a few nanometers. This is well below the floor vibra-tion usually observed. A test stand for magnet stability was set-up at CERN in the immediate neighborhood of roads, operating accelerators, manual shops, and regular office space. It was equipped with modern stabilization tech-nology. First results are presented, demonstrating signif-icant damping of floor vibration. CLIC quadrupoles have been stabilized vertically to an rms motion of (0.9 ± 0.1) n above 4 Hz, or (1.3 ± 0.2) nm with a nominal flow of cooling water. For the horizontal and longitudinal directions respectively, a CLIC quadrupole was stabilized to (0.4 ± 0.1) nm and (3.2 ± 0.4) nm.

  11. Physics and Detectors at CLIC CLIC Conceptual Design Report

    CERN Document Server

    Miyamoto, Akiya; Stanitzki,Marcel; Weerts, Harry

    2012-01-01

    This report describes the physics potential and experiments at a future multi- TeV e+e− collider based on the Compact Linear Collider (CLIC) technology. The physics scenarios considered include precision measurements of known quantities as well as the discovery potential of physics beyond the Standard Model. The report describes the detector performance required at CLIC, taking into account the interaction point environment and especially beaminduced backgrounds. Two detector concepts, designed around highly granular calorimeters and based on concepts studied for the International Linear Collider (ILC), are described and used to study the physics reach and potential of such a collider. Detector subsystems and the principal engineering challenges are illustrated. The overall performance of these CLIC detector concepts is demonstrated by studies of the performance of individual subdetector systems as well as complete simulation studies of six benchmark physics processes. These full detector simulation and rec...

  12. Finite Element Model for Thermal-Structural analysis of CLIC Lab Module type 0#2

    CERN Document Server

    Moilanen, Antti; Vamvakas, Alex; Vainola, Jukka Ilmari; Doebert, Steffen

    2017-01-01

    Temperature changes lead to unwanted thermo-mechanical deformations in the components of the Compact Linear Collider (CLIC) module. There are several sources and sinks of heat around the CLIC two-beam module. Heat is generated in the components that produce, transfer, and extract radio frequency (RF) power. Excess heat is removed from the components by cooling water as well as dissipated to air by convection from the outer surfaces of the components. The ambient temperature might also vary along the tunnel during the operation of CLIC. Due to tight assembling and alignment tolerances, it is necessary to minimize the thermo-mechanical deformations in the components. In this paper, the steps of thermal-structural Finite Element Analysis (FEA) of CLIC lab module type 0#2 are described from geometry model simplification to setting up the simulation. The description is accompanied by useful hints for CATIA and ANSYS users performing similar modelling tasks. A reliable computer simulation is important for studying ...

  13. Integration of the PHIN RF Gun into the CLIC Test Facility

    CERN Document Server

    Döbert, Steffen

    2006-01-01

    CERN is a collaborator within the European PHIN project, a joint research activity for Photo injectors within the CARE program. A deliverable of this project is an rf Gun equipped with high quantum efficiency Cs2Te cathodes and a laser to produce the nominal beam for the CLIC Test Facility (CTF3). The nominal beam for CTF3 has an average current of 3.5 A, 1.5 GHz bunch repetition frequency and a pulse length of 1.5 ìs (2332 bunches) with quite tight stability requirements. In addition a phase shift of 180 deg is needed after each train of 140 ns for the special CLIC combination scheme. This rf Gun will be tested at CERN in fall 2006 and shall be integrated as a new injector into the CTF3 linac, replacing the existing injector consisting of a thermionic gun and a subharmonic bunching system. The paper studies the optimal integration into the machine trying to optimize transverse and longitudinal phase space of the beam while respecting the numerous constraints of the existing accelerator. The presented scheme...

  14. Status of a study of stabilization and fine positioning of CLIC quadrupoles to the nanometre level

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    Mechanical stability to the nanometre and below is required for the Compact Linear Collider (CLIC) quadrupoles to frequencies as low as 1 Hz. An active stabilization and positioning system based on very stiff piezo electric actuators and inertial reference masses is under study for the Main Beam Quadrupoles (MBQ). The stiff support was selected for robustness against direct forces and for the option of incrementally repositioning the magnet with nanometre resolution. The technical feasibility was demonstrated by a representative test mass being stabilized and repositioned to the required level in the vertical and lateral direction. Technical issues were identified and the development programme of the support, sensors, and controller was continued to increase the performance, integrate the system in the overall controller, adapt to the accelerator environment, and reduce costs. The improvements are implemented in models, test benches, and design of the first stabilized prototype CLIC magnet. The characterizati...

  15. The Baseline Positron Production and Capture Scheme for CLIC

    CERN Document Server

    Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Variola, Alessandro; Chehab, Robert; Rinolfi, Louis; Vivoli, Alessandro; Strakhovenko, Vladimir; Xu, Chengai

    2010-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a tungsten crystal target. With the crystal oriented on its axis it results an intense relatively low energy photon beam. The later is then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. Downstream the amorphous target, a capture section based on an adiabatic matching device followed by a 2 GHz Pre- Injector Linac focuses and accelerates the positron beam up to around 200 MeV

  16. CLIC-ACM: generic modular rad-hard data acquisition system based on CERN GBT versatile link

    International Nuclear Information System (INIS)

    Bielawski, B.; Locci, F.; Magnoni, S.

    2015-01-01

    CLIC is a world-wide collaboration to study the next ''terascale'' lepton collider, relying upon a very innovative concept of two-beam-acceleration. This accelerator, currently under study, will be composed of the subsequence of 21000 two-beam-modules. Each module requires more than 300 analogue and digital signals which need to be acquired and controlled in a synchronous way. CLIC-ACM (Acquisition and Control Module) is the 'generic' control and acquisition module developed to accommodate the controls of all these signals for various sub-systems and related specification in term of data bandwidth, triggering and timing synchronization. This paper describes the system architecture with respect to its radiation-tolerance, power consumption and scalability

  17. A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles

    CERN Document Server

    Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C

    2010-01-01

    In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...

  18. Detector optimization studies and light Higgs decay into muons at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2013-09-15

    The Compact Linear Collider (CLIC) is a concept for a future e{sup +}e{sup -} linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab{sup -1}, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  19. Detector optimization studies and light Higgs decay into muons at CLIC

    International Nuclear Information System (INIS)

    Grefe, Christian

    2013-09-01

    The Compact Linear Collider (CLIC) is a concept for a future e + e - linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab -1 , corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  20. Physics potential for the measurement of sigma(H nu antinu ̄) x BR(H -->μ+μ-) at a 1.4 TeV CLIC collider

    CERN Document Server

    Milutinovic-Dumbelovic, Gordana; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2015-01-01

    Measurements of Higgs couplings at CLIC will offer the potential for a rich precision phys- ics programme and for the search for physics beyond the Standard Model(SM). The poten- tial for measuring the SM Higgs boson decay into two muons at a 1.4 TeV CLIC collider is addressed in this paper. The study is performed using a full Geant4 detector simulation of the CLIC_ILD detector model, taking into consideration all the relevant physics and beam-induced background processes, as well as the instrumentation of the very forward region to identify high-energy electrons. In this analysis, we show that the branching ratio BR(H-->μ+μ-) times the Higgs production cross-section in W+W- fusion can be measured with 38% statistical accuracy at sqrt(s) = 1.4 TeV assuming an integrated luminosity of 1.5 ab-1 with unpolarised beams. If 80% electron beam polarisation is considered, as planned for CLIC, the statistical uncertainty of the measurement is 27%. Systematic uncertainties are negligible.

  1. Physics potential for the measurement of σ (Hνν) × BR(H → μ+μ−) at a 1.4 TeV CLIC collider

    CERN Document Server

    Milutinović-Dumbelović, G; Grefe, C; Lukić, S; Pandurović, M; Roloff, P

    2014-01-01

    The potential for the measurement of the branching ratio of the Standard Model-like Higgs boson decay into a μ+μ− pair at 1.4 TeV CLIC is analysed. The study is performed using the fully simulated CLIC_ILD detector concept, taking into consideration all the relevant physics and the beam-induced backgrounds. Despite the very low branching ratio of the H → μ+μ− decay, we show that the product of the branching ratio times the Higgs production cross section can be measured with a statistical uncertainty of 38 %, assuming an integrated luminosity of 1.5 ab−1 collected in five years of the detector operation at the 1.4 TeV CLIC with unpolarised beams. With polarised beams (+80 %, -30 %), the statistical uncertainty is better than 25%

  2. Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

    CERN Document Server

    2017-01-01

    Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

  3. Preparing for CLIC tests

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The Canon 5 undergoes first brazing for preparation in the CLIC study at the CLIC Test Facility 2 (CTF2). This will test injection for a proposed linear collider that will further explore discoveries made at the LHC. Electric fields in the canon will boost electrons into the acceleration fields of the collider.

  4. Integrated CMOS sensor technologies for the CLIC tracker

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2017-01-01

    Integrated technologies are attractive candidates for an all silicon tracker at the proposed future multi-TeV linear e+e- collider CLIC. In this context CMOS circuitry on a high resistivity epitaxial layer has been studied using the ALICE Investigator test-chip. Test-beam campaigns have been performed to study the Investigator performance and a Technology Computer Aided Design based simulation chain has been developed to further explore the sensor technology.

  5. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  6. High frequency electromagnetic characterization of NEG properties for the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Zannini, C

    2014-01-01

    Coating materials will be used in the CLIC damping rings (DR) to suppress two-stream effects. In particular, NEG coating is necessary to suppress fast beam ion instabilities in the electron damping ring (EDR). The electromagnetic (EM) characterization of the material properties up to high frequencies is required for the impedance modeling of the CLIC DR components. The EM properties for frequencies of few GHz are determined with the waveguide method, based on a combination of experimental measurements of the complex transmission coefficient S21 and CST 3D EM simulations. The results obtained from a NEG-coated copper (Cu) waveguide are presented in this paper.

  7. Tilapia and human CLIC2 structures are highly conserved.

    Science.gov (United States)

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. SM-like Higgs decay into two muons at 1.4 TeV CLIC

    CERN Document Server

    Milutinovic-Dumbelovic, G

    2014-01-01

    The potential for measuring the Standard Model (SM) Higgs boson decay into two muons at a 1.4 TeV CLIC e+e− collider is addressed in this paper, that was presented at ICHEP2014. The study is performed in the full Geant4 detector simulations of CLIC_ILD, taking into consideration all the relevant physics and the beam-induced background processes, as well as the instrumentation of the very forward region to tag forward electrons. In this analysis we show that the branching ratio BR(H-->mu+mu-) times the Higgs production cross-section can be measured with 38% statistical accuracy at √s =1.4 TeV using an integrated luminosity of 1.5 ab-1. This study is part of an ongoing comprehensive Higgs physics benchmark study covering various Higgs production processes and decay modes, currently being carried out to estimate the full Higgs physics potential of CLIC.

  9. Top Quark Pair Production at a 500 GeV CLIC Collider

    CERN Document Server

    Seidel, K; Simon, F

    2012-01-01

    We present a study of the capability of a 500 GeV e+e− collider based on the CLIC technology for precision measurements of top quark properties. The analysis is based on full detector simulations of the CLIC ILD detector concept using Geant4, including realistic beam-induced background contributions from two photon processes. Event reconstruction is performed using a particle flow algorithm with stringent cuts to control the influence of background. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of tt ̄ pairs using event samples of signal and standard model background processes corresponding to an integrated luminosity of 100fb−1. Statistical uncertainties of the top mass of 0.08 GeV and 0.09 GeV were obtained for the fully-hadronic channel and the semi-leptonic channel, respectively. The results are compared to a similar analysis performed within the framework of the ILC, showing that a similar precision can be achieved at CLIC despite less favorable experimen...

  10. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  11. Electron Cloud Build Up and Instability in the CLIC Damping Rings

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2008-01-01

    Electron cloud can be formed in the CLIC positron damping ring and cause intolerable tune shift and beam instability. Build up simulations with the Faktor2 code, developed at CERN, have been done to predict the cloud formation in the arcs and wigglers of the damping rings. HEADTAIL simulations have been used to study the effect of this electron cloud on the beam and assess the thresholds above which the electron cloud instability would set in.

  12. Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure

    Directory of Open Access Journals (Sweden)

    A. Palaia

    2013-08-01

    Full Text Available Understanding the effects of rf breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a rf breakdown high currents are generated causing parasitic magnetic fields that interact with the accelerated beam affecting its orbit. The beam energy is also affected because the power is partly reflected and partly absorbed thus reducing the available energy to accelerate the beam. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch trains on a nanosecond time scale showed fast changes in correspondence of breakdown that we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam position and we discuss its correlation with rf power and breakdown location in the accelerator structure.

  13. CLIC Detector and Physics Status

    CERN Document Server

    AUTHOR|(SzGeCERN)627941

    2017-01-01

    This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage is optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.

  14. Physics Signatures at CLIC

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    A set of signatures for physics processes of potential interests for the CLIC programme at = 1 - 5 TeV are discussed. These signatures, that may correspond to the manifestation of different scenarios of new physics as well as to Standard Model precision tests, are proposed as benchmarks for the optimisation of the CLIC accelerator parameters and for a first definition of the required detector response.

  15. Muon System Design Studies for Detectors at CLIC

    CERN Document Server

    van der Kraaij, E

    2011-01-01

    The two concepts for CLIC detectors inherited their design of the muon systems from the ILC community. In this note the outcome of a reevaluation of the design for the CLIC environment is presented. Based on a full detector simulation, the muon identification performance is analysed for different detector layouts and different cellsizes. As a result, nine layers are suggested for the muon systems of the CLIC ILD and CLIC SiD detectors, which are arranged in three groups of three layers. The cellsizes have been kept at 30×30 mm2. These layouts are used for the performance studies of the CLIC Conceptual Design Report (CDR).

  16. CLIC brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2012-01-01

    The world's biggest and most powerful accelerator, the LHC, is mapping the route of particle physics for the future. The next step, to complement the LHC in exploring this new region, is most likely to be a linear electron-positron collider. The Compact Linear Collider (CLIC) is a novel approach to such a collider. It is currently under development by the CLIC collaboration, which is hosted at CERN.

  17. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  18. Simulation of the pressure recovery time in a CLIC standard module

    CERN Document Server

    Costa-Pinto, P

    2008-01-01

    Vacuum pressure inside the CLIC accelerating structures (AS) is crucial for both beam and RF stability. Gas molecules released during RF breakdown must be evacuated from the cells of the AS before the arrival of the next train of particles. Due to its complex geometry, accurate analytical calculations are not viable. In this paper we introduce a calculation method based on the combination of analytical vacuum equations with Monte Carlo test particle simulations, implemented in a PSpice environment via the vacuum-electrical network analogy. Pressure recovery times are calculated for the main gas species released during a breakdown. The number and type of molecules used for the calculation is the result of measurements performed in the DC spark test system.

  19. Impedance effects in the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Mounet, N; Rumolo, G; Salvant, B

    2011-01-01

    Due to the unprecedented brilliance of the beams, the performance of the Compact Linear Collider (CLIC) damping rings (DR) is affected by collective effects. Single bunch instability thresholds based on a broad-band resonator model and the associated coherent tune shifts have been evaluated with the HEADTAIL code. Simulations performed for positive and negative values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability. This study also includes the effects of high frequency resistive wall impedance due to different coatings applied on the chambers of the wigglers for e-cloud mitigation and/or ultra-low vacuum pressure. The impact of the resistive wall wake fields on the transverse impedance budget is finally discussed.

  20. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  1. Overview of the CLIC detector and its physics potential

    CERN Document Server

    AUTHOR|(SzGeCERN)786425

    2016-01-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cutting-edge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  2. Overview of the CLIC detector and its physics potential

    Science.gov (United States)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  3. Initial measurements on a prototype inductive adder for the CLIC kicker systems

    CERN Document Server

    Holma, Janne

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. To achieve ultra-flat pulses with a fast rise time the output impedance of the inductive adder needs to be well matched to the system impedance. The parasitic circuit elements of the inductive adder have a significant effect upon the output impedance and these values are very difficult to calculate accurately analytically. To predict these paramet...

  4. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  5. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Directory of Open Access Journals (Sweden)

    F. J. Cullinan

    2015-11-01

    Full Text Available The Compact Linear Collider (CLIC requires beam position monitors (BPMs with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3 at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3  ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  6. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Science.gov (United States)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  7. CLIC transfer structure (CTS) simulations using open-quotes MAFIAclose quotes

    International Nuclear Information System (INIS)

    Millich, A.

    1993-01-01

    In the two-beam accelerator scheme of CLIC the Transfer Structure serves the purpose of extracting 30 GHz power from the drive beam. The purpose of the 3D simulations of the 30 GHz CTS using the MAFIA set of codes has been to assist the designers in the choice of the final dimensions by appreciating the sensitivity of the RF characteristics to the mechanical parameters. The results of the frequency domain analysis have allowed plotting of the dispersion curves of the waveguides and appreciation the relative importance of higher modes. The time domain investigations have produced results on the shape and magnitude of the beam-induced longitudinal and transverse wake fields and of the loss factors

  8. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    AUTHOR|(SzGeCERN)674552

    2017-01-01

    The physics aims at the future CLIC high-energy linear $e^{+}e^{−}$ collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The main challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X$_{0}$ per layer for the vertex region and ~1% X$_{0}$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tra...

  9. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear e+e− collider pose challenging demands on the performance of the vertex and tracking detector system. In particular the detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A highly granular all- silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints.

  10. A New Damped and Tapered Accelerating Structure for CLIC

    CERN Document Server

    Raguin, J Y; Syratchev, I V; Wilson, Ian H; Wuensch, Walter

    2002-01-01

    The main performance limits when designing accelerating structures for the Compact Linear Collider (CLIC) for an average accelerating gradient above 100 MV/m are electrical breakdown and material fatigue caused by pulsed surface heating. In addition, for stable beam operation, the structures should have low short-range transverse wakefields and much-reduced transverse and longitudinal long-range wakefields. Two damped and tapered accelerating structures have been designed. The first has an accelerating gradient of 112 MV/m with the surface electrical field limited to 300 MV/m and the maximum temperature increase limited to 100°C. The second, with an accelerating gradient of 150 MV/m, has a peak surface electrical field of 392 MV/m and a maximum temperature increase of 167°C. Innovations to the cell and damping waveguide geometry and to the tapering of the structures are presented, and possible further improvements are proposed.

  11. CLIC: Physics potential of a high-energy e+e- collider

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  12. CLIC preparations go up a notch

    CERN Multimedia

    2007-01-01

    The Compact Linear Collider gears up for post-LHC physics with an international workshop. A schematic diagram of CLIC.In June CERN gained a new building: number 2010. And as chance would have it, this is more than just a number to its new residents. By the year 2010, teams working at the new CLIC Experimental Area, along with the already established CLIC Test Facility Three (CTF3), hope to have demonstrated the feasibility of the Compact Linear Collider and, depending on results from the LHC, embark on its final design and proposal. A workshop on 16t-18 October brought people from all around the world to CERN to exchange ideas and hear how the ambitious project is progressing. CLIC is a project that aims to extend lepton collider technology to multi-TeV energy physics, colliding leptons with a centre-of-mass-energy up to 3TeV, more than ten times the energy of the LEP. This is only possible in a linear collider, where no energy is lo...

  13. Technologies for Future Vertex and Tracking Detectors at CLIC

    CERN Document Server

    Spannagel, Simon

    2018-01-01

    CLIC is a proposed linear e$^{+}$e$^{-}$ collider with center-of-mass energies of up to 3 TeV. Its main objectives are precise top quark and Higgs boson measurements, as well as searches for Beyond Standard Model physics. To meet the physics goals, the vertex and tracking detectors require not only a spatial resolution of a few micrometers and a very low material budget, but also timing capabilities with a precision of a few nanoseconds to allow suppression of beam-induced backgrounds. Different technologies using hybrid silicon detectors are explored for the vertex detectors, such as dedicated readout ASICs, small-pitch active edge sensors as well as capacitively coupled High-Voltage CMOS sensors. Monolithic sensors are considered as an option for the tracking detector, and a prototype using a CMOS process with a high-resistivity epitaxial layer is being designed. Different designs using a silicon-on-insulator process are under investigation for both vertex and tracking detector. All prototypes are evaluate...

  14. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.

  15. CLIC, a Multi-TeV $e^{\\pm}$ Linear Collider

    CERN Document Server

    Delahaye, J P; Bossart, Rudolf; Braun, Hans Heinrich; Carron, G; Coosemans, Williame; Corsini, R; D'Amico, T E; Godot, J C; Guignard, Gilbert; Hutchins, S; Jensen, E; Millich, Antonio; Pearce, P; Potier, J P; Riche, A J; Rinolfi, Louis; Schulte, Daniel; Suberlucq, Guy; Thorndahl, L; Valentini, M; Wuensch, Walter; Zimmermann, Frank; Napoly, O; Raubenheimer, T O; Ruth, Ronald D; Syratchev, I V

    1999-01-01

    The CLIC study of a high energy (0.5 - 5 TeV), high luminosity (1034 - 1035 cm-2 sec-1) e± linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structures operating at high accelerating fields (150 MV/m) significantly reduces the length and, in consequence, the cost of the linac. Based on new beam and linac parameters derived from a recently developed set of general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost-effective and efficient drive beam generation scheme for RF power production by the so-called "Two Beam Acceleration (TBA)" method is described. It uses a thermionic gun and a fully-loaded normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches, and RF multiplication by funnelling in compressor rings to produce the desired bunch structure. Recent 30 GHz hardware developments and ...

  16. Feasibility Study for the CERN "CLIC" Photo-Injector Laser System

    CERN Document Server

    Ross, I N

    2000-01-01

    This study is designed to contribute to the development of the Cern Linear Collider (CLIC). One route to the generation of the required electron injection into this system is through the use of photo-cathodes illuminated with a suitably designed laser system. The requirements of the accelerator and photo-cathodes have led to a specification for the laser system given in Table 1. Because CLIC will not be built directly but in stages, notably via CLIC Test Facilities (CTF), this table also includes the specification for a photo-injector laser system for CTF3 which will be required before the final system for CLIC. Although there are significant differences between these two specifications it will be necessary to design the CTF3 system such that it can be easily upgraded to the system for CLIC and will be able to check all the critical issues necessary for CLIC.

  17. Beam delivery system tuning and luminosity monitoring in the Compact Linear Collider

    Directory of Open Access Journals (Sweden)

    B. Dalena

    2012-05-01

    Full Text Available Emittance preservation in the beam delivery system (BDS is one of the major challenges in the Compact Linear Collider (CLIC. The fast detuning of the final focus optics requires an on-line tuning procedure in order to keep luminosity close to the maximum. In this paper we discuss different tuning techniques to mitigate the displacement of magnets in the CLIC BDS and in particular in the final focus system. Some of them require a fast luminosity measurement. Here we study the possibility to use beam-beam background processes at CLIC 3 TeV c.m. energy as a fast luminosity signal. In particular, the hadron multiplicity in the detector region is investigated.

  18. Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation.

    Directory of Open Access Journals (Sweden)

    Jiateng Zhong

    Full Text Available CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER, nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.

  19. submitter Measurements on a 20-layer 12.5 kV prototype inductive adder for the CLIC DR kickers

    CERN Document Server

    Holma, J

    2018-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The predamping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely stable field pulses during injection and extraction of bunches. The DR extraction kicker system consists of a stripline kicker and two pulse modulators. The present specification for the modulators calls for pulses with 160 ns or 900 ns flat-top duration of nominally ±12.5 kV and 305 A, with ripple of not more than ±0.02% (±2.5 V). In addition, there is a proposal to use the same modulators and striplines for dumping the beam, with ±17.5 kV stripline pulse voltage. An inductive adder is a very promising approach to meeting the CLIC DR extraction kicker specifications because analogue modulation methods can be applied to adjust the shape of the flat-top of the output w...

  20. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  1. WAKEFIELD DAMPING FOR THE CLIC CRAB CAVITY

    CERN Document Server

    Ambattu, P; Dexter, A; Carter, R; Khan, V; Jones, R; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  2. The CLIC Positron Capture and Acceleration in the Injector Linac.

    CERN Document Server

    Vivoli, Alessandro; Chehab, Robert; Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Rinolfi, Louis; Strakhovenko, Vladimir; Variola, Alessandro

    2010-01-01

    The baseline of the CLIC study considers non-polarized e+ for the 3 TeV centre of mass energy. The e+ source is based on the hybrid targets scheme, where a crystal-radiator target is followed by an amorphous-converter target. Simulations have been performed from the exit of the amorphous target up to the entrance of the Pre-Damping Ring. Downstream the amorphous target, there is an Adiabatic Matching Device (AMD) followed by a Pre-Injector Linac accelerating the e+ beam up to around 200 MeV. Then a common Injector Linac (for both e+ and e-) accelerates the beams up to 2.86 GeV before being injected into the Pre-Damping Ring. In this note, the characteristics of the AMD and the other sections are described and the beam parameters at the entrance of the Pre-Damping Ring are given.

  3. Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane.

    Science.gov (United States)

    Goodchild, Sophia C; Howell, Michael W; Cordina, Nicole M; Littler, Dene R; Breit, Samuel N; Curmi, Paul M G; Brown, Louise Jennifer

    2009-12-01

    Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.

  4. The CLIC Study of a Multi-TeV $e^\\pm$ Linear Collider

    CERN Document Server

    Bossart, Rudolf; Carron, G; Coosemans, Williame; Corsini, R; D'Amico, T E; Delahaye, J P; Godot, J C; Guignard, Gilbert; Hagel, J; Hutchins, S; Jensen, E; Luong, M; Millich, Antonio; Pearce, P; Potier, J P; Riche, A J; Rinolfi, Louis; Schulte, Daniel; Suberlucq, Guy; Thorndahl, L; Valentini, M; Wilson, Ian H; Wuensch, Walter; Napoly, O; Raubenheimer, T O; Ruth, Ronald D; Syratchev, I V

    1999-01-01

    The progress of the Compact LInear Collider (CLIC) study of a multi-TeV (0.5 - 5 TeV) high-luminosity (5'1033 to 1.5'1035 cm-2 sec-1) e± linear collider based on Two-Beam Acceleration (TBA) is presented. The length and, in consequence, the cost of the overall complex is reduced by the use of high accelerating fields (150 MV/m), which are generated by specially damped 30 GHz normal-conducting accelerating structures. The large amount of RF power (400 MW/m) required to generate these high fields is provided by a novel RF power generating scheme which is potentially both cost and power efficient. After summarising the progress made in the developments of 30 GHz components and the performance obtained in the present phase of the CLIC Test Facility (CTF2), the design of a new test facility (CTF3), which will demonstrate the feasibility of the RF power generating scheme, is described

  5. M10.3.4: CLIC crab cavity specifications completed

    CERN Document Server

    Dexter, A; Ambattu, P; Shinton, I; Jones, R

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  6. CLIC CRAB CAVITY SPECIFICATIONS MILESTONE: M10.3.4

    CERN Document Server

    Ambattu, P; Dexter, A; Jones, R; McIntosh, P; Shinton, I

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  7. Vertex-Detector R&D for CLIC

    OpenAIRE

    Dannheim, Dominik

    2013-01-01

    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the curr...

  8. Recent Improvements to the Control of the CTF3 High-Current Drive Beam

    CERN Document Server

    Constance, B; Gamba, D; Skowronski, P K

    2013-01-01

    In order to demonstrate the feasibility of the CLIC multiTeV linear collider option, the drive beam complex at the CLIC Test Facility (CTF3) at CERN is providing highcurrent electron pulses for a number of related experiments. By means of a system of electron pulse compression and bunch frequency multiplication, a fully loaded, 120 MeV linac is used to generate 140 ns electron pulses of around 28 Amperes. Subsequent deceleration of this high-current drive beam demonstrates principles behind the CLIC acceleration scheme, and produces 12 GHz RF power for experimental purposes. As the facility has progressed toward routine operation, a number of studies aimed at improving the drive beam performance have been carried out. Additional feedbacks, automated steering programs, and improved control of optics and dispersion have contributed to a more stable, reproducible drive beam with consequent benefits for the experiments.

  9. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Directory of Open Access Journals (Sweden)

    Peder Eliasson

    2008-05-01

    Full Text Available The Compact Linear Collider (CLIC main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs, indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  10. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    Science.gov (United States)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  11. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  12. A Vertex and Tracking Detector System for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear $e^+e^−$ collider pose challenging demands on the performance of the detector system. In particular the vertex and tracking detectors have to combine precision measurements with robustness against the expected high rates of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A detector concept meeting these requirements has been developed and an integrated R&D program addressing the challenges is progressing in the areas of ultra-thin sensors and readout ASICs, interconnect technology, mechanical integration and cooling.

  13. CLICdet: The post-CDR CLIC detector model

    CERN Document Server

    Alipour Tehrani, Niloufar; Cure, Benoit; Dannheim, Dominik; Duarte Ramos, Fernando; Elsener, Konrad; Gaddi, Andrea; Gerwig, Hubert; Green, Steven; Grefe, Christian; Hynds, Daniel; Klempt, Wolfgang; Linssen, Lucie; Nikiforou, Nikiforos; Nurnberg, Andreas Matthias; Marshall, John Stuart; Petric, Marko; Redford, Sophie; Roloff, Philipp Gerhard; Sailer, Andre; Sefkow, Felix; Sicking, Eva; Siegrist, Nicolas; Simon, Frank Richard; Simoniello, Rosa; Spannagel, Simon; Sroka, Szymon Krzysztof; Strom, Lars Rickard; Weber, Matthias Artur

    2017-01-01

    A new model for the CLIC detector has been defined based on lessons learnt while working with the CDR detector models and after a series of simulation studies. The new model, dubbed "CLICdet", also incorporates the experience from various R&D activities linked to a future experiment at CLIC. This note describes the studies and thoughts leading to the new detector model, and gives details on all of its sub-detector systems.

  14. The physics benchmark processes for the detector performance studies used in CLIC CDR Volume 3

    CERN Document Server

    Allanach, B.J.; Desch, K.; Ellis, J.; Giudice, G.; Grefe, C.; Kraml, S.; Lastovicka, T.; Linssen, L.; Marschall, J.; Martin, S.P.; Muennich, A.; Poss, S.; Roloff, P.; Simon, F.; Strube, J.; Thomson, M.; Wells, J.D.

    2012-01-01

    This note describes the detector benchmark processes used in volume 3 of the CLIC conceptual design report (CDR), which explores a staged construction and operation of the CLIC accelerator. The goal of the detector benchmark studies is to assess the performance of the CLIC ILD and CLIC SiD detector concepts for different physics processes and at a few CLIC centre-of-mass energies.

  15. CLIC project timeline

    CERN Multimedia

    CLIC, Compact Linear Collider Project

    2018-01-01

    The CLIC project timeline. Current plan is to start at sqrt(s)=380 GeV for Higgs and top quark precision physics and upgrade up to 3 TeV. This timeline represent a purely technical schedule and assumes support at the European Strategy for Particle Physics (ESPP) in 2020 and available funding.

  16. Beam-Beam Simulations with GUINEA-PIG

    CERN Document Server

    Schulte, Daniel

    1998-01-01

    While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. GUINEA-PIG is a code to simulate the impact of this effect on luminosity and back ground. A short overview of the program is given with examples of its application to the back ground strudies for TESLA, the top quark threshold scan and a possible luminosity monitor, as well as some results for CLIC.

  17. CLIC: Overview of applications using high-gradient acceleration, from photon sources to medical physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  18. Physics highlights at ILC and CLIC

    CERN Document Server

    Lukić, Strahinja

    2015-01-01

    In this lecture, the physics potential for the e+e- linear collider experiments ILC and CLIC is reviewed. The experimental conditions are compared to those at hadron colliders and their intrinsic value for precision experiments, complementary to the hadron colliders, is discussed. The detector concepts for ILC and CLIC are outlined in their most important aspects related to the precision physics. Highlights from the physics program and from the benchmark studies are given. It is shown that linear colliders are a promising tool, complementing the LHC in essential ways to test the Standard Model and to search for new physics.

  19. RF-Breakdown kicks at the CTF3 two-beam test stand

    CERN Document Server

    Palaia, Andrea; Muranaka, Tomoko; Ruber, Roger; Ziemann, V; Farabolini, W

    2012-01-01

    The measurement of the effects of RF-breakdown on the beam in CLIC prototype accelerator structures is one of the key aspects of the CLIC two-beam acceleration scheme being addressed at the Two-beam Test Stand (TBTS) at CTF3. RF-breakdown can randomly cause energy loss and transverse kicks to the beam. Transverse kicks have been measured by means of a screen intercepting the beam after the accelerator structure. In correspondence of a RFbreakdown we detect a double beam spot which we interpret as a sudden change of the beam trajectory within a single beam pulse. To time-resolve such effect, the TBTS has been equipped with five inductive Beam Position Monitors (BPMs) and a spectrometer line to measure both relative changes of the beam trajectory and energy losses. Here we discuss the methodology used and we present the latest results of such measurements

  20. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  1. Comparative Study of the Tuning Performances of the Nominal and Long L* CLIC Final Focus System at √s = 380 GeV

    CERN Document Server

    Plassard, F; Marin, E; Tomás, R

    2017-01-01

    Mitigation of static imperfections for emittance preservation is one of the most important and challenging tasks faced by the Compact Linear Collider (CLIC) beam delivery system. A simulation campaign has been performed to recover the nominal luminosity by means of different alignment procedures. The state of the art of the tuning studies is drawn up. Comparative studies of the tuning performances and a tuning-based final focus system design optimization for two L options are presented. The effectiveness of the tuning techniques applied to these different lattices will be decisive for the final layout of the CLIC final focus system at √s = 380 GeV.

  2. CLIC, a 0.5 to 5 TeV e$^{\\pm}$ Compact Linear Collider

    CERN Document Server

    Delahaye, J P; Braun, Hans Heinrich; Carron, G; Chautard, F; Coosemans, Williame; Corsini, R; D'Amico, T E; Dehler, M; Godot, J C; Guignard, Gilbert; Hagel, J; Hutchins, S; Johnson, C D; Jensen, E; Kamber, I; Millich, Antonio; Pearce, P; Potier, J P; Riche, A J; Rinolfi, Louis; Schulte, Daniel; Suberlucq, Guy; Thorndahl, L; Valentini, M; Warner, D J; Wilson, Ian H; Wuensch, Walter; Napoly, O; Raubenheimer, T O; Ruth, Ronald D

    1998-01-01

    The CLIC study of a high energy (0.5 - 5 TeV), high luminosity (10^34 - 10^35 cm^-2 sec^-1) e± linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structure s operating at high accelerating fields (100 to 200 MV/m) significantly reduces the length and, in consequence the cost of the linac. Based on new beam and linac parameters derived from a recently dev eloped set of general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost effe ctive and very efficient drive beam generation scheme for RF power production by the so-called "Two Beam Acceleration (TBA)" method is described. It uses a conventional thermionic gun and a fully-load ed normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches and RF multiplication by funneling in compressor rings to produce the desired bunch st ructure. Recent 30...

  3. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2017-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  4. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  5. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  6. CLIC/ILC Researchers Explore New Avenues for Collaboration

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    Researchers from CLIC and ILC met for their first common International Workshop on Linear Colliders, which was held in Geneva from 18 to 22 October. Although the talks were mostly scientific and technical, the political message behind them was a breakthrough, as the workshop showed the progress made in unifying the two communities.   The International Workshop on Linear Colliders (IWLC), which was organised by the European Committee for Future Accelerators, hosted by CERN, and held at CERN and the International Conference Centre in Geneva, attracted a large audience of about 500 experts. Although there have been other joint conferences between the CLIC and ILC communities before, they have all been focused on specific technical and/or managerial issues. The IWLC was part of an ongoing effort by CLIC and ILC to provide an environment in which researchers can exchange ideas, inform their peers about their most recent achievements and work together on common issues. Given the possible technical ov...

  7. Development and Validation of a Multipoint Based Laser Alignment System for CLIC

    CERN Document Server

    Stern, G; Lackner, F; Mainaud-Durand, H; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2013-01-01

    Alignment is one of the major challenges within CLIC study, since all accelerator components have to be aligned with accuracy up to 10 μm over sliding windows of 200 m. So far, the straight line reference concept has been based on stretched wires coupled with Wire Positioning Sensors. This concept should be validated through inter-comparison with an alternative solution. This paper proposes an alternative concept where laser beam acts as straight line reference and optical shutters coupled with cameras visualise the beam. The principle was first validated by a series of tests using low-cost components. Yet, in order to further decrease measurement uncertainty in this validation step, a high-precision automatised micrometric table and reference targets have been added to the setup. The paper presents the results obtained with this new equipment, in terms of measurement precision. In addition, the paper gives an overview of first tests done at long distance (up to 53 m), having emphasis on beam divergence

  8. Physics performances for Scalar Electron, Scalar Muon and Scalar Neutrino searches at 3 TeV and 1.4 TeV at CLIC

    CERN Document Server

    Battaglia, M.; Marshall, J.S.; Poss, S.; Sailer, A.; Thomson, M.; van der Kraaij, E.

    2013-01-01

    The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within t...

  9. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  10. Mechanical design of a pre-isolator for the CLIC final focusing magnets

    CERN Document Server

    Gaddi, A; Ramos, F; Siegrist, N

    2012-01-01

    Due to the very small vertical beam sizes, the final focusing elements at the future CLIC linear collider need to be stable against vibrations to below 0.15 nanometres at frequencies above about 4 Hz. One of the key elements in the strategy to achieve such a stable environment is a passive, heavy pre-isolator. In this report, the results from the dynamic finite element analyses of the proposed design for such a passive preisolator are summarized. Furthermore, the results from a low frequency, heavy mass passive vibration isolation test set-up used to validate the calculations are shown.

  11. The CLIC stability study on the feasibility of colliding high energy nanobeams

    CERN Document Server

    Assmann, R W; Guignard, Gilbert; Leros, Nicolas; Redaelli, S; Schulte, Daniel; Wilson, Ian H; Zimmermann, Frank

    2002-01-01

    The Compact Linear Collider (CLIC) study at CERN proposes a linear collider with nanometer-size colliding beams at an energy of 3 TeV c.m. ("colliding high energy nanobeams"). The transport, demagnification and collision of these nanobeams imposes magnet vibration tolerances that range from 0.2 nm to a few nanometers. This is well below the floor vibration usually observed. A test stand for magnet stability was set-up at CERN in the immediate neighborhood of roads, operating accelerators, workshops, and regular office space. It was equipped with modern stabilization equipment. The experimental setup and first preliminary results are presented. (10 refs).

  12. Propagation error simulations concerning the CLIC active prealignment

    CERN Document Server

    Touzé, T; Missiaen, D

    2009-01-01

    The CLIC1 components will have to be prealigned within a thirty times more demanding tolerance than the existing CERNmachines. It is a technical challenge and a key issue for the CLIC feasibility. Simulations have been undertaken concerning the propagation error due to the measurement uncertainties of the prealignment systems. The uncertainties of measurement, taken as hypothesis for the simulations, are based on the data obtained on several dedicated facilities. This paper introduces the simulations and the latest results obtained, as well as the facilities.

  13. CLIC's three-step plan

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    In early October, the Compact Linear Collider (CLIC) collaboration published its final Conceptual Design Report. Accompanying it was a strategic summary document that describes a whole new approach to the project: developing the linear e+e− collider in three energy stages. Though CLIC’s future still depends on signs from the LHC, its new staged approach to high-energy electron-positron physics for the post-LHC era is nothing short of convincing.   Instead of asking for a 48-kilometre-long commitment right off the bat, the CLIC collaboration is now presenting an accelerator that can be constructed in stages. For example, it could begin as an 11-kilometre 500 GeV accelerator that could later be extended to a 27-kilometre 1.5 TeV machine. Finally, after a decade or so of data taking, it could be taken up to the full 48-kilometre 3 TeV facility (see image 2). “Not only is the approach technically and financially practical, it also offers a very convincing physics prog...

  14. Simulation of an all silicon tracker for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Muenker, Magdalena; Nuernerg, Andreas [CERN (Switzerland); University of Bonn (Germany)

    2016-07-01

    CLIC is a proposed future electron-positron linear collider with a centre-of-mass energy up to 3 TeV. The aim of high precision measurements at CLIC is driving the design of the detector for CLIC. To perform a precise measurement of the Higgs recoil mass a momentum resolution of σ{sub p{sub T}}/p{sub T}{sup 2} ∝2 . 10{sup -5} GeV{sup -1} is required. This imposes a single point tracking resolution of ∝7 μm. To reach this aim an all silicon tracker is foreseen for CLIC. A simulation chain has been set up to study the performance of different silicon sensor designs. This simulation chain consists of a GEANT4 simulation to model the energy deposit in silicon, a finite element simulation of the charge drift and signal formation with TCAD and a fast parametric modelling of the front-end electronics. By that energy fluctuations, electronic noise and the digitalisation of the readout signal are taken into account. Furthermore this tool is used to predict the sensor performance in terms of efficiency, cluster-size and resolution. This framework is used to study the performance of e.g. sensors with different pitch and thickness. Various incident angles of charged particles with respect to the sensor surface and the effect of a magnetic field are taken into account. The simulation chain is validated with data.

  15. Online Resources for High School Teachers--A CLIC Away

    Science.gov (United States)

    Holmes, Jon L.

    2000-04-01

    "I'm a high school teacher. I don't have time to sift through all of JCE to find what I need. I don't have enough time as it is!" If you need to find things in a hurry, go to JCE HS CLIC, the JCE High School Chemed Learning Information Center, http://JChemEd.chem.wisc.edu/HS/. You will find good solid, reliable information, and you will find it fast. CLIC is open 24 hours every day, all over the world. What You Will Find at JCE CLIC We know teachers are pressed for time. During the few minutes between classes or at the end of the day, information needs to be found very quickly. Perhaps you are looking for a demo that illustrates electrochemistry using Cu, Mg, orange juice, and a clock; or a student activity on chromatography that is ready to copy and hand out; or a video to illustrate the action of aqua regia on gold, because you can't use aqua regia and can't afford gold. You can find each of these quickly at CLIC. The Journal has always provided lots of articles designed with high school teachers in mind. What the new JCE HS CLIC does is collect the recent materials at one address on JCE Online, making it quicker and easier for you to find them. Information has been gathered from both print and online versions of the Journal, from JCE Software, and from JCE Internet. It is organized as shown at the bottom of the page. Getting Access to Information You have located something that interests you, perhaps a list of tested demonstrations that pertain to consumer chemistry. Now it is time to get it. JCE subscribers (individuals and libraries) can read, download, and print the full versions of the articles as well as all supplemental materials, including student handouts and instructor's notes. You will need the username and password that are on the mailing label that comes with your Journaleach month. JCE HS CLIC home page: http://JChemEd.chem.wisc.edu/HS/ Your Suggestions, Please Our plans for JCE HS CLIC do not end with what you find now. Other resources and features

  16. Separation of hadronic W and Z decays in the CLIC_ILD and the CLICdet detector models at 1.4 and 3TeV

    CERN Document Server

    AUTHOR|(SzGeCERN)793139; Roloff, Philipp Gerhard; Strom, Lars Rickard; Weber, Matthias Artur

    2017-01-01

    A study of the W and Z separation was performed for the CLIC_ILD and the CLICdet detector models for the proposed Compact Linear Collider (CLIC). Comparisons were done for fully-hadronic WW and ZZ events at the collision energies of 1.4 and 3 TeV. Particle flow objects are reconstructed using a full simulation of the events including relevant beam-induced background processes. Several different collections of particles, with varying level of background suppression, were compared for each of the detector models and optimal jet clustering parameters were found in each case, resulting in the best separation of the W and Z mass peaks. The CLICdet detector model performs similar to CLIC_ILD with an achieved jet mass separation of around 1.6 $\\sigma$ at 1.4 TeV and 1.3 $\\sigma$ at 3 TeV. For both detector models we achieve a better separation at 1.4 TeV when comparing dijet masses rather than large-R jet masses. At 3 TeV jets with a radius around R=0.5 perform similarly well as dijets.

  17. Cam Mover Alignment System positioning with the Wire Positioning with the Wire Position Sensor Feedback for CLIC

    CERN Document Server

    AUTHOR|(CDS)2077936; Mainaud Durand, Helene; Kostka, Z.S.

    2016-01-01

    Compact Linear Collider (CLIC) is a study of an electron-positron collider with nominal energy of 3 TeV and luminosity of 2 ∙ 1034 cm-2s-1. The luminosity goal leads to stringent alignment requirements for single quadrupole magnets. Vertical and lateral offset deviations with regards to a given orbit reference in both ends of a quadrupole shall be below 1 μm and quadrupole roll deviation shall be below 100 μrad. Translation in the direction of particle beam is not controlled but mechanically locked. A parallel kinematic platform based on cam movers was chosen as system for detailed studies. Earlier studies have shown that cam movers can reach the CLIC requirements through an iterative process. The paper presents new modular off-the-shelf control electronics and software including three optional positioning algorithms based on iterations as well as a more advanced algorithm which can reach target position in one movement. The advanced algorithm reads wire position sensors (WPS), calculates quadrupole orien...

  18. Dimension-6 operator analysis of the CLIC sensitivity to new physics

    International Nuclear Information System (INIS)

    Ellis, John; Roloff, Philipp; Sanz, Verónica; You, Tevong

    2017-01-01

    We estimate the possible accuracies of measurements at the proposed CLIC e + e − collider of Higgs and W + W − production at centre-of-mass energies up to 3 TeV, incorporating also Higgsstrahlung projections at higher energies that had not been considered previously, and use them to explore the prospective CLIC sensitivities to decoupled new physics. We present the resulting constraints on the Wilson coefficients of dimension-6 operators in a model-independent approach based on the Standard Model effective field theory (SM EFT). The higher centre-of-mass energy of CLIC, compared to other projects such as the ILC and CEPC, gives it greater sensitivity to the coefficients of some of the operators we study. We find that CLIC Higgs measurements may be sensitive to new physics scales Λ=O(10) TeV for individual operators, reduced to O(1) TeV sensitivity for a global fit marginalising over the coefficients of all contributing operators. We give some examples of the corresponding prospective constraints on specific scenarios for physics beyond the SM, including stop quarks and the dilaton/radion.

  19. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  20. Thermo-mechanical modelling and experimental validation of CLIC prototype module type 0

    CERN Document Server

    Kortelainen, Lauri; Koivurova, Hannu; Riddone, Germana; Österberg, Kenneth

    Micron level stability of the two-meter repetitive modules constituting the two main linacs is one of the most important requirements to achieve the luminosity goal for the Compact Linear Collider. Structural deformations due to thermal loads and related to the RF power dissipated inside the modules affect the alignment of the linacs and therefore the resulting luminosity performance. A CLIC prototype module has been assembled in a dedicated laboratory and a thermal test program has been started in order to study its thermo-mechanical behaviour. This thesis focuses on the finite elements modelling of the first CLIC prototype module 0. The aim of the modelling is to examine the temperature distributions and the resulting deformations of the module in different operating conditions defined in the thermal test program. The theoretical results have been compared to the experimental ones; the comparison shows that the results are in good agreement both for the thermal behaviour of the module and for the resulting ...

  1. Progress on low emittance tuning for the CLIC Damping Rings

    CERN Document Server

    Alabau-Gonzalvo, J; Papaphilippou, Y

    2014-01-01

    In the frame of the CLIC main Damping Ring a study on the sensitivity of the lattice to different sources of misalignment is presented. The minimum equilibrium emittance is simulated and analytically estimated under dipole and quadrupole rolls, and quadrupole and sextupole vertical offsets. The result of this study establishes alignment tolerances to preserve the vertical emittance below the design value (1 pmrad). Non-linear dynamics studies have been done to determine the dynamic aperture in the presence of misalignments.

  2. Tuning of Clic accelerating structure prototypes at CERN

    CERN Document Server

    Shi, J; Olyunin, A; Wuensch, W

    2010-01-01

    An RF measurement system has been set up at CERN for use in the X-band accelerating structure development program of the CLIC study. Using the system, S-parameters are measured and the field distribution is obtained automatically using a bead-pull technique. The corrections for tuning the structure are calculated from an initial measurement and cell-by-cell tuning is applied to obtain the correct phase advance and minimum reflection at the operation frequency. The detailed tuning procedure is presented and explained along with an example of measurement and tuning of CLIC accelerating structure prototypes.

  3. Top Mass Measurement at CLIC at 500 GeV

    CERN Document Server

    Simon, Frank; Poss, Stephane

    2012-01-01

    We present a study of the capability of a 500 GeV e+e- collider based on CLIC technology for precision measurements of top quark properties. The analysis is based on full detector simulations of the CLIC_ILD detector concept using Geant4, including realistic background contributions from two photon processes. Event reconstruction is performed using a particle flow algorithm with stringent cuts to control the influence of background. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of ttbar pairs using event samples of signal and standard model background processes corresponding to an integrated luminosity of 100/fb. Statistical uncertainties of the top mass given by the invariant mass of its decay products of 0.08 GeV and 0.09 GeV are obtained for the fully-hadronic and the semi-leptonic decay channel, respectively, demonstrating that similar precision to that at ILC can be achieved at CLIC despite less favorable experimental conditions.

  4. Higgs Physics at CLIC

    CERN Document Server

    AUTHOR|(CDS)2073690

    2016-01-01

    The Compact Linear Collider (CLIC) is an attractive option for a future multi-TeV linear electron-positron collider, offering the potential for a rich precision physics programme, combined with sensitivity to a wide range of new phenomena. The physics reach of CLIC has been studied in the context of three distinct centre-of-mass energies, √s = 350 GeV, 1.4 TeV and 3.0 TeV. This staged scenario provides an excellent environment for precise studies of the properties of the 126 GeV Higgs boson. Operation at √s = 350 GeV allows, on the one hand, for a determination of the couplings and width of the Higgs boson in a model-independent manner through the study of the Higgsstrahlung process, and on the other hand, for a study of Higgs bosons produced in W+W− fusion for the most common Higgs decay modes. Operation at higher centre-of-mass energies, √s = 1.4 TeV and 3 TeV, provides high statistics W+W− fusion samples allowing for high precision measurements of many Higgs couplings and a study of rare Higgs de...

  5. Status report of the baseline collimation system of CLIC. Part I

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  6. Status report of the baseline collimation system of CLIC. Part II

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  7. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A

    2010-01-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, o...

  8. PACMAN – an Innovative Doctoral Programme for CLIC

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The final network project funded under the European Commission’s Seventh Framework Programme (FP7), Marie Curie Actions, held its kick-off meeting at CERN on 20 November 2013.   PACMAN – a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale – is in the final stage of recruiting 10 PhD students to do research on beam instrumentation, metrology, micrometric alignment, magnetic measurements, nano-positioning and high-precision engineering. The students will acquire multi-disciplinary expertise in advanced engineering combined with a broad span of transferable skills. “PACMAN gives us the opportunity to attract students to CERN at a key moment in the CLIC study,” said Frédérick Bordry, Head of CERN’s Technology Department. “This is also an ideal opportunity to further develop CERN’s networks with industry and universities.” “The project is...

  9. Status and plans of the Compact Linear Collider Study

    CERN Document Server

    Doebert, Steffen

    2016-01-01

    The Compact Linear Collider (CLIC) project is exploring the possibility of constructing a multiTeV linear electron-positron collider for high-energy frontier physics studies beyond the LHC era. The CLIC concept is based on high-gradient normal-conducting accelerating structures. The RF power for the acceleration of the colliding beams is produced by a two-beam acceleration scheme, where power is extracted from a high current drive beam that runs parallel with the main linac. The key ongoing studies involve accelerator parameter optimisation, technical studies and component development, alignment and stability, and include a number of system performance studies in test-facilities around the world. The CLIC physics potential and main detector issues, as well as possible implementation staging, are being studied in parallel. A summary of the progress and status of the corresponding studies will be given, as well as an outline of the preparation and work towards developing a CLIC implementation plan by 2018/19

  10. CLIC Brochure

    CERN Multimedia

    AUTHOR|(CDS)2086185

    2015-01-01

    After the discovery of the Higgs boson and with upgrades to higher energy and luminosity, the LHC is mapping the route of particle physics into the future. The next step in this journey of discovery could be a linear electron-positron collider, which would complement the LHC and allow high precision measurements of the Higgs boson, the top quark and electroweak processes in addition to possible new physics beyond the Standard Model. The Compact Linear Collider is under development by two worldwide collaborations, pushing the limits of particle acceleration and detection. Technological R&D, physics simulations and engineering studies must all come together to make CLIC a reality.

  11. Two-Beam Linear Colliders - Special Issues

    CERN Document Server

    Corsini, Roberto

    2010-01-01

    The path towards a multi-TeV e+e- linear collider proposed by the CLIC study is based on the Two-Beam Acceleration (TBA) scheme. Such a scheme is promising in term of efficiency, reliability and cost. The rationale behind the two-beam scheme is discussed in the paper, together with the special issues related to this technology and the R&D needed to demonstrate its feasibility.

  12. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  13. Validation of a Micrometric remotely controlled pre-alignment system for the CLIC Linear Collider using a test setup (Mock-Up) with 5 degrees of freedom

    CERN Document Server

    Mainaud Durand, H; Griffet, S; Kemppinen, J; Leuxe, R; Sosin, M

    2011-01-01

    The CLIC main beam quadrupoles need to be prealigned within 17 um rms with respect to a straight reference line along a sliding window of 200 m. A readjustment system based on eccentric cam movers, which will provide stiffness to the support assembly, is being studied. The cam movers were qualified on a 1 degree of freedom (DOF) test setup, where a repeatability of adjustment below 1um was measured along their whole range. This paper presents the 5 DOF mock-up, built for the validation of the eccentric cam movers, as well as the first results of tests carried out: resolution of displacement along the whole range, measurements of the support eigenfrequencies.

  14. A damped and detuned accelerating structure for the main linacs of the compact linear collider

    CERN Document Server

    Khan, V

    2011-01-01

    Linear colliders are an option for lepton collision at several TeV. The Compact Linear Collider (CLIC) aims at electron and positron collisions at a centre of mass energy of 3 TeV. In CLIC, the main accelerating structures are designed to operate at an X-band frequency of 12 GHz with an accelerating gradient of 100 MV/m. Two significant issues in linear accelerators that can prevent high gradient being achieved are electrical breakdown and wakefields. The baseline design for the CLIC main linacs relies on a small aperture size to reduce the breakdown probability and a strong damping scheme to suppress the wakefields. The strong damping scheme may have a higher possibility of electrical breakdown. In this thesis an alternative design for the main accelerating structures of CLIC is studied and various aspects of this design are discussed. This design is known as a Damped and Detuned Structure (DDS) which relies on moderate damping and strong detuning of the higher order modes (HOMs). The broad idea of DDS is ba...

  15. Results from the CLIC X-Band Structure Test Program at NLCTA

    International Nuclear Information System (INIS)

    Adolphsen, C.

    2009-01-01

    As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their fabrication (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure, which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives that could increase efficiency. This paper summarizes the high gradient test results from NLCTA in support of this effort.

  16. Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties.

    Directory of Open Access Journals (Sweden)

    Stefania Averaimo

    Full Text Available Chloride intracellular Channel 1 (CLIC1 is a metamorphic protein that changes from a soluble cytoplasmic protein into a transmembrane protein. Once inserted into membranes, CLIC1 multimerises and is able to form chloride selective ion channels. Whilst CLIC1 behaves as an ion channel both in cells and in artificial lipid bilayers, its structure in the soluble form has led to some uncertainty as to whether it really is an ion channel protein. CLIC1 has a single putative transmembrane region that contains only two charged residues: arginine 29 (Arg29 and lysine 37 (Lys37. As charged residues are likely to have a key role in ion channel function, we hypothesized that mutating them to neutral alanine to generate K37A and R29A CLIC1 would alter the electrophysiological characteristics of CLIC1. By using three different electrophysiological approaches: i single channel Tip-Dip in artificial bilayers using soluble recombinant CLIC1, ii cell-attached and iii whole-cell patch clamp recordings in transiently transfected HEK cells, we determined that the K37A mutation altered the single-channel conductance while the R29A mutation affected the single-channel open probability in response to variation in membrane potential. Our results show that mutation of the two charged amino acids (K37 and R29 in the putative transmembrane region of CLIC1 alters the biophysical properties of the ion channel in both artificial bilayers and cells. Hence these charged residues are directly involved in regulating its ion channel activity. This strongly suggests that, despite its unusual structure, CLIC1 itself is able to form a chloride ion channel.

  17. Ring Coils on the Endcap Yoke of a CLIC Detector

    CERN Document Server

    Gerwig, H

    2011-01-01

    Ring coils on the endcap return yoke can be useful in several ways. Depending on their size and the current chosen, they may either be used to reduce the fringe-field outside the return yoke of a detector, or to reduce considerably the thickness of the endcap yoke. The main focus of this note is the analysis of the ring coils, with the aim to reduce the overall length of the CLIC_ILD detector. In addition, some results concerning the fringe field in the vicinity of the detector are shown.

  18. arXiv Dimension-6 Operator Analysis of the CLIC Sensitivity to New Physics

    CERN Document Server

    Ellis, John; Sanz, Veronica; You, Tevong

    2017-05-17

    We estimate the possible accuracies of measurements at the proposed CLIC e$^{+}$ e$^{−}$ collider of Higgs and W$^{+}$ W$^{−}$ production at centre-of-mass energies up to 3 TeV, incorporating also Higgsstrahlung projections at higher energies that had not been consid-ered previously, and use them to explore the prospective CLIC sensitivities to decoupled new physics. We present the resulting constraints on the Wilson coefficients of dimension-6 operators in a model-independent approach based on the Standard Model effective field theory (SM EFT). The higher centre-of-mass energy of CLIC, compared to other projects such as the ILC and CEPC, gives it greater sensitivity to the coefficients of some of the operators we study. We find that CLIC Higgs measurements may be sensitive to new physics scales $ \\Lambda =\\mathcal{O}(10) $ TeV for individual operators, reduced to $ \\mathcal{O}(1) $ TeV sensitivity for a global fit marginalising over the coefficients of all contributing operators. We give some examples of...

  19. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  20. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  1. Study of a 5-Tesla large aperture coil for the CLIC detector

    CERN Document Server

    Cure, B

    2011-01-01

    The present design of a CLIC detector foresees a large solenoid magnet with a 6 m aperture and a magnetic induction of 5 T at the interaction point. This can be achieved by a thin superconducting coil. This report gives the typical main parameters of such a coil and presents the feasibility based on and compared with the CMS and Atlas solenoid coil designs, indicating the limits on the conductor and the identified R&D prospects.

  2. Higgs physics at the CLIC electron-positron linear collider.

    Science.gov (United States)

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  3. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  4. Phase detection electronics for CLIC

    CERN Document Server

    Andersson, A

    2011-01-01

    The Compact Linear Collider (CLIC) requires very tight RF phase synchronisation in order to preserve high luminosity. The electronics required for processing the signals delivered from the phase pick-ups present a significant challenge. This paper discusses the strategy adopted to achieve a sufficiently accurate measurement of the phase. Performance measurements performed in the lab of some of the sub-systems are also presented.

  5. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  6. Mass and Cross Section Measurements of light-flavored Squarks at CLIC

    CERN Document Server

    WEUSTE, L.

    2011-01-01

    We present a study of the prospects for the measurement of TeV-scale light-flavored right-squark masses and and the production cross sections at a 3 TeV e+e- collider based on CLIC technology. The analysis, performed in the framework of the CLIC Conceptual Design Report, is based on full Geant4 simulations of the CLIC ILD detector concept, including standard model physics background and machine related hadronic background from two-photon processes. The events were reconstructed using particle flow event reconstruction, and the mass and cross sections were obtained from a template fit built from generator-level simulations with smearing to parametrize the detector response. For an integrated luminosity of 2 ab^-1, a statistical precision of 5.9 GeV, corresponding to 0.52%, was obtained for unseparated first and second generation right squarks. For the combined cross section, a precision of 0.07 fb, corresponding to 5%, was obtained.

  7. Issues and Feasibility Demonstration of Positioning Closed Loop Control for the CLIC Supporting System Using a Test Mock-up with Five Degrees of Freedom

    CERN Document Server

    Sosin, M; Chritin, N; Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    Since several years, CERN is studying the feasibility of building a high energy e+ e- linear collider: the CLIC (Compact LInear Collider). One of the challenges of such a collider is the pre-alignment precision and accuracy requirement on the transverse positions of the linac components, which is typically 14 μm over a window of 200 m. To ensure the possibility of positioning within such tight constraints, CERN Beams Department’s Survey team has worked intensively at developing the methods and technology needed to achieve that objective. This paper describes activities which were performed on a test bench (mock-up) with five degrees of freedom (DOF) for the qualification of control algorithms for the CLIC supporting system active-pre-alignment. Present understanding, lessons learned (“know how”), issues of sensors noise and mechanical components nonlinearities are presented.

  8. CTF3 Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Ronald D

    2003-03-13

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  9. Simulations of the effects of a superconducting damping wiggler on a short bunched electron beam at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, Julian; Bernhard, Axel; Blomley, Edmund; Hillenbrand, Steffen; Mueller, Anke-Susanne; Smale, Nigel [Karlsruher Institut fuer Technologie (KIT) (Germany); Zolotarev, Konstantin [Budker Institute of Nuclear Physics (Russian Federation)

    2016-07-01

    (As a part of the CLIC collaboration) A CLIC damping wiggler prototype has been installed at the ANKA synchrotron light source in order to validate the technical design of the 3 T superconducting conduction cooled wiggler and its cryostat and to cary out studies on beam dynamical aspects including collective effects. The latter one will be the main focus in this talk. Collective effects that will occur in damping rings are an issue in ANKA's short bunch operation as well. To simulate these effects the accelerator's model including its insertion device has to be very accurate. Such a model of the ANKA storage ring in short bunch operation mode has been developed in elegant. Simulations with the damping wiggler switched on and off have been performed in order to investigate effects of the wiggler on different machine parameters. These new results will be discussed with regard to the question if on the one hand the wiggler could be used for diagnostic purposes and if on the other hand the wiggler's impact on the beam dynamics is changed by the collective effects.

  10. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  11. Higgs physics at the CLIC electron-positron linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Benhammou, Y.; Borysov, O.; Kananov, S.; Levy, A.; Levy, I.; Rosenblat, O. [Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel); Abusleme, A.; Diaz Gutierrez, M.A.; Vogel Gonzalez, M. [Pontificia Universidad Catolica de Chile, Santiago (Chile); Afanaciev, K.; Makarenko, V.; Shumeiko, N. [Belarusian State University, National Scientific and Educational Centre of Particle and High Energy Physics, Minsk (Belarus); Alipour Tehrani, N.; Dannheim, D.; Elsener, K.; Grefe, C.; Hauschild, M.; Hynds, D.; Klempt, W.; Kulis, S.; Linssen, L.; Maier, A.A.; Muenker, R.M.; Muennich, A.; Nikiforou, N.; Nuernberg, A.; Perez Codina, E.; Petric, M.; Pitters, F.; Poss, S.G.; Redford, S.; Roloff, P.; Sailer, A.; Schlatter, D.; Schulte, D.; Sicking, E.; Simoniello, R.; Stapnes, S.; Stroem, R.; Strube, J.; Weber, M.A. [CERN, Geneva (Switzerland); Balazs, C.; Charles, T.K. [Monash University, Melbourne (Australia); Benoit, M.; Vicente Barreto Pinto, M. [Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire (DPNC), Geneva (Switzerland); Bilki, B.; Demarteau, M.; Repond, J.; Weerts, H.; Xia, L. [Argonne National Laboratory, Argonne, IL (United States); Blaising, J.J. [Laboratoire d' Annecy-le-Vieux de Physique des Particules, Annecy-le-Vieux (France); Boland, M.J.; Felzmann, U.; Rassool, R. [University of Melbourne, Melbourne (Australia); Boronat, M.; Fuster, J.; Garcia, I.; Ros, E.; Vos, M. [CSIC-University of Valencia, IFIC, Valencia (Spain); Bozovic-Jelisavcic, I.; Kacarevic, G.; Lukic, S.; Milutinovic-Dumbelovic, G.; Pandurovic, M. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Buckland, M.; Vossebeld, J. [University of Liverpool, Liverpool (United Kingdom); Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kopec, M.; Moron, J.; Swientek, K.P. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Crakow (Poland); Burrows, P.N. [Oxford University, Oxford (United Kingdom); Daniluk, W.; Krupa, B.; Kucharczyk, M.; Lesiak, T.; Moszczynski, A.; Pawlik, B.; Sopicki, P.; Wojton, T.; Zawiejski, L. [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Crakow (Poland); Eigen, G.; Kraaij, E. van der [University of Bergen, Department of Physics and Technology, Bergen (Norway); Firu, E.; Ghenescu, V.; Neagu, A.T.; Preda, T.; Zgura, I.S. [Institute of Space Science, Bucharest (Romania); Gabriel, M.; Simon, F.; Szalay, M.; Tesar, M.; Kolk, N. van der; Weuste, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Gaede, F. [CERN, Geneva (Switzerland); DESY, Hamburg (Germany); Goldstein, J. [University of Bristol, Bristol (United Kingdom); Green, S.; Marshall, J.S.; Mei, K.; Thomson, M.A.; Xu, B. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Hawkes, C.; Nikolopoulos, K.; Watson, M.; Watson, N.; Winter, A. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Kalinowski, J.; Krawczyk, M.; Zarnecki, A.F. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Lastovicka, T. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Martin, V.J. [University of Edinburgh, Edinburgh (United Kingdom); Moya, D.; Ruiz-Jimeno, A.; Vila, I. [CSIC-University of Cantabria, IFCA, Santander (Spain); Peric, I. [Institut fuer Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Protopopescu, D.; Robson, A. [University of Glasgow, Glasgow (United Kingdom); Trenado, J. [University of Barcelona, Barcelona (ES); Uggerhoej, U.I. [Aarhus University, Aarhus (DK); Wells, J.D. [University of Michigan, Physics Department, Ann Arbor, MI (US)

    2017-07-15

    The Compact Linear Collider (CLIC) is an option for a future e{sup +}e{sup -} collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: √(s) = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e{sup +}e{sup -} → ZH) and WW-fusion (e{sup +}e{sup -} → Hν{sub e} anti ν{sub e}), resulting in precise measurements of the production cross sections, the Higgs total decay width Γ{sub H}, and model-independent determinations of the Higgs couplings. Operation at √(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e{sup +}e{sup -} → t anti tH and e{sup +}e{sup -} → HHν{sub e} anti ν{sub e} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit. (orig.)

  12. Measurement of the branching ratios for the Standard Model Higgs decays into muon pairs and into Z boson pairs at a 1.4 TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)701211; Bozovic-Jelisavcic, Ivanka; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2016-01-01

    The measurement of the Higgs production cross-section times the branching ratios for its decays into μ+μ- and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e+e- collisions at 1.4 TeV centre-of-mass energy. Analyses for both decay channels are based on a full simulation of the CLIC_ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab 1 and unpolarised beams are assumed. For the H-->ZZ* decay, the purely hadronic final state (ZZ*--> qq ̄qq ̄) is considered as well as ZZ* decays into two jets and two leptons (ZZ*--> qq ̄l+l- ). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching fraction for decay into a Z boson pair times the Hi...

  13. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  14. Fiducialisation and initial alignment of CLIC component with micrometric accuracy

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalan Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan Petrov; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon William; Modena, Michele; Novotny, Peter; Sanz, Claude; Severino, Giordana; Russenschuck, Stephan; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia; CERN. Geneva. ATS Department

    2016-01-01

    We propose a new solution to fiducialise the three major components of the CLIC collider: quadrupoles, beam-position monitors (BPM), and accelerating structures (AS). This solution is based on the use of a copper-beryllium (CuBe) wire to locate the reference position, i.e. the symmetry axes of the components (their magnetic, respectively electromagnetic centre axis), and to determine their position in the common support assembly defining a local coordinate system, with respect to the fiducials. These alignment targets will be used later to align the support assembly in the tunnel. With such a method, several accelerator components of different types, supported by a dedicated adjustment system, can be simultaneously fiducialised and pre-aligned using the same wire, enabling a micrometric accuracy with help of a 3D coordinate measurement machine (CMM). Alternative solutions based on frequency scanning interferometry (FSI) and micro-triangulation are also under development, to perform such fiducialisation and in...

  15. Multi-bunch effect of resistive wall in the Beam Delivery System of the Compact Linear Collider

    CERN Document Server

    Mutzner, R; Rumolo, G; Tomas, R; Pieloni, T

    2010-01-01

    Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present work focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Our simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. The two cases of 3 TeV and 500 GeV have been examined.

  16. En route vers la nano stabilisation de CLIC faisceau principale et focalisation finale

    CERN Document Server

    Artoos, K; Guinchard, M; Hauviller, Claude; Lackner, F; CERN. Geneva. TS Department

    2008-01-01

    Pour atteindre la luminosité voulue de CLIC, la taille transversale du faisceau doit être de l?ordre du nanomètre. Ceci nécessite une stabilité vibratoire des quadripôles du faisceau principal de 1 nm et même 0.1 nm pour les doublets de la focalisation finale. La nano technologie et la nano stabilisation sont des activités qui évoluent rapidement dans l?industrie et centres de recherche pour des applications très variées comme l?électronique, l?optique, la chimie voire la médecine. Cette présentation décrit les avancées techniques nécessaires pour atteindre l?objectif de CLIC et les projets et collaborations R&D prévus pour démontrer la faisabilité de la nano stabilisation de CLIC en 2010.

  17. CLIC Detector Concepts as described in the CDR: Differences between the GEANT4 and Engineering Models

    CERN Document Server

    Elsener, K; Schlatter, D; Siegrist, N

    2011-01-01

    The CLIC_ILD and CLIC_SiD detector concepts as used for the CDR Vol. 2 in 2011 exist both in GEANT4 simulation models and in engineering layout drawings. At this early stage of a conceptual design, there are inevitably differences between these models, which are described in this note.

  18. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  19. High Field Studies for CLIC Accelerating Structures Development

    CERN Document Server

    Profatilova, I

    2017-01-01

    Compact Linear Collider RF structures need to be able to achieve the very high average accelerating gradient of 100 MV/m. One of the main challenges in reaching such high accelerating gradients is to avoid vacuum electrical breakdown within CLIC accelerating structures. Accelerating structure tests are carried out in the klystron-based test stands known as the XBoxes. In order to investigate vacuum breakdown phenomena and its statistical characteristics in a simpler system and get results in a faster way, pulsed dc systems have been developed at CERN. To acquire sufficient breakdown data in a reasonable period of time, high repetition rate pulse generators are used in the systems for breakdown studies, so-called pulsed dc system. This paper describes the pulsed dc systems and the two high repetition rate circuits, which produce high-voltage pulses for it, available at CERN.

  20. Measurement of Higgs decay to WW$^{*}$ in Higgsstrahlung at $\\sqrt{s}=500$ GeV ILC and in WW-fusion at $\\sqrt{s}=3$ TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718111

    2017-01-01

    This talk presents results of the two independent analyses evaluating the measurement accuracy of the branching ratio for the Standard model Higgs boson decay to a W-pair, at the Compact Linear Collider (CLIC) and at the International Linear Collider (ILC). The considered Higgs production channels are the WW-fusion for the highest energy stage of CLIC, $\\sqrt{s}=3$ TeV, and the Higgsstrahlung process for the nominal ILC energy, $\\sqrt{s}=500$ GeV. Both studies are performed using the full simulation of the detector. The realistic experimental conditions have been simulated including beam energy spectrum, initial state radiation and the background from $\\gamma \\gamma \\rightarrow hadrons$ processes, which are overlaid on simulated events. The multivariate analysis technique is used for the final event selection and the expected relative statistical uncertainty, $\\Delta ( \\sigma \\cdot BR)/(\\sigma \\cdot BR)$, of the measured Higgs production cross sections is estimated.

  1. Characterization of Cs-Sb cathodes for high charge RF photoinjectors

    CERN Document Server

    AUTHOR|(CDS)2082505; Beghi, Marco

    Future accelerators such as CLIC (Compact LInear Collider), require high brightness electron beams that could be produced with a photoinjector (laser-driven electron source). Cs2Te photocathodes in combination with ultra-violet (UV) laser beams are currently used in many photoinjector facilities, but requirements to the electron sources for future accelerators like CLIC are more demanding. The main challenge for the CLIC drive beam photoinjector is to achieve high bunch charges (8.4 nC), high bunch repetition rates (500 MHz) within long trains (140 s) and with suciently long cathode lifetimes. In particular the laser pulse energy in UV, for such long pulse trains, is currently limited due to a degradation of the beam quality during the 4th harmonic frequency conversion process. Using the 2nd harmonic (green laser beam), provided it is matched with a low photoemission threshold photocathode material, would overcome this limitation. Cesium antimonide (Cs3Sb), being a photoemissive material in the visible range,...

  2. Beam position measurement system at the Fermilab main accelerator

    International Nuclear Information System (INIS)

    Kerns, Q.A.

    1975-01-01

    The beam position system of the Fermilab Main Ring contains one horizontal and one vertical Electrostatic Beam Pickup in each of the 96 cells of the machine. A pair of 75 ohm cables transmits the induced signal from the machine tunnel to the nearest service building. In each of the 24 service buildings, there is a solid-state multiplexer and a beam position detector which processes the A-B signal pairs to produce an intensity-normalized voltage proportional to beam displacement. This voltage is digitized, read into buffer of the Lockheed MAC A, and in turn transferred to the Xerox 530. Horizontal or vertical orbits can be obtained in 50 millisec. Orbits are obtained at injection and at a Main Ring Sample time, if requested, anywhere on the acceleration cycle. Injection orbits can be flattened automatically by a program that sets dipole trim magnets. (auth)

  3. Sensitivity of CLIC at 380 GeV to the top FCNC decay $t\\rightarrow cH$

    CERN Document Server

    AUTHOR|(SzGeCERN)442572

    2017-01-01

    In the Standard Model (SM), flavour changing neutral current (FCNC) top decays, possible at loop level only, are very strongly suppressed. Observation of any such decay would be a direct signature of physics beyond the SM. Large enhancements are possible in many "new physics" scenarios and the largest enhancement is in most cases expected for the $t\\rightarrow cH$ decay. A full study for CLIC was based on the WHIZARD simulation of FCNC top decays within the 2HDM(III) model. Beam polarization and beam-induced background were taken into account. Top pair production events with the FCNC decay $t\\rightarrow cH$ can be identified based on kinematic constrains and flavour tagging information. Due to a large overlap in the kinematic space with standard top pair events, the final signal selection-efficiency is small, at the 10% level. Expected limits on $BR(t\\rightarrow cH)\\times BR(H\\rightarrow b\\bar{b})$ are compared with earlier results based on parton level simulation.

  4. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  5. Multi-Bunch effect of resistive wall in the beam delivery system of the Compact Linear Collider

    CERN Document Server

    Mutzner, Raphael; Pieloni, Tatiana; Rivkin, Leonid

    2010-01-01

    Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present master thesis focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. We examine the two cases of 3 TeV and 500 GeV in this work, for stainless steel and copper pipes.

  6. Simulated top-quark pair production in the CLIC_ILD detector

    CERN Multimedia

    CLIC, Compact Linear Collider Project

    2017-01-01

    Simulated production of a top-quark pair with a nominal collision energy of 3 TeV, in the CLIC_ILD detector. The event display show the reconstructed particles used as input for a jet clustering algorithm.

  7. Determination of Longitudinal Electron Bunch Lengths on Picosecond Time Scales

    CERN Document Server

    Martínez, C; Calviño, F

    1999-01-01

    At CERN (European Laboratory for Particle Physics) the CLIC (Compact Linear Collider) study is pursuing the design of an electron-positron high-energy linear collider using an innovative concept for the RF (Radio Frequency) power production, the socalled two-beam acceleration scheme. In order to keep the length of the collider in a reasonable range while being able of accelerating electrons and positrons up to 5 TeV, the normal-conducting accelerating structures should operate at very high frequency (in this case 30 GHz). The RF power necessary to feed the accelerating cavities is provided by a second electron beam, the drive beam, running parallel to the main beam. The CLIC Test Facility (CTF) was build with the main aim of studying and demonstrating the feasibility of the two beam acceleration scheme and technology. It is composed of two beams, the drive beam that will generate the 30 GHz RF power and the main beam which will be accelerated by this power. In order to have a good efficiency for the power gen...

  8. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

    Science.gov (United States)

    Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin

    2017-08-04

    The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.

  9. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  10. Measurement of the H$\\rightarrow$WW$^*$ Branching Ratio at 1.4TeV using the semileptonic final state at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)762723; Watson, Nigel

    2016-01-01

    This note summarises a study to evaluate the potential to measure the H$\\rightarrow$WW$^*$ branching fraction at CLIC, 1.4TeV centre-of-mass energy, with the CLIC_ILD detector, using the WW$\\rightarrow$qql$\

  11. Material studies in the frame of CLIC Accelerating structures production conducted within the Mechanics program together with Metso Oy

    CERN Document Server

    Nurminen, Janne

    2012-01-01

    MeChanICs (Marie Curie Linking Industry to CERN) is an Industry to Academia Partnership and Pathways (IAPP) platform for precision manufacturing knowledge exchange bringing together five Finnish manufacturing companies with Helsinki Insitute of Physics (HIP) and CERN. The scientific objective of MeChanICs project is to contribute to the manufacturing RTD of CLIC enabling technologies. The focus is on the design, materials, machining, brazing and assembly of A CLIC accelerating structure. This study deals with the materials work package of the program and wants to explore the following items: 1) producing copper accelerating structures for CLIC from raw copper powder by near net shape hot isostatic pressing (HIP). 2) The feasibility to use HIP diffusion bonding of the accelerator structures as a function of surface quality and applied temperature and pressure. 3) Brazing for CLIC AS auxiliary systems, like water cooling or damping manifolds, to the disc stack by coating one of the brazing partners with an enab...

  12. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  13. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    Directory of Open Access Journals (Sweden)

    E. Adli

    2011-08-01

    Full Text Available We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter regime of CLIC.

  14. Impact of detector solenoid on the Compact Linear Collider luminosity performance

    CERN Document Server

    Inntjore Levinsen, Y.; Tomás, Rogelio; Schulte, Daniel

    2014-05-27

    In order to obtain the necessary luminosity with a reasonable amount of beam power, the Compact Linear Collider (CLIC) design includes an unprecedented collision beam size of {\\sigma} = 1 nm vertically and {\\sigma} = 45 nm horizontally. Given the small and very flat beams, the luminosity can be significantly degraded from the impact of the experimental solenoid field in combination with a large crossing angle. Main effects include y-x'-coupling and increase of vertical dispersion. Additionally, Incoherent Synchrotron Radiation (ISR) from the orbit deflection created by the solenoid field, increases the beam emittance. A detailed study of the impact from a realistic solenoid field and the associated correction techniques for the CLIC Final Focus is presented. In particular, the impact of techniques to compensate the beam optics distortions due to the detector solenoid main field and its overlap with the final focus magnets are shown. The unrecoverable luminosity loss due to ISR has been evaluated, and found to...

  15. Away-Day

    CERN Document Server

    Away-Day

    1998-01-01

    A review of the CLIC parameters at 1 and 3 TeV (5 TeV?) in order to re-define new "target' parameters taking into account: - the new model of the multibunch accelerating structure, - the new drive beam scheme, - the beam simulations with multibunches. Suggested schedule: 7 Present parameters and objectives of the review (moderator: J.P. Delahaye). The multibunch accelerating structure (moderator: I. Wilson) Best guess of the RF parameters - Optimisation of RF to beam efficiency. Single bunch and multibunches parameters (moderator: G. Guignard) Charge per bunch and bunch length, minimum vertical emittance Number of bunches and separation between bunches. Constraints and freedom from new drive beam scheme (moderator: R. Ruth) RF pulse length, accelerating gradient. Power linac (moderator: L.Thorndahl) 1 TRS powering 1, 2 or 4 CAS?, focusing. CLIC module (moderator: W.Wuensch) layout of the main and drive module, improving the filling factor. Injector complex of the main beam (moderator: L.Rinolfi) Adaptation to...

  16. Hidden Valley searches at CLIC

    CERN Document Server

    Kucharczyk, Marcin

    2018-01-01

    Several beyond the Standard Model theoretical models predict the decay of Higgs bosons decaying into heavy long-lived particles. The sensitivity to observe such long-lived particles has been determined using a data sample of e$^+$e$^-$ collisions at $\\sqrt{s}=$3 TeV, simulated with the CLIC_ILD detector model and corresponding to an integrated luminosity of 3 ab$^{-1}$. The analysis identifies secondary vertices which can be associated with the decay of such particles. Decay products are subsequently combined to reconstruct the parent bosons. The sensitivity range covers long-lived particle lifetimes from 1 to 300 ps, masses between 25 and 50 GeV/c$^2$, and a parent Higgs mass of 126 GeV/c$^2$.

  17. Limits on top FCNC decay t$\\rightarrow$cH and t$\\rightarrow$c$\\gamma$ from CLIC at 380 GeV

    CERN Document Server

    Zarnecki, Aleksander

    2018-01-01

    FCNC top decays are very strongly suppressed in the Standard Model and the observation of any such decay would be a direct signature of physics beyond SM. Many "new physics" scenarios predict contributions to FCNC processes and the largest enhancement in many models is for t$\\rightarrow$cH decay. Enhancements for the decay channel t$\\rightarrow$c$\\gamma$ are more modest, but the decay still has a clearly identifiable kinematic signature. Prospects for measuring these decays at CLIC running at 380 GeV were studied with full detector simulation, taking the luminosity distribution, beam polarization and beam induced background into account. Top pair production events with t$\\rightarrow$cH decays can be identified based on the kinematic constraints and flavour tagging information. The analysis was divided into three steps: classification of top pair candidate events, event quality determination and kinematic reconstruction based on signal or background hypotheses, and final separation of signal from background. T...

  18. Study of the hybrid controller electronics for the nano-stabilization of mechanical vibrations of CLIC quadrupoles

    International Nuclear Information System (INIS)

    Carmona, P Fernandez; Artoos, K; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Ballester, R Moron; Collette, C

    2011-01-01

    In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.

  19. Summary and Conclusions of the First DESY Test Beam User Workshop arXiv

    CERN Document Server

    Arling, Jan-Hendrik; Bandiera, Laura; Behnke, Ties; Dannheim, Dominik; Diener, Ralf; Dreyling-Eschweiler, Jan; Ehrlichmann, Heiko; Gerbershagen, Andreas; Gregor, Ingrid-Maria; Hayrapetyan, Avetik; Kaminski, Jochen; Kroll, Jiri; Martinengo, Paolo; Meyners, Norbert; Müntz, Christian; Poley, Luise; Schwenker, Benjamin; Stanitzki, Marcel

    On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future linear colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities.

  20. Beam commissioning and operation of the J-PARC main ring synchrotron

    International Nuclear Information System (INIS)

    Koseki, Tadashi; Arakaki, Yoshitugu; Chin, Yong Ho; Hara, Keigo; Hasegawa, Katsushi; Hashimoto, Yoshinori; Hori, Yoichiro; Igarashi, Susumu; Ishii, Koji; Kamikubota, Norihiko; Kimura, Takuro; Koseki, Kunio; Fan, Kuanjyun; Kubota, Chikashi; Kuniyasu, Yuu; Kurimoto, Yoshinori; Lee, Seishu; Matsumoto, Hiroshi; Molodozhentsev, Alexander; Morita, Yuichi; Murasugi, Shigeru; Muto, Ryotaro; Naito, Fujio; Nakagawa, Hidetoshi; Nakamura, Shu; Niki, Kazuaki; Ohmi, Kazuhito; Ohmori, Chihiro; Okada, Masashi; Okamura, Katsuya; Oogoe, Takao; Ooya, Kazufumi; Sato, Kenichi; Sato, Yoichi; Sato, Yoshihiro; Satou, Kenichirou; Shimamoto, Masayuki; Shirakata, Masashi; Someya, Hirohiko; Sugimoto, Takuya; Takano, Junpei; Takeda, Yasuhiro; Takiyama, Yoichi; Tejima, Masaki; Toda, Makoto; Tomizawa, Masahito; Toyama, Takeshi; Uota, Masahiko; Yamada, Shuei; Yamamoto, Noboru; Yanaoka, Eiichi; Yoshii, Masahito; Harada, Hiroyuki; Hatakeyama, Shuichiro; Hotchi, Hideaki; Nomura, Masahiro; Schnase, Alexander; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Shimogawa, Tetsushi

    2012-01-01

    The slow cycling main ring synchrotron (MR) is located the furthest downstream in the J-PARC accelerator cascade. It became available for user operation in 2009 and provides high-intensity 30 GeV proton beams for various experiments on particle and nuclear physics. The MR has two beam extraction systems: a fast extraction system for beam delivery to the neutrino beam line of the Tokai-to-Kamioka (T2K) experiment and a slow extraction system for beam delivery to the hadron experimental hall. After a nine-month beam shutdown during the recovery from the Great East Japan Earthquake, the J-PARC facility resumed beam operation in December 2011. The MR delivers a 160-200 kW beam to the T2K experiment and a 3.5-6 kW beam to users in the hadron experimental hall. In this paper, a brief review of the MR and the recent status of beam operation are presented. Near-future plans for a beam intensity upgrade are also discussed. (author)

  1. Design and Construction of a Beam Position Monitor Prototype for the Test Beam Line of the CTF3

    CERN Document Server

    Garcia Garrigos, Juan Jose

    2008-01-01

    A prototype of Beam Position Monitor (BPM) for the Test Beam Line (TBL) of the 3rd CLIC Test Facility (CTF3) at CERN has been designed and constructed at IFIC in collaboration with the CERN CTF3 team. The design is a scaled version of the BPMs of the CTF3 linac. The design goals are a resolution of 5 μm, an overall precision of 50 μm, in a circular vacuum chamber of 24 mm, in a frequency bandwidth between 10 kHz and 100MHz.The BPMis an inductive type BPM. Beam positions are derived from the image current created by a high frequency electron bunch beam into four electrodes surrounding the vacuum chamber. In this work we describe the mechanical design and construction, the description of the associated electronics together with the first calibration measurements performed in a wire test bench at CERN.

  2. CLIC5 stabilizes membrane-actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI.

    Science.gov (United States)

    Salles, Felipe T; Andrade, Leonardo R; Tanda, Soichi; Grati, M'hamed; Plona, Kathleen L; Gagnon, Leona H; Johnson, Kenneth R; Kachar, Bechara; Berryman, Mark A

    2014-01-01

    Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Confocal and scanning electron microscopy of CLIC5-deficient jitterbug (jbg) mice revealed progressive fusion of stereocilia as early as postnatal day 10. Radixin (RDX), protein tyrosine phosphatase receptor Q (PTPRQ), and taperin (TPRN), deafness-associated proteins that also concentrate at the base of stereocilia, were mislocalized in fused stereocilia of jbg mice. TPRQ and RDX were dispersed even prior to stereocilia fusion. Biochemical assays showed interaction of CLIC5 with ERM proteins, TPRN, and possibly myosin VI (MYO6). In addition, CLIC5 and RDX failed to localize normally in fused stereocilia of MYO6 mutant mice. Based on these findings, we propose a model in which these proteins work together as a complex to stabilize linkages between the plasma membrane and subjacent actin cytoskeleton at the base of stereocilia. © Published 2013 Wiley Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  3. Results on the interaction of an intense bunched electron beam with resonant cavities at 35 GHz

    CERN Document Server

    Gardelle, J; Rullier, J L; Vermare, C; Wuensch, Walter; Lidia, S M; Westenskow, G A; Donohue, J T; Meurdesoif, Y; Lekston, J M; MacKay, W W

    1999-01-01

    The Two-Beam Accelerator (TBA) concept is currently being investigated both at Lawrence Berkeley National Laboratory (LBNL) and at CERN. As part of this program, a 7 MeV, 1-kA electron beam produced by the PIVAIR accelerator at CESTA has been used to power a free electron laser (FEL) amplifier at 35 GHz. At the FEL exit, the bunched electron beam is transported and focused into a resonant cavity built by the CLIC group at CERN. The power and frequency of the microwave output generated when the bunched beam traverses two different cavities are measured. (7 refs).

  4. Beam Dynamics Studies in Recirculating Machines

    CERN Document Server

    Pellegrini, Dario; Latina, A

    The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...

  5. Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider

    CERN Document Server

    Korostelev, M S

    2006-01-01

    A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...

  6. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  7. Magnetic Field Requirements for a Detector at the Linear Collider Using a TPC as Main Tracking Device

    CERN Document Server

    Klempt, W

    2010-01-01

    This note describes the requirements to the magnetic field which occur in an ILD like detector at ILC or CLIC. In particular we describe requirements introduced by choosing a TPC as main tracking detector.

  8. Choke-mode damped structure design for the Compact Linear Collider main linac

    CERN Document Server

    Zha, Hao; Grudiev, Alexej; Huang, Wenhui; Shi, Jiaru; Tang, Chuanxiang; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design to waveguide damped structures for the main linac of the Compact Linear Collider (CLIC). Choke-mode structures have the potential for lower pulsed temperature rise and simpler and less expensive fabrication. An equivalent circuit model based on transmission line theory for higher-order-mode damping is presented. Using this model, a new choke geometry is proposed and the wakefield performance is verified using GDFIDL. This structure has a comparable wakefield damping effect to the baseline design which uses waveguide damping. A prototype structure with the same iris dimensions and accelerating gradient as the nominal CLIC design, but with the new choke geometry, has been designed for high-power tests. DOI: 10.1103/PhysRevSTAB.15.122003

  9. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    Science.gov (United States)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  10. La construcción de audiencias en Internet a través de los cebos de clics

    OpenAIRE

    Gracia Biarge, Pablo

    2018-01-01

    El presente trabajo tiene como objetivo estudiar el papel de los cebos de clics en la prensa digital y su influencia en la calidad y veracidad de la información publicada. Para ello se analizarán diversos casos ilustrativos y se realizarán entrevistas a profesionales, además de contar con el apoyo teórico de autores y otros profesionales conocedores de este fenómeno. El present treball té com a objectiu estudiar el paper dels esquers de clics en la premsa digital i la seva influència en...

  11. Tracking Performance in High Multiplicity Environment for the CLIC ILD Detector

    CERN Document Server

    Killenberg, M

    2012-01-01

    We report on the tracking efficiency and the fraction of badly reconstructed tracks in the CLIC ILD detector for high multiplicity events (tt ̄@3 TeV) with and without the presence of γγ →hadrons background. They have been studied for the silicon tracking, the TPC tracking and the so called FullLDC tacking, which combines silicon and TPC measurements.

  12. Impedance budget and beam stability analysis of the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Martens, M.A.; Ng, K.Y.

    1993-05-01

    The impedance budget of the Fermilab Main Injector (MI) is estimated, which includes the contributions from the resistive walls, bellows, rf cavities, steps, Lambertsons, etc. Beam stability during ramping and bunch coalescence is analyzed. The transverse resistive-wall coupled bunch growth is found to be somewhat worse than the situation in the Main Ring (MR)

  13. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00714258

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  14. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  15. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  16. Beam dynamics studies and emittance optimization in the CTF3 linac at CERN

    CERN Document Server

    Urschütz, Peter; Corsini, Roberto; Döbert, Steffen; Ferrari, Arnaud; Tecker, Frank

    2006-01-01

    Small transverse beam emittances and well-known lattice functions are crucial for the 30 GHz power production in the Power Extraction and Transfer Structure (PETS) and for the commissioning of the Delay Loop of the CLIC Test Facility 3 (CTF3). Following beam dynamics simulation results, two additional solenoids were installed in the CTF3 injector in order to improve the emittance. During the runs in 2005 and 2006, an intensive measurement campaign to determine Twiss parameters and beam sizes was launched. The results obtained by means of quadrupole scans for different modes of operation suggest emittances well below the nominal .n,rms = 100 ?Î?Êm and a good agreement with PARMELA simulations.

  17. Breakdown Studies for the CLIC Accelerating

    CERN Document Server

    Calatroni, S; Kovermann, J; Taborelli, M; Timko, H; Wuensch, W; Durabekova, F; Nordlund, K; Pohjonen, A; Kuronen, A

    2010-01-01

    Optimizing the design and the manufacturing of the CLIC RF accelerating structures for achieving the target value of breakdown rate at the nominal accelerating gradient of 100 MV/m requires a detailed understanding of all the steps involved in the mechanism of breakdown. These include surface modification under RF fields, electron emission and neutral evaporation in the vacuum, arc ignition and consequent surface modification due to plasma bombardment. Together with RF tests, experiments are conducted in a simple DC test set-up instrumented with electrical diagnostics and optical spectroscopy. The results are also used for validating simulations which are performed using a wide range of numerical tools (MD coupled to electrostatic codes, PIC plasma simulations) able to include all the above phenomena. Some recent results are presented in this paper

  18. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  19. Thermo-structural analysis of the rf-induced pulsed surface heating of the CLIC accelerating structures

    CERN Document Server

    Huopana, Jouni Juhani

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider. The acceleration of the particles is done by RF (Radio Frequency). The surfaces of the RF (radio frequency) accelerating cavities are exposed to high pulsed RF currents which induce cyclic thermal stresses. These cyclic stresses are crucial for the fatigue lifetime of the cavities. To study the fatigue phenomenon properly the induced stresses must be well known. ANSYS FEM simulations were made to study the thermo-structural behaviour of the CLIC accelerating structure in copper zirconium, bimetallic and diamond coated constructions. The simulations showed the existence of high thermal stresses and low stress level shockwaves. It was also shown that the bimetallic structure increases stress values due to the differences in material properties. Diamond coating was found to reduce the thermal stresses.

  20. The CLIC ILD CDR Geometry for the CDR Monte Carlo Mass Production

    CERN Document Server

    Muennich, A

    2012-01-01

    The CLIC ILD CDR detector for the Monte Carlo event simulation is described in a GEANT4 application, with some parameters available in a database and XML files. This makes it difficult to quickly “look up” interesting parameters of the detector geometry used for the simulation. This note summarises the important geometrical parameters and some details of the implemented detector components.

  1. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  2. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    International Nuclear Information System (INIS)

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10 9 electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE's National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE's evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc

  3. 53 MHZ Feedforward beam loading compensation in the Fermilab main injector

    International Nuclear Information System (INIS)

    Joseph E Dey et al.

    2003-01-01

    53 MHz feedforward beam loading compensation is crucial to all operations of the Main Injector. Recently a system using a fundamental frequency down converter mixer, a digital bucket delay module and a fundamental frequency up converter mixer were used to produce a one-turn-delay feedforward signal. This signal was then combined with the low level RF signal to the cavities to cancel the transient beam induced voltage. During operation they have shown consistently over 20 dB reduction in side-band voltage around the fundamental frequency during Proton coalescing and over 14 dB in multi-batch antiproton coalescing

  4. Investigation into diode pumped modelocked Nd based laser oscillators for the CLIC-3 photoinjector system

    NARCIS (Netherlands)

    Valentine, G.J.; Burns, D.; Bente, E.A.J.M.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    The photo-injector system envisaged for the proposed CLIC linear e+-e- accelerator at CERN has a demanding set of specifications on output pulse structure, power and timing stability. This paper reports on results obtained with quasi-CW diode pumped laser oscillators with output stabilisation. A

  5. Simulation of the Beam Dump for a High Intensity Electron Gun

    CERN Document Server

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  6. Application of Metal-Semiconductor-Metal (MSM) Photodetectors for Transverse and Longitudinal Intra-Bunch Beam Diagnostics

    CERN Document Server

    Steinhagen, R J; Boland, M J; Lucas, T G; Rassool, R P

    2013-01-01

    The performance reach of modern accelerators is often governed by the ability to reliably measure and control the beam stability. In high-brightness lepton and high-energy hadron accelerators, the use of optical diagnostic techniques is becoming more widespread as the required bandwidth, resolution and high RF beam power level involved limit the use of traditional electro-magnetic RF pick-up based methods. This contribution discusses the use of fibre-coupled ultra-fast Metal-Semiconductor-Metal Photodetectors (MSM-PD) as an alternative, dependablemeans to measure signals derived from electro-optical and synchrotron-light based diagnostics systems. It describes the beam studies performed at CERN’s CLIC Test Facility (CTF3) and the Australian Synchrotron to assess the feasibility of this technology as a robust, wide-band and sensitive technique for measuring transverse intra-bunch and bunch-by-bunch beam oscillations, longitudinal beam profiles, un-bunched beam population and beam-halo profiles. The amplifica...

  7. Alignment Challenges for a Future Linear Collider

    CERN Document Server

    Durand, H; Stern, G

    2013-01-01

    The preservation of ultra-low emittances in the main linac and Beam Delivery System area is one of the main challenges for linear colliders. This requires alignment tolerances never achieved before at that scale, down to the micrometre level. As a matter of fact, in the LHC, the goal for the smoothing of the components was to obtain a 1σ deviation with respect to a smooth curve of 0.15 mm over a 150 m long sliding window, while for the CLIC project for example, it corresponds to 10 μm over a sliding window of 200 m in the Beam Delivery System area. Two complementary strategies are being studied to fulfil these requirements: the development and validation of long range alignment systems over a few hundreds of metres and short range alignment systems over a few metres. The studies undertaken, with associated tests setups and the latest results will be detailed, as well as their application for the alignment of both CLIC and ILC colliders.

  8. RGA studies on aluminium chambers for transport line-2 of CLIC facility at CERN

    International Nuclear Information System (INIS)

    Kumar, K.V.A.N.P.S.; Yadav, Praveen Kumar; Sindal, B.K.; Tiwari, S.K.; Tripti, B.; Shukla, S.K.

    2009-01-01

    The Aluminium Chambers for Transport Line-2 (TL-2) of CLIC (Compact Linear Collider) facility were developed by RRCAT, Indore under the CERN-DAE collaboration work. The ultimate vacuum required for these chambers is in 10 -10 mbar range. The design and fabrication of the chambers were done at Workshop-A, RRCAT, Indore. Ultra High Vacuum (UHV) Section at RRCAT, Indore was involved in qualifying tests of these chambers for their ultimate vacuum testing and the residual gas spectrum studies as per CERN requirements. The UHV testing part was established and the RGA studies were conducted using Residual Gas Analyser (RGA, 1-100 AMU range, Make: Spectra/MKS, USA). The RGAs were used for vacuum diagnostics like checking for leaks and the vacuum quality in the chambers. Using the RGA, we could also observe out the pumping speed behaviour of a UHV Gauge (Varian UHV-24 type) and the retention-cum-evaluation of captured gases by Sputter Ion Pump was also studied. In this paper, these experiences are reported during ultimate testing of TL-2 chambers for CLIC facility. (author)

  9. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Science.gov (United States)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  10. Clinical Computer Systems Survey (CLICS): learning about health information technology (HIT) in its context of use.

    Science.gov (United States)

    Lichtner, Valentina; Cornford, Tony; Klecun, Ela

    2013-01-01

    Successful health information technology (HIT) implementations need to be informed on the context of use and on users' attitudes. To this end, we developed the CLinical Computer Systems Survey (CLICS) instrument. CLICS reflects a socio-technical view of HIT adoption, and is designed to encompass all members of the clinical team. We used the survey in a large English hospital as part of its internal evaluation of the implementation of an electronic patient record system (EPR). The survey revealed extent and type of use of the EPR; how it related to and integrated with other existing systems; and people's views on its use, usability and emergent safety issues. Significantly, participants really appreciated 'being asked'. They also reminded us of the wider range of administrative roles engaged with EPR. This observation reveals pertinent questions as to our understanding of the boundaries between administrative tasks and clinical medicine - what we propose as the field of 'administrative medicine'.

  11. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  12. Beam monitors and transverse feedback system of TRISTAN Main Ring

    International Nuclear Information System (INIS)

    Ieiri, T.; Ishii, H.; Kishiro, J.; Mizumachi, Y.; Mori, K.; Nakajima, K.; Ogata, A.; Shintake, T.; Tejima, M.

    1987-01-01

    The construction of 30 GeV TRISTAN Main Ring (MR) started in 1983 soon after the commissioning of 8 GeV Accumulation Ring (AR). The authors prepared 392 position monitors, 6 synchrotron radiation monitors, 9 screen monitors, 2 DCCT's, 3 scrapers, 12 bunch monitors, transverse feedback systems for two beams and DC separators. Since the required monitoring devices of AR and MR are almost the same, the experiences in AR were very useful in the design of MR monitors. However, machine parameters of two rings are very different and the authors had to review the performance of each item. From the monitor point of view the most important is the difference of revolution frequency; 794.6 kHz for AR and 99.33 kHz for MR. This means that average beam current of MR is 1/8 as small as AR current with the same bunch number and intensity. Therefore, the sensitivity of each monitor must be better in MR. The second difference is that MR should be used as a collider from the beginning. Therefore they must prepare for multi-beam and multi-bunch operation

  13. An analysis of main factors in electron beam flue gas purification

    International Nuclear Information System (INIS)

    Zhang Ming; Xu Guang

    2003-01-01

    Electron beam flue gas purification method is developing very quickly in recent years. Based on the experiment setting for electron beam flue gas purification in Institute of Nuclear Energy and Technology, Tsinghua University, how the technique factors affect the ratio of desulphurization and denitrogenation are described. Radiation dose (D), temperature (T), humidity (H), pour ammonia quantity (α) and initial concentration of SO 2 (C SO 2 ) and NO x (C NO x ) are main factors influencing flue gas purification. Using the methods of correlation analysis and regression analysis, the primary effect factors are found out and the regression equations are set to optimize the system process, predigest the system structure and to forecast the experimental results. (authors)

  14. Numerical investigation of transient beam loading compensation in JLC X-band main linac

    International Nuclear Information System (INIS)

    Syrachev, I.V.; Higo, T.

    1996-06-01

    In the present paper, two methods, 'staggered timing' and 'RF modulation', were studied for the transient beam loading compensation in the JLC X-band main linac. The inter bunch energy spread was found to be easily reduced down to less than ±0.06% with 10 sets of injection timings along the linac in the former case while with a simple linear ramping of the input RF voltage in the latter case. For both cases the energy transfer efficiencies from the power source to the beam were exactly the same. The tolerance of the beam intensity jitter was found to be ±1% for the multibunch energy spread of ±0.1%. (author)

  15. Prospects for the measurement of the Higgs Yukawa couplings to b and c quarks, and muons at CLIC

    Czech Academy of Sciences Publication Activity Database

    Grefe, C.; Laštovička, Tomáš; Strube, J.

    2013-01-01

    Roč. 73, č. 2 (2013), s. 1-7 ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : Higgs * branching * ratio * Yukawa * couplings * quarks * muons * CLIC * inear collider Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.436, year: 2013

  16. LHC main dipole magnet circuits: sustaining near-nominal beam energies

    CERN Document Server

    AUTHOR|(CDS)2085621; Auchmann, Bernhard; Knox, Andrew; O'Shea, Valentine

    2016-11-04

    Crossing the Franco-Swiss border, the Large Hadron Collider (LHC), designed to collide 7 TeV proton beams, is the world's largest and most powerful particle accelerator the operation of which was originally intended to commence in 2008. Unfortunately, due to an interconnect discontinuity in one of the main dipole circuit's 13 kA superconducting busbars, a catastrophic quench event occurred during initial magnet training, causing significant physical system damage. Furthermore, investigation into the cause found that such discontinuities were not only present in the circuit in question, but throughout the entire LHC. This prevented further magnet training and ultimately resulted in the maximum sustainable beam energy being limited to approximately half that of the design nominal, 3.5-4 TeV, for the first three years of operation (Run 1, 2009-2012) and a major consolidation campaign being scheduled for the first long shutdown (LS 1, 2012-2014). Throughout Run 1, a series of studies attempted to predict the amo...

  17. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    OpenAIRE

    Antoniou, F; Martini, M; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler charac...

  18. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    CERN Document Server

    Antoniou, F; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler characteristics.

  19. First-principles simulation and comparison with beam tests for transverse instabilities and damper performance in the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Nicklaus, Dennis; Foster, G.William; Kashikhin, Vladimir

    2005-01-01

    An end-to-end performance calculation and comparison with beam tests was performed for the bunch-by-bunch digital transverse damper in the Fermilab Main Injector. Time dependent magnetic wakefields responsible for ''Resistive Wall'' transverse instabilities in the Main Injector were calculated with OPERA-2D using the actual beam pipe and dipole magnet lamination geometry. The leading order dipole component was parameterized and used as input to a bunch-by-bunch simulation which included the filling pattern and injection errors experienced in high-intensity operation of the Main Injector. The instability growth times, and the spreading of the disturbance due to newly misinjected batches was compared between simulations and beam data collected by the damper system. Further simulation models the effects of the damper system on the beam

  20. Commissioning and First Results of the Electron Beam Profiler in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R. [Fermilab; Alvarez, M. [Fermilab; Fitzgerald, J. [Fermilab; Lundberg, C. [Fermilab; Prieto, P. [Fermilab; Zagel, J. [Fermilab; Blokland, W. [Oak Ridge

    2017-08-01

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and a similar device has been installed in the Main Injector at Fermilab. Commissioning of the device is in progress with the goal of having it operational by the end of the year. The status of the commissioning and initial results will be presented

  1. Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns

    Science.gov (United States)

    Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2017-11-01

    This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.

  2. Investigation of Hadronic Higgs Decays at CLIC at 350 GeV & Scintillator Studies for a Highly Granular Calorimeter

    CERN Document Server

    AUTHOR|(CDS)2081006; Simon, Frank

    The energy frontier of accelerator-based physics has been dominated, for the best part of the last ten years, by the Large Hadron Collider (LHC). This remarkable accelerator has provided scientists with proton-proton collisions up to 13 TeV in energy, that led to exciting progress in the understanding of particle physics, culminating in the discovery of the Higgs boson in 2012. Despite its successes, the LHC carries an intrinsic limitation: since it collides composite particles, the initial conditions of each interaction cannot be completely determined. This limits the precision with which some observables can be measured. A new generation of colliders, designed for the acceleration of elementary electrons and positrons, is being developed to reach higher precision and to provide complementary discovery potential for new phenomena. The two most mature projects in this category are the Compact LInear Collider (CLIC) and the International Linear Collider (ILC). One key component of the physics program at CLIC i...

  3. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  4. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  5. Design Studies for a High Current Bunching System for CLIC Test Facility (CTF3) Drive Beam

    CERN Document Server

    Thiery, Y.; Le Duff, J.

    2000-01-01

    A bunching system is proposed for the initial stage of CTF3 which consists of one (two) 3 GHz prebunchers and one 3 GHz travelling wave (TW) buncher with variable phase velocities. The electron beam is emitted from a 140 KV DC gun. Since the macropulse beam current (3.5 A) at the exit of the TW buncher is rather high, inside the TW buncher one has to take the beam loading effect into consideration. By using PARMELA, it is shown numerically that the bunching system can provide the bunches whose properties satisfy the design requirement of CTF3. The 0.8 m long TW buncher working at 2pi/3 mode has two phase velocities, 0.75 and 1. The dimensions of the caities in the two phase velocity regions are proposed considering the beam loading effect. The transient beam loading effect and the multibunch transverse instabilities are studied numerically, and it is concluded that higher order mode couplers should be installed in the TW buncher with the loaded quality factor of the dipole mode lower than 80.

  6. Optimisation analysis and improvement of the effective beam sizes in Accelerator Test Facility 2

    CERN Document Server

    AUTHOR|(CDS)2082063; Kisiel, Adam

    2016-10-20

    A lepton linear collider is considered by the accelerator and particle physics communities as an appropriate machine to perform high precision particle physics research in the TeV energy regime. There are two proposals for the future e+e- linear collider: the Compact Linear Collider (CLIC) and the International Linear Collider (ILC), both developed by two wide international collaborations with strong overlap between them. Both designs satisfy the particle physics requirements. At the TeV energy regime the cross sections of many processes of interest are small, therefore large luminosities on the order of 10^{34} cm^{-2}s^{-1} at the interaction point (IP) are required to deliver the required event rates. The luminosity inversely depends on the transverse size of the colliding beams which restricts the beam sizes at the IP to the nanometer level. The strong focusing of the beams occurs in the final focus system (FFS), the most inner part of a linear collider, where the beams are focused at the IP by means of t...

  7. Analyzing the Anomalous Dipole Moment Type Couplings of Heavy Quarks with FCNC Interactions at the CLIC

    International Nuclear Information System (INIS)

    Senol, A.; Tasci, A. T.; Verep, C.

    2014-01-01

    We examine both anomalous magnetic and dipole moment type couplings of a heavy quark via its single production with subsequent dominant standard model decay modes at the compact linear collider (CLIC). The signal and background cross sections are analyzed for heavy quark masses 600 and 700 GeV. We make the analysis to delimitate these couplings as well as to find the attainable integrated luminosities for 3σ observation limit

  8. Electron beam irradiation of poly(perfluoro ethers): Identification of gaseous products as a result of main chain scission

    International Nuclear Information System (INIS)

    Pacansky, J.; Waltman, R.J.

    1991-01-01

    Several poly(perfluoro ethers) are exposed to electron beams to study the mechanism for main chain scission. Electron beam exposures were performed with the viscous poly(perfluoro ethers) under argon gas, and also at 9 K under vacuum, to determine mechanistic details for the chemical degradation. Here the authors report that, after main chain scission of the bulk poly(perfluoro ethers), sample weight loss is observed concomitant with evolution of gaseous products. Since this suggests that some unzipping of the polymer chain occurs, the products were identified and, most importantly, the efficiency for their formation was determined in terms of G values, and compared to known G values for main chain scission. The results show that COF 2 is the major gaseous product produced from unbranched ethers while CF 4 and COF 2 are the major products from branched polymers. The gaseous products were also exposed to the high-energy electron beam and the G values for decomposition are given

  9. Main Lobe Control of a Beam Tilting Antenna Array Laid on a Deformable Surface

    Directory of Open Access Journals (Sweden)

    Giulia Mansutti

    2018-01-01

    Full Text Available The projection method (PM is a simple and low-cost pattern recovery technique that already proved its effectiveness in retrieving the radiation properties of different types of arrays that change shape in time. However, when dealing with deformable beam-tilting arrays, this method requires to compute new compensating phase shifts every time that the main lobe is steered, since these shifts depend on both the deformation geometry and the steering angle. This tight requirement causes additional signal processing and complicates the prediction of the array behavior, especially if the deformation geometry is not a priori known: this can be an issue since the PM is mainly used for simple and low-cost systems. In this letter, we propose a simplification of this technique for beam-tilting arrays that requires only basic signal processing. In fact the phase shifts that we use are the sum of two components: one can be directly extracted from strain sensor data that measure surface deformation and the other one can be precomputed according to basic antenna theory. The effectiveness of our approach has been tested on two antennas: a 4 × 4 array (trough full-wave simulations and measurements and on an 8 × 8 array (trough full-wave simulations placed on a doubly wedge-shaped surface with a beam tilt up to 40 degrees.

  10. Alignement général du CLIC: stratégie et progrès

    CERN Document Server

    Mainaud-Durand, H

    2008-01-01

    La faisabilité concernant le pré-alignement actif du CLIC sera démontrée si l?on peut prouver qu?il existe une référence et ses capteurs associés permettant l?alignement des composants à mieux que 3 microns (1?). Pour répondre à ce challenge, une méthode de mesure d?écarts à un fil tendu est proposée, basée sur 40 ans de pratique de cette technique au CERN. Quelques problèmes demeurent concernant cette méthode : la connaissance de la forme du fil tendu utilisé comme référence droite, la détermination du géoïde à la précision souhaitée et le développement de capteurs bas coût permettant des mesures sub-micrométriques. Des études ont été entreprises afin de lever les derniers points en suspens, pendant que cette solution est intégrée dans une proposition concernant l?alignement général du CLIC. Cela implique un grand nombre d?interactions au niveau du projet, dans des domaines aussi différents que le génie civil, l?intégration, la physique du faisceau, la métrologie des �...

  11. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  12. Simulations of Electron Cloud Effects on the Beam Dynamics for the FNAL Main Injector Upgrade

    International Nuclear Information System (INIS)

    Sonnad Kiran G.; Furman, Miguel; Vay, Jean-Luc; Venturini, Marco; Celata, Christine M.; Grote, David

    2006-01-01

    The Fermilab main injector (MI) is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort. This upgrade will involve a significant increasing of the bunch intensity relative to its present value. Such an increase will place the MI in a regime in which electron-cloud effects are expected to become important. We have used the electrostatic particle-in-cell code WARP, recently augmented with new modeling capabilities and simulation techniques, to study the dynamics of beam-electron cloud interaction. This work in progress involves a systematic assessment of beam instabilities due to the presence of electron clouds

  13. Luminosity Measurement at the Compact Linear Collider

    CERN Document Server

    Schwartz, Rina; Levy, Aharon

    The compact linear collider (CLIC) is a proposed high energy accelera- tor, planned to collide electrons with positrons at a maximal center-of-mass energy of 3 TeV, and a peak luminosity of 5.9·1034 cm−2s−1. Complementary to the large hadron collider, CLIC is to provide high precision measurements of both known and new physics processes. The required relative precision of luminosity measurement at the CLIC is 10−2. The measurement will be done by the luminosity calorimeter (Lumi- Cal), designed to measure the rate of low angles Bhabha scattering events, a process with well-known cross-section from electroweak theory. Beam-beam effects, which are of unprecedented intensity at the CLIC, influence the lumi- nosity spectrum shape and create a significant amount of background charge deposits in the LumiCal, thus setting a challenge on the requirement for precision. The ability of the LumiCal to provide accurate luminosity mea- surement depends on its ability to perform accurate energy reconstruction of Bhab...

  14. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  15. B-factory via conversion of 1-TeV electron beams into 1-TeV photon beams

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1991-01-01

    This paper reports on the study of CP violation and rare decays of beauty particles which are pressing problems in high-energy physics. It is known that one should analyze beauty decays of at least the order of 10 8 or 19 9 . Thus, numerous proposals for beauty factories are being discussed now, although some of these projects are likely to supply much smaller numbers of beauty events. At the same time, at present several projects, such as CLIC (Cern Linear Collider), expect to build linear e + e - colliders with beam energies up to 1 TeV. The aim of this work is to show that the possibility exists of using the unique features of the discussed teraelectron volt electron linacs to obtain a facility for the production of beauty via photoproduction of nuclei. Unique features of high-energy photoproduction are as follows. The rather large fraction (∼2 x 10 -4 ) of events with beauty at E γ ∼ 1 TeV. Beauty particles are produced with about equally large momenta ∼0.05 E γ and at rather large transverse momenta p t ∼ m b . The following scheme can be envisioned. The 1-TeV electron beam is Compton scattered off a low-energy (∼ 1-eV) laser pulse. The laser photons are thus converted into a highly collimated beam of energy E γ ∼ E e , directed along the electron's original line of motion. Such schemes to produce high-energy photon beams have been discussed. These 1-TeV photons are subsequently scattered onto a nuclear target to produce b bar b pairs

  16. Beam Delivery Simulation - Recent Developments and Optimization

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232566; Boogert, Stewart Takashi; Garcia-Morales, H; Gibson, Stephen; Kwee-Hinzmann, Regina; Nevay, Laurence James; Deacon, Lawrence Charles

    2015-01-01

    Beam Delivery Simulation (BDSIM) is a particle tracking code that simulates the passage of particles through both the magnetic accelerator lattice as well as their interaction with the material of the accelerator itself. The Geant4 toolkit is used to give a full range of physics processes needed to simulate both the interaction of primary particles and the production and subsequent propagation of secondaries. BDSIM has already been used to simulate linear accelerators such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), but it has recently been adapted to simulate circular accelerators as well, producing loss maps for the Large Hadron Collider (LHC). In this paper the most recent developments, which extend BDSIM’s functionality as well as improve its efficiency are presented. Improvement and refactorisation of the tracking algorithms are presented alongside improved automatic geometry construction for increased particle tracking speed.

  17. Normal Conducting Deflecting Cavity Development at the Cockcroft Institute

    CERN Document Server

    Burt, G; Dexter, A C; Woolley, B; Jones, R M; Grudiev, A; Dolgashev, V; Wheelhouse, A; Mackenzie, J; McIntosh, P A; Hill, C; Goudket, P; Buckley, S; Lingwood, C

    2013-01-01

    Two normal conducting deflecting structures are currently being developed at the Cockcroft Institute, one as a crab cavity for CERN linear collider CLIC and one for bunch slice diagnostics on low energy electron beams for Electron Beam Test Facility EBTF at Daresbury. Each has its own challenges that need overcome. For CLIC the phase and amplitude tolerances are very stringent and hence beamloading effects and wakefields must be minimised. Significant work has been undertook to understand the effect of the couplers on beamloading and the effect of the couplers on the wakefields. For EBTF the difficulty is avoiding the large beam offset caused by the cavities internal deflecting voltage at the low beam energy. Prototypes for both cavities have been manufactured and results will be presented.

  18. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  19. Simulation Package based on Placet

    CERN Document Server

    D'Amico, T E; Leros, Nicolas; Schulte, Daniel

    2001-01-01

    The program PLACET is used to simulate transverse and longitudinal beam effects in the main linac, the drive-beam accelerator and the drive-beam decelerators of CLIC, as well as in the linac of CTF3. It provides different models of accelerating and decelerating structures, linear optics and thin multipoles. Several methods of beam-based alignment, including emittance tuning bumps and feedback, and different failure modes can be simulated. An interface to the beam-beam simulation code GUINEA-PIG exists. Currently, interfaces to MAD and TRANSPORT are under development and an extension to transfer lines and bunch compressors is also being made. In the future, the simulations will need to be performed by many users, which requires a simplified user interface. The paper describes the status of PLACET and plans for the futur

  20. Spin Tracking Studies for Beam Polarization Preservation in the NLC Main Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Bates, Daniel

    2004-01-01

    We report results from studies of spin dynamics in the NLC Main Damping. Our studies have been based on spin tracking particles through the lattice under a range of conditions. We find that there are a number of spin resonances close to the nominal operating energy of 1.98 GeV; however, the effects of the resonances are weak, and the widths are narrow. We do not expect that any significant depolarization of the beam will occur during the store time

  1. A New Technique For Information Processing of CLIC Technical Documentation

    CERN Document Server

    Tzermpinos, Konstantinos

    2013-01-01

    The scientific work presented in this paper could be described as a novel, systemic approach to the process of organization of CLIC documentation. The latter refers to the processing of various sets of archived data found on various CERN archiving services in a more friendly and organized way. From physics aspect, this is equal to having an initial system characterized by high entropy, which after some transformation of energy and matter will produce a final system of reduced entropy. However, this reduction in entropy can be considered valid for open systems only, which are sub-systems of grander isolated systems, to which the total entropy will always increase. Thus, using as basis elements from information theory, systems theory and thermodynamics, the unorganized form of data pending to be organized to a higher form, is modeled as an initial open sub-system with increased entropy, which, after the processing of information, will produce a final system with decreased entropy. This systemic approach to the ...

  2. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  3. The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN

    CERN Document Server

    Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M

    2010-01-01

    A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...

  4. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    CERN Document Server

    Adli, E; Dubrovskiy, A; Syratchev, I; Ruber, R; Ziemann, V

    2011-01-01

    We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter reg...

  5. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  6. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    Y. Renier

    2013-06-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs, it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  7. An rf separated kaon beam from the Main Injector: Superconducting aspects

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  8. Effects of the beam loading in the rf deflectors of the CLIC test facility CTF3 combiner ring

    Directory of Open Access Journals (Sweden)

    David Alesini

    2004-04-01

    Full Text Available In this paper we study the impact of the rf deflectors beam loading on the transverse beam dynamics of the CTF3 combiner ring. A general expression for the single-passage wake field is obtained. Different approximated formulas are derived applying linearization of the rf deflector dispersion curve either on a limited or an unlimited frequency range. A dedicated tracking code has been written to study the multibunch multiturn effects on the transverse beam dynamics. The numerical simulations reveal that the beam emittance growth due to the wake field in the rf deflectors is a small fraction of the design emittance if the trains are injected perfectly on axis. Nevertheless in case of injection errors the final emittance growth strongly depends on the betatron phase advance between the rf deflectors. If the finite bunch length is included in the tracking code, the scenario for the central part of the bunches does not change. However, for some particular injection errors, the tails of the bunches can increase the total transverse bunch emittances.

  9. High Charge PHIN Photo Injector at CERN with Fast Phase switching within the Bunch Train for Beam Combination

    CERN Document Server

    Csatari Divall, M; Bolzon, B; Bravin, E; Chevallay, E; Dabrowski, A; Doebert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Olvegaard, M; Petrarca, M; Rabiller, A N; Egger, D; Mete, O

    2011-01-01

    The high charge PHIN photo-injector was developed within the framework of the European CARE program to provide an alternative to the drive beam thermionic gun in the CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 electron bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 subtrains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the schem...

  10. Secondary Electron Yield Measurements and Groove Chambers Tests in the PEP-II Beam Line Straights Sections

    International Nuclear Information System (INIS)

    Pivi, M

    2008-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders such as ILC and CLIC [1, 2]. In the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in a straight magnetic-free section to test this promising possible electron cloud mitigation technique. We have also installed a special chamber to monitor the secondary electron yield of TiN and TiZrV (NEG) coating, Copper, Stainless Steel and Aluminum under the effect of electron and photon conditioning in situ in the beam line. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the ILC damping ring, the latest results on in situ secondary electron yield conditioning and recent update on the groove tests in PEP-II

  11. Beam Trajectory control of the future Compact LInear Collider beam

    CERN Document Server

    Balik, G; Bolzon, B; Brunetti, L; Caron, B; Deleglise, G; Jeremie, A; Le Breton, R; Lottin, J; Pacquet, L

    2011-01-01

    The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting factors for reaching the luminosity of 10^34 cm-2s-1. Several methods have been proposed to counteract this phenomena and active vibration controls based on the integration of mechatronic systems into the machine structure is probably one of the most promising. This paper studies the strategy of the vibration suppression. Active vibration control methods, such as optimized parameter of a numerical compensator, adaptive algorithm with real time control are investigated and implemented in the simulation layout. The requirement couldn’t be achieved w...

  12. Mitigation of ground motion effects via feedback systems in the Compact Linear Collider

    CERN Document Server

    Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel

    The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...

  13. Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.

    2017-05-01

    The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.

  14. Efficient Collimation and Machine Protection for the Compact Linear Collider

    CERN Document Server

    Assmann, R W

    2006-01-01

    We present a new approach to machine protection and collimation in CLIC, separating these two functions: If emergency dumps in the linac protect the downstream beam line against drive-beam failures, the energy collimation only needs to clean the beam tails and can be compact. Overall, the length of the beam-delivery system (BDS) is significantly reduced.

  15. Common mode noise on the main Tevatron bus and associated beam emittance growth

    International Nuclear Information System (INIS)

    Zhang, P.; Johnson, R.P.; Kuchnir, M.; Siergiej, D.; Wolff, D.

    1991-05-01

    Overlap of betatron tune frequencies with the power supply noise spectrum can cause transverse beam emittance growth in a storage ring. We have studied this effect for tunes near the integer, where the betatron frequency is low. By injecting noise onto the main power supply bus, it was determined that common mode noise was the dominant source of emittance growth. A noise suppression feed-back loop was then used to reduce the noise and the emittance growth. These experiments are described as are investigations of the common mode propagation along the Tevatron bus and measurements of the fields generated by common mode excitation of isolated Tevatron magnets. 3 refs., 4 figs

  16. Dynamical chaos and beam-beam models

    International Nuclear Information System (INIS)

    Izrailev, F.M.

    1990-01-01

    Some aspects of the nonlinear dynamics of beam-beam interaction for simple one-dimensional and two-dimensional models of round and flat beams are discussed. The main attention is paid to the stochasticity threshold due to the overlapping of nonlinear resonances. The peculiarities of a round beam are investigated in view of using the round beams in storage rings to get high luminosity. 16 refs.; 7 figs

  17. Les mesures de métrologie pour le CLIC

    CERN Document Server

    Cherif, A

    2008-01-01

    Le projet CLIC est en tout point un défi technique majeur ; c?est le cas également pour la mesure dimensionnelle. Quels sont les équipements et les méthodes qui permettent de caractériser les pièces avec une incertitude de mesure aussi réduite que possible, vu les tolérances micrométriques imposées ? Afin de répondre à cette question, une veille technologique a été maintenue sur une longue période. Les acteurs relevants ont été contactés pour bénéficier d?une ouverture sur les dernières avancées dans le domaine. Différentes techniques ont été étudiées et comparées telles que la digitalisation, la tomographie X, la mesure tridimensionnelle. L'assemblage de haute précision des composants est aussi primordial. Sa mise en ?uvre sous un microscope optique ou à l'aide d'une machine tridimensionnelle est en cours d?étude. L'exposé traitera aussi de la mesure de rugosité, un domaine où nous disposons de moyens adaptés aux exigences spécifiques du projet.

  18. Operating experience with LAMPF main beam lines instrumentation and control system

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Harvey, A.; Howard, H.H.; Roeder, D.L.

    1975-01-01

    Instrumentation and control (I and C) for the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) main beam line is based upon central computer control through remote stations which provide input and output to most devices. Operating experience shows that the ability of the computer to give high-quality graphical presentation of the measurements enhances operator performance and instrument usefulness. Experience also shows that operator efficiency degrades rapidly with increasing instrument response time, that is, with increasing delay between the time a control is changed and the result can be observed. For this reason, instrumentation upgrade includes speeding up data acquisition and display times to under 10 s. Similarly, television-viewed phosphors are being retained where possible since their instantaneous response is very useful. Other upgrading of the instrumentation system is planned to improve data accuracy, reliability, redundancy, and instrument radiation tolerance. Past experience is being applied in adding or relocating devices to simplify tuning procedures. (U.S.)

  19. The LHC road at CERN

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To explore the 1 TeV energy scale where fundamental particle interactions should encounter new conditions, two major routes were proposed - a high magnetic field proton collider in the LEP tunnel, dubbed LHC for Large Hadron Collider, and the CERN Linear Collider (CLIC) to supply beams of electrons and positrons. Exploratory studies have shown that while CLIC remains a valid long-term goal, LHC appears as the most cost-effective way for CERN to enter the 1 TeV arena. High-field superconducting magnet prototype work demonstrates that a 'two-in-one' design supplying the 10 tesla fields needed to handle LHC's 8 TeV proton beams (collision energy 16 TeV) is a practical proposition. (orig./HSI).

  20. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  1. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    Science.gov (United States)

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  2. Prediction for CP violation via electric dipole moment of τ lepton in γγ→τ{sup +}τ{sup −} process at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Atağ, S. [Department of Physics, Faculty of Sciences, Ankara University,06100 Tandogan, Ankara (Turkey); Gürkanlı, E. [Department of Physics, Sinop University,57000 Sinop (Turkey); Department of Physics, Faculty of Sciences, Ankara University,06100 Tandogan, Ankara (Turkey)

    2016-06-21

    Pair production of tau leptons in two photon collision γγ→τ{sup +}τ{sup −} is studied at CLIC to test CP violating QED couplings of tau leptons. CP violating effects are investigated using tau pair spin correlations which are observed through the hadronic decay of each τ into πν. Competitive bounds with previous works on the electric dipole moment from CP odd terms have been obtained.

  3. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Mayda [Northwestern University

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  4. A Main Ring bunch length monitor by detecting two frequency components of the beam

    International Nuclear Information System (INIS)

    Ieiri, T.; Jackson, G.

    1989-01-01

    The bunch length is measured by detecting two revolution frequency harmonics of the beam and taking the ratio of their amplitudes. Two heterodyne receivers have been made to direct them, one at 53MHz and the other at 159MHz. These signals are picked-up by a stripline detector. An analog circuit provides a signal proportional to the bunch length. The monitor measures variation of the bunch length as a function of time in the Main Ring. The measured signal, which sometimes shows that the bunches are tumbling in phase space, can be damped by feedback to the RF amplitude modulator. 9 refs., 12 figs., 1 tab

  5. Final focus system tuning studies towards Compact Linear Collider feasibility

    Science.gov (United States)

    Marin, E.; Latina, A.; Tomás, R.; Schulte, D.

    2018-01-01

    In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  6. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  7. Analytical researches on the accelerating structures, wakefields, and beam dynamics for future linear colliders

    International Nuclear Information System (INIS)

    Gao, J.

    1996-01-01

    The research works presented in this memoir are oriented not only to the R and D programs towards future linear colliders, but also to the pedagogic purposes. The first part of this memoir (from Chapter 2 to Chapter 9) establishes an analytical framework of the disk-loaded slow wave accelerating structures with can be served as the advanced courses for the students who have got some basic trainings in the linear accelerator theories. The analytical formulae derived in this part describe clearly the properties of the disk-loaded accelerating structures, such as group velocity, shunt impedance, coupling coefficients κ and β, loss factors, and wake fields. The second part (from Chapter 11 to Chapter 13) gives the beam dynamics simulations and the final proposal of an S-Band Superconducting Linear Collider (SSLC) which is aimed to avoid the dark current problem in TESLA project. This memoir has not included all the works conducted since April 1992, such as beam dynamics simulations for CLIC Test Facility (CFT-2) and the design of High Charge Structures (HCS) (11π/12 mode) for CFT-2, in order to make this memoir more harmonious, coherent and continuous. (author)

  8. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  9. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    International Nuclear Information System (INIS)

    Elzhov, A.V.; Ginzburg, N.S.; Kaminsky, A.K.; Kuzikov, S.V.; Perelstein, E.A.; Peskov, N.Yu.; Petelin, M.I.; Sedykh, S.N.; Sergeev, A.P.; Sergeev, A.S.; Syratchev, I.; Zaitsev, N.I.

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30 GHz, is used in the investigation. The experimental setup consists of a wavebeam injector--FEM oscillator (power of ∼25 MW, pulse duration up to 200 ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed

  10. Beam-beam limit in e+e- circular colliders

    International Nuclear Information System (INIS)

    Ohmi, K.; Tawada, M.; Kamada, S.; Oide, K.; Cai, Y.; Qiang, J.

    2004-01-01

    Beam-beam effects limit the luminosity of circular colliders. Once the bunch population exceeds a threshold, the luminosity increases at a slower rate. This phenomenon is called the beam-beam limit. Onset of the beam-beam limit has been analyzed with various simulation methods based on the weak-strong and strong-strong models. We have observed that an incoherent phenomenon is mainly concerned in the beam-beam limit. The simulation have shown that equilibrium distributions of the two colliding beams are distorted from Gaussians when the luminosity is limited. The beam-beam limit is estimated to be ξ∼0.1 for a B factory with damping time of several thousand turns

  11. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  12. Beam-Beam Interaction Studies at LHC

    CERN Document Server

    Schaumann, Michaela; Alemany Fernandez, R

    2011-01-01

    The beam-beam force is one of the most important limiting factors in the performance of a collider, mainly in the delivered luminosity. Therefore, it is essential to measure the effects in LHC. Moreover, adequate understanding of LHC beam-beam interaction is of crucial importance in the design phases of the LHC luminosity upgrade. Due to the complexity of this topic the work presented in this thesis concentrates on the beam-beam tune shift and orbit effects. The study of the Linear Coherent Beam-Beam Parameter at the LHC has been determined with head-on collisions with small number of bunches at injection energy (450 GeV). For high bunch intensities the beam-beam force is strong enough to expect orbit effects if the two beams do not collide head-on but with a crossing angle or with a given offset. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are as well ...

  13. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  14. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    CERN Document Server

    Elzhov, A V; Kaminsky, A K; Kuzikov, S V; Perelshtejn, E A; Peskov, N Yu; Petelin, M I; Sedykh, S N; Sergeev, A P; Sergeev, A S; Syratchev, I V; Zaitsev, N I

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30GHz, is used in the investigation. The experimental setup consists of a wavebeam injector - FEM oscillator (power of similar to 25MW, pulse duration up to 200ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed.

  15. ECFA Detector R&D Panel, Review Report

    CERN Document Server

    Abramowicz, H.; Afanaciev, K.; Aguilar, J.; Alvarez, E.; Bambade, P.; Bortko, L.; Bozovic-Jelisavcic, I.; Castro, E.; Chelkov, G.; Coca, C.; Daniluk, W.; Dragone, A.; Dumitru, L.; Elsener, K.; Emeliantchik, I.; Firu, E.; Fischer, J.; Fiutowski, T.; Ghenescu, V.; Gostkin, M.; Grzelak, G.; Haller, G.; Henschel, H.; Ignatenko, A.; Idzik, M.; Ito, K.; Kananov, S.; Kielar, E.; Kollowa, S.; Kotula, J.; Krumstein, Z.; Krupa, B.; Kulis, S.; Lange, W.; Levy, A.; Levy, I.; Linssen, L.; Lohmann, W.; Lukic, S.; Moron, J.; Moszczynski, A.; Nauenberg, U.; Neagu, A.; Novgorodova, O.; Nuiry, F.X.; Ohlerich, M.; Orlandea, M.; Oleinik, G.; Oliwa, K.; Olshevski, A.; Pandurovic, M.; Pawlik, B.; Preda, T.; Przyborowski, D.; Sato, Y.; Sadeh, I.; Sailer, A.; Schumm, B.; Schuwalow, S.; Schwartz, R.; Smiljanic, I.; Swientek, K.; Takubo, Y.; Teodorescu, E.; Wierba, W.; Yamamoto, H.; Zawiejski, L.; Zgura, T.S.; Zhang, J.

    2014-01-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 10−3 at the ILC and 10−2 at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on th...

  16. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  17. Electroproduction of pairs at beam-beam collision

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1989-01-01

    Charged particle pair production at beam-beam collision in electron-positron linear colliders has been discussed taking into account a finite size of the beams (both longitudinal and transverse) and end effects. Contributions of the main acting mechanisms are singled out which depend on the energy of initial particles and the masses of created particles. A spectral distribution of produced particles is presented. 15 refs

  18. How joint characteristics between a piezoelectric beam and the main structure affect the performance of an energy harvester

    Science.gov (United States)

    Jahani, K.; Rafiei, M. M.; Aghazadeh, P.

    2017-09-01

    In this paper, the influence of the joint region between a piezoelectric energy harvesting beam and the vibratory main structure is studied. The investigations are conducted in two separate sections, namely numerical and experimental studies. In numerical studies, the effects of nonlinear parameters on generated power are investigated while the joint characteristics the between vibrating base and a piezoelectric energy harvester are taken into consideration. A unimorph beam with a tip mass and a nonlinear piezoelectric layer that undergoes a large-amplitude deflection is considered as an energy harvester. By applying the Euler-Lagrange equation and Gauss’s law the mechanical and electrical equations of motion are obtained, respectively. The excitation frequency is assumed to be close to the first natural frequency. Thus, a unimodal response is considered to be like that of a system with a single degree of freedom (SDOF). The joint between the vibrating main structure and the cantilevered beam is then added to the SDOF model. The joint characteristics are simulated with a light mass, mj , linear spring stiffness, kj , and equivalent viscous damper, cj . In two scenarios, i.e. with a rigid joint and with a flexible one, a numerical approach is followed to investigate the effects of each nonlinear parameter of the harvester (stiffness, damping and piezoelectric coefficient) on the harvested power. In experimental studies, the influence of a bolted joining technique and a flexible adhesive bonding method on the harvested power is investigated. The results achieved experimentally confirm those obtained numerically, i.e. a stiffer joint leads to a greater power produced by the harvester. In other words, neglecting the joint characteristics will cause the performance (maximum output power and the range of excitation frequency) of the harvester to be overestimated in numerical simulations.

  19. Experimental Observations of In-Situ Secondary Electron Yield Reduction in the PEP-II Particle Accelerator Beam Line

    International Nuclear Information System (INIS)

    Pivi, Mauro

    2010-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  20. Beam size blow-up and current loss in the Fermilab Main Ring during storage

    International Nuclear Information System (INIS)

    Guignard, C.; Month, M.

    1977-01-01

    Observations at Fermilab during storage mode operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple scatter off the orbiting electrons of the gas atoms causing the trasnverse beam size to increase with time. A third mechanism not related to gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow. This is an attempt to describe the observations with direct nuclear scattering, multiple coulomb scattering, and multiple resonance crossing

  1. Optics design of Intrabeam Scattering dominated damping rings

    CERN Document Server

    Antoniou, Fanouria; Papaphilippou, Ioannis

    A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...

  2. GO Shaping of Omnidirectional Dual-Reflector Antennas with Arbitrary Main-Beam Direction in Elevation Plane by Connecting Conic Sections

    Directory of Open Access Journals (Sweden)

    Rafael A. Penchel

    2018-01-01

    Full Text Available This work discusses an alternative geometrical optics (GO technique to synthesize omnidirectional dual-reflector antennas with uniform aperture phase distribution together with an arbitrary main-beam direction for the antenna radiation pattern. Sub- and main reflectors are bodies of revolution generated by shaped curves defined by local conic sections consecutively concatenated. The shaping formulation is derived for configurations like ADC (axis-displaced Cassegrain and ADE (axis-displaced ellipse omnidirectional antennas. As case studies, two configurations fed by a TEM coaxial horn are designed and analyzed by a hybrid technique based on mode matching and method of moments in order to validate the GO shaping procedure.

  3. Ground motion optimized orbit feedback design for the future linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Pfingstner, J., E-mail: juergen.pfingstner@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Vienna University of Technology, Karlsplatz 13, 1040 Wien (Austria); Snuverink, J. [CERN, Geneva 23, CH-1211 (Switzerland); John Adams Institute at Royal Holloway, University of London, Surrey (United Kingdom); Schulte, D. [CERN, Geneva 23, CH-1211 (Switzerland)

    2013-03-01

    The future linear collider has strong stability requirements on the position of the beam along the accelerator and at the interaction point (IP). The beam position will be sensitive to dynamic imperfections in particular ground motion. A number of mitigation techniques have been proposed to be deployed in parallel: active and passive quadrupole stabilization and positioning as well as orbit and IP feedback. This paper presents a novel design of the orbit controller in the main linac and beam delivery system. One global feedback controller is proposed based on an SVD-controller (Singular Value Decomposition) that decouples the large multi-input multi-output system into many independent single-input single-output systems. A semi-automatic procedure is proposed for the controller design of the independent systems by exploiting numerical models of ground motion and measurement noise to minimize a target parameter, e.g. luminosity loss. The novel design for the orbit controller is studied for the case of the Compact Linear Collider (CLIC) in integrated simulations, which include all proposed mitigation methods. The impact of the ground motion on the luminosity performance is examined in detail. It is shown that with the proposed orbit controller the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed. The orbit controller design is robust and allows for a relaxed BPM resolution, while still maintaining a strong ground motion suppression performance compared to traditional methods. We believe that the described method could easily be applied to other accelerators and light sources.

  4. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  5. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale

    International Nuclear Information System (INIS)

    Bolzon, B.

    2007-11-01

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  6. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale; Etude des vibrations et de la stabilisation a l'echelle sous-nanometrique des doublets finaux d'un collisionneur lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, B

    2007-11-15

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  7. Beam, multi-beam and broad beam production with COMIC devices

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Peaucelle, C.

    2012-01-01

    The COMIC discharge cavity is a very versatile technology. We will present new results and devices that match new applications like: molecular beams, ultra compact beam line for detectors calibrations, quartz source for on-line application, high voltage platform source, sputtering /assistance broad beams and finally, a quite new use, high energy multi-beam production for surface material modifications. In more details, we will show that the tiny discharge of COMIC can mainly produce molecular ions (H 3+ ). We will present the preliminary operation of the fully quartz ISOLDE COMIC version, in collaboration with IPN Lyon, we will present a first approach for a slit extraction version of a three cavity device, and after discussing about various extraction systems on the multi discharge device (41 cavities) we will show the low energy broad beam (2 KV) and high energy multi-beams (10 beams up to 30 KV) productions. We will specially present the different extraction systems adapted to each application and the beams characteristics which are strongly dependent on the voltage distribution of an accel-accel two electrodes extraction system. The paper is followed by the slides of the presentation. (authors)

  8. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Science.gov (United States)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  9. The PHIN photoinjector for the CTF3 Drive beam

    CERN Document Server

    Losito, R; Braun, H; Champault, N; Chevallay, E; Divall, M; Fedosseev, V; Hirst, G; Kumar, A; Kurdi, G; Martin, W; Masi, A; Mercier, B; Musgrave, I; Prevost, C; Ross, I; Roux, R; Springate, E; Suberlucq, Guy

    2006-01-01

    A new photoinjector for the CTF3 drive beam has been designed and is now being constructed by a collaboration among LAL, CCLRC and CERN within PHIN, the second Joint Research Activity of CARE. The photoinjector will provide a train of 2332 pulses at 1.5 GHz with a complex timing structure (sub-trains of 212 pulses spaced from one another by 333 ps or 999 ps) to allow the frequency multiplication scheme, which is one of the features of CLIC, to be tested in CTF3. Each pulse of 2.33 nC will be emitted by a Cs2Te photocathode deposited by a co-evaporation process to allow high quantum efficiency in operation (>3% for a minimum of 40 h). The 3 GHz, 2 1/2 cell RF gun has a 2 port coupler to minimize emittance growth due to asymmetric fields, racetrack profile of the irises and two solenoids to keep the emittance at the output below 20 p.mm.mrad. The laser has to survive very high average powers both within the pulse train (15 kW) and overall (200 W before pulse slicing). Challenging targets are also for amplitude ...

  10. 2007 2008 ACADEMIC TRAINING PROGRAMME

    CERN Multimedia

    2008-01-01

    LECTURE SERIES 31 March, 1 & 3 April 2008 11:00 hrs.-12:00 hrs. - Main Auditorium, bldg. 500 Positrons sources for electron-positron colliders. Application to ILC and CLIC Dr. R. CHEHAB, IPNL/IN2P3/CNRS Université de Lyon 1, France The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targe...

  11. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  12. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2014-08-15

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of Sao Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the ''in-flight method'' to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are {sup 6}He, {sup 8}Li, {sup 7}Be, {sup 10}Be, {sup 8}B, {sup 12}B with intensities that can vary from 10{sup 4} to 10{sup 6} pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo ({sup 6}He and {sup 8}B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory. (orig.)

  13. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  14. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)756402

    2017-01-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128 × 128 square pixels with 25 μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (∼ 20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ∼ 20 ns for a power consumption of 5 μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (∼ 20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using...

  15. Performance of the PHIN High Charge Photo Injector

    CERN Document Server

    Petrarca, M; Doebert, S; Dabrowski, A; Divall, M; Fedoseev, V; Lebas, N; Lefevre, T; Losito, R; Egger, D; Mete, O

    2010-01-01

    The high charge PHIN photo injector is studied at CERN as an electron source for the CLIC Test Facility (CTF3) drive beam as an alternative to the present thermionic gun. The objective of PHIN is to demonstrate the feasibility of a laser-based electron source for CLIC. The photo injector operates with a 2.5 cell, 3 GHz RF gun using a Cs2Te photocathode illuminated by UV laser pulses generated by amplifying and frequency quadrupling the signal from a Nd:YLF oscillator running at 1.5GHz. The challenge is to generate a beam structure of 1908 micro bunches with 2.33nC per micro bunch at 1.5GHz leading to a high integrated train charge of 4446nC and nominal beam energy of 5.5MeV with current stability below 1%. In this paper we report and discuss the time resolved transverse and longitudinal beam parameters measurements. The performance of the photo cathodes made at CERN with a peak quantum efficiency of 18 % is shown as well. Laser pointing and amplitude stability results are discussed taking into account correla...

  16. At ISR Main Control Room

    CERN Multimedia

    1983-01-01

    After 13 years the exploitation of the Intersecting Storage Rings as a beam-beam collider went to an end. In this last year the demands were very exacting, both in terms of operating time and diversified running conditions (Annual Report 1983 p. 123). Before dismantelement the photographer made a last tour, see photos 8310889X --> 8310667X. This photo shows the Main Control Room.

  17. Guide to the Main Ring DO overpass

    International Nuclear Information System (INIS)

    Turkot, F.

    1985-01-01

    The DO overpass is a modification of the beam orbit in Main Ring in order to better accommodate a Tevatron collider detector at DO. The orbit is moved up approx. 51 inches over most of the long straight section at DO, thus making the Main Ring the world's first non-planar proton synchrotron. A similar overpass, but with four times the displacement, is planned for the CDF detector at the BO straight section. The nominal separation between the beam orbit in the Main Ring and the orbit in the Tevatron is 25.5 inches. Early in the design study of a detector that would utilize the Tevatron is a anti pp collider, it was apparent that a larger separation at the detector was highly desirable. In 1981, Tom Collins proposed a specific lattice geometry in the Main Ring for achieving larger separation, called ''the screw beam''. His proposal has served as the basis for the design of both the BO and DO overpasses. The main purpose of this report is to describe in some detail the implementation of the DO overpass. Topics to be covered include: (a) geometry of the overpass orbit, (b) the new hardware in the tunnel, (c) the power supply system, (d) the control facility, (e) accelerator beam dynamics ramifications, and (f) commissioning experience. A secondary purpose is to provide a fairly complete ''bibliography'' to the sources of information on the overpass. 17 refs., 17 figs

  18. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  19. Beam size blow-up and current loss in the Fermilab main ring during storage

    International Nuclear Information System (INIS)

    Guignard, G.; Month, M.

    1977-01-01

    Observations at Fermilab during the storage mode of operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple Coulomb scatter off the orbiting electrons of the gas atoms causing the transverse beam size to increase with time, t. This effect is therefore also proportional to the gas pressure. A third mechanism not related to the gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow with √t. An attempt is made to describe the observations with direct nuclear scattering, multiple coulomb scattering and multiple resonance crossing. In addition to the loss rate from direct nuclear scattering, the presence of betatron resonances also contribute to particle loss. In fact this latter effect becomes dominant after the beam size reaches a critical value. This critical size is referred to as the resonance aperture. It is the size at which ''fast'' resonance crossing is no longer valid. The stopband width becomes so large (due both to emittance growth as well as the increase in magnetic field distortions) that particles are locked into the resonance and are extracted to the physical aperture. The model is described in a phenomenological way, and the coefficients involved are estimated. Theoretical curves for transverse beam growth and loss rate are plotted and compared with some measured values. Finally, some general comments are given

  20. Towards stable acceleration in LINACS

    CERN Document Server

    Dubrovskiy, A D

    2014-01-01

    Ultra-stable and -reproducible high-energy particle beams with short bunches are needed in novel linear accelerators and, in particular, in the Compact Linear Collider CLIC. A passive beam phase stabilization system based on a bunch compression with a negative transfer matrix element R56 and acceleration at a positive off-crest phase is proposed. The motivation and expected advantages of the proposed scheme are outlined.

  1. Beam beam tune shifts for 36 bunch operation in the Tevatron

    International Nuclear Information System (INIS)

    Bagley, P.

    1996-10-01

    We are preparing to upgrade the Tevatron Collider from 6 to 36 bunch operation. The 36 bunches are in 3 ''trains'' of 12 bunches. The spacing between bunches within a train is 21 RF buckets (53.106 MHz) and 139 empty buckets separate the trains. Because the 36 bunches are not evenly spaced around the machine, the different bunches within a train pass the opposing bunches at different points in the ring and so feel different beam beam effects. Through most of the machine the beams have helical separation, so these are mainly long range beam beam effects. As a first, very simple step, we've looked at the differences in the tunes of the different anti-proton (anti p) bunches. During the 36 bunch studies in Fall 1995, we used a new tune measurement system to measure these in several different machine conditions. We compare these measurements to calculations of the tunes for a anti p with zero transverse and longitudinal oscillation amplitudes. We discuss experimental problems, and the assumptions, approximations, and effects included in the calculations. Our main intent is to gain confidence that we can accurately model beam beam effects in the Tevatron

  2. Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten HCAL

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Smith, J; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Lam, C B; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Sailer, A.; Schlatter, D.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M; Zaganidis, N; Blazey, G C; Dyshkant, A; Lima, J G R; Zutshi, V; Hostachy, J-Y; Morin, L; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Wing, M; Salvatore, F; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouene, J.; Seguin-Moreau, N; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-10

    Lepton colliders are considered as options to complement and to extend the physics programme at the Large Hadron Collider. The Compact Linear Collider (CLIC) is an $e^+e^-$ collider under development aiming at centre-of-mass energies of up to 3 TeV. For experiments at CLIC, a hadron sampling calorimeter with tungsten absorber is proposed. Such a calorimeter provides sufficient depth to contain high-energy showers, while allowing a compact size for the surrounding solenoid. A fine-grained calorimeter prototype with tungsten absorber plates and scintillator tiles read out by silicon photomultipliers was built and exposed to particle beams at CERN. Results obtained with electrons, pions and protons of momenta up to 10 GeV are presented in terms of energy resolution and shower shape studies. The results are compared with several GEANT4 simulation models in order to assess the reliability of the Monte Carlo predictions relevant for a future experiment at CLIC.

  3. Low Level RF Including a Sophisticated Phase Control System for CTF3

    CERN Document Server

    Mourier, J; Nonglaton, J M; Syratchev, I V; Tanner, L

    2004-01-01

    CTF3 (CLIC Test Facility 3), currently under construction at CERN, is a test facility designed to demonstrate the key feasibility issues of the CLIC (Compact LInear Collider) two-beam scheme. When completed, this facility will consist of a 150 MeV linac followed by two rings for bunch-interleaving, and a test stand where 30 GHz power will be generated. In this paper, the work that has been carried out on the linac's low power RF system is described. This includes, in particular, a sophisticated phase control system for the RF pulse compressor to produce a flat-top rectangular pulse over 1.4 µs.

  4. New data acquisition system for beam loss monitor used in J-PARC main ring

    Science.gov (United States)

    Satou, K.; Toyama, T.; Kamikubota, N.; Yoshida, S.; Matsushita, J.; Wakita, T.; Sugiyama, M.; Morino, T.

    2018-04-01

    A new data acquisition system has been developed continually as a part of the development of a new beam loss monitor (BLM) system for the J-PARC main ring. This development includes a newly designed front-end isolation amp that uses photo-couplers and a VME-based new analog-to-digital converter (ADC) system. Compared to the old amp, the new amp has a 10 times higher conversion impedance for the input current to the output voltage; this value is 1 M Ω. Moreover, the bandwidth was improved to from DC to 50 kHz, which is about two orders of magnitude greater than the previously used bandwidth. The theoretical estimations made in this study roughly agree with the frequency response obtained for the new system. The new ADC system uses an on-board field-programmable gate array chip for signal processing. By replacing the firmware of this chip, changes pertaining to future accelerator upgrade plans may be introduced into the new ADC system; in addition, the ADC system can be used in other applications. The sampling speed of the system is 1 MS/s, and it exhibits a 95 dBc spurious-free dynamic range and 16.5 effective number of bits. The obtained waveform and integrated charge data are compared with two reference levels in the ADC system. If the data exceeds the reference level, the system generates an alarm to dump the beams. By using the new data acquisition system, it was proved that the new BLM system shows a wide dynamic range of 160 dB. In this study, the details of the new data acquisition system are described.

  5. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Post, R.F.; Vann, C.S.

    1996-10-01

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  6. Beam tuning and stabilization using beam phase measurements at GANIL

    International Nuclear Information System (INIS)

    Chabert, A.; Loyer, F.; Sauret, J.

    1984-06-01

    Owing to the great sensitivity of the beam phase to the various parameters, on line beam phase measurements proved to be a very efficient way of tuning and stabilizing the beam of the multi-accelerator complex. We recall the system which allows to obtain the different kinds of accurate measurements we need and describe the main applications: - tuning process (buncher and SSC's RF phase determination, setting of the required radial beam phase law in the SSC's); - stabilization of the beam by loops, the basic principle of which being to keep constant the beam central phase all along the machine by adjusting RF voltages or magnetic fields. Feedback loops are described and comparative results with and without feedback are given

  7. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    Directory of Open Access Journals (Sweden)

    Yongfeng Qiu

    2017-11-01

    Full Text Available Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA, which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T of the transient current of the gas main switch and the dominant frequency (F of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  8. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  9. After 16 years of service, the LEP Pre-Injector (LPI) was finally closed down at Easter. The LPI was not only one of the essential building blocks of LEP, but it also supplied beams to a whole host of experiments.

    CERN Document Server

    2001-01-01

    In the coming months it will undergo extensive work to be converted into a test facility for CLIC, one of the possible options for a future accelerator. So in the autumn of 2001, the LPI zone will be re-baptised CTF3 (CLIC Test Facility 3).

  10. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  11. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  12. Lifetime Studies of Cs2Te Cathodes at the Phin RF Photoinjector at CERN

    CERN Document Server

    Hessler, C; Divall Csatari, M; Doebert, S; Fedosseev, V

    2012-01-01

    The PHIN photoinjector has been developed to study the feasibility of a photoinjector option for the CLIC (Compact LInear Collider) drive beam as an alternative to the baseline design, using a thermionic gun. The CLIC drive beam requires a high charge of 8.4 nC per bunch in 0.14 ms long trains, with 2 ns bunch spacing and 50 Hz macro pulse repetition rate, which corresponds to a total charge per macro pulse of 0.59 mC. This means unusually high peak and average currents for photoinjectors and is challenging concerning the cathode lifetime. In this paper detailed studies of the lifetime of Cs2Te cathodes, produced by the co-evaporation technique, are presented with respect to bunch charge, train length and vacuum level. Furthermore, the impact of the train length and bunch charge on the vacuum level will be discussed and steps to extend the lifetime will be outlined.

  13. Beam control and matching for the transport of intense beams

    International Nuclear Information System (INIS)

    Li, H.; Bernal, S.; Godlove, T.; Huo, Y.; Kishek, R.A.; Haber, I.; Quinn, B.; Walter, M.; Zou, Y.; Reiser, M.; O'Shea, P.G.

    2005-01-01

    The transport of intense beams for heavy-ion inertial fusion demands tight control of beam characteristics from the source to the target. The University of Maryland Electron Ring (UMER), which uses a low-energy (10 keV), high-current electron beam to model the transport physics of a future recirculator driver, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe the main components and operation of the diagnostics/control system in UMER. It employs phosphor screens, real-time image analysis, quadrupole scans and electronic skew correctors. The procedure is not only indispensable for optimum transport over a long distance, but also provides important insights into the beam physics involved. We discuss control/optimization issues related to beam steering, quadrupole rotation errors and rms envelope matching

  14. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    OpenAIRE

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...

  15. Emittance Growth during Bunch Compression in the CTF-II

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, Tor O

    1999-02-26

    Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occurring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause.

  16. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  17. Theoretical and practical feasibility demonstration of a micrometric remotely controlled pre-alignment system for the CLIC linear collider

    CERN Document Server

    Mainaud Durand, H; Chritin, N; Griffet, S; Kemppinen, J; Sosin, M; Touze, T

    2011-01-01

    The active pre-alignment of the Compact Linear Collider (CLIC) is one of the key points of the project: the components must be pre-aligned w.r.t. a straight line within a few microns over a sliding window of 200 m, along the two linacs of 20 km each. The proposed solution consists of stretched wires of more than 200 m, overlapping over half of their length, which will be the reference of alignment. Wire Positioning Sensors (WPS), coupled to the supports to be pre-aligned, will perform precise and accurate measurements within a few microns w.r.t. these wires. A micrometric fiducialisation of the components and a micrometric alignment of the components on common supports will make the strategy of pre-alignment complete. In this paper, the global strategy of active pre-alignment is detailed and illustrated by the latest results demonstrating the feasibility of the proposed solution.

  18. Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

  19. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    CERN Document Server

    Aghanim, N; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, L -Y; Christensen, P R; Church, S; Colombi, S; Colombo, L P L; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Gaier, T C; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Kangaslahti, P; Keihänen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Liguori, M; Lilje, P B; Lindholm, V; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Paci, F; Pagano, L; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Platania, P; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Ricciardi, S; Riller, T; Rocha, G; Rosset, C; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the data from multiple Jupiter transits, the main beam profiles are measured down to -20 dB at 30 and 44 GHz, and down to -25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approac...

  20. CLIC crab cavity final report

    CERN Document Server

    Burt, G et al

    2013-01-01

    A high gradient 12 GHz, normal‐conducting travelling‐wave structure, with a high group‐velocity to minimise the effects of beam loading, has been developed. Appropriate input coupler and wakefield damping processes have been incorporated and two ‘undamped’ structures have been fabricated, one in the UK by Shakespeare Engineering Ltd and the other by VDL at CERN. Systematic high gradient tests are planned at SLAC and CERN, to study breakdown differences between deflecting and accelerating structures.

  1. The beam matching system between the preaccelerator and the main accelerator of the Van-de-Graaff cyclotron combination VICKSI

    International Nuclear Information System (INIS)

    Hinderer, G.

    1975-01-01

    The beam matching between the two accelerators of the heavy-ion accelerator combination VICKSI (Van de Graaff Isochron-Cyclotron Kombination fuer schwere Ionen) which is under construction at the Hahn-Meitner-Institut Berlin is investigated. The main elements are a combined gas- and carbon foil-stripper to increase the charge state of the ions and two clystron type high frequency bunchers for matching the longitudinal phase space. In order to minimize the enlargement of phase space due to energy- and angle straggling in the foil stripper a focus in all three dimensions is generated at this position. (orig./WL) [de

  2. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  3. Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam Expansions

    Directory of Open Access Journals (Sweden)

    Leonard Bergstein

    2005-06-01

    Full Text Available Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimum MTF value (contrast over the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve scanning of the laser beam.

  4. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  5. Bunch coalescing in the Fermilab Main Ring

    International Nuclear Information System (INIS)

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-01-01

    A new RF system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h=1113 Main Ring RF voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h=53 and h=106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h=1113 bucket. The new system is described and the results of recent coalescing experiments are compared with computer-generated particle tracking simulations

  6. Impact of polarized e- and e+ beams at a future linear collider and a Z-factory. Pt. I. Fundamentals in polarization and electroweak precision physics

    International Nuclear Information System (INIS)

    Moortgat-Pick, Gudrid

    2010-12-01

    The main goal of new physics searches at a future Linear Collider is the precise determination of the underlying new physics model. The physics potential of the ILC as well as the multi-TeV option collider CLIC have to be optimized with regard to expected results from the LHC. The exploitation of spin effects plays a crucial role in this regard. After a short status report of the Linear Collider design and physics requirements, this article explains fundamentals in polarization and provides an overview of the impact of these spin effects in electroweak precision physics. (orig.)

  7. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  8. Effect of PYTHIA8 tunes on event shapes and top-quark reconstruction in e$^+$e$^-$ annihilation at CLIC

    CERN Document Server

    Chekanov, Sergei; Fischer, Andrew; Zhang, Jinlong

    2017-01-01

    This paper describes the effect of PYTHIA8 tunes on event simulation of e$^+$e$^-$ collisions with center-of-mass (CM) energies of 380 GeV and 3 TeV at the proposed CLIC collider. Event shapes, such as thrust, thrust major, thrust minor, oblateness, as well as particle multiplicities have been analyzed and relative differences with respect to the default PYTHIA8 tune were determined. The effect of tunes on top-mass reconstruction in the resolved and boosted regimes was analyzed. No statistically significant variation for reconstructed top masses using invariant masses of three jets was found for events with a CM energy of 380 GeV. For the fully boosted top reconstruction at a CM energy of 3 TeV, a significant shift in reconstructed top mass of about 700 MeV for the "Montull" tune was observed. This shift correlates with an increase in particle multiplicity compared to all other PYTHIA8 tunes.

  9. Characterization of the Li beam probe with a beam profile monitor on JET.

    Science.gov (United States)

    Nedzelskiy, I S; Korotkov, A; Brix, M; Morgan, P; Vince, J

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  10. Electron beam diagnostics study

    International Nuclear Information System (INIS)

    Garganne, P.

    1989-08-01

    This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr

  11. Switchyard in the Main Injector era conceptual design report

    International Nuclear Information System (INIS)

    Brown, C.; Kobilarcik, T.; Lucas, P.; Malensek, A.; Murphy, C.T.; Yang, M.-J.

    1997-08-01

    This report presents elements of a design of the Switchyard and of the present fixed target beamlines in the era of the Main Injector (MI). It presumes that 800 GeV Tevatron beam will be transported to this area in the MI era, and permits it to share cycles with 120 GeV Main Injector beam if this option is desired. Geographically, the region discussed extends from the vicinity of AO to downstream points beyond which beam properties will be determined by the requirements of specific experiments. New neutrino lines not utilizing the present Switchyard (NuMI, BooNE) are not addressed. Similarly Main Injector beams upstream of AO are described fully in MI documentation and are unaffected by what is presented here. The timing both of the preparation of this report and of its recommendations for proceeding with construction relate to a desire to do required work in Transfer Hall and Enclosure B during the Main Injector construction shutdown (September 1997 - September 1998). As these areas are off-limits during any Tevatron operation, it is necessary for the fixed target program that work be completed here during this extended down period. The design presented here enables the operation of all beamlines in the manner specified in the current Laboratory plans for future fixed- target physics

  12. A kaon physics program at the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Cooper, Peter

    1997-11-01

    In this paper we describe a triad of kaon experiments which will form the foundation of a kaon physics program at Fermilab in the Main Injector era. These three experiments; KAMI, CKM and CPT, span the range of experiment types discussed above. KAMI will use the existing neutral kaon beam and the KTeV detector as the basis of a search for the Standard Model ultra rare decay K L → π 0 ν anti ν decay mode is by far the theoretically cleanest measurement of the Standard Model parameter responsible for CP violation. CKM will measure the analogous charged kaon decay mode. Together these two experiments will determine the Standard Model contribution to CP violation independent of the B meson sector. The Standard Model parameters controlling CP violation must be observed to be the same in the K and B meson sectors in order to confirm the Standard Model as the sole source of CP violation in nature. CPT is a hybrid beam experiment using a high purity K + beam to produce a pure K 0 beam in order to search for violation of CPT symmetry at a mass scale up to the Planck mass. CPT also will measure new CP violation parameters to test the Standard Model and search for rare K S decays. The Fermilab infrastructure for such a physics program largely already exists. The Main Injector will be an existing accelerator by late 1998 with beam properties comparable to any of the previous ''kaon factory'' proposals. The KTeV detector and neutral kaon beamline are unsurpassed in the world and were originally designed to also operate with the 120 GeV Main Injector beam as KAMI. The Fermilab Meson laboratory was originally designed as an area for fixed target experiments using 200 GeV proton beams. The charged kaon beam experiments will naturally find a home there. Both charged kaon experiments, CKM and CPT, will share a new high purity RF separated charged kaon beam based on superconducting RF technology which will provide the highest intensity and purity charged kaon beam in the world

  13. Методe мерења односа гранања Хигсовог бозона у процесима $H \\rightarrow \\mu^{+}\\mu^{-}$ и $H \\rightarrow Z Z^{\\star}$ на 1.4 TeV на будућем линеарном сударачу CLIC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00286807

    This thesis has been done at the CLIC (Compact Linear Collider) project, to be hosted by the European Organisation for Nuclear Research in Geneva (CERN), Switzerland. The CLIC is an option for a future $e^{+}e^{-}$ collider operating at the centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. Operating at three center-of-mass energy stages (350 GeV, 1.4 TeV and 3 TeV), the CLIC enables tight constraints on the Higgs boson couplings. Two measurements of a product of the Higgs production cross-section in WW-fusion and the corresponding branching ratio of the Higgs boson decay, are presended in this thesis. The Higgs boson decay to a pair of muons, being a rare process with a branching ratio of order of 10$^{-4}$, and the Higgs boson decay to a pair of Z bosons are considered, assuming the intermediate CLIC center-of-mass energy of 1.4 TeV. Higgs production cross-section times a branching ratio of a Higgs b...

  14. Challenges of the ILC Main Linac

    International Nuclear Information System (INIS)

    Ross, Marc

    2007-01-01

    With the completion of the ILC Reference Design Report (RDR), we begin the next phase of the project - development of the Engineering Design. Our strategy and priorities come from the identification, contained in the RDR, of scientific and engineering challenges of the ILC. First among these is the cost of the main linac which, including the associated earthworks and cooling/power systems, amounts to 60% of the ILC total cost. Next is the challenge to reach the highest practical gradient since this R and D has the largest cost leverage of any of the ongoing programs. Finally, we have to understand the beam dynamics and beam tuning processes in the main linac, as we will not have the opportunity to do full (or even large) scale tests of these before the linac is constructed.

  15. FERMILAB: Main Injector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10 31 cm -2 s -1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  16. A specialized bioengineering ion beam line

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I.G.; Wiedemann, H.

    2007-01-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology

  17. 6th CTF3 Collaboration Meeting

    CERN Document Server

    2000-01-01

    The sixth CTF3 collaboration meeting was held at CERN from the 1st to the 2nd November 2000. This meeting was devoted to the CTF3 combiner ring, delay loop and transfer lines, with the participation of members of the CLIC study group at CERN and of collaborators from INFN-Frascati. The CTF3 status has been summarized by the project leader, and several members of the INFN-Frascati group have presented an overview of the design activity of the different components. Working group sessions have been held on beam optics, on diagnostics and equipment and on RF deflectors. The main conclusions from the working groups have been reported at the end of the meeting. Issues that have been addressed include prototype design and construction (RF deflectors, path-length tuning wigglers, extraction kicker and vacuum chamber sections) and deadlines for component specifications. The impedance budget for the ring, delay loop and transfer lines, its impact on the choice of beam-position monitors and the problem of beam stability...

  18. EUROv Super Beam Studies

    International Nuclear Information System (INIS)

    Dracos, Marcos

    2011-01-01

    Neutrino Super Beams use conventional techniques to significantly increase the neutrino beam intensity compared to the present neutrino facilities. An essential part of these facilities is an intense proton driver producing a beam power higher than a MW. The protons hit a target able to accept the high proton beam intensity. The produced charged particles are focused by a system of magnetic horns towards the experiment detectors. The main challenge of these projects is to deal with the high beam intensity for many years. New high power neutrino facilities could be build at CERN profiting from an eventual construction of a high power proton driver. The European FP7 Design Study EUROv, among other neutrino beams, studies this Super Beam possibility. This paper will give the latest developments in this direction.

  19. Beam diagnostics and data acquisition system for ion beam transport line used in applied research

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Didyk, A.Yu.; Arkhipov, A.V.; Illes, A.; Bodnar, K.; Illes, Z.; Havancsak, K.

    1999-01-01

    Ion beam transport line for applied research on U-400 cyclotron, beam diagnostics and data acquisition system for condensed matter studies are described. The main features of Windows-based real time program are considered

  20. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    International Nuclear Information System (INIS)

    Weuste, Lars

    2013-01-01

    The Compact Linear Collider (CLIC) is a concept for a 48.3 km long e + e - accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, is presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30 x 30 x 5 mm 3 , read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimeter (W-AHCal) during beam tests performed at CERN in 2010 and 2011. The resulting data is compared to simulation obtained with three different hadronic shower physics models of the Geant4 simulation toolkit: QGSPBERT, QGSPBERTHP and QBBC. The results from 60 GeV high statistics run show that QBBC and QGSPBERTHP are mostly consistent with the testbeam data, while QGSPBERT, which is lacking a sophisticated treatment of neutrons, overestimates the late energy depositions. The second part of this thesis presents one out of the six benchmark processes that were part of the CLIC Conceptual Design Report (CDR) to verify the detector performance at CLIC. This benchmark process is the measurement of the mass and cross-section of two supersymmetric right-handed scalar quarks. In the underlying SUSY model these almost exclusively decay into the lightest neutralino (missing energy) and the corresponding standard model quark (jet). Within this analysis pile-up from beam

  1. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  2. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  3. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  4. Impedance and instability threshold estimates in the main injector I

    International Nuclear Information System (INIS)

    Martens, M.A.; Ng, K.Y.

    1994-03-01

    One of the important considerations in the design of the Main Injector is the beam coupling impedances in the vacuum chamber and the stability of the beam. Along with the higher intensities comes the possibility of instabilities which lead to growth in beam emittances and/or the loss of beam. This paper makes estimations of the various impedances and instability thresholds based on impedance estimations and measurements. Notably missing from this paper is any analysis of transition crossing and its potential limitations on beam intensity and beam emittance. Future work should consider this issue. The body of the work contains detailed analysis of the various impedance estimations and instability threshold calculations. The calculations are based on the Main Injector beam intensity of 6 x 10 10 protons per bunch, 95% normalized transverse emittances of 20π mm-mrad, and 95% normalized longitudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 150 GeV flattop energy. The conclusions section summarizes the results in the paper and is meant to be readable by itself without referring to the rest of the paper. Also in the conclusion section are recommendations for future investigations

  5. Application of Beam Diagnostics for Intense Heavy Ion Beams at the GSI UNILAC

    CERN Document Server

    Barth, W; Glatz, J; Groening, L; Richter, S; Yaramishev, S

    2003-01-01

    With the new High Current Injector (HSI) of the GSI UNILAC the beam pulse intensity had been increased by approximately two orders of magnitudes. The HSI was mounted and commissioned in 1999; since this time the UNILAC serves as an injector for the synchrotron SIS, especially for high uranium intensities. Considering the high beam power of up to 1250 kW and the short stopping range for the UNILAC beam energies (≤12 MeV/u), accelerator components could be destroyed, even during a single beam pulse. All diagnostic elements had to be replaced preferably by non-destructive devices. The beam current is mainly measured by beam transformers instead of Faraday cups, beam positions are measured with segmented capacitive pick-ups and secondary beam monitors instead of profile harps. The 24 installed pick-ups are also used to measure intensities, widths and phase of the bunches, as well beam energies by evaluating pick-ups at different positions. The residual gas ionization monitors allow on-line measurements ...

  6. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  7. JAS'2000

    CERN Multimedia

    2000-01-01

    Are you interested in beam dynamics? Do you work on the LHC injectors or CLIC or maybe feasibility studies fornew machines? Then this is for youJAS'2000: Joint CERN-Japan-JINR-Russia-US SchoolFrontiers of Accelerator Technology: High Quality Beams to be held on a river boat between St. Petersburg and Moscow 1 to 14 July 2000. For further information see eitherhttp://schools.web.cern.ch/Schools/CAS/ orhttp://www.indiana.edu/~uspas/programs/js/jas2000.html

  8. The CERN linear collider test facility (CTF)

    International Nuclear Information System (INIS)

    Baconnier, Y.; Battisti, S.; Bossart, R.; Delahaye, J.P.; Geissler, K.K.; Godot, J.C.; Huebner, K.; Madsen, J.H.B.; Potier, J.P.; Riche, A.J.; Sladen, J.; Suberlucq, G.; Wilson, I.; Wuensch, W.

    1992-01-01

    The CTF (Collider Test Facility) was brought into service last year. The 3 GHz gun produced a beam of 3 MeV/c which was accelerated to 40 MeV/c. This beam, passing a prototype CLIC (linear collider) structure, generated a sizeable amount of 30 GHz power. This paper describes the results and experience with the gun driven by a 8 ns long laser pulse and its CsI photo cathode, the beam behaviour, the beam diagnostics in particular with the bunch measurements by Cerenkov or transition radiation light and streak camera, the photo cathode research, and the beam dynamics studies on space charge effects. (Author)4 figs., tab., 6 refs

  9. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  10. S100A4 and BMP-2 Co-Dependently Induce Vascular Smooth Muscle Cell Migration via pERK and Chloride Intracellular Channel 4 (CLIC4)

    Science.gov (United States)

    Spiekerkoetter, Edda; Guignabert, Christophe; de Jesus Perez, Vinicio; Alastalo, Tero-Pekka; Powers, Janine M; Wang, Lingli; Lawrie, Allan; Ambartsumian, Noona; Schmidt, Ann-Marie; Berryman, Mark; Ashley, Richard H; Rabinovitch, Marlene

    2009-01-01

    Rationale S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMC), through an interaction with the receptor for advanced glycation end products (RAGE). Objective We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (R) II, observed in pulmonary arterial hypertension (PAH). Methods and Results Both S100A4/Mts1 (500ng/ml) and BMP-2 (10ng/ml) induce migration of hPASMCS in a novel co-dependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII siRNA. Phosphorylation of ERK is induced by both ligands and is required for motility by inducing MMP2 activity, but phosphoERK1/2 is blocked by anti-RAGE and not by BMPRII siRNA. In contrast, BMPRII siRNA, but not anti-RAGE, reduces expression of intracellular chloride channel 4 (CLIC4), a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA (MHCIIA), but does alter alignment of MHCIIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodiae in motile cells. Conclusions Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, i.e., cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease. PMID:19713532

  11. Heribert KOZIOL's retirement party

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 09: L. to r. : Simon van der Meer (inventor of 'Stochastic Cooling', Nobel prize 1984), Kurt Hubner, Director of Accelerators) Photo 11: L. to r.: Renzo Resegotti (builder of the ISR magnets), Simon van der Meer , Kurt Hubner Photo 17: Heribert Koziol (longtime PS-Divisions Beam Diagnostics Group Leader) Radio-Frequency Groups; former CLIC Study Leader),

  12. The Saturne beam measurement system for orbit corrections and high and low intensity beam acceleration

    International Nuclear Information System (INIS)

    Degueurce, L.; Nakach, A.; Sole, J.

    1980-07-01

    This paper summarizes the dipolar and multipolar correction system and the main beam diagnostics of Saturne II: wide-band RF electrostatic pick-up electrode for observation of bunches, beam position and tune measurement systems, special electrodes for observation of emittance blow-up when particles cross a resonance line. For low intensity beams, special electrodes and electronics have been developed. All this instrumentation is computer controlled

  13. An experimental approach to free vibration analysis of smart composite beam

    Science.gov (United States)

    Yashavantha Kumar, G. A.; Sathish Kumar, K. M.

    2018-02-01

    Experimental vibration analysis is a main concern of this study. In designing any structural component the important parameter that has to be considered is vibration. The present work involves the experimental investigation of free vibration analysis of a smart beam. Smart beam consists of glass/epoxy composite as a main substrate and two PZT patches. The PZT patches are glued above and below the main beam. By experimentation the natural frequencies and mode shapes are obtained for both with and without PZT patches of a beam. Finally through experimentation the response of the smart beam is recorded.

  14. Fabrication of beam diagnostic components for Superconducting Cyclotron at Kolkata

    International Nuclear Information System (INIS)

    Roy, S.; Bhattacharya, S.; Das, T.; Bhattacharyya, T.K.; Pal, S.; Pal, G.; Mallik, C.; Bhandari, R.K.

    2009-01-01

    The viewer probe and main probe are used for determining the position and current of charged particles as it is accelerated inside the superconducting cyclotron. The viewer probe is used to visually observe the shape of the charged particle beam inside the cyclotron with the help of a borescope. The main probe measures the distribution of charged particles. The viewer probe and main probe are bellow sealed. They can be positioned with an accuracy of 0.5 mm at different radii within the superconducting cyclotron. M9 slit is placed after the exit flange of the cyclotron. It determines the position of the beam leaving the cyclotron. The beam line has slits, faraday cup, beam viewers, collimators, etc. for beam diagnostics. This paper presents the mechanical design and details of beam diagnostic components. (author)

  15. FERMILAB: Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10{sup 31} cm{sup -2} s{sup -1} in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction.

  16. The 8-GeV transfer line injection into main ring

    International Nuclear Information System (INIS)

    Yang, M.J.

    1995-06-01

    Included in this report are a brief review of the design lattice of the 8-GeV beam transfer line and the Main Ring, the recent measurements on the 8-GeV line lattice function as well as that of the Main Ring at 8-GeV. The injection matching is a very important part of the MR operation. Mismatches such as energy, timing, or position are easily corrected because they cause oscillations which are visible on the Turn-By-Turn (TBT) TV monitor display. Mis-matches due to beta and dispersion functions are detected only by using the Flying Wire or by doing measurements during beam study. A new method which makes use of the available data from TBT hardware was used to obtain the beam phase space ellipse. Data taken from Main Ring at injection gives the beta function needed for transfer matching from 8-GeV line. The result of this measurement is also presented here

  17. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. II

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The scientific programme of the conference carved the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: radiation sources, Z-pinches, accelerate related topics, astrophysics, ICF, ION Beam Physics, ION DIODES, ION RINGS, Beam plasma systems, diagnostic and others. This volumes contains 160 contributions, out which 133 have been input to INIS

  18. Beams `96. Proceedings of the 11th international conference on high power particle beams. Vol. II

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, K.; Ullschmied, J. [eds.

    1997-12-31

    The scientific programme of the conference carved the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: radiation sources, Z-pinches, accelerate related topics, astrophysics, ICF, ION Beam Physics, ION DIODES, ION RINGS, Beam plasma systems, diagnostic and others. This volumes contains 160 contributions, out which 133 have been input to INIS.

  19. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    International Nuclear Information System (INIS)

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long

  20. Polarised and tagged gamma-ray Ladon beams

    International Nuclear Information System (INIS)

    Babusci, D.

    1995-11-01

    The production of polarized and tagged gamma-ray beams by the backscattering of Laser light on the relativistic electrons circulating in storage rings is discussed. the main characteristic and the experimental results of the Ladon and LEGS beams are presented. The Graal beam is introduced

  1. Polarised and tagged gamma-ray Ladon beams

    Energy Technology Data Exchange (ETDEWEB)

    Babusci, D [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1995-11-01

    The production of polarized and tagged gamma-ray beams by the backscattering of Laser light on the relativistic electrons circulating in storage rings is discussed. the main characteristic and the experimental results of the Ladon and LEGS beams are presented. The Graal beam is introduced.

  2. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.)

  3. Beams `96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, K.; Ullschmied, J. [eds.

    1997-12-31

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.).

  4. Study and Development of a Laser Based Alignment System

    CERN Multimedia

    Stern, G

    2014-01-01

    CLIC (Compact Linear Collider) has tight requirements regarding pre-alignment of beam related components: 10 µm accuracy over a sliding window of 200 m along the 20 km of linac. To perform such an alignment, a new system is proposed combining laser beam as straight line reference and camera/shutter assemblies as sensors. The poster describes the alignment system and shows results regarding laser pointing stability with respect to time, shutter type, distance and environment. These results give a frame for future building and calibrating of sensors.

  5. Fermilab Main Injector plan

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-07-15

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10{sup 31} per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research.

  6. Flying wire beam profile monitor at the J-PARC MR

    International Nuclear Information System (INIS)

    Igarashi, Susumu; Arakawa, Dai; Hashimoto, Yoshinori; Teshima, Masaki; Toyama, Takeshi; Hanamura, Kotoku

    2008-01-01

    A flying wire beam profile monitor has been assembled and installed at the main ring of the Japan Proton Accelerator Research Complex. The monitor is to measure the horizontal beam profile using a carbon fiber of 7 μmφ. The fiber crosses the beam with the speed of 10 m/s. Secondary particles from the beam-wire scattering is detected using a scintillation counter. The scintillator signal as a function of the wire position is to be reconstructed as a beam profile. The high scanning speed and the minimum material are necessary for the accurate beam profile measurement. The monitor has been operated in the beam commissioning run of the main ring. The beam profile data have been successfully acquired after the reduction of the beam background. (author)

  7. Design and Results of a Time Resolved Spectrometer for the 5 MeV Photo-Injector Phin

    CERN Document Server

    Dabrowski, A; Egger, D; Mete, O; Lefevre, T

    2010-01-01

    The CLIC Test Facility 3 (CTF3) drive beam injector should provide high intensity and high quality electron beams. The present installation relies on a thermionic gun followed by a complex RF bunching system. As an upgrade to improve the beam emittance and the energy spread and to minimize the beam losses, a photo-injector is being developed and tested at CERN. One of the major challenges is to provide a 3.5A beam with a stable (0.1%) beam energy over 1.2 μs and a relative energy spread smaller than 1%. A 90◦ spectrometer line consisting of a segmented dump and an Optical Transition Radiation screen has been built in order to study these issues. The following paper describes its design and shows performances during the beam commissioning.

  8. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); The Virtual National Laboratory for Heavy Ion Fusion Science (United States)

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  9. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    International Nuclear Information System (INIS)

    Friedman, Alex

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy

  10. Main Ring bunch spreaders: Past, 1987/1988 fixed target run, and proposed future

    International Nuclear Information System (INIS)

    Jackson, G.P.

    1989-01-01

    During the last 1987--1988 fixed target running period beam intensity was limited many times by coherent instabilities in both the Main Ring and in the Tevatron. The intensity thresholds for instabilities are generally inversely proportional to the proton bunch length. Since fixed target operations are insensitive to the longitudinal phase space emittance of the beam, bunch spreaders are employed to increase this emittance, and hence the bunch length. As a result, more beam intensity can be delivered to the fixed target experiments. This paper starts with a short history behind the old Main Ring bunch spreader. After discussing the physics of stimulated emittance growth, the design and performance of the 1987--1988 fixed target run Main Ring bunch spreader is discussed. Finally, designs of improved Main Ring and Tevatron bunch spreaders for the next fixed target run are proposed. 23 figs

  11. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  12. Beam Losses and Lifetime of the LHC Beam in the SPS

    CERN Document Server

    Bohl, T; Shaposhnikova, Elena; Tückmantel, Joachim

    2006-01-01

    Studies of the LHC beam loss in the SPS started in 2003 [1], [2] and continued in 2004. The flat bottom losses strongly depend on the batch intensity and the RF voltage. For beam with the 75 ns spacing at the same bunch intensity they are smaller than for the 25 ns spaced bunches. Large voltage on the flat bottom together with some optimum voltage at injection helps to reduce losses. Analysis of data from 2003 has shown that observations are compatible with a diffusion like process on the flat bottom. Therefore significant time during 2004 was devoted to studies of possible RF noise sources. However the main improvement in beam lifetime on the flat bottom was observed after a change in the working point in the transverse plane (MD on 1.09.2004). In this Note we present measurements of beam loss and lifetime done during several dedicated SPS MDs for different conditions in the ring. Analysis of beam coasts will be presented separately.

  13. Evaluation of the BEAM--BEAM effect in PEP using Myer's simulation program

    International Nuclear Information System (INIS)

    Hutton, A.

    1982-09-01

    The program BEAM BEAM written by Steve Myers for the LEP machine at CERN has given encouraging results in the simulation of the beam-beam effect in electron-positron storage rings. It therefore seemed worthwhile to apply the program to PEP with two main intentions. Firstly, to confirm the validity of the program by comparison with experimental data from previous PEP runs and secondly, to search for an improvement in the operating conditions of PEP. Clearly a successful prediction would also enhance the credibility of the program. The program itself has been extensively described in the literature and will not be repeated here, except for some comments of direct relevance to the present simulation. 14 refs., 15 figs., 4 tabs

  14. Planck 2015 results. IV. Low Frequency Instrument beams and window functions

    CERN Document Server

    Ade, P.A.R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Christensen, P.R.; Colombi, S.; Colombo, L.P.L.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri}, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Watson, R.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down to -30 dB at 70 GHz. The agreement between the simulated beams and the measured beams is confirmed to be better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are: 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated fro...

  15. GLAST beam test at SLAC

    International Nuclear Information System (INIS)

    Engovatov, D.; Anthony, P.; Atwood, W.

    1996-10-01

    In May and June, a beam test for GLAST calorimeter technologies was conducted. A parasitic low intensity electron/tagged photon beam line into the End Station A at SLAC was commissioned and used. The preliminary stage of the test was devoted to measuring the performance of the parasitic beam. In the main test we studied the response of GLAST prototype CsI and scintillating fiber calorimeters to the electrons and photons. Results of this work are discussed

  16. Design of HELIOS beam diagnostics

    International Nuclear Information System (INIS)

    Seagrave, J.D.; Bigio, I.J.; Jackson, S.V.; Laird, A.M.

    1979-01-01

    Verification of satisfactory operation of the HELIOS eight-beam laser system requires measurement of many parameters of each beam on each shot. Fifty-joule samples of each of the eight 1250-J, subnanosecond 34-cm-diameter beams of the HELIOS system are diverted to a gallery of eight folded telescopes and beamsplit to provide diagnostic measurements. Total pulse energy, and prepulse and postlase energy of each beam are measured; pulse shape details and a wavelength spectrum of a selected beam from each shot are measured; and provision is made for retropulse measurement and optical quality monitoring. All data are recorded digitally in a local screen room, with control and communication through a fiberoptic link to the main HELIOS computer

  17. Fermilab Main Injector plan

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10 31 per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research

  18. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Weuste, Lars

    2013-06-12

    The Compact Linear Collider (CLIC) is a concept for a 48.3 km long e{sup +}e{sup -} accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, is presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30 x 30 x 5 mm{sup 3}, read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimeter (W-AHCal) during beam tests performed at CERN in 2010 and 2011. The resulting data is compared to simulation obtained with three different hadronic shower physics models of the Geant4 simulation toolkit: QGSPBERT, QGSPBERTHP and QBBC. The results from 60 GeV high statistics run show that QBBC and QGSPBERTHP are mostly consistent with the testbeam data, while QGSPBERT, which is lacking a sophisticated treatment of neutrons, overestimates the late energy depositions. The second part of this thesis presents one out of the six benchmark processes that were part of the CLIC Conceptual Design Report (CDR) to verify the detector performance at CLIC. This benchmark process is the measurement of the mass and cross-section of two supersymmetric right-handed scalar quarks. In the underlying SUSY model these almost exclusively decay into the lightest neutralino (missing energy) and the corresponding standard model quark (jet). Within this analysis pile

  19. The main achievements of the Technological Development Department in 1998. Vacuum and Cleanroom Techniques Group

    International Nuclear Information System (INIS)

    Batulescu, C.

    1999-01-01

    The purpose of this research work was the manufacturing of the electron beam diagnosis device prototype used for optimization of both electron gun construction and the main parameters of electron beam welding carried out in a vacuum atmosphere. In order to obtain high quality weldings the precise geometry and the main electrical parameters characterizing the beam must be well known by both the manufacturer and the users of the equipment. Three of the most important parameters of the beam can be experimentally analysed using the diagnosis device: - Output current of the beam (on the metal part); - Minimum diameter of the beam; - Power density on the metal part. The main components of the diagnosis device are: - Faraday Cage; - Cooling Water Feedthrough; - Electrical Feedthrough; - Two-channel Function Generator Module; - Entrance Amplifier; - Deflection Control System; - Two-channel Oscilloscope. The device includes specific components that allows an efficient dissipation of the energy released by the electronic welding gun. Several requirements with high level of difficulty such as equipment operation under high voltage/vacuum conditions, a high level of noise and overfeeding due to parasitic electrical discharges or thyristors, an efficient water cooling for every component, and a satisfactory insulation resistance of the coolant so that the low level input from the Faraday cage to rest unaltered, have been taken into consideration. The beam diagnosis device allows optimization of the main parameters of the electron welding guns such as effective power on the welded parts, beam diameter, current and power density across the stream of particles. The contribution of the beam diagnosis to the improvement of the existing or future welding guns will play an important role in research and for the establishing of the new electron-beam welding technologies demanded by industry. (authors)

  20. Neutron beam applications

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S.

    2000-05-01

    For the materials science by neutron technique, the development of the various complementary neutron beam facilities at horizontal beam port of HANARO and the techniques for measurement and analysis has been performed. High resolution powder diffractometer, after the installation and performance test, has been opened and used actively for crystal structure analysis, magnetic structure analysis, phase transition study, etc., since January 1998. The main components for four circle diffractometer were developed and, after performance test, it has been opened for crystal structure analysis and texture measurement since the end of 1999. For the small angle neutron spectrometer, the main component development and test, beam characterization, and the preliminary experiment for the structure study of polymer have been carried out. Neutron radiography facility, after the precise performance test, has been used for the non-destructive test of industrial component. Addition to the development of main instruments, for the effective utilization of those facilities, the scattering techniques relating to quantitative phase analysis, magnetic structure analysis, texture measurement, residual stress measurement, polymer study, etc, were developed. For the neutron radiography, photographing and printing technique on direct and indirect method was stabilized and the development for the real time image processing technique by neutron TV was carried out. The sample environment facilities for low and high temperature, magnetic field were also developed