WorldWideScience

Sample records for clic interaction point

  1. Interaction Point Backgrounds from the CLIC Post Collision Line

    OpenAIRE

    Salt, Michael David

    2012-01-01

    The proposed CLIC accelerator is designed to collide electrons and positrons ata centre of mass energy of 3 TeV, and a luminosity of 5.9 x 10^(34) cm^(−2) s^(−1) at the interactionpoint (IP). Being a single-pass machine, luminosity must be maximised byminimising the beam spot size to the order of a few nanometres. The effects of the finalfocussing and the intense beam-beam effects lead to a high production cross sectionof beamstrahlung photons, and highly divergent outgoing beams, both spatia...

  2. CLIC simulations from the start of the linac to the interaction point

    CERN Document Server

    Schulte, Daniel; Blair, G A; D'Amico, T E; Leros, Nicolas; Redaelli, S; Risselada, Thys; Zimmermann, Frank

    2002-01-01

    Simulations for linear colliders are traditionally performed separately for the different sub-systems, like damping ring, bunch compressor, linac, and beam delivery. The beam properties are usually passed from one sub-system to the other via bunch charge, RMS transverse emittances, RMS bunch length, average energy and RMS energy spread. It is implicitly assumed that the detailed 6D correlations in the beam distribution are not relevant for the achievable luminosity. However, it has recently been shown that those correlations can have a strong effect on the beam-beam interaction. We present first results on CLIC simulations that integrate linac, beam delivery, and beam-beam interaction. These integrated simulations also allow a better simulation of time-dependent effects, like ground perturbations and interference between several beam-based feedbacks.

  3. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  4. Interaction of Human Chloride Intracellular Channel Protein 1 (CLIC1) with Lipid Bilayers: A Fluorescence Study.

    Science.gov (United States)

    Hare, Joanna E; Goodchild, Sophia C; Breit, Samuel N; Curmi, Paul M G; Brown, Louise J

    2016-07-12

    Chloride intracellular channel protein 1 (CLIC1) is very unusual as it adopts a soluble glutathione S-transferase-like canonical fold but can also autoinsert into lipid bilayers to form an ion channel. The conversion between these forms involves a large, but reversible, structural rearrangement of the CLIC1 module. The only identified environmental triggers controlling the metamorphic transition of CLIC1 are pH and oxidation. Until now, there have been no high-resolution structural data available for the CLIC1 integral membrane state, and consequently, a limited understanding of how CLIC1 unfolds and refolds across the bilayer to form a membrane protein with ion channel activity exists. Here we show that fluorescence spectroscopy can be used to establish the interaction and position of CLIC1 in a lipid bilayer. Our method employs a fluorescence energy transfer (FRET) approach between CLIC1 and a dansyl-labeled lipid analogue to probe the CLIC1-lipid interface. Under oxidizing conditions, a strong FRET signal between the single tryptophan residue of CLIC1 (Trp35) and the dansyl-lipid analogue was detected. When considering the proportion of CLIC1 interacting with the lipid bilayer, as estimated by fluorescence quenching experiments, the FRET distance between Trp35 and the dansyl moiety on the membrane surface was determined to be ∼15 Å. This FRET-detected interaction provides direct structural evidence that CLIC1 associates with membranes. The results presented support the current model of an oxidation-driven interaction of CLIC1 with lipid bilayers and also propose a membrane anchoring role for Trp35. PMID:27299171

  5. Interaction of the chloride intracellular ion channel protein CLIC1 with different sterols in model membranes

    International Nuclear Information System (INIS)

    Background and Aims: Sterols have been reported to modulate conformation and hence the function of several membrane proteins. One such group is the Chloride Intracellular Ion Channel (CLIC) family of proteins. The CLIC protein family consists of six evolutionarily conserved protein members in vertebrates. These proteins are unusual, existing as both monomeric soluble proteins and as membrane bound proteins. We now for the first time demonstrate that the spontaneous membrane insertion of CLIC1 is dependent on the presence of cholesterol in membranes. Our novel findings also extend to the identification of a cholesterol-binding domain within CLIC1 that facilitates the spontaneous membrane insertion of the protein into membranes containing cholesterol. Methods: CLIC1 wild type (WT) and mutant proteins were purified by Ni-NTA followed by size‐exclusion chromatography. Langmuir monolayer film balance experiments were carried out using 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC) alone, or in a 5:1 mole ratio combination with either one of the following sterols: Cholesterol (CHOL), β-Sitosterol (SITO), Ergosterol (ERG), Hydroxyecdysone (HYD) or Cholestane (CHOS). WT CLIC1 or mutant versions of CLIC1 were then injected into the aqueous subphase under the lipid film. Results: In lipid monolayers lacking sterols, CLIC1 did not insert. However significant membrane insertion occurred when CLIC1 was added to membranes containing cholesterol. Substitution of membrane cholesterol with either HYD, SITO or ERG, not only increased CLIC1’s membrane interaction but also increased its rate of insertion. Conversely, CLIC1 showed no insertion into monolayers containing CHOS, which lacked the intact sterol 3β-OH group. CLIC1 mutants G18A and G22A, did not insert in POPC:CHOL monolayers whereas the C24A mutant showed membrane insertion equivalent to WT CLIC1. X-ray and Neutron reflectivity, along with Small Angle X-ray Scattering techniques were subsequently used to probe

  6. Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air–Water Interface

    Directory of Open Access Journals (Sweden)

    Khondker R. Hossain

    2016-02-01

    Full Text Available CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre-incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1-cholesterol pre-complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels.

  7. Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air–Water Interface

    Science.gov (United States)

    Hossain, Khondker R.; Al Khamici, Heba; Holt, Stephen A.; Valenzuela, Stella M.

    2016-01-01

    CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre-incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1-cholesterol pre-complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels. PMID:26875987

  8. An Experimental Approach to Simulations of the CLIC Interaction Point

    DEFF Research Database (Denmark)

    Esberg, Jakob

    2012-01-01

    respect to the luminosity weighted depolarization is discussed. In the chapter on muons, the implementation of the production of incoherent muons in GUINEA-PIG++ will be discussed. Comments on the correctness and completeness of the implementation of muon production will be presented. The chapter on...

  9. Analyzing the Anomalous Dipole Moment Type Couplings of Heavy Quarks with FCNC Interactions at the CLIC

    International Nuclear Information System (INIS)

    We examine both anomalous magnetic and dipole moment type couplings of a heavy quark via its single production with subsequent dominant standard model decay modes at the compact linear collider (CLIC). The signal and background cross sections are analyzed for heavy quark masses 600 and 700 GeV. We make the analysis to delimitate these couplings as well as to find the attainable integrated luminosities for 3σ observation limit

  10. CLIC Brochure

    CERN Multimedia

    De Melis, Cinzia

    2015-01-01

    After the discovery of the Higgs boson and with upgrades to higher energy and luminosity, the LHC is mapping the route of particle physics into the future. The next step in this journey of discovery could be a linear electron-positron collider, which would complement the LHC and allow high precision measurements of the Higgs boson, the top quark and electroweak processes in addition to possible new physics beyond the Standard Model. The Compact Linear Collider is under development by two worldwide collaborations, pushing the limits of particle acceleration and detection. Technological R&D, physics simulations and engineering studies must all come together to make CLIC a reality.

  11. CLIC accelerator modules under construction at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    The Compact LInear Collider (CLIC) study is dedicated to the design of an electron-positron (e- e+) linear accelerator, colliding particle beams at the energy of 3 TeV. The CLIC required luminosity can be reached with powerful particle beams (14 MW each) colliding with extremely small dimensions and high beam stability at the interaction point. The accelerated particle beams must have dimensions of 45 nm in the horizontal plane and 1 nm in the vertical plane. CLIC relies upon a novel two-beam acceleration concept in which the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, called Drive Beam (DB), and transferred to a parallel high energy accelerating particle beam, called Main Beam (MB). The extraction and transfer of the RF power is achieved by the Power Extraction and Transfer Structures (PETS) and the particle beam acceleration is achieved with high precision RF-Accelerating Structures (AS), operating at 11.9942 GHz with an accelerating gradient of 100 MV/m, whi...

  12. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  13. Benchmarking of the Placet and Dimad tracking codes using the CLIC Post-Collision line

    CERN Document Server

    Ahmed, I; Ferrari, A; Latina, A

    2009-01-01

    In this benchmarking study, two contemporary codes, DIMAD and PLACET, are compared. We consider the 20 mrad post-collision line of the Compact Linear Collider (CLIC) and perform tracking studies of heavily disrupted post-collision electron beams. We successfully find that the two codes provide an equivalent description of the beam transport from the interaction point to the final dump.

  14. CLIC PHYSICS OVERVIEW

    CERN Document Server

    Bozovic-Jelisavcic, Ivanka

    2016-01-01

    In this paper, based on the invited talk at the 17th Lomonosov Conference of Elementary Particle Physics, the physics program at the future Compact Linear Collider (CLIC) will be reviewed, with particular emphasis on the Higgs physics studies. It will be demonstrated, on the basis of detailed physics and detector studies carried out at CLIC, that the CLIC is indeed a precision tool for studies both in the Higgs sector and beyond the Standard Model.

  15. CLIC MDI Overview

    OpenAIRE

    Gatignon, Lau

    2012-01-01

    This paper gives an introduction to the layout of the CLIC Machine Detector Interface as it has been defined for the CLIC Conceptual Design Report. We concentrate on the specific case of the CLIC_SiD detector, although the push-pull concept for two detectors has been included in the design. Some recent work and developments are described as well. However, for the details we refer to the detailed technical talks at this conference.

  16. Preparing for CLIC tests

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The Canon 5 undergoes first brazing for preparation in the CLIC study at the CLIC Test Facility 2 (CTF2). This will test injection for a proposed linear collider that will further explore discoveries made at the LHC. Electric fields in the canon will boost electrons into the acceleration fields of the collider.

  17. CLIC and CTF3

    CERN Document Server

    Tecker, F

    2008-01-01

    The CLIC study has been exploring the scheme for an electron-positron Collider (CLIC) with high luminosity (10$^{34}$ - 10$^{35}$ cm2/s) and a nominal centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The CLIC Test Facility CTF3, built at CERN by an international collaboration, aims at demonstrating the feasibility of the CLIC scheme by 2010. CTF3 consists of a 150 MeV electron linac followed by a 42 m long delay loop and an 84 m combiner ring, followed by a two-beam test stand and a test decelerator. The linac and delay loop have been previously commissioned, while the combiner ring has been recently completed. After a presentation of the recent CLIC parameters, the status of the test facility, the experimental results achieved and the future plans will be presented.

  18. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  19. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  20. CLIC brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2012-01-01

    The world's biggest and most powerful accelerator, the LHC, is mapping the route of particle physics for the future. The next step, to complement the LHC in exploring this new region, is most likely to be a linear electron-positron collider. The Compact Linear Collider (CLIC) is a novel approach to such a collider. It is currently under development by the CLIC collaboration, which is hosted at CERN.

  1. M10.3.4: CLIC crab cavity specifications completed

    CERN Document Server

    Dexter, A; Ambattu, P; Shinton, I; Jones, R

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  2. CLIC CRAB CAVITY SPECIFICATIONS MILESTONE: M10.3.4

    CERN Document Server

    Ambattu, P; Dexter, A; Jones, R; McIntosh, P; Shinton, I

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  3. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  4. CLIC Muon Sweeper Design

    CERN Document Server

    Aloev, A; Gatignon, L; Modena, M; Pilicer, B; Tapan, I

    2016-01-01

    There are several background sources which may affect the analysis of data and detector performans at the CLIC project. One of the important background source is halo muons, which are generated along the beam delivery system (BDS), for the detector performance. In order to reduce muon background, magnetized muon sweepers have been used as a shielding material that is already described in a previous study for CLIC [1]. The realistic muon sweeper has been designed with OPERA. The design parameters of muon sweeper have also been used to estimate muon background reduction with BDSIM Monte Carlo simulation code [2, 3].

  5. Study of a 5-Tesla large aperture coil for the CLIC detector

    CERN Document Server

    Cure, B

    2011-01-01

    The present design of a CLIC detector foresees a large solenoid magnet with a 6 m aperture and a magnetic induction of 5 T at the interaction point. This can be achieved by a thin superconducting coil. This report gives the typical main parameters of such a coil and presents the feasibility based on and compared with the CMS and Atlas solenoid coil designs, indicating the limits on the conductor and the identified R&D prospects.

  6. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  7. The CLIC Vertex Detector

    Science.gov (United States)

    Dannheim, D.

    2015-03-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a measurement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → Wb will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit timing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin planar or active HV-CMOS sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. This contribution reviews the requirements and design optimisation for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensors, readout and detector integration.

  8. The CLIC Vertex Detector

    International Nuclear Information System (INIS)

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a measurement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → Wb will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit timing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin planar or active HV-CMOS sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. This contribution reviews the requirements and design optimisation for the CLIC vertex detector and gives an overview of recent R and D achievements in the domains of sensors, readout and detector integration

  9. $2\\times250$ GeV CLIC $\\gamma\\gamma$ Collider Based on its Drive Beam FEL

    CERN Document Server

    Aksakal, Husnu

    2007-01-01

    CLIC is a linear $e^+e^-$ ($\\gamma\\gamma$) collider project which uses a drive beam to accelerate the main beam. The drive beam provides RF power for each corresponding unit of the main linac through energy extracting RF structures. CLIC has a wide range of center-of-mass energy options from 150 GeV to 3 TeV. The present paper contains optimization of Free Electron Laser (FEL) using one bunch of CLIC drive beam in order to provide polarized light amplification using appropriate wiggler and luminosity spectrum of $\\gamma\\gamma$ collider for $E_{cm}$=0.5 TeV. Then amplified laser can be converted to a polarized high-energy $\\gamma$ beam at the Conversion point (CP-prior to electron positron interaction point) in the process of Compton backscattering. At the CP a powerful laser pulse (FEL) focused to main linac electrons (positrons). Here this scheme described and it is show that CLIC drive beam parameters satisfy the requirement of FEL additionally essential undulator parameters has been defined. Achievable $\\g...

  10. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  11. Technological challenges of CLIC

    CERN Document Server

    CERN. Geneva; Döbert, Steffen; Arnau-Izquierdo, G; Redaelli, Stefano; Mainaud, Helène; Lefèvre, Thibaut

    2006-01-01

    Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&D effort is presently developed by the CLIC international collaboration to demonstrate its feasibility by 2010, when the first physics results from LHC should be available to guide the choice of the centre-of-mass energy better suited to explore the futu...

  12. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  13. CLIC quadrupole stabilization and nano-positioning

    CERN Document Server

    Collette, C; Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C

    2010-01-01

    In the Compact LInear Collider (CLIC) currently under study, electrons and positrons will be accelerated in two linear accelerators to collide at the interaction point with an energy of 0.5- 3 TeV. This machine is constituted of a succession of accelerating structures, used to accelerate the beams of particles, and electromagnets (quadrupoles) used to focus the beams. In order to ensure good performances, the quadrupoles have to be extremely stable. Additionally, they should also have the capability to move by steps of some tens of nanometers every 20 ms with a precision of +/- 1nm. This paper proposes a holistic approach to fulfill alternatively both requirements using the same device. The concept is based on piezoelectric hard mounts to isolate the quadrupoles from the ground vibrations in the sensitive range between 1 and 20 Hz, and to provide nano-positioning capabilities. It is also shown that this strategy ensures robustness to external forces (acoustic noise, water flow for the cooling, air flow for th...

  14. CLIC5A, a component of the ezrin-podocalyxin complex in glomeruli, is a determinant of podocyte integrity.

    Science.gov (United States)

    Wegner, Binytha; Al-Momany, Abass; Kulak, Stephen C; Kozlowski, Kathy; Obeidat, Marya; Jahroudi, Nadia; Paes, John; Berryman, Mark; Ballermann, Barbara J

    2010-06-01

    The chloride intracellular channel 5A (CLIC5A) protein, one of two isoforms produced by the CLIC5 gene, was isolated originally as part of a cytoskeletal protein complex containing ezrin from placental microvilli. Whether CLIC5A functions as a bona fide ion channel is controversial. We reported previously that a CLIC5 transcript is enriched approximately 800-fold in human renal glomeruli relative to most other tissues. Therefore, this study sought to explore CLIC5 expression and function in glomeruli. RT-PCR and Western blots show that CLIC5A is the predominant CLIC5 isoform expressed in glomeruli. Confocal immunofluorescence and immunogold electron microscopy reveal high levels of CLIC5A protein in glomerular endothelial cells and podocytes. In podocytes, CLIC5A localizes to the apical plasma membrane of foot processes, similar to the known distribution of podocalyxin and ezrin. Ezrin and podocalyxin colocalize with CLIC5A in glomeruli, and podocalyxin coimmunoprecipitates with CLIC5A from glomerular lysates. In glomeruli of jitterbug (jbg/jbg) mice, which lack the CLIC5A protein, ezrin and phospho-ERM levels in podocytes are markedly lower than in wild-type mice. Transmission electron microscopy reveals patchy broadening and effacement of podocyte foot processes as well as vacuolization of glomerular endothelial cells. These ultrastructural changes are associated with microalbuminuria at baseline and increased susceptibility to adriamycin-induced glomerular injury compared with wild-type mice. Together, the data suggest that CLIC5A is required for the development and/or maintenance of the proper glomerular endothelial cell and podocyte architecture. We postulate that the interaction between podocalyxin and subjacent filamentous actin, which requires ezrin, is compromised in podocytes of CLIC5A-deficient mice, leading to dysfunction under unfavorable genetic or environmental conditions. PMID:20335315

  15. CLIC Physics Overview

    CERN Document Server

    AUTHOR|(SzGeCERN)471575

    2016-01-01

    This paper, based on the invited talk given at the 17th Lomonosov Conference of Elementary Particle Physics, summarizes the physics program at CLIC, with particular emphasis on the Higgs physics studies. The physics reach of CLIC operating in three energy stages, at 350 GeV, 1.4 TeV and 3 TeV center-of-mass energies is reviewed. The energy-staged approach is motivated by the high-precision physics measurements in the Higgs and top sector as well as by direct and indirect searches for beyond the Standard Model physics. The first stage, at or above 350 GeV, gives access to precision Higgs physics through the Higgsstrahlung and WW-fusion production processes, providing absolute values of the Higgs couplings to fermions and bosons. This stage also addresses precision top physics around the top-pair-production threshold. The second stage, at 1.4 TeV, opens the energy frontier, allowing for the discovery of new physics phenomena. This stage also gives access to additional Higgs properties, such as the top-Yukawa co...

  16. CLIC CDR - physics and detectors: CLIC conceptual design report

    International Nuclear Information System (INIS)

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e+e- collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but considered

  17. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  18. CLIC crab cavity design optimisation for maximum luminosity

    International Nuclear Information System (INIS)

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  19. CLIC Crab Cavity Design Optimisation for Maximum Luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C.; /Lancaster U. /Cockcroft Inst. Accel. Sci. Tech.; Burt, G.; /Lancaster U. /Cockcroft Inst. Accel. Sci. Tech.; Ambattu, P.K.; /Lancaster U. /Cockcroft Inst. Accel. Sci. Tech.; Dolgashev, V.; /SLAC; Jones, R.; /Manchester U.

    2012-04-25

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  20. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  1. The CLIC Physics Potential

    CERN Document Server

    Robson, Aidan

    2016-01-01

    The physics and detector studies for the Compact Linear Collider (CLIC) are introduced. A staged programme of $e^{+}e^{−}$ collisions covering $\\sqrt{s}$ = 380 GeV, 1.5 TeV, and 3 TeV would allow precise measurements of Higgs boson couplings, in many cases to the percent level. This corresponds to precision higher than that expected for the high-luminosity Large Hadron Collider. Such precise Higgs coupling measurements would allow sensitivity to a variety of new physics models and the ability to distinguish between them. In addition, new particles directly produced in pairs could be measured with great precision, and measurements in the top-quark sector would provide sensitivity to new physics effects at the scales of tens of TeV.

  2. CLIC Status and Outlook

    CERN Document Server

    Stapnes, Stapnes

    2012-01-01

    The Compact Linear Collider study (CLIC) is in the process of completing a Conceptual Design Report (CDR) for a multi-TeV linear electron-positron collider. The CLICconcept is based on high gradient normal-conducting accelerating structures. The RF power for the acceleration of the colliding beams is produced by a novel two beam acceleration scheme, where power is extracted from a high current drive beam that runs parallel with the main linac. In order to establish the feasibility of this concept a number of key issues have been addressed. A short summary of the progress and status of the corresponding studies will be given, as well as an outline of the preparation and work towards an implementation plan by 2016.

  3. Tunable Achromats and CLIC Applications

    CERN Document Server

    D'Amico, T E

    2000-01-01

    It is imperative for linear colliders that the bunch length be adjustable. In most cases bunch compression is required, but recently, in the design of the Compact LInear Collider (CLIC) RF Power Source, it was shown that bunch stretching may also be necessary. In some situations, both modes may be needed, which implies the need for tunable magnetic insertions. This is even more essential in a test facility, to span a wide experimental range. In addition, flexible tuning provides a better control of the stability of an isochronous insertion. To start a numerical search for a tunable insertion from scratch is very uncertain because the related phase space is very uneven. However, a starting point obtained with an analytical approximation is often sufficient to ensure convergence. Another advantage of the analytical treatment described in this paper is that it sheds light on the shape of the entire phase space. To achieve this the isochronous achromat developed previously has been given tuning capabilities by ex...

  4. Impact of the New CLIC Beam Parameters on the Design of the Post-Collision Line and its Exit Window

    CERN Document Server

    Ferrari, A

    2008-01-01

    Following the recent modification of the CLIC beam parameters, we present an updated design of the post-collision line. As a result of the increase of the beamstrahlung photon cone size, the separation of the outgoing beams by the vertical magnetic chicane is more difficult, but still possible. The main changes in the post-collision line design include the implementation of a common dump for the wrong-sign charged particles of the coherent pairs and for the low-energy tails of the disrupted beam, as well as a significant reduction of the overall lattice length (allowing removal of the large refocusing quadrupoles). The thermal and mechanical stresses in the new exit window, 150 m downstream of the interaction point, were computed. We conclude that, despite the recent changes of the CLIC beam parameters and the necessary modifications of the post-collision line and its exit window, their performance is not significantly affected.

  5. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  6. CLIC vertex detector R&D

    Science.gov (United States)

    Alipour Tehrani, Niloufar

    2016-07-01

    A vertex detector concept is under development for the proposed multi-TeV linear e+e- Compact Linear Collider (CLIC). To perform precision physics measurements in a challenging environment, the CLIC vertex detector pushes the technological requirements to the limits. This paper reviews the requirements for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensor, readout, powering and cooling.

  7. Relativistic point interactions: Approximation by smooth potentials

    Science.gov (United States)

    Hughes, Rhonda J.

    1997-06-01

    We show that the four-parameter family of one-dimensional relativistic point interactions studied by Benvegnu and Dąbrowski may be approximated in the strong resolvent sense by smooth, local, short-range perturbations of the Dirac Hamiltonian. In addition, we prove that the nonrelativistic limits correspond to the Schrödinger point interactions studied extensively by the author and Paul Chernoff.

  8. Stabilization and positioning of CLIC quadrupole magnets with sub-nanometre resolution

    CERN Document Server

    Janssens, S; Collette, C; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    To reach the required luminosity at the CLIC interaction point, about 2000 quadrupoles along each linear collider are needed to obtain a vertical beam size of 1 nm at the interaction point. Active mechanical stabilization is required to limit the vibrations of the magnetic axis to the nanometre level in a frequency range from 1 to 100 Hz. The approach of a stiff actuator support was chosen to isolate from ground motion and technical vibrations acting directly on the quadrupoles. The actuators can also reposition the quadrupoles between beam pulses with nanometre resolution. A first conceptual design of the active stabilization and nano positioning based on the stiff support and seismometers was validated in models and experimentally demonstrated on test benches. Lessons learnt from the test benches and information from integrated luminosity simulations using measured stabilization transfer functions lead to improvements of the actuating support, the sensors used and the system controller. The controller elect...

  9. Beam position monitoring at CLIC

    OpenAIRE

    Prochnow, Jan Erik

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a gener...

  10. Tissue and subcellular distribution of CLIC1

    Directory of Open Access Journals (Sweden)

    Edwards John C

    2007-02-01

    Full Text Available Abstract Background CLIC1 is a chloride channel whose cellular role remains uncertain. The distribution of CLIC1 in normal tissues is largely unknown and conflicting data have been reported regarding the cellular membrane fraction in which CLIC1 resides. Results New antisera to CLIC1 were generated and were found to be sensitive and specific for detecting this protein. These antisera were used to investigate the distribution of CLIC1 in mouse tissue sections and three cultured cell lines. We find CLIC1 is expressed in the apical domains of several simple columnar epithelia including glandular stomach, small intestine, colon, bile ducts, pancreatic ducts, airway, and the tail of the epididymis, in addition to the previously reported renal proximal tubule. CLIC1 is expressed in a non-polarized distribution in the basal epithelial cell layer of the stratified squamous epithelium of the upper gastrointesitinal tract and the basal cells of the epididymis, and is present diffusely in skeletal muscle. Distribution of CLIC1 was examined in Panc1 cells, a relatively undifferentiated, non-polarized human cell line derived from pancreatic cancer, and T84 cells, a human colon cancer cell line which can form a polarized epithelium that is capable of regulated chloride transport. Digitonin extraction was used to distinguish membrane-inserted CLIC1 from the soluble cytoplasmic form of the protein. We find that digitonin-resistant CLIC1 is primarily present in the plasma membrane of Panc1 cells. In T84 cells, we find digitonin-resistant CLIC1 is present in an intracellular compartment which is concentrated immediately below the apical plasma membrane and the extent of apical polarization is enhanced with forskolin, which activates transepithelial chloride transport and apical membrane traffic in these cells. The sub-apical CLIC1 compartment was further characterized in a well-differentiated mouse renal proximal tubule cell line. The distribution of CLIC1 was

  11. Overview of the CLIC beam instrumentation

    CERN Document Server

    Lefèvre, T

    2011-01-01

    The performances of the Compact Linear Collider (CLIC) would rely on extremely tight tolerances on most beam parameters. The requirements for the CLIC beam instrumentation have been reviewed and studied in detail for the whole accelerator complex. In the context of the completion of the CLIC Conceptual Design Report, a first attempt was made to propose a technical solution for every CLIC instruments. Even if these choices were based on most recent technological achievements, whenever possible, alternatives solutions focusing on potential improvements on performance, reliability or cost minimization are proposed and will be studied in the future. This paper presents an overview of the CLIC beam instruments, gives a status of their already achieved performances and presents the future work activities.

  12. Determine point-to-point networking interactions using regular expressions

    Directory of Open Access Journals (Sweden)

    Konstantin S. Deev

    2015-06-01

    Full Text Available As Internet growth and becoming more popular, the number of concurrent data flows start to increasing, which makes sense in bandwidth requested. Providers and corporate customers need ability to identify point-to-point interactions. The best is to use special software and hardware implementations that distribute the load in the internals of the complex, using the principles and approaches, in particular, described in this paper. This paper represent the principles of building system, which searches for a regular expression match using computing on graphics adapter in server station. A significant computing power and capability to parallel execution on modern graphic processor allows inspection of large amounts of data through sets of rules. Using the specified characteristics can lead to increased computing power in 30…40 times compared to the same setups on the central processing unit. The potential increase in bandwidth capacity could be used in systems that provide packet analysis, firewalls and network anomaly detectors.

  13. Interaction between Injection Points during Hydraulic Fracturing

    OpenAIRE

    Hals, Kjetil M. D.; Berre, Inga

    2012-01-01

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For inj...

  14. Common ground in ILC and CLIC detector concepts

    CERN Multimedia

    Daisy Yuhas

    2013-01-01

    The Compact Linear Collider and the International Linear Collider will accelerate particles and create collisions in different ways. Nonetheless, the detector concepts under development share many commonalities.   Timepix chips under scrutiny in the DESY test beam with the help of the beam telescope. CERN physicist Dominik Dannheim explains that the CLIC detector plans are adaptations of the ILC detector designs with a few select modifications. “When we started several years ago, we did not want to reinvent the wheel,” says Dannheim. “The approved ILC detector concepts served as an excellent starting point for our designs.” Essential differences Both CLIC and ILC scientists foresee general-purpose detectors that make measurements with exquisite precision. These colliders, however, have very different operating parameters, which will have important consequences for the various detector components. The ILC’s collision energy is set at 500 GeV ...

  15. Precision Higgs boson measurement at CLIC

    CERN Document Server

    Pandurovic, Mila

    2016-01-01

    The design of the next generation collider in high energy physics will primarily focus on the possibility to achieve high precision of the measurements of interest. The necessary precision limits are set, in the first place, by the measurement of the Higgs boson but also by measurements that are sensitive to signs of New Physics. The Compact Linear Collider (CLIC) is an attractive option for a future multi-TeV linear electron-positron collider, with the potential to cover a rich physics program with high precision. In this lecture the CLIC accelerator, detector and backgrounds will be presented with emphesis on the capabilities of CLIC for precision Higgs physics.

  16. First phase of CLIC R&D complete

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Let’s turn back the clocks to 2002: the LHC is still under construction, the wrap-up of the LEP physics programme is still in recent memory and the future of electron-positron accelerators at CERN is ambiguous. It was then that CLIC set out to prove the feasibility of their novel accelerator design in the CTF3 test facility. Though once a tall order for the collaboration, the recently released CLIC Conceptual Design Report has proven many of the major design elements… bringing to an end the first phase of CLIC R&D and pointing toward detailed performance optimisation studies in the next phase.   Streak camera images of the final beam, illustrating the combination of beams in the Combiner Ring. Over a decade ago, the CTF3 team set up shop in the vacated LIL injector site, once home to the weathered machine that delivered electrons and positrons to LEP. Rebuilding and upgrading the machine piece by piece, the CTF3 team converted this mA linac into a high-current drive b...

  17. CLIC's three-step plan

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    In early October, the Compact Linear Collider (CLIC) collaboration published its final Conceptual Design Report. Accompanying it was a strategic summary document that describes a whole new approach to the project: developing the linear e+e− collider in three energy stages. Though CLIC’s future still depends on signs from the LHC, its new staged approach to high-energy electron-positron physics for the post-LHC era is nothing short of convincing.   Instead of asking for a 48-kilometre-long commitment right off the bat, the CLIC collaboration is now presenting an accelerator that can be constructed in stages. For example, it could begin as an 11-kilometre 500 GeV accelerator that could later be extended to a 27-kilometre 1.5 TeV machine. Finally, after a decade or so of data taking, it could be taken up to the full 48-kilometre 3 TeV facility (see image 2). “Not only is the approach technically and financially practical, it also offers a very convincing physics prog...

  18. Point interactions, metamaterials, and PT-symmetry

    Science.gov (United States)

    Mostafazadeh, Ali

    2016-05-01

    We express the boundary conditions for TE and TM waves at the interfaces of an infinite planar slab of homogeneous metamaterial as certain point interactions and use them to compute the transfer matrix of the system. This allows us to demonstrate the omnidirectional reflectionlessness of Veselago's slab for waves of arbitrary wavelength, reveal the translational and reflection symmetry of this slab, explore the laser threshold condition and coherent perfect absorption for active negative-index metamaterials, introduce a point interaction modeling phase-conjugation, determine the corresponding antilinear transfer matrix, and offer a simple proof of the equivalence of Veselago's slab with a pair of parallel phase-conjugating plates. We also study the connection between certain optical setups involving metamaterials and a class of PT-symmetric quantum systems defined on wedge-shape contours in the complex plane. This provides a physical interpretation for the latter.

  19. The 30 GHz transfer structure for the CLIC study

    CERN Document Server

    Carron, G; Thorndahl, L

    1998-01-01

    In the so-called "Two-Beam Acceleration Scheme" the energy of a drive beam is converted to rf power by means of a "Transfer Structure", which plays the role of power source. In the Transfer Structure the bunched drive beam is decelerated by the electromagnetic field which it induces and builds up by the coherent interaction of successive bunches with the chosen longitudinal mode. The CLIC Transfer Structure is original in that it operates at 30 GHz and uses teeth-like corrugations to slow down the hybrid TM mode to make it synchronous with the drive beam. The beam energy is transformed into rf power, which travels along the structure and is collected by the output couplers. The 30 GHz rf power is then transported by means of two waveguides to two main linac disk-loaded accelerating structures. This report describes the CLIC Transfer Structure design, 3-D computer simulations, model construction and measure-ments as well as the prototype construction and testing with the low energy beam in the CLIC Test Facili...

  20. LHC and CLIC LLRF final reports

    CERN Document Server

    Dexter, A; Woolley, B; Ambattu, P; Tahir, I; Syratchev, Igor; Wuensch, Walter

    2013-01-01

    Crab cavities rotate bunches from opposing beams to achieve effective head-on collision in CLIC or collisions at an adjustable angle in LHC. Without crab cavities 90% of achievable luminosity at CLIC would be lost. In the LHC, the crab cavities allow the same or larger integrated luminosity while reducing significantly the requested dynamic range of physics detectors. The focus for CLIC is accurate phase synchronisation of the cavities, adequate damping of wakefields and modest amplitude stability. For the LHC, the main LLRF issues are related to imperfections: beam offsets in cavities, RF noise, measurement noise in feedback loops, failure modes and mitigations. This report develops issues associated with synchronising the CLIC cavities. It defines an RF system and experiments to validate the approach. It reports on the development of hardware for measuring the phase performance of the RF distributions system and cavities. For the LHC, the hardware being very close to the existing LLRF, the report focuses on...

  1. CLIC CTF3 for open days

    CERN Multimedia

    CLIC

    2013-01-01

    CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  2. CLIC CTF3 for open days

    CERN Multimedia

    2013-01-01

    (subt french) CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  3. Acquisition system for the CLIC Module

    CERN Document Server

    Vilalte, Sebastien

    2011-01-01

    The status of R&D activities for CLIC module acquisition are discussed [1]. LAPP is involved in the design of the local CLIC module acquisition crate, described in the document Study of the CLIC Module Front-End Acquisition and Evaluation Electronics [2]. This acquisition system is a project based on a local crate, assigned to the CLIC module, including several mother boards. These motherboards are foreseen to hold mezzanines dedicated to the different subsystems. This system has to work in radiation environment. LAPP is involved in the development of Drive Beam stripline position monitors read-out, described in the document Drive Beam Stripline BPM Electronics and Acquisition [3]. LAPP also develops a generic acquisition mezzanine that allows to perform all-around acquisition and components tests for drive beam stripline BPM read-out.

  4. Detector Optimization of the CLIC Tracker

    CERN Document Server

    Saxe, Gandalf

    2015-01-01

    CLIC (Compact Linear Collider) is a proposed high-energy electron-positron collider at CERN [1] that, if approved, will be built at the feet of the Jura Mountains in Switzerland, passing through CERN. As opposed to hadrons, electrons (e-) and positrons (e+) are elementary particles. Therefore, e-e+ collisions give a well defined initial state which allows high precision studies. A circular collider is not a viable option when going to high energies (several TeV) for a e-e+ collider due to synchrotron radiation. Therefore CLIC is designed as a linear collider. CLIC is proposed to be build in three center-of-mass energy stages: 380 GeV, 1.4 TeV and 3.0 TeV. The CLIC physics program includes the high precision measurements of the Higgs and top properties, the observation of rare processes, and the possible discovery of new particles [3].

  5. Successful start for new CLIC test facility

    CERN Multimedia

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  6. Interactions of three viscous point vortices

    International Nuclear Information System (INIS)

    The dynamics of viscous point vortices in two dimensions is studied both analytically and numerically. We consider a core-growth model based on the Lamb–Oseen vortices, the so-called multi-Gaussian model, to describe the evolution of viscous vortices. We focus mainly on the interaction of three viscous vortices. It is found that for three vortices, there are no self-similar motion except rigid rotation, and no collapse of the vortex centers, unlike the inviscid point vortices. We perform numerical computations for the Navier–Stokes equation and the multi-Gaussian model for the collapsing case of the inviscid three point vortices and examine in detail the viscous evolutions of the vortices from the models. The motions of the vortices are little influenced by viscosity, when their mutual distances are fairly large, but the dynamics is altered by viscosity as the vortices get close to each other and the cores of the vortices overlap. The multi-Gaussian model demonstrates the prevention of the total collapse of the vortices by the viscosity effect, and the merging process of two vortices, which are the main qualitative features of the Navier–Stokes solutions. (paper)

  7. Interactions between dislocations and point defects

    International Nuclear Information System (INIS)

    Copper and copper-aluminum alloys were irradiated using a 3MV EM, and the interactions between straight dislocations and point defects were studied. Edge-dislocations climb up during irradiation and the interstitial-type loops are not formed around them. On the other hand, screw-dislocations turn into the helical ones by absorbing interstitials induced by irradiation. During irradiation, the number of helical turns do not change but the radius of helix increases. At the same time, the interstitial-type dislocation loops are formed close by the helical dislocations. The growth rate of these loops is the same as that of the radius of helical dislocations. From these facts, the sink efficiency of dislocations for point defects can be determined. Furthermore, when the fresh screw-dislocations are introduced by in-situ deformation during irradiation, the interstitial-type loops are preferentially formed on the active slip planes. The enhanced nucleation of the loops is closely related to the point defects formed by the motion of dislocation-jogs

  8. Physics at the CLIC $e^{+}e^{-}$ Linear Collider - Input to the Snowmass process 2013

    CERN Document Server

    Abramowicz, Halina; Afanaciev, K.; Alexander, G.; Alipour Tehrani, N.; Alonso, O.; Andersen, K.K.; Arfaoui, S.; Balazs, C.; Barklow, T.; Battaglia, M.; Benoit, M.; Bilki, B.; Blaising, J.J.; Boland, M.; Boronat, M.; Bozovic Jelisavcic, I.; Burrows, P.; Chefdeville, M.; Contino, R.; Dannheim, D.; Demarteau, M.; Diaz Gutierrez, M.A.; Dieguez, A.; Duarte Campderros, J.; Eigen, G.; Elsener, K.; Feldman, D.; Felzmann, U.; Firlej, M.; Firu, E.; Fiutowski, T.; Francis, K.; Gaede, F.; Garcia Garcia, I.; Ghenescu, V.; Giudice, G.; Graf, N.; Grefe, C.; Grojean, C.; Gupta, R.S.; Hauschild, M.; Holmestad, H.; Idzik, M.; Joram, C.; Kananov, S.; Karyotakis, Y.; Killenberg, M.; Klempt, W.; Kraml, S.; Krupa, B.; Kulis, S.; Lastovicka, T.; LeBlanc, G.; Levy, A.; Levy, I.; Linssen, L.; Lucaci Timoce, A.; Lukic, S.; Makarenko, V.; Marshall, J.; Martin, V.; Mikkelsen, R.E.; Milutinovic-Dumbelovic, G.; Miyamoto, A.; Monig, K.; Moortgat-Pick, G.; Moron, J.; Munnich, A.; Neagu, A.; Pandurovic, M.; Pappadopulo, D.; Pawlik, B.; Porod, W.; Poss, S.; Preda, T.; Rassool, R.; Rattazzi, R.; Redford, S.; Reichold, A.; Repond, J.; Riemann, S.; Robson, A.; Roloff, P.; Ros, E.; Rosten, J.; Ruiz-Jimeno, A.; Rzehak, H.; Sailer, A.; Schlatter, D.; Schulte, D.; Sefkow, F.; Seidel, K.; Shumeiko, N.; Sicking, E.; Simon, F.; Smith, J.; Soldner, C.; Stapnes, S.; Strube, J.; Suehara, T.; Swientek, K.; Szalay, M.; Tanabe, T.; Tesar, M.; Thamm, A.; Thomson, M.; Trenado Garcia, J.; Uggerhoj, U.I.; van der Kraaij, E.; Vila, I.; Vilella, E.; Villarejo, M.A.; Vogel Gonzalez, M.A.; Vos, M.; Watson, N.; Weerts, H.; Wells, J.D.; Weuste, L.; Wistisen, T.N.; Wootton, K.; Xia, L.; Zawiejski, L.; Zgura, I.S.

    2013-01-01

    This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process

  9. Physics at the CLIC e$^{+}$e$^{-}$ Linear Collider -- Input to the Snowmass process 2013

    OpenAIRE

    Abramowicz, Halina; Abusleme, Angel; Battaglia, Marco; Świentek, Krzysztof; Szalay, Marco; Tanabe, Tomohiko; Tesař, Michal; Thamm, Andrea; Thomson, Mark; Garcia, Juan Trenado; Uggerhøj, Ulrik I.; van der Kraaij, Erik; Vila, Iván; Benoit, Mathieu; Vilella, Eva

    2013-01-01

    This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities gr...

  10. CLICdp Overview. Overview of physics potential at CLIC

    Directory of Open Access Journals (Sweden)

    Levy Aharon

    2015-01-01

    Full Text Available CLICdp, the CLIC detector and physics study, is an international collaboration presently composed of 23 institutions. The collaboration is addressing detector and physics issues for the future Compact Linear Collider (CLIC, a high-energy electron-positron accelerator which is one of the options for the next collider to be built at CERN. Precision physics under challenging beam and background conditions is the key theme for the CLIC detector studies. This leads to a number of cutting-edge R&D activities within CLICdp. The talk includes a brief introduction to CLIC, accelerator and detectors, hardware R&D as well as physics studies at CLIC.

  11. DC Breakdown experiments for CLIC

    CERN Document Server

    Descoeudres, A; Taborelli, M

    2008-01-01

    For the production of the Compact Linear Collider (CLIC) RF accelerating structures, a material capable of sustaining high electric field, with a low breakdown rate and showing low damages after breakdowns is needed. A DC breakdown study is underway at CERN in order to test candidate materials and surface preparations. The saturated breakdown fields of several metals and alloys have been measured, ranging from 100 MV/m for Al to 850 MV/m for stainless steel, being around 170 MV/m for Cu and 430 MV/m for Mo for example. The conditioning speed of Mo can be significantly improved by removing oxides at the surface with a vacuum heat treatment, typically at 875±C for 2 hours. DC breakdown rate measurements have been done with Cu and Mo electrodes, showing similar results as in RF experiments: the breakdown probability seems to exponentially increase with the applied field. Measurements of time delays before breakdown show two different populations of breakdowns, immediate and delayed breakdowns, indicating that t...

  12. Wakefield Damping for the CLIC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Khan, V.; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Dolgashev, V.; /SLAC

    2011-12-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  13. Wakefield damping for the CLIC crab cavity

    CERN Document Server

    Ambattu, P K; Dexter, A C; Carter, R G; Khan, V; Jones, R M; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  14. WAKEFIELD DAMPING FOR THE CLIC CRAB CAVITY

    CERN Document Server

    Ambattu, P; Dexter, A; Carter, R; Khan, V; Jones, R; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  15. Light-flavor squark reconstruction at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)548062; Weuste, Lars

    2015-01-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light- flavored right-handed squark at a 3 TeV e+e collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two- photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  16. Physics highlights at ILC and CLIC

    CERN Document Server

    Lukić, Strahinja

    2015-01-01

    In this lecture, the physics potential for the e+e- linear collider experiments ILC and CLIC is reviewed. The experimental conditions are compared to those at hadron colliders and their intrinsic value for precision experiments, complementary to the hadron colliders, is discussed. The detector concepts for ILC and CLIC are outlined in their most important aspects related to the precision physics. Highlights from the physics program and from the benchmark studies are given. It is shown that linear colliders are a promising tool, complementing the LHC in essential ways to test the Standard Model and to search for new physics.

  17. New clic-g structure design

    CERN Document Server

    AUTHOR|(CDS)2082335

    2016-01-01

    The baseline design of the Compact Linear Collider main linac accelerating structure is called ‘CLIC-G’. It is described in the CLIC Conceptual Design Report (CDR) [1]. As shown in Fig. 1, a regular cell of the structure has four waveguides to damp unwanted high-order-modes (HOMs). These waveguides are dimensioned to cut off the fundamental working frequency in order to prevent the degradation of the fundamental mode Q-factor. The cell geometry and HOM damping loads had been extensively optimized in order to maximize the RF-to-beam efficiency, to minimize the cost, and to meet the beam dynamics and the high gradient RF constraints [2

  18. Fixed points in interacting dark energy models

    OpenAIRE

    Chen, Xi-ming; Gong, Yungui

    2008-01-01

    The dynamical behaviors of two interacting dark energy models are considered. In addition to the scaling attractors found in the non-interacting quintessence model with exponential potential, new accelerated scaling attractors are also found in the interacting dark energy models. The coincidence problem is reduced to the choice of parameters in the interacting dark energy models.

  19. CLIC preparations go up a notch

    CERN Multimedia

    2007-01-01

    The Compact Linear Collider gears up for post-LHC physics with an international workshop. A schematic diagram of CLIC.In June CERN gained a new building: number 2010. And as chance would have it, this is more than just a number to its new residents. By the year 2010, teams working at the new CLIC Experimental Area, along with the already established CLIC Test Facility Three (CTF3), hope to have demonstrated the feasibility of the Compact Linear Collider and, depending on results from the LHC, embark on its final design and proposal. A workshop on 16t-18 October brought people from all around the world to CERN to exchange ideas and hear how the ambitious project is progressing. CLIC is a project that aims to extend lepton collider technology to multi-TeV energy physics, colliding leptons with a centre-of-mass-energy up to 3TeV, more than ten times the energy of the LEP. This is only possible in a linear collider, where no energy is lo...

  20. Performance of particle flow calorimetry at CLIC

    International Nuclear Information System (INIS)

    The particle flow approach to calorimetry can provide unprecedented jet energy resolution at a future high energy collider, such as the International Linear Collider (ILC). However, the use of particle flow calorimetry at the proposed multi-TeV Compact Linear Collider (CLIC) poses a number of significant new challenges. At higher jet energies, detector occupancies increase, and it becomes increasingly difficult to resolve energy deposits from individual particles. The experimental conditions at CLIC are also significantly more challenging than those at previous electron–positron colliders, with increased levels of beam-induced backgrounds combined with a bunch spacing of only 0.5 ns. This paper describes the modifications made to the PandoraPFA particle flow algorithm to improve the jet energy reconstruction for jet energies above 250 GeV. It then introduces a combination of timing and pT cuts that can be applied to reconstructed particles in order to significantly reduce the background. A systematic study is performed to understand the dependence of the jet energy resolution on the jet energy and angle, and the physics performance is assessed via a study of the energy and mass resolution of W and Z particles in the presence of background at CLIC. Finally, the missing transverse momentum resolution is presented, and the fake missing momentum is quantified. The results presented in this paper demonstrate that high granularity particle flow calorimetry leads to a robust and high resolution reconstruction of jet energies and di-jet masses at CLIC.

  1. First magnetic test of a superconducting Nb$_{3}$Sn Wiggler magnet for CLIC

    CERN Document Server

    Schoerling, D; Fessia, P; Karppinen, M; Mazet, J; Russenschuck, S; Peiffer, P; Grau, A

    2012-01-01

    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC) the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 nm and4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultra-low emittances with only small effects on the electron polarization is using damping rings operating at 2.86GeV equipped with superconducting wiggler magnets. Only superconducting wiggler magnets meet the demanding magnetic specifications of the CLIC damping rings. Although Nb-Ti damping wiggler magnets fulfill the specifications of CLIC, Nb3Sn wiggler magnets would reach higher magnetic fields leading to even better beam properties for CLIC. Moreover, they have at the same time higher thermal and magnetic margins. Therefore, Nb3Sn wiggler magnets are under investigation at CERN despite the challenging manufacturing process. This paper presents first results of Nb3Sn coils and short model tests and outlines the fur...

  2. The CLIC positron source based on compton schemes

    CERN Document Server

    Rinolfi, L; Braun, H; Papaphilippou, Y; Schulte, D; Vivoli, A; Zimmermann, F; Dadoun, O; Lepercq, P; Roux, R; Variola, A; Zomer, F; Pogorelski, I; Yakimenko, V; Gai, W; Liu, W; Kamitani, T; Omori, T; Urakawa, J; Kuriki, M; Takahasi, TM; Bulyak, E; Gladkikh, P; Chehab, R; Clarke, J

    2010-01-01

    The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by a Compton process. In one option, Compton backscattering takes place in a so-called “Compton ring”, where an electron beam of 1 GeV interacts with circularly-polarized photons in an optical resonator. The resulting circularly-polarized gamma photons are sent on to an amorphous target, producing pairs of longitudinally polarized electrons and positrons. The nominal CLIC bunch population is 4.2x109 particles per bunch at the exit of the Pre-Damping Ring (PDR). Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a Compton Energy Recovery Linac (ERL) where a quasicontinual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three option...

  3. Ground Motion Mitigation in the Main Linac of CLIC

    International Nuclear Information System (INIS)

    filter strongly suppresses the measurement noise of the sensors. The described adaptive control algorithm was simulated with the help of the particle tracking code PLACET. The system identification algorithm is capable of identifying system changes in a step- and drift-like manner. A learning coefficient can be used to balance between noise suppression and adaption speed. In a typical configuration, 4.1 sec. are needed to recover from 90% of a step-like model change. The steady-state error is about 13%. This error comes from measurement noise and the limited accuracy of the amplitude model. The SVD controller succeeds in keeping the emittance growth at a level of about 0.1 nm rad. It also keeps the pulse-to-pulse jitter at a very low level, by efficiently suppressing measurement noise. Concluding, we would like to point out that the presented adaptive control scheme is capable of suppressing the ground motion effects in the main linac of CLIC efficiently. Additional advantages of the scheme are reduction of down-time to measure R in a traditional way and the possibility of carry out system diagnostics and error detection. (author)

  4. A new framework for interactive segmentation of point clouds

    OpenAIRE

    Liu, K.; J. Boehm

    2014-01-01

    Point cloud segmentation is a fundamental problem in point processing. Segmenting a point cloud fully automatically is very challenging due to the property of point cloud as well as different requirements of distinct users. In this paper, an interactive segmentation method for point clouds is proposed. Only two strokes need to be drawn intuitively to indicate the target object and the background respectively. The draw strokes are sparse and don't necessarily cover the whole object. Given the ...

  5. CLIC Post-Collision Line Luminosity Monitoring

    CERN Document Server

    Appleby, R B; Deacon, L; Geschwendtner, E

    2011-01-01

    The CLIC post collision line is designed to transport the un-collided beams and the products of the collided beams with a total power of 14MW to the main beam dump. Full Monte Carlo simulation has been done for the description of the CLIC luminosity monitoring in the post collision line. One method of the luminosity diagnostic is based on the detection of high energy muons produced by beamstrahlung photons in the main beam dump. The disrupted beam and the beamstrahlung photons produce at the order of 106 muons per bunch crossing per cm2, with energies higher than 10 GeV. Threshold Cherenkov counters are considered after the beam dump for the detection of these high energy muons. Another method for luminosity monitoring is presented using the direct detection of the beamstrahlung photons.

  6. Light-flavor squark reconstruction at CLIC

    Science.gov (United States)

    Simon, Frank; Weuste, Lars

    2015-08-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light-flavored right-handed squarks at a 3 TeV collider based on CLIC technology. In the considered model, these particles decay into their standard-model counterparts and the lightest neutralino, resulting in a signature of two jets plus missing energy. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two-photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  7. Academic Training - Technological challenges of CLIC

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15 and 16 June 11:00-12:00 - Auditorium, bldg 500 Technological challenges of CLIC R. Corsini, S. Doebert, S. Redaelli, T.Lefevre, CERN-AB and G. Arnau Izquierdo, H. Mainaud, CERN-TS Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&...

  8. Submicron multi-bunch BPM for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; /Fermilab

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied to measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.

  9. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  10. Gluino Pair Production in $e^+ e^-$ and Photon-Photon Collisions at CERN CLIC

    CERN Document Server

    Berge, S; 10.1140/epjc/s2003-01194-4

    2003-01-01

    We confront the generally small cross sections for gluino pair production in e^+e^- annihilation with the much larger ones in photon-photon scattering at a multi-TeV linear collider like CERN CLIC. The larger rates and the steeper rise of the cross section at threshold may allow for a precise gluino mass determination in high-energy photon-photon collisions for a wide range of squark masses and post-LEP SUSY benchmark points.

  11. CLIC5 stabilizes membrane-actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI.

    Science.gov (United States)

    Salles, Felipe T; Andrade, Leonardo R; Tanda, Soichi; Grati, M'hamed; Plona, Kathleen L; Gagnon, Leona H; Johnson, Kenneth R; Kachar, Bechara; Berryman, Mark A

    2014-01-01

    Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Confocal and scanning electron microscopy of CLIC5-deficient jitterbug (jbg) mice revealed progressive fusion of stereocilia as early as postnatal day 10. Radixin (RDX), protein tyrosine phosphatase receptor Q (PTPRQ), and taperin (TPRN), deafness-associated proteins that also concentrate at the base of stereocilia, were mislocalized in fused stereocilia of jbg mice. TPRQ and RDX were dispersed even prior to stereocilia fusion. Biochemical assays showed interaction of CLIC5 with ERM proteins, TPRN, and possibly myosin VI (MYO6). In addition, CLIC5 and RDX failed to localize normally in fused stereocilia of MYO6 mutant mice. Based on these findings, we propose a model in which these proteins work together as a complex to stabilize linkages between the plasma membrane and subjacent actin cytoskeleton at the base of stereocilia. PMID:24285636

  12. Critical points for finite Fibonacci chains of point delta-interactions and orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    De Prunele, E, E-mail: eprunele@univ-fcomte.fr [Institut UTINAM, UMR CNRS 6213, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)

    2011-10-21

    For a one-dimensional Schroedinger operator with a finite number n of point delta-interactions with a common intensity, the parameters are the intensity, the n - 1 intercenter distances and the mass. Critical points are points in the parameters space of the Hamiltonian where one bound state appears or disappears. The study of critical points for Hamiltonians with point delta-interactions arranged along a Fibonacci chain is shown to be closely related to the study of the so-called Fibonacci operator, a discrete one-dimensional Schroedinger-type operator, which occurs in the context of tight binding Hamiltonians. These critical points are the zeros of orthogonal polynomials previously studied in the context of special diatomic linear chains with elastic nearest-neighbor interaction. Properties of the zeros (location, asymptotic behavior, gaps, ...) are investigated. The perturbation series from the solvable periodic case is determined. The measure which yields orthogonality is investigated numerically from the zeros. It is shown that the transmission coefficient at zero energy can be expressed in terms of the orthogonal polynomials and their associated polynomials. In particular, it is shown that when the number of point delta-interactions is equal to a Fibonacci number minus 1, i.e. when the intervals between point delta-interactions form a palindrome, all the Fibonacci chains at critical points are completely transparent at zero energy. (paper)

  13. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  14. A Multi-TeV Linear Collider Based on CLIC Technology CLIC Conceptual Design Report

    CERN Document Server

    Burrows, P; Draper, M; Garvey, T; Lebrun, P; Peach, K; Phinney, N; Schmickler, H; Schulte, D; Toge, N

    2012-01-01

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from ...

  15. Status of vertex and tracking detector R&D at CLIC

    CERN Document Server

    Firu, Elena

    2015-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the bunch train structure of the beam and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few micron, ultra-low mass (~0.2% X0 per layer for the inner vertex region), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. An overview of the R&D program for pixel and tracking detectors at CLIC will be presented, including recent results on an innovative hybridisation concept based on capacitive coupling between active sensors (HV-CMOS) and readout ASICs (CLICpix).

  16. The physics benchmark processes for the detector performance studies used in CLIC CDR Volume 3

    CERN Document Server

    Allanach, B.J.; Desch, K.; Ellis, J.; Giudice, G.; Grefe, C.; Kraml, S.; Lastovicka, T.; Linssen, L.; Marschall, J.; Martin, S.P.; Muennich, A.; Poss, S.; Roloff, P.; Simon, F.; Strube, J.; Thomson, M.; Wells, J.D.

    2012-01-01

    This note describes the detector benchmark processes used in volume 3 of the CLIC conceptual design report (CDR), which explores a staged construction and operation of the CLIC accelerator. The goal of the detector benchmark studies is to assess the performance of the CLIC ILD and CLIC SiD detector concepts for different physics processes and at a few CLIC centre-of-mass energies.

  17. Multiple tipping points and optimal repairing in interacting networks

    Science.gov (United States)

    Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo

    2016-03-01

    Systems composed of many interacting dynamical networks--such as the human body with its biological networks or the global economic network consisting of regional clusters--often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two `forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.

  18. Alignement général du CLIC: stratégie et progrès

    CERN Document Server

    Mainaud-Durand, H

    2008-01-01

    La faisabilité concernant le pré-alignement actif du CLIC sera démontrée si l?on peut prouver qu?il existe une référence et ses capteurs associés permettant l?alignement des composants à mieux que 3 microns (1?). Pour répondre à ce challenge, une méthode de mesure d?écarts à un fil tendu est proposée, basée sur 40 ans de pratique de cette technique au CERN. Quelques problèmes demeurent concernant cette méthode : la connaissance de la forme du fil tendu utilisé comme référence droite, la détermination du géoïde à la précision souhaitée et le développement de capteurs bas coût permettant des mesures sub-micrométriques. Des études ont été entreprises afin de lever les derniers points en suspens, pendant que cette solution est intégrée dans une proposition concernant l?alignement général du CLIC. Cela implique un grand nombre d?interactions au niveau du projet, dans des domaines aussi différents que le génie civil, l?intégration, la physique du faisceau, la métrologie des �...

  19. Spectrometers for RF breakdown studies for CLIC

    Science.gov (United States)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  20. A CLIC-Prototype Higgs Factory

    OpenAIRE

    Belusevic, Radoje; Higo, Toshiyasu

    2012-01-01

    We propose that a pair of electron linacs with high accelerating gradients and an optical FEL be built at an existing laboratory. The linacs would employ CLIC-type rf cavities and a klystron-based power source; a two-beam scheme could be implemented at a later stage. The proposed facility would serve primarily as an e+e-/gamma-gamma Higgs-boson factory. The rich set of final states in e+e- and gamma-gamma collisions would play an essential role in measuring the mass, spin, parity, two-photon ...

  1. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  2. Electro-Weak Fits at CLIC

    CERN Document Server

    De Curtis, S

    2002-01-01

    The aim of the future linear colliders is to extend the sensitivity to new physics beyond the reach of the LHC. Several models predict the existence of new vector resonances in the multi-TeV region. We review the existing limits on the masses of these new resonances from LEP/SLC and TEVATRON data and from the atomic parity violation measurements, in some specific models. We study the potential of a multi-TeV e+e- collider, such as CLIC, for the determination of their properties and nature.

  3. Performance of Particle Flow Calorimetry at CLIC

    CERN Document Server

    Marshall, J.S.; Thomson, M.A.

    2013-01-01

    The experimental conditions at CLIC are also significantly more challenging than those at previous electron-positron colliders, with increased levels of beam-induced backgrounds combined with a bunch spacing of only 0.5 ns. This paper describes the modifications made to the PandoraPFA particle flow algorithm to improve the jet energy reconstruction for jet energies above 250 GeV. It then introduces a combination of timing and pT cuts that can be applied to reconstructed particles in order to significantly reduce the background. A systematic study is...

  4. Summary of the BDS and MDI CLIC08 Working Group

    CERN Document Server

    Tomás, R; Ahmed, I; Ambatu, PK; Angal-Kalinin, D; Barlow, R; Baud, J P; Bolzon, B; Braun, H; Burkhardt, H; Burt, GC; Corsini, R; Dalena, B; Dexter, AC; Dolgashev, V; Elsener, K; Fernandez Hernando, JL; Gaillard, G; Geffroy, N; Jackson, F; Jeremie, A; Jones, RM; McIntosh, P; Moffeit, K; Peltier, F; Resta-López, J; Rumolo, G; Schulte, D; Seryi, A; Toader, A; Zimmermann, F

    2008-01-01

    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis.

  5. Luminosity Upgrade of CLIC LHC ep/gp Collider

    CERN Document Server

    Aksakal, H; Nergiz, Z; Schulte, D; Zimmermann, F

    2007-01-01

    An energy frontier or QCD Explorer ep and collider can be realized by colliding high-energy photons generated by Compton backscattered off a CLIC electron beam, at either 75 GeV or 1.5 TeV, with protons or ions stored in the LHC. In this study we discuss a performance optimization of this type of collider by tailoring the parameters of both CLIC and LHC. An estimate of the ultimately achievable luminosity is given.

  6. The CLIC project and the design for an e+- collider

    International Nuclear Information System (INIS)

    The two-beam scheme of the CERN Linear Collider (CLIC) project is discussed. The problems in achieving the needed luminosity, caused by disruption and beam radiation are outlined. The main CLIC paramaters are presented. The supply of the RF power and problems of RF focusing caused by wakefield effects are discussed. The transfer and main LINAC structures, and the design of damping rings and the final focus are outlined. (H.W.). 25 refs.; 3 figs.; 2 tabs

  7. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  8. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  9. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis

    Science.gov (United States)

    Salao, Kanin; Jiang, Lele; Li, Hui; Tsai, Vicky W.-W.; Husaini, Yasmin; Curmi, Paul M. G.; Brown, Louise J.; Brown, David A.

    2016-01-01

    ABSTRACT Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1−/−) and wild-type (CLIC1+/+) mice, then studied them in vitro and in vivo. We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1−/− BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1+/+, but not CLIC1−/− cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1−/− BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases. PMID:27113959

  10. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  11. A CLIC-Prototype Higgs Factory

    CERN Document Server

    Belusevic, Radoje

    2012-01-01

    We propose that a pair of electron linacs with high accelerating gradients and an optical FEL be built at an existing laboratory. The linacs would employ CLIC-type rf cavities and a klystron-based power source; a two-beam scheme could be implemented at a later stage. The proposed facility would serve primarily as an e+e-/gamma-gamma Higgs-boson factory. The rich set of final states in e+e- and gamma-gamma collisions would play an essential role in measuring the mass, spin, parity, two-photon width and trilinear self-coupling of the Higgs-boson, as well as its couplings to fermions and gauge bosons. These quantities are difficult to determine with only one initial state. For some processes within and beyond the Standard Model, the required CM energy is considerably lower at the proposed facility than at an e+e- or proton collider.

  12. Conceptual Design of the CLIC Damping Rings

    CERN Document Server

    Papaphilippou, Y; Barnes, M; Calatroni, S; Chiggiato, P; Corsini, R; Grudiev, A; Koukovini, E; Lefevre, T; Martini, M; Modena, M; Mounet, N; Perin, A; Renier, Y; Russenschuck, S; Rumolo, G; Schoerling, D; Schulte, D; Schmickler, H; Taborelli, M; Vandoni, G; Zimmermann, F; Zisopoulos, P; Boland, M; Palmer, M; Bragin, A; Levichev, E; Syniatkin, S; Zolotarev, K; Vobly, P; Korostelev, M; Vivoli, A; Belver-Aguilar, C; Faus-Golfe, A; Rinolfi, L; Bernhard, A; Pivi, M; Smith, S; Rassool, R; Wootton, K

    2012-01-01

    The CLIC Damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and superconducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical systems, such as wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.

  13. Impedance effects in the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Mounet, N; Rumolo, G; Salvant, B

    2011-01-01

    Due to the unprecedented brilliance of the beams, the performance of the Compact Linear Collider (CLIC) damping rings (DR) is affected by collective effects. Single bunch instability thresholds based on a broad-band resonator model and the associated coherent tune shifts have been evaluated with the HEADTAIL code. Simulations performed for positive and negative values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability. This study also includes the effects of high frequency resistive wall impedance due to different coatings applied on the chambers of the wigglers for e-cloud mitigation and/or ultra-low vacuum pressure. The impact of the resistive wall wake fields on the transverse impedance budget is finally discussed.

  14. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  15. Simulations for CLIC Drive Beam Linac

    CERN Document Server

    Aksoy, Avni

    2012-01-01

    The Drive Beam Linac of the Compact Linear Collider (CLIC) has to accelerate an electron beam with 4.2 A up to 2.4 GeV in almost fully-loaded structures. The pulse contains about 70000 bunches, one in every second rf bucket, and has a length of 140 $\\mu$s. The beam stability along the beamline is of concern for such a high current and pulse length. We present different options for the lattice of the linac based on FODO, triplet and doublet cells and compare the transverse instability for each lattice including the effects of beam jitter, alignment and beam-based correction. Additionally longitudinal stability is discussed for different bunch compressors using FODO type of lattice.

  16. Les mesures de métrologie pour le CLIC

    CERN Document Server

    Cherif, A

    2008-01-01

    Le projet CLIC est en tout point un défi technique majeur ; c?est le cas également pour la mesure dimensionnelle. Quels sont les équipements et les méthodes qui permettent de caractériser les pièces avec une incertitude de mesure aussi réduite que possible, vu les tolérances micrométriques imposées ? Afin de répondre à cette question, une veille technologique a été maintenue sur une longue période. Les acteurs relevants ont été contactés pour bénéficier d?une ouverture sur les dernières avancées dans le domaine. Différentes techniques ont été étudiées et comparées telles que la digitalisation, la tomographie X, la mesure tridimensionnelle. L'assemblage de haute précision des composants est aussi primordial. Sa mise en ?uvre sous un microscope optique ou à l'aide d'une machine tridimensionnelle est en cours d?étude. L'exposé traitera aussi de la mesure de rugosité, un domaine où nous disposons de moyens adaptés aux exigences spécifiques du projet.

  17. The synchro laser system for the CLIC Test Facility

    International Nuclear Information System (INIS)

    The CLIC Test Facility at CERN uses a laser driven 3 GHz electron gun. Considerable effort has been spent to develop a laser system, which meets the requirements of the Test Facility. The laser is based on a diode-pumped ND:YLF mode-locked oscillator. It delivers a 250 MHz train of laser pulses at 1047 nm with a length of 6.6 ps. A phase-locked timing stabilizer is used to synchronize the laser with the rf-gun. One or two pulses are amplified to 10 mJ. The amplifier system is based on a regenerative amplifier and two single pass power amplifiers. A set of harmonic generators deliver laser pulses at 523 nm, 262 nm and optional at 209nm. The measured pulse length after amplification and harmonic generations is 8 ± 2 ps (FWHM). A good pointing stability and a reasonable uniform transverse profile is obtained by relay imaging and spatial filtering. For some experiments, a train of electron bunches is used. A new pulse train generator working at 262 nm was developed to split the laser beam into 12 pulses. The simultaneous amplification of two seed laser pulses gives the possibility to double the number of pulses in the train without the need to add further splitting stages

  18. Evaluation of 65nm technology for CLIC pixel front-end

    CERN Document Server

    Valerio, P; Ballabriga, R; Campbell, M; Llopart, X

    2011-01-01

    The CLIC vertex detector design requires a high single point resolution (~ 3 μm) and a precise time stamp (≤ 10 ns). In order to achieve this spatial resolution, small pixels (in the order of 20 μm pitch) must be used, together with the measurement of the charge deposition of neighbouring channels. Designing such small pixels requires the use of a deep downscaled CMOS technology. This note describes the design and characterisation of suitable building blocks implemented in a commercial 65 nm process. The characterisation included an evaluation of the radiation hardness of the blocks.

  19. Anomalous production of top quarks at CLIC+LHC based gamma p colliders

    CERN Document Server

    Cakir, O

    2003-01-01

    The single production of top quark due to flavor changing neutral current (FCNC) interaction and its decay to bW are studied at CLIC+LHC based gamma-p colliders. We consider both t-c-gamma and t-u-gamma anomalous couplings. The anomalous charm (up) quark anomalous coupling parameter kappa_gamma^c (kappa_gamma^u) can be probed down to 9.5x10^-3 (8.0x10^-3) at a gamma-p collider with sqrt{s_ep}=6.48 TeV and L_int=100 fb^-1.

  20. Elastic interaction of point defects in cubic and hexagonal crystals

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Telyatnik, R. S.

    2016-05-01

    The elastic interaction of two point defects in cubic and hexagonal structures has been considered. On the basis of the exact expression for the tensor Green's function of the elastic field obtained by the Lifschitz-Rozentsveig for a hexagonal medium, an exact formula for the interaction energy of two point defects has been obtained. The solution is represented as a function of the angle of their relative position on the example of semiconductors such as III-nitrides and α-SiC. For the cubic medium, the solution is found on the basis of the Lifschitz-Rozentsveig Green's tensors corrected by Ostapchuk, in the weak-anisotropy approximation. It is proven that the calculation of the interaction energy by the original Lifschitz-Rozentsveig Green's tensor leads to the opposite sign of the energy. On the example of the silicon crystal, the approximate solution is compared with the numerical solution, which is represented as an approximation by a series of spherical harmonics. The range of applicability of the continual approach is estimated by the quantum mechanical calculation of the lattice Green's function.

  1. CLIC-ACM: Acquisition and Control System

    CERN Document Server

    Bielawski, B; Magnoni, S

    2014-01-01

    CLIC [1] (Compact Linear Collider) is a world-wide collaboration to study the next terascale lepton collider, relying upon a very innovative concept of two-beamacceleration. In this scheme, the power is transported to the main accelerating structures by a primary electron beam. The Two Beam Module (TBM) is a compact integration with a high filling factor of all components: RF, Magnets, Instrumentation, Vacuum, Alignment and Stabilization. This paper describes the very challenging aspects of designing the compact system to serve as a dedicated Acquisition & Control Module (ACM) for all signals of the TBM. Very delicate conditions must be considered, in particular radiation doses that could reach several kGy in the tunnel. In such severe conditions shielding and hardened electronics will have to be taken into consideration. In addition, with more than 300 ADC&DAC channels per ACM and about 21000 ACMs in total, it appears clearly that power consumption will be an important issue. It is also obvious that...

  2. The CLIC electron and positron polarized sources

    CERN Document Server

    Rinolfi, Louis; Bulyak, Eugene; Chehab, Robert; Dadoun, Olivier; Gai, Wei; Gladkikh, Peter; Kamitani, Takuya; Kuriki, Masao; Liu, Wanming; Maryuama, Takashi; Omori, Tsunehiko; Poelker, Matt; Sheppard, John; Urakawa, Junji; Variola, Alessandro; Vivoli, Alessandro; Yakimenko, Vitaly; Zhou, Feng; Zimmermann, Frank

    2010-01-01

    The CLIC polarized electron source is based on a DC gun where the photocathode is illuminated by a laser beam. Each micro-bunch has a charge of 6x109 e−, a width of 100 ps and a repetition rate of 2 GHz. A peak current of 10 A in the micro-bunch is a challenge for the surface charge limit of the photo-cathode. Two options are feasible to generate the 2 GHz e− bunch train: 100 ps micro-bunches can be extracted from the photo-cathode either by a 2 GHz laser system or by generating a macro-bunch using a ~200 ns laser pulse and a subsequent RF bunching system to produce the appropriate micro-bunch structure. Recent results obtained by SLAC, for the latter case, are presented. The polarized positron source is based on a positron production scheme in which polarized photons are produced by a laser Compton scattering process. The resulting circularly-polarized gamma photons are sent onto a target, producing pairs of longitudinally polarized electrons and positrons. The Compton backscattering process occurs eithe...

  3. Minimizing Emittance for the CLIC Damping Ring

    CERN Document Server

    Braun, H; Levitchev, E; Piminov, P; Schulte, Daniel; Siniatkin, S; Vobly, P P; Zimmermann, Frank; Zolotarev, Konstantin V; CERN. Geneva

    2006-01-01

    The CLIC damping rings aim at unprecedented small normalized equilibrium emittances of 3.3 nm vertical and 550 nm horizontal, for a bunch charge of 2.6·109 particles and an energy of 2.4 GeV. In this parameter regime the dominant emittance growth mechanism is intra-beam scattering. Intense synchrotron radiation damping from wigglers is required to counteract its effect. Here the overall optimization of the wiggler parameters is described, taking into account state-of-the-art wiggler technologies, wiggler effects on dynamic aperture, and problems of wiggler radiation absorption. Two technical solutions, one based on superconducting magnet technology the other on permanent magnets are presented. Although dynamic aperture and tolerances of this ring design remain challenging, benefits are obtained from the strong damping. For optimized wigglers, only bunches for a single machine pulse may need to be stored, making injection/extraction particularly simple and limiting the synchrotron-radiation power. With a 36...

  4. CLIC/ILC Researchers Explore New Avenues for Collaboration

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    Researchers from CLIC and ILC met for their first common International Workshop on Linear Colliders, which was held in Geneva from 18 to 22 October. Although the talks were mostly scientific and technical, the political message behind them was a breakthrough, as the workshop showed the progress made in unifying the two communities.   The International Workshop on Linear Colliders (IWLC), which was organised by the European Committee for Future Accelerators, hosted by CERN, and held at CERN and the International Conference Centre in Geneva, attracted a large audience of about 500 experts. Although there have been other joint conferences between the CLIC and ILC communities before, they have all been focused on specific technical and/or managerial issues. The IWLC was part of an ongoing effort by CLIC and ILC to provide an environment in which researchers can exchange ideas, inform their peers about their most recent achievements and work together on common issues. Given the possible technical ov...

  5. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  6. Vertex-Detector R&D for CLIC

    CERN Document Server

    Dannheim, D

    2014-01-01

    A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors (planar or active HV-CMOS) via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced air flow. In this contribution the CLIC vertex-detector requirements are reviewed and the current status of R&D on readout and sensors is presented.

  7. Single Z' production at CLIC based on e^- gamma collisions

    OpenAIRE

    Soa, D. V.; H.N. Long(Institute of Physics, VAST, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam); Binh, D. T.; Khoi, D. P.

    2003-01-01

    We analyze the potential of CLIC based on e- gamma collisions to search for new $Z'$ gauge boson. Single Z' production at e-gamma colliders in two SU(3)_C X SU(3)_L X U(1)_N models: the minimal model and the model with right-handed (RH) neutrinos is studied in detail. Results show that new Z' gauge bosons can be observed at the CLIC, and the cross sections in the model with RH neutrinos are bigger than those in the minimal one.

  8. Beam Loading Compensation in the Main Linac of CLIC

    OpenAIRE

    Schulte, D.; Syratchev, I.

    2000-01-01

    Compensation of multi-bunch beam loading is of great importance in the main linac of the Compact Linear Collider (CLIC). The bunch-to-bunch energy variation has to stay below 1 part in 1000. In CLIC, the RF power is obtained by decelerating a drive beam which is formed by merging a number of short bunch trains. A promising scheme for tackling beam loading in the main linac is based on varying the lengths of the bunch trains in the drive beam. The scheme and its expected performance are presen...

  9. Higgs Physics at the CLIC Electron-Positron Linear Collider

    CERN Document Server

    Roloff, Philipp Gerhard

    2016-01-01

    The Compact Linear Collider (CLIC) is an option for a future $e^+e^-$ collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, $\\sqrt{s} =$ 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ($e^+e^-\\to ZH$) and $WW$-fusion ($e^+e^-\\to H\

  10. Point defect interaction and early stages of clustering

    International Nuclear Information System (INIS)

    The existing evidence for the formation and properties of small clusters of self-interstitials and vacancies are reviewed. First, the long-range elastic interaction and its implication for cluster formation is discussed. Irrespective of the nature of the defects one always finds an attractive interaction in some directions. This means there is always a tendency for clustering. It turns out that the interaction of the sink with mobile defect in the saddle point configuration determines the agglomeration rate. Computer simulation is the only method to obtain theoretical information about structure, stability, and mobility of small clusters. One finds that small interstitial clusters should be very stable and have a high mobility comparable to that of single interstitials. Small vacancy clusters, on the other hand, are less stable and have a lower mobility comparable to that of single vacancies. The experimental evidence for small clusters is very limited. It comes mostly from diffuse X-ray scattering and positron annihilation. The background of the two methods is discussed briefly and applications to irradiation defects, e.g. in Al, Cu, and Mo. The results generally confirm the theoretical picture. (author)

  11. Polarized positron source with a Compton multiple interaction point line

    CERN Document Server

    Chaikovska, I; Dadoun, O; Lepercq, P; Variola, A

    2014-01-01

    Positron sources are critical components of the future linear collider projects. This is essentially due to the high luminosity required, orders of magnitude higher than existing ones. In addition, polarization of the positron beam rather expands the physics research potential of the machine. In this framework, the Compton sources for polarized positron production are taken into account where the high energy gamma rays are produced by the Compton scattering and subsequently converted into the polarized electron-positron pairs in a target-converter. The Compton multiple Interaction Point (IP) line is proposed as one of the solutions to increase the number of the positrons produced. The gamma ray production with the Compton multiple IP line is simulated and used for polarized positron generation. Later, a capture section based on an adiabatic matching device (AMD) followed by a pre-injector linac is simulated to capture and accelerate the positron beam.

  12. Computation of multi-material interactions using point method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duan Z [Los Alamos National Laboratory; Ma, Xia [Los Alamos National Laboratory; Giguere, Paul T [Los Alamos National Laboratory

    2009-01-01

    Calculations of fluid flows are often based on Eulerian description, while calculations of solid deformations are often based on Lagrangian description of the material. When the Eulerian descriptions are used to problems of solid deformations, the state variables, such as stress and damage, need to be advected, causing significant numerical diffusion error. When Lagrangian methods are used to problems involving large solid deformat ions or fluid flows, mesh distortion and entanglement are significant sources of error, and often lead to failure of the calculation. There are significant difficulties for either method when applied to problems involving large deformation of solids. To address these difficulties, particle-in-cell (PIC) method is introduced in the 1960s. In the method Eulerian meshes stay fixed and the Lagrangian particles move through the Eulerian meshes during the material deformation. Since its introduction, many improvements to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, pp. 236) provides a mathematical foundation for an improved version, material point method (MPM) of the PIC method. The unique advantages of the MPM method have led to many attempts of applying the method to problems involving interaction of different materials, such as fluid-structure interactions. These problems are multiphase flow or multimaterial deformation problems. In these problems pressures, material densities and volume fractions are determined by satisfying the continuity constraint. However, due to the difference in the approximations between the material point method and the Eulerian method, erroneous results for pressure will be obtained if the same scheme used in Eulerian methods for multiphase flows is used to calculate the pressure. To resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to higher order of accuracy in the sense of weak solutions for the continuity equations

  13. Photon-Nucleon Collider based on LHC and CLIC

    CERN Document Server

    Aksakal, Husnu; Schulte, Daniel; Zimmermann, Frank

    2005-01-01

    We describe the scheme of a photon-nucleon collider where high energy photons generated by Compton backscattering off a CLIC electron beam, at either 75 GeV or 1.5 TeV are collided with protons or ions stored in LHC. Different design constraints for such a collider are discussed and achievable luminosity performance is estimated.

  14. Grid Interface Design for the Compact Linear Collider (CLIC)

    CERN Document Server

    Jankovic, Maria; Clare, Jon; Wheeler, Pat; Aguglia, Davide

    2015-01-01

    This paper discusses the grid interface challenges for CERN’s proposed Compact Linear Colliders’ (CLIC) klystron modulators, including a 280 MW power system optimisation. The modular multilevel converter is evaluated as a candidate topology for a Medium Voltage grid interface along with a control method for reducing the impact of klystron modulators on the electrical network.

  15. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  16. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  17. Fixed point sensitivity analysis of interacting structured populations.

    Science.gov (United States)

    Barabás, György; Meszéna, Géza; Ostling, Annette

    2014-03-01

    Sensitivity analysis of structured populations is a useful tool in population ecology. Historically, methodological development of sensitivity analysis has focused on the sensitivity of eigenvalues in linear matrix models, and on single populations. More recently there have been extensions to the sensitivity of nonlinear models, and to communities of interacting populations. Here we derive a fully general mathematical expression for the sensitivity of equilibrium abundances in communities of interacting structured populations. Our method yields the response of an arbitrary function of the stage class abundances to perturbations of any model parameters. As a demonstration, we apply this sensitivity analysis to a two-species model of ontogenetic niche shift where each species has two stage classes, juveniles and adults. In the context of this model, we demonstrate that our theory is quite robust to violating two of its technical assumptions: the assumption that the community is at a point equilibrium and the assumption of infinitesimally small parameter perturbations. Our results on the sensitivity of a community are also interpreted in a niche theoretical context: we determine how the niche of a structured population is composed of the niches of the individual states, and how the sensitivity of the community depends on niche segregation. PMID:24368160

  18. Intra-Beam scattering in the CLIC Damping Rings

    CERN Document Server

    Vivoli, A

    2010-01-01

    The CLIC 3 TeV nominal design requires very low emittance of the electron and positron beams to be reached in the damping rings. Due to low energy and to relatively high bunch charge and ultra-low emittance, Intra-Beam Scattering (IBS) effect is very strong and an accurate calculation is needed to check if the required emittance is effectively reached. For this reason it is being developed at CERN a new software for IBS and Radiation Effects (SIRE), which simulates the evolution of the beam particle distribution in the damping rings, taking into account radiation damping, IBS and quantum excitation. In this paper we present the results of our simulations performed with SIRE on a lattice of the CLIC damping rings.

  19. Structural/control interaction (payload pointing and micro-g)

    Science.gov (United States)

    Larson, C. R.

    1987-01-01

    A 203rd order simulation model was developed to evaluate the space station customer accommodation payload pointing and micro-g requirements. The simulation shows the pointing errors on the telescope are significantly smaller than at the base of the telescope. The pointing results could change when the parametric studies are performed. The results show the micro-g requirement is met with an active isolation system.

  20. Golden Jubilee Photos: A CLIC for the future

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ Prototype copper accelerating structures for CLIC. New accelerator projects take many years to make and mature. When the LHC project was still only a twinkle in CERN's eye, research was already starting on a new machine. A small team at CERN was setting about the task of studying a high-energy, compact, lepton linear collider, known as CLIC. This is possibly set to become the collider of the future. A machine of this kind has all the advantages of a collider (the total collision energy is equal to the sum of the energies of the two colliding beams) without the drawback of synchrotron radiation, which is produced when particles are accelerated around a ring and thus puts a limit on the energy of such colliders. But in a project as technically challenging as CLIC, considerable technological hurdles must be overcome. To limit the linear collider's length to some tens of kilometres, the beams must acquire a considerable quantity of energy per metre travelled. The collision rate (lumi...

  1. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  2. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2016-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  3. A closer look at the beam-beam processes at ILC and CLIC

    CERN Document Server

    Hartin, Anthony

    2012-01-01

    The strength of the electromagnetic fields in the bunch collision at a linear collider will have a significant effect, yielding large numbers of beamstrahlung photons and associated coherent pair production. These effects are limited in the proposed ILC beam parameters which limit the strength of the bunch field to $\\Upsilon_{\\text{ave}}=0.27$. The CLIC 3 Tev design by comparison has a $\\Upsilon_{\\text{ave}}=3.34$ yielding huge number of coherent pairs. In terms of the precision physics programs of these proposed colliders there is an imperative to investigate the effect of the strong bunch fields on higher order processes. From the exact wavefunctions used in the calculation of transition rates within the Furry interaction picture, and using appropriate simplifications, a multiplicative factor to the coupling constants was obtained. This indicates a significant variation to the transition rate near threshold energies. Further studies are in progress to calculate the exact effect on expected observables.

  4. Scalar leptoquark production at TESLA and CLIC based eγ colliders

    International Nuclear Information System (INIS)

    We study scalar leptoquark production at TESLA and CLIC based eγ colliders. Both direct and resolved contributions to the cross section are examined. We find that the masses of scalar leptoquarks can be probed up to about 0.9 TeV at TESLA and 2.6 TeV at CLIC. (orig.)

  5. Scalar leptoquark production at TESLA and CLIC based e-gamma colliders

    OpenAIRE

    Cakir, O.; Ateser, E.; Koru, H.

    2002-01-01

    We study scalar leptoquark production at TESLA and CLIC based e-gamma colliders. Both direct and resolved contributions to the cross section are examined. We find that the masses of scalar leptoquarks can be probed up to about 0.9 TeV at TESLA and 2.6 TeV at CLIC.

  6. Thermal joining studies of CLIC accelerating structures and Establishment of a test bench and studies of thermomechanical behaviour of a CLIC two beam module

    CERN Document Server

    Rossi, Fabrizio

    2013-01-01

    The assembly procedure of the CLIC accelerating structures is constituted of several steps, involving ultra-precision machining, heating cycles at very high temperatures and many quality controls necessary to fulfil the very tight technical requirements. Diverse issues are related to the diffusion bonding process of CLIC accelerating structures; due to diffusion creep mechanisms occurring at high temperature and low stress, residual deformations might be present at the end of the joining process. A theoretical and experimental approach is presented here in order to understand this issue further and feedback on the design process. As a second issue tackled here, the final alignment of CLIC is also affected by the power dissipation occurring in the module during the normal operation modes and resulting in time-varying non-uniform thermal fields. The thermo-mechanical models of CLIC two-beam modules developed in the past are then useful to predict the structural deformations affecting the final alignment of the ...

  7. Water-Structure Interactions on a Point Absorber

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller

    been the primary catalyst to more successful work later and may be helpful to others working in laboratory. The purpose of the experiments is to examine the wave and current induced loads on a floating point absorber (wave energy converter). Wave energy converters are used in ocean- or costal regions...

  8. Online Resources for High School Teachers--A CLIC Away

    Science.gov (United States)

    Holmes, Jon L.

    2000-04-01

    "I'm a high school teacher. I don't have time to sift through all of JCE to find what I need. I don't have enough time as it is!" If you need to find things in a hurry, go to JCE HS CLIC, the JCE High School Chemed Learning Information Center, http://JChemEd.chem.wisc.edu/HS/. You will find good solid, reliable information, and you will find it fast. CLIC is open 24 hours every day, all over the world. What You Will Find at JCE CLIC We know teachers are pressed for time. During the few minutes between classes or at the end of the day, information needs to be found very quickly. Perhaps you are looking for a demo that illustrates electrochemistry using Cu, Mg, orange juice, and a clock; or a student activity on chromatography that is ready to copy and hand out; or a video to illustrate the action of aqua regia on gold, because you can't use aqua regia and can't afford gold. You can find each of these quickly at CLIC. The Journal has always provided lots of articles designed with high school teachers in mind. What the new JCE HS CLIC does is collect the recent materials at one address on JCE Online, making it quicker and easier for you to find them. Information has been gathered from both print and online versions of the Journal, from JCE Software, and from JCE Internet. It is organized as shown at the bottom of the page. Getting Access to Information You have located something that interests you, perhaps a list of tested demonstrations that pertain to consumer chemistry. Now it is time to get it. JCE subscribers (individuals and libraries) can read, download, and print the full versions of the articles as well as all supplemental materials, including student handouts and instructor's notes. You will need the username and password that are on the mailing label that comes with your Journaleach month. JCE HS CLIC home page: http://JChemEd.chem.wisc.edu/HS/ Your Suggestions, Please Our plans for JCE HS CLIC do not end with what you find now. Other resources and features

  9. Interaction of Point Defects with Twin Boundaries in Copper

    Institute of Scientific and Technical Information of China (English)

    S. A. Ahmad; Razia Ramzan

    2007-01-01

    The interaction between small vacancy clusters and twin boundaries in copper is studied by using many-body potential developed by Ackland et al. for fcc metals. The interaction energies of single-, dj- and tri-vacancy clusters with (111) and (112) twin boundaries are computed using well established simulation techniques. For (111) twins the vacancy clusters are highly repelled when they are on the adjacent planes, and are attracted when they are away from the boundary. In the case of (112) twins, vacancy clusters are more attracted to the boundary when they are near the boundary as compared to away from it. Vacancy clusters on both the sides of the boundary are also investigated, and it is observed that the clusters energetically prefer to lie on the off-mirror sites as compared to the mirror position across the twin.

  10. Resonant Transmission in One-Dimensional Quantum Systems with Two Parity-Invariant Point Interactions

    CERN Document Server

    Konno, Kohkichi; Takahashi, Rohta

    2016-01-01

    We discuss one-dimensional quantum systems with two parity-invariant point interactions within the framework of quantum mechanics. By investigating the conditions under which resonant transmission occurs, we show that an infinite number of resonant peaks appear only when (anti-)symmetric relations between the parameters which characterize the point interactions hold.

  11. Simulation for mechanical relaxation and interaction of point defects

    International Nuclear Information System (INIS)

    A molecular dynamics computer simulation for self-interstitials in copper crystals has been performed by using the embedded atom method potential functions. Configuration and stress distribution around an interstitial are calculated. Interaction energy between two interstitials for parallel and perpendicular configuration is calculated as a function of distance. Thermal vibration and migration of dipole are also investigated by a simulation at a constant temperature, 300 K. The time evolution of the atomic displacement and the power spectra are calculated. A large unstable motion of interstitial atoms in split direction is observed when the interstitial migrate. The method can be applied to the simulation of complex relaxation

  12. A prototype hybrid pixel detector ASIC for the CLIC experiment

    CERN Document Server

    Valerio, P; Arfaoui, S; Ballabriga, R; Benoit, M; Bonacini, S; Campbell, M; Dannheim, D; De Gaspari, M; Felici, D; Kulis, S; Llopart, X; Nascetti, A; Poikela, T; Wong, W S

    2014-01-01

    A prototype hybrid pixel detector ASIC specifically designed to the requirements of the vertex detector for CLIC is described and first electrical measurements are presented. The chip has been designed using a commercial 65 nm CMOS technology and comprises a matrix of 64x64 square pixels with 25 μm pitch. The main features include simultaneous 4-bit measure- ment of Time-over-Threshold (ToT) and Time-of-Arrival (ToA) with 10 ns accuracy, on-chip data compression and power pulsing capability.

  13. Status of the Fatigue Studies on the CLIC Accelerating Structures

    CERN Document Server

    Calatroni, S; Neupert, H; Wuensch, Walter; CERN. Geneva

    2006-01-01

    The need for high accelerating gradients for the future multi-TeV e+e- Compact Linear Collider (CLIC) imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF (Radio Frequency) currents are subject to cyclic thermal stresses which are expected to induce surface break up by fatigue. Since no fatigue data exists in the literature up to very large numbers of cycles and for the particular stress pattern present in RF cavities, a comprehensive study of copper alloys in this parameter range has been initiated. Fatigue data for selected copper alloys in different states are presented

  14. On structure design for the CLIC Booster Linac

    CERN Document Server

    Darvish, Esmat

    2015-01-01

    Using the SUPERFISH code we present a design for a traveling wave (TW) structure of the Booster Linac for CLIC. The structure, consisting of thirty asymmetric cells attached to the beam pipes at two ends, works in 2π/3 operating mode at working frequency 2 GHz. For the corresponding operating mode and frequency, the RF field configuration transmitted through the cavity is obtained. The results are prepared in an RF field data file to be used in the PARMELA code for further beam dynamic study.

  15. An Asset Test of the CLIC Accelerating Structure

    International Nuclear Information System (INIS)

    Transverse wakefield suppression in the CLIC (Compact Linear Collider) multibunch accelerating structure, called the TDS (Tapered Damped Structure), is achieved primarily through heavy damping. In order to verify the performance of the TDS design and the validity of the theoretical tools used to model it, a 15 GHz version of the TDS has been constructed and tested in the ASSET facility at SLAC. The test has directly demonstrated transverse wakefield suppression of over a factor 100, with an excellent agreement between the measured and the calculated wakefield

  16. Wave-Structure Interactions on Point Absorbers - an experimental study

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller

    used in the case studies is a pitching point absorber (Wavestar). The central part of the thesis deals with the challenges, choices, and experi- ences gained during the Ph.D. The more in-depth technical details and results are presented in peer-reviewed publications and technical reports. The chal...... models. Using a modification by Faltinsen to take into account the relative motion of the device, the contributions from drag, excitation and body motion are determined. 2: Determining the peak pressure on the surface on the device during extreme events and in freak conditions. A great deal of work has...... been done to determine peak pressures on mono-piles worldwide, but only very little on spherical structures. In order to shed more light on the wave induced loads on a hemisphere the peak pressures are measured with the traditional drop test and during impact of so-called freak waves. 3: Implementation...

  17. The CERN study of a 2 TeV e+e- collider CLIC

    International Nuclear Information System (INIS)

    Progress with the CERN study of a 2 TeV e+e- linear collider (CLIC) is reported. The CLIC Test Facility for drive beam generation is giving first results. Results are also reported from development work on 30 GHz prototype accelerating structures (including RF quadrupole configurations) from a 30 GHz transfer structure for RF power generation in the CLIC two-beam scheme, from a prototype system for submicron automatic alignment and from theoretical work on wake-field stabilization, alignment tolerances, compensation of the beams energy spread and the final focus system

  18. R&D for the Vertexing at CLIC

    CERN Document Server

    Redford, S

    2015-01-01

    The Compact Linear Collider is a candidate to be the next high-energy particle physics collider. Using a novel acceleration technique, electrons and positrons would be brought into collision with a centre-of-mass energy of up to 3 TeV. Despite challenging levels of beam-induced background, this would provide a relatively clean environment in which to perform precision physics measurements. The vertex detector would be crucial in achieving this, and would need to provide accurate particle tracking information to facilitate secondary vertex reconstruction and jet flavour-tagging. With this goal in mind, current technological limits are being stretched to design a low occupancy, low mass and low-power dissipation vertex detector for CLIC. A concept comprising thin hybrid pixel detectors coupled to high- performance readout ASICs, power-pulsing and air-flow cooling is under development. In this paper, the CLIC vertex detector requirements are reviewed and the current status of R&D on sensors, readout, powerin...

  19. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  20. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  1. Higgs Physics at the CLIC Electron-Positron Linear Collider

    CERN Document Server

    Abramowicz, H; Afanaciev, K; Tehrani, N Alipour; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J -J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Gutierrez, M A Díaz; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Codina, E Perez; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Pinto, M Vicente Barreto; Vila, I; Gonzalez, M Vogel; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I -S

    2016-01-01

    The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- -> ZH) and WW-fusion (e+e- -> Hnunu), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma_H, and model-independent determinations of the Higgs couplings. Operation at sqrt(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+e- -> ttH and e+e- -> HHnunu would allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of...

  2. Feasibility study of multipoint based laser alignment system for CLIC

    CERN Document Server

    Stern, G; Mainaud-Durand, H; Piedigrossi, D; Geiger, A

    2012-01-01

    CLIC (Compact LInear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities oftoday’s particle accelerators. Alignment is one of the major challenges within the CLIC study in order to achieve the high requirement of a multi-TeV center of mass colliding beam energy range (nominal 3 TeV). To reach this energy in a realistic and cost efficient scenario all accelerator components have to be aligned with an accuracy of 10 μm over a sliding window of 200 m. The demand for a straight line reference is so far based on stretched wires coupled with Wire Positioning Sensors (WPS). These solutions are currently further developed inorder to reduce the drawbacks which are mainly given by their costs and difficult implementation. However, it should be validated through inter-comparison with a solution ideally based on a different physical principle. Therefore, a new metrological approach is proposed using a laser beam as straight lin...

  3. Achievements and Future Plans of CLIC Test Facilities

    CERN Document Server

    Braun, Hans Heinrich

    2001-01-01

    CTF2 was originally designed to demonstrate the feasibility of two-beam acceleration with high current drive beams and a string of 30 GHz CLIC accelerating structure prototypes (CAS). This goal was achieved in 1999 and the facility has since been modified to focus on high gradient testing of CAS's and 30 GHz single cell cavities (SCC). With these modifications, it is now possible to provide 30 GHz RF pulses of more than 150 MW and an adjustable pulselength from 3 to 15 ns. While the SCC results are promising, the testing of CAS's revealed problems of RF breakdown and related surface damage. As a consequence, a new R&D program has been launched to advance the understanding of RF breakdown processes, to improve surface properties, investigate new materials and to optimise the structure geometries of the CAS's. In parallel the construction of a new facility named CTF3 has started. CTF3 will mainly serve two purposes. The first is the demonstration of the CLIC drive beam generation scheme. CTF3 will acceler-a...

  4. Simulation of an Intra-Pulse Interaction Point Feedback for Future Linear Colliders

    CERN Document Server

    Shulte, D

    2000-01-01

    In future normal-conducting linear colliders, the beams will be delivered in short bursts with a length of the order of 100 ns. The pulses will be separated by several ms. In order to maintain high luminosity, feedback is necessary on a pulse-to-pulse basis. In addition, intra-pulse feedback that can correct beam positions and angles within one pulse seem technically feasible. The likely performances of different feedback options are simulated for the NLC (Next Linear Collider) and CLIC (Compact Linear Collider).

  5. Studies on the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Nousiainen, R; Österberg, K

    2010-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power dissipation while the accelerator is ramped up to nominal power as well as when the mode of CLIC operation is varied. This will result into inevitable temperature excursions driving mechanical distortions in and between different module components. A FEM model is essential to estimate and simulate the fundamental thermo-mechanical behaviour of the CLIC two-beam module to facilitate its design and development. In this paper, the fundamental thermal environments for the RF-components of the module are described. Also the thermal and structural results for the studied module configuration are presented showing the fundamental thermo-mechanical behaviour under the main CLIC collider operation conditions.

  6. CLIC Pre-damping and Damping Ring Kickers: Initial Ideas to Achieve Stability Requirements

    CERN Document Server

    Barnes, M J; Uythoven, J

    2010-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (1034-1035 cm-2s-1) and a nominal centre-of mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on the presence of Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. In order to limit the beam emittance blow-up due to oscillations the combined flat top ripple and droop of the field pulse, for the DR extraction kickers, must be less than 0.02 %. In addition, the allowed beam coupling impedance is also very low: a few Ohms longitudinally and a few MW/m transversally. This paper discusses initial ideas for achieving the demanding requirements for the PDR and DR kickers.

  7. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  8. Investigation and evaluation of pointing modalities for interactive stereoscopic 3D TV

    OpenAIRE

    Haiyue Yuan,; Calic, J.; Fernando, A.; Kondoz, A

    2013-01-01

    The recent proliferation of stereoscopic three dimensional (3D) video technology has fostered a large body of research into 3D video capture, production, compression and delivery. However, little research has been dedicated to the design practices of stereoscopic 3D video interaction. Interaction tasks such as pointing and selection are critical to the consumer's experience of the 3D video technology. This paper presents investigation of pointing modalities in the context of stereoscopic 3D t...

  9. Choke-Mode Damped Structure Design for the CLIC Main Linac

    CERN Document Server

    Zha, Hao; Tang, Chuanxiang; Huang, Wenhui; Shi, Jiaru; Grudiev, Alexej; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design for the accelerating structures of main linacs of the compact linear collider (CLIC). Choke-mode structures have the potential for much lower pulsed temperature rise, and lower cost of manufacture and fabrication. A new kind of choke-mode structure was proposed and simulated by Gdfidl. This structures has comparable wakefield damping effect as the baseline design of CLIC main linacs.

  10. Theory and computerized simulation of interaction of point defects with grain boundaries

    International Nuclear Information System (INIS)

    The issued results on mathematical simulation at the atomic level of formation and migration of point defects arising under radiation (of intrinsic point defects, helium atoms) in the region of grain boundary are analyzed. Simulation data on impurity atom interaction with grain boundaries are also considered

  11. PACMAN – an Innovative Doctoral Programme for CLIC

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The final network project funded under the European Commission’s Seventh Framework Programme (FP7), Marie Curie Actions, held its kick-off meeting at CERN on 20 November 2013.   PACMAN – a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale – is in the final stage of recruiting 10 PhD students to do research on beam instrumentation, metrology, micrometric alignment, magnetic measurements, nano-positioning and high-precision engineering. The students will acquire multi-disciplinary expertise in advanced engineering combined with a broad span of transferable skills. “PACMAN gives us the opportunity to attract students to CERN at a key moment in the CLIC study,” said Frédérick Bordry, Head of CERN’s Technology Department. “This is also an ideal opportunity to further develop CERN’s networks with industry and universities.” “The project is...

  12. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    Alipour Tehrani, Niloufar; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2015-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  13. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  14. Two Models Relevant to the Interaction of a Point Charge and a Magnetic Moment

    CERN Document Server

    Boyer, Timothy H

    2012-01-01

    An understanding of the interaction of a point charge and a magnetic moment is crucial for understanding the experiments involving electromagnetic momentum carried by permeable materials as well as the experimentally-observed Aharonov-Bohm and Aharonov-Casher phase shifts. Here we present two simple models for a magnetic moment which have vastly different interactions with a distant point charge. It is suggested that a satisfactory theoretical understanding of the interaction is still lacking and that the "hidden momentum" interpretation has been introduced into the textbook literature prematurely.

  15. A point-based rendering approach for real-time interaction on mobile devices

    Institute of Scientific and Technical Information of China (English)

    LIANG XiaoHui; ZHAO QinPing; HE ZhiYing; XIE Ke; LIU YuBo

    2009-01-01

    Mobile device is an Important interactive platform. Due to the limitation of computation, memory, display area and energy, how to realize the efficient and real-time interaction of 3D models based on mobile devices is an important research topic. Considering features of mobile devices, this paper adopts remote rendering mode and point models, and then, proposes a transmission and rendering approach that could interact in real time. First, improved simplification algorithm based on MLS and display resolution of mobile devices is proposed. Then, a hierarchy selection of point models and a QoS transmission control strategy are given based on interest area of operator, interest degree of object in the virtual environment and rendering error. They can save the energy consumption. Finally, the rendering and interaction of point models are completed on mobile devices. The experiments show that our method is efficient.

  16. Inverted point-contact spectrum of electron-phonon interactions in arsenic homocontacts

    Science.gov (United States)

    Khotkevich, A. V.; Krasnyi, A. S.

    2016-04-01

    The point-contact (microcontact) spectra (second derivatives of the current-voltage characteristics) of As/As point homocontacts are measured at liquid helium temperatures. Inversion of the sign of the point-contact spectrum is observed as a result of the destruction of electron localization in the arsenic contacts owing to electron-phonon interactions. The point-contact spectrum contains two major peaks at energies of 10 and 25 meV. The boundary of the single-phonon part of the spectrum corresponds to 34 meV. This agrees with available data on the density of phonon states. Assuming that the inverted point-contact spectrum reflects features of the electro-phonon interaction spectral function, the mean-square frequency of the phonons is calculated and the Debye temperature is estimated.

  17. A Hubbard model for ultracold bosonic atoms interacting via zero-point-energy induced three-body interactions

    OpenAIRE

    Paul, Saurabh; Johnson, P R; Tiesinga, Eite

    2016-01-01

    We show that for ultra-cold neutral bosonic atoms held in a three-dimensional periodic potential or optical lattice, a Hubbard model with dominant, attractive three-body interactions can be generated. In fact, we derive that the effect of pair-wise interactions can be made small or zero starting from the realization that collisions occur at the zero-point energy of an optical lattice site and the strength of the interactions is energy dependent from effective-range contributions. We determine...

  18. Planned Contributions of The Wcrp Climate and Cryosphere (clic) Project To Mountain Hydrological Studies

    Science.gov (United States)

    Barry, R. G.

    interactions of snow cover and seasonally frozen ground and their influence on the hydrologic cycle. Another element of CliC addresses the monitoring of cryospheric indicators of climate change. The impacts of global change on elements of the cryosphere may have significant social and economic ramifications. Concerns in mountain regions in- clude: reductions in glacier area and snow cover impacting water resources, winter recreation, and transportation; the melt of alpine frozen ground leading to slope insta- bilities and damage to structures; changes in snow pack and lake and river ice regimes 1 affecting biogeochemistry, wildlife and aquatic species. 2

  19. Inferring intentions from biological motion: a stimulus set of point-light communicative interactions.

    Science.gov (United States)

    Manera, Valeria; Schouten, Ben; Becchio, Cristina; Bara, Bruno G; Verfaillie, Karl

    2010-02-01

    We present the first database of communicative interactions reproduced through point-light displays (Communicative Interaction Database). The database contains 20 communicative interactions performed by male and by female couples. For each action, we provide movie files from four different viewpoints, as well as text files with the 3-D spatial coordinates of the point lights, allowing researchers to construct customized versions. By including various types of actions performed with different social motives, the database contains a diverse sample of nonconventional communicative gestures. Normative data collected to assess the recognizability of the stimuli suggest that, for most action stimuli, information in point-light displays is sufficient for clear recognition of the action as communicative, as well as for identification of the specific communicative gesture performed by the actor. The full set of stimuli may be downloaded from http://brm.psychonomic-journals.org/content/supplemental and from http://ppw.kuleuven.be/labexppsy/lepSite/resources/CID.rar. PMID:20160297

  20. Interaction of a point charge with the surface of a uniaxial dielectric

    CERN Document Server

    Ribič, Primož Rebernik

    2013-01-01

    We analyze the force on a point charge moving at relativistic speeds parallel to the surface of a uniaxial dielectric. Two cases are examined: a lossless dielectric with no dispersion and a dielectric with a plasma type response. The treatment focuses on the peculiarities of the strength and direction of the interaction force as compared to the isotropic case. We show that a plasma type dielectric can, under specific conditions, repel the point charge.

  1. The effective potential and fixed point of QED with four-fermion interaction

    International Nuclear Information System (INIS)

    We consider quantum electrodynamics in the quenched approximation including a four-fermion interaction with coupling constant g. The effective potential at stationary points is computed as a function of the coupling constant α and g. We find a minimum of energy in the (α,g) plane for α sub(c) = π/3 and g>Ο(1), arguing that this is an indication of the existence of a fixed point in this theory. (author)

  2. Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions

    CERN Document Server

    Conde, Eduardo; Mkrtchyan, Karapet

    2016-01-01

    We make an explicit link between the cubic interactions of off-shell fields and the on-shell three-point amplitudes in four dimensions. Both the cubic interactions and the on-shell three-point amplitudes had been independently classified in the literature, but their relation has not been made explicit. The aim of this note is to provide such a relation and discuss similarities and differences of their constructions. For the completeness of our analysis, we also derive the covariant form of all parity-odd massless vertices.

  3. Contact Point Generation for Convex Polytopes in Interactive Rigid Body Dynamics

    DEFF Research Database (Denmark)

    Silcowitz-Hansen, Morten; Niebe, Sarah Maria; Erleben, Kenny

    When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...

  4. An application of interacting shear flows theory: exact solution for unsteady oblique stagnation point flow

    Institute of Scientific and Technical Information of China (English)

    Guibo Li; Minguo Dai; Zhi Gao

    2006-01-01

    An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.

  5. Hubbard model for ultracold bosonic atoms interacting via zero-point-energy-induced three-body interactions

    Science.gov (United States)

    Paul, Saurabh; Johnson, P. R.; Tiesinga, Eite

    2016-04-01

    We show that, for ultracold neutral bosonic atoms held in a three-dimensional periodic potential or optical lattice, a Hubbard model with dominant, attractive three-body interactions can be generated. In fact, we derive that the effect of pairwise interactions can be made small or zero starting from the realization that collisions occur at the zero-point energy of an optical lattice site and the strength of the interactions is energy dependent from effective-range contributions. We determine the strength of the two- and three-body interactions for scattering from van der Waals potentials and near Fano-Feshbach resonances. For van der Waals potentials, which for example describe scattering of alkaline-earth atoms, we find that the pairwise interaction can only be turned off for species with a small negative scattering length, leaving the 88Sr isotope a possible candidate. Interestingly, for collisional magnetic Feshbach resonances this restriction does not apply and there often exist magnetic fields where the two-body interaction is small. We illustrate this result for several known narrow resonances between alkali-metal atoms as well as chromium atoms. Finally, we compare the size of the three-body interaction with hopping rates and describe limits due to three-body recombination.

  6. Correction for solute/solvent interaction extends accurate freezing point depression theory to high concentration range.

    Science.gov (United States)

    Fullerton, G D; Keener, C R; Cameron, I L

    1994-12-01

    The authors describe empirical corrections to ideally dilute expressions for freezing point depression of aqueous solutions to arrive at new expressions accurate up to three molal concentration. The method assumes non-ideality is due primarily to solute/solvent interactions such that the correct free water mass Mwc is the mass of water in solution Mw minus I.M(s) where M(s) is the mass of solute and I an empirical solute/solvent interaction coefficient. The interaction coefficient is easily derived from the constant in the linear regression fit to the experimental plot of Mw/M(s) as a function of 1/delta T (inverse freezing point depression). The I-value, when substituted into the new thermodynamic expressions derived from the assumption of equivalent activity of water in solution and ice, provides accurate predictions of freezing point depression (+/- 0.05 degrees C) up to 2.5 molal concentration for all the test molecules evaluated; glucose, sucrose, glycerol and ethylene glycol. The concentration limit is the approximate monolayer water coverage limit for the solutes which suggests that direct solute/solute interactions are negligible below this limit. This is contrary to the view of many authors due to the common practice of including hydration forces (a soft potential added to the hard core atomic potential) in the interaction potential between solute particles. When this is recognized the two viewpoints are in fundamental agreement. PMID:7699200

  7. Estimates of Genotype x Environment Interactions and Heritability of Black Point in Durum Wheat

    Directory of Open Access Journals (Sweden)

    Hasan Hasan KILIÇ

    2009-12-01

    Full Text Available Experiments were carried out in four different locations with 14 durum wheat genotypes in two successful seasons of 1999- 2000 and 2000-2001. Black point disease of genotypes was evaluated by interactions of genotypes and environment as well as heritability (h2. It was found that black point disease affected differently in different locations and growing seasons. This indicates that the genotypes have different adaptation ability for traits studied in different locations. Heritability rate that variance analyzes accepted means squares calculated was found as phenotypic variance rate of genotypic variance was found as 49%. Variance of genotype x location x year was bigger than other variance components. Genotype x year variance was bigger than genotype x location variance too. The heritability of black point disease was founded moderate. In addition to one of factors on the black point disease genotype also environment x genotype interactions were found effective. According to evaluation of black point disease, the highest value was obtained from ‘Sorgül’ (2.7%, ‘Dicle-74’ (2.56% and ‘Gidara-II’ (2.32% varieties; the least value was obtained from ‘Balcali-2000’ variety (0.64%. Alternaria spp., Phoma sp, Fusarium spp., Helminthosporium spp., and Stemphylium spp., fungi were isolated from the grain affected by black point diseases.

  8. A New Technique For Information Processing of CLIC Technical Documentation

    CERN Document Server

    Tzermpinos, Konstantinos

    2013-01-01

    The scientific work presented in this paper could be described as a novel, systemic approach to the process of organization of CLIC documentation. The latter refers to the processing of various sets of archived data found on various CERN archiving services in a more friendly and organized way. From physics aspect, this is equal to having an initial system characterized by high entropy, which after some transformation of energy and matter will produce a final system of reduced entropy. However, this reduction in entropy can be considered valid for open systems only, which are sub-systems of grander isolated systems, to which the total entropy will always increase. Thus, using as basis elements from information theory, systems theory and thermodynamics, the unorganized form of data pending to be organized to a higher form, is modeled as an initial open sub-system with increased entropy, which, after the processing of information, will produce a final system with decreased entropy. This systemic approach to the ...

  9. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    Science.gov (United States)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  10. Classical Interaction of a Magnet and a Point Charge: The Shockley-James Paradox

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    It is pointed out that Coleman and Van Vleck make a major blunder in their discussion of the Shockly-James paradox by designating relativistic hidden mechanical momentum as the basis for resolution of the paradox. This blunder has had a wide influence in the current physics literature, including erroneous work on the Shockley-James paradox, on Mansuripur's paradox, on the motion of a magnetic moment, on the Aharonov-Bohm phase shift, and on the Aharonov-Casher phase shift. Although hidden mechanical momentum is indeed dominant for non-interacting particles moving in a closed orbit under the influence of an external electric field, the attention directed toward hidden mechanical momentum represents a fundamental misunderstanding of the classical electromagnetic interaction between a multiparticle magnet and an external point charge. In the interacting multiparticle situation, the external charge induces an electrostatic polarization of the magnet which leads to an internal electromagnetic momentum in the magne...

  11. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  12. Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5.

    Science.gov (United States)

    Seco, Celia Zazo; Oonk, Anne M M; Domínguez-Ruiz, María; Draaisma, Jos M T; Gandía, Marta; Oostrik, Jaap; Neveling, Kornelia; Kunst, Henricus P M; Hoefsloot, Lies H; del Castillo, Ignacio; Pennings, Ronald J E; Kremer, Hannie; Admiraal, Ronald J C; Schraders, Margit

    2015-02-01

    In a consanguineous Turkish family diagnosed with autosomal recessive nonsyndromic hearing impairment (arNSHI), a homozygous region of 47.4 Mb was shared by the two affected siblings on chromosome 6p21.1-q15. This region contains 247 genes including the known deafness gene MYO6. No pathogenic variants were found in MYO6, neither with sequence analysis of the coding region and splice sites nor with mRNA analysis. Subsequent candidate gene evaluation revealed CLIC5 as an excellent candidate gene. The orthologous mouse gene is mutated in the jitterbug mutant that exhibits progressive hearing impairment and vestibular dysfunction. Mutation analysis of CLIC5 revealed a homozygous nonsense mutation c.96T>A (p.(Cys32Ter)) that segregated with the hearing loss. Further analysis of CLIC5 in 213 arNSHI patients from mostly Dutch and Spanish origin did not reveal any additional pathogenic variants. CLIC5 mutations are thus not a common cause of arNSHI in these populations. The hearing loss in the present family had an onset in early childhood and progressed from mild to severe or even profound before the second decade. Impaired hearing is accompanied by vestibular areflexia and in one of the patients with mild renal dysfunction. Although we demonstrate that CLIC5 is expressed in many other human tissues, no additional symptoms were observed in these patients. In conclusion, our results show that CLIC5 is a novel arNSHI gene involved in progressive hearing impairment, vestibular and possibly mild renal dysfunction in a family of Turkish origin. PMID:24781754

  13. Detector optimization studies and light Higgs decay into muons at CLIC

    International Nuclear Information System (INIS)

    The Compact Linear Collider (CLIC) is a concept for a future e+e- linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab-1, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  14. Detector optimization studies and light Higgs decay into muons at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2013-09-15

    The Compact Linear Collider (CLIC) is a concept for a future e{sup +}e{sup -} linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab{sup -1}, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  15. The Nature of Child-Adult Interaction. From Turn-Taking to Understanding Pointing and Use of Pointing Gestures

    Directory of Open Access Journals (Sweden)

    Białek Arkadiusz

    2014-08-01

    Full Text Available Analyses of interactions between an adult and a one-year-old child are often connected with studying early communicative competences, e.g. the child’s participation in turn-taking sequences, in joint attention, and use of pointing gestures. Infants’ communicative behaviors were studied using a structured observational measure - the Early Social Communication Scales (Mundy et al., 2003 in a study of 358 12-month-old children. An exploratory factor analysis revealed: (i a distinction between the categories of initiation and response among the behaviors displayed, (ii simple and complex behavior categories occurring; (iii the presence within one factor of behaviors fulfilling various functions (e.g. requesting and sharing interest. An analysis of the results showed that communicative competences can be classified according to their level and ignoring their function, and made it possible to suggest modifications to the way in which behaviors are coded on the ESCS and to complement the procedure of studying early communicative competences.

  16. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction

    Science.gov (United States)

    Cai, Yongyang; Lenton, Timothy M.; Lontzek, Thomas S.

    2016-05-01

    Evidence suggests that several elements of the climate system could be tipped into a different state by global warming, causing irreversible economic damages. To address their policy implications, we incorporated five interacting climate tipping points into a stochastic-dynamic integrated assessment model, calibrating their likelihoods and interactions on results from an existing expert elicitation. Here we show that combining realistic assumptions about policymakers’ preferences under uncertainty, with the prospect of multiple future interacting climate tipping points, increases the present social cost of carbon in the model nearly eightfold from US$15 per tCO2 to US$116 per tCO2. Furthermore, passing some tipping points increases the likelihood of other tipping points occurring to such an extent that it abruptly increases the social cost of carbon. The corresponding optimal policy involves an immediate, massive effort to control CO2 emissions, which are stopped by mid-century, leading to climate stabilization at <1.5 °C above pre-industrial levels.

  17. Mechanical integration studies for the CLIC vertex and inner tracking detectors

    CERN Document Server

    Villarejo Bermudez, M.A.; Gerwig, H.

    2015-01-01

    Since the publication of the CLIC Conceptual Design Report, work has proceeded in order to establish a preliminary mechanical design for the innermost CLIC detector region. This note proposes a design for the main Carbon-Fibre Reinforced Polymer (CFRP) structural elements of the inner detectors, for the beam pipe and their supports. It also describes an assembly sequence for the integration of the sensors and the mechanical components. Mechanical simulations of different structural elements and a material budget estimation are appended. Details of a proposed cabling layout for all the subdetectors are included.

  18. Status of the Stripline Beam Position Monitor developement for the CLIC Drive Beam

    CERN Document Server

    Benot-Morell, A; Wendt, M; Faus-Golfe, A; Nappa, J M; Vilalte, S; Smith, S

    2013-01-01

    In collaboration with SLAC, LAPP and IFIC, a first prototype of a stripline Beam Position Monitor (BPM) for the CLIC Drive Beam and its associated readout electronics has been successfully tested in the CLIC Test Facility linac (CTF3) at CERN. In addition, a modified prototype with downstream terminated striplines is under development to improve the suppression of unwanted RF signal interference. This paper presents the results of the beam tests, and the most relevant aspects for the modified stripline BPM design and its expected improvements.

  19. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  20. Experimental tests on the air cooling of the CLIC vertex detector

    CERN Document Server

    Duarte Ramos, Fernando; Nuiry, Francois-Xavier

    2016-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concept require the use of a dry gas for the cooling of the respective sensors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detector specifications. This note summarizes the results obtained from experimental tests on the air cooling of the CLIC vertex detector as well as their comparison with the corresponding computational fluid dynamics simulations.

  1. Highlights from CERN: The CLIC Project for a Future e$^{+}$e$^{−}$ Linear Collider

    CERN Document Server

    Tecker, Frank

    2007-01-01

    A high luminosity ( 10$^{34}$-10$^{35}$ cm$^{2}$/s) linear electron-positron Collider (CLIC) with a nominal centre-of-mass energy of 3 TeV is under study in the framework of an international collaboration of laboratories and institutes, with the aim to provide the HEP community with a new facility for the post LHC era. After a brief introduction of the physics motivation, the CLIC scheme to extend Linear Colliders into the Multi-TeV colliding beam energy range will be described. In the following, the main challenges and the very promising achievements already obtained will be presented.

  2. X-band crab cavities for the CLIC beam delivery system

    OpenAIRE

    Burt, Graeme; Ambattu, Praveen; Dexter, Amos; Abram, Thomas; Dolgashev, V.; Tantawi, S.; Jones, R. M.

    2008-01-01

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to m...

  3. Collective effects and experimental verification of the CLIC drive beam and decelerator

    OpenAIRE

    2014-01-01

    The Compact Linear Collider (CLIC) is a potential next-generation particle collider, in which electrons and positrons collide at a center-of-mass energy of up to 3 TeV. In order to reach a high accelerating gradient and reduce the length of the machine, CLIC uses a novel two-beam scheme. Here, the acceleration energy for the main beam is provided by energy extraction from a secondary electron drive beam, by the use of Power Extraction and Transfer Structures (PETS). This Ph.D. thesis descr...

  4. Unstable quantum oscillator with point interactions: Maverick resonances, antibound states and other surprises

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, J.J. [Escuela Universitaria de Informática, Universidad de Valladolid, 40005 Segovia (Spain); Gadella, M., E-mail: manuelgadella1@gmail.com [Department of FTAO, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid (Spain); Lara, L.P. [Departamento de Física, FCEIA, Universidad Nacional de Rosario, Avda. Pellegrini 250, Rosario (Argentina); Maldonado-Villamizar, F.H. [Departamento de Física, Centro de Investigación y Estudios Avanzados del IPN, 07360 México DF (Mexico)

    2013-11-15

    In the search for solvable or quasi-solvable models for resonances, we consider a one-dimensional potential, which is a harmonic oscillator for x<0, has a point potential at the origin of the form aδ(x)+bδ{sup ′}(x) and no interaction for x>0. After a study of this model, we add a mass jump at the origin and study the effect of the combination of the mass jump and the point potential. We obtain the behavior of resonances, bound and antibound states in terms of given parameters. In spite of the simplicity of the model, it shows quite interesting and unexpected features.

  5. Strong-coupling fixed points of current interactions and disordered fermions in two dimensions

    International Nuclear Information System (INIS)

    The all-orders β function is used to study disordered Dirac fermions in two dimensions. The generic strong coupling fixed 'points' of anisotropic current-current interactions at large distances are actually isotropic manifolds corresponding to subalgebras of the maximal current algebra at short distances. The argue that IR fixed point theories are generally current algebra cosets. We illustrate this with the simple example of anisotropic su(2), which is the physics of Kosterlitz-Thouless transitions. We propose a phase diagram for the Chalker-Coddington network model which is in the universality class of the integer quantum Hall transition. One phase is in the universality class of dense polymers

  6. Geometrical properties of two-dimensional interacting self-avoiding walks at the θ-point

    International Nuclear Information System (INIS)

    We perform a Monte Carlo simulation of two-dimensional N-step interacting self-avoiding walks at the θ-point, with lengths up to N = 3200. We compute the critical exponents, verifying the Coulomb-gas predictions, the θ-point temperature Tθ = 1.4986(11), and several invariant size ratios. Then, we focus on the geometrical features of the walks, computing the instantaneous shape ratios, the average asphericity, and the end-to-end distribution function. For the latter quantity, we verify in detail the theoretical predictions for its small- and large-distance behaviour.

  7. Geometrical Properties of Two-Dimensional Interacting Self-Avoiding Walks at the Theta-Point

    OpenAIRE

    Caracciolo, Sergio; Gherardi, Marco; Papinutto, Mauro; Pelissetto, Andrea

    2010-01-01

    We perform a Monte Carlo simulation of two-dimensional N-step interacting self-avoiding walks at the theta point, with lengths up to N=3200. We compute the critical exponents, verifying the Coulomb-gas predictions, the theta-point temperature T_theta = 1.4986(11), and several invariant size ratios. Then, we focus on the geometrical features of the walks, computing the instantaneous shape ratios, the average asphericity, and the end-to-end distribution function. For the latter quantity, we ver...

  8. Geometrical properties of two-dimensional interacting self-avoiding walks at the {theta}-point

    Energy Technology Data Exchange (ETDEWEB)

    Caracciolo, Sergio; Gherardi, Marco [Dipartimento di Fisica and INFN-Sezione di Milano, Universita degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Papinutto, Mauro [Laboratoire de Physique Subatomique et de Cosmologie, UJF/CNRS-IN2P3/INPG, 53 rue des Martyrs, F-38026 Grenoble (France); Pelissetto, Andrea, E-mail: Sergio.Caracciolo@mi.infn.it, E-mail: Marco.Gherardi@mi.infn.it, E-mail: Mauro.Papinutto@lpsc.in2p3.fr, E-mail: Andrea.Pelissetto@roma1.infn.it [Dipartimento di Fisica and INFN-Sezione di Roma I, Universita degli Studi di Roma ' La Sapienza' , P.le A.Moro 2, I-00185 Roma (Italy)

    2011-03-18

    We perform a Monte Carlo simulation of two-dimensional N-step interacting self-avoiding walks at the {theta}-point, with lengths up to N = 3200. We compute the critical exponents, verifying the Coulomb-gas predictions, the {theta}-point temperature T{sub {theta}} = 1.4986(11), and several invariant size ratios. Then, we focus on the geometrical features of the walks, computing the instantaneous shape ratios, the average asphericity, and the end-to-end distribution function. For the latter quantity, we verify in detail the theoretical predictions for its small- and large-distance behaviour.

  9. Interactive Cosmetic Makeup of a 3D Point-Based Face Model

    Science.gov (United States)

    Kim, Jeong-Sik; Choi, Soo-Mi

    We present an interactive system for cosmetic makeup of a point-based face model acquired by 3D scanners. We first enhance the texture of a face model in 3D space using low-pass Gaussian filtering, median filtering, and histogram equalization. The user is provided with a stereoscopic display and haptic feedback, and can perform simulated makeup tasks including the application of foundation, color makeup, and lip gloss. Fast rendering is achieved by processing surfels using the GPU, and we use a BSP tree data structure and a dynamic local refinement of the facial surface to provide interactive haptics. We have implemented a prototype system and evaluated its performance.

  10. Two-point correlation function in systems with van der Waals type interaction

    OpenAIRE

    Dantchev, Daniel M.

    2001-01-01

    The behavior of the bulk two-point correlation function $G({\\bf r};T|d)$ in $d$-dimensional system with van der Waals type interactions is investigated and its consequences on the finite-size scaling properties of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to decay at large distances $r$ as $r^{-(d+\\sigma)}$, with $2

  11. Critical points of the Bose–Hubbard model with three-body local interaction

    Energy Technology Data Exchange (ETDEWEB)

    Avila, C.A.; Franco, R. [Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá (Colombia); Souza, A.M.C. [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210-346 Niterói, Rio de Janeiro (Brazil); Silva-Valencia, J., E-mail: jsilvav@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá (Colombia)

    2014-09-12

    Using the density matrix renormalization group method, we study a one-dimensional system of bosons that interact with a local three-body term. We calculate the phase diagram for higher densities, where the Mott insulator lobes are surrounded by the superfluid phase. We also show that the Mott insulator lobes always grow as a function of the density. The critical points of the Kosterlitz–Thouless transitions were determined through the von Neumann block entropy, and its dependence on the density is given by a power law with a negative exponent. - Highlights: • We studied the Bose–Hubbard model with a local three-body interaction term. • We show that the Mott insulator lobes always grow as a function of the density. • We found a power law dependence of the critical point position with the density.

  12. Critical points of the Bose–Hubbard model with three-body local interaction

    International Nuclear Information System (INIS)

    Using the density matrix renormalization group method, we study a one-dimensional system of bosons that interact with a local three-body term. We calculate the phase diagram for higher densities, where the Mott insulator lobes are surrounded by the superfluid phase. We also show that the Mott insulator lobes always grow as a function of the density. The critical points of the Kosterlitz–Thouless transitions were determined through the von Neumann block entropy, and its dependence on the density is given by a power law with a negative exponent. - Highlights: • We studied the Bose–Hubbard model with a local three-body interaction term. • We show that the Mott insulator lobes always grow as a function of the density. • We found a power law dependence of the critical point position with the density

  13. Multi critical point structure for chiral phase transition induce by charge neutrality and vector interaction

    CERN Document Server

    Zhang, Zhao

    2010-01-01

    The combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition is investigated by considering neutral color superconductivity. Under the charge-neutrality constraint, the chiral condensate, diquark condensate and quark number densities are obtained in two-plus-one-flavor Nambu-Jona-Lasinio model with the so called Kobayashi-Maskawa-'t Hooft term. We demonstrate that multiple chiral critical-point structures always exist in the Nambu-Jona-Lasinio model within the self-consistent mean-field approximation, and that the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling.

  14. Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics

    OpenAIRE

    Shigehara, T.; Mizoguchi, H.; T. Mishima; Cheon, Taksu

    1999-01-01

    We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called $\\epsilon$ potential. It will be also shown that the scattering properties at high energy substantially diff...

  15. Development of Electronics for the ATF2 Interaction Point Region Beam Position Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngim; /Kyungpook Natl. U.; Heo, Ae-young; /Kyungpook Natl. U.; Kim, Eun-San; /Kyungpook Natl. U.; Boogert, Stewart; /Royal Holloway, U. of London; Honda, Yosuke; /KEK, Tsukuba; Tauchi, Toshiaki; /KEK, Tsukuba; Terunuma, Nobuhiro; /KEK, Tsukuba; May, Justin; /SLAC; McCormick, Douglas; /SLAC; Smith, Tonee; /SLAC

    2012-08-14

    Nanometer resolution beam position monitors have been developed to measure and control beam position stability at the interaction point region of ATF2. The position of the beam has to be measured to within a few nanometers at the interaction point. In order to achieve this performance, electronics for the low-Q IP-BPM was developed. Every component of the electronics have been simulated and checked on the bench and using the ATF2 beam. We will explain each component and define their working range. Then, we will show the performance of the electronics measured with beam signal. ATF2 is a final focus test beam line for ILC in the framework of the ATF international collaboration. The new beam line was constructed to extend the extraction line at ATF, KEK, Japan. The first goal of ATF2 is the acheiving of a 37 nm vertical beam size at focal point (IP). The second goal is to stabilize the beam at the focal point at a few nanometer level for a long period in order to ensure the high luminosity. To achieve these goals a high resolution IP-BPM is essential. In addition for feedback applications a low-Q system is desirable.

  16. Interactions of point defects with stacking faults in oxygen-free phosphorus-containing copper

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunguo, E-mail: yunguo@kth.se [Division of Materials Technology, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Korzhavyi, Pavel A., E-mail: pavelk@kth.se [Division of Materials Technology, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 620219 Ekaterinburg (Russian Federation)

    2015-07-15

    The interactions of stacking faults and point defects in oxygen-free phosphorus-containing copper are investigated using ab initio methods. Although monovacancies can act as traps for H impurities or OH groups, the calculations show that two vacancies only weakly bind with each other and this interaction terminates at the third nearest-neighbor distance. An interstitial P tends to form a Cu–P dumbbell-like cluster around the lattice site and can readily combine with a vacancy to become a substitutional impurity. It is also found that the intrinsic stacking-fault energy of copper strongly depends on the temperature as well as on the presences of point defects. The intrinsic stacking-fault energy varies between 20 and 77 mJ/m{sup 2} depending on the presence of point defects in the faulted region. These point defects are also found to affect the unstable stacking-fault energy, but they always increase the twinning tendency of copper. Among them, the substitutional P is found to have the strongest effects, decreasing the intrinsic stacking-fault energy and increasing the twinnability.

  17. Infinite-disorder critical points of models with stretched exponential interactions

    International Nuclear Information System (INIS)

    We show that an interaction decaying as a stretched exponential function of distance, J(l)∼e−cla, is able to alter the universality class of short-range systems having an infinite-disorder critical point. To do so, we study the low-energy properties of the random transverse-field Ising chain with the above form of interaction by a strong-disorder renormalization group (SDRG) approach. We find that the critical behavior of the model is controlled by infinite-disorder fixed points different from those of the short-range model if 0  1/2, the model belongs to the same universality class as its short-range variant. The entanglement entropy of a block of size L increases logarithmically with L at the critical point but, unlike the short-range model, the prefactor is dependent on disorder in the range 0 < a < 1/2. Numerical results obtained by an improved SDRG scheme are found to be in agreement with the analytical predictions. The same fixed points are expected to describe the critical behavior of, among others, the random contact process with stretched exponentially decaying activation rates. (paper)

  18. Proposal for an alignment method of the CLIC linear accelerator - From geodesic networks to the active pre-alignment

    International Nuclear Information System (INIS)

    The compact linear collider (CLIC) is the particle accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nano-metric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved before. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required: 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active pre-alignment but shows the way to the last developments that have to be done for that purpose. A method is proposed. Based on the management of the Helmert transformations between Euclidean coordinate systems, from the geodetic networks to the metrological measurements, this method is likely to solve the CLIC pre-alignment problem. Large scale facilities have been built and Monte-Carlo simulations have been made in order to validate the mathematical modeling of the measurement systems and of the alignment references. When this is done, it will be possible to extrapolate the modeling to the entire CLIC length. It will be the last step towards the demonstration of the CLIC pre-alignment feasibility. (author)

  19. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  20. Bounds on the electromagnetic dipole moments through the single top production at the CLIC

    CERN Document Server

    Koksal, M; Gutierrez-Rodriguez, A

    2016-01-01

    We obtain bounds on the anomalous magnetic and electric dipole moments of the $t$-quark from a future high-energy and high-luminosity linear electron positron collider, such as the CLIC, with unpolarized and polarized electron beams which are a powerful tool to determine new physics. We consider the processes $\\gamma e^- \\to \\bar t b\

  1. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  2. Development and testing of a double length pets for the CLIC experimental area

    Science.gov (United States)

    Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.

    2014-05-01

    CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.

  3. Intent Inference for Hand Pointing Gesture-Based Interactions in Vehicles.

    Science.gov (United States)

    Ahmad, Bashar I; Murphy, James K; Langdon, Patrick M; Godsill, Simon J; Hardy, Robert; Skrypchuk, Lee

    2016-04-01

    Using interactive displays, such as a touchscreen, in vehicles typically requires dedicating a considerable amount of visual as well as cognitive capacity and undertaking a hand pointing gesture to select the intended item on the interface. This can act as a distractor from the primary task of driving and consequently can have serious safety implications. Due to road and driving conditions, the user input can also be highly perturbed resulting in erroneous selections compromising the system usability. In this paper, we propose intent-aware displays that utilize a pointing gesture tracker in conjunction with suitable Bayesian destination inference algorithms to determine the item the user intends to select, which can be achieved with high confidence remarkably early in the pointing gesture. This can drastically reduce the time and effort required to successfully complete an in-vehicle selection task. In the proposed probabilistic inference framework, the likelihood of all the nominal destinations is sequentially calculated by modeling the hand pointing gesture movements as a destination-reverting process. This leads to a Kalman filter-type implementation of the prediction routine that requires minimal parameter training and has low computational burden; it is also amenable to parallelization. The substantial gains obtained using an intent-aware display are demonstrated using data collected in an instrumented vehicle driven under various road conditions. PMID:25935053

  4. A proton point source produced by laser interaction with cone-top-end target

    International Nuclear Information System (INIS)

    In this paper, we propose a proton point source by the interaction of laser and cone-top-end target and investigate it by two-dimensional particle-in-cell (2D-PIC) simulations as the proton point sources are well known for higher spatial resolution of proton radiography. Our results show that the relativistic electrons are guided to the rear of the cone-top-end target by the electrostatic charge-separation field and self-generated magnetic field along the profile of the target. As a result, the peak magnitude of sheath field at the rear surface of cone-top-end target is higher compared to common cone target. We test this scheme by 2D-PIC simulation and find the result has a diameter of 0.79λ0, an average energy of 9.1 MeV and energy spread less than 35%.

  5. Estimation of the temperature dependent interaction between uncharged point defects in Si

    International Nuclear Information System (INIS)

    A method is described to estimate the temperature dependent interaction between two uncharged point defects in Si based on DFT calculations. As an illustration, the formation of the uncharged di-vacancy V2 is discussed, based on the temperature dependent attractive field between both vacancies. For that purpose, all irreducible configurations of two uncharged vacancies are determined, each with their weight given by the number of equivalent configurations. Using a standard 216-atoms supercell, nineteen irreducible configurations of two vacancies are obtained. The binding energies of all these configurations are calculated. Each vacancy is surrounded by several attractive sites for another vacancy. The obtained temperature dependent of total volume of these attractive sites has a radius that is closely related with the capture radius for the formation of a di-vacancy that is used in continuum theory. The presented methodology can in principle also be applied to estimate the capture radius for pair formation of any type of point defects

  6. Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures

    CERN Document Server

    Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

    2013-01-01

    RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

  7. Material studies in the frame of CLIC Accelerating structures production conducted within the Mechanics program together with Metso Oy

    CERN Document Server

    Nurminen, Janne

    2012-01-01

    MeChanICs (Marie Curie Linking Industry to CERN) is an Industry to Academia Partnership and Pathways (IAPP) platform for precision manufacturing knowledge exchange bringing together five Finnish manufacturing companies with Helsinki Insitute of Physics (HIP) and CERN. The scientific objective of MeChanICs project is to contribute to the manufacturing RTD of CLIC enabling technologies. The focus is on the design, materials, machining, brazing and assembly of A CLIC accelerating structure. This study deals with the materials work package of the program and wants to explore the following items: 1) producing copper accelerating structures for CLIC from raw copper powder by near net shape hot isostatic pressing (HIP). 2) The feasibility to use HIP diffusion bonding of the accelerator structures as a function of surface quality and applied temperature and pressure. 3) Brazing for CLIC AS auxiliary systems, like water cooling or damping manifolds, to the disc stack by coating one of the brazing partners with an enab...

  8. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Directory of Open Access Journals (Sweden)

    Stella M Valenzuela

    Full Text Available The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  9. Unstable quantum oscillator with point interactions: Maverick resonances, antibound states and other surprises

    International Nuclear Information System (INIS)

    In the search for solvable or quasi-solvable models for resonances, we consider a one-dimensional potential, which is a harmonic oscillator for x′(x) and no interaction for x>0. After a study of this model, we add a mass jump at the origin and study the effect of the combination of the mass jump and the point potential. We obtain the behavior of resonances, bound and antibound states in terms of given parameters. In spite of the simplicity of the model, it shows quite interesting and unexpected features.

  10. Streched String with Self-Interaction at the Hagedorn Point: Spatial Sizes and Black Hole

    CERN Document Server

    Qian, Yachao

    2015-01-01

    We analyze the length, mass and spatial distribution of a discretized transverse string in $D_\\perp$ dimensions with fixed end-points near its Hagedorn temperature. We suggest that such a string may dominate the (holographic) Pomeron kinematics for dipole-dipole scattering at intermediate and small impact parameters. Attractive self-string interactions cause the transverse string size to contract away from its diffusive size, a mechanism reminiscent of the string-black-hole transmutation. The string shows sizable asymmetries in the transverse plane that translate to primordial azimuthal asymmetries in the stringy particle production in the Pomeron kinematics for current pp and pA collisions at collider energies.

  11. Synergetic effects of Mn and Si in the interaction with point defects in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    Bakaev, A., E-mail: abakaev@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Experimental Nuclear Physics, Institute of Physics, Nanotechnologies and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation); Terentyev, D. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); He, X. [China Institute of Atomic Energy, PO Box 275-51, 102413 Beijing (China); Van Neck, D. [Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2014-12-15

    The interaction of Mn, Si and Cr with a vacancy and self-interstitial defects in BCC Fe has been analyzed using ab initio calculations. While the interaction of the considered solute clusters with a single vacancy is linearly additive, there is a considerable synergetic effect in the case of self-interstitial atoms, found to bind strongly with Mn–Si pairs. The latter therefore act as deep trapping configurations for self-interstitials. At the same time, the presence of the point defects nearby weakly attractive Mn–Si pairs significantly enhances the solute–solute binding. The revealed effects are rationalized on the basis of charge density and local magnetic moment distributions.

  12. Interaction of a magnet and a point charge: Unrecognized internal electromagnetic momentum

    Science.gov (United States)

    Boyer, Timothy H.

    2015-05-01

    Whereas nonrelativistic mechanics always connects the total momentum of a system to the motion of the center of mass, relativistic systems, such as interacting electromagnetic charges, can have internal linear momentum in the absence of motion of the system's center of energy. This internal linear momentum of a system is related to the controversial concept of "hidden momentum." We suggest that the term "hidden momentum" be abandoned. Here, we use the relativistic conservation law for the center of energy to give an unambiguous definition of the "internal momentum of a system," and then we exhibit this internal momentum for the system of a magnet (modeled as a circular ring of moving charges) and a distant static point charge. The calculations provide clear illustrations of this system for three cases: (a) the moving charges of the magnet are assumed to continue in their unperturbed motion; (b) the moving charges of the magnet are free to accelerate but have no mutual interactions; and (c) the moving charges of the magnet are free to accelerate and also interact with each other. When the current-carrying charges of the magnet are allowed to interact, the magnet itself will contain internal electromagnetic linear momentum, something that has not been described clearly in the research and teaching literature.

  13. Interaction Energy Calculations of Edge Dislocation with Point Defects in FCC Cu

    International Nuclear Information System (INIS)

    Swelling has always been a limitation for long term operating reactors. The simple Bias model has done a good job in describing swelling in electron irradiation. In order to apply it to neutron irradiation, there's the key parameter named Bias Factor (Bd), which plays an important role in the model, has to be figured out. However, the Bds fitted from experiments are not consistent with those derived from elasticity theory. The major problem lies on the fact that analytical interactions based on elasticity theory are not valid around the dislocation core region. Hence a careful work about the interaction energy map is required in order to have numerical solution of Bd. In the present work, we apply large scale of atomistic calculations with EAM potential to get the interaction energy map between Point Defects (Vacancy and dumbbell SIAs along <100> directions) and dislocation in FCC Cu, as a demonstration of general FCC based material. General properties are checked in atomistic calculation results; Comparison has been made between the elasticity results and the atomistic results. The atomistic calculation of interaction maps show reasonable profiles. And they give better description around the dislocation core region. (author)

  14. Ion beam injected point defects in crystalline silicon: Migration, interaction, and trapping phenomena

    International Nuclear Information System (INIS)

    The recent work on the room temperature migration and trapping phenomena of ion beam generated point defects in crystalline Si is reviewed. It is shown that a small fraction (∼10-6) of the defects generated at the surface by a shallow implant is injected into the bulk. These defects undergo a long range trap-limited diffusion and interact with both impurities, dopants and preexisting defects along their path. In particular, these interactions result in dopant deactivation and/or partial annihilation of pre-existing vacancy-type defect markers. It is found that in highly pure, epitaxial Si layers, these effects extend to several microns from the surface, demonstrating a long range migration of point defects at room temperature. By a detailed analysis of the experimental evidences the authors have identified the Si self-interstitials as the major responsible for the observed phenomena. This allowed them to give a lower limit of 6 x 10-11 cm2/s for the room temperature diffusion coefficient of the Si self-interstitials. Room temperature trap-limited migration of vacancies is also detected as a broadening in the divacancy profile of as implanted samples. In this case the room temperature diffusion coefficient of vacancies has been found to be ≥3 x 10-12 cm2/s. These data are presented and their implications discussed

  15. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  16. A laser-heterodyne bunch length monitor for the SLC interaction point

    International Nuclear Information System (INIS)

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a 'laser wire', by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point

  17. A laser-heterodyne bunch length monitor for the SLC interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Kotseroglou, T.; Alley, R.; Jobe, K. [and others

    1997-05-01

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a `laser wire`, by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point.

  18. CLIC5 Stabilizes Membrane-Actin Filament Linkages at the Base of Hair Cell Stereocilia in a Molecular Complex with Radixin, Taperin, and Myosin VI

    OpenAIRE

    Salles, Felipe T.; Andrade, Leonardo R.; Tanda, Soichi; Grati, M’hamed; Plona, Kathleen L.; Gagnon, Leona H.; Johnson, Kenneth R.; Kachar, Bechara; Berryman, Mark A.

    2013-01-01

    Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Co...

  19. Electron-phonon interaction and nonlinear transport phenomena in solid Hg point-contacts

    International Nuclear Information System (INIS)

    At cryogenic temperatures the conductivity of Hg point-contacts was studied in both the superconducting and normal state. An original method of fabricating the Hg-based point-contacts directly in liquid 4He was proposed, which guaranteed creation of small-size high-purity ballistic contacts. The resistance of the contacts as well as the current-voltage characteristics along with the voltage dependence of their first and second derivatives were experimentally investigated at 1.5 K. We analyze such characteristics of the contacts as Josephson critical current, excess current, energy gap and the nonlinear part of conductivity caused by electron-phonon interaction (EPI). The point-contact EPI function gpc(ω) for Hg was reconstructed and integral parameters of EPI were calculated. The gpc(ω) was then used as an approximation to the phonon density of states for estimations of the thermodynamic characteristics in Hg. Finally we discuss the results of our calculations of non-linear conductivity caused by manifestation of the frequency dependence of the energy gap function in the elastic current component through the contact.

  20. Optimal Power System and Grid Interface Design Considerations for the CLICs Klystron Modulators

    CERN Document Server

    Marija, Jankovic; Jon, Clare; Pat, Wheeler; Davide, Aguglia

    2015-01-01

    The Compact Linear Collider (CLIC) is an electron-positron collider under study at CERN with the aim to explore the next generation of high precision/high energy particles physics. The CLIC’s drive beams will be accelerated by approximately 1300 klystrons, requiring highly efficient and controllable solid state capacitor discharge modulators. Capacitor charger specifications include the requirement to mask the pulsed effect of the load from the utility grid, ensure maximum power quality, control the derived DC voltage precisely (to maximize accuracy for the modulators being implemented), and achieve high efficiency and operability of the overall power system. This paper presents the work carried out on the power system interface for the CLIC facility. In particular it discusses the challenges on the utility interface and analysis of the grid interface converters with regards to required functionality, efficiency, and control methodologies.

  1. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  2. Wakefield and surface electromagnetic field optimisation of manifold damped accelerating structures for CLIC

    International Nuclear Information System (INIS)

    The main travelling wave linacs of the compact linear collider (CLIC) operate at a frequency of 11.9942 GHz with a phase advance per cell of 2π/3. In order to minimise the overall footprint of the accelerator, large accelerating gradients are sought. The present baseline design for the main linacs of CLIC demands an average electric field of 100 MV/m. To achieve this in practical cavities entails the dual challenges of minimising the potential for electrical breakdown and ensuring the beam excited wakefield is sufficiently suppressed. We present a design to meet both of these conditions, together with a description of the structure, CLICDDSA, expressively designed to experimentally test the ability of the structure to cope with high powers.

  3. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    CERN Document Server

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  4. Production of excited electrons at TESLA and CLIC based egamma colliders

    CERN Document Server

    Kirca, Z; Cakir, O

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron- photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions egamma yields egamma, egamma yields eZ and egamma yields vW. Excited electrons with masses up to about 90% of the available collider energy can be probed down to the coupling f = f prime = 0.05(0.1) at TESLA(CLIC) based egamma colliders. 22 Refs.

  5. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  6. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  7. Beam dynamics and wakefield suppression in interleaved damped and detuned structures for CLIC

    CERN Document Server

    D'Elia, A; Khan, V F; Jones, R M; Latina, A; Nesmiyan, I; Riddone, G

    2013-01-01

    Acceleration of multiple bunches of charged particles in the main linacs of the Compact Linear Collider (CLIC) with high accelerating fields provides two major challenges: firstly, to ensure the surface electromagnetic fields do not cause electrical breakdown and subsequent surface damage, and secondly, to ensure the beam-excited wakefields are sufficiently suppressed to avoid appreciable emittance dilution. In the baseline design for CLIC, heavy wakefield suppression is used (Q ~ 10) [1] and this ensures the beam quality is well-preserved [2]. Here we discuss an alternative means to suppress the wakefield which relies on strong detuning of the cell dipole frequencies, together with moderate damping, effected by manifolds which are slot-coupled to each accelerating cell. This damped and detuned wakefield suppression scheme is based on the methodology developed for the Japanese Linear Collider/Next Linear Collider (JLC/NLC) [3]. Here we track the multi-bunch beam down the complete collider, u...

  8. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.

  9. On-Line Dispersion Free Steering for the Main Linac of CLIC

    CERN Document Server

    Pfingstner, J

    2013-01-01

    For future linear colliders as well as for light sources, ground motion effects are a severe problem for the accelerator performance. After a few minutes, orbit feedback systems are not sufficient to mitigate all ground motion effects and additional long term methods will have to be deployed. In this paper, the long term ground motion effects in the main linac of the Compact Linear Collider (CLIC) are analysed via simulation studies. The primary growth of the projected emittance is identified to originate from chromatic dilutions due to dispersive beam orbits. To counter this effect, an on-line identification algorithm is applied to measure the dispersion parasitically. This dispersion estimate is used to correct the beam orbit with an iterative dispersion free steering algorithm. The presented results are not only of interest for the CLIC project, but for all linacs in which the dispersive orbit has to be corrected over time.

  10. Thermo-mechanical Analysis of the CLIC Post-Linac Energy Collimators

    CERN Document Server

    Resta-Lopez, J; Latina, A

    2012-01-01

    The post-linac energy collimation system of the Compact Linear Collider (CLIC) has been designed for passive protection of the Beam Delivery System (BDS) against miss-steered beams due to failure modes in the main linac. In this paper, a thermo-mechanical analysis of the CLIC energy collimators is presented. This study is based on simulations using the codes FLUKA and ANSYS when an entire bunch train hits the collimators. Different failure mode scenarios in the main linac are considered. The aim is to improve the collimator in order to make a reliable and robust design so that survives without damage the impact of a full bunch train in case of likely events generating energy errors.

  11. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  12. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  13. Power pulsing scheme for analog and digital electronics of the vertex detectors at CLIC

    CERN Document Server

    Blanchot, Georges

    2015-01-01

    The precision requirements of the vertex detector at CLIC impose strong limitations on the mass of such a detector (< 0.2% of a radiation length, Xo, per layer). To achieve such a low material budget, ultra-thin hybrid pixel detectors are foreseen, while the mass for cooling and services will be reduced by implementing a power pulsing scheme that takes advantage of the low duty cycle of the accelerator. The principal aim is to achieve significant power reduction without compromising the power integrity supplied to the front-end electronics. This report summarises the study of a power pulsing scheme to power the vertex barrel electronics of the future CLIC experiment. Its main goal is to describe in more detail what has been already presented in TWEPP conferences and other presentations. The report can therefore serve as an operator manual for future use and development of the system

  14. Laser Wire Scanner Basic Process and Perspectives for the CTF's and CLIC Machines

    CERN Document Server

    Lefèvre, T

    2002-01-01

    In a laser wire scanner, the basic idea is to replace the solid wire classically used in a standard wire scanner by a narrow laser beam. The basic process involved is the Thomson-Compton scattering process, where photons are scattered from the laser beam by the incoming electrons. By counting the number of scattered photons or degraded electrons as a function of laser position the bunch profile can be reconstructed. In this note the Compton scattering mechanism is first presented. In the framework of the CLIC project, a laser wire scanner (LWS) could be used as a non-interfering beam profile measurement both on the Drive Beam for a high current electron beam and on the Main Beam for very small electron beam sizes. A design for a LWS on the CTF2 and CTF3 machines is proposed and some considerations for the use of a LWS on the CLIC main beam are also mentioned.

  15. Status of a study of stabilization and fine positioning of CLIC quadrupoles to the nanometre level

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    Mechanical stability to the nanometre and below is required for the Compact Linear Collider (CLIC) quadrupoles to frequencies as low as 1 Hz. An active stabilization and positioning system based on very stiff piezo electric actuators and inertial reference masses is under study for the Main Beam Quadrupoles (MBQ). The stiff support was selected for robustness against direct forces and for the option of incrementally repositioning the magnet with nanometre resolution. The technical feasibility was demonstrated by a representative test mass being stabilized and repositioned to the required level in the vertical and lateral direction. Technical issues were identified and the development programme of the support, sensors, and controller was continued to increase the performance, integrate the system in the overall controller, adapt to the accelerator environment, and reduce costs. The improvements are implemented in models, test benches, and design of the first stabilized prototype CLIC magnet. The characterizati...

  16. Symmetry group of point transformations for the time-dependent Schroedinger equation: Harmonic interactions among nucleons

    International Nuclear Information System (INIS)

    We have used Lie's method of extended group to obtain explicit forms of the generators and the structure of the maximal symmetry group of point transformations of the time-dependent Schroedinger equation for motions of nucleons interacting with two-body harmonic potential. The generators of the symmetry group correspond to different states of motion of the system. The maximal symmetry group is found to be a semidirect product of an infinite parameter Abelian invariant subgroup and a proper subgroup. For Z protons and N neutrons, this proper subgroup is a Lie group with 1/2[9Z(Z-1)+9N(N-1)+40] generators. Different nuclear modes of excitations have been assigned to the different generators. In particular the giant resonance mode and other collective modes of motion are shown to be consequences of the symmetry of the system

  17. Limitations of interaction-point spot-size tuning at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.; Hendrickson, L.J.; Zimmermann, F.; Raimondi, P.

    1997-05-01

    At the Stanford Linear Collider (SLC), the interaction-point spot size is minimized by repeatedly correcting, for both beams, various low-order optical aberrations, such as dispersion, waist position or coupling. These corrections are performed about every 8 hours, by minimizing the IP spot size while exciting different orthogonal combinations of final-focus magnets. The spot size itself is determined by measuring the beam deflection angle as a function of the beam-beam separation. Additional information is derived from the energy loss due to beamstrahlung and from luminosity-related signals. In the 1996 SLC run, the typical corrections were so large as to imply a 20-40% average luminosity loss due to residual uncompensated or fluctuating tunable aberrations. In this paper, the authors explore the origin of these large tuning corrections and study possible mitigations for the next SLC run.

  18. Development of superconducting-sextuple magnet for chromaticity correction at interaction point on SuperKEKB

    International Nuclear Information System (INIS)

    In High Energy Accelerator Research Organization, a construction of SuperKEKB is in progress. In SuperKEKB, 16 sextupole magnets are aligned on 220m-straight-section of an interaction point to correct local chromaticity. These are designed with normal conducting magnets and it is planned to install them into SuperKEKB. On the other hand, superconducting magnet has advantages that it can generate independently many multipoles at same position and generate high gradient field. However, the superconducting magnet has several disadvantages, vibration due to a cryocooler, and time loss due to quench, etc. We are studying the superconducting sextupole magnet which fulfills specifications as practical device for future. Here we will report about scheme of superconducting sextupole magnets system. (author)

  19. The V0 detector is two disks of counters in both sides of the interaction point.

    CERN Multimedia

    Grossiord, Jean-Yves

    2006-01-01

    The V0 detector is two disks of counters in both sides of the interaction point. Here is the V0C disk to be fixed on the front face of the muon spectrometer absorber. It is made of 48 scintillating elements coupled to two wavelength fibre layers which emit and guide the light up to connrctors arounda case made of Carbon fibre plates. The light going out of connectors is collected by an optical fibre bundle and transmitted at 3 metres to photo-multipliers which convert light to electrical signal. The elements are set in the case following 2 small rings of 8 counters and 2 large rings of 16 counters grouped two by two. 32 channels of detection distributed around the LHC beam pipe constitute thus the detector

  20. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    International Nuclear Information System (INIS)

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point

  1. Implications of a Curved Tunnel for the Main Linac of CLIC

    CERN Document Server

    Latina, Andrea; Schulte, Daniel

    2006-01-01

    Preliminary studies of a linac that follows the earth curvature are presented for the CLIC main linac. The curvature of the tunnel is modeled in a realistic way by use of geometry changing elements. The emittance preservation is studied for a perfect machine as well as taking into account imperfections. Results for a curved linac are compared with those for a laser-straight machine.

  2. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    CERN Document Server

    Antoniou, F; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler characteristics.

  3. Nonlinear Optimization of CLIC DRS New Design with Variable Bends and High Field Wigglers

    CERN Document Server

    Ghasem, H.; Alabau-Gonzalvo, J.; Papadopoulou, S.; Papaphilippou, Y.

    2016-01-01

    The new design of CLIC damping rings is based on longitudinal variable bends and high field superconducting wiggler magnets. It provides an ultra-low horizontal normalised emittance of 412 nm-rad at 2.86 GeV. In this paper, nonlinear beam dynamics of the new design of the damping ring (DR) with trapezium field profile bending magnets have been investigated in detail. Effects of the misalignment errors have been studied in the closed orbit and dynamic aperture.

  4. The Event Display for CLIC: DD4hep Compatibility and Improvements

    CERN Document Server

    Quast, Thorben

    2015-01-01

    This document is a short summary of my contributions to the Event Display for the CLICdp Software group in the context of CERN’s Summer Student Programme 2015. After a brief outline of CLIC and the relevant software package, the project is motivated. The individual achievements and their technical realizations are explained rather qualitatively, as details are well documented directly in the source code.

  5. Estimation of the temperature dependent interaction between uncharged point defects in Si

    Directory of Open Access Journals (Sweden)

    Eiji Kamiyama

    2015-01-01

    Full Text Available A method is described to estimate the temperature dependent interaction between two uncharged point defects in Si based on DFT calculations. As an illustration, the formation of the uncharged di-vacancy V2 is discussed, based on the temperature dependent attractive field between both vacancies. For that purpose, all irreducible configurations of two uncharged vacancies are determined, each with their weight given by the number of equivalent configurations. Using a standard 216-atoms supercell, nineteen irreducible configurations of two vacancies are obtained. The binding energies of all these configurations are calculated. Each vacancy is surrounded by several attractive sites for another vacancy. The obtained temperature dependent of total volume of these attractive sites has a radius that is closely related with the capture radius for the formation of a di-vacancy that is used in continuum theory. The presented methodology can in principle also be applied to estimate the capture radius for pair formation of any type of point defects.

  6. Estimation of the temperature dependent interaction between uncharged point defects in Si

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); GlobalWafers Japan Co., Ltd., 30 Soya, Hadano, Kanagawa, 257-8566 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Ghent B-9000 (Belgium); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan)

    2015-01-15

    A method is described to estimate the temperature dependent interaction between two uncharged point defects in Si based on DFT calculations. As an illustration, the formation of the uncharged di-vacancy V{sub 2} is discussed, based on the temperature dependent attractive field between both vacancies. For that purpose, all irreducible configurations of two uncharged vacancies are determined, each with their weight given by the number of equivalent configurations. Using a standard 216-atoms supercell, nineteen irreducible configurations of two vacancies are obtained. The binding energies of all these configurations are calculated. Each vacancy is surrounded by several attractive sites for another vacancy. The obtained temperature dependent of total volume of these attractive sites has a radius that is closely related with the capture radius for the formation of a di-vacancy that is used in continuum theory. The presented methodology can in principle also be applied to estimate the capture radius for pair formation of any type of point defects.

  7. Solute/solvent interaction corrections account for non-ideal freezing point depression.

    Science.gov (United States)

    Zimmerman, R J; Chao, H; Fullerton, G D; Cameron, I L

    1993-02-01

    A new highly accurate curve-fitting technique for looking at freezing-point depression data was proposed by Fullerton et al. (Biochem. Cell Biol., in press). The method involve plotting mass solvent to mass solute ratio (Mw/M(s)) vs. 1/delta T (i.e. the inverse change in freezing point). A measured molecular weight and a solute/solvent interaction parameter (called I value) are inferred from the resultant linear plot. The accuracy of the molecular weight method was first demonstrated with the monomers of ethylene glycol, glycerol, propanol, mannitol, glucose and sucrose to show a mean molecular weight error of 0.02% with root mean square (RMS) error 0.9%. The RMS error (0.9%) is our best estimate of the molecular weight measurement accuracy for the method applied to a monomer. This error is consistent with the experimental precision (approximately 1%) which implies no systematic error. Non-ideality is described with a single constant, I. Polyethylene glycol (PEG) polymers of increasing length (vendor designation 200 to 10,000 Da) were analyzed to show monotonically increasing non-ideality (I values of 0.12 to 3.67) with increasing molecular weight. The measured molecular weights agreed with the end-point titration value for the three smallest polymers (where the number of polymeric units was less than or equal to 7). The method underestimates the vendor molecular weights for longer polymers. This disagreement is assigned to segmental motion (internal entropy) of longer, more flexible, PEG molecules. PMID:8482791

  8. Interaction of a Magnet and a Point Charge: Unrecognized Internal Electromagnetic Momentum

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    Whereas nonrelativistic mechanics always connects the total momentum of a system to the motion of the center of mass, relativistic systems, such as interacting electromagnetic charges, can have internal linear momentum in the absence of motion of the center of energy of the system. This internal linear momentum of the system is related to the controversial concept of "hidden momentum." We suggest that the term "hidden momentum" be abandoned. Here we use the relativistic conservation law for the center of energy to give an unambiguous definition of the "internal momentum of a system," and then we exhibit this internal momentum for the system of a magnet (modeled as a circular ring of moving charges) and a distant static point charge. The calculations provide clear illustrations of this system for three cases: a) the moving charges of the magnet are assumed to continue in their unperturbed motion, b) the moving charges of the magnet are free to accelerate but have no mutual interactions, and c) the moving charg...

  9. High performance electronics for alignment regulation on the CLIC 30GHz modules

    International Nuclear Information System (INIS)

    CERN is studying a linear collider (CLIC) to obtain electron-positron collisions with centre-of-mass energies in the TeV range. To demonstrate the feasibility of CLIC, a test facility (CTF2) is being constructed. CTF2 consists of 4 identical modules, each 1.4 m long module consists of 2 linac with a girder and a doublet or a triplet quadrupole. Girders are elements that support mechanically the cavities of the accelerator while the main objective of the quadrupole is to focus particle beams. The alignment system has 2 principal utilities. The first is to pre-align the elements to make the beam pass through the aperture and produce signals in beam position monitors. In respect to these signals the girders and the quadrupoles are moved for making the definitive alignment. The second utility is to maintain the elements in this position. The alignment control system of CTF2 must regulate the position of the girders and quadrupoles with a precision < 10 μm. In fact an accuracy of 1 μ has been obtained on CTF2. Thanks to its flexibility and its simplicity, the system is expected to adapt easily to CLIC even if it means to control modules that involve up to a maximum of 384 motors and 896 sensors

  10. Evaluation of Components for the High Precision Inductive Adder for the CLIC Damping Rings

    CERN Document Server

    Holma, J

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. In addition to semiconductors working in their saturated region, semiconductors working in their linear region are needed for applying analogue modulation techniques. Simulat...

  11. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  12. X-band crab cavities for the CLIC beam delivery system

    CERN Document Server

    Burt, G; Dexter, A C; Abram, T; Dolgashev, V; Tantawi, S; Jones, R M

    2009-01-01

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC.

  13. En route vers la nano stabilisation de CLIC faisceau principale et focalisation finale

    CERN Document Server

    Artoos, K; Guinchard, M; Hauviller, Claude; Lackner, F; CERN. Geneva. TS Department

    2008-01-01

    Pour atteindre la luminosité voulue de CLIC, la taille transversale du faisceau doit être de l?ordre du nanomètre. Ceci nécessite une stabilité vibratoire des quadripôles du faisceau principal de 1 nm et même 0.1 nm pour les doublets de la focalisation finale. La nano technologie et la nano stabilisation sont des activités qui évoluent rapidement dans l?industrie et centres de recherche pour des applications très variées comme l?électronique, l?optique, la chimie voire la médecine. Cette présentation décrit les avancées techniques nécessaires pour atteindre l?objectif de CLIC et les projets et collaborations R&D prévus pour démontrer la faisabilité de la nano stabilisation de CLIC en 2010.

  14. Klystron Modulators for the 3 TeV CLIC Scheme An Overview

    CERN Document Server

    Pearce, P

    2001-01-01

    The CLIC (Compact Linear Collider) design is based on the Two-Beam technology being developed at CERN. The Drive Beam accelerator will have about 200 multi-beam klystron-modulator (MBK-M) RF power sources for each drive beam linac. These multi-beam klystrons (MBKs) should provide up to 50 MW peak power at 937 MHz, with a 100 ms pulse width and operating at 100 Hz repetition frequency. The CLIC drive beam injector will also use a number of these same MBK-Ms operating at slightly lower power levels. A 0.5 MW peak power, 468 MHz klystron with a bandwidth of around 150 MHz will be required for the sub-harmonic buncher in each drive beam injector chain as well. The Main Beams injector complex is required to deliver e+ and e- beams at 9 GeV via the transfer lines to the CLIC Main Beam accelerator. The present injector complex design uses a series of linacs to accelerate the electron and positron beams coming from RF guns working at 1.5 GHz up to an energy of 1.98 GeV before they are put into damping rings. Each of ...

  15. Measurement of the H$\\rightarrow$WW$^*$ Branching Ratio at 1.4TeV using the semileptonic final state at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)762723; Watson, Nigel

    2016-01-01

    This note summarises a study to evaluate the potential to measure the H$\\rightarrow$WW$^*$ branching fraction at CLIC, 1.4TeV centre-of-mass energy, with the CLIC_ILD detector, using the WW$\\rightarrow$qql$\

  16. Expression, purification, crystallization and preliminary X-ray diffraction analysis of chloride intracellular channel 2 (CLIC2)

    International Nuclear Information System (INIS)

    Chloride intracellular channel 2 (CLIC2) belongs to a family of intracellular chloride-channel proteins that can exist in a soluble form. The expression, purification and crystallization in two different crystal forms of human CLIC2 is reported. The chloride intracellular channel (CLIC) family of proteins are unusual in that they can exist in either an integral membrane-channel form or a soluble form. Here, the expression, purification, crystallization and preliminary diffraction analysis of CLIC2, one of the least-studied members of this family, are reported. Human CLIC2 was crystallized in two different forms, both in the presence of reduced glutathione and both of which diffracted to better than 1.9 Å resolution. Crystal form A displayed P212121 symmetry, with unit-cell parameters a = 44.0, b = 74.7, c = 79.8 Å. Crystal form B displayed P21 symmetry, with unit-cell parameters a = 36.0, b = 66.9, c = 44.1 Å. Structure determination will shed more light on the structure and function of this enigmatic family of proteins

  17. rp-Process weak-interaction mediated rates of waiting-point nuclei

    CERN Document Server

    Nabi, Jameel-Un

    2012-01-01

    Electron capture and positron decay rates are calculated for neutron-deficient Kr and Sr waiting point nuclei in stellar matter. The calculation is performed within the framework of pn-QRPA model for rp-process conditions. Fine tuning of particle-particle, particle-hole interaction parameters and a proper choice of the deformation parameter resulted in an accurate reproduction of the measured half-lives. The same model parameters were used to calculate stellar rates. Inclusion of measured Gamow-Teller strength distributions finally led to a reliable calculation of weak rates that reproduced the measured half-lives well under limiting conditions. For the rp-process conditions, electron capture and positron decay rates on $^{72}$Kr and $^{76}$Sr are of comparable magnitude whereas electron capture rates on $^{78}$Sr and $^{74}$Kr are 1--2 orders of magnitude bigger than the corresponding positron decay rates. The pn-QRPA calculated electron capture rates on $^{74}$Kr are bigger than previously calculated. The p...

  18. Transition metal solute interactions with point defects in fcc iron from first principles

    Science.gov (United States)

    Hepburn, D. J.; MacLeod, E.; Ackland, G. J.

    2015-07-01

    We present a comprehensive set of first-principles electronic structure calculations of the properties of substitutional transition metal solutes and point defects in austenite (face-centered cubic, paramagnetic Fe). Clear trends were observed in these quantities across the transition metal series, with solute-defect interactions strongly related to atomic size, and only weakly related to more subtle details of magnetic or electronic structure. Oversized solutes act as strong traps for both vacancy and self-interstitial defects and as nucleation sites for the development of protovoids and small self-interstitial loops. The consequent reduction in defect mobility and net defect concentrations in the matrix explains the observation of reduced swelling and radiation-induced segregation. Our analysis of vacancy-mediated solute diffusion demonstrates that below about 400 K Ni and Co will be dragged by vacancies and their concentrations should be enhanced at defect sinks. Cr and Cu show opposite behavior and are depleted at defect sinks. The stable configuration of some oversized solutes is neither interstitial nor substitutional; rather they occupy two adjacent lattice sites. The diffusion of these solutes proceeds by a novel mechanism, which has important implications for the nucleation and growth of complex oxide nanoparticles contained in oxide dispersion strengthened steels. Interstitial-mediated solute diffusion is negligible for all except the magnetic solutes (Cr, Mn, Co, and Ni). Our results are consistent across several antiferromagnetic states and surprising qualitative similarities with ferromagnetic (body-centered cubic) Fe were observed; this implies that our conclusions will be valid for paramagnetic iron.

  19. An interactive mapping tool for visualizing lacunarity of laser scanned point clouds

    Science.gov (United States)

    Kania, Adam; Székely, Balázs

    2016-04-01

    Lacunarity, a measure of the spatial distribution of the empty space in a certain model or real space over large spatial scales, is found to be a useful descriptive quantity in many fields using imagery, including, among others, geology, dentistry, neurology. Its application in ecology was suggested more than 20 years ago. The main problem of its application was the lack of appropriate high resolution data. Nowadays, full-waveform laser scanning, also known as FWF LiDAR, provides the tool for mapping the vegetation in unprecedented details and accuracy. Consequently, the lacunarity concept can be revitalized, in order to study the structure of the vegetation in this sense as well. Calculation of lacunarity, even if it is done in two dimensions (2D), is still has its problems: on one hand it is a number-crunching procedure, on the other hand, it produces 4D results: at each 3D point it returns a set of data that are function of scale. These data sets are difficult to visualize, to evaluate, and to compare. In order to solve this problem, an interactive mapping tool has been conceptualized that is designed to manipulate and visualize the data, lets the user set parameters for best visualization or comparison results. The system is able to load large amounts of data, visualize them as lacunarity curves, or map view as horizontal slices or in 3D point clouds coloured according to the user's choice. Lacunarity maps are presented as a series of (usually) horizontal profiles, e.g. rasters, which cells contain color-mapped values of selected lacunarity of the point cloud. As lacunarity is usually analysed in a series of successive windows sizes, the tool can show a series of rasters with sequentially animated lacunarity maps calculated for various window sizes. A very fast switching of colour schemes is possible to facilitate rapid visual feedback to better understand underlying data patterns exposed by lacunarity functions. In the comparison mode, two sites (or two areas

  20. Physics potential for the measurement of σ(Hνν{sup -bar})×BR(H→μ{sup +}μ{sup -}) at the 1.4 TeV CLIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Milutinović-Dumbelović, G., E-mail: gordanamd@vinca.rs; Božović-Jelisavčić, I. [Vinca Institute of Nuclear Sciences, University of Belgrade, Mihajla Petrovića Alasa 12-14, 11001, Belgrade (Serbia); Grefe, C. [Universität Bonn, 53012, Bonn (Germany); CERN, 1211, Geneva 23 (Switzerland); Kačarević, G.; Lukić, S.; Pandurović, M. [Vinca Institute of Nuclear Sciences, University of Belgrade, Mihajla Petrovića Alasa 12-14, 11001, Belgrade (Serbia); Roloff, P. [CERN, 1211, Geneva 23 (Switzerland); Smiljanić, I. [Vinca Institute of Nuclear Sciences, University of Belgrade, Mihajla Petrovića Alasa 12-14, 11001, Belgrade (Serbia)

    2015-10-30

    The future compact linear collider (CLIC) offers a possibility for a rich precision physics programme, in particular in the Higgs sector through the energy staging. This is the first paper addressing the measurement of the standard model Higgs boson decay into two muons at 1.4 TeV CLIC. With respect to similar studies at future linear colliders, this paper includes several novel contributions to the statistical uncertainty of the measurement. The latter includes the equivalent photon approximation employed to describe e{sup +}e{sup -} and eγ interactions whenever the virtuality of the mediated photon is smaller than 4 GeV and realistic forward electron tagging based on energy deposition maps in the forward calorimeters, as well as several processes with the Beamstrahlung photons that results in irreducible contribution to the signal. In addition, coincidence of the Bhabha scattering with the signal and background processes is considered, altering the signal selection efficiency. The study is performed using a fully simulated CLIC-ILD detector model. It is shown that the branching ratio for the Higgs decay into a pair of muons BR(H→μ{sup +}μ{sup -}) times the Higgs production cross-section in WW-fusion σ(Hνν{sup -bar}) can be measured with 38 % statistical accuracy at √s=1.4 TeV, assuming an integrated luminosity of 1.5 ab{sup -1} with unpolarised beams. If 80 % electron beam polarisation is considered, the statistical uncertainty of the measurement is reduced to 25 %. Systematic uncertainties are negligible in comparison to the statistical uncertainty.

  1. Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5

    OpenAIRE

    Seco, Celia Zazo; Oonk, Anne MM; Domínguez-Ruiz, María; Draaisma, Jos MT; Gandía, Marta; Oostrik, Jaap; Neveling, Kornelia; Kunst, Henricus PM; Hoefsloot, Lies H.; del Castillo, Ignacio; Pennings, Ronald JE; Kremer, Hannie; Admiraal, Ronald JC; Schraders, Margit

    2014-01-01

    In a consanguineous Turkish family diagnosed with autosomal recessive nonsyndromic hearing impairment (arNSHI), a homozygous region of 47.4 Mb was shared by the two affected siblings on chromosome 6p21.1-q15. This region contains 247 genes including the known deafness gene MYO6. No pathogenic variants were found in MYO6, neither with sequence analysis of the coding region and splice sites nor with mRNA analysis. Subsequent candidate gene evaluation revealed CLIC5 as an excellent candidate gen...

  2. Production of excited electrons at TESLA and CLIC based $e\\gamma$ colliders

    CERN Document Server

    Aydin, Z Z; Kirca, Z

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron-photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions e gamma --> e gamma, e gamma --> eZ and e gamma --> nu W. Excited electrons can be discovered with the masses up to about 90% of the available collider energy.

  3. A Search for Leptophilic Vector Boson Z_l at CLIC by Using Neural Networks

    CERN Document Server

    Akkoyun, S

    2012-01-01

    In this work, the possible dynamics associated with leptophilic Z_l boson at CLIC (Compact Linear Collider) have been investigated by using artificial neural networks (ANNs). These hypotetic massive boson Z_l have been shown through the process e+e- -> M+M-. Furthermore, the invariant mass distributions for final muons have been consistently predicted by using ANN. For these highly non-linear data, we have constructed consistent empirical physical formulas (EPFs) by appropriate feed- forward ANN. These ANN-EPFs can be used to derive further physical functions which could be relevant to studying Z_l.

  4. X-Band Crab Cavities for the CLIC Beam Delivery System

    International Nuclear Information System (INIS)

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC. Design of a crab cavity for CLIC is underway at the Cockcroft Institute in collaboration with SLAC. This effort draws on a large degree of synergy with the ILC crab cavity developed at the Cockcroft Institute and other deflecting structure development at SLAC. A study of phase and amplitude variations in the cavity suggests that the tolerances are very tight and require a 'beyond state of the art' LLRF control system. A study of cavity geometry and its effect on the cavity fields has been performed using Microwave studio. This study has suggested that for our cavity an iris radius between 4-5 mm is optimum with an iris thickness of 2-3 mm based on group velocity and peak fields. A study of the cavity wakefields show that the single bunch wakes are unlikely to be a problem but the short bunch spacing may cause the multi-bunch wakefields to be an issue. This will require some of the modes to be damped strongly so that the wake is damped significantly before any following bunch arrives. Various methods of damping have been investigated and suggest that

  5. Feed Forward Orbit Correction in the CLIC Ring to Main LINAC Transfer lines

    CERN Document Server

    Apsimon, R; Schulte, D; Uythoven, J

    2014-01-01

    The emittance growth in the betatron collimation system of the 27 km long transfer lines between the CLIC damping rings and the main LINAC depends strongly on the transverse orbit jitter. The resulting stability requirements of the damping ring extraction elements seem extremely difficult to achieve. Position and angle feed forward systems in these long transfer lines bring the specified parameters of the extraction elements within reach. The designs of the optics and feed forward hardware are presented together with tracking simulations of the systems.

  6. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  7. X-Band Crab Cavities for the CLIC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.K.; Dexter, A.C.; Abram, T.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Dolgashev, V.; Tantawi, S.; /SLAC; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.

    2011-11-22

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC. Design of a crab cavity for CLIC is underway at the Cockcroft Institute in collaboration with SLAC. This effort draws on a large degree of synergy with the ILC crab cavity developed at the Cockcroft Institute and other deflecting structure development at SLAC. A study of phase and amplitude variations in the cavity suggests that the tolerances are very tight and require a 'beyond state of the art' LLRF control system. A study of cavity geometry and its effect on the cavity fields has been performed using Microwave studio. This study has suggested that for our cavity an iris radius between 4-5 mm is optimum with an iris thickness of 2-3 mm based on group velocity and peak fields. A study of the cavity wakefields show that the single bunch wakes are unlikely to be a problem but the short bunch spacing may cause the multi-bunch wakefields to be an issue. This will require some of the modes to be damped strongly so that the wake is damped significantly before any following bunch arrives. Various methods of damping have been investigated and

  8. Z′ Resonance and Associated Zh Production at Future Higgs Boson Factory: ILC and CLIC

    OpenAIRE

    A. Gutiérrez-Rodríguez; Hernández-Ruíz, M. A.

    2015-01-01

    We study the prospects of the B-L model with an additional $Z'$ boson to be a Higgs boson factory at high-energy and high-luminosity linear electron positron colliders, such as the ILC and CLIC, through the Higgs-strahlung process $e^{+}e^{-}\\rightarrow (Z, Z') \\to Zh$, including both the resonant and non-resonant effects. We evaluate the total cross section of $Zh$ and we calculate the total number of events for integrated luminosities of 500-2000\\hspace{0.8mm}$fb^{-1}$ and center of mass en...

  9. Simulation of Phase Stability at the Flat Top of the CLIC Drive Beam

    CERN Document Server

    Gerbershagen, A; Burrows, P

    2011-01-01

    The drive beam phase stability is one of the critical issues of the Compact Linear Collider (CLIC). In this paper the generation and propagation of drive beam phase errors is studied for effects that vary during the drive beam pulse. This includes the influence of drive beam current and phase errors as well as of drive beam accelerator RF phase and amplitude errors on the drive beam phase after the compressor chicanes and the analysis of the propagation of these errors through the drive beam combination scheme. The impact of the imperfections on the main beam is studied including the possible correction with help of a feedforward system.

  10. Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Hansen, Michael Rygaard; Ballebye, Morten

    2010-01-01

    This paper describes the implementation of an interactive real-time dynamic simulation model of a hydraulic crane. The user input to the model is given continuously via joystick and output is presented continuously in a 3D animation. Using this simulation model, a tool point control scheme is...... developed for the specific crane, considering the saturation phenomena of the system and practical implementation....

  11. Study of point defects at low concentrations by internal friction measurement of their interaction with dislocations

    International Nuclear Information System (INIS)

    Different internal friction theories based on the presence of point defects at dislocations are compared with experimental results in irradiated metals and their conditions of validity are discussed. Then the experimental results obtained in irradiated copper on the creation of point defects at dislocations and subsequent annealing behaviour are compared with several theoretical models

  12. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    Science.gov (United States)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  13. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function.

    Science.gov (United States)

    Gagnon, Leona H; Longo-Guess, Chantal M; Berryman, Mark; Shin, Jung-Bum; Saylor, Katherine W; Yu, Heping; Gillespie, Peter G; Johnson, Kenneth R

    2006-10-01

    Although CLIC5 is a member of the chloride intracellular channel protein family, its association with actin-based cytoskeletal structures suggests that it may play an important role in their assembly or maintenance. Mice homozygous for a new spontaneous recessive mutation of the Clic5 gene, named jitterbug (jbg), exhibit impaired hearing and vestibular dysfunction. The jbg mutation is a 97 bp intragenic deletion that causes skipping of exon 5, which creates a translational frame shift and premature stop codon. Western blot and immunohistochemistry results confirmed the predicted absence of CLIC5 protein in tissues of jbg/jbg mutant mice. Histological analysis of mutant inner ears revealed dysmorphic stereocilia and progressive hair cell degeneration. In wild-type mice, CLIC5-specific immunofluorescence was detected in stereocilia of both cochlear and vestibular hair cells and also along the apical surface of Kolliker's organ during cochlear development. Refined immunolocalization in rat and chicken vestibular hair cells showed that CLIC5 is limited to the basal region of the hair bundle, similar to the known location of radixin. Radixin immunostaining appeared reduced in hair bundles of jbg mutant mice. By mass spectrometry and immunoblotting, CLIC5 was shown to be expressed at high levels in stereocilia of the chicken utricle, in an approximate 1:1 molar ratio with radixin. These results suggest that CLIC5 associates with radixin in hair cell stereocilia and may help form or stabilize connections between the plasma membrane and the filamentous actin core. PMID:17021174

  14. Three-phase three-level grid interactive inverter with fuzzy logic based maximum power point tracking controller

    International Nuclear Information System (INIS)

    Highlights: ► We propose a three phase three-level NPC inverter for grid interactive PV systems. ► We design fuzzy logic based maximum power point tracking algorithm. ► The proposed algorithm is robust with respect to parameter variations of PV system. ► THD level of the inverter current is in the limits of international standards. ► Total system efficiency is measured as 93.12%. - Abstract: In this study, three-phase single stage grid interactive inverter with maximum power point tracking capability is proposed. The proposed system consists of three-level neutral point clamped inverter, LCL output filter, line frequency transformer, PI current regulator and fuzzy logic based maximum power point tracking algorithm. Rate of change of photovoltaic power and voltage are defined as input variables, and the change in reference current is defined as output variable for the fuzzy logic controller. The proposed maximum power point tracking algorithm is robust with respect to parameter variations of photovoltaic system with adaptive feature of fuzzy logic controller. Maximum power point tracking algorithm determines the inverter current reference depending on the system conditions such as irradiation level and temperature, and PI regulator shapes the inverter output current. Two capacitors’ voltages of neutral point clamped inverter are also balanced. Simulation and experimental results show that the proposed inverter system has fast transient response and can track the maximum power point of PV system even if atmospheric condition changes rapidly. Also, the inverter output current is in sinusoidal waveform and in phase with line frequency and phase. In addition, total harmonic distortion level of the inverter output current is in the limits of international standards (<5%) and efficiencies of maximum power point tracking algorithm and total system are measured as 98.78% and 93.12%, respectively

  15. Using the Userʼs Point of View for Interaction on Mobile Devices

    OpenAIRE

    Francone, Jérémie; Nigay, Laurence

    2011-01-01

    We study interaction modalities for mobile devices (smartphones and tablets) that rely on a camera-based head tracking. This technique defines new possibilities for input and output interaction. For output, by computing the position of the device according to the user's head, it is for example possible to realistically control the viewpoint on a 3D scene (Head-Coupled Perspective, HCP). This technique improves the output interaction bandwidth by enhancing the depth perception and by allowing ...

  16. Influence of Strain and Spin-Orbit Interaction in a Cylindrical Quantum Point

    Directory of Open Access Journals (Sweden)

    Silvio José Prado

    2015-05-01

    Full Text Available In this work study how the strain and spin-orbit Rashba interaction type affect the energy levels of the conduction band in a cylindrical quantum dot, using the 2x2 method k.p. The results show that the spin-orbit interaction strongly influences the energy levels of lifting the degeneracy even in zero magnetic field, while the strain compressing the levels enhance the Rashba interaction effects. In this context, the intraband optic absorption becomes a useful tool to study the effects of spin-orbit interaction and the strain on the electron energy levels.

  17. Preliminary Design of a Bunching System for the CLIC Polarized Electron Source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng

    2009-10-30

    Major parameters of the CLIC and ILC electron sources are given in Table I. It is shown that the CLIC source needs to provide 312 15-ps-long 2-GHz microbunches. There are two approaches to achieve the time structure [2]: one is to develop a 2-GHz optical pulse train, and the other to develop a 156-ns-long CW optical pulse and use an RF bunching system to generate 312 2-GHz microbunches. The former scheme may ease the RF bunching system but still need it to bunch 100-ps of microbunch down to 15-ps level. Otherwise, a huge amount of energy spread is accumulated when the beam is accelerated through downstream 2-GHz accelerator. In addition, in the former scheme, the space charge is high and surface charge is not yet proven in the parameter regime and 2-GHz mode locked laser is challenging. The latter scheme needs a high-efficiency bunching system to generate 312 15-ps microbunches with 2-GHz repetition rate but it has some notable advantages: a 156-ns CW laser technique is matured, and the charge limit behavior in the scheme is better characterized than that in the former case, as listed in the table. This note presents a design and modeling of the bunching system for the latter scheme to convert a 156-ns CW pulse to 312 15-ps long 2-GHz microbunches.

  18. Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications

    CERN Document Server

    Oeftiger, Adrian

    2011-01-01

    Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...

  19. A Study of the Beam Physics in the CLIC Drive Beam Decelerator

    CERN Document Server

    Adli, Erik; Stapnes, Steinar

    2009-01-01

    CLIC is a study for a Multi-TeV e+e- linear collider, in which the rf power for the main linacs is extracted from 100 ampere electron drive beams, by the use of specially designed power extraction structures. Up to 90% of the beam energy is extracted from the drive beams along one kilometer long decelerator sectors, rendering the beam transport challenging. We have identified two major challenges for robust beam transport: the significant transverse wakes in the power extraction structures, and the large energy spread induced by the power extraction process. By beam dynamics studies we have qualified power extraction structure designs, leading to the present CLIC baseline structure in which the transverse wakes are sufficiently mitigated. We have further shown that the beam energy spread induced by the deceleration implies that standard 1-to-1 correction might not ensure satisfactory drive beam transport. As alternative, we propose a decelerator orbit correction scheme based on dispersion-free steering and ex...

  20. Studies on high-precision machining and assembly of CLIC RF structures

    CERN Document Server

    Huopana, J; Riddone, G; Österberg, K

    2010-01-01

    The Compact Linear Collider (CLIC) is currently under development at CERN as a potential multi-TeV e+e– collider. The manufacturing and assembly tolerances for the required RF components are essential for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is sensitive to mechanical errors in the shape and the alignment of the accelerating cavity. The current tolerances are in the micron range. This raises challenges in the field of mechanical design and demands special manufacturing technologies and processes. Currently the mechanical design of the accelerating structures is based on a disk design. Alternatively, it is possible to create the accelerating assembly from quadrants, which has the potential to be favoured for the mass production due to simplicity and cost. In this case, the functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. This paper focuses on the development work done in design and sim...

  1. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  2. Initial measurements on a prototype inductive adder for the CLIC kicker systems

    CERN Document Server

    Holma, Janne

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. To achieve ultra-flat pulses with a fast rise time the output impedance of the inductive adder needs to be well matched to the system impedance. The parasitic circuit elements of the inductive adder have a significant effect upon the output impedance and these values are very difficult to calculate accurately analytically. To predict these paramet...

  3. Modelling of Parasitic Inductances of a High Precision Inductive Adder for CLIC

    CERN Document Server

    Holma, J; Ovaska, S J

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flat-top of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. However, the output impedance of the inductive adder needs to be well matched to the system impedance. The primary leakage inductance, which cannot be computed accurately analytically, has a significant effect upon the output impedance of the inductive adder. This paper presents predictions, obtained by modelling the 3D geometry of the adder struc...

  4. Integration of the PHIN RF Gun into the CLIC Test Facility

    CERN Document Server

    Döbert, Steffen

    2006-01-01

    CERN is a collaborator within the European PHIN project, a joint research activity for Photo injectors within the CARE program. A deliverable of this project is an rf Gun equipped with high quantum efficiency Cs2Te cathodes and a laser to produce the nominal beam for the CLIC Test Facility (CTF3). The nominal beam for CTF3 has an average current of 3.5 A, 1.5 GHz bunch repetition frequency and a pulse length of 1.5 ìs (2332 bunches) with quite tight stability requirements. In addition a phase shift of 180 deg is needed after each train of 140 ns for the special CLIC combination scheme. This rf Gun will be tested at CERN in fall 2006 and shall be integrated as a new injector into the CTF3 linac, replacing the existing injector consisting of a thermionic gun and a subharmonic bunching system. The paper studies the optimal integration into the machine trying to optimize transverse and longitudinal phase space of the beam while respecting the numerous constraints of the existing accelerator. The presented scheme...

  5. CLIC Main Linac Beam-Loading Compensation by Drive Beam Phase Modulation

    CERN Document Server

    Corsini, R; Syratchev, I V

    1999-01-01

    The CLIC final focus momentum acceptance of ± 0.5 % limits the bunch-to-bunch energy variation in the main beam to less than ± 0.1 %, since the estimated single-bunch contribution is ± 0.4 %. On the other hand, a relatively high beam-loading of the main accelerating structures (about 16 %) is unavoidable in order to optimize the RF-to-beam efficiency. Therefore, a compensation method is needed to reduce the resulting bunch-to-bunch energy spread of the main beam. Up to now, it has been planned to obtain the RF pulse shape needed for compensation by means of a charge ramp in the drive beam pulse. On the other hand, the use of constant-current drive beam pulses would make the design and operation of the drive beam injector considerably simpler. In this paper we present a possible solution adapted to the CLIC two-beam scheme with constant-current pulses, based on phase modulation of the drive beam bunches.

  6. A CLIC Damping Wiggler Prototype at ANKA: Commissioning and Preparations for a Beam Dynamics Experimental Program

    CERN Document Server

    Bernhard, Axel; Casalbuoni, Sara; Ferracin, Paolo; Garcia Fajardo, Laura; Gerstl, Stefan; Gethmann, Julian; Grau, Andreas; Huttel, Erhard; Khrushchev, Sergey; Mezentsev, Nikolai; Müller, Anke-Susanne; Papaphilippou, Yannis; Saez de Jauregui, David; Schmickler, Hermann; Schoerling, Daniel; Shkaruba, Vitaliy; Smale, Nigel; Tsukanov, Valery; Zisopoulos, Panagiotis; Zolotarev, Konstantin

    2016-01-01

    In a collaboration between CERN, BINP and KIT a prototype of a superconducting damping wiggler for the CLIC damping rings has been installed at the ANKA synchrotron light source. On the one hand, the foreseen experimental program aims at validating the technical design of the wiggler, particularly the conduction cooling concept applied in its cryostat design, in a long-term study. On the other hand, the wiggler's influence on the beam dynamics particularly in the presence of collective effects is planned to be investigated. ANKA's low-alpha short-bunch operation mode will serve as a model system for these studies on collective effects. To simulate these effects and to make verifiable predictions an accurate model of the ANKA storage ring in low-alpha mode, including the insertion devices is under parallel development. This contribution reports on the first operational experience with the CLIC damping wiggler prototype in the ANKA storage ring and steps towards the planned advanced experimental program with th...

  7. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  8. CLIC a Two-Beam Multi-TeV $e\\pm$ Linear Collider

    CERN Document Server

    Delahaye, J P; Assmann, R W; Becker, F; Bossart, Rudolf; Braun, H; Burkhardt, H; Carron, G; Coosemans, Williame; Corsini, R; D'Amico, T E; Döbert, Steffen; Fartoukh, Stéphane David; Ferrari, A; Geschonke, Günther; Godot, J C; Groening, L; Guignard, Gilbert; Hutchins, S; Jeanneret, J B; Jensen, E; Jowett, John M; Kamitani, T; Millich, Antonio; Pearce, P; Perriollat, F; Pittin, R; Potier, J P; Riche, A; Rinolfi, Louis; Risselada, Thys; Royer, P; Ruggiero, F; Schulte, Daniel; Suberlucq, Guy; Syratchev, I V; Thorndahl, L; Trautner, H; Verdier, A; Wuensch, Walter; Zhou, F; Zimmermann, Frank; Napoly, O

    2000-01-01

    The CLIC study of a high-energy (0.5 - 5 TeV), high-luminosity (1034 - 1035 cm-2 sec-1) e± linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structures operating at high accelerating fields (150 MV/m) significantly reduces the length and, in consequence, the cost of the linac. Using parameters derived from general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost-effective and efficient drive beam generation scheme for RF power production by the so-called "Two-Beam Acceleration" method is described. It uses a thermionic gun and a fully-loaded normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches, and RF multiplication by funnelling in compressor rings to produce the desired bunch structure. Recent 30 GHz hardware developments and CLIC Test Facility (CTF) results are described.

  9. Prospects for the measurement of the Higgs Yukawa couplings to b and c quarks, and muons at CLIC

    Czech Academy of Sciences Publication Activity Database

    Grefe, C.; Laštovička, Tomáš; Strube, J.

    2013-01-01

    Roč. 73, č. 2 (2013), s. 1-7. ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : Higgs * branching * ratio * Yukawa * couplings * quarks * muons * CLIC * inear collider Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.436, year: 2013

  10. Interactions between hairy rod anionic conjugated polyelectrolytes and nonionic alkyloxyethylene surfactants in aqueous solution: Observations from cloud point behaviour

    OpenAIRE

    Fonseca, Sofia M.; Eusébio, M. Ermelinda; Castro, Ricardo; Burrows, Hugh D.; Tapia, Maria José; Olsson, Ulf

    2007-01-01

    The effect of three anionic, hairy-rod fluorene based conjugated polyelectrolytes on the cloud points of the alkyloxyethylene surfactants C10E3, C12E4, C12E5, and C12E6 has been studied in aqueous solution. Although the association behaviour of these rigid polymers with surfactants is different from that of more flexible polyelectrolytes, both types of polymers are seen to increase the cloud points, probably as a consequence of associative interactions. The possible importance of Coulombic in...

  11. No Regularity Singularities Exist at Points of General Relativistic Shock Wave Interaction between Shocks from Different Characteristic Families

    CERN Document Server

    Reintjes, Moritz

    2015-01-01

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from $C^{0,1}$ to $C^{1,1}$ in a neighborhood of points of shock wave collision in General Relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier RSPA-publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to $C^{1,1}$, cannot exist. Thus, our result implies that regularity singularities, (a type of mild singularity introduced in our RSPA-paper), do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension o...

  12. The Θ points of interacting self-avoiding walks and rings on a 2D square lattice

    International Nuclear Information System (INIS)

    We propose an order parameter to locate the Θ points of interacting self-avoiding walks (ISAWs) and self-avoiding rings (SARs) on a two dimensional square lattice. Using exact enumeration results for ISAWs of finite size we find that the order parameter as a function of temperature shows a discontinuous jump at the transition temperature. The computed transition temperature fluctuates with the size of the walk and appears to converge well to the Θ point as the size increases. The value for the Θ point of the linear homopolymer phase transition obtained from our method agrees with recent high precision Monte Carlo estimates. We tested the reliability of our method for longer walk lengths by using the density of states obtained from the recently proposed flat energy histogram method. The Θ point is also computed for SARs on a square lattice using exact enumeration results available in the literature. Using two other independent methods, namely the partition function zeros on the complex temperature plane and the inflection point of microcanonical entropy, the Θ point of an SAR is computed and is found to be in agreement with the result obtained with the proposed order parameter

  13. Point-Like Interactions in String Theory Induced by 2-D Topological Gravity

    OpenAIRE

    Qiu, Zongan

    1992-01-01

    We consider a string theory with two types of strings with geometric interaction. We show that the theory contains strings with constant Dirichlet boundary condition and those strings are glued together by 2-d topological gravity with macroscopic boundaries. A light-cone string field theory is given and the theory has interactions to all orders. (Postscript files of the figures can be obtained by anonymous ftp uful07.phys.ufl.edu and are in the directory /het/ufift-hep-92-26.)

  14. DotMapper: an open source tool for creating interactive disease point maps

    OpenAIRE

    Smith, Catherine M.; Hayward, Andrew C

    2016-01-01

    Background Molecular strain typing of tuberculosis isolates has led to increased understanding of the epidemiological characteristics of the disease and improvements in its control, diagnosis and treatment. However, molecular cluster investigations, which aim to detect previously unidentified cases, remain challenging. Interactive dot mapping is a simple approach which could aid investigations by highlighting cases likely to share epidemiological links. Current tools generally require technic...

  15. Interaction between Speech and Gesture: Strategies for Pointing to Distant Objects

    OpenAIRE

    Pfeiffer, Thies; Efthimiou, Eleni; Kouroupetroglou, Georgios; Fotinea, Stavroula-Evita

    2012-01-01

    Referring to objects using multimodal deictic expressions is an important form of communication. This work addresses the question on how pragmatic factors affect content distribution between the modalities speech and gesture. This is done by analyzing a study on deictic pointing gestures to objects under two conditions: with and without speech. The relevant pragmatic factor was the distance to the referent object. As one main result two strategies were identified which were used by participan...

  16. Quantum fluctuation theorem in an interacting setup: point contacts in fractional quantum Hall edge state devices

    OpenAIRE

    Komnik, A.; Saleur, H.

    2011-01-01

    We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics (FCS) of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate ...

  17. Results from the CLIC X-BAND structure test program at the NLCTA

    CERN Document Server

    Adolphsen, Chris; Dolgashev, Valery; Laurent, Lisa; Tantawi, Sami; Wang, Faya; Wang, W Juwen; Doebert, Steffen; Grudiev, Alexej; Riddone, Germana; Wuensh, Walter; Zennaro, Riccardo; Higashi, Yasuo; Higo, Toshiyasu

    2010-01-01

    As part of a SLAC-CERN-KEK col­lab­o­ra­tion on high gra­di­ent X-band struc­ture re­search, sev­er­al pro­to­type struc­tures for the CLIC lin­ear col­lid­er study have been test­ed using two of the high power (300 MW) X-band rf sta­tions in the NLCTA fa­cil­i­ty at SLAC. These struc­tures dif­fer in terms of their man­u­fac­tur­ing (brazed disks and clamped quad­rants), gra­di­ent pro­file (amount by which the gra­di­ent in­creas­es along the struc­ture which op­ti­mizes ef­fi­cien­cy and max­i­mizes sus­tain­able gra­di­ent) and HOM damp­ing (use of slots or waveg­uides to rapid­ly dis­si­pate dipole mode en­er­gy). The CLIC goal in the next few years is to demon­strate the fea­si­bil­i­ty of a CLIC-ready base­line de­sign and to in­ves­ti­gate al­ter­na­tives which could bring even high­er ef­fi­cien­cy. This paper sum­ma­rizes the high gra­di­ent test re­sults from the NLCTA in sup­port of this ef­fort.

  18. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  19. Low-energy hypernuclear spectra with microscopic particle-rotor model with relativistic point coupling hyperon-nucleon interaction

    CERN Document Server

    Mei, H; Yao, J M; Motoba, T

    2016-01-01

    We extend the microscopic particle-rotor model for hypernuclear low-lying states by including the derivative and tensor coupling terms in the point-coupling nucleon-$\\Lambda$ particle ($N\\Lambda$) interaction. Taking $^{13}_{~\\Lambda}$C as an example, we show that a good overall description for excitation spectra is achieved with four sets of effective $N\\Lambda$ interaction. We find that the $\\Lambda$ hyperon binding energy decreases monotonically with increasing the strengths of the high-order interaction terms. In particular, the tensor coupling term decreases the energy splitting between the first $1/2^-$ and $3/2^-$ states and increases the energy splitting between the first $3/2^+$ and $5/2^+$ states in $^{13}_{~\\Lambda}$C.

  20. Influence of the vector interaction and an external magnetic field on the isentropes near the chiral critical end point

    Science.gov (United States)

    Costa, Pedro

    2016-06-01

    The location of the critical end point (CEP) and the isentropic trajectories in the QCD phase diagram are investigated. We use the (2 +1 ) Nambu-Jona-Lasinio model with the Polyakov loop coupling for different scenarios, namely by imposing zero strange quark density, which is the case in the ultrarelativistic heavy ion collisions, and β equilibrium. The influence of strong magnetic fields and of the vector interaction on the isentropic trajectories around the CEP is discussed. It is shown that the vector interaction and the magnetic field, having opposite effects on the first-order transition, affect the isentropic trajectories differently: as the vector interaction increases, the first-order transition becomes weaker and the isentropes become smoother; when a strong magnetic field is considered, the first-order transition is strengthened and the isentropes are pushed to higher temperatures. No focusing of isentropes in region towards the CEP is seen.

  1. An assessment of the moving point method for numerical calculation of fluid-structure interaction in water hammer

    International Nuclear Information System (INIS)

    The problem of providing an accurate numerical method for modelling fluid-structure interaction in practical water hammer calculations for power station pipe networks is addressed. The application of the moving point method to a problem representative of practical water hammer is presented. A suitable model including both liquid pressure waves and pipe wall tension waves if formulated as a set of partial differential equations with algebraic equations and boundary and initial conditions. The problem is non-dimensionalized, to identify key parameters, and a suitable linearized problem is constructed by omitting small terms. The problem is transformed to characteristic variables which are shown to be simply transported along the pipe without change of value. This motivates the choice of the moving point method. In the course of the work a program WHOMP (Water Hammer On Moving Points) was developed which exploits the moving point method. It is specific to the problem of a single pipe with thin elastic walls but the boundary and initial conditions permitted are sufficiently general that any reasonable physical problem for a single pipe can be addressed. Results of WHOMP for the model problem are compared with experimental and other numerical results including superficially those from a commercially available code FLUSTRIN. Some consideration of extending the moving point method to practical pipe networks is given. This includes the incorporation of bending and torsion waves in the pipe wall and incorporation of additional physics leading to significant non-linearity. (author)

  2. Effects of hydrodynamic interactions and control within a point absorber array on electrical output

    DEFF Research Database (Denmark)

    Nambiar, Anup J.; Forehand, David I.M.; Kramer, Morten;

    2015-01-01

    A significant role is envisaged for ocean wave energy to meet the different renewable energy targets set by various governments and world bodies. To make use of this potential, the industry will soon be moving from sea testing of individual wave energy converters (WECs) to the deployment of arrays...... and farms of WECs. The total power extracted by an array of WECs is influenced by the hydrodynamic interactions between them, especially when the WECs are spaced very closely. By control of the power take-off (PTO) forces and moments acting on the WECs within the array, the hydrodynamic interactions...... between the WECs and the total power extracted by the array can be modified. In this paper, different resistive and reactive PTO control strategies, applied to a time-domain wave-to-wire model of a three-float Danish Wavestar device, are compared. The time-domain modelling approach, as opposed to the...

  3. Complaints as starting point for vicious cycles in customer–employee-interactions

    OpenAIRE

    Traut-Mattausch, Eva; Wagner, Sara; Pollatos, Olga; Jonas, Eva

    2015-01-01

    A ring-model of vicious cycles in customer–employee-interaction is proposed: service employees perceive complaints as a threat to their self-esteem resulting in defense responses such as an increased need for cognitive closure, a devaluation of the customer and their information and degrading service behavior. Confronted with such degrading service behavior, customers react defensively as well, by devaluing the employee for example with regard to his/her competence and by reducing repurchase ...

  4. Improving the Performance of Interactive TCP Applications using End-point Based and Network Level Techniques

    Directory of Open Access Journals (Sweden)

    Varun G Menon

    2012-04-01

    Full Text Available Recent measurement based studies reveal that most of the Internet connections are short in terms of the amount of traffic they carry, while a small fraction of the connections are carrying a largeportion of the traffic.. Most of these short flows are from interactive applications like telnet, gaming that use TCP protocol for connection establishment and data transfer. These short TCP flows suffer from severe response-time performance degradations when multiplexed with long-lived flows during times of network congestion. The reasons for this problem is that, in the absence of large number of packets the short flows are unable to get a detailed knowledge about the level of underlying network congestion and even a single packet loss forces long retransmission timeouts. Also as the numbers of packets are less they are not able to develop large congestion windows and thus unable to jumpstart the next data burst. Due to this, clients of interactive applications suffer from increased response time for data packets sent and they try to upgrade their short flows to long flows by sending dummy packets into the network even when they do not have any data to send. This behavior can lead to severe congestion in the network and causes harm to statistical multiplexing in the Internet. This paper aims at providing easy to implement techniques that can be used by the clients of interactive applications to get much better performance without causing any serious congestion in the network.

  5. Long-range interactions in the ozone molecule: spectroscopic and dynamical points of view

    CERN Document Server

    Lepers, Maxence; Dulieu, Olivier

    2012-01-01

    Using the multipolar expansion of the electrostatic energy, we have characterized the asymptotic interactions between an oxygen atom O$(^3P)$ and an oxygen molecule O$_2(^3\\Sigma_g^-)$, both in their electronic ground state. We have calculated the interaction energy induced by the permanent electric quadrupoles of O and O$_2$ and the van der Waals energy. On one hand we determined the 27 electronic potential energy surfaces including spin-orbit connected to the O$(^3P)$ + O$_2(^3\\Sigma_g^-)$ dissociation limit of the O--O$_2$ complex. On the other hand we computed the potential energy curves characterizing the interaction between O$(^3P)$ and a O$_2(^3\\Sigma_g^-)$ molecule in its lowest vibrational level and in a low rotational level. Such curves are found adiabatic to a good approximation, namely they are only weakly coupled to each other. These results represent a first step for modeling the spectroscopy of ozone bound levels close to the dissociation limit, as well as the low energy collisions between O an...

  6. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann

    2015-08-01

    Full Text Available In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  7. Proposition d'une méthode d'alignement de l'accélérateur linéaire CLIC

    CERN Document Server

    Touzé, Thomas; Mainaud-Durand, H

    2011-01-01

    The compact linear collider (CLIC) is the particles accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nanometric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required : 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active prealignment but shows the way to the last developments that have to be done for that purpose. A metho...

  8. Nuclear point mass effects in the interaction of energetic ion with carbon nanotubes

    Science.gov (United States)

    Zheng, Li-Ping; Yan, Long; Zhu, Zhi-Yong; Ma, Guo-Liang

    2016-03-01

    We have calculated deposited energies of various energetic ions in carbon nanotubes, to study nuclear point mass effects, with the help of a static Monte Carlo (MC) simulation program. As a result of nuclear point mass effects, we show that at the same incident energy, the ion-deposited energy maximizes, while its mass has intermediate mass values, such as 11B, 12C and 14N ion masses, under hundreds keV 4He, 11B, 12C, 14N, 20Ne, 28Si and 40Ar ion irradiations of a thin-walled carbon nanotube. We also show that at the same incident energy, the coordination defect number maximizes, while its mass has an intermediate mass (20Ne) value, under hundreds keV 4He, 20Ne and 40Ar ion irradiations of the thin-walled nanotube. We derive an ion-deposited energy formula to analyze these maximum phenomena, and compare the MC simulation results with the MD (molecular dynamics) ones.

  9. The Climate and Cryosphere Project (CliC): Helping bring sea ice Models and Observations together.

    Science.gov (United States)

    Lytle, V.; Goodison, B.; Worby, A.; Ryabinin, V.; Prick, A.; Villinger, T.

    2007-12-01

    The Climate and Cryosphere Project is sponsored by the World Climate Research Program (WCRP) and the Scientific Committee for Antarctic Research (SCAR). One of the four themes within the CliC project is the Marine Cryosphere Theme (MarC). This paper will review the recent projects and workshops held within this Theme and how they relate to other, international initiatives. Recent recommendations on sea ice thickness are being implemented, and groups have been formed to work towards improvements in models, particularly in their representation of the Southern Ocean. SOPHOCLES (Southern Ocean Physical Oceanography and Cryosphere Processes and Climate) will work with other modeling groups to improve the representation of the Southern Ocean in climate models. This will include cooperation with other modeling and observational groups to develop metrics to help evaluate models. In the Arctic, we are working to help develop, standardize, and implement observation and measurement protocols for Arctic sea ice in coastal, seasonal, and perennial ice zones.

  10. Measurements and Laboratory Tests on a Prototype Stripline Kicker for the CLIC Damping Rings

    CERN Document Server

    Belver-Aguilar, C; Toral, F; Barnes, MJ; Day, H

    2014-01-01

    The Pre-Damping Rings (PDRs) and Damping Rings (DRs) of CLIC are required to reduce the beam emittances to the small values required for the main linacs. The injection and extraction, from the PDRs and DRs, are performed by kicker systems. To achieve both low beam coupling impedance and reasonable broadband impedancematching to the electrical circuit, striplines have been chosen for the kicker elements. Prototype striplines have been built: tests and measurements of these striplines have started. The goal of these tests is to characterize, without beam, the electromagnetic response of the striplines. The tests have been carried out at CERN. To study the signal transmission through the striplines, the measured S-parameters have been compared with simulations. In addition, measurements of longitudinal beam coupling impedance, using the coaxial wire method, are reported and compared with simulations.

  11. Simulation Study of Cool-Down of the CLIC Wiggler Magnets

    CERN Document Server

    Liu, L; van Weelderen, R; Xiong, L

    2013-01-01

    The cryogenic system for the CLIC wiggler magnets is under design. The cooldown process is one of the main dimensioning factors for the system. In this paper, the heat transfer model used to simulate the cool-down process is presented. Different configurations are then investigated and a detailed analysis of the corresponding temperature evolutions along the magnet strings is calculated. The temperature profiles are evaluated for the flowing helium as well as for the magnets allowing a detailed analysis of the temperature gradients. The impact of some key parameters, like the mass-flow rate, the diameter of the cooling channels and of the thermal coupling between the helium and the magnets is also investigated.

  12. Present status of development of damping ring extraction kicker system for CLIC

    CERN Document Server

    Holma, Janne; Belver-Aguilar, Caroline; Faus-Golfe, Angeles; Toral, Fernando

    2012-01-01

    The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping ring kickers must provide extremely flat, high-voltage pulses: specifications call for a 160 ns duration and a flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than \\pm0.02 %. The stripline design is also extremely challenging: the field for the damping ring kicker system must be homogenous to within \\pm0.01 % over a 1 mm radius, and low beam coupling impedance is required. The solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications for the field pulse ripple and droop. This paper describes the initial design of the inductive adder and the striplines of the kicker system.

  13. Present status of development of damping ring extraction kicker system for CLIC

    CERN Document Server

    Holma, Janne; Belver-Aguilar, Caroline; Faus-Golfe, Angeles; Toral, Fernando

    2012-01-01

    The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping ring kickers must provide extremely flat, high-voltage pulses: specifications call for a 160 ns duration and a flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. The stripline design is also extremely challenging: the field for the damping ring kicker system must be homogenous to within ±0.01 % over a 1 mm radius, and low beam coupling impedance is required. The solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications for the field pulse ripple and droop. This paper describes the initial design of the inductive adder and the striplines of the kicker system.

  14. Experience on Fabrication and Assembly of the First CLIC Two-Beam Module Prototype

    CERN Document Server

    Gudkov, D; Riddone, G; Rossi, F; Lebet, S

    2013-01-01

    The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies and methods for manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison o...

  15. Imperfection Tolerances For On-line Dipsersion Free Steering in the Main LINAC of CLIC

    CERN Document Server

    Pfingstner, J; Schulte, D

    2013-01-01

    Long-term ground motion misaligns the elements of the main linac of CLIC over time. Especially the misaligned quadrupoles create dispersion and hence the beam quality is decreased gradually due to an effect called chromatic dilution. Over longer time periods, orbit feedback systems are not capable to fully recover the beam quality and have to be supplemented by dispersion correction algorithms. In this paper, such and dispersion correction algorithm is presented, which is an extended version of the well-known dispersion free steering algorithm. This extended algorithm can recover the beam quality over long time scaled without stopping the accelerator operation (on-line). Tolerances for different imperfections of the system have been identified and a strong sensitivity to the resolution of the wake field monitors of the main linac accelerating structures has been identified. This problem can be mitigated by using a local excitation scheme as will be shown in this work.

  16. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  17. High-Gradient test results from a CLIC prototype accelerating structure : TD26CC

    CERN Document Server

    Degiovanni, A; Farabolini, W; Grudiev, A; Kovermann, J; Montessinos, E; Riddone, G; Syratchev, I; Wegner, R; Wuensch, W; Solodko, A; Woolley, B

    2014-01-01

    The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version ready to be installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 105 MV/m at 250 ns pulse length and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design.

  18. Beam dynamic simulation and optimization of the CLIC positron source and the capture linac

    Science.gov (United States)

    Bayar, C.; Doebert, S.; Ciftci, A. K.

    2016-03-01

    The CLIC Positron Source is based on the hybrid target composed of a crystal and an amorphous target. Simulations have been performed from the exit of the amorphous target to the end of pre-injector linac which captures and accelerates the positrons to an energy of 200 MeV. Simulations are performed by the particle tracking code PARMELA. The magnetic field of the AMD is represented in PARMELA by simple coils. Two modes are applied in this study. The first one is accelerating mode based on acceleration after the AMD. The second one is decelerating mode based on deceleration in the first accelerating structure. It is shown that the decelerating mode gives a higher yield for the e+ beam in the end of the Pre-Injector Linac.

  19. Initial study on the shape optimisation of the CLIC crab cavity

    CERN Document Server

    Ambattu, P K; Carter, R G; Dexter, A C; Jones, R M; McIntosh, P

    2008-01-01

    The compact linear collider (CLIC) requires a crab cavity to align bunches prior to collision. The bunch structure demands tight amplitude and phase tolerances of the RF fields inside the cavity, for the minimal luminosity loss. Beam loading effects require special attention as it is one potential sources of field errors in the cavity. In order to assist the amplitude and phase control, we propose a travelling wave (TW) structure with a high group velocity allowing rapid propagation of errors out of the system. Such a design makes the cavity structure significantly different from previous ones. This paper will look at the implications of this on other cavity parameters and the optimisation of the cavity geometry.

  20. Z′ Resonance and Associated Zh Production at Future Higgs Boson Factory: ILC and CLIC

    International Nuclear Information System (INIS)

    We study the prospects of the B-L model with an additional Z′ boson to be a Higgs boson factory at high-energy and high-luminosity linear electron positron colliders, such as the ILC and CLIC, through the Higgs-strahlung process e+e-→(Z,Z′)→Zh, including both the resonant and the nonresonant effects. We evaluate the total cross section of Zh and we calculate the total number of events for integrated luminosities of 500–2000 fb−1 and center of mass energies between 500 and 3000 GeV. We find that the total number of expected Zh events can reach 106, which is a very optimistic scenario and it would be possible to perform precision measurements for both Z′ and Higgs boson in future high-energy e+e- colliders experiments

  1. Z′ Resonance and Associated Zh Production at Future Higgs Boson Factory: ILC and CLIC

    Directory of Open Access Journals (Sweden)

    A. Gutiérrez-Rodríguez

    2015-01-01

    Full Text Available We study the prospects of the B-L model with an additional Z′ boson to be a Higgs boson factory at high-energy and high-luminosity linear electron positron colliders, such as the ILC and CLIC, through the Higgs-strahlung process e+e-→(Z,Z′→Zh, including both the resonant and the nonresonant effects. We evaluate the total cross section of Zh and we calculate the total number of events for integrated luminosities of 500–2000 fb−1 and center of mass energies between 500 and 3000 GeV. We find that the total number of expected Zh events can reach 106, which is a very optimistic scenario and it would be possible to perform precision measurements for both Z′ and Higgs boson in future high-energy e+e- colliders experiments.

  2. Induced dipole-dipole interactions in light diffusion from point dipoles

    CERN Document Server

    Cherroret, Nicolas; van Tiggelen, Bart A

    2016-01-01

    We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order two in the atomic density and accounts for the vector character of light. It is applied to the calculation of the electromagnetic energy stored in the atomic cloud - which modifies the energy transport velocity - and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.

  3. Induced dipole-dipole interactions in light diffusion from point dipoles

    Science.gov (United States)

    Cherroret, Nicolas; Delande, Dominique; van Tiggelen, Bart A.

    2016-07-01

    We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.

  4. Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations.

    Science.gov (United States)

    O'Brien, C J; Blanco, M A; Costanzo, J A; Enterline, M; Fernandez, E J; Robinson, A S; Roberts, C J

    2016-06-01

    Non-native protein aggregation is a ubiquitous challenge in the production, storage and administration of protein-based biotherapeutics. This study focuses on altering electrostatic protein-protein interactions as a strategy to modulate aggregation propensity in terms of temperature-dependent aggregation rates, using single-charge variants of human γ-D crystallin. Molecular models were combined to predict amino acid substitutions that would modulate protein-protein interactions with minimal effects on conformational stability. Experimental protein-protein interactions were quantified by the Kirkwood-Buff integrals (G22) from laser scattering, and G22 showed semi-quantitative agreement with model predictions. Experimental initial-rates for aggregation showed that increased (decreased) repulsive interactions led to significantly increased (decreased) aggregation resistance, even based solely on single-point mutations. However, in the case of a particular amino acid (E17), the aggregation mechanism was altered by substitution with R or K, and this greatly mitigated improvements in aggregation resistance. The results illustrate that predictions based on native protein-protein interactions can provide a useful design target for engineering aggregation resistance; however, this approach needs to be balanced with consideration of how mutations can impact aggregation mechanisms. PMID:27160179

  5. Spacetime is Locally Inertial at Points of General Relativistic Shock Wave Interaction between Shocks from Different Characteristic Families

    CERN Document Server

    Reintjes, Moritz

    2014-01-01

    We prove that spacetime is locally inertial at points of shock wave collision in General Relativity. The result applies for collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. We give a constructive proof that there exist coordinate transformations which raise the regularity of the gravitational metric tensor from $C^{0,1}$ to $C^{1,1}$ in a neighborhood of such points of shock wave interaction, and a $C^{1,1}$ metric regularity suffices for locally inertial frames to exist. This result corrects an error in our earlier RSPA-publication, which led us to the wrong conclusion that such coordinate transformations, which smooth the metric to $C^{1,1}$, cannot exist. Our result here proves that regularity singularities, (a type of mild singularity introduced in our RSPA-publication), do \\emph{not exist} at points of interacting shock waves from different families in spherically symmetric spacetimes, and this generalizes Israel's famous 1966 result to th...

  6. Physics potential of the BR(H →WW∗) measurement at a √s=350 GeV and √s=1.4 TeV CLIC collider

    CERN Document Server

    Pandurovic, Mila

    2016-01-01

    Precision measurements of the number of properties of the Higgs boson, like invariant mass and couplings to the Standard Model particles, represent one of the key measurements of the CLIC physic program. The CLIC energy staging scenario allows to perform these meas- urements using different Higgs production channels. The Higgs decay to a WW pair, which is analysed at two CLIC energy stages, plays an important role in this program, as it gives access to the relative Higgs couplings to the vector bosons and to the total Higgs decay width. The studies presented here are part of an ongoing effort to investigate the full physics potential of the CLIC collider.

  7. Complaints as starting point for vicious cycles in customer–employee-interactions

    Science.gov (United States)

    Traut-Mattausch, Eva; Wagner, Sara; Pollatos, Olga; Jonas, Eva

    2015-01-01

    A ring-model of vicious cycles in customer–employee-interaction is proposed: service employees perceive complaints as a threat to their self-esteem resulting in defense responses such as an increased need for cognitive closure, a devaluation of the customer and their information and degrading service behavior. Confronted with such degrading service behavior, customers react defensively as well, by devaluing the employee for example with regard to his/her competence and by reducing repurchase and positive word-of-mouth (WOM). Three studies investigated each link in this ring-model. In study 1, participants were confronted with an aggressive or neutral customer complaint. Results show that motivated closed-mindedness (one aspect of the need for cognitive closure) increases after an aggressive complaint leading to a devaluation of the customer and their information, and in turn to a degrading service reaction. In study 2, participants were confronted with a degrading or favorable service reaction. Results show that they devaluate the employees’ competence after receiving a degrading service reaction and thus reduce their intention to repurchase. In study 3, we finally examined our predictions investigating real customer–employee-interactions: we analyzed data from an evaluation study in which mystery callers tested the service hotline of an airline. Results show that the employees’ competence is devaluated after degrading behavior and thus reduces positive WOM. PMID:26528194

  8. Complaints as starting point for vicious cycles in customer-employee-interactions.

    Science.gov (United States)

    Traut-Mattausch, Eva; Wagner, Sara; Pollatos, Olga; Jonas, Eva

    2015-01-01

    A ring-model of vicious cycles in customer-employee-interaction is proposed: service employees perceive complaints as a threat to their self-esteem resulting in defense responses such as an increased need for cognitive closure, a devaluation of the customer and their information and degrading service behavior. Confronted with such degrading service behavior, customers react defensively as well, by devaluing the employee for example with regard to his/her competence and by reducing repurchase and positive word-of-mouth (WOM). Three studies investigated each link in this ring-model. In study 1, participants were confronted with an aggressive or neutral customer complaint. Results show that motivated closed-mindedness (one aspect of the need for cognitive closure) increases after an aggressive complaint leading to a devaluation of the customer and their information, and in turn to a degrading service reaction. In study 2, participants were confronted with a degrading or favorable service reaction. Results show that they devaluate the employees' competence after receiving a degrading service reaction and thus reduce their intention to repurchase. In study 3, we finally examined our predictions investigating real customer-employee-interactions: we analyzed data from an evaluation study in which mystery callers tested the service hotline of an airline. Results show that the employees' competence is devaluated after degrading behavior and thus reduces positive WOM. PMID:26528194

  9. Hinkley Point CAGR - fuel assembly vibration and charge route interaction during on-load refuelling

    International Nuclear Information System (INIS)

    A key feature of the UK advanced gas cooled reactor system is the ability to refuel while producing power. To achieve this the fuel and plug units are built up into a long slender fuel assembly, and an associated charge route constructed for each fuel assembly location in core. Currently, flow induced vibration of the fuel assembly limits the operating power during refuelling, with the disadvantages of lost power production, and reactor power cycling. The test work, analysis and subsequent theoretical appraisals carried out on the Hinkley Point B reactor systems (Hunterston, Heysham II and Torness being of equivalent design) with two specific aims: are described firstly to assess the impact velocities of the fuel against the charge-route wall, and secondly to consider possible methods of reducing these velocities. (author)

  10. Atlas of point contact spectra of electron-phonon interactions in metals

    CERN Document Server

    Khotkevich, A V

    1995-01-01

    The characteristics of electrical contacts have long attracted the attention of researchers since these contacts are used in every electrical and electronic device. Earlier studies generally considered electrical contacts of large dimensions, having regions of current concentration with diameters substantially larger than the characteristic dimensions of the material: the interatomic distance, the mean free path for electrons, the coherence length in the superconducting state, etc. [110]. The development of microelectronics presented to scientists and engineers the task of studying the characteristics of electrical contacts with ultra-small dimensions. Characteristics of point contacts such as mechanical stability under continuous current loads, the magnitudes of electrical fluctuations, inherent sensitivity in radio devices and nonlinear characteristics in connection with electromagnetic radiation can not be understood and altered in the required way without knowledge of the physical processes occurring in c...

  11. Importance of Sodium Fuel Interaction in Fast Reactor Safety Evaluation - CEA Point of View

    International Nuclear Information System (INIS)

    The consequences of interactions between molten metal (aluminium-uranium alloy) and water have long been a subject of concern for those in charge of reactor safety, following accidents observed or induced in certain reactors (BORAX, SL1, SPERT 1 D). In such accidents, as in similar cases occurring in traditional industries (aluminium foundries, steel works, paper mills...) the contact between the hot liquid product and the coolant entails rapid vaporization of the latter with effects identical to that of an explosive. Although chemical reactions of water decomposition occur in some cases, the main phenomenon is the conversion of the thermal energy stored in the hot substance into mechanical energy. Despite the fact that a molten oxide fuel differs from an aluminium-uranium alloy, as does sodium from water, the consequences of possible contact between the molten mixed uranium and plutonium oxide and sodium must be carefully studied since such a contact may occur in accident conditions in sodium-cooled fast neutron reactors. The essential purpose of an evaluation of reactor safety in accident conditions is in fact to ensure the containment of dangerous products Consequently, any phenomenon likely to endanger containment barriers must be carefully examined. In conclusion: Whereas an accident within an assembly seems to show little likelihood of creating conditions seriously endangering fuel containment, the gravity of problems associated with an overall accident on the core is worthy of thorough and attentive study. In the case of an overall accident on the core of a fast reactor, the interaction between the molten fuel and the sodium is of consequence at two levels. The first is the retention of mechanical energy which may be considerable. The second is the recovery of fuel fragments in an overall cooled configuration but where local cooling problems may give rise to interaction. A greater effort is required in performing tests and mastering their results to

  12. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle

    Institute of Scientific and Technical Information of China (English)

    ZHANG HongFu

    2009-01-01

    This paper presents an overview of recent studies dealing with different ages of mantle peridotitic xenoliths and xenocrysts from the North China Craton, with aim to provide new ideas for further study on the destruction of the North China Craton. Re-Os isotopic studies suggest that the lithospheric mantle of the North China Craton is of Archean age prior to its thinning. The key reason why such a low density and highly refractory Archean lithospheric mantle would be thinned is changes in composition, thermal regime, and physical properties of the lithospheric mantle due to interaction of peridotites with melts of different origins. Inward subducUon of circum craton plates and collision with the North China Craton provided not only the driving force for the destruction of the craton, but also continuous melts derived from partial melting of subducted continental or oceanic crustal materials that resulted in the compositional change of the lithospheric mantle. Regional thermal anomaly at ca. 120 Ma led to the melting of highly modified iithospheric mantle. At the same time or subsequently lithospheric extension and asthenospheric upwelling further reinforced the melting and thinning of the lithospheric mantle. Therefore, the destruction and thinning of the North China Craton is a combined result of peridotite-melt interaction (addition of volatile), enhanced regional thermal anomaly (temperature increase) and lithospheric extension (decompression). Such a complex geological process finally produced a "mixed" lithospheric mantle of highly chemical heterogeneity during the Mesozoic and Cenozoic. It also resulted in significant difference in the composition of mantle peridotitic xenoliths between different regions and times.

  13. The Effect of Point-spread Function Interaction with Radiance from Heterogeneous Scenes on Multitemporal Signature Analysis. [soybean stress

    Science.gov (United States)

    Duggin, M. J.; Schoch, L. B.

    1984-01-01

    The point-spread function is an important factor in determining the nature of feature types on the basis of multispectral recorded radiance, particularly from heterogeneous scenes and particularly from scenes which are imaged repetitively, in order to provide thematic characterization by means of multitemporal signature. To demonstrate the effect of the interaction of scene heterogeneity with the point spread function (PSF)1, a template was constructed from the line spread function (LSF) data for the thematic mapper photoflight model. The template was in 0.25 (nominal) pixel increments in the scan line direction across three scenes of different heterogeneity. The sensor output was calculated by considering the calculated scene radiance from each scene element occurring between the contours of the PSF template, plotted on a movable mylar sheet while it was located at a given position.

  14. 'AJUSTAR' a interactive processor for to Fit, by means of least squares, one variable polinomials (arbitrary degree) at experimental points

    International Nuclear Information System (INIS)

    In this repport is offered, to scientist and technical people, a numeric tool consisting in a FORTRAN program, of interactive use, with destination to make lineal 'least squares', fittings on any set of empirical observations. The method based in the orthogonal functions (for discrete case), instead of direct solving the equations system, is used. The procedure includes also the optionally facilities of: variable change, direct interpolation, correlation non linear factor, 'weights' of the points, confidence intervals (Scheffe, Miller, Student), and plotting results. (Author). 10 refs

  15. Ajustar: A interactive processor for to fit, by means of least squares, one variable polynomials (arbitrary degree) at experimental points

    International Nuclear Information System (INIS)

    In this report is offered, to scientist and technical people, a numeric tool consisting in a FORTRAN program, of interactive use, with destination to make lineal least squares, fittings on any set of empirical observations. The method based in the orthogonal functions (for discrete case), instead of direct solving the equations system, is used. The procedure includes also the optionally facilities of: variable change, direct interpolation, correlation non linear factor, weightsof the points, confidence intervals (Schelle, Miller, Student), and plotting results. (Author) 10 refs

  16. Stellar weak interaction rates and shape coexistence for {sup 68}Se and {sup 72}Kr waiting points

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania)

    2015-10-15

    Beyond-mean-field results on stellar beta-decay and continuum electron capture rates for the rp-process waiting point nuclei {sup 68}Se and {sup 72}Kr at densities ρY{sub e} = 10{sup 4}-10{sup 7} mol/cm{sup 3} and temperatures T = 10{sup 8}-10{sup 10} K are presented. The structure of the even-even parent and odd-odd daughter nuclei dominated by shape coexistence and mixing is self-consistently described within the complex Excited Vampir model using realistic effective interactions in rather large model spaces. The influence of the shape mixing in the structure of the low-lying parent states as well as in the independently calculated daughter states on the stellar weak interaction rates is discussed. (orig.)

  17. Interaction of a Magnet and a Point Charge: Unrecognized Internal Electromagnetic Momentum Eliminates the Myth of Hidden Mechanical Momentum

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    A model calculation using the Darwin Lagrangian is carried out for a magnet consisting of two current-carrying charges constrained by centripetal forces to move in a circular path in the presence of the electric field from a distant external point charge. In the limit that the magnet's two charges are non-interacting, the calculation recovers the only valid calculation for hidden mechanical momentum. However, if the magnet's charges are mutually interacting, then there is internal electromagnetic linear momentum associated with the perturbed magnet's electrostatic charge distribution and the motion of the magnet's charges. This internal electromagnetic momentum does not seem to be recognized as distinct from the familiar external electromagnetic momentum associated with the electric field of the external charge and the magnetic field of the unperturbed magnet. In the multiparticle limit, the hidden mechanical momentum becomes negligible while the internal electromagnetic momentum provides the compensating lin...

  18. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretchedwire RF measurements

    CERN Document Server

    Silvia Zorzetti, Silvia; Galindo Muño, Natalia; Wendt, Manfred

    2015-01-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-m regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  19. CLIC-ACM: generic modular rad-hard data acquisition system based on CERN GBT versatile link

    International Nuclear Information System (INIS)

    CLIC is a world-wide collaboration to study the next ''terascale'' lepton collider, relying upon a very innovative concept of two-beam-acceleration. This accelerator, currently under study, will be composed of the subsequence of 21000 two-beam-modules. Each module requires more than 300 analogue and digital signals which need to be acquired and controlled in a synchronous way. CLIC-ACM (Acquisition and Control Module) is the 'generic' control and acquisition module developed to accommodate the controls of all these signals for various sub-systems and related specification in term of data bandwidth, triggering and timing synchronization. This paper describes the system architecture with respect to its radiation-tolerance, power consumption and scalability

  20. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  1. Convex Lens-induced Confinement to Visualize Biopolymers and Interaction Parameters

    Science.gov (United States)

    Stabile, Frank; Berard, Daniel; Henkin, Gil; Shayegan, Marjan; Michaud, François; Leslie, Sabrina

    In this poster, we present a versatile CLiC (Convex Lens-induced Confinement) microscopy system to access a broad range of biopolymer visualization and interaction parameters. In the CLiC technique, the curved surface of a convex lens is used to deform a flexible coverslip above a glass substrate, creating a nanoscale gap that can be tuned during an experiment to load and confine molecules into nanoscale features, both linear and circular, embedded in the bottom substrate. We demonstrate and characterize massively parallel DNA nanochannel-based stretching, building on prior work. Further, we demonstrate controlled insertion of reagent molecules within the CLiC imaging chamber. We visualize real-time reaction dynamics of nanoconfined species, including dye/DNA intercalation and DNA/DNA ligation reactions, demonstrating the versatility of this nanoscale microscopy platform.

  2. Sources, potentials and fields in Lorenz and Coulomb gauge: Cancellation of instantaneous interactions for moving point charges

    International Nuclear Information System (INIS)

    We investigate the coupling of the electromagnetic sources (charge and current densities) to the scalar and vector potentials in classical electrodynamics, using Green function techniques. As is well known, the scalar potential shows an action-at-a-distance behavior in Coulomb gauge. The conundrum generated by the instantaneous interaction has intrigued physicists for a long time. Starting from the differential equations that couple the sources to the potentials, we here show in a concise derivation, using the retarded Green function, how the instantaneous interaction cancels in the calculation of the electric field. The time derivative of a specific additional term in the vector potential, present only in Coulomb gauge, yields a supplementary contribution to the electric field which cancels the gradient of the instantaneous Coulomb gauge scalar potential, as required by gauge invariance. This completely eliminates the contribution of the instantaneous interaction from the electric field. It turns out that a careful formulation of the retarded Green function, inspired by field theory, is required in order to correctly treat boundary terms in partial integrations. Finally, compact integral representations are derived for the Liénard–Wiechert potentials (scalar and vector) in Coulomb gauge which manifestly contain two compensating action-at-a-distance terms. - Highlights: ► We investigate action-at-a-distance effects in electrodynamics in detail. ► We calculate the instantaneous interactions for scalar and vector potentials. ► The cancellation mechanism involves the retarded Green function. ► The mechanism is confirmed on the example of moving point charges. ► The Green function has to be treated with care for nontrivial boundary terms.

  3. Fixed-point structure and effective fractional dimensionality for O(N) models with long-range interactions.

    Science.gov (United States)

    Defenu, Nicoló; Trombettoni, Andrea; Codello, Alessandro

    2015-11-01

    We study, by renormalization group methods, O(N) models with interactions decaying as power law with exponent d+σ. When only the long-range momentum term p(σ) is considered in the propagator, the critical exponents can be computed from those of the corresponding short-range O(N) models at an effective fractional dimension D(eff). Neglecting wave function renormalization effects the result for the effective dimension is D(eff)=2d/σ, which turns to be exact in the spherical model limit (N→∞). Introducing a running wave function renormalization term the effective dimension becomes instead D(eff)=(2-η(SR))d/σ. The latter result coincides with the one found using standard scaling arguments. Explicit results in two and three dimensions are given for the exponent ν. We propose an improved method to describe the full theory space of the models where both short- and long-range propagator terms are present and no a priori choice among the two in the renormalization group flow is done. The eigenvalue spectrum of the full theory for all possible fixed points is drawn and a full description of the fixed-point structure is given, including multicritical long-range universality classes. The effective dimension is shown to be only approximate, and the resulting error is estimated. PMID:26651653

  4. Influence of the inverse magnetic catalysis and the vector interaction in the location of the critical end point

    CERN Document Server

    Costa, Pedro; Menezes, Débora P; Moreira, João; Providência, Constança

    2015-01-01

    The effect of a strong magnetic field on the location of the critical end point (CEP) in the QCD phase diagram is discussed under different scenarios. In particular, we consider the contribution of the vector interaction and take into account the inverse magnetic catalysis obtained in lattice QCD calculations at zero chemical potential. The discussion is realized within the (2+1) Polyakov--Nambu--Jona-Lasinio model. It is shown that the vector interaction and the magnetic field have opposite competing effects, and that the winning effect depends strongly on the intensity of the magnetic field. The inverse magnetic catalysis at zero chemical potential has two distinct effects for magnetic fields above $\\gtrsim 0.3$ GeV$^2$: it shifts the CEP to lower chemical potentials, hinders the increase of the CEP temperature and prevents a too large increase of the baryonic density at the CEP. For fields $eB<0.1$ GeV$^2$ the competing effects between the vector contribution and the magnetic field can move the CEP to r...

  5. Energy Deposition and DPA in the Superconducting Links for the HILUMI LHC Project at the LHC Interaction Points

    CERN Document Server

    AUTHOR|(CDS)2092158; Broggi, Francesco; Santini, C; Ballarino, Amalia; Cerutti, Francesco; Esposito, Luigi Salvatore

    2015-01-01

    In the framework of the upgrade of the LHC machine, the powering of the LHC magnets foresees the removal of the power converters and distribution feedboxes from the tunnel and its location at the surface[1]. The Magnesium Diboride (MgB2) connecting lines in the tunnel will be exposed to the debris from 7+7 TeV p-p interaction. The Superconducting (SC) Links will arrive from the surface to the tunnel near the separation dipole, at about 80 m from the Interaction Point at IP1 and IP5. The Connection Box (where the cables of the SC Links are connected to the NbTi bus bar) will be close to the beam pipe. The debris and its effect on the MgB2 SC links in the connection box (energy deposition and displacement per atom) are presented. The effect of thermal neutrons on the Boron consumption and the contribution of the lithium nucleus and the alpha particle on the DPA are evaluated. The results are normalized to an integrated luminosity of 3000 fb-1, value that represents the LHC High Luminosity lifetime. The dose de...

  6. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  7. Instrumentation for Longitudinal Beam Gymnastics in FEL's and at the CLIC Test Facility 3

    CERN Document Server

    Lefèvre, T; Bravin, E; Burger, S; Corsini, R; Döbert, S; Soby, L; Tecker, F A; Urschutz, P; Welsch, C P; Alesini, D; Biscari, C; Buonomo, B; Coiro, O; Ghigo, A; Marcellini, F; Preger, B; Dabrowski, A; Velasco, M; Craievich, P; Ferianis, M; Veronese, M; Ferrari, A

    2008-01-01

    Built at CERN by an international collaboration, the CLIC Test Facility 3 (CTF3) aims at demonstrating the feasibility of a high luminosity 3 TeV e+-e- collider by the year 2010. One of the main issues to be demonstrated is the generation of a high average current (30 A) high frequency (12 GHz) bunched beam by means of RF manipulation. At the same time, Free Electron Lasers (FEL) are developed in several places all over the world with the aim of providing high brilliance photon sources. These machines rely on the production of high peak current electron bunches. The required performances put high demands on the diagnostic equipment and innovative longitudinal monitors have been developed during the past years. This paper gives an overview of the longitudinal instrumentation developed at ELETTRA and CTF3, where a special effort was made in order to implement at the same time non-intercepting devices for online monitoring, and destructive diagnostics which have the advantage of providing more detailed informati...

  8. Transverse Beam Polarizationas an Alternate View into New Physics at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.; /SLAC

    2011-08-12

    In e{sup +}e{sup -} collisions, transverse beam polarization can be a useful tool in studying the properties of particles associated with new physics beyond the Standard Model(SM). However, unlike in the case of measurements associated with longitudinal polarization, the formation of azimuthal asymmetries used to probe this physics in the case of transverse polarization requires both e{sup {+-}} beams to be simultaneously polarized. In this paper we discuss the further use of transverse polarization as a probe of new physics models at a high energy, {radical}s = 3 TeV version of CLIC. In particular, we show (i) how measurements of the sign of these asymmetries is sufficient to discriminate the production of spin-0 supersymmetric states from the spin-1/2 Kaluza-Klein excitations of Universal Extra Dimensions. Simultaneously, the contribution to this asymmetry arising from the potentially large SM W{sup +}W{sup -} background can be made negligibly small. We then show (ii) how measurements of such asymmetries and their associated angular distributions on the peak of a new resonant Z{prime}-like state can be used to extract precision information on the Z{prime} couplings to the SM fermions.

  9. Development and Validation of a Multipoint Based Laser Alignment System for CLIC

    CERN Document Server

    Stern, G; Lackner, F; Mainaud-Durand, H; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2013-01-01

    Alignment is one of the major challenges within CLIC study, since all accelerator components have to be aligned with accuracy up to 10 μm over sliding windows of 200 m. So far, the straight line reference concept has been based on stretched wires coupled with Wire Positioning Sensors. This concept should be validated through inter-comparison with an alternative solution. This paper proposes an alternative concept where laser beam acts as straight line reference and optical shutters coupled with cameras visualise the beam. The principle was first validated by a series of tests using low-cost components. Yet, in order to further decrease measurement uncertainty in this validation step, a high-precision automatised micrometric table and reference targets have been added to the setup. The paper presents the results obtained with this new equipment, in terms of measurement precision. In addition, the paper gives an overview of first tests done at long distance (up to 53 m), having emphasis on beam divergence

  10. A Gas-Jet Profile Monitor for the CLIC Drive Beam

    CERN Document Server

    Jeff, A; Lefevre, T; Tzoganis, V; Welsch, C P

    2013-01-01

    The Compact Linear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. Profile monitors using gas ionisation or fluorescence have been used at a number of accelerators. Typically, extra gas must be injected at the monitor and the rise in pressure spreads for some distance down the beam pipe. In contrast, a gas jet can be fired across the beam into a receiving chamber, with little gas escaping into the rest of the beam pipe. In addition, a gas jet shaped into a thin plane can be used like a screen on which the beam crosssectionis imaged. In this paper we present some arrangements for the generation of such a jet. In ...

  11. Studies of Cs3Sb cathodes for the CLIC drive beam photo injector option

    CERN Document Server

    Martini, Irene; Doebert, Steffen; Fedosseev, Valentine; Hessler, Christoph; Martyanov, Mikhail

    2013-01-01

    Within the CLIC (Compact Linear Collider) project, feasibility studies of a photo injector option for the drive beam as an alternative to its baseline design using a thermionic electron gun are on-going. This R&D program covers both the laser and the photocathode side. Whereas the available laser pulse energy in ultra-violet (UV) is currently limited by the optical defects in the 4thharmonics frequency conversion crystal induced by the0.14 ms long pulse trains, recent measurements of Cs3Sbphotocathodes sensitive to green light showed their potential to overcome this limitation. Moreover, using visible laser beams leads to better stability of produced electron bunches and one can take advantages of the availability of higher quality optics. The studied Cs3Sbphotocathodes have been produced in the CERN photo emission laboratory using the co-deposition technique and tested in a DC gun set-up. The analysis of data acquired during the cathode production process will be presented in this paper, as well as the r...

  12. Physics potential for the measurement of σ (Hνanti ν) x BR(H → μ{sup +}μ{sup -}) at the 1.4 TeV CLIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic-Dumbelovic, G.; Bozovic-Jelisavcic, I.; Kacarevic, G.; Lukic, S.; Pandurovic, M.; Smiljanic, I. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Grefe, C. [Universitaet Bonn, Bonn (Germany); CERN, Geneva (Switzerland); Roloff, P. [CERN, Geneva (Switzerland)

    2015-11-15

    The future compact linear collider (CLIC) offers a possibility for a rich precision physics programme, in particular in the Higgs sector through the energy staging. This is the first paper addressing the measurement of the standard model Higgs boson decay into two muons at 1.4 TeV CLIC. With respect to similar studies at future linear colliders, this paper includes several novel contributions to the statistical uncertainty of the measurement. The latter includes the equivalent photon approximation employed to describe e{sup +}e{sup -} and eγ interactions whenever the virtuality of the mediated photon is smaller than 4 GeV and realistic forward electron tagging based on energy deposition maps in the forward calorimeters, as well as several processes with the Beamstrahlung photons that results in irreducible contribution to the signal. In addition, coincidence of the Bhabha scattering with the signal and background processes is considered, altering the signal selection efficiency. The study is performed using a fully simulated CLICILD detector model. It is shown that the branching ratio for the Higgs decay into a pair of muons BR(H → μ{sup +}μ{sup -}) times the Higgs production cross-section in WW-fusion σ (Hνanti ν) can be measured with 38 % statistical accuracy at √(s) = 1.4 TeV, assuming an integrated luminosity of 1.5 ab{sup -1} with unpolarised beams. If 80 % electron beam polarisation is considered, the statistical uncertainty of the measurement is reduced to 25 %. Systematic uncertainties are negligible in comparison to the statistical uncertainty. (orig.)

  13. Hydrogen interactions with intrinsic point defects in hydrogen permeation barrier of α-Al₂O₃: a first-principles study.

    Science.gov (United States)

    Zhang, Guikai; Lu, Yongjie; Wang, Xiaolin

    2014-09-01

    It is crucial to understand hydrogen interactions with intrinsic point defects in the hydrogen permeation barrier (HPB) of α-Al2O3, finding underlying reasons for the not-so-low H-permeability of the barrier, and thereby produce samples with tailored defects for optimal performance. Using density functional theory (DFT), the formation energies of intrinsic point defects in an α-Al2O3 lattice, including extrinsic H-related defects (H(i), V(Al)-H complex, HO(i) and H(O)), in all possible charged states, are first calculated under HPB working conditions, to determine the dominant basic defect species for hydrogen. We find that the stable forms of H-related defects in α-Al2O3 are charged H interstitials (H(i)(q), where q is the charge state of the defect) and hydrogenation of the bulk V(Al)(3-) ([V(Al)(3-)-H(+)](q)), under hydrogen-rich conditions. As the system reaches equilibrium, H in α-Al2O3 is mainly present in the H(i)(+) state, and preferentially exists in the form of [V(Al)(3-)-H(+)] and H(O)(+). Migration processes of the dominant defects are further investigated, predicting that H(i)(+) is the predominant diffusion species in α-Al2O3. [V(Al)(3-)-H(+)](2-) and H(O)(+) can release trapped hydrogen during high temperature annealing, contributing to the H-transport in α-Al2O3. The formation energy is much higher than the migration energy for H(i)(+), suggesting that the migration of H(i)(+) is the bottleneck for creating low enough H-permeation in α-Al2O3, and corresponding strategies for optimum H-suppressing performance for an α-Al2O3 HPB are proposed. PMID:25026027

  14. Regeneration of Rhizophora mucronata (Lamk.) in degraded mangrove forest: Lessons from point pattern analyses of local tree interactions

    Science.gov (United States)

    Olagoke, Adewole O.; Bosire, Jared O.; Berger, Uta

    2013-07-01

    Spatial structural patterns emerging from local tree interactions influence growth, mortality and regeneration processes in forest ecosystems, and decoding them enhance the understanding of ecological mechanisms affecting forest regeneration. Point-Patterns analysis was applied for the very first time to mangrove ecology to explore the spatial structure of Rhizophora mucronata regeneration in a disturbed mangrove forest; and the pattern of associations of juvenile-adult trees. R. mucronata trees were mapped in plots of 50 m × 10 m located at the seaward, central and landward edge along 50 m wide transect in the forest, and the mapped patterns were analysed with pair correlation and mark-connection functions. The population density of R. mucronata differed along the tidal gradient with the highest density in the central region, and the least near the shoreline. The study revealed that short distance propagule dispersal, resulting in the establishment of juveniles in closed distance to the mother trees, might not be the driving force for distribution of this species. The spatial structural pattern of R. mucronata population along tidal gradient showed a characteristic spatial aggregation at small scale, but randomly distributed as the distances become larger. There was a distinct spatial segregation between recruits and adult trees, and hence spatially independent. Though, adult-adult trees associations did not show a clear spatial segregation pattern; the recruit-recruit species associations exhibited significant clustering in space. Although habitat heterogeneity might be responsible for the local scale aggregation in this population, the effect of plant-plant conspecific interactions is more probable to inform the long-term structure and dynamics of the population of R. mucronata, and ditto for the entire forest.

  15. High power X-band RF test stand development and high power testing of the CLIC crab cavity

    OpenAIRE

    Woolley, Benjamin

    2015-01-01

    This thesis describes the development and operation of multiple high power X-band RF test facilities for high gradient acceleration and deflecting structures at CERN, as re-quired for the e+ e- collider research programme CLIC (Compact Linear Collider). Signif-icant improvements to the control system and operation of the first test stand, Xbox-1 are implemented. The development of the second X-band test stand at CERN, Xbox-2 is followed from inception to completion. The LLRF (Low Level Radio ...

  16. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  17. The interaction of point defects with line dislocations in HVEM [high voltage electron microscope] irradiated Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    This paper presents results of a study of the interaction of point defects produced by high voltage electron microscope (HVEM) irradiation with pre-existing dislocations in austenitic Fe-15% ampersand 25%Ni-17%Cr alloys, aimed at the determination of the mechanisms of climb of dissociated dislocations. Dislocations were initially characterized at sub-threshold voltages (here 200kV) using the weak-beam technique. These dislocations were then irradiated with 1MeV electrons in the Argonne HVEM before being returned to a lower voltage microscope for post-irradiation characterization. Interstitial climb was seen only at particularly favorable sites, such as pre-existing jogs, whilst vacancies clustered near dislocations, forming stacking fault tetrahedra (SFT). Partial separations were also observed to have decreased after irradiation. The post-irradiation configuration was found to depend strongly on both dislocation character and pre-irradiation dislocation configuration. These results, and their relevance to the void swelling problem, are discussed. 52 refs., 8 figs

  18. Onset of deconfinement and search for the critical point of strongly interacting matter at CERN SPS energies

    CERN Document Server

    Rybczyński, Maciej

    2014-01-01

    The exploration of the QCD phase diagram particularly the search for a phase transition from hadronic to partonic degrees of freedom and possibly a critical endpoint, is one of the most challenging tasks in present heavy-ion physics. As observed by the NA49 experiment, several hadronic observables in central Pb+Pb collisions at the CERN SPS show qualitative changes in their energy dependence. These features are not observed in elementary interactions and indi- cate the onset of a phase transition in the SPS energy range. The existence of a critical point is expected to result in the increase of event-by-event fluctuations of various hadronic observables provided that the freeze-out of the measured hadrons occurs close to its location in the phase di- agram and the evolution of the final hadron phase does not erase the fluctuations signals. Further information about the existence and nature of a phase transition in the SPS energy range can be gained from the studies of event-by-event fluctuations of final stat...

  19. PACMAN STUDY OF FSI AND MICRO-TRIANGULATION FOR THE PRE-ALIGNMENT OF CLIC

    CERN Document Server

    Kamugasa, William Solomon

    2015-01-01

    The alignment precision of linear colliders is extremely demanding owing to the very narrow beam size at the interaction point. Unlike circular colliders, particles in linear colliders have only one chance to collide and are hence tightly focused to maximise the number of interactions per collision. The PACMAN* project is dedicated to study the integration of both fiducialization and alignment of the components on a common support. FSI (Frequency Scanning Interferometry) and Micro-triangulation will contribute to this goal. FSI realized by Etalon AG’s Absolute Multiline system and Micro-triangulation implemented by QDaedalus system developed at ETH Zurich offer precision of 0.5 μm/m and 2.4 μm/m respectively. However, these systems need to be improved in order to provide the necessary geometric information via distance measurements (multilateration) and angle measurements (triangulation), respectively. The paper describes the current status and the future developments of Absolute Multiline and QDaedalus, ...

  20. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  1. Influence of high hydrostatic pressure on the vibrational spectrum of an edge dislocation and its dynamic interaction with point defects

    Science.gov (United States)

    Malashenko, V. V.; Belykh, N. V.

    2013-03-01

    The slip of a single edge dislocation in an elastic field of point defects chaotically distributed over a crystal with allowance for a high hydrostatic pressure has been studied theoretically. The numerical estimations have demonstrated that hydrostatic compression of some metals and alloys increases the dislocation drag force by point defects in them by several tens of percent.

  2. Analytical considerations for linear and nonlinear optimization of the TME cells. Application to the CLIC pre-damping rings

    CERN Document Server

    Fanouria, Antoniou

    2014-01-01

    The theoretical minimum emittance cells are the optimal configurations for achieving the absolute minimum emittance, if specific optics constraints are satisfied at the middle of the cell's dipole. Linear lattice design options based on an analytical approach for the theoretical minimum emittance cells are presented in this paper. In particular the parametrization of the quadrupole strengths and optics functions with respect to the emittance and drift lengths is derived. A multi-parametric space can be then created with all the cell parameters, from which one can chose any of them to be optimized. An application of this approach are finally presented for the linear and non-linear optimization of the CLIC Pre-damping rings.

  3. Disentangling phase transitions and critical points in the proton–neutron interacting boson model by catastrophe theory

    Energy Technology Data Exchange (ETDEWEB)

    García-Ramos, J.E., E-mail: enrique.ramos@dfaie.uhu.es [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Unidad Asociada de la Universidad de Huelva al IEM (CSIC), Madrid (Spain); Arias, J.M., E-mail: ariasc@us.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apdo 1065, 41080 Sevilla (Spain); Unidad Asociada de la Universidad de Sevilla al IEM (CSIC), Madrid (Spain); Dukelsky, J., E-mail: dukelsky@iem.cfmac.csic.es [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)

    2014-09-07

    We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2). Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.

  4. Disentangling phase transitions and critical points in the proton–neutron interacting boson model by catastrophe theory

    International Nuclear Information System (INIS)

    We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2). Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe

  5. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretched-wire RF measurements

    Science.gov (United States)

    Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred

    2015-09-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  6. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretched-wire RF measurements

    International Nuclear Information System (INIS)

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method. (paper)

  7. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  8. Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area

    CERN Document Server

    Meyer, Sebastian; Rössler, Wulf; Held, Leonhard

    2015-01-01

    Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of genera...

  9. Modified interactions among globular proteins below isoelectric point in the presence of mono-, di- and tri-valent ions: A small angle neutron scattering study

    Science.gov (United States)

    Das, Kaushik; Kundu, Sarathi; Mehan, Sumit; Aswal, V. K.

    2016-02-01

    Both short range attraction and long range electrostatic repulsion exist among globular protein Bovine Serum Albumin in solution below its isoelectric point (pI ≈ 4.8). At pD ≈ 4.0, below pI, protein has a net positive surface charge although local charge inhomogeneity presents. Small angle neutron scattering study reveals that in the presence of both mono-(Na+) and di-(Ni2+) valent ions attractive interaction increases and repulsive interaction decreases with the increase of salt concentration. However, for tri-valent (Fe3+) ions, both attractive and repulsive interaction increases with increasing salt concentration but the relative strength of repulsion is more than the attraction.

  10. Measurement of Higgs couplings and mass in e+e- collisions at CLIC in the sqrt(s) range of 350 GeV - 3 TeV

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Tomáš

    Trieste: S I S S A, 2013, s. 1-7, 295. ISSN 1824-8039. [EPS-HEP 2013 - The European Physical Society Conference on High Energy Physics 2013. Stockholm (SE), 17.07.2013- 24.07.2013] Institutional support: RVO:68378271 Keywords : Higgs boson * CLIC * CERN * Higgs branching ratios * Higgs mass * linear accelerator Subject RIV: BF - Elementary Particles and High Energy Physics http://pos.sissa.it/archive/conferences/180/295/EPS-HEP%202013_295.pdf

  11. Microscopic foundations of some doubly even Ru and Pd nuclei by the point of view of interacting boson model

    International Nuclear Information System (INIS)

    In the present article, we suggested the most appropriate Hamiltonian that is needed for present calculations of nuclei at the onset of the deformed region by the view of interacting boson model (IBM-2). B(E2) transition probabilities and mixing ratios of some doubly even Ru and Pd nuclei were calculated. The results were compared with the previous experimental and theoretical data and it is observed that they are in good agreement

  12. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  13. Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions.

    Science.gov (United States)

    Gibbs, G V; Cox, D F; Rosso, K M; Ross, N L; Downs, R T; Spackman, M A

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, rho(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, rho(rc), the Laplacian, triangle down2rho(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of rho(rc) and triangle down2rho(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of rho(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the high-spin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the rho(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite

  14. Observations of internal solitary wave reflection at a step-like submarine bank and strong oblique interaction at Race Point Channel, (Cape Cod).

    Science.gov (United States)

    da Silva, Jose C. B.; Grimshaw, Roger H. J.; Magalhaes, Jorge M.

    2010-05-01

    A recent study revealed that Race Point Channel (in Cape Cod, Massachusetts) is a hotspot of internal solitary wave generation. SAR images suggest that the waves are generated within the channel (which has a flat bottom) during the ebb phase of the tide (flowing offshore) and propagate upstream during the initial stages of their formation. Some of these waves propagate into Massachusetts Bay (further North) and interact with the well known Stellwagen Bank internal waves that are generated on the lee-side of the Bank. The southern flank of Stellwagen Bank has very sharp bathymetric gradients and can be considered as a vertical step. Here we discuss the results of analysis of 25 TerraSAR-X radar images (in very high spatial resolution, 3 meters) and a collection of ENVISAT/ERS tandem mission acquisitions (separated in time by approximately 30 minutes) that reveal details about internal wave reflection at the southern flank of Stellwagen Bank. The SAR data also show transmission of internal waves over the Bank and subsequent interaction with lee-waves generated at the eastern side of Stellwagen Bank. The radar backscatter profiles are compared with theory of the transformation of a weakly nonlinear interfacial solitary wave in a two-layer model over a step. The coefficients of wave reflection and transmission are calculated based on typical stratification of the region and assuming linear theory of long interfacial waves. In addition, collision of reflected waves from the Bank with internal waves generated at the Race Point channel (one tidal cycle after) has been occasionally observed. The radar backscatter profiles suggest that the total wave amplitude during the interaction is greater than that obtained by simply adding the individual solitary wave amplitudes, which is in agreement with the theory of obliquely interacting solitary waves at a near critical angle (150°). This may imply localized turbulent mixing as a result of internal solitary wave interaction at

  15. X-ray and optical study on point defect formation and interaction under irradiation adn doping of KCl

    International Nuclear Information System (INIS)

    Optical and X-ray diffuse scattering methods have been applied to investigate structural changes, taking place in KCl crystals during irradiation with γ-quanta and doping with barium. It is shown that γ-irradiation of ''pure'' and doped KCl crystals mainly leads to formation of F-centers and spherical vacancy complexes. F-center concentration in irradiated addition crystals (3x10-6) has turned out to be 25% lower, than in irradiated pure ones (4x10-6), which is connected with interaction of radiation and addition defects. The type of defects, causing assymetry in the distribution of diffuse scattering has been determined. Appearance of scattering ability modulation over direction during irradiation of KCl pure crystals has been found. Critical radius of spherical complexes formed during irradiation has been estimated, it appeared to be 2.5 a, where a is a lattice period

  16. Benchmark calculations of the complete configuration-interaction limit of Born–Oppenheimer diagonal corrections to the saddle points of isotopomers of the H + H2 reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, Steven L.; Schwenke, David; Peterson, Kirk A.

    2005-06-08

    We present a detailed ab initio study of the effect that the Born–Oppenheimer diagonal correction (BODC) has on the saddle point properties of the H3 system and its isotopomers. Benchmark values are presented that are estimated to be within 0.1 cm–1 of the complete configuration interaction limit. We consider the basis set and correlation treatment requirements for accurate BODC calculations, and both are observed to be more favorable than for the Born–Oppenheimer energies. The BODC raises the H + H2 barrier height by 0.1532 kcal/mol and slightly narrows the barrier—with the imaginary frequency increasing by ~2%.

  17. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material: A speculative approach

    Science.gov (United States)

    Goesele, U.; Ast, D. G.

    1983-01-01

    Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  18. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material. Annual report, September 1982-September 1983

    Energy Technology Data Exchange (ETDEWEB)

    Goesele, U.; Ast, D.G.

    1983-10-01

    This report first provides some background information on intrinsic point defects, and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. We discuss the co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. We assume that the self-interstitial content of these agglomerates determines their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high-temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. It is suggested that oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO/sub 2/ precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO/sub 2/-Si interface of the precipates gives rise to a continuum of donor states and that these interface states are responsible for at least part of the light-enhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  19. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  20. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  1. Effect of axial ligation or pi-pi-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; Zandler, Melvin E; McCarty, Amy L; Sandanayaka, Atula S D; Araki, Yasuyaki; Ito, Osamu

    2005-07-18

    Two types of structurally well-defined, self-assembled zinc porphyrin-fullerene conjugates were formed by "two-point" binding strategies to probe the effect of axial ligation or pi-pi-type interactions on the photochemical charge stabilization in the supramolecular dyads. To achieve this, meso-tetraphenylporphyrin was functionalized to possess one or four [18]crown-6 moieties at different locations on the porphyrin macrocycle while fullerene was functionalized to possess an alkyl ammonium cation, and a pyridine or phenyl entities. As a result of the crown ether-ammonium cation complexation, and zinc-pyridine coordination or pi-pi-type interactions, stable zinc porphyrin-fullerene conjugates with defined distance and orientation were formed. Evidence for the zinc-pyridine complexation or pi-pi-type interactions was obtained from the spectral and computational studies. Steady-state and time-resolved emission studies revealed efficient quenching of the zinc-porphyrin singlet excited state in these dyads, and the measured rates of charge separation, k(CS) were found to be slightly better in the case of the dyads held by axial coordination and crown ether-cation complexation. Nanosecond transient absorption studies provided evidence for the electron transfer reactions, and these studies also revealed charge stabilization in these dyads. The lifetimes of the radical ion pairs were found to depend upon the type of porphyrins utilized to form the dyads, that is, porphyrin possessing the crown ether moiety at the ortho position of one of the phenyl rings yielded prolonged charge stabilized states. Addition of pyridine to the supramolecular dyads eliminated the zinc-pyridine coordination or pi-pi-type interactions of the "two-point" bound systems due to the formation of a new zinc-pyridine axial bond thus giving a unique opportunity to probe the effect of axial coordination or pi-pi interactions on k(CS) and k(CR). Under these conditions, the measured electron transfer rates

  2. Measurement of the forward charged particle pseudorapidity density in pp collisions at √s=8 TeV using a displaced interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G. [INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Aspell, P. [CERN, Geneva (Switzerland); Atanassov, I. [CERN, Geneva (Switzerland); INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Avati, V.; Baechler, J. [CERN, Geneva (Switzerland); and others

    2015-03-17

    The pseudorapidity density of charged particles dN{sub ch}/dη is measured by the TOTEM experiment in proton–proton collisions at √s=8 TeV within the range 3.9<η<4.7 and -6.95<η<-6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96–97 % of the inelastic proton–proton interactions. The measurement reported here considers charged particles with p{sub T}>0 MeV/c, produced in inelastic interactions with at least one charged particle in -7<η<-6 or 3.7<η<4.8. The dN{sub ch}/dη has been found to decrease with |η|, from 5.11 ± 0.73 at η=3.95 to 1.81 ± 0.56 at η=-6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement.

  3. Measurement of the forward charged particle pseudorapidity density in pp collisions at √(s) = 8 TeV using a displaced interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G. [Bulgarian Academy of Sciences, INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Aspell, P. [CERN, Geneva (Switzerland); Atanassov, I. [CERN, Geneva (Switzerland); Bulgarian Academy of Sciences, INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Avati, V. [CERN, Geneva (Switzerland); Baechler, J. [CERN, Geneva (Switzerland); Berardi, V. [INFN Sezione di Bari, Bari (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Berretti, M. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); CERN, Geneva (Switzerland); Bossini, E. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Bottigli, U. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Bozzo, M. [INFN Sezione di Genova, Genoa (Italy); Universita degli Studi di Genova, Genoa (Italy); Bruecken, E. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Buzzo, A. [INFN Sezione di Genova, Genoa (Italy); Cafagna, F.S. [INFN Sezione di Bari, Bari (Italy); Catanesi, M.G. [INFN Sezione di Bari, Bari (Italy); Covault, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Csanad, M. [MTA Wigner Research Center, RMKI, Budapest (Hungary); Eoetvoes University, Department of Atomic Physics, Budapest (Hungary); Csoergo, T. [MTA Wigner Research Center, RMKI, Budapest (Hungary); Deile, M. [CERN, Geneva (Switzerland); Doubek, M. [Czech Technical University, Prague (Czech Republic); Eggert, K. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Eremin, V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg (Russian Federation); Ferro, F. [INFN Sezione di Genova, Genoa (Italy); Fiergolski, A. [INFN Sezione di Bari, Bari (Italy); Warsaw University of Technology, Warsaw (Poland); Garcia, F. [Helsinki Institute of Physics, Helsinki (Finland); Georgiev, V. [University of West Bohemia, Plzen (Czech Republic); Giani, S. [CERN, Geneva (Switzerland); Grzanka, L. [AGH University of Science and Technology, Krakow (Poland); Polish Academy of Science, Institute of Nuclear Physics, Krakow (Poland); Hammerbauer, J. [University of West Bohemia, Plzen (Czech Republic); Heino, J. [Helsinki Institute of Physics, Helsinki (Finland); Hilden, T. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Karev, A. [CERN, Geneva (Switzerland); Kaspar, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kopal, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kundrat, V. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Lami, S. [INFN Sezione di Pisa, Pisa (Italy); Latino, G. [Universita degli Studi di Siena (Italy); Gruppo Collegato INFN di Siena, Siena (Italy); Lauhakangas, R. [Helsinki Institute of Physics, Helsinki (Finland); Leszko, T. [Warsaw University of Technology, Warsaw (Poland); Lippmaa, E. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Lippmaa, J. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Lokajicek, M.V. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Losurdo, L. [Universita degli Studi di Siena (IT); Gruppo Collegato INFN di Siena, Siena (IT); Lo Vetere, M. [INFN Sezione di Genova, Genoa (IT); Universita degli Studi di Genova, Genoa (IT); Lucas Rodriguez, F. [CERN, Geneva (CH); Macri, M. [INFN Sezione di Genova, Genoa (IT); Maeki, T. [Helsinki Institute of Physics, Helsinki (FI); Mercadante, A. [INFN Sezione di Bari, Bari (IT); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (IT); CERN, Geneva (CH); Minutoli, S. [INFN Sezione di Genova, Genoa (IT); Nemes, F. [MTA Wigner Research Center, RMKI, Budapest (HU)

    2015-03-01

    The pseudorapidity density of charged particles dN{sub ch}/dη is measured by the TOTEM experiment in proton-proton collisions at √(s) = 8 TeV within the range 3.9 < η < 4.7 and -6.95 < η < -6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96-97 % of the inelastic proton-proton interactions. The measurement reported here considers charged particles with p{sub T} > 0 MeV/c, produced in inelastic interactions with at least one charged particle in -7 < η < -6 or 3.7 < η < 4.8. The dN{sub ch}/dη has been found to decrease with vertical stroke η vertical stroke, from 5.11 ± 0.73 at η = 3.95 to 1.81 ± 0.56 at η = -6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement. (orig.)

  4. Measurement of the forward charged particle pseudorapidity density in pp collisions at √s=8 TeV using a displaced interaction point

    International Nuclear Information System (INIS)

    The pseudorapidity density of charged particles dNch/dη is measured by the TOTEM experiment in proton–proton collisions at √s=8 TeV within the range 3.9<η<4.7 and -6.95<η<-6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96–97 % of the inelastic proton–proton interactions. The measurement reported here considers charged particles with pT>0 MeV/c, produced in inelastic interactions with at least one charged particle in -7<η<-6 or 3.7<η<4.8. The dNch/dη has been found to decrease with |η|, from 5.11 ± 0.73 at η=3.95 to 1.81 ± 0.56 at η=-6.925. Several Monte Carlo generators are compared to the data and are found to be within the systematic uncertainty of the measurement

  5. Interaction of cationic dodecyl-trimethyl-ammonium bromide with oxy-HbGp by isothermal titration and differential scanning calorimetric studies: Effect of proximity of isoelectric point.

    Science.gov (United States)

    Alves, Fernanda Rosa; Carvalho, Francisco Adriano O; Carvalho, José Wilson P; Tabak, Marcel

    2016-04-01

    In this work, isothermal titration and differential scanning calorimetric methods, in combination with pyrene fluorescence emission and dynamic light scattering have been used to investigate the interaction of dodecyltrimethylammonium bromide (DTAB) with the giant extracellular Glossoscolex paulistus hemoglobin (HbGp) in the oxy-form, at pH values around the isoelectric point (pI ≈ 5.5). Our ITC results have shown that the interaction of DTAB with the hemoglobin is more intense at pH 7.0, with a smaller cac (critical aggregation concentration) value. The increase of protein concentration does not influence the cac value of the interaction, at both pH values. Therefore, the beginning of the DTAB-oxy-HbGp premicellar aggregates formation, in the cac region, is not affected by the increase of protein concentration. HSDSC studies show higher Tm values at pH 5.0, in the absence and presence of DTAB, when compared with pH 7.0. Furthermore, at pH 7.0, an aggregation process is observed with DTAB in the range from 0.75 to 1.5 mmol/L, noticed by the exothermic peak, and similar to that observed for pure oxy-HbGp, at pH 5.0, and in the presence of DTAB. DLS melting curves show a decrease on the hemoglobin thermal stability for the oxy-HbGp-DTAB mixtures and formation of larger aggregates, at pH 7.0. Our present data, together with previous results, support the observation that the protein structural changes, at pH 7.0, occur at smaller DTAB concentrations, as compared with pH 5.0, due to the acidic pI of protein that favors the oxy-HbGp-cationic surfactant interaction at neutral pH. PMID:26574155

  6. Benchmark calculations of the complete configuration-interaction limit of Born-Oppenheimer diagonal corrections to the saddle points of isotopomers of the H +H2 reaction

    Science.gov (United States)

    Mielke, Steven L.; Schwenke, David W.; Peterson, Kirk A.

    2005-06-01

    We present a detailed ab initio study of the effect that the Born-Oppenheimer diagonal correction (BODC) has on the saddle-point properties of the H3 system and its isotopomers. Benchmark values are presented that are estimated to be within 0.1cm-1 of the complete configuration-interaction limit. We consider the basis set and correlation treatment requirements for accurate BODC calculations, and both are observed to be more favorable than for the Born-Oppenheimer energies. The BODC raises the H+H2 barrier height by 0.1532kcal/mol and slightly narrows the barrier—with the imaginary frequency increasing by ˜2%.

  7. The use of linear expressions of solute boiling point versus retention to indicate special interactions with the molecular rings of modified cyclodextrin phases in gas chromatography

    Science.gov (United States)

    Betts

    2000-08-01

    The boiling points (degrees C, 1 x 10) of diverse C10 polar solutes from volatile oils are set against their relative retention times versus n-undecane to calculate linear equations for 12 commercial modified cyclodextrin (CD) capillary phases. Ten data points are considered for each CD, then solutes are rejected until 5 or more remain that give an expression with a correlation coefficient of at least 0.990 and a standard deviation of less than 5.5. Three phases give almost perfect correlation, and 3 other CDs have difficulty complying. Solutes involved in the equations (most frequently cuminal, linalol, and carvone) are presumed to have a 'standard' polar transient interaction with the molecular rings of the CDs concerned. Several remaining solutes (mostly citral, fenchone, and menthol) exhibit extra retention over the calculated standard (up to 772%), which is believed to indicate a firm 'host' CD or 'guest' solute molecular fit in some cases. Other solutes show less retention than calculated (mostly citronellal, citronellol, estragole, and pulegone). This suggests rejection by the CD, which behaves merely as a conventional stationary phase to them. The intercept constant in the equation for each phase is suggested to be a numerical relative polarity indicator. These b values indicate that 3 hydroxypropyl CDs show the most polarity with values from 28 to 43; and CDs that are fully substituted with inert groups fall in the range of 15 to 20. PMID:10955511

  8. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis.

    Science.gov (United States)

    Shan, B; Durfee, T; Lee, W H

    1996-01-01

    The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression. Images Fig. 3 Fig. 4 PMID:8570615

  9. Gas Diffusion in Metals: Fundamental Study of Helium-Point Defect Interactions in Iron and Kinetics of Hydrogen Desorption from Zirconium Hydride

    Science.gov (United States)

    Hu, Xunxiang

    The behavior of gaseous foreign species (e.g., helium and hydrogen), which are either generated, adsorbed or implanted within the structural materials (e.g., iron and zirconium) exposed to irradiation environments, is an important and largely unsolved topic, as they intensively interact with the irradiation-induced defects, or bond with the lattice atoms to form new compounds, and impose significant effects on their microstructural and mechanical properties in fission and fusion reactors. This research investigates two cases of gas diffusion in metals (i.e., the helium-point defect interactions in iron and kinetics of hydrogen desorption from zirconium hydride) through extensive experimental and modeling studies, with the objective of improving the understanding of helium effects on the microstructures of iron under irradiation and demonstrating the kinetics of hydrogen diffusion and precipitation behavior in zirconium that are crucial to predict cladding failures and hydride fuel performance. The study of helium effects in structural materials aims to develop a self-consistent, experimentally validated model of helium---point defect, defect cluster and intrinsic defects through detailed inter-comparisons between experimental measurements on helium ion implanted iron single crystals and computational models. The combination of thermal helium desorption spectrometry (THDS) experiment with the cluster dynamic model helps to reveal the influence of impurities on the energetics and kinetics of the He-defect interactions and to realize the identification of possible mechanisms governing helium desorption peaks. Positron annihilation spectroscopy is employed to acquire additional information on He-vacancy cluster evolution, which provides an opportunity to validate the model qualitatively. The inclusion of He---self-interstitial clusters extends the cluster dynamic model while MD simulations explore the effects of dislocation loops on helium clustering. In addition, the

  10. A study of the point-like interactions of the photon using energy-flows in photo- and hadro-production for incident energies between 65 and 170 GeV

    International Nuclear Information System (INIS)

    Energy-flow distributions for charged hadrons from interactions of photons, pions and kaons on hydrogen are presented as functions of ΣpT2 in the event plane. Data cover the range 0.0T2in2 and 0.0FT2in for the photon-induced data. Using the hadron-induced data to parameterise the hadronic behaviour of the photon, the differences between cross sections are used to measure the contribution of the point-like photon interactions. Quantitative calculations of the point-like photon interactions using the Lund Monte-Carlo program LUCIFER, based on QCD, are in agreement with the data. (orig.)

  11. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    , and demonstrated in public settings. We then describe INTERACT, a proposed research project that stages the robotic marionettes in a live performance. The interdisciplinary project brings humanities research to bear on scientific and technological inquiry, and culminates in the development a live......This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  12. Measurement of the branching ratios for the Standard Model Higgs decays into muon pairs and into Z boson pairs at a 1.4 TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)701211; Bozovic-Jelisavcic, Ivanka; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2016-01-01

    The measurement of the Higgs production cross-section times the branching ratios for its decays into μ+μ- and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e+e- collisions at 1.4 TeV centre-of-mass energy. Analyses for both decay channels are based on a full simulation of the CLIC_ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab 1 and unpolarised beams are assumed. For the H-->ZZ* decay, the purely hadronic final state (ZZ*--> qq ̄qq ̄) is considered as well as ZZ* decays into two jets and two leptons (ZZ*--> qq ̄l+l- ). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching fraction for decay into a Z boson pair times the Hi...

  13. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as...

  14. Arboreal ant colonies as 'hot-points' of cryptic diversity for myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with its associates.

    Directory of Open Access Journals (Sweden)

    Gabriela Pérez-Lachaud

    Full Text Available INTRODUCTION: Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. MATERIALS AND METHODS: We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. RESULTS: We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. CONCLUSIONS: Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as 'hot-points' of biodiversity that urgently require special attention as a component of conservation and management

  15. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  16. A theology of matter. The strong interaction at strong resonance at the meeting point of I and not-I. Conjectures about oscillating strings and fluctuating vacuum energy

    International Nuclear Information System (INIS)

    This book shows that matter and consciousness are intertwined and mutually produce. Quantum vacuum fluctuations ensure that the latent energy of each event is present as zero-point energy simultaneously at all points of the cosmos.

  17. Tipping Point

    Medline Plus

    Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...

  18. Brazing of Mo to a CuZr alloy for the production of bimetallic raw materials for the CLIC accelerating structures

    CERN Document Server

    Salvo, M; Heikkinen, Samuli; Salvo, Milena; Casalegno, Valentina; Sgobba, Stefano; Rizzo, Stefano; Izquierdo, Gonzalo Arnau; Taborelli, Mauro

    2010-01-01

    Future linear accelerators, as CLIC (Compact Linear Collider), are extremely demanding in terms of material properties. Traditionally accelerating structure is made of brazed OFE copper parts. For the high conducting regions submitted to mechanical fatigue, CuZr would represent an improved selection than pure copper while for regions where the highest electric field is applied a refractory metal, i.e. Mo, could result in a better performance. The feasibility of joining such materials, namely CuZr (UNS C15000) and pure Mo has been investigated. The joining method developed and investigated here consists in a vacuum brazing process exploiting a Cu-based brazing filler applied under appropriate vacuum conditions. Apparent shear strength (adapted from ASTM B898) on the joined samples was about 200 MPa. (C) 2010 Elsevier B.V. All rights reserved.

  19. Evaluating spatial interaction of soil property with non‐point source pollution at watershed scale: The phosphorus indicator in Northeast China

    International Nuclear Information System (INIS)

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20–40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: ► Spatial dynamics of NPS phosphorus pollution with soil

  20. Tipping Point

    Medline Plus

    Full Text Available ... Tipping Point by CPSC Blogger September 22 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...

  1. Tipping Point

    Medline Plus

    Full Text Available ... Tipping Point by CPSC Blogger September 22 appliance child Childproofing CPSC danger death electrical fall furniture head ... see news reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The ...

  2. Turning Point

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Moves from the United States and North Korea give new impetus to nuclear disablement and U.S.-North Korea ties The tense situation surrounding denu-clearization on the Korean Peninsula has reached a turning point. On

  3. 补体成分 C3及其缺失突变体蛋白的表达及与 CLIC1蛋白共定位的研究%The expression of human complement component C3 and its deletion mutants and the colocalization with CLIC1

    Institute of Scientific and Technical Information of China (English)

    王二宁; 陈丹丹; 刘晓颖; 范礼斌

    2015-01-01

    目的:研究补体成分 C3及其缺失突变体 C3(1-840)、C3(824-1663)在真核细胞内的表达及与氯离子通道蛋白(CLIC1)的共定位。方法构建 pcDNA3.1-C3-FLAG、pcDNA3.1-C3(1-840)-FLAG、pcDNA3.1-C3(824-1663)-FLAG 三个真核表达质粒(缺失突变体根据 C3的结构域及其裂解断裂位置设计),并分别转染至 HEK 293T 细胞中, Western blot 检测表达情况;上述质粒分别瞬时单转至 COS7细胞和分别与 GFP-CLIC1共转至 COS7细胞内,观察共定位情况。结果成功构建带 FLAG 标签的 C3基因及其两个缺失突变体[C3(1-840)、C3(824-1663)]的真核表达载体, Western blot 结果显示它们在 HEK 293T 细胞中均能成功表达;免疫荧光显示它们在 COS7细胞中均主要分布于细胞质,且三个真核表达载体中只有 C3(824-1663)与 CLIC1有共定位。结论补体 C3及其缺失突变体 C3(1-840)和 C3(824-1663)在 HEK 293T、COS7细胞中均能高效表达,且主要分布在细胞质内,C3(824-1663)与 CLIC1蛋白有共定位。%Objective To study the expression and cell localization of complement component C3 and its deletion mutants C3(1-840)and C3(824-1663)in eukaryotic cells and the colocalization with CLIC1.Methods To con-struct three eukaryotic expression plasmids of pcDNA3.1-C3-FLAG,pcDNA3.1-C3(1-840)-FLAG and pcDNA3.1-C3(824-1663)-FLAG(according to C3 structure domain and splitting position).The plasmids were transfected into HEK 293T cells.Then the expression was detected by Western blot,and their cellular localization was detected in COS7 cells by fluorescence microscopy.Results The eukaryotic expression plasmids of pcDNA3.1-C3-FLAG, pcDNA3.1-C3(1-840)-FLAG and pcDNA3.1-C3(824-1663)-FLAG were constructed successfully,which could be expressed in HEK 293T and COS7 cells,and the cellular localization of C3 and C3(1-840),C3(824-1663)ap-peared similar,mainly in the cytoplasm,and only C3(824-1663)co

  4. EXPERIMENTAL TEST ON CONTROL POINTS MATERIALIZATION FOR THE STUDY OF VERTICAL MOVEMENTS OF SOIL AND ITS INTERACTIONS WITH GROUND WATER CONTENTS

    Directory of Open Access Journals (Sweden)

    L. Vittuari

    2014-01-01

    Starting from repeated precision levelling measurements, we verified which is the order of magnitude of movements of control points characterized by shallow foundations in cohesive soils, observing their behaviours at different depths, under simple and very common conditions such as the presence of periods of drought or rainfall. The results point-out movements in the order of 3–7 mm in the first meter of depth occurred in a week, during the transition between the period of summer drought and the first rains.

  5. Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: considerations related to the controversy regarding the Aharonov-Bohm and Aharonov-Casher phase shifts

    International Nuclear Information System (INIS)

    The classical electromagnetic interaction of a point charge and a magnet is discussed by first calculating the interaction of a point charge with a simple model magnetic moment and then suggesting a multiparticle limit. The Darwin-Lagrangian is used to analyse the electromagnetic behaviour of the model magnetic moment (composed of two oppositely charged particles of different masses in an initially circular Coulomb orbit) interacting with a passing point charge. Considerations of force, energy, momentum and centre of energy are treated through second order in 1/c. The changing magnetic moment is found to put a force back on a passing charge; this force is of order 1/c2 and depends upon the magnitude of the magnetic moment. The limit of a many-particle magnet arranged as a toroid is discussed. It is suggested that in the multiparticle limit, the electric fields of the passing charge are screened out of the body of the magnet while the magnetic fields of the passing charge penetrate into the body of the magnet. This is consistent with our understanding of the penetration of electromagnetic velocity fields into ohmic conductors. The proposed multiparticle limit is consistent with the conservation laws for energy and momentum, as well as constant motion of the centre of energy, and Newton's third law for the net Lorentz forces on the magnet and on the point charge. The work corresponds to a classical electromagnetic analysis of the interaction which is basic to understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase shifts and represents a refutation of the suggestions of Aharonov, Pearle and Vaidman

  6. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  7. Sequential Convex Programming for Power Set-point Optimization in a Wind Farm using Black-box Models, Simple Turbine Interactions, and Integer Variables

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Jørgensen, John Bagterp;

    2012-01-01

    We consider the optimization of power set-points to a large number of wind turbines arranged within close vicinity of each other in a wind farm. The goal is to maximize the total electric power extracted from the wind, taking the wake effects that couple the individual turbines in the farm into...... account. For any mean wind speed, turbulence intensity, and direction we find the optimal static operating points for the wind farm. We propose an iterative optimization scheme to achieve this goal. When the complicated, nonlinear, dynamics of the aerodynamics in the turbines and of the fluid dynamics...... describing the turbulent wind fields’ propagation through the farm are included in a highly detailed black-box model, numerical results for any given values of the parameter sets can easily be evaluated. However, analytic expressions for model representation in the optimization algorithms might be hard to...

  8. A rapid method for measuring local groundwater-surface water interactions and identifying potential non-point source pollution inputs to rivers

    OpenAIRE

    Butler, Christopher Aaron

    2009-01-01

    Agriculture in the Central Valley of California is a potential contributor of non-point source pollution to surface waters via the groundwater pathway. This work presents a relatively simple method and inexpensive apparatus for quantifying local groundwater discharge into rivers using heat as a tracer. Two transects along a known gaining reach of the Lower Merced River were used to evaluate the effectiveness of the groundwater discharge monitoring instruments, known as Temperat...

  9. Protein Interaction Profiling of the p97 Adaptor UBXD1 Points to a Role for the Complex in Modulating ERGIC-53 Trafficking*

    OpenAIRE

    Haines, Dale S.; Lee, J. Eugene; Beauparlant, Stephen L.; Kyle, Dane B.; den Besten, Willem; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Deshaies, Raymond J

    2012-01-01

    UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have pe...

  10. A Point-of-Sale Communications Campaign to Provide Consumers Safety Information on Drug-Dietary Supplement Interactions:A Pilot Study

    OpenAIRE

    Perlman, Adam I.; Lebow, David G.; Raphael, Karen; Ali, Ather; Simmons, Leigh Ann

    2013-01-01

    Concurrent use of dietary supplements with over-the-counter and prescription pharmaceuticals has become increasingly common, and with this trend, so has the incidence of adverse drug–supplement interactions. In the current market, consumers have no way to distinguish between safe and potentially harmful supplements. Thus, the primary objective of this study was to test the hypothesis that messages designed to increase consumers' awareness of potential health risks of concurrent use of dietary...

  11. Point Lepreau

    International Nuclear Information System (INIS)

    This brief pamphlet gives general information about the station. The Point Lepreau Nuclear Generating Station consists of a single CANDU 600 unit with a total net capacity of 630,000 kilowatts. This single reactor, the first nuclear installation in Atlantic Canada, is expected to supply about 20% of New Brunswick's electrical energy during the 1980's. The station is located on the Lepreau peninsula, overlooking the Bay of Fundy, 40 km southwest of Saint John on Route 790, off Highway 1. Construction of Point Lepreau began in May 1975 and was completed late in 1981. At the peak of construction activity in 1979, 3,300 workers were employed on the project. First power was produced in September 1982 and Lepreau began commercial operation early in 1983. Point Lepreau was built with provision for an additional 600 MW unit on the site and is essentially a duplicate of CANDU 600 reactors in Quebec, Argentina and Korea. Although started third, Lepreau was the first of these CANDU's in Canada and abroad to be licensed for operation, the first to achieve criticality (start-up), and the first to begin commercial operation. Lepreau is owned and operated by New Brunswick Power

  12. Jet Reconstruction and Kinematic Fitting of the Top Quark Pair Production at CLIC at √s = 3 TeV

    CERN Document Server

    Galy-Fajou, Theo; Bay, Aurelio

    Top quark physics, due to its possible link with new physics, is a critical topic now that the Standard Model has been experimentally verified. A complete method to reconstruct top quarks pairs at the proposed Compact LInear Collider project is presented here. In this study, MC generated events of e+e− → tt have been used to tune and optimize algorithms in order to reconstruct faithfully the decay products of the top quarks. An emphasis is made on the flavour identification of the jets since it is critical to identify correctly identify the jets to remove most of the background. The reconstructed jets are fitted to the topology with the KLFitter algorithms that have been adapted for CLIC. Using a multi-variable analysis, it finds the best permutation of jets with the best set of parameters using the kinematics of the event. The results of this technique applied on a sample of 49500 e+e− → tt events (corresponding to 850 fb−1 at √s = 3 TeV) is presented here.

  13. Beam instability induced by rf deflectors in the combiner ring of the CLIC test facility and mitigation by damped deflecting structures

    CERN Document Server

    Alesini, D; Biscari, C; Ghigo, A; Corsini, R

    2011-01-01

    In the CTF3 (CLIC test facility 3) run of November 2007, a vertical beam instability has been found in the combiner ring during operation. After a careful analysis, the source of the instability has been identified in the vertical deflecting modes trapped in the rf deflectors and excited by the beam passage. A dedicated tracking code that includes the induced transverse wakefield and the multibunch multipassage effects has been written and the results of the beam dynamics analysis are presented in the paper. The mechanism of the instability was similar to the beam breakup in a linear accelerator or in an energy recovery linac. The results of the code allowed identifying the main key parameters driving such instability and allowed finding the main knobs to mitigate it. To completely suppress such beam instability, two new rf deflectors have been designed, constructed, and installed in the ring. In the new structures the frequency separation between the vertical and horizontal deflecting modes has been increase...

  14. Thermal evaluation of different DC multi-conductor cable cross-sections and installation patterns for the CLIC drive-beam quadrupoles

    CERN Document Server

    Maglio, D

    2007-01-01

    The main goal of this study is to determine the thermal behaviour of different dc multi-conductor cable cross-sections and installations patterns for the CLIC drive beam quadrupoles loaded with increasing values of current intensity. A simplified two dimensional model of the heat transfer problem was prepared with a commercial CFD software, STAR-CD 4.2. The heat flux generated by Joule effect in conductors was estimated taking into account the current value per conductor and the temperature dependence of the copper electrical resistance. In parallel, a geometrical simplification of the problem has been done in order to be able to apply theoretical formulas which have been implemented by Microsoft Excel. Obtained results have been compared with those got by the dedicated software, showing between them a good correspondence for two-conductor cables and confirming, for this case, the rules given in the in the French norm NF C15-100. In case of multiconductor cables, attention is to be paid to the temperature lev...

  15. A study of the point-like interactions of the photon using energy-flows in photo- and hadro-production for incident energies between 65 and 170 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Apsimon, R.J.; Flower, P.S.; Hallewell, G.; Morris, J.A.G.; Morris, J.V.; Paterson, C.N.; Sharp, P.H. (Rutherford Appleton Lab., Chilton (United Kingdom)); Atkinson, M.; Brook, N.; Coyle, P.; Dickinson, B.; Donnachie, A.; Doyle, A.T.; Ellison, R.J.; Foster, J.M.; Hughes-Jones, R.E.; Ibbotson, M.; Kolya, S.D.; Lafferty, G.D.; McCann, H.; McManus, C.; Mercer, D.; Ottewell, P.J.; Reid, D.; Thompson, R.J.; Waterhouse, J. (Manchester Univ. (UK). Dept. of Physics (United Kingdom)); Baake, M.; Diekmann, B.; Gapp, C.; Gebert, F.; Heinloth, K.; Hoeger, C.; Holzkamp, A.; Holzkamp, S.; Jakob, H.P.; Joseph, D.; Kingler, J.; Koersgen, G.; Oedingen, R.; Paul, E.; Rotscheidt, H.; Soeldner-Rembold, S.; Weigend, A.S. (Bonn Univ. (Germany, F.R.). Physikalisches Inst. (Germany, F.R.)); Bagdasarian, L.S.; Danagulian, S.; Galumian, P.I.; Oganesian, A.G. (AN Armyanskoj SSR, Erevan. Inst. Fiziki (USSR)); Barberis, D.; Davenport, M.; Eades, J.; McClatchey, R. (European Organization for Nuclear Research, G; OMEGA Photon Collaboration

    1990-03-01

    Energy-flow distributions for charged hadrons from interactions of photons, pions and kaons on hydrogen are presented as functions of {Sigma}p{sub T}{sup 2} in the event plane. Data cover the range 0.0<{Sigma}p{sub T}{sup 2}{sub in}<10.0(GeV/c){sup 2} and 0.0point-like photon interactions. Quantitative calculations of the point-like photon interactions using the Lund Monte-Carlo program LUCIFER, based on QCD, are in agreement with the data. (orig.).

  16. Classical Interaction of a Magnet and a Point Charge: The Classical Electromagnetic Forces Responsible for the Aharonov-Bohm Phase Shift

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    A new classical electromagnetic analysis is presented suggesting that the Aharonov-Bohm phase shift is overwhelmingly likely to arise from a classical lag effect based upon classical electromagnetic forces. The analysis makes use of several aspects of classical electromagnetic theory which are unfamiliar to most physicists, including the Darwin Lagrangian, acceleration-based electric fields, internal electromagnetic momentum in a magnet, and a magnet model involving at least three mutually-interacting particles. Only when the acceleration-based electric forces acting on the passing charge are included do we find consistency with all the relativistic conservation laws: energy, linear momentum, angular momentum, and constant center-of-mass velocity. The electric forces on the passing charge lead to a lag effect which accounts quantitatively for the Aharonov-Bohm phase shift. Thus the classical analysis strongly suggests that the Aharonov-Bohm phase shift (observed when electrons pass a long solenoid which corre...

  17. Coupled Simulations of the Synchrotron Radiation and Induced Desorption Pressure Profiles for the HL-LHC Triplet Area and Interaction Points

    CERN Document Server

    Kersevan, R; Bregliozzi, G

    2014-01-01

    The HiLumi-LHC machine upgrade has officially started as an approved LHC project (see dedicated presentations at this conference on the subject). One important feature of the upgrade is the installation of very high-gradient triplet magnets for focusing the beams at the collision points of the two high-luminosity detectors ATLAS and CMS. Other important topics are new superconducting D1 and D2 magnets, installation of crab cavities and new tertiary collimators, and re-shuffling of the dispersion suppression area. Based on the current magnetic lattice set-up and beam orbits, a detailed study of the emission of synchrotron radiation (SR) and related photon-induced desorption (PID) has been carried out. A significant amount of SR photons are generated by the two off-axis beams in the common vacuum chamber of the triplet area, about 57 m in length. Ray-tracing Montecarlo codes Synrad+ and Molflow+ have been employed in this study. The related PID pressure profiles are shown, together with simulations using the co...

  18. Formations hybrides et interactions en ligne du point de vue de l'enseignant : pratiques, représentations, évolutions Blended learning and online interaction from the teacher's perspective: practice, representation and evolution

    Directory of Open Access Journals (Sweden)

    Christian Degache

    2008-10-01

    Full Text Available Les formations hybrides sont de plus en plus nombreuses dans le domaine des langues mais ne sont, une fois créées, pas toujours stables dans le temps. Devant ce constat, nous avons fait l'hypothèse, qui est au fondement du présent article, que ces évolutions sont liées au déroulement des interactions qui ont effectivement eu lieu dans le cadre de ces formations. Pour vérifier notre hypothèse, nous avons mené des entretiens, basés sur des questionnaires hétéro-administrés, avec 15 concepteurs de formations en langues pour spécialistes d'autres disciplines (Lansad conçues dans le cadre du projet Flodi. L'analyse des données ainsi obtenues a permis d'identifier les pratiques d'interaction, les représentations des concepteurs et les évolutions de formations hybrides. Elle montre que l'interaction effective est bien un facteur déterminant pour leur évolution. Par ailleurs, l'observation des évolutions passées, présentes ou futures nous a permis de distinguer quatre tendances des formations hybrides en langues : introductive (des Tice, optimisatrice, réorganisatrice et collaborative.Language training increasingly uses blended learning systems. One can state that the latter, once they are set up, often continue to be modified. We argue that these modifications are due to the interaction during the related training sessions. To verify our hypothesis we interviewed 15 designers of blended learning systems in the field of languages for specialists of other disciplines which are part of the Flodi-project, filling out questionnaires while interviewing them. An analysis of the data reveals interactional habits, course designers' representations, as well as past and foreseen modifications of the blended learning systems. The results show that interactions during training sessions did influence the evolution of the system. Moreover, we were able to distinguish between four tendencies of past, present and future modification of the

  19. From gestural pointing to vocal pointing in the brain

    OpenAIRE

    Loevenbruck, Hélène; Dohen, Marion; Vilain, Coriandre

    2008-01-01

    International audience Deixis, or pointing, is the ability to draw the viewer/listener's attention to an object, a person, a direction or an event. Pointing is involved at different stages of human communication development, in multiple modalities: first with the eyes, then with the finger, then with intonation and finally with syntax. It is ubiquitous and probably universal in human interactions. The role of index-finger pointing in language acquisition suggests that it may be a precursor...

  20. Monte Carlo simulations to estimate the damage potential of electron beam and tests of beam loss detector based on quartz Cherenkov radiator read out by a silicon photomultiplier on CLIC Test Facility 3(CTF3)

    CERN Document Server

    Orfanelli, Styliani; Gazis, E

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at the development of an electron/positron linear collider with a centre of mass energy in the multi-TeV energy range. Each Linac will have a length of 21 km, which means that very high accelerating gradients (>100 MV/m) are required. To achieve the high accelerating gradients, a novel two-beam acceleration scheme, in which RF power is transferred from a high-current, low-energy drive beam to the low-current, high energy main accelerating beam is designed. A Beam Loss Monitoring (BLM) system will be designed for CLIC to meet the requirements of the accelerator complex. Its main role as part of the machine protection scheme will be to detect potentially dangerous beam instabilities and prevent subsequent injection into the main beam or drive beam decelerators. The first part of this work describes the GEANT4 Monte Carlo simulations performed to estimate the damage potential of high energy electron beams impacting a copper target. The second...

  1. Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

  2. SharePoint som applikationsplattform

    OpenAIRE

    Schedin Jigland, Johan

    2012-01-01

    SharePoint 2010 is a very complicated platform. In the following essay we try to figure out in which way SharePoint 2010 can be used as a application framework rather than retail product. Different strengths and weaknesses are considered and we try to look into which areas SharePoint 2010 is a good choice for development. SharePoint has shown to be a compentent and useble as an application framework for interactive web applications. Though it is not suitable for all applications. I would like...

  3. Fermat's point from five perspectives

    Science.gov (United States)

    Park, Jungeun; Flores, Alfinio

    2015-04-01

    The Fermat point of a triangle is the point such that minimizes the sum of the distances from that point to the three vertices. Five approaches to study the Fermat point of a triangle are presented in this article. First, students use a mechanical device using masses, strings and pulleys to study the Fermat point as the one that minimizes the potential energy of the system. Second, students use soap films between parallel planes connecting three pegs. The tension on the film will be minimal when the sum of distances is minimal. Third, students use an empirical approach, measuring distances in an interactive GeoGebra page. Fourth, students use Euclidean geometry arguments for two proofs based on the Torricelli configuration, and one using Viviani's Theorem. And fifth, the kinematic method is used to gain additional insight on the size of the angles between the segments joining the Fermat point with the vertices.

  4. C. Petrone et al.: "Magnetic measurement of the model magnet QD0 designed for the CLIC final focus beam transport line." CERN TE-MSC Internal Note, EDMS Nr: 1184196

    CERN Document Server

    Arpaia, Pasquale; Petrone, Carlo; Russenschuck, Stephan; Walckiers, Louis

    2012-01-01

    This note presents the results of the magnetic measurements performed on QD0, model magnet for the final focus transport line for CLIC (Fig. 1). This high-gradient, hybrid quadrupole has a yoke length of 0.1 m and an aperture of 8.3 mm. ND2Fe14B Permanent magnet blocks provide a gradient of 150 T/m, which can be further increased to 530 T/m when the four coils are excited to 18.3 A. The request was to measure the strength of the field and the multipole coefficients at different currents. The measurement of the field strength, by means of the single stretched wire system, was done in December 2011 in the I8 laboratory. The measurement of the multipole was done by means of the oscillating wire system [1][2].

  5. Inhomogeneous Markov point processes by transformation

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Nielsen, Linda Stougaard

    2000-01-01

    We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach......, is that of exponential inhomogeneous Markov point processes. Statistical inference For such processes is discussed in some detail....

  6. Experiments of Laser Pointing Stability in Air and in Vacuum to Validate Micrometric Positioning Sensor

    CERN Document Server

    Stern, G; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2014-01-01

    Aligning accelerator components over 200m with 10 μm accuracy is a challenging task within the Compact Linear Collider (CLIC) study. A solution based on laser beam in vacuum as straight line reference is proposed. The positions of the accelerator’s components are measured with respect to the laser beam by sensors made of camera/shutter assemblies. To validate these sensors, laser pointing stability has to be studied over 200m. We perform experiments in air and in vacuum in order to know how laser pointing stability varies with the distance of propagation and with the environment. The experiments show that the standard deviations of the laser spot coordinates increase with the distance of propagation. They also show that the standard deviations are much smaller in vacuum (8 μm at 35m) than in air (2000 μm at 200m). Our experiment validates the concept of laser beam in vacuum with camera/shutter assembly for micrometric positioning over 35m. It also gives an estimation of the achievable precision.

  7. SPIRE Point Source Photometry

    CERN Document Server

    Pearson, Chris; North, Chris; Bendo, George; Conversi, Luca; Dowell, Darren; Griffin, Matt; Jin, Terry; Laporte, Nicolas; Papageorgiou, Andreas; Schulz, Bernhard; Shupe, Dave; Smith, Anthony J; Xu, Kevin

    2014-01-01

    The different algorithms appropriate for point source photometry on data from the SPIRE instrument on-board the Herschel Space Observatory, within the Herschel Interactive Processing Environment (HIPE) are compared. Point source photometry of a large ensemble of standard calibration stars and dark sky observations is carried out using the 4 major methods within HIPE: SUSSEXtractor, DAOphot, the SPIRE Timeline Fitter and simple Aperture Photometry. Colour corrections and effective beam areas as a function of the assumed source spectral index are also included to produce a large number of photometric measurements per individual target, in each of the 3 SPIRE bands (250, 350, 500um), to examine both the accuracy and repeatability of each of the 4 algorithms. It is concluded that for flux densities down to the level of 30mJy that the SPIRE Timeline Fitter is the method of choice. However, at least in the 250 and 350um bands, all 4 methods provide photometric repeatability better than a few percent down to at appr...

  8. Zero-point energy

    International Nuclear Information System (INIS)

    Recently, investigations of novel non-conventional sources of energy and propulsion technologies have led to the belief that vacuum fluctuations or zero-point energy (ZPE) can be tapped as an additional prime mover alongside fusion, fission, hydrocarbons, hydropower, geothermal and solar-based technologies. Only a handful of researchers have seriously investigated the possible use of vacuum fluctuation energy for power production and gravitational interaction and suggested methods of experimentation, among them, Vallee, Puthoff, Tchernetsky, and Alzofon. In theories ranging from advanced semi-classical treatments to quantum electrodynamics (QED) and dynamic nuclear orientation, they suggest several more or less practical approaches to interacting with vacuum fluctuation energy which may be undertaken with today's technology. Notwithstanding the paucity of consistent, repeatable results directly attributable to vacuum interactions, it is possible to outline the engineering tools and techniques required to begin to investigate ZPE. Extremely high frequency oscillations at high field strengths (Vallee), highly non-linear plasmas or arcs (Tchernetsky), super-high charge concentrations or field gradients (Puthoff), and dynamic magnetic resonance cooling of nuclei (Alzofon) are prime candidates for investigation at present. The paper attempts to draw together the most practical aspects of this, which is currently at a sufficiently advance stage to allow initial experiments to be designed. Only the essentials of the theories propounded will be presented, chiefly those aspects from which real-world physical apparatus and order-of-magnitude measurements can be deduced. The work of other researchers which may have a bearing on the subject will also be briefly touched upon

  9. 全球气候研究计划(WCRP)中的气候与冰冻圈项目(CliC): 冰冻圈与气候的优先研究领域%The World Climate Research Programme (WCRP) Climate and Cryosphere Project (CliC): Priority Studies of the Cryosphere and Climate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cryosphere is an integral part of the global climate system, however, many aspects of the cryosphere have not been fully covered within WCRP. Issues relating to potential changes in the climate cryosphere system become more and more important in order to describes research and coordination initiatives required to integrate fully studies of impact and response of the cryosphere to climate change. The article also indicates the recent progress of CliC, and its future plan.

  10. 'Click Rural' - the rural program for rural electrification: his effects and implications the western Parana, Brazil after 20 years later; O programa de eletrificacao rural 'Clic rural': seus efeitos e implicacoes na regiao oeste do Parana 20 anos depois

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Celso Eduardo Lins de [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos (FZEA). Dept. de Engenharia de Alimentos; Halmeman, Maria Cristina Rodrigues

    2006-07-01

    This study verified through a sampling the technical standard of attendance adopted by the greater program for rural electrification denominated 'Clic Rural' ever implanted in the state of Parana, Brazil, in the period of 1984-1992 at the concession area of COPEL - Parana Energy Company. The work was based on a field research with visits and a questionnaire applied of rural proprietaries.

  11. Articulation Points in Complex Networks

    CERN Document Server

    Tian, Liang; Shi, Da-Ning; Liu, Yang-Yu

    2016-01-01

    An articulation point in a network is a node whose removal disconnects the network. Those nodes play key roles in ensuring connectivity of many real-world networks, from infrastructure networks to protein interaction networks and terrorist communication networks. Despite their fundamental importance, a general framework of studying articulation points in complex networks is lacking. Here we develop analytical tools to study key issues pertinent to articulation points, e.g. the expected number of them and the network vulnerability against their removal, in an arbitrary complex network. We find that a greedy articulation point removal process provides us a novel perspective on the organizational principles of complex networks. Moreover, this process is associated with two fundamentally different types of percolation transitions with a rich phase diagram. Our results shed light on the design of more resilient infrastructure networks and the effective destruction of terrorist communication networks.

  12. Adaptive Pointing Design and Evaluation of a Precision Enhancing Technique for Absolute Pointing Devices

    OpenAIRE

    König, Werner A.; Gerken, Jens; Dierdorf, Stefan; Reiterer, Harald

    2009-01-01

    We present Adaptive Pointing, a novel approach to addressing the common problem of accuracy when using absolute pointing devices for distant interaction. First, we discuss extensively some related work concerning the problem-domain of pointing accuracy when using absolute or relative pointing devices. As a result, we introduce a novel classification scheme to more clearly discriminate between different approaches. Second, the Adaptive Pointing technique is presented and described in detail. ...

  13. Aesthetic interaction

    DEFF Research Database (Denmark)

    Petersen, Marianne Graves; Iversen, Ole Sejer; Krogh, Peter; Ludvigsen, Martin

    There is a growing interest in considering aesthetic aspects in the design of interactive systems. A set of approaches are emerging each representing different applications of the terminology as well as different inherent assumptions on the role of the user, designer and interaction ideals. In this...... paper, we use the concept of Pragmatist Aesthetics to provide a framework for distinguishing between different approaches to aesthetics. Moreover, we use our own design cases to illustrate how pragmatist aesthetics is a promising path to follow in the context of designing interactive systems, as it...... promotes aesthetics of use, rather than aesthetics of appearance. We coin this approach in the perspective of aesthetic interaction. Finally we make the point that aesthetics is not re-defining everything known about interactive systems. We provide a framework placing this perspective among other...

  14. Towards a quantification of stress corrosion mechanisms: numerical simulations of hydrogen-dislocations at the very crack tip; Vers une quantification des mecanismes de corrosion sous contrainte: simulations numeriques des interactions hydrogene-dislocations en pointe de fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chateau, J.P

    1999-01-05

    We discuss the respective roles played by anodic dissolution and hydrogen in SCC mechanisms of f.c.c. materials, by studying the fracture of copper in nitrite for which we compare the results with that previously obtained in 316L steel in hot chloride. It is surprising to note that even the crystallographies at the scale of the micron are different, the macroscopic inclination of the fracture surfaces are the same. In the case of 316L steel, the formation of strong pile-ups in the presence of hydrogen leads to a zigzag fracture along alternated slip planes in the most general case. In the absence of hydrogen, as in copper, this mechanism effectively disappears. Furthermore, numerical simulations of crack shielding by dislocations emitted on one plane predict the macroscopic inclination. It shows that it is due to the mere dissolution which confines slip activity at the very crack tip in f.c.c. materials. In order to quantify the mechanism involved in 316L steel, we developed simulations which numerically solve the coupled diffusion and elasticity equations for hydrogen in the presence of a crack and shielding dislocations. They reproduce the mechanisms of hydrogen segregation on edge dislocations and of a localised softening effect by decreasing pair interactions. These mechanisms lead to i) a localisation of hydrogen embrittlement along the activated slip planes, ii) an increase of the dislocation density in pile-ups, and iii) a decrease of the cross slip probability. These three factors enhance micro-fracture at the head of a pile-up, which is responsible of thezigzag fracture. Introducing the free surface effects for hydrogen, we point out a new mechanism: the inhibition of dislocation sources at the crack tip, which is relevant with the brittle fracture surfaces observed in some cases in 316L steel. The quantification of these different mechanisms allows to give a relation between the local fracture possibility and the macroscopic parameters. A general law for

  15. Point-Force Energy Coupling

    Science.gov (United States)

    Burton, Tristan; Squires, Kyle

    2005-11-01

    Fully resolved simulations of particle-laden turbulent flows are computationally expensive even with a single particle. Therefore, simulations of flows with realistic numbers of particles typically treat the disperse phase as point-particles and models are used to account for the interaction between the phases. The particle trajectories are determined using a Lagrangian particle equation of motion that accounts for the fluid forces. The effect of the particulate phase on the fluid is included using point-force momentum coupling, where the opposite of the force applied to each particle by the fluid is distributed back to fluid grid points in a local region. In this work, we perform direct numerical simulation (DNS) of a particle moving at a prescribed constant or time-dependent velocity through a stationary fluid, and use the resulting force history in a corresponding point-force simulation to study point-force energy coupling. The energy input from the moving particle and the fluid dissipation in the DNS are compared to corresponding quantities in the unresolved calculation. A range of particle Reynolds numbers and ratios of the particle diameter to the unresolved grid spacing are considered to determine the conditions under which point-force momentum coupling provides accurate energy coupling.

  16. Four Central Points About Coevolution

    OpenAIRE

    Thompson, John N.

    2010-01-01

    Much of evolution is about the coevolution of species with each other. In recent years, we have learned that coevolution is much more pervasive, dynamic, and relentless than we previously thought. There are four central points about coevolution that we should teach the next generation of students to help them understand the importance of the coevolutionary process in shaping the web of life. (1) Complex organisms require coevolved interactions to survive and reproduce. (2) Species-rich ecosys...

  17. Characterizing configurations of fire ignition points through spatiotemporal point processes

    Science.gov (United States)

    Comas, C.; Costafreda-Aumedes, S.; Vega-Garcia, C.

    2014-04-01

    Human-caused forest fires are usually regarded as unpredictable but often exhibit trends towards clustering in certain locations and periods. Characterizing such configurations is crucial for understanding spatiotemporal fire dynamics and implementing preventive actions. Our objectives were to analyse the spatiotemporal point configuration and to test for spatiotemporal interaction. We characterized the spatiotemporal structure of 984 fire ignition points in a study area of Galicia, Spain, during 2007-2011 by the K-Ripley's function. Our results suggest the presence of spatiotemporal structures for time lags of less than two years and ignition point distances in the range 0-12 km. Ignition centre points at time lags of less than 100 days are aggregated for any inter-event distance. This cluster structure loses strength as the time lag increases, and at time lags of more than 365 days this cluster structure is not significant for any lag distance. Our results also suggest spatiotemporal interdependencies at time lags of less than 100 days and inter-event distances of less than 10 km. At time lags of up to 365 days spatiotemporal components are independent for any point distance. These results suggest that risk conditions occur locally and are short-lived in this study area.

  18. On Partitioning Colored Points

    CERN Document Server

    Toda, Takahisa

    2010-01-01

    P. Kirchberger proved that, for a finite subset $X$ of $\\mathbb{R}^{d}$ such that each point in $X$ is painted with one of two colors, if every $d+2$ or fewer points in $X$ can be separated along the colors, then all the points in $X$ can be separated along the colors. In this paper, we show a more colorful theorem.

  19. Point cloud densification

    OpenAIRE

    Forsman, Mona

    2010-01-01

    Several automatic methods exist for creating 3D point clouds extracted from 2D photos. In manycases, the result is a sparse point cloud, unevenly distributed over the scene.After determining the coordinates of the same point in two images of an object, the 3D positionof that point can be calculated using knowledge of camera data and relative orientation. A model created from a unevenly distributed point clouds may loss detail and precision in thesparse areas. The aim of this thesis is to stud...

  20. Dual Affine invariant points

    OpenAIRE

    Meyer, Mathieu; Schuett, Carsten; Werner, Elisabeth M.

    2013-01-01

    An affine invariant point on the class of convex bodies in R^n, endowed with the Hausdorff metric, is a continuous map p which is invariant under one-to-one affine transformations A on R^n, that is, p(A(K))=A(p(K)). We define here the new notion of dual affine point q of an affine invariant point p by the formula q(K^{p(K)})=p(K) for every convex body K, where K^{p(K)} denotes the polar of K with respect to p(K). We investigate which affine invariant points do have a dual point, whether this ...

  1. Point specificity in acupuncture

    Directory of Open Access Journals (Sweden)

    Choi Emma M

    2012-02-01

    Full Text Available Abstract The existence of point specificity in acupuncture is controversial, because many acupuncture studies using this principle to select control points have found that sham acupoints have similar effects to those of verum acupoints. Furthermore, the results of pain-related studies based on visual analogue scales have not supported the concept of point specificity. In contrast, hemodynamic, functional magnetic resonance imaging and neurophysiological studies evaluating the responses to stimulation of multiple points on the body surface have shown that point-specific actions are present. This review article focuses on clinical and laboratory studies supporting the existence of point specificity in acupuncture and also addresses studies that do not support this concept. Further research is needed to elucidate the point-specific actions of acupuncture.

  2. Proving Fixed Points

    OpenAIRE

    Grall, Hervé

    2010-01-01

    We propose a method to characterize the fixed points described in Tarski's theorem for complete lattices. The method is deductive: the least and greatest fixed points are "proved" in some inference system defined from deduction rules. We also apply the method to two other fixed point theorems, a generalization of Tarski's theorem to chain-complete posets and Bourbaki-Witt's theorem. Finally, we compare the method with the traditional iterative method resorting to ordinals and the original imp...

  3. Arctic Climate Tipping Points

    OpenAIRE

    Lenton, Timothy M.

    2012-01-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the A...

  4. Publication point indicators

    DEFF Research Database (Denmark)

    Elleby, Anita; Ingwersen, Peter

    2010-01-01

    novel publication point indicators (PPIs) that are formalized and exemplified. Two diachronic citation windows are applied: 2006-07 and 2006-08. Web of Science (WoS) as well as Google Scholar (GS) are applied to observe the cite delay and citedness for the different document types published by DIIS......, journal articles, book chapters/conference papers and monographs. Journal Crown Indicator (JCI) calculations was based on WoS. Three PPIs are proposed: the Publication Point Ratio (PPR), which measures the sum of obtained publication points over the sum of the ideal points for the same set of documents...

  5. Interactive two-step training and management strategy for improvement of the quality of point-of-care testing by nurses:implementation of the strategy in blood glucose measurement

    OpenAIRE

    Lehto, L. (Liisa)

    2014-01-01

    Abstract Point-of-care testing (POCT) is defined as laboratory tests performed outside the traditional clinical laboratory close to the patient at the time and place where care is received, such as hospitals and healthcare centers. The main reason for the use of POCT is that they provide rapid results and enable prompt interventions, with hopefully improved patient outcomes. All phases of laboratory procedure are included in POCT offering many opportunities for errors, which can influence ...

  6. Indexing Moving Points

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff

    2003-01-01

    We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t, report all K points of S that lie inside R at time t. We first present an...

  7. Model Breaking Points Conceptualized

    Science.gov (United States)

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  8. Sunspot Bright Points

    CERN Document Server

    Choudhary, Debi Prasad

    2010-01-01

    We used the flux calibrated images through the Broad Band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of bright points in and around the sunspots. The well isolated bright points were selected and classified as umbral dot, peripheral umbral dot, penumbral grains and G-band bright point depending on their location. Most of the bright points are smaller than about 150 km. The larger points are mostly associated with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying parts of umbra. The color temperature of the bright points, derived using the continuum irradiance, are in the range of 4600 K to 6600 K with cooler ones located in the umbra. The temperature increases as a function of distance from the center to outside. The G-band, CN-band and CaII H flux of the bright points as a function of their blue ba...

  9. SharePoint 2007 Collaboration For Dummies

    CERN Document Server

    Harvey, Greg

    2009-01-01

    If you're looking for a way to help your teams access what they need to know, work together, and get the job done, SharePoint can do just that. SharePoint 2007 Collaboration For Dummies shows you the easiest way to set up and customize SharePoint, manage your data, interact using SharePoint blogs and wikis, integrate Office programs, and make your office more productive. You'll learn what SharePoint can do and how to make it work for your business, understand the technical terms, and enable your people to collaborate on documents and spreadsheets. You'll even discover how to get SharePoint hel

  10. Publication point indicators

    DEFF Research Database (Denmark)

    Elleby, Anita; Ingwersen, Peter

    2010-01-01

    novel publication point indicators (PPIs) that are formalized and exemplified. Two diachronic citation windows are applied: 2006-07 and 2006-08. Web of Science (WoS) as well as Google Scholar (GS) are applied to observe the cite delay and citedness for the different document types published by DIIS......, journal articles, book chapters/conference papers and monographs. Journal Crown Indicator (JCI) calculations was based on WoS. Three PPIs are proposed: thePublication Point Ratio (PPR), which measures the sum of obtained publiacation points over the sum of the ideal pointws for the same set of documents...

  11. Do acupuncture points exist?

    Energy Technology Data Exchange (ETDEWEB)

    Yan Xiaohui; Zhang Xinyi [Department of Physics, Surface Physics Laboratory (State Key Laboratory), and Synchrotron Radiation Research Center of Fudan University, Shanghai 200433 (China); Liu Chenglin [Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Dang, Ruishan [Second Military Medical University, Shanghai 200433 (China); Huang Yuying; He Wei [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ding Guanghong [Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)

    2009-05-07

    We used synchrotron x-ray fluorescence analysis to probe the distribution of four chemical elements in and around acupuncture points, two located in the forearm and two in the lower leg. Three of the four acupuncture points showed significantly elevated concentrations of elements Ca, Fe, Cu and Zn in relation to levels in the surrounding tissue, with similar elevation ratios for Cu and Fe. The mapped distribution of these elements implies that each acupuncture point seems to be elliptical with the long axis along the meridian. (note)

  12. Do acupuncture points exist?

    International Nuclear Information System (INIS)

    We used synchrotron x-ray fluorescence analysis to probe the distribution of four chemical elements in and around acupuncture points, two located in the forearm and two in the lower leg. Three of the four acupuncture points showed significantly elevated concentrations of elements Ca, Fe, Cu and Zn in relation to levels in the surrounding tissue, with similar elevation ratios for Cu and Fe. The mapped distribution of these elements implies that each acupuncture point seems to be elliptical with the long axis along the meridian. (note)

  13. 6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

    CERN Multimedia

    Teams : M. Brice, JC Gadmer

    2010-01-01

    6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

  14. Zero-pointed manifolds

    OpenAIRE

    Ayala, David; Francis, John

    2014-01-01

    We formulate a theory of pointed manifolds, accommodating both embeddings and Pontryagin-Thom collapse maps, so as to present a common generalization of Poincar\\'e duality in topology and Koszul duality in $\\mathcal{E}_n$-algebra.

  15. Designated Wildlife Lakes - points

    Data.gov (United States)

    Minnesota Department of Natural Resources — This is a point shapefile of Designated Wildlife Lakes in Minnesota. This shapefile was created by converting lake polygons from the Designated Wildlife Lakes...

  16. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  17. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  18. Point/Counterpoint

    DEFF Research Database (Denmark)

    Ungar, David; Ernst, Erik

    2007-01-01

    Point Argument: "Dynamic Languages (in Reactive Environments) Unleash Creativity," by David Ungar. For the sake of creativity, the profession needs to concentrate more on inventing new and better dynamic languages and environments and less on improving static languages. Counterpoint Argument...

  19. Triple Point Topological Metals

    Science.gov (United States)

    Zhu, Ziming; Winkler, Georg W.; Wu, QuanSheng; Li, Ju; Soluyanov, Alexey A.

    2016-07-01

    Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.

  20. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  1. Transitivity on Weierstrass points

    CERN Document Server

    Laing, Zoe

    2010-01-01

    We look for Riemann surfaces whose automorphism group acts transitively on the Weierstrass points. We concentrate on hyperelliptic surfaces, surfaces with PSL(2, q) as automorphism group, Platonic surfaces and Fermat curves.

  2. Fixed Point Logics

    OpenAIRE

    Dawar, Anuj; Gurevich, Yuri

    2002-01-01

    We consider fixed point logics, i.e., extensions of first order predicate logic with operators defining fixed points. A number of such operators, generalizing inductive definitions, have been studied in the context of finite model theory, including nondeterministic and alternating operators. We review results established in finite model theory, and also consider the expressive power of the resulting logics on infinite structures. In particular, we establish the relationship between inflationa...

  3. Relative fixed point theory

    OpenAIRE

    Ponto, Kate

    2009-01-01

    The Lefschetz fixed point theorem and its converse have many generalizations. One of these generalizations is to endomorphisms of a space relative to a fixed subspace. In this paper we define relative Lefschetz numbers and Reidemeister traces using traces in bicategories with shadows. We use the functoriality of this trace to identify different forms of these invariants and to prove a relative Lefschetz fixed point theorem and its converse.

  4. SharePoint governance

    OpenAIRE

    Ali, Mudassar

    2013-01-01

    SharePoint is a web-based business collaboration platform from Microsoft which is very robust and dynamic in nature. The platform has been in the market for more than a decade and has been adapted by large number of organisations in the world. The platform has become larger in scale, richer in features and is improving consistently with every new version. However, SharePoint governance has also gained more importance with these extensions, which always has been a tough chall...

  5. A fixed-point farrago

    CERN Document Server

    Shapiro, Joel H

    2016-01-01

    This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume’s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer’s theorem and its application to John Nash’s work; the third applies Brouwer’s theorem to spaces of infinite dimension; and the fourth rests ...

  6. Interaction of the bovine papillomavirus type 1 E2 transcriptional control protein with the viral enhancer: purification of the DNA-binding domain and analysis of its contact points with DNA.

    OpenAIRE

    Moskaluk, C A; Bastia, D

    1988-01-01

    The E2 gene of bovine papillomavirus type 1 positively and negatively regulates the transcriptional enhancer located in the long control region of the viral genome. The DNA-binding domain of the E2 gene product was suspected to interact with the DNA sequence motif ACCN6GGT. We have shown that the carboxy-terminal 126 amino acids of the E2 protein constitute the DNA-binding domain. In this paper we described the expression of the E2 carboxy terminus in Escherichia coli and its subsequent purif...

  7. Projet Télétandem Brésil, trois années d'échanges franco-brésiliens en ligne : le point de vue des étudiants français Teletandem Brazil project, three years of Franco-Brazilian online interactions: the point of view of French students

    Directory of Open Access Journals (Sweden)

    Liliane Santos

    2012-10-01

    Full Text Available Le projet Télétandem Brésil (Unesp, 2006 met en relation des étudiants de portugais de l'université de Lille 3 (France et des étudiants de français de l'université de l'État de São Paulo (Brésil, pour, selon les principes du tandem, qu'ils s'engagent dans un processus d'apprentissage collaboratif dans leur langue et culture respectives fondé sur l'autonomie et la réciprocité. L'analyse des carnets de bord tenus par les étudiants tout au long de la formation, des rapports de fin de semestre, et des messages échangés entre partenaires permettra de dégager le point de vue des étudiants sur le fonctionnement du projet et du partenariat, ainsi que sur les thèmes traités avec leurs partenaires. Cela nous permettra en outre de faire quelques propositions concernant les conditions d'un partenariat réussi tant du point de vue matériel et culturel que de la relation entre les individus impliqués dans un tel projet.The telecollaborative project Teletandem Brazil (Unesp, 2006, gathering the University of Lille 3 (France and the State University of São Paulo (Brazil, enables students to take part in online exchanges. Based on the principles of autonomy and reciprocity, the project engages pairs of students in a collaborative learning of their respective languages and cultures. We analyze the students' opinions on the project, the partnership and the topics covered in the sessions in order to identify elements for a successful partnership, in terms of resources, cultural competence, and relationship between individuals.

  8. Holographic Three point Functions

    DEFF Research Database (Denmark)

    Bissi, Agnese

    In this thesis it is addressed the problem of the computation of three point correlation functions within the AdS=CFT correspondence. In the context of the AdS 5=CFT4 correspondence we present three computations. First we compare the results of tree level three point functions of two giant...... gravitons and a point like graviton and its dual counterpart, namely two Schur polynomials and a single trace chiral primary. Secondly we compute the one loop correction to planar, non extremal three point functions of two heavy and one light operators, both from the gauge and string side in the Frolov......-Tseytlin regime. Finally we generalize the scalar product of two states belonging to the SO(6) sector of N = 4 SYM with implications on the construction of three point functions of 3 non-BPS operators from the gauge theory side. On the other hand in the AdS4=CFT3 correspondence we compare the computations in the...

  9. Interactions of tritium and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Michio; Yamaguchi, Kenji; Tanaka, Satoru; Ono, Futaba (Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.); Yamamoto, Takuya

    1993-11-01

    In D-T burning fusion reactors, problems related to tritium-material interactions are vitally important. From this point of view, plasma-material interactions, blanket breeder material-tritium interactions, safety aspects of tritium-material interactions and tritium storage materials are reviewed with emphasis on the works going on in the authors' laboratories. (author) 83 refs.

  10. New 3-, 8-disubstituted pyrazolo[5,1-c][1,2,4]benzotriazines useful for studying the interaction with the HBp-3 area (hydrogen bond point area) in the benzodiazepine site on the gamma-aminobutyric acid type A (GABAA) receptor

    OpenAIRE

    G. Guerrini; G. CICIANI; Bruni, F.; Selleri, S.; F. Melani; Daniele, S.; Martini, C; A. Costanzo

    2011-01-01

    The pharmacophoric model using ADLR procedure, based on pyrazolo[5,1-c][1,2,4]benzotriazine system, studied in our laboratory, allowed us to identify the essential interaction points (HBp-1, HBp-2, and Lp-1) and the important areas for affinity modulation (HBp-3 and Lp-2) for binding recognition at benzodiazepine (Bzs) site of GABAA receptors (GABAA-Rs). In this work ADLR method is used to rationalize the affinity data of 23 new compounds and to improve the knowledge on HBp-3 area...

  11. Ajustar: A interactive processor for to fit, by means of least squares, one variable polynomials (arbitrary degree) at experimental points; Ajustar: Un procesador interactivo para ajuste por minimos cuadrados de polinomios algebraicos (en una sola variable y grado arbitrario) a conjuntos de datos experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Miro, J. J.; Pena Gutierrez, J.

    1991-07-01

    In this report is offered, to scientist and technical people, a numeric tool consisting in a FORTRAN program, of interactive use, with destination to make lineal {sup l}east squares{sup ,} fittings on any set of empirical observations. The method based in the orthogonal functions (for discrete case), instead of direct solving the equations system, is used. The procedure includes also the optionally facilities of: variable change, direct interpolation, correlation non linear factor, {sup w}eights{sup o}f the points, confidence intervals (Schelle, Miller, Student), and plotting results. (Author) 10 refs.

  12. Holographic Three point Functions

    DEFF Research Database (Denmark)

    Martirosyan, Ara

    The main subject of this thesis is the computation of structure constants appearing in the three-point functions for certain type of states/operators in the context of the AdS/CFT correspondence, which is one of the important parts of the dynamical problem in the dual theories of the correspondence...

  13. New Novae snack point

    CERN Multimedia

    2012-01-01

    Located next to the car park by the flag poles, a few metres from the Main CERN Reception (building 33), a new snack point catered by Novae will open to the public on Wednesday 8 August. More information will be available in the next issue of the Bulletin!

  14. The GATT's Starting Point

    OpenAIRE

    Bown, Chad P.; Irwin, Douglas A.

    2016-01-01

    How high were import tariffs when GATT participants began negotiations to reduce them in 1947? Establishing this starting point is key to determining how successful the GATT has been in bringing down trade barriers. If the average tariff level was about 40 percent, as commonly reported, the implied early tariff reductions were substantial, but this number has never been verified. This pape...

  15. Superconducting quantum point contacts

    Science.gov (United States)

    Bretheau, L.; Girit, Ç.; Tosi, L.; Goffman, M.; Joyez, P.; Pothier, H.; Esteve, D.; Urbina, C.

    2012-01-01

    We review our experiments on the electronic transport properties of atomic contacts between metallic electrodes, in particular superconducting ones. Despite ignorance of the exact atomic configuration, these ultimate quantum point contacts can be manipulated and well characterized in-situ. They allow performing fundamental tests of the scattering theory of quantum transport. In particular, we discuss the case of the Josephson effect.

  16. Superconducting Quantum Point Contacts

    OpenAIRE

    Bretheau, L.; Girit, Ç.; Tosi, L.; Goffman, M.; Joyez, P.; Pothier, H.; Esteve, D.; Urbina, C.

    2012-01-01

    We review our experiments on the electronic transport properties of atomic contacts between metallic electrodes, in particular superconducting ones. Despite ignorance of the exact atomic configuration, these ultimate quantum point contacts can be manipulated and well characterized in-situ. They allow performing fundamental tests of the scattering theory of quantum transport. In particular, we discuss the case of the Josephson effect.

  17. Critical Points of Contact

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Wind, Simon; Lanng, Ditte Bendix

    In this brief article, we shall illustrate the application of the analytical and interventionist concept of ‘Critical Points of Contact’ (CPC) through a number of urban design studios. The notion of CPC has been developed over a span of the last three to four years and is reported in more detail...

  18. Point kinetics modeling

    International Nuclear Information System (INIS)

    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  19. Residual analysis for spatial point processes

    DEFF Research Database (Denmark)

    Baddeley, A.; Turner, R.; Møller, Jesper;

    2005-01-01

    We define residuals for point process models fitted to spatial point pattern data, and we propose diagnostic plots based on them. The residuals apply to any point process model that has a conditional intensity; the model may exhibit spatial heterogeneity, interpoint interaction and dependence on...... spatial covariates. Some existing ad hoc methods for model checking (quadrat counts, scan statistic, kernel smoothed intensity and Berman's diagnostic) are recovered as special cases. Diagnostic tools are developed systematically, by using an analogy between our spatial residuals and the ususal residuals...... plots. A plot of smoothed residuals against spatial location, or against a spatial covariate, is effective in diagnosing spatial trend or covariate effects. Q-Q plots of the residuals are effective in diagnosing interpoint interaction....

  20. Henig Proper Efficient Points and Generalized Henig Proper Efficient Points

    Institute of Scientific and Technical Information of China (English)

    Jing Hui QIU

    2009-01-01

    Applying the theory of locally convex spaces to vector optimization,we investigate the relationship between Henig proper efficient points and generalized Henig proper efficient points. In particular,we obtain a sufficient and necessary condition for generalized Henig proper efficient points to be Henig proper efficient points. From this,we derive several convenient criteria for judging Henig proper efficient points.