WorldWideScience

Sample records for clebopride enhances contractility

  1. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, K.; Taniyama, K.; Kuno, T.; Sano, I.; Ishikawa, T.; Ohmura, I.; Tanaka, C. (Kobe Univ. School of Medicine, (Japan))

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10{sup {minus} 8} M to 10{sup {minus} 5} M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: (1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. (2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  2. Phospholemman deficiency in postinfarct hearts: enhanced contractility but increased mortality.

    Science.gov (United States)

    Mirza, M Ayoub; Lane, Susan; Yang, Zequan; Karaoli, Themis; Akosah, Kwame; Hossack, John; McDuffie, Marcia; Wang, JuFang; Zhang, Xue-Qian; Song, Jianliang; Cheung, Joseph Y; Tucker, Amy L

    2012-06-01

    Phospholemman (PLM) regulates [Na(+) ](i), [Ca(2+)](i) and contractility through its interactions with Na(+)-K(+)-ATPase (NKA) and Na(+) /Ca(2+) exchanger (NCX1) in the heart. Both expression and phosphorylation of PLM are altered after myocardial infarction (MI) and heart failure. We tested the hypothesis that absence of PLM regulation of NKA and NCX1 in PLM-knockout (KO) mice is detrimental. Three weeks after MI, wild-type (WT) and PLM-KO hearts were similarly hypertrophied. PLM expression was lower but fractional phosphorylation was higher in WT-MI compared to WT-sham hearts. Left ventricular ejection fraction was severely depressed in WT-MI but significantly less depressed in PLM-KO-MI hearts despite similar infarct sizes. Compared with WT-sham myocytes, the abnormal [Ca(2+) ], transient and contraction amplitudes observed in WT-MI myocytes were ameliorated by genetic absence of PLM. In addition, NCX1 current was depressed in WT-MI but not in PLM-KO-MI myocytes. Despite improved myocardial and myocyte performance, PLM-KO mice demonstrated reduced survival after MI. Our findings indicate that alterations in PLM expression and phosphorylation are important adaptations post-MI, and that complete absence of PLM regulation of NKA and NCX1 is detrimental in post-MI animals.

  3. The benefit of enhanced contractility in the infarct borderzone: A virtual experiment.

    Directory of Open Access Journals (Sweden)

    Zhihong eZhang

    2012-04-01

    Full Text Available A. Objectives Contractile function in the normally perfused infarct borderzone (BZ is depressed. However, the impact of reduced BZ contractility on left ventricular (LV pump function is unknown. As a consequence, there have been no therapies specifically designed to improve BZ contractility. We tested the hypothesis that an improvement in borderzone contractility will improve LV pump function.B. Methods From a previously reported study, magnetic resonance (MRI images with non-invasive tags were used to calculate 3D myocardial strain in five sheep 16 weeks after anteroapical myocardial infarction. Animal specific finite element (FE models were created using MRI data and LV pressure obtained at early diastolic filling. Analysis of borderzone function using those FE models has been previously reported. Chamber stiffness, pump function (Starling’s law and stress in the fiber, cross fiber and circumferential directions were calculated. Animal-specific FE models were performed for three cases: a impaired BZ contractility (INJURED; b BZ contractility fully restored (100% BZ IMPROVEMENT; or c BZ contractility partially restored (50% BZ IMPROVEMENT.C. Results 100% BZ IMPROVEMENT and 50% BZ IMPROVEMENT both caused an upward shift in the Starling relationship, resulting in a large (36% and 26% increase in stroke volume at LVPED = 20 mm Hg (8.0 ml, p<0.001. Moreover, there were a leftward shift in the end systolic pressure volume relationship, resulting in a 7% and 5% increase in LVPES at 110 mm Hg (7.7 ml, p<0.005. It showed that even 50% BZ IMPROVEMENT was sufficient to drive much of the calculated increase in function. D. Conclusions. Improved borderzone contractility has a beneficial effect on LV pump function. Partial improvement of borderzone contractility was sufficient to drive much of the calculated increase in function. Therapies specifically designed to improve borderzone contractility should be developed.

  4. Stimulation of the cardiopulmonary baroreflex enhances ventricular contractility in awake dogs: a mathematical analysis study.

    Science.gov (United States)

    Sala-Mercado, Javier A; Moslehpour, Mohsen; Hammond, Robert L; Ichinose, Masashi; Chen, Xiaoxiao; Evan, Sell; O'Leary, Donal S; Mukkamala, Ramakrishna

    2014-08-15

    The cardiopulmonary baroreflex responds to an increase in central venous pressure (CVP) by decreasing total peripheral resistance and increasing heart rate (HR) in dogs. However, the direction of ventricular contractility change is not well understood. The aim was to elucidate the cardiopulmonary baroreflex control of ventricular contractility during normal physiological conditions via a mathematical analysis. Spontaneous beat-to-beat fluctuations in maximal ventricular elastance (Emax), which is perhaps the best available index of ventricular contractility, CVP, arterial blood pressure (ABP), and HR were measured from awake dogs at rest before and after β-adrenergic receptor blockade. An autoregressive exogenous input model was employed to jointly identify the three causal transfer functions relating beat-to-beat fluctuations in CVP to Emax (CVP → Emax), which characterizes the cardiopulmonary baroreflex control of ventricular contractility, ABP to Emax, which characterizes the arterial baroreflex control of ventricular contractility, and HR to Emax, which characterizes the force-frequency relation. The CVP → Emax transfer function showed a static gain of 0.037 ± 0.010 ml(-1) (different from zero; P < 0.05) and an overall time constant of 3.2 ± 1.2 s. Hence, Emax would increase and reach steady state in ∼16 s in response to a step increase in CVP, without any change to ABP or HR, due to the cardiopulmonary baroreflex. Following β-adrenergic receptor blockade, the CVP → Emax transfer function showed a static gain of 0.0007 ± 0.0113 ml(-1) (different from control; P < 0.10). Hence, Emax would change little in steady state in response to a step increase in CVP. Stimulation of the cardiopulmonary baroreflex increases ventricular contractility through β-adrenergic receptor system mediation.

  5. CD4+ T cells enhance the unloaded shortening velocity of airway smooth muscle by altering the contractile protein expression.

    Science.gov (United States)

    Matusovsky, Oleg S; Nakada, Emily M; Kachmar, Linda; Fixman, Elizabeth D; Lauzon, Anne-Marie

    2014-07-15

    Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.

  6. Vasopressin Type 1A Receptor Deletion Enhances Cardiac Contractility, β-Adrenergic Receptor Sensitivity and Acute Cardiac Injury-induced Dysfunction.

    Science.gov (United States)

    Wasilewski, Melissa A; Grisanti, Laurel A; Song, Jianliang; Carter, Rhonda L; Repas, Ashley A; Myers, Valerie D; Gao, Erhe; Koch, Walter J; Cheung, Joseph Y; Feldman, Arthur M; Tilley, Douglas

    2016-09-02

    V1AR expression is elevated in chronic human heart failure and contributes to cardiac dysfunction in animal models, in part via reduced βAR responsiveness.  While cardiac V1AR overexpression and V1AR stimulation are each sufficient to decrease βAR activity, it is unknown whether V1AR inhibition conversely augments βAR responsiveness.  Further, although V1AR has been shown to contribute to chronic progression of heart failure, its impact on cardiac function following acute ischemic injury has not been reported.  Using V1AR KO mice we assessed the impact of V1AR deletion on cardiac contractility at baseline and following ischemic injury, βAR sensitivity and cardiomyocyte responsiveness to βAR stimulation.  Strikingly, baseline cardiac contractility was enhanced in V1AR KO mice and they experienced a greater loss in contractile function than control mice following acute ischemic injury, although the absolute levels of cardiac dysfunction and survival rates did not differ.  Enhanced cardiac contractility in V1AR KO mice was associated with augmented β-blocker sensitivity, suggesting increased basal βAR activity, and indeed levels of left ventricular cAMP, as well as phospholamban and cardiac troponin I phosphorylation were elevated versus control mice.  At the cellular level, myocytes isolated from V1AR KO mice demonstrated increased responsiveness to βAR stimulation consistent with the finding that acute pharmacological V1AR inhibition enhanced βAR-mediated contractility in control myocytes.  Therefore, while V1AR deletion does not protect the heart from the rapid development of cardiac dysfunction following acute ischemic injury, its effects on βAR activity suggest that acute V1AR inhibition could be utilized to promote myocyte contractile performance.

  7. Enhanced Myocardial Vascularity and Contractility by Novel FGF-1 Transgene in a Porcine Model of Chronic Coronary Occlusion

    Directory of Open Access Journals (Sweden)

    Janet L. Parker

    2008-12-01

    sp-FGF-1-treated animals only. Conclusion: These results suggest that the intramyocardial delivery of our chimeric secretory FGF-1 gene can enhance vascularity and improve cardiac contractility in a chronic ischemic heart. This protocol may serve useful for developing reparative angiogenesis strategies aimed at improving the pumping function of the ischemic hearts in human patients.

  8. Insulin improves cardiomyocyte contractile function through enhancement of SERCA2a activity in simulated ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Jie YU; Hai-feng ZHANG; Feng WU; Qiu-xia LI; Heng MA; Wen-yi GUO; Hai-chang WANG; Feng GAO

    2006-01-01

    Aim: Insulin exerts anti-apoptotic effects in both cardiomyocytes and coronary endothelial cells following ischemia/reperfusion (I/R) via the Akt-endothelial nitric oxide synthase survival signal pathway. This important insulin signaling might further contribute to the improvement of cardiac function after reperfusion. In this study, we tested the hypothesis that sarcoplasmic reticulum calcium-AT-Pase (SERCA2a) is involved in the insulin-induced improvement of cardiac contractile function following I/R. Methods: Ventricular myocytes were enzymatically isolated from adult SD rats. Simulated I/R was induced by perfusing cells with chemical anoxic solution for 15 min followed by reperfusion with Tyrode's solution with or without insulin for 30 min. Myocyte shortening and intracellular calcium transients were assessed and underlying mechanisms were investigated. Results: Reperfusion with insulin (10-7 mol/L) significantly improved the recovery of contractile function (n=15-20 myocytes from 6-8 hearts, P<0.05), and increased calcium transients, as evidenced by the increased calcium (Ca2+) fluorescence ratio, shortened time to peak Ca2+ and time to 50% diastolic Ca2+, compared with those in cells reperfused with vehicle (P<0.05). In addition, Akt phosphorylation and SERCA2a activity were both increased in insulin-treated I/R cardiomyocytes, which were markedly inhibited by pretreatment of cells with a specific Akt inhibitor. Moreover, inhibition of Akt activity abolished insulin-induced positive contractile and calcium transients responses in I/R cardiomyocytes. Conclusion: These data demonstrated for the first time that insulin improves the recovery of contractile function in simulated I/R cardiomyocytes in an Akt-dependent and SERCA2a-mediated fashion.

  9. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement.

    Directory of Open Access Journals (Sweden)

    Kerry Wilson

    Full Text Available BACKGROUND: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated a biological microelectromechanical system (BioMEMS based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT, the time to half relaxation ((1/2RT were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and (1/2RT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine. CONCLUSIONS/SIGNIFICANCE: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery

  10. Fractalkine depresses cardiomyocyte contractility.

    Directory of Open Access Journals (Sweden)

    David Taube

    Full Text Available BACKGROUND: Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO exhibit reduced cardiac function. Gene array on left ventricles (LV showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. METHODS: Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso stimulation. RESULTS: LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. CONCLUSIONS: Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  11. Contractility of isolated bovine ventricular myocytes is enhanced by intracellular injection of cardioactive glycosides. Evidence for an intracellular mode of action.

    Science.gov (United States)

    Isenberg, G

    1984-01-01

    The contractions of isolated bovine left ventricular myocytes were evaluated by optically measuring the extent of unloaded shortening (ES), the maximal rate of shortening (MRS) and the maximal rate of re-lengthening (MRL). Ouabain, digoxin or digitoxin were intracellularly injected by 2 sec long pressure pulses via the microelectrodes. Their i.c. concentration was estimated to be 2-5 nM. Within 1-4 min after the injection, ES, MRS and MRL increased by more than 2-fold. The contractility renormalized within the following 20 min. Injection of solutions without glycosides did not increase the contractility. An interaction of the injected glycoside with the e.c. ouabain receptor could be largely excluded because a) the amount of the released glycoside was too small for e.c. effects, b) 500 nM e.c. antidigoxin, c) 20 mM [K]o or d) covalent binding of digoxin to HSA did not prevent the increase in contractility due to the i.c. injections. Since contractility also increased when the injections were performed at Na-free conditions, [Na]i-load is not necessary for the effect of i.e. glycosides. The increased contractility due to the injected glycosides was not observed when the contractility prior to the injection was already potentiated, e.g. by greater than 3.6 mM [Ca]o or by stimulation at frequencies greater than 1.25 Hz. The results are interpreted by the hypothesis that the i.c. glycosides facilitate the release of activator calcium from the SR. The possible i.c. modes of action are discussed as well as the idea that e.c. applied glycosides internalize and mediate inotropy via the i.e. mechanism.

  12. Active contractility in actomyosin networks

    CERN Document Server

    Wang, Shenshen

    2012-01-01

    Contractile forces are essential for many developmental processes involving cell shape change and tissue deformation. Recent experiments on reconstituted actomyosin networks, the major component of the contractile machinery, have shown that active contractility occurs above a threshold motor concentration and within a window of crosslink concentration. We present a microscopic dynamic model that incorporates two essential aspects of actomyosin self-organization: the asymmetric load response of individual actin filaments and the correlated motor-driven events mimicking myosin-induced filament sliding. Using computer simulations we examine how the concentration and susceptibility of motors contribute to their collective behavior and interplay with the network connectivity to regulate macroscopic contractility. Our model is shown to capture the formation and dynamics of contractile structures and agree with the observed dependence of active contractility on microscopic parameters including the contractility onse...

  13. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Spray, Stine; Skovsted, Gry F

    2016-01-01

    that rapid and sustained reduction in wall tension/stretch is a possible trigger mechanism for this vascular remodelling. Isolated rat middle cerebral artery (MCA) segments were incubated in a wire-myograph with or without mechanical stretch, prior to assessment of their contractile response to the selective......Cerebral ischaemia results in enhanced endothelin B (ETB ) receptor-mediated contraction and receptor protein expression in the affected cerebrovascular smooth muscle cells (SMC). Organ culture of cerebral arteries is a method to induce similar alterations in ETB receptor expression. We hypothesize...... expression to SMC expression and 2) an increased calcium sensitivity of the SMCs due to an increased expression of the calcium channel transient receptor potential canonical 1. Collectively, our results present a possible mechanism linking lack of vessel wall stretch/tension to changes in ETB receptor...

  14. Structural comparison of contractile nanomachines

    Directory of Open Access Journals (Sweden)

    Sebastian Kube

    2015-05-01

    Full Text Available Contractile molecular machines are a common feature among bacteriophages and prokaryotes. Due to their stability and the large size, contractile-tailed bacteriophages are traditionally investigated by electron microscopic methods. Complemented by crystallographic studies, a molecular model of contraction for the T4 phage was developed. Lately, also related contractile structures like the Photorhabdus virulence cassette-like particles, the R-Type pyocins and the contractile tubule of the bacterial Type VI secretion system have been analyzed by cryo electron microscopy. Photorhabdus virulence cassette particles and R-Type pyocins are toxin complexes reminiscent of bacteriophage tails that are secreted by bacteria to kill their insect host or competing bacteria. In contrast, the Type VI secretion system is an intracellular apparatus for injection of effector proteins into bacterial and eukaryotic cells. Although it shares homology with other contractile systems, the Type VI secretion system is additionally equipped with a recycling function, which makes it suitable for multiple rounds of action. Starting from the 3D reconstructions, we compare these molecular machines structurally and functionally to their viral counterparts and summarize the current knowledge on their respective mode of action.

  15. Detecting cardiac contractile activity in the early mouse embryo using multiple modalities

    Directory of Open Access Journals (Sweden)

    Chiann-mun eChen

    2015-01-01

    Full Text Available The heart is one of the first organs to develop during mammalian embryogenesis. In the mouse, it starts to form shortly after gastrulation, and is derived primarily from embryonic mesoderm. The embryonic heart is unique in having to perform a mechanical contractile function while undergoing complex morphogenetic remodelling. Approaches to imaging the morphogenesis and contractile activity of the developing heart are important in understanding not only how this remodelling is controlled but also the origin of congenital heart defects. Here, we describe approaches for visualising contractile activity in the developing mouse embryo, using brightfield time lapse microscopy and confocal microscopy of calcium transients. We describe an algorithm for enhancing this image data and quantifying contractile activity from it. Finally we describe how atomic force microscopy can be used to record contractile activity prior to it being microscopically visible.

  16. Modulatory effects of taurine on jejunal contractility

    Directory of Open Access Journals (Sweden)

    Q.Y. Yao

    2014-12-01

    Full Text Available Taurine (2-aminoethanesulfonic acid is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  17. Modulatory effects of taurine on jejunal contractility

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y. [Dalian Medical University, Dalian, Liaoning (China)

    2014-10-14

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca{sup 2+} dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  18. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  19. Cellular contractility requires ubiquitin mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  20. [The effect of prostatic peptides on the contractile activity of smooth-muscle cells from the bladder].

    Science.gov (United States)

    Barabanova, V V; Gorbachev, A G; Parastaeva, M M; Khavinson, V Kh

    1993-02-01

    Prostatilene (PST) enhanced the functional activity of the bladder smooth-muscle cells (SMC). The possibility of activation of the SMC contractility by the PST through pharmacomechanical associations, is discussed.

  1. Requirements for disordered actomyosin bundle contractility

    CERN Document Server

    Lenz, Martin

    2011-01-01

    Actomyosin contractility is essential for biological force generation, and is well understood in highly ordered structures such as striated muscle. In vitro experiments have shown that non-sarcomeric bundles comprised only of F-actin and myosin thick filaments can also display contractile behavior, which cannot be described by standard muscle models. Here we investigate the microscopic symmetries underlying this process in large non-sarcomeric bundles with long actin filaments. We prove that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. A simple disordered bundle model demonstrates a contraction mechanism based on these assumptions and predicts realistic bundle deformations. Recent experimental observations of F-actin buckling in in vitro contractile bundles support our model.

  2. IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren's disease.

    Science.gov (United States)

    Raykha, Christina; Crawford, Justin; Gan, Bing Siang; Fu, Ping; Bach, Leon A; O'Gorman, David B

    2013-10-01

    Dupuytren's disease (DD) is a common and heritable fibrosis of the palmar fascia that typically manifests as permanent finger contractures. The molecular interactions that induce the development of hyper-contractile fibroblasts, or myofibroblasts, in DD are poorly understood. We have identified IGF2 and IGFBP6, encoding insulin-like growth factor (IGF)-II and IGF binding protein (IGFBP)-6 respectively, as reciprocally dysregulated genes and proteins in primary cells derived from contracture tissues (DD cells). Recombinant IGFBP-6 inhibited the proliferation of DD cells, patient-matched control (PF) cells and normal palmar fascia (CT) cells. Co-treatments with IGF-II, a high affinity IGFBP-6 ligand, were unable to rescue these effects. A non-IGF-II binding analog of IGFBP-6 also inhibited cellular proliferation, implicating IGF-II-independent roles for IGFBP-6 in this process. IGF-II enhanced the proliferation of CT cells, but not DD or PF cells, and significantly enhanced DD and PF cell contractility in stressed collagen lattices. While IGFBP-6 treatment did not affect cellular contractility, it abrogated the IGF-II-induced contractility of DD and PF cells in stressed collagen lattices. IGF-II also significantly increased the contraction of DD cells in relaxed lattices, however this effect was not evident in relaxed collagen lattices containing PF cells. The disparate effects of IGF-II on DD and PF cells in relaxed and stressed contraction models suggest that IGF-II can enhance lattice contractility through more than one mechanism. This is the first report to implicate IGFBP-6 as a suppressor of cellular proliferation and IGF-II as an inducer of cellular contractility in this connective tissue disease.

  3. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    Science.gov (United States)

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  4. [The effect of prostatilen on the contractile activity of the smooth-muscle cells of the blood vessels and bladder in cats].

    Science.gov (United States)

    al-Shchukri, S Kh; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1996-07-01

    Prostatilene enhanced the functional activity of the bladder and blood vessels' smooth muscle cells. A possibility of activation of the smooth muscle cells contractility with prostatilene by a pharmaco-mechanical association, is discussed.

  5. Elastomeric contractile actuators for hand rehabilitation splints

    Science.gov (United States)

    Carpi, Federico; Mannini, Andrea; De Rossi, Danilo

    2008-03-01

    The significant electromechanical performances typically shown by dielectric elastomer actuators make this polymer technology particularly attractive for possible active orthoses for rehabilitation. Folded contractile actuators made of dielectric elastomers were recently described as a simple configuration, suitable to easily implement linear contractile devices. This paper describes an application of folded actuators for so-called hand splints: they consist of orthotic systems for hand rehabilitation. The dynamic versions of the state-of-the-art splints typically include elastic bands, which exert a passive elastic resistance to voluntary elongations of one or more fingers. In order to provide such splints with the possibility of electrically modulating the compliance of the resistive elements, the substitution of the passive elastic bands with the contractile actuators is here described. The electrical activation of the actuators is used to vary the compliance of the system; this enables modulations of the force that acts as an antagonist to voluntary finger movements, according to programmable rehabilitation exercises. The paper reports results obtained from the first prototype implementations of such a type of system.

  6. Contractile analysis with kriging based on MR myocardial velocity imaging.

    Science.gov (United States)

    Lee, Su-Lin; Huntbatch, Andrew; Yang, Guang-Zhong

    2008-01-01

    Diagnosis and treatment of coronary artery disease requires a full understanding of the intrinsic contractile mechanics of the heart. MR myocardial velocity imaging is a promising technique for revealing intramural cardiac motion but its ability to depict 3D strain tensor distribution is constrained by anisotropic voxel coverage of velocity imaging due to limited imaging slices and the achievable SNR in patient studies. This paper introduces a novel Kriging estimator for simultaneously improving the tracking and dense inter-slice estimation of the myocardial velocity data. A harmonic embedding technique is employed to determine point correspondence between left ventricle models between subjects, allowing for a statistical shape model to be reconstructed. The use of different semivariograms is investigated for optimal deformation reconstruction. Results from in vivo data demonstrate a marked improvement in tracking myocardial deformation, thus enhancing the potential clinical value of MR myocardial velocity imaging.

  7. Remodeling of Afferent Arterioles From Mice With Oxidative Stress Does Not Account for Increased Contractility but Does Limit Excessive Wall Stress.

    Science.gov (United States)

    Li, Lingli; Feng, Di; Luo, Zaiming; Welch, William J; Wilcox, Christopher S; Lai, En Yin

    2015-09-01

    Because superoxide dismutase (SOD) knockout enhances arteriolar remodeling and contractility, we hypothesized that remodeling enhances contractility. In the isolated and perfused renal afferent arterioles from SOD wild type (+/+) and gene-deleted mice, contractility was assessed from reductions in luminal diameter with perfusion pressure from 40 to 80 mm Hg (myogenic responses) or angiotensin II (10(-6) mol/L), remodeling from media:lumen area ratio, superoxide (O2 (·-)) and hydrogen peroxide (H2O2) from fluorescence microscopy, and wall stress from wall tension/wall thickness. Compared with +/+ strains, arterioles from SOD1-/-, SOD2+/-, and SOD3-/- mice developed significantly (Premodeling. Although remodeling does not enhance contractility, it does prevent the potentially damaging effects of increased wall stress.

  8. Cell stiffness, contractile stress and the role of extracellular matrix

    Science.gov (United States)

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2010-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses. PMID:19327344

  9. Cell stiffness, contractile stress and the role of extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    An, Steven S., E-mail: san@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Kim, Jina [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Ahn, Kwangmi [Division of Biostatistics, Penn State College of Medicine, Hershey, PA 17033 (United States); Trepat, Xavier [CIBER, Enfermedades Respiratorias, 07110 Bunyola (Spain); Drake, Kenneth J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Fredberg, Jeffrey J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States)

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  10. Regulation of tissue morphodynamics: an important role for actomyosin contractility

    Science.gov (United States)

    Siedlik, Michael J.; Nelson, Celeste M.

    2015-01-01

    Forces arising from contractile actomyosin filaments help shape tissue form during morphogenesis. Developmental events that result from actomyosin contractility include tissue elongation, bending, budding, and collective migration. Here, we highlight recent insights into these morphogenetic processes from the perspective of actomyosin contractility as a key regulator. Emphasis is placed on a range of results obtained through live imaging, culture, and computational methods. Combining these approaches in the future has the potential to generate a robust, quantitative understanding of tissue morphodynamics. PMID:25748251

  11. Molecular Model of the Contractile Ring

    CERN Document Server

    Biron, D; Tlusty, Tsvi; Moses, Elisha; 10.1103/PhysRevLett.95.098102

    2010-01-01

    We present a model for the actin contractile ring of adherent animal cells. The model suggests that the actin concentration within the ring and consequently the power that the ring exerts both increase during contraction. We demonstrate the crucial role of actin polymerization and depolymerization throughout cytokinesis, and the dominance of viscous dissipation in the dynamics. The physical origin of two phases in cytokinesis dynamics ("biphasic cytokinesis") follows from a limitation on the actin density. The model is consistent with a wide range of measurements of the midzone of dividing animal cells.

  12. Biological behavior of fibroblast on contractile collagen hydrogel crosslinked by γ-irradiation.

    Science.gov (United States)

    Zhang, Xiangmei; Zhang, Yaqing; Chen, Wenqiang; Xu, Ling; Wei, Shicheng; Zheng, Yufeng; Zhai, Maolin

    2014-08-01

    Collagen hydrogels exhibited a contractile trend in simulated body fluid. In this study, the internal pore architecture and mechanical properties of collagen hydrogel prepared by radiation crosslinking was evaluated during contraction, and the effect of contractile collagen hydrogels on the biological behavior of fibroblasts were investigated in vitro, such as viability, proliferation, morphology, apoptosis, cycle, and stress fiber. The results showed that accompany with contraction of collagen hydrogel, the pore diameter of the hydrogels decreased and compressive modulus increased. However, fibroblasts can grow on contractile collagen hydrogels. Indeed, collagen hydrogel contracted from circumference to the interior, which retard the spreading of fibroblasts on the dynamic substrate and interrupted the initial attachment of the cell. However, contraction of collagen hydrogel had not only significant influence on the L929 cell proliferation, but also accelerated the apoptosis. Cell cycle analysis showed that contractile collagen hydrogel may promote cell cycle from G0/G1 phase to S phase, and DNA synthesis and cell proliferation were enhanced, but which may be different in contraction process. Therefore, as a scaffold for tissue engineering, the strategy for inhibition of the contraction of collagen hydrogel should be taken into account.

  13. [Cardiac contractility modulation. A new form of therapy for patients with heart failure and narrow QRS complex?].

    Science.gov (United States)

    Kleemann, T

    2015-11-01

    Cardiac contractility modulation (CCM) is a stimulation therapy by an implantable impulse generator, which enhances ventricular contractile performance by delivering CCM impulses to the right ventricle during the absolute refractory period. The CCM signals mediate increased inotropy by prolonging the duration of the action potential, which leads to an enhanced influx of calcium into cardiomyocytes and a greater release of calcium by the sarcoplasmic reticulum. The increase of cardiac contractility is not associated with increased oxygen consumption. Several small studies have shown that CCM therapy can safely improve symptoms of heart failure and peak oxygen consumption in patients with moderate to severe heart failure who are not eligible for resynchronization therapy. Therefore, CCM is a novel potential therapy for patients with heart failure, an ejection fraction ≤ 35 % and a normal QRS duration failure or mortality.

  14. Contractile Dysfunction in Sarcomeric Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    MacIver, David H; Clark, Andrew L

    2016-09-01

    The pathophysiological mechanisms underlying the clinical phenotype of sarcomeric hypertrophic cardiomyopathy are controversial. The development of cardiac hypertrophy in hypertension and aortic stenosis is usually described as a compensatory mechanism that normalizes wall stress. We suggest that an important abnormality in hypertrophic cardiomyopathy is reduced contractile stress (the force per unit area) generated by myocardial tissue secondary to abnormalities such as cardiomyocyte disarray. In turn, a progressive deterioration in contractile stress provokes worsening hypertrophy and disarray. A maintained or even exaggerated ejection fraction is explained by the increased end-diastolic wall thickness producing augmented thickening. We propose that the nature of the hemodynamic load in an individual with hypertrophic cardiomyopathy could determine its phenotype. Hypertensive patients with hypertrophic cardiomyopathy are more likely to develop exaggerated concentric hypertrophy; athletic individuals an asymmetric pattern; and inactive individuals a more apical hypertrophy. The development of a left ventricular outflow tract gradient and mitral regurgitation may be explained by differential regional strain resulting in mitral annular rotation.

  15. Contractility is the main determinant of coronary systolic flow impediment.

    Science.gov (United States)

    Krams, R; Sipkema, P; Zegers, J; Westerhof, N

    1989-12-01

    We measured the relation between coronary flow amplitude (delta F = Fd-Fs; where d is diastolic and s is systolic) and developed left ventricular pressure (delta PLV = Ps-Pd) at a constant perfusion pressure of 75 mmHg (10 kPa) in the maximally vasodilated blood-perfused isolated cat heart for different steady-state levels of contractility (protocol A) and during transients in contractility (protocol B). Contractility was defined as the slope of the end-systolic pressure-volume relation (Emax). From protocol A it appeared that the coronary flow amplitude was only weakly related to left ventricular pressure at each steady-state level of contractility studied. However, the coronary flow amplitude was strongly related to the different levels of contractility. In protocol B, contractility was changed over a wide range of values (0-100%) but developed pressure and contractility changed simultaneously. Using multiple linear regression analysis, we found that contractility has approximately 10 times (range: 2.8-57.3) stronger effect than left ventricular pressure on coronary flow amplitude (n = 10 experiments). These data and our earlier observations suggest that it is the difference in stiffness of cardiac muscle between systole and diastole that determines coronary flow amplitude.

  16. Characteristics of deslanoside-induced modulation on jejunal contractility

    Institute of Scientific and Technical Information of China (English)

    Da-Peng Chen; Yong-Jian Xiong; Ze-Yao Tang; Qi-Ying Yao; Dong-Mei Ye; Sha-Sha Liu; Yuan Lin

    2012-01-01

    AIM:TO characterize the dual effects of deslanoside on the contractility of jejunal smooth muscle.METHODS:Eight pairs of different low and high contractile states of isolated jejunal smooth muscle fragment (JSMF) were established.Contractile amplitude of JSMF in different low and high contractile states was selected to determine the effects of deslanoside,and Western blotting analysis was performed to measure the effects of deslanoside on myosin phosphorylation of jejunal smooth muscle.RESULTS:Stimulatory effects on the contractility of JSMF were induced (45.3% ± 4.0% vs 87.0% ± 7.8%,P < 0.01) by deslanoside in 8 low contractile states,and inhibitory effects were induced (180.6% ± 17.8%vs 109.9% ± 10.8%,P < 0.01) on the contractility of JSMF in 8 high contractile states.The effect of deslanoside on the phosphorylation of myosin light chain ofJSMF in low (78.1% ± 4.1% vs 96.0% ± 8.1%,P <0.01) and high contractile state (139.2% ± 8.5% vs 105.5 ± 7.34,P < 0.01) was also bidirectional.Bidirectional regulation (BR) was abolished in the presence of tetrodotoxin.Deslanoside did not affect jejunal contractility pretreated with the Ca2+ channel blocker verapamil or in a Ca2+-free assay condition.The stimulatory effect of deslanoside on JSMF in a low contractile state (low Ca2+ induced) was abolished by atropine.The inhibitory effect of deslanoside on jejunal contractility in a high contractile state (high Ca2+ induced) was blocked by phentolamine,propranolol and L-NG-nitroarginine,respectively.CONCLUSION:Deslanoside-induced BR is Ca2+ dependent and is related to cholinergic and adrenergic systems when JSMF is in low or high contractile states.

  17. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  18. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  19. Considerations for contractile electroactive materials and actuators

    Science.gov (United States)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  20. Considerations For Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Lenore Rasmussen, Lewis D. Meixler and Charles A. Gentile

    2012-02-29

    Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.

  1. In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model

    Science.gov (United States)

    Ikeda, Kazushi; Ito, Akira; Imada, Ryusuke; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2017-01-01

    Skeletal muscle tissue engineering holds great promise for pharmacological studies. Herein, we demonstrated an in vitro drug testing system using tissue-engineered skeletal muscle constructs. In response to epigenetic drugs, myotube differentiation of C2C12 myoblast cells was promoted in two-dimensional cell cultures, but the levels of contractile force generation of tissue-engineered skeletal muscle constructs prepared by three-dimensional cell cultures were not correlated with the levels of myotube differentiation in two-dimensional cell cultures. In contrast, sarcomere formation and contractile activity in two-dimensional cell cultures were highly correlated with contractile force generation of tissue-engineered skeletal muscle constructs. Among the epigenetic drugs tested, trichostatin A significantly improved contractile force generation of tissue-engineered skeletal muscle constructs. Follistatin expression was also enhanced by trichostatin A treatment, suggesting the importance of follistatin in sarcomere formation of muscular tissues. These observations indicate that contractility data are indispensable for in vitro drug screening. PMID:28300163

  2. Similar oxygen cost of myocardial contractility between DPI 201-106 and epinephrine despite different subcellular mechanisms of action in dog hearts.

    Science.gov (United States)

    Futaki, S; Goto, Y; Ohgoshi, Y; Yaku, H; Suga, H

    1992-01-01

    The effects of DPI 201-106 (a novel, cyclic AMP-independent positive inotropic agent with Ca(2+)-sensitizing and Na(+)-channel agonistic mechanisms) on myocardial mechanics and energetics were assessed in the excised cross-circulated dog left ventricle. In the first protocol, the relation between left ventricular oxygen consumption (VO2) and systolic pressure-volume area (PVA) was analyzed before and during administration of DPI 201-106. The reciprocal of the slope of the VO2-PVA relation has been shown to reflect the contractile efficiency, and the VO2-intercept consists of the oxygen cost of contractility-dependent excitation-contraction coupling and basal metabolism. DPI 201-106 increased Emax (contractility index) and elevated the VO2-PVA relation in a parallel manner, i.e., the VO2-intercept increased without a change in the slope. In the second protocol, the increase in the VO2-intercept of the VO2-PVA relation for a unit increase in Emax (i.e., oxygen cost of enhanced contractility) was compared between DPI 201-106 and epinephrine in a paired manner in each heart. Epinephrine significantly abbreviated the time to end systole, whereas DPI 201-106 did not, suggesting that the mechanism of inotropic action differed between the two drugs. However, the oxygen cost of enhanced contractility was the same between the two drugs in each heart. Therefore, DPI 201-106 did not alter the contractile efficiency nor spare the oxygen cost of enhanced contractility as compared to epinephrine under the present experimental conditions. This suggests that the Ca(2+)-sensitizing effect of DPI 201-106, if any, is too small to spare the oxygen cost of contractility in the blood-perfused, non-failing dog heart.

  3. Contractile dysfunction of the shoulder (rotator cuff tendinopathy): an overview.

    Science.gov (United States)

    Littlewood, Chris

    2012-11-01

    It is now over a decade since the features defining a contractile dysfunction of the shoulder were first reported. Since this time, some progress has been made to better understand this mechanical syndrome. In response to these developments, this narrative review will explore current understanding in relation to pathology, diagnosis, treatment, and prognosis of this syndrome with reference to literature specifically relating to contractile dysfunction but also literature relating to rotator cuff tendinopathy where necessary. The review not only identifies the strengths of the mechanical diagnosis and therapy approach with reference to a contractile dysfunction of the shoulder but also identifies where further progress needs to be made.

  4. Contractile Changes in the Vasculature After Subchronic Smoking

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Kruse, Lars Schack; Johansson, Helle Wulf;

    2016-01-01

    : Wild type (WT) and SP-D KO mice were exposed to cigarette smoke (CS) or room air for 12 weeks. The pulmonary artery, left anterior descending coronary artery, and basilar artery (BA) were isolated and mounted in wire myographs. Contractile concentration response curves to endothelin-1 and UDP were...... displayed no smoke induced changes, but were surprisingly similar to the CSE WT. CONCLUSION: The contractility to UDP was altered in the brain and heart vasculature of CSE mice. SP-D KO (both control and CSE) and CSE WT had similar changes in contractility compared to control WT. IMPLICATIONS: These results...

  5. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  6. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    Science.gov (United States)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  7. Genetic fuzzy system predicting contractile reactivity patterns of small arteries

    DEFF Research Database (Denmark)

    Tang, J; Sheykhzade, Majid; Clausen, B F;

    2014-01-01

    strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used...

  8. Influence of the cardiac myosin hinge region on contractile activity.

    OpenAIRE

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P.; Slayter, H. S.

    1991-01-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myos...

  9. Improvement of diaphragm and limb muscle isotonic contractile performance by K+ channel blockade

    Directory of Open Access Journals (Sweden)

    Pollarine Jennifer

    2010-01-01

    Full Text Available Abstract The K+ channel blocking aminopyridines greatly improve skeletal muscle isometric contractile performance during low to intermediate stimulation frequencies, making them potentially useful as inotropic agents for functional neuromuscular stimulation applications. Most restorative applications involve muscle shortening; however, previous studies on the effects of aminopyridines have involved muscle being held at constant length. Isotonic contractions differ substantially from isometric contractions at a cellular level with regards to factors such as cross-bridge formation and energetic requirements. The present study tested effects of 3,4-diaminopyridine (DAP on isotonic contractile performance of diaphragm, extensor digitorum longus (EDL and soleus muscles from rats. During contractions elicited during 20 Hz stimulation, DAP improved work over a range of loads for all three muscles. In contrast, peak power was augmented for the diaphragm and EDL but not the soleus. Maintenance of increased work and peak power was tested during repetitive fatigue-inducing stimulation using a single load of 40% and a stimulation frequency of 20 Hz. Work and peak power of both diaphragm and EDL were augmented by DAP for considerable periods of time, whereas that of soleus muscle was not affected significantly. These results demonstrate that DAP greatly improves both work and peak power of the diaphragm and EDL muscle during isotonic contractions, which combined with previous data on isometric contractions indicates that this agent is suitable for enhancing muscle performance during a range of contractile modalities.

  10. Caveolin-1 regulates contractility in differentiated vascular smooth muscle.

    Science.gov (United States)

    Je, Hyun-Dong; Gallant, Cynthia; Leavis, Paul C; Morgan, Kathleen G

    2004-01-01

    Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.

  11. Myocardial contractile function and intradialytic hypotension.

    Science.gov (United States)

    Owen, Paul J; Priestman, William S; Sigrist, Mhairi K; Lambie, Stewart H; John, Stephen G; Chesterton, Lindsay J; McIntyre, Christopher W

    2009-07-01

    Dialysis-induced hypotension remains a significant problem in hemodialysis (HD) patients. Numerous factors result in dysregulation of blood pressure control and impaired myocardial reserve in response to HD-induced cardiovascular stress. Episodic intradialytic hypotension may be involved in the pathogenesis of evolving myocardial injury. We performed an initial pilot investigation of cardiovascular functional response to pharmacological cardiovascular stress in hypotension-resistant (HR) and hypotension-prone (HP) HD patients. We studied 10 matched chronic HD patients (5 HP, 5 HR). Dobutamine-atropine stress (DAS) was performed on a nondialysis short interval day, with noninvasive pulse-wave analysis using the Finometer to continuously measure hemodynamic variables. Baroreflex sensitivity was assessed at rest and during DAS. Baseline hemodynamic variables were not significantly different. The groups had differing hemodynamic responses to DAS. The Mean arterial pressure was unchanged in the HR group but decreased in HP patients (-13.6 +/- 3.5 mmHg; P<0.001). This was associated with failure to significantly increase cardiac output in the HP group (cf. increase in cardiac output in the HR group of +33.4 +/- 6%; P<0.05), and a reduced response in total peripheral resistance (HP -10.3 +/- 6.8%, HR -22.7 +/- 2.9%, P=NS). Baroreflex sensitivity was not significantly different between groups at baseline or within groups with increasing levels of DAS; however, the mean baroreflex sensitivity was higher in HR cf. HP subjects throughout pharmacological stress (P<0.05). Hypotension-prone patients appear to have an impaired cardiovascular response to DAS. The most significant abnormality is an impaired myocardial contractile reserve. Early identification of these patients would allow utilization of therapeutic strategies to improve intradialytic tolerability, potentially abrogating aggravation of myocardial injury.

  12. Effects of testosterone on contractile properties of sexually dimorphic forelimb muscles in male bullfrogs (Rana catesbeiana, Shaw 1802

    Directory of Open Access Journals (Sweden)

    Aaron R. Kampe

    2013-07-01

    This study examined the effects of testosterone (T on the contractile properties of two sexually dimorphic forelimb muscles and one non-dimorphic muscle in male bullfrogs (Rana catesbeiana, Shaw 1802. The dimorphic muscles in castrated males with testosterone replacement (T+ achieved higher forces and lower fatigability than did castrated males without replaced testosterone (T0 males, but the magnitude of the differences was low and many of the pair-wise comparisons of each muscle property were not statistically significant. However, when taken as a whole, the means of seven contractile properties varied in the directions expected of masculine values in T+ animals in the sexually dimorphic muscles. Moreover, these data, compared with previous data on male and female bullfrogs, show that values for T+ males are similar to normal males and are significantly different from females. The T0 males tended to be intermediate in character between T+ males and females, generally retaining masculine values. This suggests that the exposure of young males to T in their first breeding season produces a masculinizing effect on the sexually dimorphic muscles that is not reversed between breeding seasons when T levels are low. The relatively minor differences in contractile properties between T+ and T0 males may indicate that as circulating T levels rise during breeding season in normal males, contractile properties can be enhanced rapidly to maximal functional levels for breeding success.

  13. Effects of Hindlimb Unweighting on Arterial Contractile Responses in Mice

    Science.gov (United States)

    Ma, Jia; Ren, Xin-Ling; Purdy, Ralph E.

    2003-01-01

    The aim of this work was to determine if hindlimb unweighting in mice alters arterial contractile responses. Sixteen male C57B/6 mice and 16 male Chinese Kunming mice were divided into control and 3 weeks hindlimb unweighting groups, respectively. Using isolated arterial rings from different arteries of mouse, effects of 3 weeks hindlimb unweighting on arterial contractile responsiveness were examined in vitro. The results showed that, in arterial rings from both C57B/6 and Chinese Kunming mice, maximum isometric contractile tensions evoked by either KCl or phenylephrine were significantly lower in abdominal aortic, mesenteric arterial and femoral arterial rings from hindlimb unweighting, compared to control mice. However, the maximal contractile responses of common carotid rings to KCl and PE were not significantly different between control and hindlimb unweighting groups. The sensitivity (EC(sub 50)) of all arteries to KCl or PE showed no significant differences between control and hindlimb unweighting mice. These data indicated that 3 weeks hindlimb unweighting results in a reduced capacity of the arterial smooth muscle of the hindquarter to develop tension. In addition, the alterations in arterial contractile responses caused by hindlimb unweighting in mice are similar as those in rats. Our work suggested that hindlimb unweighting mouse model may be used as a model for the study of postflight cardiovascular deconditioning.

  14. Mechanisms of impaired gallbladder contractile response in chronic acalculous cholecystitis.

    Science.gov (United States)

    Merg, Anders R; Kalinowski, Scott E; Hinkhouse, Marilyn M; Mitros, Frank A; Ephgrave, Kimberly S; Cullen, Joseph J

    2002-01-01

    The mechanisms involved in the impaired gallbladder contractile response in chronic acalculous cholecystitis are unknown. To determine the mechanisms that may lead to impaired gallbladder emptying in chronic acalculous cholecystitis, gallbladder specimens removed during hepatic resection (controls) and after cholecystectomy for chronic acalculous cholecystitis were attached to force transducers and placed in tissue baths with oxygenated Krebs solution. Electrical field stimulation (EFS) (1 to 10 Hz, 0.1 msec, 70 V) or the contractile agonists, CCK-8 (10(-9) to 10(-5)) or K(+) (80 mmol/L), were placed separately in the tissue baths and changes in tension were determined. Patients with chronic acalculous cholecystitis had a mean gallbladder ejection fraction of 12% +/- 4%. Pathologic examination of all gallbladders removed for chronic acalculous cholecystitis revealed chronic cholecystitis. Spontaneous contractile activity was present in gallbladder strips in 83% of control specimens but only 29% of gallbladder strips from patients with chronic acalculous cholecystitis (P < 0.05 vs. controls). CCK-8 contractions were decreased by 54% and EFS-stimulated contractions were decreased by 50% in the presence of chronic acalculous cholecystitis (P < 0.05 vs. controls). K(+)-induced contractions were similar between control and chronic acalculous cholecystitis gallbladder strips. The impaired gallbladder emptying in chronic acalculous cholecystitis appears to be due to diminished spontaneous contractile activity and decreased contractile responsiveness to both CCK and EFS.

  15. Changes of smooth muscle contractile filaments in small bowel atresia

    Institute of Scientific and Technical Information of China (English)

    Stefan Gfroerer; Henning Fiegel; Priya Ramachandran; Udo Rolle; Roman Metzger

    2012-01-01

    AIM:To investigate morphological changes of intestinal smooth muscle contractile fibres in small bowel atresia patients.METHODS:Resected small bowel specimens from small bowel atresia patients (n =12) were divided into three sections (proximal,atretic and distal).Standard histology hematoxylin-eosin staining and enzyme immunohistochemistry was performed to visualize smooth muscle contractile markers α-smooth muscle actin (SMA) and desmin using conventional paraffin sections of the proximal and distal bowel.Small bowel from agematched patients (n =2) undergoing Meckel's diverticulum resection served as controls.RESULTS:The smooth muscle coat in the proximal bowel of small bowel atresia patients was thickened compared with control tissue,but the distal bowel was unchanged.Expression of smooth muscle contractile fibres SMA and desmin within the proximal bowel was slightly reduced compared with the distal bowel and control tissue.There were no major differences in the architecture of the smooth muscle within the proximal bowel and the distal bowel.The proximal and distal bowel in small bowel atresia patients revealed only minimal differences regarding smooth muscle morphology and the presence of smooth muscle contractile filament markers.CONCLUSION:Changes in smooth muscle contractile filaments do not appear to play a major role in postoperative motility disorders in small bowel atresia.

  16. Geometrical origins of contractility in disordered actomyosin networks

    CERN Document Server

    Lenz, Martin

    2014-01-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings sheds light on recent $\\textit{in vitro}$ experiments, and provi...

  17. Serotonin regulates contractile activity of the uterus in non-pregnant rabbits.

    Science.gov (United States)

    Lychkova, Alla Edward; De Pasquale, Valeria; Avallone, Luigi; Puzikov, Alexander Michael; Pavone, Luigi Michele

    2014-09-01

    Serotonin (5-HT) can stimulate the cholinergic system of the uterus by indirect actions on the modulation of reflexes and a direct action on smooth muscles. We investigated the role of 5-HT in the regulation of the cholinergic activity in the uterine parts of non-pregnant rabbits. The right vagus or pelvic nerve and the left sympathetic trunk were stimulated by an electrical field, and the uterine contractile activity was evaluated by measuring the amplitude and frequency of slow wave electromyogram (EMG), with the surface of microelectrodes applied to the uterus bottom, body, and cervix, respectively. Double stimulation of the vagus or pelvic nerve and the sympathetic trunk increased the frequency and the amplitude of the slow wave EMG in all the uterine parts. Furthermore, the administration of exogenous 5-HT increased the vagus or pelvic induced EMG activity in all parts of the uterus. Overall our results demonstrate that 5-HT enhances the vagus contractile activity with a magnitude of the effect decreasing from the bottom to the cervix, whereas 5-HT enhances the pelvic nerve contractile functions with a magnitude of the response increasing from the bottom to the cervix. The administration of droperidol, a 5-HT3 and 4 receptor inhibitor, and spiperone, a 5-HT2 receptor antagonist, inhibited the effect of the serotoninergic fibers of the sympathetic trunk to increase the vagus and pelvic nerve EMG activity. These data suggest that 5-HT stimulation of the parasympathetic nerves results in the induction of uterine contraction via the activation of 5-HT2, 3, and 4 receptor subfamilies.

  18. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension

    Directory of Open Access Journals (Sweden)

    Silvia Llorens

    2015-09-01

    Full Text Available Background: Endothelial dysfunction, characterized by an enhancement in vasoconstriction, is clearly associated with hypertension. Saffron (Crocus sativus L. bioactive compounds have been recognized to have hypotensive properties. Recently, we have reported that crocetin exhibits potent vasodilator effects on isolated aortic rings from hypertensive rats. In this work, we have aimed to analyze the anticontractile ability of crocetin or crocetin esters pool (crocins isolated from saffron. Thus, we have studied the effects of saffron carotenoids on endothelium-dependent and -independent regulation of smooth muscle contractility in genetic hypertension. Methods: We have measured the isometric responses of aortic segments with or without endothelium obtained from spontaneously hypertensive rats. The effects of carotenoids were studied by assessing the endothelial modulation of phenylephrine-induced contractions (10−9–10−5 M in the presence or absence of crocetin or crocins. The role of nitric oxide and prostanoids was analyzed by performing the experiments with L-NAME (NG-nitro-l-arginine methyl ester or indomethacin (both 10−5 M, respectively. Results: Crocetin, and to a minor extent crocins, diminished the maximum contractility of phenylephrine in intact rings, while crocins, but not crocetin, increased this contractility in de-endothelizated vessels. In the intact vessels, the effect of crocetin on contractility was unaffected by indomethacin but was abolished by L-NAME. However, crocetin but not crocins, lowered the already increased contractility caused by L-NAME. Conclusions: Saffron compounds, but especially crocetin have endothelium-dependent prorelaxing actions. Crocins have procontractile actions that take place via smooth muscle cell mechanisms. These results suggest that crocetin and crocins activate different mechanisms involved in the vasoconstriction pathway in hypertension.

  19. Magnetic resonance-derived circumferential strain provides a superior and incremental assessment of improvement in contractile function in patients early after ST-segment elevation myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Dennis T.L.; Psaltis, Peter J. [University of Adelaide, Discipline of Medicine, Adelaide (Australia); South Australian Health and Medical Research Institute (SAHMRI), Adelaide (Australia); Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre)Monash University and Monash Heart, Clayton, VIC (Australia); Leong, Darryl P.; Weightman, Michael J.; Richardson, James D.; Worthley, Matthew I.; Worthley, Stephen G. [University of Adelaide, Discipline of Medicine, Adelaide (Australia); Dundon, Benjamin K.; Leung, Michael C.H.; Meredith, Ian T. [Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre)Monash University and Monash Heart, Clayton, VIC (Australia)

    2014-06-15

    We evaluate whether circumferential strain derived from grid-tagged CMR is a better method for assessing improvement in segmental contractile function after STEMI compared to late gadolinium enhancement (LGE). STEMI patients post primary PCI underwent baseline CMR (day 3) and follow-up (day 90). Cine, grid-tagged and LGE images were acquired. Baseline LGE infarct hyperenhancement was categorised as ≤25 %, 26-50 %, 51-75 % and >75 % hyperenhancement. The segmental baseline circumferential strain (CS) and circumferential strain rate (CSR) were calculated from grid-tagged images. Segments demonstrating an improvement in wall motion of ≥1 grade compared to baseline were regarded as having improved segmental contractile-function. Forty-five patients (aged 58 ± 12 years) and 179 infarct segments were analysed. A baseline CS cutoff of -5 % had sensitivity of 89 % and specificity of 70 % for detection of improvement in segmental-contractile-function. On receiver-operating characteristic analysis for predicting improvement in contractile function, AUC for baseline CS (0.82) compared favourably to LGE hyperenhancement (0.68), MVO (0.67) and baseline-CSR (0.74). On comparison of AUCs, baseline CS was superior to LGE hyperenhancement and MVO in predicting improvement in contractile function (P < 0.001). On multivariate-analysis, baseline CS was the independent predictor of improvement in segmental contractile function (P < 0.001). Grid-tagged CMR-derived baseline CS is a superior predictor of improvement in segmental contractile function, providing incremental value when added to LGE hyperenhancement and MVO following STEMI. (orig.)

  20. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture.

    Science.gov (United States)

    Feinberg, Adam W; Alford, Patrick W; Jin, Hongwei; Ripplinger, Crystal M; Werdich, Andreas A; Sheehy, Sean P; Grosberg, Anna; Parker, Kevin Kit

    2012-08-01

    The heart is a muscular organ with a wrapping, laminar structure embedded with neural and vascular networks, collagen fibrils, fibroblasts, and cardiac myocytes that facilitate contraction. We hypothesized that these non-muscle components may have functional benefit, serving as important structural alignment cues in inter- and intra-cellular organization of cardiac myocytes. Previous studies have demonstrated that alignment of engineered myocardium enhances calcium handling, but how this impacts actual force generation remains unclear. Quantitative assays are needed to determine the effect of alignment on contractile function and muscle physiology. To test this, micropatterned surfaces were used to build 2-dimensional myocardium from neonatal rat ventricular myocytes with distinct architectures: confluent isotropic (serving as the unaligned control), confluent anisotropic, and 20 μm spaced, parallel arrays of multicellular myocardial fibers. We combined image analysis of sarcomere orientation with muscular thin film contractile force assays in order to calculate the peak sarcomere-generated stress as a function of tissue architecture. Here we report that increasing peak systolic stress in engineered cardiac tissues corresponds with increasing sarcomere alignment. This change is larger than would be anticipated from enhanced calcium handling and increased uniaxial alignment alone. These results suggest that boundary conditions (heterogeneities) encoded in the extracellular space can regulate muscle tissue function, and that structural organization and cytoskeletal alignment are critically important for maximizing peak force generation.

  1. Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy

    Science.gov (United States)

    Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats...

  2. Clinical Relationship between Steatocholecystitis and Gallbladder Contractility Measured by Cholescintigraphy

    Directory of Open Access Journals (Sweden)

    Chang Seok Bang

    2015-01-01

    Full Text Available Objective. Contractility of gallbladder is known to be decreased in fatty gallbladder diseases. However, clinical estimation data about this relationship is still lacking. The aim of this study was to investigate the association between steatocholecystitis and contractility of gallbladder. Methods. Patients with cholecystitis (steatocholecystitis versus nonsteatocholecystitis who underwent cholescintigraphy before cholecystectomy were retrospectively evaluated in a single teaching hospital of Korea. The association of steatocholecystitis with contractility of gallbladder, measured by preoperative cholescintigraphy, was assessed by univariable and multivariable analysis. Results. A total of 432 patients were finally enrolled (steatocholecystitis versus nonsteatocholecystitis; 75 versus 357, calculous versus acalculous cholecystitis; 316 versus 116. In the multivariable analysis, age (OR: 0.94, 95% CI: 0.90–0.99, P=0.01 and total serum cholesterol (OR: 1.02, 95% CI: 1.01–1.04, P=0.04 were related to steatocholecystitis in patients with acalculous cholecystitis. Only age (OR: 0.97, 95% CI: 0.94–0.99, P=0.004 was significantly related to steatocholecystitis in patients with calculous cholecystitis. However, ejection fraction of gallbladder reflecting contractility measured by cholescintigraphy was not related to steatocholecystitis irrespective of presence of gallbladder stone in patients with cholecystitis. Conclusion. Ejection fraction of gallbladder measured by cholescintigraphy cannot be used for the detection or confirmation of steatocholecystitis.

  3. Myocardial contractile function in survived neonatal piglets after cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Popov Aron-Frederik

    2010-11-01

    Full Text Available Abstract Background Hemodynamic function may be depressed in the early postoperative stages after cardiac surgery. The aim of this study was the analysis of the myocardial contractility in neonates after cardiopulmonary bypass (CPB and mild hypothermia. Methods Three indices of left ventricular myocardial contractile function (dP/dt, (dP/dt/P, and wall thickening were studied up to 6 hours after CPB in neonatal piglets (CPB group; n = 4. The contractility data were analysed and then compared to the data of newborn piglets who also underwent median thoracotomy and instrumentation for the same time intervals but without CPB (non-CPB group; n = 3. Results Left ventricular dP/dtmax and (dP/dtmax/P remained stable in CPB group, while dP/dtmax decreased in non-CPB group 5 hours postoperatively (1761 ± 205 mmHg/s at baseline vs. 1170 ± 205 mmHg/s after 5 h; p max and (dP/dtmax/P there were no statistically significant differences between the two groups. Comparably, although myocardial thickening decreased in the non-CPB group the differences between the two groups were not statistically significant. Conclusions The myocardial contractile function in survived neonatal piglets remained stable 6 hours after cardiopulmonary bypass and mild hypothermia probably due to regional hypercontractility.

  4. Inhalation of Budesonide/Formoterol Increases Diaphragm Muscle Contractility

    Directory of Open Access Journals (Sweden)

    Chiyohiko Shindoh

    2012-01-01

    Conclusions: BUD/FORM inhalation has an inotropic effect on diaphragm muscle, protects diaphragm muscle deterioration after endotoxin injection, and inhibits NO production. Increments in muscle contractility with BUD/FORM inhalation are induced through a synergistic effect of an anti-inflammatory agent and 02-agonist.

  5. MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.

    Science.gov (United States)

    Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

    2014-05-01

    The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart.

  6. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts

    Science.gov (United States)

    Guo, Rui; Hu, Nan; Kandadi, Machender R.; Ren, Jun

    2012-01-01

    Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A1, E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect. PMID:22441020

  7. Contractility and protein phosphorylation in cardiomyocytes: effects of isoproterenol and AR-L57.

    Science.gov (United States)

    Hayes, J S; Bowling, N; Boder, G B

    1984-08-01

    The cardiotonic drugs AR-L57 [2-(2,4-dimethoxyphenyl)-1H-imidazo(4,5b)-pyridine] and isoproterenol stimulated contractility in cultured heart cells in concentration-dependent manners; only the effects of isoproterenol were blocked by propranolol. Isoproterenol, but not AR-L57, enhanced the phosphorylation state of seven protein bands [relative molecular weights (MrS) 155,000, 96,000, 27,000, 24,000, 20,000, 16,000, 12,000] and resulted in the dephosphorylation of one protein band (Mr 21,000). Also, only isoproterenol increased the activation states of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase and glycogen phosphorylase. The eight protein bands resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and detected by autoradiography were altered by isoproterenol in time- and concentration-dependent manners. The 24,000-Mr protein substrate phosphorylated in response to isoproterenol was converted to a 12,000-Mr species by heating in the presence of SDS prior to electrophoresis, suggesting that the two substrates were in fact identical proteins. A comparison of the 2-min responses to varying concentrations of isoproterenol resulted in excellent correlations between the phosphorylation states of individual protein bands and contractility. This was true even for the 21,000-Mr species that was dephosphorylated. However, only the 27,000-, 24-12,000-, and 16,000-Mr substrates were phosphorylated rapidly enough to be associated with the onset of the inotropic response. Cultured myocytes are an important feature of these studies as they are 84% pure ventricular cells that remain 100% viable throughout an experiment. Because this system is suitable for biochemical measurements and the effects of agents on heart cell contractility can be determined, it is possible to correlate changes in biochemical parameters with alterations in physiological state.

  8. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain.

    Science.gov (United States)

    Fairbank, Nigel J; Connolly, Sarah C; Mackinnon, James D; Wehry, Kathrin; Deng, Linhong; Maksym, Geoffrey N

    2008-09-01

    Chronic contractile activation, or tone, in asthma coupled with continuous stretching due to breathing may be involved in altering the contractile function of airway smooth muscle (ASM). Previously, we (11) showed that cytoskeletal remodeling and stiffening responses to acute (2 h) localized stresses were modulated by the level of contractile activation of ASM. Here, we investigated if altered contractility in response to chronic mechanical strain was dependent on repeated modulation of contractile tone. Cultured human ASM cells received 5% cyclic (0.3 Hz), predominantly uniaxial strain for 5 days, with once-daily dosing of either sham, forskolin, carbachol, or histamine to alter tone. Stiffness, contractility (KCl), and "relaxability" (forskolin) were then measured as was cell alignment, myosin light-chain phosphorylation (pMLC), and myosin light-chain kinase (MLCK) content. Cells became aligned and baseline stiffness increased with strain, but repeated lowering of tone inhibited both effects (P negative tone-modulation dependence of MLCK, observed in static conditions in agreement with previous reports, with strain and tone together increasing both MLCK and pMLC. Furthermore, contractility increased 176% (SE 59) with repeated tone elevation. These findings indicate that with strain, and not without, repeated tone elevation promoted contractile function through changes in cytoskeletal organization and increased contractile protein. The ability of repeated contractile activation to increase contractility, but only with mechanical stretching, suggests a novel mechanism for increased ASM contractility in asthma and for the role of continuous bronchodilator and corticosteroid therapy in reversing airway hyperresponsiveness.

  9. Different Anti-Contractile Function and Nitric Oxide Production of Thoracic and Abdominal Perivascular Adipose Tissues.

    Science.gov (United States)

    Victorio, Jamaira A; Fontes, Milene T; Rossoni, Luciana V; Davel, Ana P

    2016-01-01

    Divergent phenotypes between the perivascular adipose tissue (PVAT) surrounding the abdominal and the thoracic aorta might be implicated in regional aortic differences, such as susceptibility to atherosclerosis. Although PVAT of the thoracic aorta exhibits anti-contractile function, the role of PVAT in the regulation of the vascular tone of the abdominal aorta is not well defined. In the present study, we compared the anti-contractile function, nitric oxide (NO) availability, and reactive oxygen species (ROS) formation in PVAT and vessel walls of abdominal and thoracic aorta. Abdominal and thoracic aortic tissue from male Wistar rats were used to perform functional and molecular experiments. PVAT reduced the contraction evoked by phenylephrine in the absence and presence of endothelium in the thoracic aorta, whereas this anti-contractile effect was not observed in the abdominal aorta. Abdominal PVAT exhibited a reduction in endothelial NO synthase (eNOS) expression compared with thoracic PVAT, without differences in eNOS expression in the vessel walls. In agreement with this result, NO production evaluated in situ using 4,5-diaminofluorescein was less pronounced in abdominal compared with thoracic aortic PVAT, whereas no significant difference was observed for endothelial NO production. Moreover, NOS inhibition with L-NAME enhanced the phenylephrine-induced contraction in endothelial-denuded rings with PVAT from thoracic but not abdominal aorta. ROS formation and lipid peroxidation products evaluated through the quantification of hydroethidine fluorescence and 4-hydroxynonenal adducts, respectively, were similar between PVAT and vessel walls from the abdominal and thoracic aorta. Extracellular superoxide dismutase (SOD) expression was similar between the vessel walls and PVAT of the abdominal and thoracic aorta. However, Mn-SOD levels were reduced, while CuZn-SOD levels were increased in abdominal PVAT compared with thoracic aortic PVAT. In conclusion, our results

  10. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+/K+-ATPase Vmax in trained men

    DEFF Research Database (Denmark)

    Hostrup, Morten; Kalsen, A; Ortenblad, N

    2014-01-01

    of two experiments (EXP1, n = 10 M, EXP2, n = 20 M), where beta2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction of m.quadriceps (MVC) was measured, followed by exercise to fatigue at 120% of Vo2......max. A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m.quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45-s sprints. Non-fatigued MVC was 6±3 and 6±2% higher (P ... placebo in EXP1 and EXP2. Furthermore, peak twitch force was 11±7% higher (P MVC declined (P

  11. Contractile system of muscle as an auto-oscillator.

    Science.gov (United States)

    Ishiwata, Shin'ichi; Shimamoto, Yuta; Fukuda, Norio

    2011-05-01

    It is widely known that the contractile system of muscle takes on either the state of contraction (force-generating) or the state of relaxation (non-force-generating), which is known as the "all-or-nothing" principle. However, it is important to note that under intermediate activation conditions there exists a third state, which demonstrates auto-oscillatory properties and is termed SPOC (SPontaneous Oscillatory Contraction) state. We present a phase diagram, in which the states of the contractile system of muscle are divided into three regions consisting of contraction, relaxation and SPOC states. In the present review, experimental data related to the characteristics of SPOC are summarized and the mechanism of SPOC is described. We propose that the bio-motile system itself is an auto-oscillator, even in a membrane-less supra-molecular structure composed of an assembly of molecular motors and cytoskeletons (actin filaments and microtubules). Finally, the physiological significance of SPOC is discussed.

  12. Wound-induced contractile ring: a model for cytokinesis.

    Science.gov (United States)

    Darenfed, Hassina; Mandato, Craig A

    2005-12-01

    The actomyosin-based contractile ring is required for several biological processes, such as wound healing and cytokinesis of animal cells. Despite progress in defining the roles of this structure in both wound closure and cell division, we still do not fully understand how an actomyosin ring is spatially and temporally assembled, nor do we understand the molecular mechanism of its contraction. Recent results have demonstrated that microtubule-dependent local assembly of F-actin and myosin-II is present in wound closure and is similar to that in cytokinesis in animal cells. Furthermore, signalling factors such as small Rho GTPases have been shown to be involved in the regulation of actin dynamics during both processes. In this review we address recent findings in an attempt to better understand the dynamics of actomyosin contractile rings during wound healing as compared with the final step of animal cell division.

  13. Intratumoral LIGHT Restores Pericyte Contractile Properties and Vessel Integrity

    OpenAIRE

    Anna Johansson-Percival; Zhi-Jie Li; Devina D. Lakhiani; Bo He; Xiao Wang; Juliana Hamzah; Ruth Ganss

    2015-01-01

    Normalization of the tumor vasculature is an emerging concept shown to improve anti-cancer therapy. However, there are currently no clinical interventions that effect long-lasting normalization. Here, we have developed a strategy for normalization by specific intratumoral delivery of LIGHT/TNFSF14. Importantly, normalization occurs by induced expression of contractile markers in intratumoral pericytes, which in turn re-establishes tight pericyte-vessel alignment. Restoring vessel integrity im...

  14. β-Arrestin mediates the Frank-Starling mechanism of cardiac contractility.

    Science.gov (United States)

    Abraham, Dennis M; Davis, Robert T; Warren, Chad M; Mao, Lan; Wolska, Beata M; Solaro, R John; Rockman, Howard A

    2016-12-13

    The Frank-Starling law of the heart is a physiological phenomenon that describes an intrinsic property of heart muscle in which increased cardiac filling leads to enhanced cardiac contractility. Identified more than a century ago, the Frank-Starling relationship is currently known to involve length-dependent enhancement of cardiac myofilament Ca(2+) sensitivity. However, the upstream molecular events that link cellular stretch to the length-dependent myofilament Ca(2+) sensitivity are poorly understood. Because the angiotensin II type 1 receptor (AT1R) and the multifunctional transducer protein β-arrestin have been shown to mediate mechanosensitive cellular signaling, we tested the hypothesis that these two proteins are involved in the Frank-Starling mechanism of the heart. Using invasive hemodynamics, we found that mice lacking β-arrestin 1, β-arrestin 2, or AT1R were unable to generate a Frank-Starling force in response to changes in cardiac volume. Although wild-type mice pretreated with the conventional AT1R blocker losartan were unable to enhance cardiac contractility with volume loading, treatment with a β-arrestin-biased AT1R ligand to selectively activate β-arrestin signaling preserved the Frank-Starling relationship. Importantly, in skinned muscle fiber preparations, we found markedly impaired length-dependent myofilament Ca(2+) sensitivity in β-arrestin 1, β-arrestin 2, and AT1R knockout mice. Our data reveal β-arrestin 1, β-arrestin 2, and AT1R as key regulatory molecules in the Frank-Starling mechanism, which potentially can be targeted therapeutically with β-arrestin-biased AT1R ligands.

  15. Collective cancer cell invasion induced by coordinated contractile stresses.

    Science.gov (United States)

    Jimenez Valencia, Angela M; Wu, Pei-Hsun; Yogurtcu, Osman N; Rao, Pranay; DiGiacomo, Josh; Godet, Inês; He, Lijuan; Lee, Meng-Horng; Gilkes, Daniele; Sun, Sean X; Wirtz, Denis

    2015-12-22

    The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.

  16. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    Science.gov (United States)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  17. Effect of pentoxifylline on diaphragmatic contractility in septic rats.

    Directory of Open Access Journals (Sweden)

    Ujike,Yoshihito

    2008-04-01

    Full Text Available We investigated the effects of pentoxifylline (PTX on endotoxin-induced diaphragmatic dysfunction in vitro. Seventy-two rats were divided into 3 groups: a group in which endotoxin (20 mg/kg was injected intraperitoneally (endotoxin-group, a group in which PTX (100 mg/kg was injected intraperitoneally 30 min before injection of endotoxin (endotoxin-PTX group, and a group in which only saline was given (sham group. Left hemidiaphragms were removed 4 h after injection of endotoxin. We evaluated the diaphragmatic contractility by twitch characteristics and force-frequency curves in vitro. We measured serum TNF-alpha concentrations, diaphragm malondialdehyde (MDA levels (an index of oxygen-derived free radical-mediated lipid peroxidation, and diaphragm cAMP concentrations. Diaphragmatic force generation capacity was signifi cantly reduced after injection of endotoxin. Serum TNF-alpha concentrations and diaphragmatic MDA levels were significantly elevated after injection of endotoxin. PTX administration significantly improved diaphragmatic contractility and prevented the elevation in TNF-alpha concentrations and MDA levels after injection of endotoxin. There were no significant changes in the diaphragm cAMP concentrations among the 3 groups. These results demonstrated that PTX administration prevented endotoxin-induced diaphragmatic dysfunction without changing diaphragm muscle cAMP concentrations. The protective effects of PTX against endotoxininduced diaphragmatic contractile deterioration might be caused by attenuating TNF-alpha-mediated oxygen-derived free radical production.

  18. Surgical Treatment of Concomitant Atrial Fibrillation: Focus onto Atrial Contractility

    Directory of Open Access Journals (Sweden)

    Claudia Loardi

    2015-01-01

    Full Text Available Background. Maze procedure aims at restoring sinus rhythm (SR and atrial contractility (AC. This study evaluated multiple aspects of AC recovery and their relationship with SR regain after ablation. Methods. 122 mitral and fibrillating patients underwent radiofrequency Maze. Rhythm check and echocardiographic control of biatrial contractility were performed at 3, 6, 12, and 24 months postoperatively. A multivariate Cox analysis of risk factors for absence of AC recuperation was applied. Results. At 2-years follow-up, SR was achieved in 79% of patients. SR-AC coexistence increased from 76% until 98%, while biatrial contraction detection augmented from 84 to 98% at late stage. Shorter preoperative arrhythmia duration was the only common predictor of SR-AC restoring, while pulmonary artery pressure (PAP negatively influenced AC recuperation. Early AC restoration favored future freedom from arrhythmia recurrence. Minor LA dimensions correlated with improved future A/E value and vice versa. Right atrial (RA contractility restoring favored better left ventricular (LV performance and volumes. Conclusions. SR and left AC are two interrelated Maze objectives. Factors associated with arrhythmia “chronic state” (PAP and arrhythmia duration are negative predictors of procedural success. Our results suggest an association between postoperative LA dimensions and “kick” restoring and an influence of RA contraction onto LV function.

  19. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    Science.gov (United States)

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension.

  20. [Contractile properties of skeletal muscles of rats after flight on "Kosmos-1887"].

    Science.gov (United States)

    Oganov, V S; Skuratova, S A; Murashko, L M

    1991-01-01

    Contractile properties of skeletal muscles of rats were investigated using glycerinated muscle preparations that were obtained from Cosmos-1887 animals flown for 13 days (plus 2 days on the ground) and from rats that remained hypokinetic for 13 days on the ground. In the flow rats, the absolute mass of postural muscles remained unchanged while their relative mass increased; this may be attributed to their enhanced hydration which developed during the first 2 days after landing. Strength losses of the postural muscles were less significant than after previous flights. Comparison of the Cosmos-1887 and hypokinesia control data has shown that even 2-day exposure to 1 G after 13-day flight can modify drastically flight-induced changes.

  1. Improved Cardiac Contractility of Human Recombinant Growth Hormone on the Congestive Heart Failure of Pig

    Institute of Scientific and Technical Information of China (English)

    Yang Ping; He Yu-quan; Zeng Hong; Ni Jin-song; Yun Qing-jun; Huang Xiao-ping; Li Shu-mei

    2005-01-01

    The enhanced cardiac contractility effect of human recombinant growth hormone (hr-GH) on the congestive heart failure (CHF) was studied on the pig. To build a pig model of congestive heart failure, a temporary artificial cardiac pacemaker was implanted in the pig's body and paced at 220 beats to 240 beats per minute for 1 week. After the model of congestive heart failure was successfully set up, the frequency of the pacemaker was changed to 150 beats to 180 beats per minute to maintain the CHF model stable. Pigs were divided into three groups: The hr-GH group in which 0.5 mg/kg per day of hr-GH was administrated intramuscularly for 15 days, the injection control group in which an equal amount of physiological saline was injected intramuscularly, and a normal control group. The left ventricular diastolic end pressure was (10.60±2.41 ) mmHg in the hr-GH group, but (19.00±3.81) mmHg in the saline control group (P<0.01); Cardiac output was (1.86±0.13) L/min in the hr-GH group, but (1.56 ±0.18) L/min in the saline control group (P<0.05); Peripheral min) -1 in the saline control group (P<0.05); ± dp/dtmax was (2900 ±316.23) and (2280 ±286.36) in the hr-HG group and the saline control group respectively (P<0.05). The results show that hr-GH enhances myocardial contractility of CHF, and the CHF model built by a temporary artificial cardiac pacemaker at a high rate of stimulation is reasonable and applicable.

  2. Contractile Units in Disordered Actomyosin Bundles Arise from F-Actin Buckling

    Science.gov (United States)

    Lenz, Martin; Thoresen, Todd; Gardel, Margaret L.; Dinner, Aaron R.

    2012-06-01

    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic motor head detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the “contractile units” associated with this process. Consistent with these results, our reconstituted actomyosin bundles show contraction at relatively high motor density, and we observe buckling at the predicted length scale.

  3. Contractile units in disordered actomyosin bundles arise from F-actin buckling

    CERN Document Server

    Lenz, Martin; Gardel, Margaret L; Dinner, Aaron R

    2012-01-01

    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in actomyosin bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic actin-myosin detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the "contractile units" associated with this process. Consistent with these results, our reconstituted actomyosin bundles contract at relatively high motor dens...

  4. The role of microtubules in contractile ring function

    Science.gov (United States)

    Conrad, A. H.; Paulsen, A. Q.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.

  5. Caveolin-3 promotes a vascular smooth muscle contractile phenotype

    Directory of Open Access Journals (Sweden)

    Jorge L. Gutierrez-Pajares

    2015-06-01

    Full Text Available Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle cells are believed to play an essential role in the development of these illnesses. Vascular smooth muscle cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature contractile smooth muscle cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of smooth muscle cell phenotype. Caveolin-3 is expressed in vivo in normal arterial smooth muscle cells, but its expression appears to be lost in cultured smooth muscle cells. Our data show that caveolin-3 expression in the A7r5 smooth muscle cell line is associated with increased expression of contractility markers such as smooth muscle  actin, smooth muscle myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing smooth muscle cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic smooth muscle cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating smooth muscle function in atherosclerosis and restenosis.

  6. Genetic fuzzy system predicting contractile reactivity patterns of small arteries

    DEFF Research Database (Denmark)

    Tang, J; Sheykhzade, Majid; Clausen, B F;

    2014-01-01

    information. We developed a genetic fuzzy system (GFS) algorithm that is capable of learning all information in time-domain physiological data. Data on isometric force development of isolated small arteries were used as a framework for developing and optimizing a GFS. GFS performance was improved by several...... strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used...

  7. Effects of single or repeated administration of a carbamate, propoxur, and an organophosphate, DDVP, on jejunal cholinergic activities and contractile responses in rats.

    Science.gov (United States)

    Kobayashi, H; Sato, I; Akatsu, Y; Fujii, S; Suzuki, T; Matsusaka, N; Yuyama, A

    1994-01-01

    Wistar rats were injected once or repeatedly for 10 days with dichlorvos (DDVP, 5 mg kg-1), propoxur (10 mg kg-1), oxotremorine (0.1 mg kg-1) or atropine (5 mg kg-1). Animals were killed 20 min or 24 h after single or consecutive injections, respectively, for determinations of cholinergic activities and contractile responses to acetylcholine (ACh) of the jejunum. Single treatments: while DDVP and propoxur decreased acetylcholinesterase (AChE) activity, oxotremorine and atropine did not. Although DDVP, propoxur and oxotremorine increased levels of ACh, atropine decreased them. Contractile responses to ACh were enhanced by DDVP and reduced by oxotremorine and atropine. The Bmax value of binding of [3H]quinuclidinyl benzylate (QNB) to muscarinic ACh receptors was decreased by atropine. Consecutive treatments: DDVP and oxotremorine decreased AChE activity markedly and slightly, respectively. Although DDVP and oxotremorine increased levels of ACh, propoxur decreased them. Without affecting the contractile responses, DDVP caused a reduction and propoxur and atropine caused an increase in the Bmax value for binding of [3H]QNB. Both the contractile responses and the value of Bmax for binding of [3H]-QNB were decreased by oxotremorine. In summary, propoxur and DDVP showed similar effects mainly through their anticholinesterase properties in the case of single injection, but DDVP had similar effects to those of oxotremorine and propoxur had similar effects to those of atropine in the case of repeated injection.

  8. Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility

    Institute of Scientific and Technical Information of China (English)

    Anatoly SHMYGOL; Joanna GULLAM; Andrew BLANKS; Steven THORNTON

    2006-01-01

    Oxytocin is a small peptide hormone with multiple sites of action in human body.It regulates a large number of reproduction-related processes in all species.Particularly important is its ability to stimulate uterine contractility.This is achieved by multiple mechanisms involving sarcoplasmic reticulum Ca2+ release and sensitization of the contractile apparatus to Ca2+.In this paper,we review the data published by US and other groups on oxytocin-induced modulation of uterine contractility.We conclude that sensitization of contractile apparatus to Ca2+ is the most relevant physiological effect of oxytocin on human myometrium.

  9. A comparison of the contractile properties of myometrium from singleton and twin pregnancies.

    Directory of Open Access Journals (Sweden)

    Peter Turton

    Full Text Available OBJECTIVE: Over half of twin pregnancies in US and UK deliver prematurely but the reasons for this are unclear. The contractility of myometrium from twin pregnancies has not been directly investigated. The objective of this research was to determine if there are differences in the contractile activity and response to oxytocin, between myometrium from singleton and twin pregnancies, across a range of gestational ages. Furthermore, we wished to determine if contractile activity correlates with increasing level of stretch, using neonatal birth weights as a marker of uterine stretch. METHODS: This was an in vitro, laboratory based study of myometrial contractility in women pregnant with one or two babies, using biopsies obtained from non-labouring women undergoing Caesarean section. Spontaneous, oxytocin-stimulated and depolarization induced contractile activity was compared. RESULTS: Direct measurements of myometrial contractility under controlled conditions show that the frequency of contractions and responses to oxytocin are significantly increased in twins compared to singletons. The duration of contraction however was significantly reduced. We find that contractile activity correlates with increasing levels of stretch, using neonatal birth weights as a surrogate for uterine stretch, with response to oxytocin being significantly positively correlated with birth weight. CONCLUSIONS: We have found significant differences in contractile properties between myometrium from singleton and twin pregnancies and that increasing uterine stretch can alter the contractile properties of myometrium. We discuss the implication of these findings to preterm delivery and future studies.

  10. Resolving the role of actoymyosin contractility in cell microrheology.

    Directory of Open Access Journals (Sweden)

    Christopher M Hale

    Full Text Available Einstein's original description of Brownian motion established a direct relationship between thermally-excited random forces and the transport properties of a submicron particle in a viscous liquid. Recent work based on reconstituted actin filament networks suggests that nonthermal forces driven by the motor protein myosin II can induce large non-equilibrium fluctuations that dominate the motion of particles in cytoskeletal networks. Here, using high-resolution particle tracking, we find that thermal forces, not myosin-induced fluctuating forces, drive the motion of submicron particles embedded in the cytoskeleton of living cells. These results resolve the roles of myosin II and contractile actomyosin structures in the motion of nanoparticles lodged in the cytoplasm, reveal the biphasic mechanical architecture of adherent cells-stiff contractile stress fibers interdigitating in a network at the cell cortex and a soft actin meshwork in the body of the cell, validate the method of particle tracking-microrheology, and reconcile seemingly disparate atomic force microscopy (AFM and particle-tracking microrheology measurements of living cells.

  11. Comparing contractile apparatus-driven cytokinesis mechanisms across kingdoms.

    Science.gov (United States)

    Balasubramanian, Mohan K; Srinivasan, Ramanujam; Huang, Yinyi; Ng, Kian-Hong

    2012-11-01

    Cytokinesis is the final stage of the cell cycle during which a cell physically divides into two daughters through the assembly of new membranes (and cell wall in some cases) between the forming daughters. New membrane assembly can either proceed centripetally behind a contractile apparatus, as in the case of prokaryotes, archaea, fungi, and animals or expand centrifugally, as in the case of higher plants. In this article, we compare the mechanisms of cytokinesis in diverse organisms dividing through the use of a contractile apparatus. While an actomyosin ring participates in cytokinesis in almost all centripetally dividing eukaryotes, the majority of bacteria and archaea (except Crenarchaea) divide using a ring composed of the tubulin-related protein FtsZ. Curiously, despite molecular conservation of the division machinery components, division site placement and its cell cycle regulation occur by a variety of unrelated mechanisms even among organisms from the same kingdom. While molecular motors and cytoskeletal polymer dynamics contribute to force generation during eukaryotic cytokinesis, cytoskeletal polymer dynamics alone appears to be sufficient for force generation during prokaryotic cytokinesis. Intriguingly, there are life forms on this planet that appear to lack molecules currently known to participate in cytokinesis and how these cells perform cytokinesis remains a mystery waiting to be unravelled.

  12. Effect of serotonin on small intestinal contractility in healthy volunteers

    DEFF Research Database (Denmark)

    Hansen, M.B.; Arif, F.; Gregersen, H.

    2008-01-01

    The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contrac......The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro......-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet......-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase In frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile...

  13. Influence of the cardiac myosin hinge region on contractile activity.

    Science.gov (United States)

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  14. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Marie-Louise; Ward; David; J; Crossman

    2014-01-01

    Cardiac dysfunction is a well-known consequence of diabetes,with sustained hyperglycaemia leading to the development of a cardiomyopathy that is independent of cardiovascular disease or hypertension.Animal models of diabetes are commonly used to study the pathophysiology of diabetic cardiomyopathy,with the hope that increased knowledge will lead ultimately to better therapeutic strategies being developed.At physiological temperature,left ventricular trabeculae isolated from the streptozotocin rat model of type 1 diabetes showed decreased stress and prolonged relaxation,but with no evidence that decreased contractility was a result of altered myocardial Ca2+handling.Although sarcoplasmic reticulum(SR)Ca2+reuptake appeared slower in diabetic trabeculae,it was offset by an increase in actionpotential duration,thereby maintaining SR Ca2+content and favouring increased contraction force.Frequency analysis of t-tubule distribution by confocal imaging of ventricular tissue labeled with wheat germ agglutinin or ryanodine receptor antibodies showed a reduced T-power for diabetic tissue,but the differences were minor in comparison to other models of heart failure.The contractile dysfunction appeared to be the result of disrupted F-actin in conjunction with the increased typeⅠcollagen,with decreased myofilament Ca2+sensitivity contributing to the slowed relaxation.

  15. Insulin improves cardiac myocytes contractile function recovery in simulated ischemia-reperfusion: Key role of Akt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; ZHANG Haifeng; FAN Qian; MA Xinliang; GAO Feng

    2003-01-01

    The present study examined cardiac myocyte contractile and Ca2+ transient responses to insulin during simulated ischemia/reperfusion (I/R) and furtherinvestigated the role of protein kinase B (Akt) in the insulin- induced inotropic effect. Ventricular myocytes were enzymatically isolated from adult Sprague-Dawley rats and perfused with Tyrode solution while electrically field-stimulated. Simulated I/R was induced by perfusing the cells with chemical anoxic solution including sodium cyanide-sodium lactate for 15 min followed by reperfusion with normal oxygenated Tyrode solution with or without insulin. It is found that insulin only at concentration as high as 10 IU/L could increase cell shortening (16±5%, P < 0.05) in normal myocytes, whereas it concentration-dependently (0.01-10 IU/L) increased the contraction,the velocity of shortening/releng- theningand Ca2+ transient in I/R myocytes. In addition, insulin treatment (1 IU/L) increased Akt phosphorylation of I/R cardiomyocytes by 2.4-fold compared with that of the control (P < 0.01). Most importantly, pretreatment with LY 294002, a specific inhibitor of phosphatidylinositol 3′-kinase (PI3-kinase), significantly inhibited both Akt phosphorylation and the positive inotropic response to insulin in the I/R cardiomyocytes. These results suggest that insulin exerts direct positive inotropic effect by increasing Ca2+ transient of cardiomyocytes, which is enhanced in the pathological condition of I/R. Akt activation plays an important role in the insulin-induced improvement of myocyte contractile function following I/R.

  16. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    DEFF Research Database (Denmark)

    Hvid, L G; Gejl, Kasper Degn; Bech, R D;

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  17. Unaffected contractility of diaphragm muscle fibers in humans on mechanical ventilation

    NARCIS (Netherlands)

    Hooijman, P.E.; Paul, M.A.; Stienen, G.J.; Beishuizen, A.; Hees, H.W.H. van; Singhal, S.; Bashir, M.; Budak, M.T.; Morgen, J.; Barsotti, R.J.; Levine, S.; Ottenheijm, C.A.C.

    2014-01-01

    Several studies have indicated that diaphragm dysfunction develops in patients on mechanical ventilation (MV). Here, we tested the hypothesis that the contractility of sarcomeres, i.e., the smallest contractile unit in muscle, is affected in humans on MV. To this end, we compared diaphragm muscle fi

  18. Contractility of the guinea pig bladder measured in situ and in vitro

    NARCIS (Netherlands)

    J.M. Groen (Jan); R. van Mastrigt (Ron); J.L.H.R. Bosch (Ruud)

    1994-01-01

    textabstractTo study the relative importance of neurogenic factors in detrusor contractility and to relate a total bladder in vitro contractility model to a previously described bladder wall strip model, active intravesical pressure values were compared in situ and in vitro in eight male guinea pigs

  19. Image Processing Techniques for Assessing Contractility in Isolated Neonatal Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Carlos Bazan

    2011-01-01

    employed in determining myocyte contractility almost simultaneously with the acquisition of the Ca2+ transient and other correlates of cell contraction. The proposed methodology can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease models, transgeneity, or other common applications of neonatal cardiocytes.

  20. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per;

    2011-01-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...

  1. Effect of contractile protein alterations on cardiac myofilament function in human heart failure

    NARCIS (Netherlands)

    Narolska, N.A.

    2006-01-01

    The main objective of this thesis was to elucidate the effect of translational and post-translational alterations in contractile proteins occurring during heart failure on contractile function in human cardiac tissue. Isometric force and ATPase activity measurements were performed in skinned human

  2. Contractile reaction of isolated frog aorta after X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Michailov, M.C.; Prechter, I.; Greimel, H.; Welscher, U.E.

    1983-07-01

    The action of X-rays (50 kV, filtered by 0.3 mm Al) on helical strip of frog aorta (rana esculenta) has been investigated. The isolated preparations have a stable basal tone and are radio-sensitive to X-rays which induce reversible, dose-dependent, contractile responses. After repeated irradiational tachyphylaxis appears. The threshold doses are about 250 R at 3 to 6 kR/min, antiadrenergic (phentolamine, propranolol), anticholinergic (atropin), antihistaminic (Neo-Bridal) and serotoninergic (Deseril) drugs have no visible influence on the X-ray induced reaction, i.e. these action mechanisms of the irradiation-induced contraction do not seem probable. Theophylline and cAMP inhibit the X-ray contraction probably non-specifically. Indometacin also inhibits the X-ray contraction: this suggests participation of prostaglandin-mechanism on the contraction of frog aorta after irradiation.

  3. High-throughput screening for modulators of cellular contractile force

    CERN Document Server

    Park, Chan Young; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J; Marinkovic, Aleksandar; Tschumperlin, Daniel J; Burger, Stephanie; Frykenberg, Matthew; Butler, James P; Stamer, W Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J; Krishnan, Ramaswamy

    2014-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signaling intermediates with poorly defined relationship to such a physiological endpoint. Using cellular force as the target, here we screened libraries to identify novel drug candidates in the case of human airway smooth muscle cells in the context of asthma, and also in the case of Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery.

  4. Non-muscle contractile proteins in the organ of corti

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, I.; Giometti, C.S.; Thalmann, R. (Washington Univ., St. Louis, MO (USA))

    1985-01-01

    Evidence indicates that an active contractile process exists in the outer hair cells of the mammalian cochlea. Proteins ordinarily associated with muscle contraction have been identified in the outer hair cells by immunohistologic techniques. On this basis a muscle-like mechanism of contraction/relaxation has been postulated by several investigators. The possibility must be considered, however, that the contractile proteins identified thus far in inner ear structures may be nonmuscle rather than muscle forms. In skeletal muscle, actin and myosin are responsible for the physical movement of the muscle fibers, and tropomyosin and troponin are involved in regulating this movement; these four proteins, as well as a variety of proteins involved with the normal cell maintenance functions are all of a muscle-specific type. Non-muscle-like motion also depends upon the interaction of actin with myosin; however, not only are these proteins structurally different from those specific to skeletal muscle but their proportions are also different. We have used two-dimensional polyacrylamide gel electrophoresis to study the proteins in freeze dried preparations of whole organ of Corti from the guinea pig. The identified proteins include non-muscle actin, three forms of non-muscle tropomyosin, alpha- and beta-tubulin, alpha-actinin, and lactate dehydrogenase (LDH B). Myosin heavy and light chains were not detected in the organ of Corti preparation, but the levels of those proteins might be too low to be detected with the protein load used of those proteins might be too low to be detected with the protein load used for this analysis. Although troponin could not be detected, calmodulin was present. All of these findings tend to indicate that the contraction/relaxation processes that have been associated with the organ of Corti by others are of the non-muscle variety.

  5. Electrically contractile polymers augment right ventricular output in the heart.

    Science.gov (United States)

    Ruhparwar, Arjang; Piontek, Patricia; Ungerer, Matthias; Ghodsizad, Ali; Partovi, Sasan; Foroughi, Javad; Szabo, Gabor; Farag, Mina; Karck, Matthias; Spinks, Geoffrey M; Kim, Seon Jeong

    2014-12-01

    Research into the development of artificial heart muscle has been limited to assembly of stem cell-derived cardiomyocytes seeded around a matrix, while nonbiological approaches to tissue engineering have rarely been explored. The aim of the study was to apply electrically contractile polymer-based actuators as cardiomyoplasty for positive inotropic support of the right ventricle. Complex trilayer polypyrrole (PPy) bending polymers for high-speed applications were generated. Bending motion occurred directly as a result of electrochemically driven charging and discharging of the PPy layers. In a rat model (n = 5), strips of polymers (3 × 20 mm) were attached and wrapped around the right ventricle (RV). RV pressure was continuously monitored invasively by direct RV cannulation. Electrical activation occurred simultaneously with either diastole (in order to evaluate the polymer's stand-alone contraction capacity; group 1) or systole (group 2). In group 1, the pressure generation capacity of the polymers was measured by determining the area under the pressure curve (area under curve, AUC). In group 2, the RV pressure AUC was measured in complexes directly preceding those with polymer contraction and compared to RV pressure complexes with simultaneous polymer contraction. In group 1, the AUC generated by polymer contraction was 2768 ± 875 U. In group 2, concomitant polymer contraction significantly increased AUC compared with complexes without polymer support (5987 ± 1334 U vs. 4318 ± 691 U, P ≤ 0.01). Electrically contractile polymers are able to significantly augment right ventricular contraction. This approach may open new perspectives for myocardial tissue engineering, possibly in combination with fetal or embryonic stem cell-derived cardiomyocytes.

  6. Dynamic regulation of β1 subunit trafficking controls vascular contractility.

    Science.gov (United States)

    Leo, M Dennis; Bannister, John P; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E; Gabrick, Kyle S; Boop, Frederick A; Jaggar, Jonathan H

    2014-02-11

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

  7. Fibronectin upregulates cGMP-dependent protein kinase type Iβ through C/EBP transcription factor activation in contractile cells.

    Science.gov (United States)

    Chamorro-Jorganes, Aranzazu; Calleros, Laura; Griera, Mercedes; Saura, Marta; Luengo, Alicia; Rodriguez-Puyol, D; Rodriguez-Puyol, M

    2011-03-01

    The nitric oxide (NO)-soluble guanylate cyclase (sGC) pathway exerts most of its cellular actions through the activation of the cGMP-dependent protein kinase (PKG). Accumulation of extracellular matrix is one of the main structural changes in pathological conditions characterized by a decreased activity of this pathway, such as hypertension, diabetes, or aging, and it is a well-known fact that extracellular matrix proteins modulate cell phenotype through the interaction with membrane receptors such as integrins. The objectives of this study were 1) to evaluate whether extracellular matrix proteins, particularly fibronectin (FN), modulate PKG expression in contractile cells, 2) to analyze the mechanisms involved, and 3) to evaluate the functional consequences. FN increased type I PKG (PKG-I) protein content in human mesangial cells, an effect dependent on the interaction with β(1)-integrin. The FN upregulation of PKG-I protein content was due to increased mRNA expression, determined by augmented transcriptional activity of the PKG-I promoter region. Akt and the transcription factor CCAAT enhancer-binding protein (C/EBP) mediated the genesis of these changes. FN also increased PKG-I in another type of contractile cell, rat vascular smooth muscle cells (RVSMC). Tirofiban, a pharmacological analog of FN, increased PKG-I protein content in RVSMC and rat aortic walls and magnified the hypotensive effect of dibutyryl cGMP in conscious Wistar rats. The present results provide evidence of a mechanism able to increase PKG-I protein content in contractile cells. Elucidation of this novel mechanism provides a rationale for future pharmacotherapy in certain vascular diseases.

  8. Regional specific modulation of the glycocalyx and smooth muscle cell contractile apparatus in conduit arteries of tail-suspended rats.

    Science.gov (United States)

    Kang, Hongyan; Fan, Yubo; Zhao, Ping; Ren, Changhui; Wang, Zhenze; Deng, Xiaoyan

    2016-03-01

    The glycocalyx is a key mechanosensor on the surfaces of vascular cells (endothelial cells and smooth muscle cells), and recently, we reported that the redistribution of the hemodynamic factors in tail-suspended (TS) hindlimb-unloaded rats induces the dimensional adaptation of the endothelial glycocalyx in a regional-dependent manner. In the present study, we investigated the coverage and gene expression of the glycocalyx and its possible relationship with smooth muscle contractility in the conduit arteries from the TS rats. The coverage of the glycocalyx, determined by the area analysis of the fluorescein isothiocyanate-labeled wheat germ agglutinin (WGA-FITC) staining to the cryosections of rat vessels, showed a 27.2% increase in the common carotid artery, a 13.3 and 8.0% decrease in the corresponding abdominal aorta and the femoral artery after 3 wk of tail suspension. The relative mRNA levels of syndecan-2, 3, 4, glypican-1, smooth muscle protein 22 (SM22), smoothelin (SMTN), and calponin were enhanced to 1.40, 1.53, 1.70, 1.90, 2.93, 2.30, and 5.23-fold, respectively, in the common carotid artery of the TS rat. However, both glycocalyx-related genes and smooth muscle contractile apparatus were totally or partially downregulated in the abdominal aorta and femoral artery of the TS rat. A linear positive correlation between the normalized coverage of glycocalyx and normalized mRNA levels of SM22, SMTN, and calponin exists. These results suggest the regional-dependent adaptation of the glycocalyx in simulated microgravity condition, which may affect its mechanotransduction of shear stress to regulate the contractility of the smooth muscle, finally contributing to postspaceflight orthostatic intolerance.

  9. Endothelium protectant and contractile effects of the antivaricose principle escin in rat aorta.

    Science.gov (United States)

    Carrasco, Omar F; Vidrio, Horacio

    2007-07-01

    The triterpene saponin escin is the active component of the extract of seeds of Aesculus hippocastanum used in the treatment of chronic venous insufficiency. Escin is also used experimentally to increase membrane permeability in isolated cells. Since endothelial dysfunction is postulated to be involved in venous insufficiency, the possible endothelium-protectant effect of escin was explored in rat aortic rings, a model widely used to study such effects with cardiovascular agents. Escin enhanced endothelium-dependent relaxation induced by acetylcholine when such relaxation had been reduced by exposure to the superoxide ion generator pyrogallol. This effect was attributed to enhanced nitric oxide production by endothelial nitric oxide synthase, a calcium-dependent enzyme, activated by the increased endothelial cell permeability to calcium induced by escin. Another effect of escin thought to contribute to its therapeutic activity is its ability to produce venous contraction. The compound was found to induce concentration-related contraction also in rat aortic rings. This response was partially inhibited by removal of the endothelium or by preincubation with indomethacin, and was completely abolished by incubation in a calcium-free perfusion fluid. Contraction was considered to be due mainly to the aforementioned effect on calcium permeability, with some mediation by release of endothelial vasoconstrictor prostanoids. It was concluded that, in rat aorta, escin possesses an endothelium-protectant action and a direct contractile effect. The former could contribute to its beneficial effect in the treatment of venous insufficiency, while the latter could constitute a limiting side effect.

  10. Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion.

    Science.gov (United States)

    Gao, Ling; Zheng, Yan-Jun; Gu, Shan-Shan; Tan, Ji-Liang; Paul, Christian; Wang, Yi-Gang; Yang, Huang-Tian

    2014-12-01

    Although ischemia/reperfusion (I/R)-induced myocardial contractile dysfunction is associated with a prominent decrease in myofilament Ca(2+) sensitivity, the underlying mechanisms have not yet been fully clarified. Phosphorylation of ventricular myosin light chain 2 (MLC-2v) facilitates actin-myosin interactions and enhances contractility, however, its level and regulation by cardiac MLC kinase (cMLCK) and cMLC phosphatase (cMLCP) in I/R hearts are debatable. In this study, the levels and/or effects of MLC-2v phosphorylation, cMLCK, cMLCP, and proteases during I/R were determined. Global myocardial I/R-suppressed cardiac performance in isolated rat hearts was concomitant with decreases of MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, and cMLCK content, but not cMLCP proteins. Consistently, simulated I/R in isolated cardiomyocytes inhibited cell shortening, Ca(2+) transients, MLC-2v phosphorylation, and myofilament sensitivity to Ca(2+). These observations were reversed by cMLCK overexpression, while the specific cMLCK knockdown by short hairpin RNA (shRNA) had the opposite effect. Moreover, the inhibition of matrix metalloproteinase-2 (MMP-2, a zinc-dependent endopeptidase) reversed IR-decreased cMLCK, MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, myocardial contractile function, and myofilament sensitivity to Ca(2+), while the inhibition or knockdown of cMLCK by ML-9 or specific shRNA abolished MMP-2 inhibition-induced cardioprotection. Finally, the co-localization in cardiomyocytes and interaction in vivo of MMP-2 and cMLCK were observed. Purified recombinant rat cMLCK was concentration- and time-dependently degraded by rat MMP-2 in vitro, and this was prevented by the inhibition of MMP-2. These findings reveal that the I/R-activated MMP-2 leads to the degradation of cMLCK, resulting in a reduction of MLC-2v phosphorylation, and myofibrillar Ca(2+)-stimulated ATPase activity, which subsequently suppresses

  11. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats.

    Science.gov (United States)

    Duncan, Marnie; Mouihate, Abdeslam; Mackie, Ken; Keenan, Catherine M; Buckley, Nancy E; Davison, Joseph S; Patel, Kamala D; Pittman, Quentin J; Sharkey, Keith A

    2008-07-01

    Enhanced intestinal transit due to lipopolysaccharide (LPS) is reversed by cannabinoid (CB)2 receptor agonists in vivo, but the site and mechanism of action are unknown. We have tested the hypothesis that CB2 receptors are expressed in the enteric nervous system and are activated in pathophysiological conditions. Tissues from either saline- or LPS-treated (2 h; 65 microg/kg ip) rats were processed for RT-PCR, Western blotting, and immunohistochemistry or were mounted in organ baths where electrical field stimulation was applied in the presence or absence of CB receptor agonists. Whereas the CB2 receptor agonist JWH133 did not affect the electrically evoked twitch response of the ileum under basal conditions, in the LPS-treated tissues JWH133 was able to reduce the enhanced contractile response in a concentration-dependent manner. Rat ileum expressed CB2 receptor mRNA and protein under physiological conditions, and this expression was not affected by LPS treatment. In the myenteric plexus, CB2 receptors were expressed on the majority of neurons, although not on those expressing nitric oxide synthase. LPS did not alter the distribution of CB2 receptor expression in the myenteric plexus. In vivo LPS treatment significantly increased Fos expression in both enteric glia and neurons. This enhanced expression was significantly attenuated by JWH133, whose action was reversed by the CB2 receptor antagonist AM630. Taking these facts together, we conclude that activation of CB2 receptors in the enteric nervous system of the gastrointestinal tract dampens endotoxin-induced enhanced intestinal contractility.

  12. Contractile responses to ergotamine and dihydroergotamine in the perfused middle cerebral artery of rat

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Nilsson, Elisabeth; Edvinsson, Lars

    2007-01-01

    mmHg and luminally perfused. All vessels used attained spontaneous contractile tone (34.9+/-1.8% of resting tone) and responded to luminal adenosine triphosphate (ATP) with dilatation (24.1+/-4.0%), which showed functioning endothelium. Luminally added ergotamine or DHE induced maximal contractions...... no significant effect. Using a myograph technique, isolated ring segments of the MCA with intact endothelium were mounted on two metal wires. Neither agonist caused relaxation of resting vessels, however, they both responded by weak contractile responses (26+/-3% of submaximal contractile capacity relative to 60...

  13. Elevated osmolytes in rainbow smelt: the effects of urea, glycerol and trimethylamine oxide on muscle contractile properties.

    Science.gov (United States)

    Coughlin, David J; Long, Gabrielle M; Gezzi, Nicole L; Modi, Parth M; Woluko, Kossivi N

    2016-04-01

    Rainbow smelt, Osmerus mordax, experience a wide range of temperatures in their native habitat. In response to cold, smelt express anti-freeze proteins and the osmolytes glycerol, trimethylamine N-oxide (TMAO) and urea to avoid freezing. The physiological influences of these osmolytes are not well understood. Urea destabilizes proteins, while TMAO counteracts the protein-destabilizing forces of urea. The influence of glycerol on muscle function has not been explored. We examined the effects of urea, glycerol and TMAO through muscle mechanics experiments with treatments of the three osmolytes at physiological concentrations. Experiments were carried out at 10°C. The contractile properties of fast-twitch muscle bundles were determined in physiological saline and in the presence of 50 mmol l(-1)urea, 50 mmol l(-1)TMAO and/or 200 mmol l(-1)glycerol in saline. Muscle exposed to urea and glycerol produced less force and displayed slower contractile properties. However, treatment with TMAO led to higher force and faster relaxation by muscle bundles. TMAO increased power production during cyclical activity, while urea and glycerol led to reduced oscillatory power output. When muscle bundles were exposed to a combination of the three osmolytes, they displayed little change in contraction kinetics relative to control, although power output under lower oscillatory conditions was enhanced while maximum power output was reduced. The results suggest that maintenance of muscle function in winter smelt requires a balanced combination of urea, glycerol and TMAO.

  14. Role of nitric oxide in the impairment of circular muscle contractility of distended, uninflamed mid-colon in TNBS-induced acute distal colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Luciano Onori; Giovanni Latella; Annalisa Aggio; Simona D'Alo'; Paola Muzi; Maria Grazia Cifone; Gabriella Mellillo; Rachele Ciccocioppo; Gennaro Taddei; Giuseppe Frieri

    2005-01-01

    AIM: To evaluate the role of nitric oxide (NO) in the motor disorders of the dilated uninflamed mid-colon (DUMC)from trinitrobenzene sulfonic acid (TNBS)-induced acute distal colitis in rats.METHODS: Colitis was induced in male Sprague-Dawley rats by a single intracolonic administration of TNBS.Control rats received an enema of 0.9% saline. The rats were killed 48 h after TNBS or saline administration.Macroscopic and histologic lesions of the colon were evaluated. Myeloperoxidase (MPO) and nitric oxide synthase (NOS) activity were measured on the colonic tissue. In TNBS rats, we evaluated spontaneous and evoked contractile activity in circular muscle strips derived from DUMC in comparison to the same colonic segment of control rats, both in the presence and in the absence of a non-selective NOS isoforms inhibitor N-nitro-Larginine (L-NNA). Pharmacological characterization of electric field stimulation (EFS)-evoked contractile responses was also performed.RESULTS: In TNBS rats, the distal colon showed severe histological lesions and a high MPO activity, while the DUMC exhibited normal histology and MPO activity.Constitutive NOS activity was similar in TNBS and control rats, whereas inducible NOS activity was significantly increased only in the injured distal colon of TNBS rats.Isometrically recorded mechanical activity of circular muscle strips from DUMC of TNBS rats showed a marked reduction of the force and frequency of spontaneous contractions compared to controls, as well as of the contractile responses to a contracting stimulus. In the presence of L-NNA, the contractile activity and responses displayed a significantly greater enhancement compared to controls. The pharmacological characterization of EFS contractile responses showed that a cooperative-like interaction between cholinergic muscarinic and tachykinergic neurokinin 1 and 2 receptors mediated transmission in DUMC of TNBS rats vs a simple additive interaction in controls.CONCLUSION: The results of this

  15. Diminished contractile responses of isolated conduit arteries in two rat models of hypertension.

    Science.gov (United States)

    Zemancíková, Anna; Török, Jozef

    2013-08-31

    Hypertension is accompanied by thickening of arteries, resulting in marked changes in their passive and active mechanical properties. The aim of this study was to demonstrate that the large conduit arteries from hypertensive individuals may not exhibit enhanced contractions in vitro, as is often claimed. Mechanical responses to vasoconstrictor stimuli were measured under isometric conditions using ring arterial segments isolated from spontaneously hypertensive rats, N(omega)-nitro-L-arginine methyl ester (L-NAME)-treated Wistar rats, and untreated Wistar rats serving as normotensive control. We found that thoracic aortas from both types of hypertensive rats had a greater sensitivity but diminished maximal developed tension in response to noradrenaline, when compared with that from normotensive rats. In superior mesenteric arteries, the sensitivity to noradrenaline was similar in all examined rat groups but in L-NAME-treated rats, these arteries exhibited decreased active force when stimulated with high noradrenaline concentrations, or with 100 mM KCl. These results indicate that hypertension leads to specific biomechanical alterations in diverse arterial types which are reflected in different modifications in their contractile properties.

  16. Motor-free actin bundle contractility driven by molecular crowding

    CERN Document Server

    Schnauß, Jörg; Schuldt, Carsten; Schmidt, B U Sebastian; Glaser, Martin; Strehle, Dan; Heussinger, Claus; Käs, Josef A

    2015-01-01

    Modeling approaches of suspended, rod-like particles and recent experimental data have shown that depletion forces display different signatures depending on the orientation of these particles. It has been shown that axial attraction of two rods yields contractile forces of 0.1pN that are independent of the relative axial shift of the two rods. Here, we measured depletion-caused interactions of actin bundles extending the phase space of single pairs of rods to a multi-particle system. In contrast to a filament pair, we found forces up to 3pN . Upon bundle relaxation forces decayed exponentially with a mean decay time of 3.4s . These different dynamics are explained within the frame of a mathematical model by taking pairwise interactions to a multi-filament scale. The macromolecular content employed for our experiments is well below the crowding of cells. Thus, we propose that arising forces can contribute to biological force generation without the need to convert chemical energy into mechanical work.

  17. Contractile force measured in unskinned isolated adult rat heart fibres.

    Science.gov (United States)

    Brady, A J; Tan, S T; Ricchiuti, N V

    1979-12-13

    A number of investigators have succeeded in preparing isolated cardiac cells by enzymatic digestion which tolerate external [Ca2+] in the millimolar range. However, a persistent problem with these preparations is that, unlike in situ adult ventricular fibres, the isolated fibres usually beat spontaneously. This spontaneity suggests persistent ionic leakage not present in situ. A preferable preparation for mechanical and electrical studies would be one which is quiescent but excitable in response to electrical stimulation and which does not undergo contracture with repeated stimulation. We report here a modified method of cardiac fibre isolation and perfusion which leaves the fibre membrane electrically excitable and moderately resistant to mechanical stress so that the attachment of suction micropipettes to the fibre is possible for force measurement and length control. Force generation in single isolated adult rat heart fibres is consistent with in situ contractile force. The negative staircase effect (treppe) characteristic of adult not heart tissue is present with increased frequency of stimulation. Isometric developed tension increases with fibre length as in in situ ventricular tissue.

  18. Postextrasystolic potentiation and contractile reserve: requirements and restrictions.

    Science.gov (United States)

    Lust, R M; Lutherer, L O; Gardner, M E; Cooper, M W

    1982-12-01

    These studies were conducted to examine the basic characteristics of postextrasystolic potentiation (PESP) and the relationship of loading effects to PESP. Measurements of left ventricular (LV) and aortic pressures, the rate of pressure rise, and echocardiographically determined LV dimensions were made in anesthetized open-chest dogs. The hearts were paced, and timed extrasystoles were introduced that were followed by postextrasystoles (PES). PES's were elicited after an interval equal to either a full compensatory pause or a time when the diastolic properties of the LV could not be distinguished from control (isolength). Potentiation of contraction for the PES's introduced after an isolength pause was dependent on both the heart rate and the extrasystolic interval, whereas the PES's that occurred after a full pause showed no dependence on either of these intervals. PESP elicited during the isolength period was not dependent on either preload and afterload. It is concluded that PESP depends on the combination of heart rate and extrasystolic and postextrasystolic intervals. Further, PESP may be inaccurate in assessing contractile reserve unless the heart rate and extrasystolic interval are known and the PES is introduced after an isolength pause.

  19. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Charles; Bernasek, Stephen L.; Abelev, Esta

    2009-06-16

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  20. Contractile apparatus dysfunction early in thepathophysiology of diabetic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Diabetes mellitus significantly increases the risk ofcardiovascular disease and heart failure in patients.Independent of hypertension and coronary arterydisease, diabetes is associated with a specific cardiomyopathy,known as diabetic cardiomyopathy (DCM).Four decades of research in experimental animalmodels and advances in clinical imaging techniquessuggest that DCM is a progressive disease, beginningearly after the onset of type 1 and type 2 diabetes,ahead of left ventricular remodeling and overt diastolicdysfunction. Although the molecular pathogenesis ofearly DCM still remains largely unclear, activation ofprotein kinase C appears to be central in driving theoxidative stress dependent and independent pathwaysin the development of contractile dysfunction. Multiplesubcellular alterations to the cardiomyocyte are nowbeing highlighted as critical events in the early changesto the rate of force development, relaxation and stabilityunder pathophysiological stresses. These changes includeperturbed calcium handling, suppressed activity ofaerobic energy producing enzymes, altered transcriptionaland posttranslational modification of membrane andsarcomeric cytoskeletal proteins, reduced actin-myosincross-bridge cycling and dynamics, and changed myofilamentcalcium sensitivity. In this review, we will presentand discuss novel aspects of the molecular pathogenesisof early DCM, with a special focus on the sarcomericcontractile apparatus.

  1. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Directory of Open Access Journals (Sweden)

    Tavershima Dzenda

    2015-09-01

    Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile effect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  2. Chemical modification of amino acid residues in glycerinated Vorticella stalk and Ca(2+)-induced contractility.

    Science.gov (United States)

    Kono, R; Ochiai, T; Asai, H

    1997-01-01

    The glycerinated stalk of the peritrich ciliate Vorticella, was treated with various reagents to chemically modify the amino acid residues. The influences of these modifcations on spasmoneme contractility were investigated. First, it was confirmed that the spasmoneme contraction is not inhibited by alteration of SH groups. It was also demonstrated that chemical modification of methionine and tryptophan residues abolishes spasmoneme contractility. The reagents used for chemical modification were N-bromosuccinimide (NBS), chloramine T, and 2-hydroxy-5-nitrobenzyl bromide (HNBB), which abolished spasmoneme contractility at concentrations of 40-50 microM, 200-300 microM, and 4 mM, respectively. These results suggest that, along with Ca2+ binding proteins, there are other as yet to be identified proteins involved in contractility.

  3. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility

    Institute of Scientific and Technical Information of China (English)

    Ming ZHENG; Rong HOU; Rui-ping XIAO

    2004-01-01

    AIM: To determine the possible role of pH in mediating activation of p38 mitogen-activated protein kinase (MAPK) and the consequent function of activated p38 MAPK in regulating cardiac contractility. METHODS: Adult rat cardiomyocytes were isolated and cultured. Low pH media was used to induce intracellular acidosis and contraction of single cardiomyocyte was measured. RESULTS: Phosphorylation of p38 MAPK was increased during ischemia, and pHi was decreased. Intracellular acidosis activated p38 MAPK to a similar level as ischemia. Inhibition of p38 MAPK activation by SB203580, a specific inhibitor of p38 MAPK, reversed acidosis-mediated reduction of myocyte contractility. CONCLUSION: In adult rat cardiomyocytes, intracellular acidification activated p38 MAPK and decreased cardiac contractility. Pretreatment of cardiomyocytes with SB203580 completely blocked p38 MAPK activation and partially reversed acidosis-mediated decline of cardiac contractility.

  4. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease.

    NARCIS (Netherlands)

    Verhoekx, J.S.; Mudera, V.; Walbeehm, E.T.; Hovius, S.E.

    2013-01-01

    BACKGROUND: In an attempt to provide minimally invasive treatment for Dupuytren's disease, percutaneous disruption of the affected tissue followed by lipografting is being tested. Contractile myofibroblasts drive this fibroproliferative disorder, whereas stem cells have recently been implicated in p

  5. Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0495 TITLE: Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis 5b. GRANT...controlled nanocarriers as a novel and potentially paradigm-shifting strategy for targeted drug delivery to achieve hemostasis during bleeding. We have

  6. A comparative study of contractility of the heart ventricle in some ectothermic vertebrates

    Directory of Open Access Journals (Sweden)

    Sergey Kharin

    2009-07-01

    Full Text Available The purpose of this study was to analyze contractility of the heart ventricle in selected reptilian and amphibian species having the same ventricular excitation pattern. Systolic time intervals and indices of contractility of the heart ventricle were measured in anaesthetized frogs, snakes, and tortoises by use of polycardiography. The electromechanical delay was significantly shorter in tortoises compared with the other two species. The isovolumetric contraction time in frogs was approximately twofold longer than in reptiles. The pre-ejection period was the longest in frogs and the shortest in tortoises, whereas snakes were intermediate. The ejection time was slightly longer in tortoises compared with the other two species. The greatest isovolumetric contraction index and the smallest myocardial tension index corresponded to the frog and tortoise heart ventricle, respectively. The intrasystolic index in tortoises was significantly greater than in frogs, whereas quite similar to that in snakes. The frog ventricle had lower contractility compared with the reptilian one. Although ventricular contractility tended to be lower in snakes compared with tortoises, this difference was not statistically significant. Possible causes for these differences are discussed. We suppose a large variety in ventricular contractility among amphibian and reptilian species having the same ventricular activation pattern. This variety may be conditioned by heart anatomy, intracardiac shunting, lifestyles, and habitats. It can only be hypothesized that on the average, ventricular contractility is higher in reptiles compared with amphibians and in chelonians compared with snakes.

  7. Reliability of contractile properties of the knee extensor muscles in individuals with post-polio syndrome.

    Directory of Open Access Journals (Sweden)

    Eric L Voorn

    Full Text Available To assess the reliability of contractile properties of the knee extensor muscles in 23 individuals with post-polio syndrome (PPS and 18 age-matched healthy individuals.Contractile properties of the knee extensors were assessed from repeated electrically evoked contractions on 2 separate days, with the use of a fixed dynamometer. Reliability was determined for fatigue resistance, rate of torque development (MRTD, and early and late relaxation time (RT50 and RT25, using the intraclass correlation coefficient (ICC and standard error of measurement (SEM, expressed as % of the mean.In both groups, reliability for fatigue resistance was good, with high ICCs (>0.90 and small SEM values (PPS: 7.1%, healthy individuals: 7.0%. Reliability for contractile speed indices varied, with the best values found for RT50 (ICCs>0.82, SEM values <2.8%. We found no systematic differences between test and retest occasions, except for RT50 in healthy subjects (p = 0.016.In PPS and healthy individuals, the reliability of fatigue resistance, as obtained from electrically evoked contractions is high. The reliability of contractile speed is only moderate, except for RT50 in PPS, demonstrating high reliability.This was the first study to examine the reliability of electrically evoked contractile properties in individuals with PPS. Our results demonstrate its potential to study mechanisms underlying muscle fatigue in PPS and to evaluate changes in contractile properties over time in response to interventions or from natural course.

  8. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  9. Menthol inhibits detrusor contractility independently of TRPM8 activation.

    Directory of Open Access Journals (Sweden)

    Antonio Celso Saragossa Ramos-Filho

    Full Text Available Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25-30 g were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM-30 µM, CaCl2 (1 µM to 100 mM and electrical field stimulation (EFS; 8, 16, 32 Hz were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM or nifedipine (1 µM inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM, replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.

  10. Muscle fatigue in frog semitendinosus: alterations in contractile function

    Science.gov (United States)

    Thompson, L. V.; Balog, E. M.; Riley, D. A.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the contractile properties of the frog semitendinosus (ST) muscle before and during recovery from fatigue, to relate the observed functional changes to alterations in specific steps in the crossbridge model of muscle contraction, and to determine how fatigue affects the force-frequency relationship. The frog ST (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. The fatigue protocol reduced peak twitch (Pt) and tetanic (Po) force to 32 and 8.5% of initial force, respectively. The decline in Pt was less than Po, in part due to a prolongation in the isometric contraction time (CT), which increased to 300% of the initial value. The isometric twitch duration was greatly prolonged as reflected by the lengthened CT and the 800% increase in the one-half relaxation time (1/2RT). Both Pt and Po showed a biphasic recovery, a rapid initial phase (2 min) followed by a slower (40 min) return to the prefatigue force. CT and 1/2RT also recovered in two phases, returning to 160 and 265% of control in the first 5 min. CT returned to the prefatigue value between 35 and 40 min, whereas even at 60 min 1/2RT was 133% of control. The maximal velocity of shortening, determined by the slack test, was significantly reduced [from 6.7 +/- 0.5 to 2.5 +/- 0.4 optimal muscle length/s] at fatigue. The force-frequency relationship was shifted to the left, so that optimal frequency for generating Po was reduced.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Myeloperoxidase impairs the contractile function in isolated human cardiomyocytes.

    Science.gov (United States)

    Kalász, Judit; Pásztor, Enikő T; Fagyas, Miklós; Balogh, Ágnes; Tóth, Attila; Csató, Viktória; Édes, István; Papp, Zoltán; Borbély, Attila

    2015-07-01

    We set out to characterize the mechanical effects of myeloperoxidase (MPO) in isolated left-ventricular human cardiomyocytes. Oxidative myofilament protein modifications (sulfhydryl (SH)-group oxidation and carbonylation) induced by the peroxidase and chlorinating activities of MPO were additionally identified. The specificity of the MPO-evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant amino acid Met. The combined application of MPO and its substrate, hydrogen peroxide (H2O2), largely reduced the active force (Factive), increased the passive force (Fpassive), and decreased the Ca(2+) sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I blocked both the peroxidase and the chlorinating activities, whereas Met selectively inhibited the chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented by the MPO-I and Met. Both H2O2 alone and MPO + H2O2 reduced the SH content of actin and increased the carbonylation of actin and myosin-binding protein C to the same extent. Neither the SH oxidation nor the carbonylation of the giant sarcomeric protein titin was affected by these treatments. MPO activation induces a cardiomyocyte dysfunction by affecting Ca(2+)-regulated active and Ca(2+)-independent passive force production and myofilament Ca(2+) sensitivity, independent of protein SH oxidation and carbonylation. The MPO-induced deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO may be a promising therapeutic target to limit myocardial contractile dysfunction during inflammation.

  12. Menthol inhibits detrusor contractility independently of TRPM8 activation.

    Science.gov (United States)

    Ramos-Filho, Antonio Celso Saragossa; Shah, Ajay; Augusto, Taize Machado; Barbosa, Guilherme Oliveira; Leiria, Luiz Osorio; de Carvalho, Hernandes Faustino; Antunes, Edson; Grant, Andrew Douglas

    2014-01-01

    Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25-30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM-30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.

  13. Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes.

    Science.gov (United States)

    Ribeiro, Alexandre J S; Zaleta-Rivera, Kathia; Ashley, Euan A; Pruitt, Beth L

    2014-09-10

    The mechanical output of contracting cardiomyocytes, the muscle cells of the heart, relates to healthy and disease states of the heart. Culturing cardiomyocytes on arrays of elastomeric microposts can enable inexpensive and high-throughput studies of heart disease at the single-cell level. However, cardiomyocytes weakly adhere to these microposts, which limits the possibility of using biomechanical assays of single cardiomyocytes to study heart disease. We hypothesized that a stable covalent attachment of laminin to the surface of microposts improves cardiomyocyte contractility. We cultured cells on polydimethylsiloxane microposts with laminin covalently bonded with the organosilanes 3-glycidoxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane with glutaraldehyde. We measured displacement of microposts induced by the contractility of mouse neonatal cardiomyocytes, which attach better than mature cardiomyocytes to substrates. We observed time-dependent changes in contractile parameters such as micropost deformation, contractility rates, contraction and relaxation speeds, and the times of contractions. These parameters were affected by the density of laminin on microposts and by the stability of laminin binding to micropost surfaces. Organosilane-mediated binding resulted in higher laminin surface density and laminin binding stability. 3-glycidoxypropyltrimethoxysilane provided the highest laminin density but did not provide stable protein binding with time. Higher surface protein binding stability and strength were observed with 3-aminopropyltriethoxysilane with glutaraldehyde. In cultured cardiomyocytes, contractility rate, contraction speeds, and contraction time increased with higher laminin stability. Given these variations in contractile function, we conclude that binding of laminin to microposts via 3-aminopropyltriethoxysilane with glutaraldehyde improves contractility observed by an increase in beating rate and contraction speed as it occurs during the

  14. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  15. Uterine contractility and blood flow are reflexively regulated by cutaneous afferent stimulation in anesthetized rats.

    Science.gov (United States)

    Hotta, H; Uchida, S; Shimura, M; Suzuki, H

    1999-01-15

    The effects of cutaneous mechanical afferent stimulation of various skin areas on uterine contractility and blood flow were examined in anesthetized non-pregnant rats. The contractility of the uterus was measured by the balloon method in the uterus. The uterine blood flow was measured by laser Doppler flowmetry. Noxious pinching stimulation of the perineum for 1 min induced an abrupt contraction of the uterus during stimulation. Pinching of a hindpaw or perineum and innocuous brushing of the perineum for 1 min increased uterine blood flow. Stimulation of other skin areas produced no changes in uterine contractility or blood flow. Most uterine responses were abolished by severance of the pelvic nerves, which innervated the uterus. The activity of pelvic parasympathetic efferent nerves to the uterus increased following perineal pinching. All these cutaneous stimulation-induced responses of uterine contractility, blood flow and pelvic efferent nerve activity still existed, and were even augmented, after acute spinalization. These results indicate that cutaneous mechanical sensory stimulation can regulate uterine contractility and blood flow by a segmental spinal reflex mechanism via uterine parasympathetic efferent nerves.

  16. Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices.

    Science.gov (United States)

    Kosta, S; Negroni, J; Lascano, E; Dauby, P C

    2017-02-01

    A multiscale model of the cardiovascular system is presented. Hemodynamics is described by a lumped parameter model, while heart contraction is described at the cellular scale. An electrophysiological model and a mechanical model were coupled and adjusted so that the pressure and volume of both ventricles are linked to the force and length of a half-sarcomere. Particular attention was paid to the extreme values of the sarcomere length, which must keep physiological values. This model is able to reproduce healthy behavior, preload variations experiments, and ventricular failure. It also allows to compare the relevance of standard cardiac contractility indices. This study shows that the theoretical gold standard for assessing cardiac contractility, namely the end-systolic elastance, is actually load-dependent and therefore not a reliable index of cardiac contractility.

  17. Study of myogenic spontaneous contractile activities in the detrusor instability rats

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-hong; WEN Qian-jun; SONG Bo

    2006-01-01

    Objective: To explore a myogenic basis of the spontaneous contractions on the rat bladder smooth muscle strip in a detrusor instability (DI) model in vitro, and to study a nerve blocker's cocktail affecting the spontaneous contractions as well as electrical stimulated contractile response. Methods: DI model rats were made by partial bladder outlet obstruction (BOO) and confirmed by the filling cystometry. Detrusor strip was dissected from fresh bladder, fixed for an isometric tension trial. The contractions were recorded during electrical stimulation or exposure to some agents. Results: The cocktail diminished the nerve-mediated contractile response effectively in DI preparation. DI's spontaneous contractions remained during the presence of the cocktail with a significant change in its contractile amplitude. Conclusion: With the local nerve-concerned factors abolishment by the cocktail, the DI bladder preparations still have the spontaneous contractions, indicating a myogenic basis from themselves.

  18. Contractile Properties of Esophageal Striated Muscle: Comparison with Cardiac and Skeletal Muscles in Rats

    Directory of Open Access Journals (Sweden)

    Takahiko Shiina

    2010-01-01

    Full Text Available The external muscle layer of the mammalian esophagus consists of striated muscles. We investigated the contractile properties of esophageal striated muscle by comparison with those of skeletal and cardiac muscles. Electrical field stimulation with single pulses evoked twitch-like contractile responses in esophageal muscle, similar to those in skeletal muscle in duration and similar to those in cardiac muscle in amplitude. The contractions of esophageal muscle were not affected by an inhibitor of gap junctions. Contractile responses induced by high potassium or caffeine in esophageal muscle were analogous to those in skeletal muscle. High-frequency stimulation induced a transient summation of contractions followed by sustained contractions with amplitudes similar to those of twitch-like contractions, although a large summation was observed in skeletal muscle. The results demonstrate that esophageal muscle has properties similar but not identical to those of skeletal muscle and that some specific properties may be beneficial for esophageal peristalsis.

  19. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    Science.gov (United States)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  20. Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus

    DEFF Research Database (Denmark)

    Malmström, Johan; Lindberg, Henrik Have; Lindberg, Claes;

    2004-01-01

    pattern changes that were identified by mass spectrometry and represent specific induction of several members of the contractile apparatus such as calgizzarin, cofilin, and profilin. These proteins have not previously been shown to be regulated by TGF-beta(1), and the functional role of these proteins...... is to participate in the depolymerization and stabilization of the microfilaments. These results show that TGF-beta(1) induces not only alpha-SMA but a whole set of actin-associated proteins that may contribute to the increased contractile properties of the myofibroblast. These proteins accompany the induced...... expression of alpha-SMA and may participate in the formation of stress fibers, cell contractility, and cell spreading characterizing the myofibroblasts phenotype....

  1. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Douglas G., E-mail: douglas.tilley@jefferson.edu [Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University (United States); Center for Translational Medicine, Thomas Jefferson University (United States); Nguyen, Anny D. [Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University (United States); Rockman, Howard A. [Department of Medicine, Duke University Medical Center (United States); Department of Cell Biology, Duke University Medical Center (United States); Department of Molecular Genetics and Microbiology, Duke University Medical Center (United States)

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  2. Modulation of human uterine smooth muscle cell collagen contractility by thrombin, Y-27632, TNF alpha and indomethacin

    Directory of Open Access Journals (Sweden)

    Smith Terry J

    2009-01-01

    Full Text Available Abstract Background Preterm labour occurs in approximately 10% of pregnancies and is a major cause of infant morbidity and mortality. However, the pathways involved in regulating contractility in normal and preterm labour are not fully elucidated. Our aim was to utilise a human myometrial contractility model to investigate the effect of a number of uterine specific contractility agents in this system. Therefore, we investigated the contractile response of human primary uterine smooth muscle cells or immortalised myometrial smooth muscle cells cultured within collagen lattices, to known mediators of uterine contractility, which included thrombin, the ROCK-1 inhibitor Y-27632, tumour necrosis factor alpha (TNF alpha and the non-steroidal anti-inflammatory indomethacin. Methods Cell contractility was calculated over time, with the collagen gel contraction assay, utilising human primary uterine smooth muscle cells (hUtSMCs and immortalised myometrial smooth muscle cells (hTERT-HM: a decrease in collagen gel area equated to an increase in contractility. RNA was isolated from collagen embedded cells and gene expression changes were analysed by real time fluorescence reverse transcription polymerase chain reaction. Scanning electron and fluorescence microscopy were employed to observe cell morphology and cell collagen gel interactions. Statistical analysis was performed using ANOVA followed by Tukey's post hoc tests. Results TNF alpha increased collagen contractility in comparison to the un-stimulated collagen embedded hUtSMC cells, which was inhibited by indomethacin, while indomethacin alone significantly inhibited contraction. Thrombin augmented the contractility of uterine smooth muscle cell and hTERT-HM collagen gels, this effect was inhibited by the thrombin specific inhibitor, hirudin. Y-27632 decreased both basal and thrombin-induced collagen contractility in the hTERT-HM embedded gels. mRNA expression of the thrombin receptor, F2R was up

  3. EFFECTS OF DESENSITIZATION AND REBOUND TO ADENOSINE ON ACTION POTENTIAL AND CONTRACTILITY IN ATRIAL CELLS IN GUINEA-PIGS

    Institute of Scientific and Technical Information of China (English)

    张凤杰; 臧伟进; 于晓江; 胡浩; 张春虹; 孙强; 吕军

    2002-01-01

    Objective To investigate the effects of desensitization and rebound to adenosine(Ado) on action potential duration(APD) and contractility in guinea-pig atrial cells. Methods Electrical activity was recorded using standard intracellular microelectrode technique and contractility was recorded using. We studied the effects of adenosine on the action potential and desensitization of contractility and rebound of contractility. Results The results showed that action potential duration were shortened by 1,10,100μmol*L-1Ado, the ratio of shortened APD was (9.58±1.40)%,(13.80±2.26)%,(24.80±3.19)%, respectively. 1μmol*L-1Ado had no desensitization (P>0.05), but the time of desensitization of 10μmol*L-1 Ado and 100μmol*L-1 Ado was 1 minute(P<0.05) and 5 minutes(P<0.05), respectively. The desensitization of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility was changed from (31.4±16.04)%(2 minutes) to (50.60±15.87)% (4 minutes), compared with control. After washing out Ado, contractility was shown to rebound, the ratio of increase of contractility by 1,10,100μmol*L-1 Ado was (12.38±7.50)%,(19.00±8.14)% and (27.60±13.44)%, respectively. Conclusion Ado can abbreviate APD in atrial cells. The desensitization of Ado on APD is characterized by concentration-dependent and time-dependent in atrial cells, and the desensitization of contractility of Ado is obvious and contractility was shown to rebound after washing out Ado.

  4. Actions of genistein on contractile response of smooth muscle isolated from guinea pig gallbladder

    Institute of Scientific and Technical Information of China (English)

    Ya-Li Luo; Ya-Li Wang; Neng-Lian Li; Tian-Zhen Zheng; Li Zhang; Ya-Li She; Shu-Ming Hu

    2009-01-01

    BACKGROUND: Defective contractile motility of the gallbladder is an important factor for gallstone formation. Estrogen might increase the risk of gallstones and cholecystitis, and estradiol inhibits the contractile activity of isolated strips of guinea pig gallbladder. The potential risks associated with hormone replacement therapy (HRT) include symptomatic gallstones. Phytoestrogen have been used to treat menopause syndromes by replacing traditional estrogen. This experiment aimed to determine the effects of the phytoestrogen genistein on the contractile response of smooth muscle strips isolated from guinea pig gallbladder and its possible mechanism of action. METHODS: Guinea pigs were sacriifced to remove the whole gallbladder. Two or three smooth muscle strips were cut longitudinally. Each strip was suspended in a tissue chamber containing Krebs solution. After 2 hours of equilibration, contractile response indexes were recorded. Different concentrations of genistein were added to the chamber and the contractile responses were measured. Each antagonist was added 2 minutes before genistein to study possible mechanisms. The effect of genistein on calcium-dependent contraction curves and biphasic contraction in calcium-free Krebs solution were measured. RESULTS: Genistein decreased the resting tension dose-dependently, and reduced the mean contractile amplitude and frequency in gallbladder strips. Ranitidine partly inhibited the effect of genistein, but methylene blue, Nω-nitro-L-arginine, and propranolol hydrochloride did not inlfuence this action. Genistein had no signiifcant effects on calcium-dependent contraction. Genistein reduced the ifrst contraction induced by acetylcholine chloride, but did not affect the second contraction caused by CaCl2. CONCLUSIONS: Genistein relaxed smooth muscle isolated from the gallbladder of guinea pigs and this might contribute to the formation of gallstones. The inhibitory action might be related to H2 receptors and

  5. The Effects of Histamine H3 Receptors on Contractile Responses on Rat Gastric Fundus

    Directory of Open Access Journals (Sweden)

    Aşkın Hekimoğlu

    2006-01-01

    Full Text Available The aim of this study is to determine the effects of histamine receptors on the gastrointestinal system smooth muscle contractions and the role of histamine H3 receptors on these effects. İsolated rat gastric fundus preparations were hanged on isolated organ bath and histamine receptor agonist and anthagonists were added to the bath solution and the electrical field stimulation-induced contractile responses were evaluated. In our study groups after blocking one of the histamine receptors H1, H2,H3; contractile responses were observed. Then, other two receptors were blocked one by one or combination of them to observe the changes on the contractile responses given to the electrical stimulation .To blocke histamine receptors pyrilamine (10-6м as H1 receptor blocker, famotidine (10-6м as H2 receptor blocker and thioperamide (10-5м as H3 receptor blocker and various combination of them were used. All groups were treated with H3 receptor anthagonist thioperamide (10-5м and agonist (R-α-methylhistamine (RMHA on 10-8, 10-7, 10-6 ve 10-5 molar concentrations cumulatively to observe its mediator effects on contractile responses. We suggested that (R-α-methylhistamine mediates the inhibition on the contractile effects of rat gastric fundus. This conclusion was supported by these findings: a the selective agonists (RMHA caused a dumping of the contractile effect of acetylcholine; b the effect of (RMHA was prevented by the selective H3 receptor antagonist thioperamide.

  6. Triceps surae contractile properties and firing rates in the soleus of young and old men.

    Science.gov (United States)

    Dalton, Brian H; Harwood, Brad; Davidson, Andrew W; Rice, Charles L

    2009-12-01

    Mean maximal motor unit firing rates (MUFRs) of the human soleus are lower (5-20 Hz) than other limb muscles (20-50 Hz) during brief sustained contractions. With healthy adult aging, maximal MUFRs are 20-40% lower and twitch contractile speed of lower limb muscles are 10-40% slower compared with young adults. However, it is unknown whether the inherently low maximal MUFRs for the soleus are further reduced with aging in association with age-related slowing in contractile properties. The purpose of the present study was to compare the changes in triceps surae contractile properties and MUFRs of the soleus throughout a variety of contraction intensities in six old ( approximately 75 yr old) and six young ( approximately 24 yr old) men. Neuromuscular measures were collected from the soleus and triceps surae during repeated sessions (2-6 sessions). Populations of single MUFR trains were recorded from the soleus with tungsten microelectrodes during separate sustained 6- to 10-s isometric contractions of varying intensities [25%, 50%, 75%, and 100% maximal voluntary isometric contraction (MVC)]. The old men had weaker triceps surae strength (MVC; 35% lower) and slower contractile properties (contraction duration; 20% longer) than the young men. However, there was no difference in average MUFRs of the soleus at 75% and 100% MVC ( approximately 14.5 Hz and approximately 16.5 Hz, respectively). At 25% and 50% MVC, average rates were 10% and 20% lower in the old men compared with young, respectively. Despite a significant slowing in triceps surae contraction duration, there was no age-related change in MUFRs recorded at high contractile intensities in the soleus. Thus the relationship between the whole muscle contractile properties and MUFRs found in other muscle groups may not exist between the triceps surae and soleus and may be muscle dependent.

  7. Accessory left atrial diverticulae: contractile properties depicted with 64-slice cine-cardiac CT.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    To assess the contractility of accessory left atrial appendages (LAAs) using multiphasic cardiac CT. We retrospectively analyzed the presence, location, size and contractile properties of accessory LAAs using multiphasic cardiac 64-slice CT in 102 consecutive patients (63 males, 39 females, mean age 57). Multiplanar reformats were used to create image planes in axial oblique, sagittal oblique and coronal oblique planes. For all appendages with an orifice diameter >or= 10 mm, axial and sagittal diameters and appendage volumes were recorded in atrial diastole and systole. Regression analysis was performed to assess which imaging appearances best predicted accessory appendage contractility. Twenty-three (23%) patients demonstrated an accessory LAA, all identified along the anterior LA wall. Dimensions for axial oblique (AOD) and sagittal oblique (SOD) diameters and sagittal oblique length (SOL) were 6.3-19, 3.4-20 and 5-21 mm, respectively. All appendages (>or=10 mm) demonstrated significant contraction during atrial systole (greatest diameter reduction was AOD [3.8 mm, 27%]). Significant correlations were noted between AOD-contraction and AOD (R = 0.57, P < 0.05) and SOD-contraction and AOD, SOD and SOL (R = 0.6, P < 0.05). Mean diverticulum volume in atrial diastole was 468.4 +\\/- 493 mm(3) and in systole was 171.2 +\\/- 122 mm(3), indicating a mean change in volume of 297.2 +\\/- 390 mm(3), P < 0.0001. Stepwise multiple regression analysis revealed SOL to be the strongest independent predictor of appendage contractility (R(2) = 0.86, P < 0.0001) followed by SOD (R(2) = 0.91, P < 0.0001). Accessory LAAs show significant contractile properties on cardiac CT. Those accessory LAAs with a large sagittal height or depth should be evaluated for contractile properties, and if present should be examined for ectopic activity during electrophysiological studies.

  8. JunB mediates basal- and TGFβ1-induced smooth muscle cell contractility.

    Directory of Open Access Journals (Sweden)

    Aruna Ramachandran

    Full Text Available Smooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors of smooth muscle cells (SMC such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth muscle contractility is incompletely understood. In this study we show that the AP-1 family member JunB regulates contractility in visceral SMC by altering actin polymerization and myosin light chain phosphorylation. JunB levels are robustly upregulated downstream of transforming growth factor beta-1 (TGFβ1, a known inducer of SMC contractility. RNAi-mediated silencing of JunB in primary human bladder SMC (pBSMC inhibited cell contractility under both basal and TGFβ1-stimulated conditions, as determined using gel contraction and traction force microscopy assays. JunB knockdown did not alter expression of the contractile proteins α-SMA, calponin or SM22α. However, JunB silencing decreased levels of Rho kinase (ROCK and myosin light chain (MLC20. Moreover, JunB silencing attenuated phosphorylation of the MLC20 regulatory phosphatase subunit MYPT1 and the actin severing protein cofilin. Consistent with these changes, cells in which JunB was knocked down showed a reduction in the F:G actin ratio in response to TGFβ1. Together these findings demonstrate a novel function for JunB in regulating visceral smooth muscle cell contractility through effects on both myosin and the actin cytoskeleton.

  9. Effect of Tramadol on Rabbit Uterine Contractile Activity Induced in Late Pregnancy.

    Science.gov (United States)

    Yakovleva, A A; Nazarova, L A; Prokopenko, V M; Pavlova, N G

    2017-01-01

    Effect of Tramadol infusion (5 mg/ml) on oxytocin-induced uterine contractile activity was studied in chronic experiment on female rabbits with different degrees of biological readiness for parturition. In case of sufficient biological readiness for parturition, Tramadol did not change the number of uterine contractions, but increased the amplitude and duration of each contraction against the background of increased creatine phosphate consumption by the myometrium. At the same time, Tramadol infusion to females without biological readiness for partirition suppressed induced uterine contractile activity by reducing the amplitude of each uterine contraction.

  10. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I

    DEFF Research Database (Denmark)

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten;

    2016-01-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat...... infiltration. The Dixon magnetic resonance imaging technique was used to quantify fat and calculate a fat-free contractile CSA. Strength was assessed by dynamometry. Muscle strength/CSA relationships were significantly lower in patients versus controls. The strength/contractile-CSA relationship was still...

  11. Validation of an in vitro contractility assay using canine ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  12. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells

    Science.gov (United States)

    Davidson, Reshma; Liu, Yajun; Gerien, Kenneth S.; Wu, Jian-Qiu

    2017-01-01

    Single-cell microscopy provides a powerful tool to visualize cellular and subcellular processes in wild-type and mutant cells by observing fluorescently tagged proteins. Here, we describe three simple methods to visualize fission yeast cells: gelatin slides, coverslip-bottom dishes, and tetrad fluorescence microscopy. These imaging methods and data analysis using free software make it possible to quantify protein localization, dynamics, and concentration with high spatial and temporal resolution. In fission yeast, the actomyosin contractile ring is essential for cytokinesis. We use the visualization and quantification of contractile ring proteins as an example to demonstrate how to use these methods. PMID:26519302

  13. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    Science.gov (United States)

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  14. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells.

    Science.gov (United States)

    Davidson, Reshma; Liu, Yajun; Gerien, Kenneth S; Wu, Jian-Qiu

    2016-01-01

    Single-cell microscopy provides a powerful tool to visualize cellular and subcellular processes in wild-type and mutant cells by observing fluorescently tagged proteins. Here, we describe three simple methods to visualize fission yeast cells: gelatin slides, coverslip-bottom dishes, and tetrad fluorescence microscopy. These imaging methods and data analysis using free software make it possible to quantify protein localization, dynamics, and concentration with high spatial and temporal resolution. In fission yeast, the actomyosin contractile ring is essential for cytokinesis. We use the visualization and quantification of contractile ring proteins as an example to demonstrate how to use these methods.

  15. Influence of bladder outlet obstruction and detrusor contractility on residual urine in patients with benign prostatic hyperplasia

    Institute of Scientific and Technical Information of China (English)

    张鹏; 武治津; 高居忠

    2003-01-01

    Objective To study the relationship between the degree of bladder outlet obstruction (BOO), detrusor contractility and residual urine in patients suffering from benign prostatic hyperplasia (BPH).Methods In 181 patients with BPH, degree of BOO, detrusor contractility, residual urine caculated from cathetering combined with the difference between the filling and the voiding were recorded and analysized statistically using urodynamic technique.Results Residual urine increased when the detusor contractility was weakened (F=12.134, P=0.001). In patients wih severe BOO, there was no significant difference in residual urine (F=2.386, P=0.071).Conclusions Increased residual urine is mainly resulted from decreased detrusor contractility. BOO has no significant influence on residual urine. Some patients with normal or weakened detrusor contractility may have more residual urine

  16. Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Johnsson, E.; Maddahi, A.; Wackenfors, A.;

    2008-01-01

    . In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh...... but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture...... and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries...

  17. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.

    Science.gov (United States)

    Lipská, E; Radzyukevich, T

    1999-06-01

    The effects of low calcium and verapamil on contractility of two muscle fibre types (m. iliofibularis, Rana temporaria) upon different stimulation protocols were been compared. Verapamil (0.02 mmol/l) induced temporal excitation-contraction coupling failure during single tetanic stimulation and enhanced the decline of tetanic force during 30 s repetitive tetanic stimulation in both fatigue-resistant fibres and easily-fatigued fibres. In contrast to verapamil, low extracellular calcium (0.02 mmol/l) only enhanced the decline of tetanic force in fatigue-resistant during repetitive tetanic stimulation but had no effect on easily-fatigued fibres. The effect of verapamil on the decline of tetanic force in fatigue-resistant fibres was more profound in low calcium conditions. Both verapamil and low calcium eliminated twitch facilitation that appeared after prolonged contractile activity in fatigue-resistant fibres. 4mmol/l Ni+2, used as calcium channel antagonist, had effects similar to low calcium medium. It could be concluded that (i) extracellular Ca2+-requirements for excitation-contraction coupling are different in fatigue-resistant and easily-fatigued fibres; (ii) the effects of verapamil on force performance are not entirely dependent upon calcium channel blockade.

  18. MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes.

    Science.gov (United States)

    Parreno, Justin; Raju, Sneha; Wu, Po-Han; Kandel, Rita A

    2016-10-14

    Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.

  19. Studies of membrane fluidity and heart contractile force in Trypanosoma cruzi infected mice

    Directory of Open Access Journals (Sweden)

    Julio E Enders

    2004-11-01

    Full Text Available In Chagas disease serious cardiac dysfunction can appear. We specifically studied the cardiac function by evaluating: ventricle contractile force and norepinephrine response, affinity and density of beta-adrenergic receptors, dynamic properties of myocardial membranes, and electrocardiography. Albino swiss mice (n = 250 were infected with 55 trypomastigotes, Tulahuen strain and studied at 35, 75, and 180 days post-infection, that correspond to the acute, indeterminate, and chronic phase respectively. Cardiac beta-adrenergic receptors' affinity, myocardial contractility, and norepinephrine response progressively decreased from the acute to the chronic phase of the disease (p < 0.01. The density (expressed as fmol/mg.prot of the receptors was similar to non-infected mice (71.96 ± 0.36 in both the acute (78.24 ± 1.67 and indeterminate phases (77.28 ± 0.91, but lower in the chronic disease (53.32 ± 0.71. Electrocardiographic abnormalities began in the acute phase and were found in 65% of the infected-mice during the indeterminate and chronic phases. Membrane contents of triglycerides, cholesterol, and anisotropy were similar in all groups. A quadratic correlation between the affinity to beta-adrenergic receptors and cardiac contractile force was obtained. In conclusion the changes in cardiac beta-adrenergic receptors suggests a correlation between the modified beta-adrenergic receptors affinity and the cardiac contractile force.

  20. Contractile speed and fatigue of adductor pollicis muscle in multiple sclerosis

    NARCIS (Netherlands)

    de Ruiter, C J; Jongen, P J; van der Woude, L H; de Haan, A

    2001-01-01

    The purpose of the study was to investigate differences in contractile speed, force, and fatigability of the adductor pollicis muscle between 12 patients with multiple sclerosis (MS) and 8 sedentary control subjects matched for age and gender. There were no differences between the patients with MS a

  1. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    Science.gov (United States)

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.

  2. Influence of Contractility on Myocardial Ultrasonic Integrated Backscatter and Cyclic Variation in Integrated Backscatter

    Institute of Scientific and Technical Information of China (English)

    毕小军; 邓又斌; 潘敏; 杨好意; 向慧娟; 常青; 黎春雷

    2002-01-01

    Summary: To evaluate the effects of left ventricular contractility on the changes of average image intensity (AII) of the myocardial integrated backscatter (IB) and cyclic variation in IB (CVIB), 7 adult mongrel dogs were studied. The magnitude of AII and CVIB were measured from myocardial IB carves before and after dobutamine or propranolol infusion. Dobutamine or propranolol did not affect the magnitude of AII (13.8±0. 7 vs 14.7±0. 5, P>0. 05 or 14.3±0.5 vs 14.2±0. 4, P>0. 05). However, dobutamine produced a significant increase in the magnitude of CVIB (6.8±0.3 vs 9.5 ± 0. 6, P<0. 001) and propranolol induced significant decrease in the magnitude of CVIB (7.1±0. 2 vs 5.2±0. 3, P<0. 001). The changes of the magnitude of AII and CVIB in the myocardium have been demonstrated to reflect different myocardial physiological and pathological changes respectively. The alteration of contractility did not affect the magnitude of AII but induced significant change in CVIB. The increase of left ventricular contractility resulted in a significant rise of the magnitude of CVIB and the decrease of left ventricular contractility resulted in a significant fall of the magnitude of CVIB.

  3. In vitro comparison of isometric and stop-test contractility parameters for the urinary bladder

    NARCIS (Netherlands)

    R. van Mastrigt (Ron); J.J. Glerum (Jacobus)

    1985-01-01

    textabstractContractility parameters in the urinary bladder can be calculated from isometric contractions (no extra patient load as compared to routine cystometry) or from stop-tests (more accurate, simpler analysis). A stop-test involves a voluntarily interrupted micturition with pressure and flow

  4. Myocardial ischemia-reperfusion induces upregulation of contractile endothelin ETB receptor in rat coronary arteries

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Sheykhzade, Majid; Trautner, Simon;

    2011-01-01

    ETB receptor upregulation. Methods and Results Thirteen Sprague-Dawley male rats (body weight 260-410 g) were anaesthetized with Hypnorm-Midazolam and subjected to 15 min occlusion of left anterior descending coronary artery (LAD) followed by 22 h of reperfusion. The contractile response...

  5. Effects of Inhalation or Incubation of Oxitropium Bromide on Diaphragm Muscle Contractility in Mice

    Directory of Open Access Journals (Sweden)

    Chiyohiko Shindoh

    2011-01-01

    Conclusions: We speculate that the increment of muscle contractility with the inhalation of oxitropium bromide was induced by the antagonization of musucarinic acetylcholine receptors (mAChR. In addition, the changes of fatigue resistance provoked by oxitropium bromide, which also is speculated to antagonize mAChR, may be beneficial in the treatment of patients with COPD.

  6. A device for rapid and quantitative measurement of cardiac myocyte contractility

    Science.gov (United States)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  7. Contractile properties of the quadriceps muscle in individuals with spinal cord injury

    NARCIS (Netherlands)

    Gerrits, H L; De Haan, A; Hopman, M T; van Der Woude, L H; Jones, D A; Sargeant, A J

    1999-01-01

    Selected contractile properties and fatigability of the quadriceps muscle were studied in seven spinal cord-injured (SCI) and 13 able-bodied control (control) individuals. The SCI muscles demonstrated faster rates of contraction and relaxation than did control muscles and extremely large force oscil

  8. Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation

    NARCIS (Netherlands)

    Ke, Lei; Qi, Xiao Yan; Dijkhuis, Anne-Jan; Chartier, Denis; Nattel, Stanley; Henning, Robert H.; Kampinga, Harm H.; Brundel, Bianca Jj. M.

    2008-01-01

    The self-perpetuation of atrial fibrillation (AF) is associated with atrial remodeling, including the degradation of the myofibril structure (myolysis). Myolysis is related to AF-induced activation of cysteine proteases and underlies loss of contractile function. In this study, we investigated which

  9. Engineering of Three-Dimensional Microenvironments to Promote Contractile Behavior in Primary Intestinal Organoids

    OpenAIRE

    DiMarco, Rebecca L.; Su, James; Yan, Kelley S.; Dewi, Ruby; Kuo, Calvin J.; Heilshorn, Sarah C.

    2014-01-01

    Multiple culture techniques now exist for the long-term maintenance of neonatal primary murine intestinal organoids in vitro; however, the achievement of contractile behavior within cultured organoids has thus far been infrequent and unpredictable. Here we combine finite element simulation of oxygen transport and quantitative comparative analysis of cellular microenvironments to elucidate the critical variables that promote reproducible intestinal organoid contraction. Experimentally, oxygen ...

  10. Assembly and positioning of actomyosin rings by contractility and planar cell polarity.

    Science.gov (United States)

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-10-21

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells' anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events.

  11. Prolonged ischemic heart disease and coronary artery bypass - relation to contractile reserve

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Bangsgaard, Regitze; Carstensen, Steen;

    2002-01-01

    OBJECTIVE: A major effect of coronary artery bypass grafting (CABG) in patients with ischemic heart disease and impaired left ventricular (LV) contractile function is believed to be an improvement in LV function due to recovery of dysfunctional, but viable myocardium. However, recent studies have...

  12. Computer analysis of the RR interval-contractility relationship during random stimulation of the isolated heart

    NARCIS (Netherlands)

    Meijler, F.L.; Strackee, J.; Capelle, F.J.L. van; Perron, J.C. du

    1968-01-01

    Hemodynamic variability in patients with atrial fibrillation may originate from a direct influence of the variations in RR intervals on myocardial contractility. With the aid of a computer the serial autocorrelation function and the histogram of the RR intervals of patients with atrial fibrillation

  13. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars G; Suetta, Charlotte; Aagaard, Per

    2013-01-01

    The purpose of the study was to investigate the effects of 4days of disuse (knee brace) on contractile function of isolated vastus lateralis fibers (n=486) from 11 young (24.3±0.9yrs) and 11 old (67.2±1.0yrs) healthy men having comparable levels of physical activity. Prior to disuse single fiber ...

  14. In vivo visualization and quantification of collecting lymphatic vessel contractility using near-infrared imaging

    Science.gov (United States)

    Chong, Chloé; Scholkmann, Felix; Bachmann, Samia B.; Luciani, Paola; Leroux, Jean-Christophe; Detmar, Michael; Proulx, Steven T.

    2016-01-01

    Techniques to image lymphatic vessel function in either animal models or in the clinic are limited. In particular, imaging methods that can provide robust outcome measures for collecting lymphatic vessel function are sorely needed. In this study, we aimed to develop a method to visualize and quantify collecting lymphatic vessel function in mice, and to establish an in vivo system for evaluation of contractile agonists and antagonists using near-infrared fluorescence imaging. The flank collecting lymphatic vessel in mice was exposed using a surgical technique and a near-infrared tracer was infused into the inguinal lymph node. Collecting lymphatic vessel contractility and valve function could be easily visualized after the infusion. A diameter tracking method was established and the diameter of the vessel was found to closely correlate to near-infrared fluorescence signal. Phasic contractility measures of frequency and amplitude were established using an automated algorithm. The methods were validated by tracking the vessel response to topical application of a contractile agonist, prostaglandin F2α, and by demonstrating the potential of the technique for non-invasive evaluation of modifiers of lymphatic function. These new methods will enable high-resolution imaging and quantification of collecting lymphatic vessel function in animal models and may have future clinical applications. PMID:26960708

  15. The importance of myocardial contractile reserve in predicting response to cardiac resynchronization therapy

    NARCIS (Netherlands)

    Kloosterman, Mariëlle; Damman, Kevin; Van Veldhuisen, Dirk J; Rienstra, Michiel; Maass, Alexander H

    2017-01-01

    AIM: To perform a meta-analysis and systematic review of published data to assess the relationship between contractile reserve and response to cardiac resynchronization therapy (CRT) in patients with heart failure. METHODS AND RESULTS: We searched MEDLINE/PubMed and Cochrane for all papers published

  16. Effect of quercetin on colon contractility and L-type Ca(2+) channels in colon smooth muscle of guinea-pig.

    Science.gov (United States)

    Huang, Wei-Feng; Ouyang, Shou; Li, Shi-Ying; Lin, Yan-Fei; Ouyang, Hui; Zhang, Hui; Lu, Chun-Jing

    2009-12-25

    The aim of the present study was to investigate the effects of quercetin on colon contractility and voltage-dependent Ca(2+) channels in the single smooth muscle cell isolated from the proximal colon of guinea-pig and to clarify whether its effect on L-type Ca(2+) current (I(Ca,L)) would be related to its myorelaxing properties. Colon smooth muscle strips were used to take contractile tension recordings. Smooth muscle cells were freshly isolated from the proximal colon of guinea-pig by means of papain treatment. I(Ba,L) (barium instead of calcium as current carrier) was measured by using whole-cell patch-clamp techniques. The results showed that quercetin relaxed colon muscle strips in a concentration-dependent manner and antagonized the contractile effect of acetylcholine and neostigmine. Preincubation with indomethcin [cyclooxygenase (COX) inhibitor] and methylene blue [guanylate cyclase (GC) inhibitor] significantly attenuated the relaxing effect of quercetin, respectively. Quercetin increased I(Ba,L) in a concentration- [EC(50)= (7.59+/-0.38) mumol/L] and voltage-dependent pattern, and shifted the maximum of the current-voltage curve by 10 mV in the depolarizing direction without modifying the threshold potential for Ca(2+) influx. Quercetin shifted the steady-state inactivation curve toward more positive potentials by approximately 3.75 mV without affecting the slope of activation and inactivation curve. H-89 (PKA inhibitor) abolished quercetin-induced I(Ba,L) increase, while cAMP enhanced the quercetin-induced I(Ba,L) increase. The patch-clamp results proved that quercetin increased I(Ba,L) via PKA pathway. It is therefore suggested that the relaxing effect of quercetin attributes to the interaction of GC and COX stimulation, as well as the antagonism effect on acetylcholine, which hierarchically prevails over the increase in the Ca(2+) influx to be expected from I(Ca,L) stimulation.

  17. Pyruvate-Enhanced Resuscitation for Hemorrhagic Shock and Hindlimb Ischemia

    Science.gov (United States)

    2015-06-06

    Pyruvate-Enhanced Resuscitation for Hemorrhagic Shock and Hindlimb Ischemia The overall goals of this investigation were to test the ability of...Final Report: Pyruvate-Enhanced Resuscitation for Hemorrhagic Shock and Hindlimb Ischemia Report Title The overall goals of this investigation were to...during ischemia -reperfusion injury and cause cellular damage which likely contributes to myocardial contractile dysfunction. ROS oxidize and

  18. An Acanthamoeba castellanii metacaspase associates with the contractile vacuole and functions in osmoregulation.

    Science.gov (United States)

    Saheb, Entsar; Trzyna, Wendy; Bush, John

    2013-03-01

    Acanthamoeba castellanii is a free-living protozoan. Some strains are opportunistic pathogens. A type-I metacaspase was identified in A. castellanii (Acmcp) and was shown to be expressed through the encystation process. The model organism, Dictyostelium discoideum, has been used here as a model for studying these caspase-like proteins. Separate cell lines expressing a GFP-tagged version of the full length Acmcp protein, as well as a deletion proline region mutant of Acmcp protein (GFP-Acmcp-dpr), have been introduced into D. discoideum. Both mutants affect the cellular metabolism, characterized by an increase in the growth rate. Microscopic imaging revealed an association between Acmcp and the contractile vacuole system in D. discoideum. The treatment of cells with selected inhibitors in different environments added additional support to these findings. This evidence shows that Acmcp plays an important role in contractile vacuole regulation and mediated membrane trafficking in D. discoideum. Additionally, the severe defect in contractile vacuole function in GFP-Acmcp-dpr mutant cells suggests that the proline-rich region in Acmcp has an essential role in binding this protein with other partners to maintain this process. Furthermore, Yeast two-hybrid system identified there are weak interactions of the Dictyostelium contractile vacuolar proteins, including Calmodulin, RabD, Rab11 and vacuolar proton ATPase, with Acmcp protein. Taken together, our findings suggest that A. castellanii metacaspase associate with the contractile vacuole and have an essential role in cell osmoregulation, which contributes to its attractiveness as a possible target for treatment therapies against A. castellanii infection.

  19. The effects of pentoxifylline on skeletal muscle contractility and neuromuscular transmission during hypoxia

    Directory of Open Access Journals (Sweden)

    Simsek-Duran Fatma

    2009-01-01

    Full Text Available Objectives : The objective of this study was to investigate the effects of pentoxifylline (PTX, a drug that is mainly used for indications related to tissue hypoxia, on hypoxia-induced inhibition of skeletal muscle contractility and neuromuscular transmission in mice. We hypothesized that chronic PTX treatment alters skeletal muscle contractility and hypoxia-induced dysfunction. Materials and Methods : Mice were treated with 50 mg/kg PTX or saline intraperitoneally for a week. Following ether anesthesia, diaphragm muscles were removed; isometric muscle contractions and action potentials were recorded. Time to reach neuromuscular blockade and the rate of recovery of muscle contractility were assessed during hypoxia and re-oxygenation. Results : The PTX group displayed 90% greater twitch amplitudes (P < 0.01. Hypoxia depressed twitch contractions and caused neuromuscular blockade in both groups. However, neuromuscular blockade occurred earlier in PTX-treated animals (P < 0.05. Muscle contractures developed during hypoxia were more pronounced in the PTX group (P < 0.05. Re-oxygenation reduced contracture and indirect muscle contractions resumed. The rate of recovery of contractions was faster (P < 0.05 and the amplitude of contractions was greater (P < 0.01 in the PTX group. PTX treatment increased amplitude (P < 0.05 and shortened action potential (P < 0.05 without altering resting membrane potential, excitation threshold, and neurotransmitter release. Conclusion : Chronic PTX treatment increases diaphragm contractility, but amplifies hypoxia-induced contractile dysfunction in mice. These results may implicate important clinical consequences for clinical usage of PTX in hypoxia-related conditions.

  20. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  1. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    Science.gov (United States)

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.

  2. Action of progesterone on contractile activity of isolated gastric strips in rats

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Tian-Zhen Zheng; Wei Li; Song-Yi Qu; Di-Ying He

    2003-01-01

    AIM: To study the effect of progesterone on contractile activity of isolated gastric strips in rats.METHODS: Wistar rats were sacrificed to remove whole stomach. Then, the stomach was opened and the mucosal layer was removed. Parellel to either the circular or the longitudial fibers, muscle strips were cut from fundus, body,antrum and pylorus. Each muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution. Then the motility of gastric strips in tissue chambers was simultaneously recorded. The preparations were subjected to 1 g load tension and washed with 5 ml Krebs solution every 20 min. After 1 h equilibration, progesterone or antagonists were added in the tissue chamber separately. The antagonists were added 3 min before using progesterone (50 μmol. L-1).RESULTS: Progesterone decreased the resting tension of fundus and body longitudinal muscle (LM) (P<0.05). It inhibited the mean contractile amplitude of body and antrum LM and circular muscle (CM), and the motility index of pyloric CM (P<0.05). The inhibition of progesterone on the mean contractile amplitude could be partially blocked by phentolamine in LM of the stomach body (the mean contractile amplitude of body LM decreased from -7.5±5.5to -5.2±4.5 P<0.01), and by phentolamine or indomethacin in CM of body (The inhibition of progesterone on the mean contractile amplitude of body CM decreased from -5.6±3.0to -3.6±2.7 by phentolamine and from -5.6±3.0 to -3.5±2.5by indomethacin, P<0.01). Hexamethonium, propranolol and L-NNA (inhibitor of NO synthetase) didn′t affect the action of progesterone (P>0.05).CONCLUSION: The study suggested that progesterone can inhibit the contractile activity of isolated gastric strips in rats and the mechanism seems to be a direct one except that the action on gastric body is mediated through prostaglandin and adrenergic α receptor partly.

  3. Hemeoxygenase-1 inhibits human myometrial contractility via carbon monoxide and is upregulated by progesterone during pregnancy.

    Science.gov (United States)

    Acevedo, C H; Ahmed, A

    1998-03-01

    Nitric oxide was proposed as an endogenous inhibitor of myometrial contractility during pregnancy. Carbon monoxide (CO) like nitric oxide increases cGMP and is generated during the degradation of heme to biliverdin IX by hemeoxygenases (HO). Here we report that the expression of both HO-1 (inducible) and HO-2 (constitutive) were > 15-fold higher in pregnant myometrium compared to nonpregnant myometrium (n = 4, P synthesis (n = 4, P tin protoporphyrin IX (20 microM). This study clearly demonstrates the expression of HO in the human myometrium and shows that its induction produces CO that limits uterine contractility in pregnant myometrium indicating a role for the HO-CO-cGMP pathway in the maintenance of the quiescent state of the uterus during pregnancy.

  4. Cell contractility facilitates alignment of cells and tissues to static uniaxial stretch

    CERN Document Server

    Rens, Elisabeth G

    2016-01-01

    During animal development and homeostasis, the structure of tissues, including muscles, blood vessels and connective tissues adapts to mechanical strains in the extracellular matrix (ECM). These strains originate from the differential growth of tissues or forces due to muscle contraction or gravity. Here we show using a computational model that by amplifying local strain cues, active cell contractility can facilitate and accelerate the reorientation of single cells to static strains. At the collective cell level, the model simulations show that active cell contractility can facilitate the formation of strings along the orientation of stretch. The computational model is based on a hybrid cellular Potts and finite-element simulation framework describing a mechanical cell-substrate feedback, where: 1) cells apply forces on the ECM, such that 2) local strains are generated in the ECM, and 3) cells preferentially extend protrusions along the strain orientation. In accordance with experimental observations, simulat...

  5. Myosin-II dependent cell contractility contributes to spontaneous nodule formation of mesothelioma cells

    CERN Document Server

    Tárnoki-Zách, Julia; Méhes, Elod; Paku, Sándor; Neufeld, Zoltán; Hegedus, Balázs; Döme, Balázs; Czirok, Andras

    2015-01-01

    We demonstrate that characteristic nodules emerge in cultures of several malignant pleural mesothelioma (MPM) cell lines. Instead of excessive local cell proliferation, the nodules arise by Myosin II-driven cell contractility. The aggregation process can be prevented or reversed by suitable pharmacological inhibitors of acto-myosin contractility. A cell-resolved elasto-plastic model of the multicellular patterning process indicates that the morphology and size of the nodules as well as the speed of their formation is determined by the mechanical tension cells exert on their neighbors, and the stability of cell-substrate adhesion complexes. A linear stability analysis of a homogenous, self-tensioned Maxwell fluid indicates the unconditional presence of a patterning instability.

  6. Does the stalk contractility of Vorticella convallaria depend on the stalk length?

    Science.gov (United States)

    Chung, Eun-Gul; Ryu, Sangjin

    2015-11-01

    Vorticella convallaria is a sessile stalked ciliate living in water, and its stalk coils to move the cell body (zooid) towards its residence substrate at a maximum speed of ~ 50 mm/s. Our previous microfluidics study shows that the isometric tension of the V. convallaria stalk is linearly proportional to the stalk length. Based on this observation, we hypothesize that the contractility of V. convallaria during normal contraction is also dependent on the stalk length. To investigate our hypothesis, we measured the contraction speed of V. convallaria using high-speed videography and evaluated the contractile force and energetics of V. convallaria using fluid dynamics modeling. We appreciate support from UNL Layman Seed Grant and Nebraska EPSCoR First Award Grant.

  7. Pharmacology of Casimiroa edulis; III. Relaxant and contractile effects in rat aortic rings.

    Science.gov (United States)

    Magos, G A; Vidrio, H; Enríquez, R

    1995-06-23

    The relaxant and contractile effects of an aqueous extract of the seeds of the hypotensive plant Casimiroa edulis were investigated in rat aortic rings. The extract inhibited contractions elicited by noradrenaline, serotonin and prostaglandin F2 alpha, but did not affect responses to KCl. Inhibition did not require the presence of intact vascular endothelium and was not affected by histamine antagonists. In this preparation, the extract also elicited concentration-related contractions which were more marked in the absence of endothelium, were not blocked by histamine antagonists, and were completely suppressed by alpha-adrenergic blockade. It was concluded that the relaxant effect of the extract is not exerted through release of an endothelial relaxing factor nor through blockade of calcium channels or of specific smooth muscle receptors, and does not involve histaminergic mechanisms. The contractile effect is modulated by vascular endothelium and is alpha-adrenergic in nature.

  8. Measuring the Contractile Response of Isolated Tissue Using an Image Sensor

    Directory of Open Access Journals (Sweden)

    David Díaz-Martín

    2015-04-01

    Full Text Available Isometric or isotonic transducers have traditionally been used to study the contractile/relaxation effects of drugs on isolated tissues. However, these mechanical sensors are expensive and delicate, and they are associated with certain disadvantages when performing experiments in the laboratory. In this paper, a method that uses an image sensor to measure the contractile effect of drugs on blood vessel rings and other luminal organs is presented. The new method is based on an image-processing algorithm, and it provides a fast, easy and non-expensive way to analyze the effects of such drugs. In our tests, we have obtained dose-response curves from rat aorta rings that are equivalent to those achieved with classical mechanic sensors.

  9. Effects of a hydrogen sulfide donor on spontaneous contractile activity of rat stomach and jejunum.

    Science.gov (United States)

    Shafigullin, M Y; Zefirov, R A; Sabirullina, G I; Zefirov, A L; Sitdikova, G F

    2014-07-01

    We studied the effect of sodium hydrosulfite (NaHS), a donor of hydrogen sulfide (H2S), on spontaneous contractive activity of isolated preparations of rat stomach and jejunum under isometric conditions. NaHS in concentrations of 10-200 μM reduced the amplitude, tonic tension, and frequency of contractions of the preparations. Blockade of K(+) channels with a non-specific antagonist tetraethylammonium (10 mM) increased contraction amplitude in the stomach strip and jejunum segment. The effects of NaHS on all parameters of contractile activity of the stomach and jejunum were fully preserved against the background of tetraethylammonium application. These data suggest that H2S in physiologically relevant concentrations inhibited spontaneous contractile activity of smooth muscle cells in rat stomach and jejunum by reducing the amplitude and frequency of contractions and decreased tonic tension without affecting the function of voltage- and calcium-dependent K(+) channels.

  10. Contractile activity is required for Z-disc sarcomere maturation in vivo

    Science.gov (United States)

    Geach, Timothy J; Hirst, Elizabeth MA; Zimmerman, Lyle B

    2015-01-01

    Sarcomere structure underpins structural integrity, signaling, and force transmission in the muscle. In embryos of the frog Xenopus tropicalis, muscle contraction begins even while sarcomerogenesis is ongoing. To determine whether contractile activity plays a role in sarcomere formation in vivo, chemical tools were used to block acto-myosin contraction in embryos of the frog X. tropicalis, and Z-disc assembly was characterized in the paralyzed dicky ticker mutant. Confocal and ultrastructure analysis of paralyzed embryos showed delayed Z-disc formation and defects in thick filament organization. These results suggest a previously undescribed role for contractility in sarcomere maturation in vivo. genesis 53:299–307, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:25845369

  11. Hemeoxygenase-1 inhibits human myometrial contractility via carbon monoxide and is upregulated by progesterone during pregnancy.

    OpenAIRE

    Acevedo, C H; Ahmed, A

    1998-01-01

    Nitric oxide was proposed as an endogenous inhibitor of myometrial contractility during pregnancy. Carbon monoxide (CO) like nitric oxide increases cGMP and is generated during the degradation of heme to biliverdin IX by hemeoxygenases (HO). Here we report that the expression of both HO-1 (inducible) and HO-2 (constitutive) were > 15-fold higher in pregnant myometrium compared to nonpregnant myometrium (n = 4, P < 0.001, P < 0.005, respectively). Moreover, the activation of the HO-CO pathway ...

  12. Contractile function of the myocardium with prolonged hypokinesia in patients with surgical tuberculosis

    Science.gov (United States)

    Zakutayeva, V. P.; Matiks, N. I.

    1978-01-01

    The changes in the myocardial contractile function with hypokinesia in surgical tuberculosis patients are discussed. The phase nature of the changes is noted, specifically the changes in the various systoles, diastole, and other parts of the cardiac cycle. The data compare these changes during confinement in bed with no motor activity to and with a return to motor activity after leaving the in-bed regimen.

  13. Exposure to a Low Lead Concentration Impairs Contractile Machinery in Rat Cardiac Muscle.

    Science.gov (United States)

    Silva, Marito A S C; de Oliveira, Thiago F; Almenara, Camila C P; Broseghini-Filho, Gilson B; Vassallo, Dalton V; Padilha, Alessandra S; Silveira, Edna A

    2015-10-01

    Lead exposure has been considered to be a risk factor for hypertension and cardiovascular disease. Our purpose was to evaluate the effects of low plasma lead concentration on cardiac contractility in isolated papillary muscles. Wistar rats were divided in control group or group treated with 100 ppm of lead acetate in the drinking water for 15 days. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anesthetized and euthanized, and parameters related to isolated papillary muscle contractility were recorded. The lead concentrations in the blood reached 12.3 ± 2 μg/dL. The BP was increased in the group treated with 100 ppm of lead acetate. Lead treatment did not alter force and time derivatives of the force of left ventricular papillary muscles. In addition, the inotropic response induced by an increase in the extracellular Ca(2+) concentration was reduced in the Pb(2+) group. However, the uptake of Ca(2+) by the sarcoplasmic reticulum and the protein expression of SERCA and phospholamban remained unchanged. Postrest contraction was similar in the both groups, and tetanic peak and plateau tension were reduced in lead group. These results demonstrated that the reduction in the inotropic response to calcium does not appear to be caused by changes in the trans-sarcolemmal calcium flux but suggest that an impairment of the contractile machinery might be taking place. Our results demonstrate that even at a concentration below the limit considered to be safe, lead exerts deleterious effects on the cardiac contractile machinery.

  14. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  15. Impaired contractility and remodeling of the upper gastrointestinal tract in diabetes mellitus type-1

    Institute of Scientific and Technical Information of China (English)

    Jens Brφndum Frφkjaer; Sφren Due Andersen; Niels Ejskjaer; Peter Funch-Jensen; Asbjφrn Mohr Drewes; Hans Gregersen

    2007-01-01

    AIM: To investigate that both the neuronal function of the contractile system and structural apparatus of the gastrointestinal tract are affected in patients with longstanding diabetes and auto mic neuropathy.METHODS: The evoked esophageal and duodenal contractile activity to standardized bag distension was assessed using a specialized ultrasound-based probe. Twelve type-1 diabetic patients with autonomic neuropathy and severe gastrointestinal symptoms and 12 healthy controls were studied. The geometry and biomechanical parameters (strain, tension/stress, and stiffness) were assessed.RESULTS: The diabetic patients had increased frequency of distension-induced contractions (6.0 ±0.6 vs 3.3 ± 0.5, P < 0.001). This increased reactivity was correlated with the duration of the disease (P =0.009). Impaired coordination of the contractile activity in diabetic patients was demonstrated as imbalance between the time required to evoke the first contraction at the distension site and proximal to it (1.5 ± 0.6 vs 0.5± 0.1, P = 0.03). The esophageal wall and especially the mucosa-submucosa layer had increased thickness in the patients (P < 0.001), and the longitudinal and radial compressive stretch was less in diabetics (P <0.001). The esophageal and duodenal wall stiffness and circumferential deformation induced by the distensions were not affected in the patients (all P > 0.14).CONCLUSION: The impaired contractile activity with an imbalance in the distension-induced contractions likely reflects neuronal abnormalities due to autonomic neuropathy. However, structural changes and remodeling of the gastrointestinal tract are also evident and may add to the neuronal changes. This may contribute to the pathophysiology of diabetic gut dysfunction and impact on future management of diabetic patients with gastrointestinal symptoms.

  16. Single muscle fibre contractile properties differ between body-builders, power athletes and control subjects

    OpenAIRE

    Meijer, J.P; Jaspers, R.T.; Rittweger, Jörn; SEYNNES, OLIVIER R.; Kamandulis, Sigitas; Brazaitis, M.; Skurvydas, A.; Pisot, Rado; Šimunič, Boštjan; Narici, Maco V.; Degens, Hans

    2016-01-01

    What is the central question of this study? Do the contractile properties of single muscle fibres differ between body-builders, power athletes and control subjects? •What is the main finding and its importance? Peak power normalized for muscle fibre volume in power athletes is higher than in control subjects. Compared with control subjects, maximal isometric tension (normalized for muscle fibre cross-sectional area) is lower in body-builders. Although this difference may be cause...

  17. Inhibitory effects of genistein and resveratrol on guinea pig gallbladder contractility in vitro

    Institute of Scientific and Technical Information of China (English)

    Long-De Wang; Xiao-Qing Qiu; Zhi-Feng Tian; Ying-Fu Zhang; Hong-Fang Li

    2008-01-01

    AIM:To observe and compare the effects of phytoestrogen genistein,resveratrol and 17β-estradiol on the tonic contraction and the phasic contraction of isolated gallbladder muscle strips and to study the underlying mechanisms.METHODS:Isolated strips of gallbladder muscle from guinea pigs were suspended in organ baths containing Kreb's solution,and the contractilities of strips were measured before and after incubation with genistein,resveratrol and 17β-estradiol respectively.RESULTS:Similar to 17β-estradiol,genistein and resveratrol could dose-dependently inhibit the phasic contractile activities,they decreased the mean contractlie amplitude and the contractlie frequencies of gallbladder muscle strips,and also produced a marked reduction in resting tone.The blocker of estrogen receptor ICI 182780 failed to alter the inhibitory effects induced by genistein and resveratrol,but potassium bisperoxo(1,10 phenanthroline)oxovanadate bpV(phen),a potent protein tyrosine phosphatase inhibitor,markedly attenuated the inhibitory effects induced by genistein and resveratrol.In calcium-free Kreb's solution containing 0.01 mmol/L egtazic acid(EGTA),genistein and resveratrol inhibited the first phasic contraction induced by acetylcholine(Ach),but did not affect the second contraction induced by CaCl2.In addition,genistein,resveratrol and 17β-estradiol also could reduce the contractile responses of Ach and KCI,and shift their cumulative concentration-response curves rightward.CONCLUSION:Phytoestrogen genistein and resveratrol can directly inhibit the contractile activity of isolated gallbladder muscle both at rest and in response to stimulation.The mechanisms responsible for the inhibitory effects probably due mainly to inhibition of tyrosine kinase,Ca2+ influx through potential-dependent calcium channels(PDCs)and Ca2+ release from sarcoplasmic reticulum(SR),but were not related to the estrogen receptors.

  18. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    Science.gov (United States)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  19. The p90 ribosomal S6 kinase (RSK is a mediator of smooth muscle contractility.

    Directory of Open Access Journals (Sweden)

    Mykhaylo Artamonov

    Full Text Available In the canonical model of smooth muscle (SM contraction, the contractile force is generated by phosphorylation of the myosin regulatory light chain (RLC20 by the myosin light chain kinase (MLCK. Moreover, phosphorylation of the myosin targeting subunit (MYPT1 of the RLC20 phosphatase (MLCP by the RhoA-dependent ROCK kinase, inhibits the phosphatase activity and consequently inhibits dephosphorylation of RLC20 with concomitant increase in contractile force, at constant intracellular [Ca(2+]. This pathway is referred to as Ca(2+-sensitization. There is, however, emerging evidence suggesting that additional Ser/Thr kinases may contribute to the regulatory pathways in SM. Here, we report data implicating the p90 ribosomal S6 kinase (RSK in SM contractility. During both Ca(2+- and agonist (U46619 induced SM contraction, RSK inhibition by the highly selective compound BI-D1870 (which has no effect on MLCK or ROCK resulted in significant suppression of contractile force. Furthermore, phosphorylation levels of RLC20 and MYPT1 were both significantly decreased. Experiments involving the irreversible MLCP inhibitor microcystin-LR, in the absence of Ca(2+, revealed that the decrease in phosphorylation levels of RLC20 upon RSK inhibition are not due solely to the increase in the phosphatase activity, but reflect direct or indirect phosphorylation of RLC20 by RSK. Finally, we show that agonist (U46619 stimulation of SM leads to activation of extracellular signal-regulated kinases ERK1/2 and PDK1, consistent with a canonical activation cascade for RSK. Thus, we demonstrate a novel and important physiological function of the p90 ribosomal S6 kinase, which to date has been typically associated with the regulation of gene expression.

  20. Disorders of ventricular contractility and electrogenesis in the early stage of endotoxin shocked rabbits.

    Science.gov (United States)

    Lolov, R; Velkov, Z

    1994-01-01

    This is a report on ventricular contractility and electrogenesis disorders in rabbits, following intravenous injection of E. coli endotoxin at a dose of 2 mg.kg-1. At the 30th min, the right ventricular contractility indices (dP/dtmax)/P and [(dP/dt)/P]max had lower values, whereas end diastolic pressure (EDP), right ventricular systolic pressure (RVSP) and P(dP/dtmax) showed higher values compared to the initial ones. Most of the left ventricular contractility indices tested showed significantly lower values at the 30th and 60th min of the registration. In the scalar orthogonal ECG leads, at the 5th min an increased Qz amplitude, and at the 60th min an increased Rz amplitude, a decreased Ry amplitude, and QRS complex widening and bradicardia, were registered. In the spatial magnitude curve an increased amplitude of the main vectors of ventricular depolarization was documented. The changes in electrogenesis are interpreted first and foremost by the presence of hemodynamic disorders. The inference is reached that both left and right ventricular dysfunction have been already formed during the initial stage of endotoxin shock.

  1. Uterine contractility of plants used to facilitate childbirth in Nigerian ethnomedicine

    Science.gov (United States)

    Attah, Alfred F.; O'Brien, Margaret; Koehbach, Johannes; Sonibare, Mubo A.; Moody, Jones O.; Smith, Terry J.; Gruber, Christian W.

    2012-01-01

    Ethnopharmacological relevance Pregnant women in Nigeria use plant preparations to facilitate childbirth and to reduce associated pain. The rationale for this is not known and requires pharmacological validation. Aim of study Obtain primary information regarding the traditional use of plants and analyze their uterine contractility at cellular level. Materials and methods Semi-structured, open interviews using questionnaires of traditional healthcare professionals and other informants triggered the collection and identification of medicinal plant species. The relative traditional importance of each medicinal plant was determined by its use-mention index. Extracts of these plants were analyzed for their uterotonic properties on an in vitro human uterine cell collagen model. Result The plants Calotropis procera, Commelina africana, Duranta repens, Hyptis suaveolens, Ocimum gratissimum, Saba comorensis, Sclerocarya birrea, Sida corymbosa and Vernonia amygdalina were documented and characterized. Aqueous extracts from these nine plants induced significant sustained increases in human myometrial smooth muscle cell contractility, with varying efficiencies, depending upon time and dose of exposure. Conclusion The folkloric use of several plant species during childbirth in Nigeria has been validated. Seven plants were for the first time characterized to have contractile properties on uterine myometrial cells. The results serve as ideal starting points in the search for safe, longer lasting, effective and tolerable uterotonic drug leads. PMID:22766472

  2. Formation and function of the polar body contractile ring in Spisula.

    Science.gov (United States)

    Pielak, Rafal M; Gaysinskaya, Valeriya A; Cohen, William D

    2004-05-15

    Initial studies suggested that spatial organization of the putative polar body contractile ring was determined by the peripheral aster in Spisula [Biol. Bull. 205 (2003) 192]. Here we report detailed supporting observations, including testing of aster and ring function with inhibitors. The metaphase peripheral aster was confirmed to spread cortically in an umbrella-like pattern, with microtubule-poor center. The aster disassembled during anaphase, leaving the spindle docked at the F-actin-poor center of a newly generated cortical F-actin ring that closely approximated the aster in location, measured diameter range, and pattern. Cytochalasin D and latrunculin-B permitted all events except ring and polar body formation. Nocodazole disassembly or taxol stabilization of the peripheral aster produced poorly defined rings or bulging anaphase asters within the ring center, respectively, inhibiting polar body formation. Polar body extrusion occurred at the ring center, the diameter of which diminished. Ring contractility-previously assumed-was verified using blebbistatin, a myosin-II ATPase inhibitor that permitted ring assembly but blocked polar body extrusion. The data support the hypothesis that peripheral aster spreading, perhaps dynein-driven, is causally related to polar body contractile ring formation, with anaphase entry and aster disassembly also required for polar body biogenesis. Previously reported astral spreading during embryonic micromere formation suggests that related mechanisms are involved in asymmetric somatic cytokinesis.

  3. From Newborn to Senescence Morphological and Functional Remodeling Leads to Increased Contractile Capacity of Arteries.

    Science.gov (United States)

    Ivic, Ivan; Vamos, Zoltan; Cseplo, Peter; Koller, Akos

    2017-04-01

    Aging induces substantial morphological and functional changes in vessels. We hypothesized that due to morphological remodeling the total contractile forces of arteries increase, especially in older age as a function of age. Mean arterial blood pressure of rats and morphological and functional characteristics of isolated carotid arteries rats, from newborn to senescent, were assessed. The arterial blood pressure of rats increased significantly from 0.25 to the age of 6 months, and then it reached a level, which was maintained until age of 30 months. Wall lumen and wall thickness increased with age, mostly due to media (smooth muscle) thickening, whereas wall tension gradually reduced with age. Contractions of arteries to nonreceptor-mediated vasomotor agent (KCl, 60mM) increased in three consecutive age groups, whereas contractility first increased (until 2 months), then it did not change further with aging. Norepinephrine-induced contractions initially increased in young age and then did not change further in older age. These findings suggest that during normal aging due to remodeling of arterial wall (smooth muscle) the contractile capacity of arteries increases, which seems to be independent from systemic blood pressure. Thus, arterial remodeling can favor the development of increased circulatory resistance in older age.

  4. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  5. Kaurane and pimarane-type diterpenes from the Viguiera species inhibit vascular smooth muscle contractility.

    Science.gov (United States)

    Ambrosio, Sergio R; Tirapelli, Carlos R; da Costa, Fernando B; de Oliveira, Ana M

    2006-08-01

    The research, development and use of natural products as therapeutic agents, especially those derived from plants, have been increasing in recent years. Despite the fact that plants provide a rich source of novel biologically active compounds, only a small percentage have been phytochemically investigated and studied for their medical potential. Viguiera is a genus that belongs to the family Asteraceae and to the sunflower tribe Heliantheae, which is widespread mostly in Mexico and in other areas of the Andes and upland areas of Brazil. A review on the secondary metabolites pointed out that sesquiterpene lactones and diterpenes, of the kaurane and pimarane-type, are the main compounds produced by these plants. Some reports have shown that kaurane- and pimarane-type diterpenes exert several biological activities such as anti-inflammatory action, antimicrobial and antispasmodic activities. Kaurenoic and pimaradienoic acids, which are the main secondary metabolites isolated by our research group from the roots of Viguiera robusta and V. arenaria, respectively, have been evaluated on vascular smooth muscle contractility. We showed that these diterpenoids are able to inhibit the vascular contractility mainly by blocking extracellular Ca(2+) influx. Additionally, in this review we discuss the structure-activity relationship of the diterpenes regarding their inhibitory activity on vascular contractility.

  6. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    Science.gov (United States)

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis.

  7. Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes.

    Science.gov (United States)

    Shenouda, Sylvia K; Varner, Kurt J; Carvalho, Felix; Lucchesi, Pamela A

    2009-03-01

    Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown, oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included alpha-methyl dopamine, N-methyl alpha-methyl dopamine and 2,5-bis(glutathion-S-yl)-alpha-MeDA. Dihydroethidium was used to detect drug-induced increases in reactive oxygen species (ROS) production in ventricular myocytes. Contractile function and changes in intracellular calcium transients were measured in paced (1 Hz), Fura-2 AM loaded, myocytes using the IonOptix system. Production of ROS in ventricular myocytes treated with MDMA was not different from control. In contrast, all three metabolites of MDMA exhibited time- and concentration-dependent increases in ROS that were prevented by N-acetyl-cysteine (NAC). The metabolites of MDMA, but not MDMA alone, significantly decreased contractility and impaired relaxation in myocytes stimulated at 1 Hz. These effects were prevented by NAC. Together, these data suggest that MDMA-induced oxidative stress in the left ventricle can be due, at least in part, to the metabolism of MDMA to redox active metabolites.

  8. Modulation of ureteric Ca signaling and contractility in humans and rats by uropathogenic E. coli.

    Science.gov (United States)

    Floyd, Rachel V; Winstanley, Craig; Bakran, Ali; Wray, Susan; Burdyga, Theodor V

    2010-04-01

    Ascending urinary tract infections, a significant cause of kidney damage, are predominantly caused by uropathogenic Escherichia coli (UPEC). However, the role and mechanism of changes in ureteric function during infection are poorly understood. We therefore investigated the effects of UPEC on Ca signaling and contractions in rat (n = 17) and human (n = 6) ureters. Ca transients and force were measured and effects of UPEC on the urothelium were monitored in live tissues. In both species, luminal exposure of ureters to UPEC strains J96 and 536 caused significant time-dependent decreases in phasic and high K depolarization-induced contractility, associated with decreases in the amplitude and duration of the Ca transients. These changes were significant after 3-5 h and irreversible over the next 5 h. The infection causes increased activity of K channels, causing inhibition of voltage-gated Ca entry, and K channel blockers could reverse the effects of UPEC on ureteric function. A smaller direct effect on Ca entry also occurs. Nonpathogenic E. coli (TG2) or abluminal application of UPEC did not produce changes in Ca signaling or contractility. UPEC exposure also caused significant impairment of urothelial barrier function; luminal application of the Ca channel blocker nifedipine caused a reduction in contractions as it entered the tissue, an effect not observed in untreated ureters. Thus, UPEC impairs ureteric contractility in a Ca-dependent manner, largely caused by stimulation of potassium channels and this mechanism is dependent on host-urothelium interaction.

  9. Bacterial flagellin triggers cardiac innate immune responses and acute contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Joelle Rolli

    Full Text Available BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1, and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.

  10. Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall.

    Science.gov (United States)

    North, Gretchen B; Brinton, Erin K; Garrett, Tadao Y

    2008-08-01

    Contractile roots (CRs) that pull shoots further down in the soil are a possible example of convergent evolution in two monocot families, the Agavaceae and the Asphodelaceae. The association between CRs, water uptake and habitat aridity was investigated for agaves, yuccas and aloes by assessing the occurrence of CRs and the amount of root contraction for glasshouse-grown plants with respect to mean annual rainfall of their native habitats. Structural features of CRs as well as root hydraulic conductance were compared with those of non-contractile roots (NCRs). CRs occurred in 55% of the 73 species examined, including 64% of the agaves and 85% of the yuccas, but in none of the aloes despite the occurrence of CRs in related genera. The phylogenetic distribution of CRs was consistent with multiple acquisitions or losses of the trait. The amount of root contraction showed a highly significant negative relationship with mean annual rainfall, although other environmental factors may also be important. Radial hydraulic conductance of the basal (contractile) zone exceeded that of the midroot zone for CRs; for NCRs, the opposite was true. Thus, CRs in the species examined may provide a mechanism for greater water uptake near the soil surface in regions with limited rainfall.

  11. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity.

    Science.gov (United States)

    Eisner, Verónica; Cupo, Ryan R; Gao, Erhe; Csordás, György; Slovinsky, William S; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S R Wayne; Chuprun, J Kurt; Hoek, Jan B; Koch, Walter J; Hajnóczky, György

    2017-01-31

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24-48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2-mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.

  12. Age- and gender-related changes in contractile properties of non-atrophied EDL muscle.

    Directory of Open Access Journals (Sweden)

    Stephen Chan

    Full Text Available BACKGROUND: In humans, ageing causes skeletal muscles to become atrophied, weak, and easily fatigued. In rodent studies, ageing has been associated with significant muscle atrophy and changes in the contractile properties of the muscles. However, it is not entirely clear whether these changes in contractile properties can occur before there is significant atrophy, and whether males and females are affected differently. METHODS AND RESULTS: We investigated various contractile properties of whole isolated fast-twitch EDL muscles from adult (2-6 months-old and aged (12-22 months-old male and female mice. Atrophy was not present in the aged mice. Compared with adult mice, EDL muscles of aged mice had significantly lower specific force, longer tetanus relaxation times, and lower fatiguability. In the properties of absolute force and muscle relaxation times, females were affected by ageing to a greater extent than males. Additionally, EDL muscles from a separate group of male mice were subjected to eccentric contractions of 15% strain, and larger force deficits were found in aged than in adult mice. CONCLUSION: Our findings provide further insight into the muscle atrophy, weakness and fatiguability experienced by the elderly. We have shown that even in the absence of muscle atrophy, there are definite alterations in the physiological properties of whole fast-twitch muscle from ageing mice, and for some of these properties the alterations are more pronounced in female mice than in male mice.

  13. Age- and Gender-Related Changes in Contractile Properties of Non-Atrophied EDL Muscle

    Science.gov (United States)

    Chan, Stephen; Head, Stewart I.

    2010-01-01

    Background In humans, ageing causes skeletal muscles to become atrophied, weak, and easily fatigued. In rodent studies, ageing has been associated with significant muscle atrophy and changes in the contractile properties of the muscles. However, it is not entirely clear whether these changes in contractile properties can occur before there is significant atrophy, and whether males and females are affected differently. Methods and Results We investigated various contractile properties of whole isolated fast-twitch EDL muscles from adult (2–6 months-old) and aged (12–22 months-old) male and female mice. Atrophy was not present in the aged mice. Compared with adult mice, EDL muscles of aged mice had significantly lower specific force, longer tetanus relaxation times, and lower fatiguability. In the properties of absolute force and muscle relaxation times, females were affected by ageing to a greater extent than males. Additionally, EDL muscles from a separate group of male mice were subjected to eccentric contractions of 15% strain, and larger force deficits were found in aged than in adult mice. Conclusion Our findings provide further insight into the muscle atrophy, weakness and fatiguability experienced by the elderly. We have shown that even in the absence of muscle atrophy, there are definite alterations in the physiological properties of whole fast-twitch muscle from ageing mice, and for some of these properties the alterations are more pronounced in female mice than in male mice. PMID:20808812

  14. A functional connection of Dictyostelium paracaspase with the contractile vacuole and a possible partner of the vacuolar proton ATPase

    Indian Academy of Sciences (India)

    Entsar Saheb; Ithay Biton; Katherine Maringer; John Bush

    2013-09-01

    Dictyostelium discoideum possesses only one caspase family member, paracaspase (pcp). Two separate mutant cell lines were first analysed: one cell line was an over-expressed GFP-tagged Pcp (GFP-Pcp), while the other cell line was a pcp-null (pcp-). Microscopic analysis of cells expressing GFP-Pcp revealed that Pcp was associated with the contractile vacuole membrane consisting of bladder-like vacuoles. This association was disrupted when cells were exposed to osmotic stress conditions. Compared with wild-type cells, the GFP-Pcp-over-expressing cells were susceptible to osmotic stress and were seen to be very rounded in hypo-osmotic conditions and contained more abnormally swollen contractile vacuole. Cells with pcp- were also rounded but had few, if any, contractile vacuoles. These observations suggest that Pcp is essential for Dictyostelium osmotic regulation via its functioning in the contractile vacuole system. Subjecting these cells to selected contractile vacuole inhibitor provided additional support for these findings. Furthermore, yeast two-hybrid system identified vacuolar proton ATPase (VatM) as the protein interacting with Pcp. Taken together, this work gives evidence for an eukaryotic paracaspase to be associated with both localization in and regulation of the contractile vacuolar system, an organelle critical for maintaining the normal morphology of the cell.

  15. Vascular and cardiac contractile reserve in the dog heart with chronic multiple coronary occlusions.

    Science.gov (United States)

    Schwarz, F; Flameng, W; Mack, B; Türschmann, W; Schaper, W

    1976-11-01

    Nineteen mongrel dogs survived chronic occlusion of the left circumflex and of the right coronary artery without infarction due to the timely development of a collateral circulation. Only 38 per cent of the conductance of the arteries before occlusion was restored by collateral vessels. In these animals and in 15 control dogs with normal coronary arteries myocardial contractility, contractility reserve, and myocardial blood flow were studied. The same was done in dogs with chronic coronary artery occlusion after aortocoronary bypass. Myocardial blood flow was determined woth the tracer microsphere technique. Contractility reserve was tested and defined as isovolumetric left ventricular pressure and dp/dt max with norepinephrine infusion and cross-clamping of the aorta. Contractile reserve was not significantly different between normal dogs and dogs with chronic coronary artery occlusion before and after aortocoronary bypass. Myocardial blood flow during control conditions was homogenously distributed in all three groups studied. The ratio of blood flow to the endocardium and the epicardium was not significantly different from inity. Coronary reserve was determined at peak reactive hyperemia following a 20 second period of coronary artery occlusion, with ongoing norepinephrine infusion. Under these conditions subendocardial fow in normal dogs rose by a factor of 7.9 while subepicardial flow increased 7.4 times. In dogs with chronic occlusion of two coronary arteries the increase of myocardial flow was nonnomogenous; subendocardial flow to areas supplied by a normal coronary artery rose by a factor of 7.0 while subepicardial flow increased 5.7 times control. Subendocardial collateral flow rose by a factor of 2.4 and subepicardial collateral flow increased 3.5 times control. In normal dogs norepinephrine alone did not result in maximal coronary flow but only 57 per cent thereof. Dogs with chronic coronary occlusion, however, required the entire coronary reserve in

  16. Effect of rhubarb on contractile response of gallbladder smooth muscle strips isolated from guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Ya-Li Luo; Jun-Wei Zeng; Mei Yu; Yu-Ling Wei; Song-Yi Qu; Wei Li; Tian Zhen Zheng

    2005-01-01

    AIM: To investigate the effect of rhubarb on contractile response of isolated gallbladder muscle strips from guinea pigs and its mechanism.METHODS: Guinea pigs were killed to remove the whole gallbladder. Two or three smooth muscle strips (8 mm×3mm) were cut along the longitudinal direction. The mucosa on each strip was carefully removed. Each longitudinal muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution (37 ℃), bubbled continuously with 950 mL/L O2 and 50 mL/L CO2. The resting tension (g), mean contractile amplitude (mm),and contractile frequency (waves/min) were simultaneously recorded on recorders. After 2-h equilibration, rhubarb (10, 20, 70, 200, 700, 1 000 g/L) was added cumulatively to the tissue chamber in turns every 2 min to observe their effects on gallbladder.Antagonists were given 3 min before administration of rhubarb to investigate the possible mechanism.RESULTS: Rhubarb increased the resting tension (from 0 to 0.40±0.02, P<0.001), and decreased the mean contractile amplitude (from 5.22±0.71 to 2.73±0.41,P<0.001). It also increased the contractile frequency of the gallbladder muscle strips in guinea pigs (from 4.09±0.46to 6.08±0.35, P<0.001). The stimulation of rhubarb on the resting tension decreased from 3.98±0.22 to 1.58±0.12by atropine (P<0.001), from3.98±0.22 to 2.09±0.19 by verapamil (P<0.001) and from 3.98±0.22 to 2.67±0.43by phentolamine (P<0.005). But the effect was not inhibited by hexamethonium (P>0.05). In addition, the action of mean amplitude and frequency was not inhibited by the above antagonists.CONCLUSION: Rhubarb can stimulate the motility of isolated gallbladder muscle strips from guinea pigs. The stimulation of rhubarb might be relevant with M receptor,Ca2+ channel and α receptor partly.

  17. Negative Modulation of NO for Diaphragmatic Contractile Reduction Induced by Sepsis and Restraint Position

    Institute of Scientific and Technical Information of China (English)

    XIANG Jian; GUAN Su-dong; SONG Xiang-he; WANG Hui-yun; GU Zhen-yong

    2014-01-01

    In practice of forensic medicine, potential disease can be associated with fatal asphyxia in re-straint position. Research has demonstrated that nitric oxide (NO) and nitric oxide synthase (NOS) are plentifully distributed in skeletal muscle, contributing to the regulation of contractile and relaxation. In the current study, respiratory functions, indices of diaphragmatic biomechanical functions ex vivo, as well as NO levels in serum, the expressions of diaphragmatic inducible NOS (iNOS) mRNA, and the effects of L-NNA on contractility of the diaphragm were observed in sepsis induced by cecal ligation and punc-ture (CLP) under the condition of restraint position. The results showed that in the CLP12-18 h rats, respiratory dysfunctions; indices of diaphragmatic biomechanical functions (Pt, +dT/dtmax, -dT/dtmax, CT, Po, force over the full range of the force-frequency relationship and fatigue resistance ) declined progressive-ly; the NO level in serum, and iNOS mRNA expression in the diaphragm increased progressively; force increased significantly at all stimulation frequencies after L-NNA pre-incubation. Restraint position 1 h in CLP12 h rats resulted in severe respiratory dysfunctions after relative stable respiratory functions, almost all the indices of diaphragmatic biomechanical functions declined further, whereas little change took place in NO level in serum and diaphragmatic iNOS mRNA expression; and the effects of L-NNA were lack of statistical significance compared with those of CLP12 h, but differed from CLP18 h group. These results suggest that restraint position and sepsis act together in a synergistic manner to aggravate the great reduction of diaphragmatic contractility via, at least in part, the negative modulation of NO, which may contribute to the pathogenesis of positional asphyxia.

  18. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin.

    Directory of Open Access Journals (Sweden)

    Martin Braun

    Full Text Available Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/- mice and wildtypes (WT. In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24% in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.

  19. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.

    Science.gov (United States)

    Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A

    2010-10-01

    Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

  20. Poor spontaneous and oxytocin-stimulated contractility in human myometrium from postdates pregnancies.

    Directory of Open Access Journals (Sweden)

    Sarah Arrowsmith

    Full Text Available Prolongation of pregnancy i.e. going more than 10 days over the estimated due date, complicates up to 10% of all pregnancies and is associated with increased risk to both mother and fetus. Despite the obvious need for contractions of the uterus to end pregnancy, there have been no studies directly examining the role of uterine smooth muscle, myometrium, in the aetiology of prolonged pregnancy. This study tested the hypothesis that the intrinsic contractile characteristics of myometrium taken from women with prolonged pregnancy (>41 weeks and 3 days was reduced compared to those delivering at term (39-41 weeks. We recruited women undergoing Caesarean Section (CS delivery either pre-labour (n = 27 or in labour (n = 66 at term or postdates. The contractile ability of the postdates myometrium, whether spontaneous or elicited by oxytocin or high-K solution, was significantly reduced compared to term myometrium. These differences remained when adjusted for parity and other maternal characteristics. The findings remained significant when expressed per cross sectional area. Histological examination revealed no differences between the two groups. The contractile differences were however related to intracellular Ca transients suggesting an effect of [Ca] on reduced force production in the postdates group. In summary, myometrium from prolonged pregnancies contracts poorly in vitro even when stimulated with oxytocin and in active labour. Responses to high K(+ and measurements of Ca suggest that alterations in excitation contraction coupling, rather than any histological changes of the myometrium, may underlie the differences between term and postdates myometrium. We show that postdates pregnancy is associated with poor myometrial activity and suggest that this may contribute to increased myometrial quiescence and hence, prolonged gestation.

  1. Active self-polarization of contractile cells in asymmetrically shaped domains

    Science.gov (United States)

    Zemel, A.; Safran, S. A.

    2007-08-01

    Mechanical forces generated by contractile cells allow the cells to sense their environment and to interact with other cells. By locally pulling on their environment, cells can sense and respond to mechanical features such as the local stress (or strain), the shape of a cellular domain, and the surrounding rigidity; at the same time, they also modify the mechanical state of the system. This creates a mechanical feedback loop that can result in self-polarization of cells. In this paper, we present a quantitative mechanical model that predicts the self-polarization of cells in spheroidally shaped domains, comprising contractile cells and an elastic matrix, that are embedded in a three-dimensional, cell-free gel. The theory is based on a generalization of the known results for passive inclusions in solids to include the effects of cell activity. We use the active cellular susceptibility tensor presented by Zemel [Phys. Rev. Lett. 97, 128103 (2006)] to calculate the polarization response and hence the elastic stress field developed by the cells in the cellular domain. The cell polarization is analyzed as a function of the shape and the elastic moduli of the cellular domain compared with the cell-free surrounding material. Consistent with experiment, our theory predicts the development of a stronger contractile force for cells in a gel that is surrounded by a large, cell-free material whose elastic modulus is stiffer than that of the gel that contains the cells. This provides a quantitative explanation of the differences in the development of cellular forces as observed in free and fixed gels. In the case of an asymmetrically shaped (spheroidal) domain of cells, we show that the anisotropic elastic field within the domain leads to a spontaneous self-polarization of the cells along the long axis of the domain.

  2. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    Directory of Open Access Journals (Sweden)

    Amanda L Baryshyan

    Full Text Available Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment

  3. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin.

    Science.gov (United States)

    Braun, Martin; Hettinger, Niko; Koentges, Christoph; Pfeil, Katharina; Cimolai, Maria C; Hoffmann, Michael M; Osterholt, Moritz; Doenst, Torsten; Bode, Christoph; Bugger, Heiko

    2015-01-01

    Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/-) mice and wildtypes (WT). In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24%) in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.

  4. Adiponectin alleviates contractile dysfunction of genioglossus in rats exposed to chronic intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jing; LU Gan; DING Ning; HUANG Han-peng; DING Wen-xiao; ZHANG Xi-long

    2013-01-01

    Background Genioglossal dysfuntion takes an important role in pathogenesis of obstructive sleep apnea hypopnea syndrome (OSAHS) in which chronic intermittent hypoxia (CIH) is the major pathological origin.Recent studies have suggested genioglossal injury induced by CIH might be improved by adiponectin.The aim of this study was to investigate the effects of adiponectin on genioglossus contractile properties in rats exposed to CIH.Methods Thirty-nine healthy male Wistar rats were randomly divided into three groups:normal control (NC),CIH and adiponectin supplement (CIH+Ad) with 13 rats in each.Rats in NC were kept breathing normal air,while rats in CIH and CIH+Ad experienced the same CIH environment eight hours per day for 35 successive days.Rats in CIH+Ad were given intravenous adiponectin of 10 μg twice a week for 30 successive days.Rats in the NC and CIH were injected with normal saline as a control.After 35 days' CIH exposure,the levels of serum adiponectin and genioglossus contractile properties were compared.Results Serum adiponectin level was significantly lower in CIH than in NC (1210 ng/ml vs.2236 ng/ml).Serum adiponectin level in CIH+Ad (1844 ng/ml) was significantly higher than CIH but lower than NC.Twitch tension,time to peak tension,half relaxation time and tetanic tension were significantly lower in CIH than NC and improved in CIH+Ad.All mean tetanic fatigue indices decreased more rapidly in the first 20 seconds than during the subsequent 100 seconds.Tetanic fatigue indices in NC and CIH+Ad were significantly higher compared to CIH.Conclusions CIH could lead to hypoadiponectinaemia,impaired genioglossus contractile properties and decreased fatigue resistance in rats.Such changes could be partially offset by supplementation of adiponectin.

  5. Paradoxical effects of ginkgolide B on cardiomyocyte contractile function in normal and high-glucose environments

    Institute of Scientific and Technical Information of China (English)

    Jihye KIM; Qun LI; Cindy X FANG; Jun REN

    2006-01-01

    Aim: Ginkgo biloba extract is a natural product used widely for cerebral and cardiovascular diseases. It is mainly composed of terpene lactones (ginkgolide A and B) and flavone glycosides (eg quercetin and kaempferol).To better understand the cardiac electromechanical action of Ginkgo biloba extract in normal and diabetic states, this study was designed to examine the effect of ginkgolide B on cardiomyocyte contractile function under normal and high-glucose environments. Methods: Isolated adult rat ventricular myocytes were cultured for 6 h in a serum-free medium containing either normal (NG;5.5 mmol/L) or high (HG;25.5 mmol/L) glucose with or without ginkgolide B (0.5-2.0μg/mL). Mechanical properties were evaluated using the IonOptix MyoCam system. Contractile properties analyzed included peak shortening (PS),maximal velocity of shortening/relengthening (+dl/dt),time-to-PS (TPS) and time-to-90% relengthening (TR90). Levels of essential Ca2+ regulatory proteins sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA2a),phospholamban (PLB) and Na+-Ca2+ exchanger (NCX) were assessed by Western blotting. Results: Ginkgolide B nullified HG-induced prolongation in TR90. However, ginkgolide B depressed PS.±dl/dt and shortened TPS in NG and HG cells. Ginkgolide B also prolonged TR90 in NG cells. Western blot analysis revealed that HG upregulated SERCA2a and downregulated PLB expression without affecting that of NCX. Ginkgolide B disrupted the NG-HG response pattern in SERCA2a and NCX without affecting that of PLB. Conclusion: Ginkgolide B affects cardiomyocyte contractile function under NG or HG environments in a paradoxical manner, which may be attributed to uneven action on Ca2+ regulatory proteins under NG and HG conditions.

  6. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  7. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To study the effect of 4-6 weeks' treadmill training of male SD rats on the contractile function of their gastrocnemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4-6 weeks at an intensity of about 75% VO2max (18.5-24 m/min,gradient of 0°,each training session lasting 50 minutes,twice a day). The content of gastrocnemius MHC mRNA was tested by rever...

  8. Relationship between muscle volume and contractile properties of the human knee extensors.

    Science.gov (United States)

    Behrens, Martin; Brown, Niklas; Bollinger, Robert; Bubeck, Dieter; Mau-Moeller, Anett; Weippert, Matthias; Zschorlich, Volker; Bruhn, Sven; Alt, Wilfried

    2016-01-01

    The present study was designed to investigate the relationship between volume and electrically evoked twitch properties of the quadriceps muscle. Supramaximal single and doublet stimulation of the femoral nerve was used to assess contractile properties at 45° and 80° knee flexion. Muscle volume was measured using a 1.5-Tesla magnetic resonance imaging scanner. Quadriceps muscle volume was only significantly correlated (r = 0.629) with peak twitch torque induced by doublet stimulation at 80° but not at 45° knee flexion.

  9. Effect of cholecystokinin and secretin on contractile activity of isolated gastric muscle strips in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Tian Zhen Zheng; Song Yi Qu

    2000-01-01

    AIM To study the effect of cholecystokininoctapeptide (CCK-8) and secretin on contractile activity of isolated gastric muscle strips in guinea pigs.METHODS Each isolated gastric muscle strip was suspended in a tissue chamber containing5 mL Krebs solution constantly warmed by water jacked at 37℃ and supplied with a mixed gas of 95% O2 and 5% CO2. After incubating for 1 h under 1 g tension, varied concentrations of CCK-8 and secretin were added respectively in the tissue chamber and the contractile response was measured isometrically on ink-writing recorders.circular and longitudinal muscular tension at rest (fundus LM 19.7%±2.1%, P<0.01; fundus CM 16.7%±2.2%, P<0.01; gastric body LM 16.8% ± 2.3%, P<0.01; body CM 12.7% ± 2.6%,P<0.01; antrum LM 12.3%±1.3%, P<0.01;antrum CM 16.7%±4.5%, P<0.01; pylous CM frequencies of body LM, both LM and CM of antrum and pylorus CM (5.1/min ± 0.2/min to 5.6/min ± 0.2/min, 5.9/min ± 0.2/min to 6.6/min ±0.1/min, 5.4/min ± 0.3/min to 6.3/min ± 0.4/min, 1.3/min ± 0.2/min to 2.3/min ± 0.3/min,amplitude of antral circular muscle (58.6%±pylorus CM (145.0% ± 23.8%, P<0.01), but decrease the mean contractile amplitude of gastric body and antral LM ( - 10.3% ± 3.3%, -10.5% ±4.6%, respectively, P<0.05). All the CCK-8 effects were not blocked by atropine or indomethacin. Secretin had no effect on gastric smooth muscle activity.CONCLUSION CCK-8 possessed both excitatory and inhibitory action on contractile activity of different regions of stomach in guinea pigs. Its action was not mediated via cholinergic M receptor and endogenous prostaglandin receptor.

  10. Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless 'Frank-Starling Gain' index.

    Science.gov (United States)

    Bollensdorff, Christian; Lookin, Oleg; Kohl, Peter

    2011-07-01

    This paper briefly recapitulates the Frank-Starling law of the heart, reviews approaches to establishing diastolic and systolic force-length behaviour in intact isolated cardiomyocytes, and introduces a dimensionless index called 'Frank-Starling Gain', calculated as the ratio of slopes of end-systolic and end-diastolic force-length relations. The benefits and limitations of this index are illustrated on the example of regional differences in Guinea pig intact ventricular cardiomyocyte mechanics. Potential applicability of the Frank-Starling Gain for the comparison of cell contractility changes upon stretch will be discussed in the context of intra- and inter-individual variability of cardiomyocyte properties.

  11. Certain characteristics of myocardial contractility of isovolumic dog heart at randomly variable heart rhythm.

    Science.gov (United States)

    Bershitskaya, O N; Izakov VYa; Lysenko, L T; Protsenko, J L; Trubetskoy, A V

    1985-01-01

    The relationship "heart rate - left ventricular pressure" was investigated in the isolated canine heart perfused with constant pressure at different preloads. Rhythmical stimulation was performed with constant stimulus interval duration and with stimulus intervals randomly changed near the average value (150-200 stimuli in series). Correlation and dispersion function analysis show that rhythm dispersion had a negative inotropic effect which was independent of the preload of the ventricle in the range of 120-180 beat/min, but this dependence occurred with low rats of stimulation. This method is proposed for the assessment of contractility under conditions of heart rate variations (physiological and pathological arrhythmias).

  12. Measurement of Contractile Activity in Small Animal's Digestive Organ by Carbon Nanotube-Based Force Transducer

    Science.gov (United States)

    Hirata, Takamichi; Takeda, Naoki; Tsutsui, Chihiro; Koike, Kanako; Shimatani, Yuichi; Sakai, Takafumi; Akiya, Masahiro; Taguchi, Akira

    2011-03-01

    A carbon nanotube (CNT)-based force transducer designed to be embedded in the body of a live animal was fabricated and implanted into the stomach of a rat omit to measure contractile movement. The transducer comprised dispersed poly(ethylene glycol)-grafted multiwalled CNTs applied to a comb-like Au-electrode formed on a poly(dimethylsiloxane) sheet. The implanted rat was injected with acetylcholine to induce muscular contractions and changes in the resistance of the transducer were measured. Such changes arise owing to strain in the CNT network upon distortion. The measured resistance change was found to be proportional to the concentration of injected acetylcholine.

  13. Effect of pinaverium bromide on stress-induced colonic smooth muscle contractility disorder in rats

    Institute of Scientific and Technical Information of China (English)

    Yun Dai; Jian-Xiang Liu; Jun-Xia Li; Yun-Feng Xu

    2003-01-01

    AIM: To investigate the effect of pinaverium bromide, a Ltype calcium channel blocker with selectivity for the gastrointestinal tract on contractile activity of colonic circular smooth muscle in normal or cold-restraint stressed rats and its possible mechanism.METHODS: Cold-restraint stress was conducted on rats to increase fecal pellets output. Each isolated colonic circular muscle strip was suspended in a tissue chamber containing warm oxygenated Tyrode-Ringer solution. The contractile response to ACh or KCl was measured isometrically on inkwriting recorder. Incubated muscle in different concentrations of pinaverium and the effects of pinaverium were investigated on ACh or KCl-induced contraction. Colon smooth muscle cells were cultured from rats and [Ca2+]i was measured in cell suspension using the Ca2+ fluorescent dye fura-2/AlMl.RESULTS: During stress, rats fecal pellet output increased 61% (P<0.01). Stimulated with ACh or KCl, the muscle contractility was higher in stress than that in control. Pinaverium inhibited the increment of [Ca2+]i and the muscle contraction in response to ACh or KCl in a dose dependent manner. A significant inhibition of pinaverium to ACh or KCl induced [Ca2+]i increment was observed at 10-6 mol/L. The IC50 values for inhibition of ACh induced contraction for the stress and control group were 1.66×10-6 mol/L and 0.91×10-6mol/L, respectively. The ICs0 values for inhibition of KCl induced contraction for the stress and control group were 8.13×10-7 mol/L and 3.80×10-7 mol/L, respectively.CONCLUSION: Increase in [Ca2+]i of smooth muscle cells is directly related to the generation of contraction force in colon. L-type Ca2+ channels represent the main route of Ca2+ entry.Pinaverium inhibits the calcium influx through L-type channels;decreases the contractile response to many kinds of agonists and regulates the stress-induced colon hypermotility.

  14. A型肉毒毒素对P物质所致大鼠胃体、胃底离体平滑肌收缩的抑制作用%Inhibitory effect of botulinum toxin type A on SP-induced rat smooth muscle contractility of gastric body and gastric fundus in vitro

    Institute of Scientific and Technical Information of China (English)

    周媛媛; 李超彦; 侯一平

    2012-01-01

    目的 观察A型肉毒毒素(botulinum toxin type A,BTX-A)对P物质(substance P,SP)所致肌条收缩的影响,探讨BTX-A在SP与NK1受体结合过程中可能存在的作用机制.方法 取大鼠胃体、胃底平滑肌制备肌条并随机分为对照组、SP组、SP+ APTL-SP(NK1受体拮抗剂)组、BTX-A组、BTX-A+ SP组、SP+ BTX-A组,采用Biolap420E生物机能实验系统记录肌条收缩数据.结果 SP增加胃体平滑肌自发性收缩张力及振幅、胃底平滑肌自发性收缩张力(P均<0.01);APTL-SP降低SP引发的胃体、胃底平滑肌收缩张力(P<0.01); BTX-A作用后的胃体、胃底平滑肌条振幅降低(P均<0.01).BTX-A降低SP引发的胃体(P<0.05,P<0.01)、胃底(P均<0.01)平滑肌自发性收缩张力及振幅;SP对BTX-A作用后的胃体、胃底平滑肌收缩能力未产生增强作用.结论 SP可增强胃体、胃底平滑肌收缩能力,而BTX-A可抑制SP对胃体、胃底平滑肌的收缩作用.%Objective To observe the effect of botulinum toxin type A (BTX-A) on the SP-induced smooth muscle contractility of gastric body and gastric fundus, so as to investigate the role of BTX-A in the binding between SP and NKi receptor. Methods Muscle strips were prepared from gastric body and gastric fundus and were randomly divided into control group, SP group, SP+APTL-SP (NK, receptor antagonist) group, BTX-A group, BTX-A+SP group, and SP+BTX-A group. The contractility data were recorded by physiological experimental system of Biolap420E. Results SP significantly enhanced the tension and amplitude of gastric body contractility and the tension of gastric fundus contractility (P<0. 01). APTL-SP signficantly inhibited SP-induced smooth muscle contractility tension in gastric body and gastric fundus (P<0. 01). BTX-A significantly inhibited the smooth muscle contractility amplitude in gastric body and gastric fundus (P<0. 01). BTX-A significantly inhibited SP-induced smooth muscle contractility, including the

  15. Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    Directory of Open Access Journals (Sweden)

    Giannoni Massimo

    2009-05-01

    Full Text Available Abstract Background New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates. Aim To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system. Methods We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording. Results Interpretable sensor recordings were obtained in all patients (feasibility = 100%. Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value was more frequent in patients than controls (27% vs 8%, p 1 in 20 patients and in none of the controls (p 1 in only 3 patients (p Conclusion Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.

  16. Modulatory effect of three antibiotics on uterus bovine contractility in vitro and likely therapeutic approaches in reproduction.

    Science.gov (United States)

    Piccinno, M; Rizzo, A; Maselli, M A; Derosa, M; Sciorsci, R L

    2014-12-01

    This in vitro study investigates the modulatory effect of three antibiotics (amoxicillin, enrofloxacin, and rifaximin) on contractility of the bovine uterine tissue in follicular and luteal phases. The effects of these antibiotics at three single doses (10(-6), 10(-5), and 10(-4) M) on their basal contractility were evaluated in isolated organ bath. The functionality of the strip throughout the experiment was evaluated by a dose of carbachol (10(-5) M); the obtained effect had to be repeatable (difference of ≤20%) that is comparable to that induced by the previous administration of the same substance. The results demonstrate the different modulatory activities of these antibiotics on uterine contractility in follicular and luteal phases. The effects induced by amoxicillin and enrofloxacin are opposite: the first relaxes and the second increases the uterine contractility in both cycle phases. Instead, the activity of rifaximin varies depending on the phase of estrous cycle: it increases in the follicular phase and relaxes in the luteal phase. The obtained data provide the hypothesis of possible implications of these drugs in the pharmacologic modulation of uterine contractions. Their action at this level, associated with their specific antimicrobial effects, could suggest using these antibiotics for the treatment of diseases related to postpartum or infections that may occur in pregnant cattle, by virtue of their effects on myometrial contractility too.

  17. Quantitative circumferential strain analysis using adenosine triphosphate-stress/rest 3-T tagged magnetic resonance to evaluate regional contractile dysfunction in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masashi, E-mail: m.nakamura1230@gmail.com [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan); Kido, Tomoyuki [Department of Radiology, Saiseikai Matsuyama Hospital, Ehime 791-0295 (Japan); Kido, Teruhito; Tanabe, Yuki; Matsuda, Takuya; Nishiyama, Yoshiko; Miyagawa, Masao; Mochizuki, Teruhito [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan)

    2015-08-15

    Highlights: • Infarcted segments could be differentiated from non-ischemic and ischemic segments with high sensitivity and specificity under at rest conditions. • The time-to-peak circumferential strain values in infarcted segments were more significantly delayed than those in non-ischemic and ischemic segments. • Both circumferential strain and circumferential systolic strain rate values under ATP-stress conditions were significantly lower in ischemic segments than in non-ischemic segments. • Subtracting stress and rest circumferential strain had a higher diagnostic capability for ischemia relative to only utilizing rest or ATP-stress circumferential strain values. • A circumferential strain analysis using tagged MR can quantitatively assess contractile dysfunction in ischemic and infarcted myocardium. - Abstract: Purpose: We evaluated whether a quantitative circumferential strain (CS) analysis using adenosine triphosphate (ATP)-stress/rest 3-T tagged magnetic resonance (MR) imaging can depict myocardial ischemia as contractile dysfunction during stress in patients with suspected coronary artery disease (CAD). We evaluated whether it can differentiate between non-ischemia, myocardial ischemia, and infarction. We assessed its diagnostic performance in comparison with ATP-stress myocardial perfusion MR and late gadolinium enhancement (LGE)-MR imaging. Methods: In 38 patients suspected of having CAD, myocardial segments were categorized as non-ischemic (n = 485), ischemic (n = 74), or infarcted (n = 49) from the results of perfusion MR and LGE-MR. The peak negative CS value, peak circumferential systolic strain rate (CSR), and time-to-peak CS were measured in 16 segments. Results: A cutoff value of −12.0% for CS at rest allowed differentiation between infarcted and other segments with a sensitivity of 79%, specificity of 76%, accuracy of 76%, and an area under the curve (AUC) of 0.81. Additionally, a cutoff value of 477.3 ms for time-to-peak CS at rest

  18. Drug: D01742 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D01742 Drug Clebopride malate (JP16); Clast (TN) C20H25ClN3O2. C4H5O5 507.1772 507.... Propulsives A03FA06 Clebopride D01742 Clebopride malate (JP16) Target-based clas...[HSA:1812] [KO:K04144] Clebopride [ATC:A03FA06] D01742 Clebopride malate (JP16) dopamine D2-receptor [HSA:1813] [KO:K04145] Cleboprid...e [ATC:A03FA06] D01742 Clebopride malate (JP16) CAS: 576

  19. Stress activated contractile wavefronts in the mechanically-excitable embryonic heart

    Science.gov (United States)

    Chiou, Kevin; Majkut, Stephanie; Discher, Dennis; Lubensky, Tom; Liu, Andrea

    2014-03-01

    The heart is a prime example of a robust, active system with behavior-the heart beat-that is extraordinarily well timed and coordinated. For more than half a century, electrical activity induced by ion release and diffusion has been argued to be the mechanism driving cardiac action. But recent work indicates that this phenomenon is also regulated by mechanical activity. In the embryonic avian heart tube, the speed of the contractile wavefront traversing the heart tube with each beat is measured to be a monotonic, linear function of tissue stiffness. Traditional electrical conduction models of excitation-contraction cannot explain this dependence; such a result indicates that the myocardium is mechanically excitable. Here, we extend this work by using experimental observations of stiffness-dependent behavior in isolated cardiomyocytes as an input to study contractile wavefronts in the tissue as a whole. We model the heart tube as an active, overdamped elastic network where the primary stress mediator is the extracellular matrix. Using this simple model, we explain experimental observations of the systolic wave and predict qualitatively new behavior.

  20. Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart.

    Science.gov (United States)

    Undrovinas, Albertas; Maltsev, Victor A

    2008-10-01

    Most cardiac Na+ channels open transiently within milliseconds upon membrane depolarization and are responsible for the excitation propagation. However, some channels remain active during hundreds of milliseconds, carrying the so-called persistent or late Na+ current (I(NaL)) throughout the action potential plateau. I(NaL) is produced by special gating modes of the cardiac-specific Na+ channel isoform. Experimental data accumulated over the past decade show the emerging importance of this late current component for the function of both normal and especially failing myocardium, where I(NaL) is reportedly increased. Na+ channels represent a multi-protein complex and its activity is determined not only by the pore-forming alpha subunit but also by its auxiliary beta subunits, cytoskeleton, and by Ca2+ signaling and trafficking proteins. Remodeling of this protein complex and intracellular signaling pathways may lead to alterations of I(NaL) in pathological conditions. Increased I(NaL) and the corresponding Na+ influx in failing myocardium contribute to abnormal repolarization and an increased cell Ca2+ load. Interventions designed to correct I(NaL) rescue normal repolarization and improve Ca2+ handling and contractility of the failing cardiomyocytes. New therapeutic strategies to target both arrhythmias and deficient contractility in HF may not be limited to the selective inhibition of I(NaL) but also include multiple indirect, modulatory (e.g. Ca(2+)- or cytoskeleton- dependent) mechanisms of I(NaL) function.

  1. Diaphragm atrophy and contractile dysfunction in a murine model of pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Bumsoo Ahn

    Full Text Available Pulmonary hypertension (PH causes loss of body weight and inspiratory (diaphragm muscle dysfunction. A model of PH induced by drug (monocrotaline, MCT has been extensively used in mice to examine the etiology of PH. However, it is unclear if PH induced by MCT in mice reproduces the loss of body weight and diaphragm muscle dysfunction seen in patients. This is a pre-requisite for widespread use of mice to examine mechanisms of cachexia and diaphragm abnormalities in PH. Thus, we measured body and soleus muscle weight, food intake, and diaphragm contractile properties in mice after 6-8 weeks of saline (control or MCT (600 mg/kg injections. Body weight progressively decreased in PH mice, while food intake was similar in both groups. PH decreased (P<0.05 diaphragm maximal isometric specific force, maximal shortening velocity, and peak power. Protein carbonyls in whole-diaphragm lysates and the abundance of select myofibrillar proteins were unchanged by PH. Our findings show diaphragm isometric and isotonic contractile abnormalities in a murine model of PH induced by MCT. Overall, the murine model of PH elicited by MCT mimics loss of body weight and diaphragm muscle weakness reported in PH patients.

  2. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres.

    Science.gov (United States)

    Albini, Sonia; Coutinho, Paula; Malecova, Barbora; Giordani, Lorenzo; Savchenko, Alex; Forcales, Sonia Vanina; Puri, Pier Lorenzo

    2013-03-28

    Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for "disease in a dish" models of muscular physiology and dysfunction.

  3. Cell adhesion molecules regulate contractile ring-independent cytokinesis in Dictyostelium discoideum

    Institute of Scientific and Technical Information of China (English)

    Akira Nagasaki; Masamitsu Kanada; Taro QP Uyeda

    2009-01-01

    To investigate the roles of substrate adhesion in cytokinesis, we established cell lines lacking paxiUin (PAXB) or vinculin (VINA), and those expressing the respective GFP fusion proteins in Dictyostelium discoideum. As in mammalian cells, GFP-PAXB and GFP-VINA formed focal adhesion-like complexes on the cell bottom, paxB cells in suspension grew normally, but on substrates, often failed to divide after regression of the furrow. The efficient cytokinesis of paxB cells in suspension is not because of shear forces to assist abscission, as they divided normally in static suspension culture as well. Double knockout strains lacking mhcA, which codes for myosin I1, and paxB or vinA displayed more severe cytokinetic defects than each single knockout strain. In mitotic wild-type cells, GFP-PAXB was diffusely distributed on the basal membrane, but was strikingly condensed along the polar edges in mitotic mhcA cells. These results are consistent with our idea that Dictyostelium displays two forms of cytokinesis, one that is contractile ringdependent and adhesion-independent, and the other that is contractile ring-independent and adhesion-dependent, and that the latter requires PAXB and VINA. Furthermore, that paxB cells fail to divide normally in the presence of substrate adhesion suggests that this adhesion molecule may play additional signaling roles.

  4. The RhoGEF TEM4 Regulates Endothelial Cell Migration by Suppressing Actomyosin Contractility.

    Directory of Open Access Journals (Sweden)

    Natalia Mitin

    Full Text Available Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.

  5. [Contractile Tone and Contraction as Important Physiological Properties of Terminals on the Processes of Living Neurons].

    Science.gov (United States)

    Sotnikov, O S; Vasyagina, N Yu; Podol'skaya, L A

    2015-01-01

    An attempt to summarize some static morphological renderings of reversible structural alterations of nervous processes, as well as receptor and synaptic terminals, to compare them with the mechanisms of actual transformation of living neurons and to find a common kinetic characteristic for these phenomena has been made. The contractile tone and contraction of processes of living isolated neurons are reported. The dependence of the direction of retraction on the localization of the adhesion site of the isolated cell has been detected. The retraction bulb has been identified as an indicator of all contractions of motor and sensory terminals, both alive and fixed. The process of transformation of growth cones into retraction bulbs has been investigated. The presence of mechanical tension in preterminals and interneuronal contacts has been demonstrated in vitro. Similarity of the kinetics of tissue receptor sensory terminals and growth cones has been detected during in vivo experiments. The kinetics of asynaptic dendrite contraction has been compared to the well-characterized structural variability of dendritic spines. The hypothesis of a common origin of the contractile tone of all nervous elements as one of the principal nonelectrophysiological properties of a neuron has been put forward.

  6. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    Directory of Open Access Journals (Sweden)

    Ramón A Lorca

    2014-07-01

    Full Text Available The large-conductance voltage- and Ca2+-activated K+ channel (BKCa is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits, association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.

  7. Oxidative Stress in Hypertensive Patients Induces an Increased Contractility in Vein Grafts Independent of Endothelial Function

    Directory of Open Access Journals (Sweden)

    Claudio Joo Turoni

    2011-01-01

    Full Text Available Objective. To evaluate the impact of oxidative stress on vascular reactivity to vasoconstrictors and on nitric oxide (NO bioavailability in saphenous vein (SV graft with endothelial dysfunction from hypertensive patients (HT. Methods. Endothelial function, vascular reactivity, oxidative state, nitrites and NO release were studied in isolated SV rings from HT and normotensive patients (NT. Only rings with endothelial dysfunction were used. Results. HT rings presented a hyperreactivity to vasoconstrictors that was reverted by diphenylene iodonium (DPI. In NT, no effect of DPI was obtained, but Nω-nitro-L-arginine methyl ester (L-NAME increased the contractile response. NO was present in SV rings without endothelial function. Nitrites were higher in NT than in HT (1066.1 ± 86.3 pmol/mg; n=11 versus 487.8 ± 51.6; n=23; P<0.01 and inhibited by nNOS inhibitor. L-arginine reversed this effect. Antioxidant agents increased nitrites and NO contents only in HT. The anti-nNOS-stained area by immunohistochemistry was higher in NT than HT. HT showed an elevation of oxidative state. Conclusions. Extraendothelial NO counter-regulates contractility in SV. However, this action could be altered in hypertensive situations by an increased oxidative stress or a decreased ability of nNOS to produce NO. Further studies should be performed to evaluate the implication of these results in graft patency rates.

  8. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers.

    Science.gov (United States)

    Doerner, Jonas M; Kuetting, Daniel L; Luetkens, Julian A; Naehle, Claas P; Dabir, Darius; Homsi, Rami; Nadal, Jennifer; Schild, Hans H; Thomas, Daniel K

    2015-03-01

    To investigate the impact of a caffeine and taurine containing energy drink (ED) on myocardial contractility in healthy volunteers using cardiac MR and cardiac MR based strain analysis. 32 healthy volunteers (mean age 28 years) were investigated before and 1 h after consumption of a caffeine and taurine containing ED. For assessment of global cardiac functional parameters balanced SSFP-Cine imaging was performed, whereas CSPAMM tagging was used to evaluate global and regional myocardial strain. In addition, ten randomly chosen subjects were investigated once more using a caffeine only protocol to further evaluate the effect of caffeine solely. Heart rate and blood pressure were recorded throughout all studies. ED consumption led to a significant increase in peak systolic strain (PSS) and peak systolic strain rate (PSSR) 1 h after consumption (PSS: w/o ED -22.8 ± 2.1%; w ED -24.3 ± 2.4%, P = caffeine only group. In contrast, global left ventricular function was unchanged (P = 0.2076). No significant changes of vital parameters and diastolic filling pattern were detected 1 h after ED consumption. Consumption of a caffeine and taurine containing ED results in a subtle, but significant increase of myocardial contractility 1 h after consumption.

  9. Influence of intracellular acidosis on contractile function in the working rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, F.M.H.; Malloy, C.R.; Radda, G.K. (Univ. of Oxford (England))

    1987-12-01

    The decrease in myocardial contractility during ischemia, hypoxia, and extracellular acidosis has been attributed to intracellular acidosis. Previous studies of the relationship between pH and contractile state have utilized respiratory or metabolic acidosis to alter intracellular pH. The authors developed a model in the working perfused rat heart to study the effects of intracellular acidosis with normal external pH and optimal O{sub 2} delivery. Intracellular pH and high-energy phosphates were monitored by {sup 31}P nuclear magnetic resonance spectroscopy. Hearts were perfused to a steady state with a medium containing 10 mM NH{sub 4}Cl. Acidosis induced a substantial decrease in aortic flow and stroke volume which was associated with little change in peak systolic pressure. It was concluded that (1) for the same intracellular acidosis the influence on tension development was more pronounced with a combined extra- and intracellular acidosis than with an isolated intracellular acidosis, and (2) stroke volume at constant preload was impaired by intracellular acidosis even though changes in developed pressure were minimal. These observations suggest that isolated intracellular acidosis has adverse effects on diastolic compliance and/or relaxation.

  10. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2011-08-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.

  11. Effects of Substrate Mechanics on Contractility of Cardiomyocytes Generated from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Laurie B. Hazeltine

    2012-01-01

    Full Text Available Human pluripotent stem cell (hPSC- derived cardiomyocytes have potential applications in drug discovery, toxicity testing, developmental studies, and regenerative medicine. Before these cells can be reliably utilized, characterization of their functionality is required to establish their similarity to native cardiomyocytes. We tracked fluorescent beads embedded in 4.4–99.7 kPa polyacrylamide hydrogels beneath contracting neonatal rat cardiomyocytes and cardiomyocytes generated from hPSCs via growth-factor-induced directed differentiation to measure contractile output in response to changes in substrate mechanics. Contraction stress was determined using traction force microscopy, and morphology was characterized by immunocytochemistry for α-actinin and subsequent image analysis. We found that contraction stress of all types of cardiomyocytes increased with substrate stiffness. This effect was not linked to beating rate or morphology. We demonstrated that hPSC-derived cardiomyocyte contractility responded appropriately to isoprenaline and remained stable in culture over a period of 2 months. This study demonstrates that hPSC-derived cardiomyocytes have appropriate functional responses to substrate stiffness and to a pharmaceutical agent, which motivates their use in further applications such as drug evaluation and cardiac therapies.

  12. Effects of histamine on atrial and ventricular contractility in the canine isovolumic heart.

    Science.gov (United States)

    Vidrio, H; Priola, D V

    1990-03-01

    The effects of intracoronary administration of histamine on atrial and ventricular contractility were determined in a paced canine isovolumic heart preparation. Contractility was assessed by recording the pressure developed in saline-filled balloons placed in each of the four cardiac chambers. At doses above 0.1 mg and up to 100 mg histamine produced dose-related positive inotropic responses in all chambers. These were preceded by transient negative effects. The positive responses were not affected by a combination of H1 and H2 receptor antagonists antazoline and cimetidine but were almost completely abolished by the beta adrenoceptor blocker timolol. The negative responses were uninfluenced by either treatment. It was concluded that, in the canine isovolumic heart not subjected to complicating chronotropic and extracardiac factors, moderate doses of histamine are devoid of inotropic effects. Higher doses do produce myocardial stimulation, not mediated by histamine receptors, but probably due to norepinephrine release. These responses are preceded by transient non-specific depressant effects.

  13. EFFECT OF HYDROGEN SULFIDE ON ATRIUM CONTRACTILITY IN CONTROL AND DIABETHIC MICE

    Directory of Open Access Journals (Sweden)

    A. S. Lifanova

    2014-01-01

    Full Text Available Hydrogen sulfide (H2S is endogenously synthesized gasotransmitter that has a regulatory effect in cardiovascular system. Diabetes mellitus leads to an increased risk of hypertension and cardiovascular diseases, so the purpose of the study was to analyze the contractility of the atria mice after application of L-cysteine and H2S. Contractile activity of the myocardium was investigated in the experiment on isolated mouse atria. Alloxan was used for modeling diabetes. Intraperitoneal injection of alloxan resulted in a significant increase of glucose concentration in blood, whereas the concentration of glucose didn’t change at the injection of physiological solution. In control, the addition of NaHS resulted in a significant dose-dependent decrease of the amplitude of contraction of the myocardium, whereas the negative inotropic effect of NaHS was significantly lower in terms of modeling diabetes compare to control conditions. In the control, L-cysteine reduced the amplitude contractions significantly, whereas L-cysteine did not lead to significant changes in the amplitude of contractions in terms of modeling diabetes. These data indicate that the sensitivity of mice’s atria reduced for H2S and L-cysteine in diabetes mellitus.

  14. The actin targeting compound Chondramide inhibits breast cancer metastasis via reduction of cellular contractility.

    Directory of Open Access Journals (Sweden)

    Magdalena H Menhofer

    Full Text Available BACKGROUND: A major player in the process of metastasis is the actin cytoskeleton as it forms key structures in both invasion mechanisms, mesenchymal and amoeboid migration. We tested the actin binding compound Chondramide as potential anti-metastatic agent. METHODS: In vivo, the effect of Chondramide on metastasis was tested employing a 4T1-Luc BALB/c mouse model. In vitro, Chondramide was tested using the highly invasive cancer cell line MDA-MB-231 in Boyden-chamber assays, fluorescent stainings, Western blot and Pull down assays. Finally, the contractility of MDA-MB-231 cells was monitored in 3D environment and analyzed via PIV analysis. RESULTS: In vivo, Chondramide treatment inhibits metastasis to the lung and the migration and invasion of MDA-MB-231 cells is reduced by Chondramide in vitro. On the signaling level, RhoA activity is decreased by Chondramide accompanied by reduced MLC-2 and the stretch induced guanine nucleotide exchange factor Vav2 activation. At same conditions, EGF-receptor autophosphorylation, Akt and Erk as well as Rac1 are not affected. Finally, Chondramide treatment disrupted the actin cytoskeleton and decreased the ability of cells for contraction. CONCLUSIONS: Chondramide inhibits cellular contractility and thus represents a potential inhibitor of tumor cell invasion.

  15. Epigenetic Reprogramming of Human Embryonic Stem Cells into Skeletal Muscle Cells and Generation of Contractile Myospheres

    Directory of Open Access Journals (Sweden)

    Sonia Albini

    2013-03-01

    Full Text Available Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB, but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3 confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for “disease in a dish” models of muscular physiology and dysfunction.

  16. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    Energy Technology Data Exchange (ETDEWEB)

    Ojkic, Nikola; Vavylonis, Dimitrios [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Wu Jianqiu, E-mail: vavylonis@lehigh.edu [Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States)

    2011-09-21

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  17. Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration.

    Science.gov (United States)

    Li, Aiqing; Benoit, Joshua B; Lopez-Martinez, Giancarlo; Elnitsky, Michael A; Lee, Richard E; Denlinger, David L

    2009-05-01

    Desiccation presents a major challenge for the Antarctic midge, Belgica antarctica. In this study, we use proteomic profiling to evaluate protein changes in the larvae elicited by dehydration and rehydration. Larvae were desiccated at 75% relative humidity (RH) for 12 h to achieve a body water loss of 35%, approximately half of the water that can be lost before the larvae succumb to dehydration. To evaluate the rehydration response, larvae were first desiccated, then rehydrated for 6 h at 100% RH and then in water for 6 h. Controls were held continuously at 100% RH. Protein analysis was performed using 2-DE and nanoscale capillary LC/MS/MS. Twenty-four identified proteins changed in abundance in response to desiccation: 16 were more abundant and 8 were less abundant; 84% of these proteins were contractile or cytoskeletal proteins. Thirteen rehydration-regulated proteins were identified: 8 were more abundant and 5 were less abundant, and 69% of these proteins were also contractile or cytoskeletal proteins. Additional proteins responsive to desiccation and rehydration were involved in functions including stress responses, energy metabolism, protein synthesis, glucogenesis and membrane transport. We conclude that the major protein responses elicited by both desiccation and rehydration are linked to body contraction and cytoskeleton rearrangements.

  18. The anatomy and fibre type composition of the human adductor pollicis in relation to its contractile properties.

    Science.gov (United States)

    Round, J M; Jones, D A; Chapman, S J; Edwards, R H; Ward, P S; Fodden, D L

    1984-01-01

    We have examined the anatomy and fibre type composition of the human adductor pollicis in muscles taken post mortem. Histochemical staining of muscle fibres showed that type I fibres predominated in all cases with a mean occurrence of 80%. This composition is similar to that of the soleus muscle and unlike that of the quadriceps which has approximately equal proportions of the two fibre types. Comparing the contractile characteristics, however, the adductor pollicis has similar properties to the quadriceps and both are quite distinct from those of the slowly contracting soleus muscle. The lack of correlation between fibre composition, as revealed by histochemical staining, and contractile properties in these muscles must mean that fibres of the same type from different muscles do not necessarily have the same contractile speed. The results also suggest that the type I fibres of the human adductor pollicis are faster than those of both the soleus and quadriceps muscles.

  19. The Effects of Electroacupuncture at the Heart Meridian on Myocardial Contractile Function in Rabbits with Myocardial Ischemia

    Institute of Scientific and Technical Information of China (English)

    方志斌; 周逸平; 王月兰

    2002-01-01

    @@ Acute myocardial ischemia was induced by intravenous injection of pituitrin, and electroacupuncture (EA) was applied at the Heart and Lung Meridians (HM and LM), 3 points on each meridian. The changes in the left intraventricular pressure (LVP), the maximum rise rate of intraventricular pressure (LVP dp/dtmax), the area of cardiac force loop (ACFL), and the maximum shortening velocity of myocardial contractile element (Vmax) were observed. As a result, there were significant differences in the improvement of LVP, LVP dp/dtmax, ACFL and Vmax between EA at HM and LM. The regulatory action of EA at HM on the myocardial contractile function was significantly better than that of EA at LM, indicating that HM has a close relationship with the myocardial contractile function.

  20. Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction.

    Science.gov (United States)

    McComb, Christie; Carrick, David; McClure, John D; Woodward, Rosemary; Radjenovic, Aleksandra; Foster, John E; Berry, Colin

    2015-08-01

    Imaging changes in left ventricular (LV) volumes during the cardiac cycle and LV ejection fraction do not provide information on regional contractility. Displacement ENcoding with Stimulated Echoes (DENSE) is a strain-encoded cardiac magnetic resonance (CMR) technique that measures strain directly. We investigated the relationships between strain revealed by DENSE and the presence and extent of infarction in patients with recent myocardial infarction (MI). 50 male subjects were invited to undergo serial CMR within 7 days of MI (baseline) and after 6 months (follow-up; n = 47). DENSE and late gadolinium enhancement (LGE) images were acquired to enable localised regional quantification of peak circumferential strain (Ecc) and the extent of infarction, respectively. We assessed: (1) receiver operating characteristic (ROC) analysis for the classification of LGE, (2) strain differences according to LGE status (remote, adjacent, infarcted) and (3) changes in strain revealed between baseline and follow-up. 300 and 258 myocardial segments were available for analysis at baseline and follow-up respectively. LGE was present in 130/300 (43%) and 97/258 (38%) segments, respectively. ROC analysis revealed moderately high values for peak Ecc at baseline [threshold 12.8%; area-under-curve (AUC) 0.88, sensitivity 84%, specificity 78%] and at follow-up (threshold 15.8%; AUC 0.76, sensitivity 85%, specificity 64%). Differences were observed between remote, adjacent and infarcted segments. Between baseline and follow-up, increases in peak Ecc were observed in infarcted segments (median difference of 5.6%) and in adjacent segments (1.5%). Peak Ecc at baseline was indicative of the change in LGE status between baseline and follow-up. Strain-encoded CMR with DENSE has the potential to provide clinically useful information on contractility and its recovery over time in patients with MI.

  1. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function.

  2. Arginine vasopressin, via activation of post-junctional V1 receptors, induces contractile effects in mouse distal colon.

    Science.gov (United States)

    Mastropaolo, Mariangela; Zizzo, Maria Grazia; Auteri, Michelangelo; Mulè, Flavia; Serio, Rosa

    2013-11-10

    The aim of this study was to analyze whether arginine vasopressin (AVP) may be considered a modulator of intestinal motility. In this view, we evaluated, in vitro, the effects induced by exogenous administration of AVP on the contractility of mouse distal colon, the subtype(s) of receptor(s) activated and the action mechanism. Isometric recordings were performed on longitudinal and circular muscle strips of mouse distal colon. AVP (0.001 nM-100 nM) caused concentration-dependent contractile effects only on the longitudinal muscle, antagonized by the V1 receptor antagonist, V-1880. AVP-induced effect was not modified by tetrodotoxin, atropine and indomethacin. Contractile response to AVP was reduced in Ca(2+)-free solution or in the presence of nifedipine, and it was abolished by depletion of calcium intracellular stores after repetitive addition of carbachol in calcium-free medium with addition of cyclopiazonic acid. U-73122, an inhibitor of the phospholipase C, effectively antagonized AVP effects, whilst it was not affected by an adenylyl cyclase inhibitor. Oxytocin induced an excitatory effect in the longitudinal muscle of distal colon at very high concentrations, effect antagonized by V-1880. The results of this study shown that AVP, via activation of V1 receptors, is able to modulate positively contractile activity of longitudinal muscle of mouse distal colon, independently by enteric nerve activation and prostaglandin synthesis. Contractile response is achieved by increase in cytoplasmatic Ca(2+) concentration via extracellular Ca(2+) influx from L-type Ca(2+) channels and via Ca(2+) release from intracellular stores through phospholipase C pathway. No modulation has been observed on the contractility of the circular muscle.

  3. Effect of exercise training and myocardial infarction on force development and contractile kinetics in isolated canine myocardium.

    Science.gov (United States)

    Canan, Benjamin D; Haizlip, Kaylan M; Xu, Ying; Monasky, Michelle M; Hiranandani, Nitisha; Milani-Nejad, Nima; Varian, Kenneth D; Slabaugh, Jessica L; Schultz, Eric J; Fedorov, Vadim V; Billman, George E; Janssen, Paul M L

    2016-04-15

    It is well known that moderate exercise training elicits a small increase in ventricular mass (i.e., a physiological hypertrophy) that has many beneficial effects on overall cardiac health. It is also well known that, when a myocardial infarction damages part of the heart, the remaining myocardium remodels to compensate for the loss of viable functioning myocardium. The effects of exercise training, myocardial infarction (MI), and their interaction on the contractile performance of the myocardium itself remain largely to be determined. The present study investigated the contractile properties and kinetics of right ventricular myocardium isolated from sedentary and exercise trained (10-12 wk progressively increasing treadmill running, begun 4 wk after MI induction) dogs with and without a left ventricular myocardial infarction. Exercise training increased force development, whereas MI decreased force development that was not improved by exercise training. Contractile kinetics were significantly slower in the trained dogs, whereas this impact of training was less or no longer present after MI. Length-dependent activation, both evaluated on contractile force and kinetics, was similar in all four groups. The control exercise-trained group exhibited a more positive force-frequency relationship compared with the sedentary control group while both sedentary and trained post-MI dogs had a more negative relationship. Last, the impact of the β-adrenergic receptor agonist isoproterenol resulted in a similar increase in force and acceleration of contractile kinetics in all groups. Thus, exercise training increased developed force but slowed contractile kinetics in control (noninfarcted animals), actions that were attenuated or completely absent in post-MI dogs.

  4. Abnormal glucose metabolism is associated with reduced left ventricular contractile reserve and exercise intolerance in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Egstrup, M; Kistorp, C N; Schou, M;

    2013-01-01

    years, 69% male, 59% had ischaemic heart disease, mean LV ejection fraction (LVEF) 37 ± 9%). Thirty-four (21%) patients had known diabetes mellitus (DM). Oral glucose tolerance testing (OGTT) classified patients without a prior DM diagnosis as normal glucose tolerance (NGT), impaired glucose tolerance......AIMS: To investigate the associations between glucose metabolism, left ventricular (LV) contractile reserve, and exercise capacity in patients with chronic systolic heart failure (HF). METHODS AND RESULTS: From an outpatient HF clinic, 161 patients with systolic HF were included (mean age 70 ± 10...... detected by OGTT, is independently associated with reduced LV contractile reserve and exercise...

  5. In vitro contractility of normal and aneurysmal abdominal aorta muscle coat sections in human and animal material.

    Science.gov (United States)

    Gnus, Jan; Czerski, Albert; Zawadzki, Wojciech; Witkiewicz, Wojciech; Hauzer, Willy; Rusiecka, Agnieszka; Ferenc, Stanisław

    2012-01-01

    The objective of the study was to demonstrate spontaneous contractile activity of the smooth muscle coat of the aorta in human and animal material. Spontaneous contractility of smooth muscle tissue, or tonus, is essential for the proper function of many internal organs as observed in the many types of muscle cells which make up the internal structures. The spontaneous contractile activity of the muscle tissue in blood vessels is particularly marked in resistance vessels, regulating circulation within organs or tissues. It can also be observed in large blood vessels such as arteries and veins. The contractile activity of muscular tissue isolated from arteries is the result of a number of factors, including endogenous paracrine substances, neurotransmitters released at postganglionic endings (mostly within the sympathetic system), cells capable of spontaneously generation of functional potentials (pacemaking cells) and the vascular endothelium. Pacemaking cells present in the aortic wall are an important factor in the development of the spontaneous contractility of the muscular coat of the aorta. They are capable of generating functional potentials, resulting in the constant tonus of the smooth muscular coat (comprising the aortic wall) due to tonic contraction. In vitro studies were carried out on abdominal aortic sections collected from 30 New Zealand rabbits with a body mass of 3-4 kilograms each and also on aneurysmal abdominal aortic sections collected during elective aneurysm repair procedures in humans (10 abdominal aortic sections). The 1.5 cm-long sections were mounted in chambers of an automated water bath. The sections were oriented in a transverse and longitudal fashion in order to compare contractility. The incubation medium consisted of Krebs-Henseleit buffer. Spontaneous contractile activity was observed during the study, characterized by rhythmic contractions of the muscular layer of the aorta. The contractile tension within the sections was 0.15 m

  6. Synthesis and contractile activity of the C-terminal heptapeptide of substance P with N5-dimethyl glutamine in the 6-position. Active site studies.

    Science.gov (United States)

    Poulos, C P; Pinas, N; Theodoropoulos, D

    1980-09-15

    The synthesis and testing of [N5-dimethyl-Gln6]-SP5-11 showed 37 +/- 12% contractile activity relative to SP, and intrinsic efficacy 98 +/- 4%. This finding indicates that the carboxamide groups of the dual Gln5-Cln6 moiety are not equally related with the contractile response of the C-terminal heptapeptide of SP.

  7. Beta adrenergic overstimulation impaired vascular contractility via actin-cytoskeleton disorganization in rabbit cerebral artery.

    Directory of Open Access Journals (Sweden)

    Hyoung Kyu Kim

    Full Text Available BACKGROUND AND PURPOSE: Beta adrenergic overstimulation may increase the vascular damage and stroke. However, the underlying mechanisms of beta adrenergic overstimulation in cerebrovascular dysfunctions are not well known. We investigated the possible cerebrovascular dysfunction response to isoproterenol induced beta-adrenergic overstimulation (ISO in rabbit cerebral arteries (CAs. METHODS: ISO was induced in six weeks aged male New Zealand white rabbit (0.8-1.0 kg by 7-days isoproterenol injection (300 μg/kg/day. We investigated the alteration of protein expression in ISO treated CAs using 2DE proteomics and western blot analysis. Systemic properties of 2DE proteomics result were analyzed using bioinformatics software. ROS generation and following DNA damage were assessed to evaluate deteriorative effect of ISO on CAs. Intracellular Ca(2+ level change and vascular contractile response to vasoactive drug, angiotensin II (Ang II, were assessed to evaluate functional alteration of ISO treated CAs. Ang II-induced ROS generation was assessed to evaluated involvement of ROS generation in CA contractility. RESULTS: Proteomic analysis revealed remarkably decreased expression of cytoskeleton organizing proteins (e.g. actin related protein 1A and 2, α-actin, capping protein Z beta, and vimentin and anti-oxidative stress proteins (e.g. heat shock protein 9A and stress-induced-phosphoprotein 1 in ISO-CAs. As a cause of dysregulation of actin-cytoskeleton organization, we found decreased level of RhoA and ROCK1, which are major regulators of actin-cytoskeleton organization. As functional consequences of proteomic alteration, we found the decreased transient Ca(2+ efflux and constriction response to angiotensin II and high K(+ in ISO-CAs. ISO also increased basal ROS generation and induced oxidative damage in CA; however, it decreased the Ang II-induced ROS generation rate. These results indicate that ISO disrupted actin cytoskeleton proteome network

  8. Protective Effects of Estradiol on Myocardial Contractile Function Following Hemorrhagic Shock and Resuscitation in Rats

    Institute of Scientific and Technical Information of China (English)

    Mona Soliman

    2015-01-01

    Background:Hemorrhagic shock (HS) results in myocardial contractile dysfunction.Studies showed that 17β-estradiol protects the myocardium against contractile dysfunction.The study investigated the cardioprotective effects of treatment with 17β-estradiol before resuscitation following 1 h of HS and resuscitation.Methods:Male Sprague-Dawley rats were assigned to 2 sets of experimental protocols:Ex vivo and in vivo treatment and resuscitation.Each set had three experimental groups (n =6 per group):Normotensive (N),HS and resuscitation (HS-R) and HS rats treated with 17β-estradiol (E) and resuscitated (HS-E-R).Rats were hemorrhaged over 60-min to reach a mean arterial blood pressure of 40 mmHg.In the ex vivo group,hearts were resuscitated by perfusion in the Langendorff system.In the 17β-estradiol treated group,17β-estradiol 280 μg/kg was added for the first 5 min.Cardiac function was measured.Left ventricular generated pressure (LVGP) and +dP/dt were calculated.In the in vivo group,rats were treated with 17β-estradiol 280 μg/kg s.c.after 60-min HS.Resuscitation was performed in vivo by the reinfusion of the shed blood for 30-min to restore normotension.Results:Treatment with 17β-estradiol before resuscitation in ex vivo treated and resuscitated isolated hearts and in the in vivo treated and resuscitated rats following HS improved myocardial contractile function.In the in vivo treated group,LVGP and +dP/dt max were significantly higher in 17β-estradiol treated rats compared to the untreated group (LVGP 136.40 ± 6.61 compared to 47.58 ± 17.55,and +dP/dt 661.85 ± 49.88 compared to 88.18 ± 0.85).Treatment with 17β-estradiol improved LVGP following HS.Conclusions:The results indicate that treatment with 17β-estradiol before resuscitation following HS protects the myocardium against dysfunction.

  9. [Contractile function of the isolated heart in chronic adriamycin-induced myocardial lesions].

    Science.gov (United States)

    Kapel'ko, V I; Popovich, M I; Golikov, M A; Novikova, N A; Shul'zhenko, V S

    1987-07-01

    Adriamycin, administered to rats for 4 weeks, caused insufficiency of isolated heart contractility with a twofold reduction of cardiac output in surviving animals. The same cumulative dose of adriamycin, administered to rats over 10 weeks, was not associated with any significant reduction of the heart's pumping function. However, heart rate increase by atrial electrostimulation that shortened the diastolic pause to a control level, also reduced the minute and stroke volumes by 38%, as compared to the controls. All animals showed increased diastolic stiffness of the left ventricle that must have interfered with its filling, particularly so in case of low inflow pressure, and disturbed atrial automaticity, as reflected in bradicardia in rats and supraventricular arrhythmia in guinea pigs.

  10. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers

    Directory of Open Access Journals (Sweden)

    Yaming Jiu

    2015-06-01

    Full Text Available The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.

  11. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    Science.gov (United States)

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-08-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations.

  12. Effects of antibiotics on the contractility and Ca2+ transients of rat cardiac myocytes.

    Science.gov (United States)

    Belus, A; White, E

    2001-01-26

    We have compared the effects of streptomycin sulphate, gentamicin sulphate and neomycin sulphate on cell shortening (our index of contractility) and intracellular Ca2+ ([Ca2+](i)) transients of rat ventricular myocytes. All three agents abolished shortening and [Ca2+](i), transients but streptomycin was significantly less potent than the other agents. The IC(50) of streptomycin was 0.37 mM for shortening and 0.78 mM for [Ca2+](i), approximately an order of magnitude greater than equivalent values for gentamicin and neomycin. Gentamicin and streptomycin shortened the action potential duration of most cells but prolonged the action potential duration of others. We therefore conclude that multiple ionic mechanisms affecting action potential duration are modulated by these antibiotics. Our observations are consistent with the negative inotropic effect of antibiotics being caused by a decrease in Ca2+ influx causing a reduction in the [Ca2+](i) transient.

  13. Orchestrated content release from Drosophila glue-protein vesicles by a contractile actomyosin network.

    Science.gov (United States)

    Rousso, Tal; Schejter, Eyal D; Shilo, Ben-Zion

    2016-02-01

    Releasing content from large vesicles measuring several micrometres in diameter poses exceptional challenges to the secretory system. An actomyosin network commonly coats these vesicles, and is thought to provide the necessary force mediating efficient cargo release. Here we describe the spatial and temporal dynamics of the formation of this actomyosin coat around large vesicles and the resulting vesicle collapse, in live Drosophila melanogaster salivary glands. We identify the Formin family protein Diaphanous (Dia) as the main actin nucleator involved in generating this structure, and uncover Rho as an integrator of actin assembly and contractile machinery activation comprising this actomyosin network. High-resolution imaging reveals a unique cage-like organization of myosin II on the actin coat. This myosin arrangement requires branched-actin polymerization, and is critical for exerting a non-isotropic force, mediating efficient vesicle contraction.

  14. Hindlimb immobilization - Length-tension and contractile properties of skeletal muscle

    Science.gov (United States)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    Casts were placed around rat feet in plantar flexion position to immobilize the soleus muscle in a shortened position, while the other foot was fixed in dorsal flexion to set the extensor digitorum longus in a shortened position. The total muscular atrophy and contractile properties were measured at 1, 2, 4, 7, 14, 21, 28, 35, and 42 days after immobilization, with casts being replaced every two weeks. The slow twitch soleus and the fast-twitch vastus lateralis and longus muscles were excised after termination of the experiment. The muscles were then stretched and subjected to electric shock to elicit peak tetanic tension and peak tetanic tension development. Force velocity features of the three muscles were assayed in a series of afterloaded contractions and fiber lengths were measured from subsequently macerated muscle. All muscles atrophied during immobilization, reaching a new steady state by day 21. Decreases in fiber and sarcomere lengths were also observed.

  15. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin

    2014-01-01

    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  16. Further identification of bioactive peptides in the anterior byssus retractor muscle of Mytilus: two contractile and three inhibitory peptides.

    Science.gov (United States)

    Fujisawa, Y; Takahashi, T; Ikeda, T; Muneoka, Y; Kubota, I; Minakata, H; Nomoto, K; Nose, T; Miki, W

    1993-09-01

    1. Two contractile and three inhibitory peptides were newly isolated from the anterior byssus retractor muscles (ABRMs) of the bivalve mollusc Mytilus edulis by using the muscle as the bioassay system. 2. The structures of the two contractile peptides were GPFGTHIKamide (GPFG-8) and GPFGLNKHGamide (GPFG-9). The contractile response of the ABRM to the first-time application of GPFG-8 or GPFG-9 was of considerable size. The threshold concentrations of the peptides were around 10(-9) M. However, the contractile response to the second-time application was far smaller than that to the first-time application in both cases. Namely, the muscle showed tachyphylaxis to the peptides. 3. Two of the three inhibitory peptides were members of the Mytilus-inhibitory-peptide (MIP) family. Their structures were RAPLFIamide (MIP6) and RSPMFVamide (MIP7). The peptides, as well as the other MIPs previously identified, showed a potent inhibitory effect on phasic contraction of the ABRM in response to repetitive electrical stimulation. The remaining one was an MIP-related peptide (MIP-RP) having the sequence of MRYFVamide. The MIP-RP was less potent than the two MIPs in inhibiting the contraction of the ABRM.

  17. Reduced Contractility and Motility of Prostatic Cancer-Associated Fibroblasts after Inhibition of Heat Shock Protein 90

    Science.gov (United States)

    Henke, Alex; Franco, Omar E.; Stewart, Grant D.; Riddick, Antony C.P.; Katz, Elad; Hayward, Simon W.; Thomson, Axel A.

    2016-01-01

    Background: Prostate cancer-associated fibroblasts (CAF) can stimulate malignant progression and invasion of prostatic tumour cells via several mechanisms including those active in extracellular matrix; Methods: We isolated CAF from prostate cancer patients of Gleason Score 6–10 and confirmed their cancer-promoting activity using an in vivo tumour reconstitution assay comprised of CAF and BPH1 cells. We tested the effects of heat shock protein 90 (HSP90) inhibitors upon reconstituted tumour growth in vivo. Additionally, CAF contractility was measured in a 3D collagen contraction assay and migration was measured by scratch assay; Results: HSP90 inhibitors dipalmitoyl-radicicol and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) reduced tumour size and proliferation in CAF/BPH1 reconstituted tumours in vivo. We observed that the most contractile CAF were derived from patients with lower Gleason Score and of younger age compared with the least contractile CAF. HSP90 inhibitors radicicol and 17-DMAG inhibited contractility and reduced the migration of CAF in scratch assays. Intracellular levels of HSP70 and HSP90 were upregulated upon treatment with HSP90 inhibitors. Inhibition of HSP90 also led to a specific increase in transforming growth factor beta 2 (TGFβ2) levels in CAF; Conclusions: We suggest that HSP90 inhibitors act not only upon tumour cells, but also on CAF in the tumour microenvironment. PMID:27563925

  18. The Effect of Cleft Palate Repair on Contractile Properties of Single Permeabilized Muscle Fibers From Congenitally Cleft Goats Palates

    Science.gov (United States)

    A cleft palate goat model was used to study the contractile properties of the levator veli palatini (LVP) muscle which is responsible for the movement of the soft palate. In 15-25% of patients that undergo palatoplasty, residual velopharyngeal insufficiency (VPI) remains a problem and often require...

  19. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue

    Science.gov (United States)

    As part of a large 2-year study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate the effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and ser...

  20. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility.

    Directory of Open Access Journals (Sweden)

    Mónica Cáceres

    Full Text Available Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility.

  1. Effect of subarachnoid hemorrhage on contractile responses and noradrenaline release evoked in cat cerebral arteries by histamine

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, R.D.; Marin, J.; Salaices, M.; Rico, M.L.; Sanchez, C.F.

    1981-10-01

    This study analyzes the changes induced by subarachnoid hemorrhage (SAH) on the contractile responses and the noradrenaline release evoked in cat cerebral arteries by histamine. The dose-dependent vasoconstriction induced by histamine on the cerebral arteries of normal cats was significantly reduced by diphenhydramine and phentolamine. When SAH was produced 3 and 7 days before the experiment, the histamine-induced vasoconstriction also decreased. Thereafter, a tendency to normalization in the contractile vascular responses was observed such that in 15 days after the hemorrhage it was not significantly different from that found in controls animals. The decrease in the contractile responses to histamine provoked by SAH was similar to that seen after pretreatment with intracisternal injections of 6-hydroxydopamine. The amount of radioactivity released by histamine following preincubation with /sup 3/H-noradrenaline from the cerebral arteries of cats exposed to SAH 3, 7, and 15 days before the experiment was significantly reduced when compared with controls. Moreover, the basal level of tritium release and the radioactivity retained at the end of the experiment were also decreased after SAH. Results indicate histamine releases noradrenaline from cat cerebral arteries, and SAH produce a transient denervation of the perivascular adrenergic nerve endings, which explained by the impairment of the indirect adrenergic mechanism involved in the overall contractile response elicited by this amine in cerebral arteries. Histamine does not seem to play a significant role in the production of the cerebral vasospasm occurring after SAH.

  2. Reduced Contractility and Motility of Prostatic Cancer-Associated Fibroblasts after Inhibition of Heat Shock Protein 90

    Directory of Open Access Journals (Sweden)

    Alex Henke

    2016-08-01

    Full Text Available Background: Prostate cancer-associated fibroblasts (CAF can stimulate malignant progression and invasion of prostatic tumour cells via several mechanisms including those active in extracellular matrix; Methods: We isolated CAF from prostate cancer patients of Gleason Score 6–10 and confirmed their cancer-promoting activity using an in vivo tumour reconstitution assay comprised of CAF and BPH1 cells. We tested the effects of heat shock protein 90 (HSP90 inhibitors upon reconstituted tumour growth in vivo. Additionally, CAF contractility was measured in a 3D collagen contraction assay and migration was measured by scratch assay; Results: HSP90 inhibitors dipalmitoyl-radicicol and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG reduced tumour size and proliferation in CAF/BPH1 reconstituted tumours in vivo. We observed that the most contractile CAF were derived from patients with lower Gleason Score and of younger age compared with the least contractile CAF. HSP90 inhibitors radicicol and 17-DMAG inhibited contractility and reduced the migration of CAF in scratch assays. Intracellular levels of HSP70 and HSP90 were upregulated upon treatment with HSP90 inhibitors. Inhibition of HSP90 also led to a specific increase in transforming growth factor beta 2 (TGFβ2 levels in CAF; Conclusions: We suggest that HSP90 inhibitors act not only upon tumour cells, but also on CAF in the tumour microenvironment.

  3. Effects of silver ions (Ag+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta

    Science.gov (United States)

    Conrad, A. H.; Stephens, A. P.; Paulsen, A. Q.; Schwarting, S. S.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.

  4. Blockade of Rho-associated protein kinase (ROCK) inhibits the contractility and invasion potential of cancer stem like cells.

    Science.gov (United States)

    Srinivasan, Srisathya; Ashok, Vandhana; Mohanty, Sagarajit; Das, Alakesh; Das, Sreya; Kumar, Sushant; Sen, Shamik; Purwar, Rahul

    2017-02-10

    Recent studies have implicated the roles of cancer stem like cells (CSCs) in cancer metastasis. However, very limited knowledge exists at the molecular and cellular level to target CSCs for prevention of cancer metastasis. In this study, we examined the roles of contractile dynamics of CSCs in cell invasion and delineated the underlying molecular mechanisms of their distinct cell invasion potential. Using de-adhesion assay and atomic force microscopy, we show that CSCs derived from melanoma and breast cancer cell lines exhibit increased contractility compared to non-CSCs across all tumor types. In addition, CSCs possess increased ECM remodeling capacity as quantified by collagen degradation assay. More importantly, pharmacological blockade of Rho-associated protein kinase completely abolished the contractility and collagen degradation capacity of both CSCs and non-CSCs. In conclusion, our study demonstrates the importance of cell contractility in regulating invasiveness of CSCs and suggests that pharmacological targeting of ROCK pathway represents a novel strategy for targeting both CSCs and bulk population for the treatment of cancer metastasis.

  5. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    Science.gov (United States)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  6. Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day “dry” immersion

    Science.gov (United States)

    Ogneva, I. V.; Ponomareva, E. V.; Kartashkina, N. L.; Altaeva, E. G.; Fokina, N. M.; Kurushin, V. A.; Kozlovskaya, I. B.; Shenkman, B. S.

    2011-05-01

    The simulation model of "dry" immersion was used to evaluate the effects of plantar mechanical stimulation (PMS) and high frequency electromyostimulation (EMS) on the mechanical properties of human soleus fibers under the conditions of gravitational unloading. We examined contractile properties of single fibers by means of tensometry, transversal stiffness of sarcolemma and different areas of the contractile apparatus by means of atomic force microscopy. It was shown that there is a reduction of transversal stiffness in single muscle fibers under hypogravitational conditions. Application of different countermeasures could compensate this effect. Meanwhile pneumostimulation and electro stimulation act in quite different way. Therefore, pneumostimulation seems to be more effective. The data obtained can be considered as the evidence of the fact that such countermeasures as PMS and electromyostimulation influence on muscle fibers in quite different ways and PMS efficiency is likely to be higher. On the basis of our experimental data on transverse stiffness of mechanotransductional nodes and the contractile apparatus, we can assume that support stimulation allows prevention of destructive processes in muscle fibers. Electrostimulation seems to stimulate contractile activity only without suppression of impairment of the fiber mechanical properties.

  7. Serum response factor regulates smooth muscle contractility via myotonic dystrophy protein kinases and L-type calcium channels

    Science.gov (United States)

    Lee, Moon Young; Park, Chanjae; Ha, Se Eun; Park, Paul J.; Berent, Robyn M.; Jorgensen, Brian G.; Corrigan, Robert D.; Grainger, Nathan; Blair, Peter J.; Slivano, Orazio J.; Miano, Joseph M.; Ward, Sean M.; Smith, Terence K.; Sanders, Kenton M.

    2017-01-01

    Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown. We describe here how SRF plays a functional role in the regulation of the SMC contractility via myotonic dystrophy protein kinase (DMPK) and L-type calcium channel CACNA1C. GI SMC expressed Dmpk and Cacna1c genes into multiple alternative transcriptional isoforms. Deficiency of SRF in SMC of Srf knockout (KO) mice led to reduction of SRF-dependent DMPK, which down-regulated the expression of CACNA1C. Reduction of CACNA1C in KO SMC not only decreased intracellular Ca2+ spikes but also disrupted their coupling between cells resulting in decreased contractility. The role of SRF in the regulation of SMC phenotype and function provides new insight into how SMC lose their contractility leading to hypomotility in pathophysiological conditions within the GI tract. PMID:28152551

  8. Effect of a Periodized Power Training Program on the Functional Performances and Contractile Properties of the Quadriceps in Sprinters

    Science.gov (United States)

    Kamandulis, Sigitas; Skurvydas, Albertas; Brazaitis, Marius; Stanislovaitis, Aleksas; Duchateau, Jacques; Stanislovaitiene, Jurate

    2012-01-01

    Our purpose was to compare the effect of a periodized preparation consisting of power endurance training and high-intensity power training on the contractile properties of the quadriceps muscle and functional performances in well trained male sprinters (n = 7). After 4 weeks of high-intensity power training, 60-m sprint running time improved by an…

  9. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  10. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture.

    Science.gov (United States)

    Berger, H J; Prasad, S K; Davidoff, A J; Pimental, D; Ellingsen, O; Marsh, J D; Smith, T W; Kelly, R A

    1994-01-01

    To model with greater fidelity the electromechanical function of freshly isolated heart muscle cells in primary culture, we describe a technique for the continual electrical stimulation of adult myocytes at physiological frequencies for several days. A reusable plastic cover was constructed to fit standard, disposable 175-cm2 tissue culture flasks and to hold parallel graphite electrodes along the long axis of each flask, which treated a uniform electric field that resulted in a capture efficiency of ventricular myocytes of 75-80%. Computer-controlled amplifiers were designed to be capable of driving a number of flasks concurrently, each containing up to 4 x 10(6) myocytes, over a range of stimulation frequencies (from 0.1 to 7.0 Hz) with reversal of electrode polarity after each stimulus to prevent the development of pH gradients around each electrode. Unlike quiescent, unstimulated myocytes, the amplitude of contraction, and velocities of shortening and relaxation did not change in myocytes paced at 3-5 Hz for up to 72 h. The maintenance of normal contractile function in paced myocytes required mechanical contraction per se, since paced myocytes that remained quiescent due to the inclusion of 2.5 microM verapamil in the culture medium for 48 h also exhibited a decline in contractility when paced after verapamil removal. Similarly, pacing increased peak calcium current compared with quiescent cells that had not been paced. Thus myocyte contraction at physiological frequencies induced by continual uniform electric field stimulation in short-term primary culture in defining medium maintains some biophysical parameters of myocyte phenotype that are similar to those observed in freshly isolated adult ventricular myocytes.

  11. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    Wen-jun Ren

    2009-01-01

    Objective To study the effect of 4- 6 weeks' treadmill training of male SD rats on the contractile function of their gnstroenemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4- 6 weeks at an intensity of about 75% VO2max (18. 5- 24 m/min, gradient of 0°, each training session lasting 50 minutes, twice a day). The content of gastrocnemlas MHC mRNA was tested by reverse transcription polymernse chain reaction (RT-PCR), and the changes of muscle fibre and its cross-section area (CSA) were measured using immunohistochemistry. Electric stimulation tests were used to determine the maximal tension of isometric contraction of the post-training gastrocnemius. Results ① After continuous treadmill training for 4 - 6 weeks, we found that the content of the total MHC, MHC Ⅰ , MHC Ⅱ x, MHC Ⅱ a mRNAs was 105%, 105%, 109% and 108% of that in the resting control group, respectively, and the MHC Ⅱ b mRNA content did not change significantly. The percentage of MHC Ⅰ mRNA in the total MHC mRNA increased while that of MHC Ⅱ mRNA decreased after aerobic training. ② The slow type of fibre type Ⅰ was the main part of the MHC after training and the CSA of the muscle fibres increased simultaneously. ③ The maximal tension of isometric contraction by pulse stimulation of square wave in the training group increased significantly compared with that in the control group (P<0. 01). Conclusion The findings indicate that aerobic exercise may promote an increase in the contractile function of MHC.

  12. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    Science.gov (United States)

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-01-01

    ABSTRACT Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats. PMID:26515653

  13. Colon-specific contractile responses to tetrodotoxin in the isolated mouse gastrointestinal tract.

    Science.gov (United States)

    Okuno, Y; Kondo, T; Saeki, A; Uchida, E; Teraoka, H; Kitazawa, T

    2011-01-01

    1 Tetrodotoxin (TTX) is a useful pharmacological tool for distinguishing neural and myogenic responses of isolated visceral organs to drugs. Although TTX does not generally affect smooth muscle tonus, in this study, we have found that TTX causes contraction of the mouse colon. The aim of this study was to characterize this TTX-induced contraction in the mouse gastrointestinal tract. 2 Longitudinal and circular muscle strips from the stomach and small intestine were less sensitive to TTX. However, TTX contracted both smooth muscle strips from the proximal colon and distal colon. 3 Pretreatment with TTX, Nω -nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and apamin inhibited the TTX-induced contraction. L-NAME, ODQ or apamin itself caused contraction in the colon but not in the gastric and small intestinal strips. Region dependency of L-NAME, ODQ and apamin-induced contraction correlated with that of TTX-induced contraction. 4 L-arginine but not D-arginine inhibited contractility of the colonic strips without affecting the contractility of muscle strips from other regions. Sodium nitroprusside caused strong relaxation of the colonic strips. 5 1,1-dimethyl-4-phenylpiperazinium (DMPP) caused relaxation of proximal and distal colons, which was significantly decreased by L-NAME or apamin. 6 In conclusion, among mouse gastrointestinal preparations, TTX induces contraction of colonic strips preferentially through blockade of potent tonic inhibitory neural outflow, which involves nitrergic and apamin-sensitive pathways. Colon-specific responses to L-arginine, L-NAME, ODQ and apamin support the hypothesis that there is a continuous suppression of colonic motility by enteric inhibitory neurons.

  14. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    Directory of Open Access Journals (Sweden)

    Mouli Chakraborty

    2015-12-01

    Full Text Available Up to 80% of individuals with myotonic dystrophy type 1 (DM1 will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.

  15. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction.

    Science.gov (United States)

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-12-01

    Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.

  16. Left ventricular diastolic dysfunction limits use of maximum systolic elastance as an index of contractile function.

    Science.gov (United States)

    Zile, M R; Izzi, G; Gaasch, W H

    1991-02-01

    We tested the hypothesis that maximum systolic elastance (Emax) fails to detect a decline in left ventricular (LV) contractile function when diastolic dysfunction is present. Canine hearts were studied in an isolated blood-perfused heart apparatus (isovolumic LV); contractile dysfunction was produced by 60 or 90 minutes of global ischemia, followed by 90 minutes of reperfusion. Nine normal hearts underwent 60 minutes of ischemia, and five underwent 90 minutes of ischemia. After the ischemia-reperfusion sequence, developed pressure, pressure-volume area, and myocardial ATP level were significantly less than those at baseline in all 14 hearts. In the group undergoing 60 minutes of ischemia, LV diastolic pressure did not increase, whereas Emax decreased from 5.2 +/- 2.5 to 2.9 +/- 1.4 mm Hg/ml (p less than 0.05). In the group undergoing 90 minutes of ischemia, diastolic pressure increased (from 10 +/- 2 to 37 +/- 20 mm Hg, p less than 0.05), and Emax did not change significantly (from 5.1 +/- 4.3 to 4.3 +/- 2.5 mm Hg/ml). A second series of experiments was performed in 13 hearts with pressure-overload hypertrophy (aortic-band model with echocardiography and catheterization studies before the ischemia-reperfusion protocol). Five had evidence for pump failure, whereas eight remained compensated. After 60 minutes of ischemia and 90 minutes of reperfusion, developed pressure, pressure-volume area, and myocardial ATP level were significantly less than those at baseline in all 13 hearts. In the group with compensated LV hypertrophy, LV diastolic pressure did not change, whereas Emax decreased from 6.9 +/- 3.0 to 3.1 +/- 2.3 mm Hg/ml (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice.

    Directory of Open Access Journals (Sweden)

    Sunkuk Kwon

    Full Text Available OBJECTIVE: To investigate the redirection of lymphatic drainage post-lymphadenectomy using non-invasive near-infrared fluorescence (NIRF imaging, and to subsequently assess impact on metastasis. BACKGROUND: Cancer-acquired lymphedema arises from dysfunctional fluid transport after lymphadenectomy performed for staging and to disrupt drainage pathways for regional control of disease. However, little is known about the normal regenerative processes of the lymphatics in response to lymphadenectomy and how these responses can be accelerated, delayed, or can impact metastasis. METHODS: Changes in lymphatic "pumping" function and drainage patterns were non-invasively and longitudinally imaged using NIRF lymphatic imaging after popliteal lymphadenectomy in mice. In a cohort of mice, B16F10 melanoma was inoculated on the dorsal aspect of the paw 27 days after lymphadenectomy to assess how drainage patterns affect metastasis. RESULTS: NIRF imaging demonstrates that, although lymphatic function and drainage patterns change significantly in early response to popliteal lymph node (PLN removal in mice, these changes are transient and regress dramatically due to a high regenerative capacity of the lymphatics and co-opting of collateral lymphatic pathways around the site of obstruction. Metastases followed the pattern of collateral pathways and could be detected proximal to the site of lymphadenectomy. CONCLUSIONS: Both lymphatic vessel regeneration and co-opting of contralateral vessels occur following lymphadenectomy, with contractile function restored within 13 days, providing a basis for preclinical and clinical investigations to hasten lymphatic repair and restore contractile lymphatic function after surgery to prevent cancer-acquired lymphedema. Patterns of cancer metastasis after lymphadenectomy were altered, consistent with patterns of re-directed lymphatic drainage.

  18. Effects of benactyzine on action potentials and contractile force of guinea pig papillary muscles

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aim:To explore the effects of benactyzine (BEN) on the action potential and contractile force in guinea pig papillary muscles.Methods:Conventional microelectrode technique was used to record the fast action potentials (FAP) and slow action potentials (SAP) of guinea pig papillary muscles.Results:Benactyzine 5,10,50 μmol·L-1 suppressed the maximal upstroke velocity (vmax) of FAP and contractile force (Fc) concentration-dependently while prolonged the action potential duration at 50%,90% repolarization (APD50,APD90) and effective refractory period (ERP) of FAP.The suppression on the vmax was frequency-dependent.Benactyzine 5,10,50μmol·L-1 lengthened the APD50,APD90 of SAP induced by isoprenaline or histamine when perfused with KCl 22 mmol·L-1 Tyrode's solution.The vmax of the SAP was not decreased by benactyzine 5,10 μmol·L-1 but by 50 μmol·L-1.The effects on the SAP were antagonized by elevation of the extracellular calcium from 2.0 to 5.6 mmol·L-1.The effects of benactyzine on SAP elicited by tetrodotoxin resembled that by isoprenaline or histamine except the more pronounced suppression on vmax and action potential amplitude (APA).The persistent rapid spontaneous activity and triggered tachyarrhythmia induced by ouabain were also abolished immediately by benactyzine 5 μmol·L-1.Conclusion:Benactyzine can inhibit Na+,K+,Ca2+ transmembrane movement and intracellular Ca2+ mobilization in the myocardium,and this may be the electrophysiological basis of its effects against experimental arrhythmias.

  19. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com; Cui, Yong-Yao, E-mail: yongyaocui@yahoo.com.cn

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  20. A Small Molecule Inhibitor of Sarcomere Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline Hypertrophic Cardiomyopathy

    Science.gov (United States)

    Stern, Joshua A.; Markova, Svetlana; Ueda, Yu; Kim, Jae B.; Pascoe, Peter J.; Evanchik, Marc J.; Green, Eric M.; Harris, Samantha P.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of the heart muscle characterized by otherwise unexplained thickening of the left ventricle. Left ventricular outflow tract (LVOT) obstruction is present in approximately two-thirds of patients and substantially increases the risk of disease complications. Invasive treatment with septal myectomy or alcohol septal ablation can improve symptoms and functional status, but currently available drugs for reducing obstruction have pleiotropic effects and variable therapeutic responses. New medical treatments with more targeted pharmacology are needed, but the lack of preclinical animal models for HCM with LVOT obstruction has limited their development. HCM is a common cause of heart failure in cats, and a subset exhibit systolic anterior motion of the mitral valve leading to LVOT obstruction. MYK-461 is a recently-described, mechanistically novel small molecule that acts at the sarcomere to specifically inhibit contractility that has been proposed as a treatment for HCM. Here, we use MYK-461 to test whether direct reduction in contractility is sufficient to relieve LVOT obstruction in feline HCM. We evaluated mixed-breed cats in a research colony derived from a Maine Coon/mixed-breed founder with naturally-occurring HCM. By echocardiography, we identified five cats that developed systolic anterior motion of the mitral valve and LVOT obstruction both at rest and under anesthesia when provoked with an adrenergic agonist. An IV MYK-461 infusion and echocardiography protocol was developed to serially assess contractility and LVOT gradient at multiple MYK-461 concentrations. Treatment with MYK-461 reduced contractility, eliminated systolic anterior motion of the mitral valve and relieved LVOT pressure gradients in an exposure-dependent manner. Our findings provide proof of principle that acute reduction in contractility with MYK-461 is sufficient to relieve LVOT obstruction. Further, these studies suggest that feline

  1. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  2. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility.

    Science.gov (United States)

    Dickerson, L W; Rodak, D J; Fleming, T J; Gatti, P J; Massari, V J; McKenzie, J C; Gillis, R A

    1998-05-28

    We hypothesized that selective control of ventricular contractility might be mediated by postganglionic parasympathetic neurons in the cranial medial ventricular (CMV) ganglion plexus located in a fat pad at the base of the aorta. Sinus rate, atrioventricular (AV) conduction (ventricular rate during atrial pacing), and left ventricular contractile force (LV dP/dt during right ventricular pacing) were measured in eight chloralose-anesthetized dogs both before and during bilateral cervical vagus stimulation (20-30 V, 0.5 ms pulses, 15-20 Hz). Seven of these dogs were tested under beta-adrenergic blockade (propranolol, 0.8 mg kg(-1) i.v.). Control responses included sinus node bradycardia or arrest during spontaneous rhythm, high grade AV block or complete heart block, and a 30% decrease in contractility from 2118 +/- 186 to 1526 +/- 187 mm Hg s(-1) (P 0.05) decrease in contractility but still elicited the same degree of sinus bradycardia and AV block (N = 8, P < 0.05). Five dogs were re-tested 3 h after trimethaphan fat pad injection, at which time blockade of vagally-induced negative inotropy was partially reversed, as vagal stimulation decreased LV dP/dt by 19%. The same dose of trimethaphan given either locally into other fat pads (PVFP or IVC-ILA) or systemically (i.v.) had no effect on vagally-induced negative inotropy. Thus, parasympathetic ganglia located in the CMV fat pad mediated a decrease in ventricular contractility during vagal stimulation. Blockade of the CMV fat pad had no effect on vagally-mediated slowing of sinus rate or AV conduction.

  3. Recovery of the Frank-Starling mechanism by coenzyme Q10 in patients with load-induced contractility depression.

    Science.gov (United States)

    Oda, T

    1993-01-01

    Load-induced contractility depression, in which supernormal left ventricular ejection fraction and contractility at rest decrease by added afterload, is most often found in children with mitral valve prolapse who have symptoms. Patients have high ventricular end-diastolic pressure at rest, which is further increased by afterload challenge. The Frank-Starling mechanism may be maximally mobilized with high preload even at rest to compensate for the intrinsically depressed inotropic state. Therefore, preload reserve may be easily exhausted due to afterload addition. We aimed to determine left ventricular end-diastolic fiber length, stroke work, and contractility before and during handgrip by echocardiograms to obtain evidence for the Frank-Starling mechanism in patients and controls, including patients treated with coenzyme Q10. The subjects were divided into four groups, each consisting of 30 children aged 6-16 years: group 1, normals; group 2, patients; group 3, the same patients as in group 2 after coenzyme Q10 therapy; and group 4, patients with asymptomatic mitral valve prolapse. Baseline values and percentage increases in systolic blood pressure, heart rate, and left ventricular wall stress showed no differences among the groups. Only in group 2 were the percentage increase in ejection fraction, fiber shortening velocity, contractility, and end-diastolic dimension strongly negative, despite supernormal baseline levels. In other groups, these were significantly positive, without intergroup differences. We conclude that in the heart with load-induced contractility depression, the Frank-Starling mechanism deviates from normal. The normal Frank-Starling mechanism was recovered due to coenzyme Q10, which may improve disturbed bioenergetic function at the molecular level.

  4. Different effects of H1 and H2 blockers on the tone and the contractile activity of guinea pig stomach fundus.

    Science.gov (United States)

    Milenov, K; Todorov, S; Vassileva, M; Zamfirova, R; Shahbazian, A

    1995-11-01

    The action of H1 and H2 blockers on the spontaneous and evoked contractile activity of gastric fundus smooth muscles as well as the effects of H2 antagonists on the release of acetylcholine (ACh) from gastric myenteric neurons were studied. The experiments were performed on smooth muscle strips (25 x 3 mm) cut out in circular direction from guinea pig fundus region. In concentrations of 1 x 10(-7) M to 1 x 10(-4) M, the H1 blockers diphenhydramine (DPH), mepyramine (MEP) and dimethpyrindene (DMPD), but not the H2 blockers ranitidine (RAN), cimetidine (CIM) and roxatidine (ROX), increased in a concentration-dependent manner the smooth muscle tone, the maximum contractions being about 50% of the contractile effects of 1 x 10(-5) M ACH and 5 x 10(-5) M histamine (HA). The concentration-dependent contractions of the stomach fundus strips in response to electrical field stimulation (EFS) were enhanced by RAN, CIM and ROX (but not by MEP and DPH), all in concentrations of 1 x 10(-7) M to 1 x 10(-4) M. EFS increased the resting [3H]-ACh release by 67.8%, the S2/S1 ratio being 0.85 +/- 0.04. ROX in a concentration of 1 x 10(-5) M significantly increased (by 16.1%) the EFS-induced release with a S2/S1 ratio of 1.22 +/- 0.04. The ROX effect on the [3H]-ACh release was reduced or even abolished by 1 x 10(-6) M tetrodotoxin (TTX) and 1 x 10(-6) M scopolamine or in Ca(2+)-free medium, while 1 x 10(-6) M hexamethonium did not change it. It might be concluded that H2 blockers have no direct myogenic effect and do not interfere with muscarinic receptors in guinea pig stomach fundus. The H2 antagonists enhance the EFS-evoked contractions of the gastric smooth muscle most probably by increasing the release of ACH.

  5. Permanent Distal Occlusion of Middle Cerebral Artery in Rat Causes Local Increased ETB, 5-HT1B and AT1 Receptor-Mediated Contractility Downstream of Occlusion

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Hornbak, Malene; Larsen, Stine S;

    2013-01-01

    a model of permanent distal occlusion of rat middle cerebral arteries, we investigated whether there was a regional difference in receptor-mediated contractility of segments located upstream and downstream of the occlusion site. The contractile response to endothelin, angiotensin and 5-hydroxytryptamine...... occlusion without significant visible infarct resulted in locally increased ETB, angiotensin type 1 and 5-hydroxytryptamine 1B receptor-mediated contractile responses only in segments located downstream of the occlusion site. This suggests lack of wall stress as an initiating trigger leading to regulation...

  6. Controlled chaos: three-dimensional kinematics, fiber histochemistry, and muscle contractile dynamics of autotomized lizard tails.

    Science.gov (United States)

    Higham, Timothy E; Lipsett, Kathryn R; Syme, Douglas A; Russell, Anthony P

    2013-01-01

    The ability to shed an appendage occurs in both vertebrates and invertebrates, often as a tactic to avoid predation. The tails of lizards, unlike most autotomized body parts of animals, exhibit complex and vigorous movements once disconnected from the body. Despite the near ubiquity of autotomy across groups of lizards and the fact that this is an extraordinary event involving the self-severing of the spinal cord, our understanding of why and how tails move as they do following autotomy is sparse. We herein explore the histochemistry and physiology of the tail muscles of the leopard gecko (Eublepharis macularius), a species that exhibits vigorous and variable tail movements following autotomy. To confirm that the previously studied tail movements of this species are generally representative of geckos and therefore suitable for in-depth muscle studies, we quantified the three-dimensional kinematics of autotomized tails in three additional species. The movements of the tails of all species were generally similar and included jumps, flips, and swings. Our preliminary analyses suggest that some species of gecko exhibit short but high-frequency movements, whereas others exhibit larger-amplitude but lower-frequency movements. We then compared the ATPase and oxidative capacity of muscle fibers and contractile dynamics of isolated muscle bundles from original tails, muscle from regenerate tails, and fast fibers from an upper limb muscle (iliofibularis) of the leopard gecko. Histochemical analysis revealed that more than 90% of the fibers in original and regenerate caudal muscles had high ATPase but possessed a superficial layer of fibers with low ATPase and high oxidative capacity. We found that contraction kinetics, isometric force, work, power output, and the oscillation frequency at which maximum power was generated were lowest in the original tail, followed by the regenerate tail and then the fast fibers of the iliofibularis. Muscle from the original tail exhibited

  7. Short-term lenalidomide (Revlimid) administration ameliorates cardiomyocyte contractile dysfunction in ob/ob obese mice.

    Science.gov (United States)

    Li, Linlin; Hua, Yinan; Dong, Maolong; Li, Quan; Smith, Derek T; Yuan, Ming; Jones, Kyla R; Ren, Jun

    2012-11-01

    Lenalidomide is a potent immunomodulatory agent capable of downregulating proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and upregulating anti-inflammatory cytokines. Lenalidomide has been shown to elicit cardiovascular effects, although its impact on cardiac function remains obscure. This study was designed to examine the effect of lenalidomide on cardiac contractile function in ob/ob obese mice. C57BL lean and ob/ob obese mice were given lenalidomide (50 mg/kg/day, p.o.) for 3 days. Body fat composition was assessed by dual-energy X-ray absorptiometry. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated. Expression of TNF-α, interleukin-6 (IL-6), Fas, Fas ligand (FasL), the short-chain fatty acid receptor GPR41, the NFκB regulator IκB, endoplasmic reticulum (ER) stress, the apoptotic protein markers Bax, Bcl-2, caspase-8, tBid, cytosolic cytochrome C, and caspase-12; and the stress signaling molecules p38 and extracellular signal-regulated kinase (ERK) were evaluated by western blot. ob/ob mice displayed elevated serum TNF-α and IL-6 levels, fat composition and glucose intolerance, the effects of which except glucose intolerance and fat composition were attenuated by lenalidomide. Cardiomyocytes from ob/ob mice exhibited depressed peak shortening (PS) and maximal velocity of shortening/relengthening, prolonged time-to-PS and time-to-90% relengthening as well as intracellular Ca(2+) mishandling, which were ablated by lenalidomide. Western blot analysis revealed elevated levels of TNF-α, IL-6, Fas, Bip, Bax, caspase-8, tBid, cleaved caspase-3 caspase-12, cytochrome C, phosphorylation of p38, and ERK in ob/ob mouse hearts, the effects of which with the exception of Bip, Bax, and caspase-12 were alleviated by lenalidomide. Taken together, these data suggest that lenalidomide is protective against obesity-induced cardiomyopathy possibly through antagonism of cytokine/Fas-induced activation of stress signaling and

  8. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  9. Itraconazole decreases left ventricular contractility in isolated rabbit heart: Mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yusheng, E-mail: yqu@amgen.com [Toxicology Science, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States); Fang, Mei; Gao, BaoXi; Amouzadeh, Hamid R. [Toxicology Science, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States); Li, Nianyu; Narayanan, Padma [Discovery Toxicology, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States); Acton, Paul; Lawrence, Jeff; Vargas, Hugo M. [Toxicology Science, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States)

    2013-04-15

    Itraconazole (ITZ) is an approved antifungal agent that carries a “black box warning” in its label regarding a risk of negative cardiac inotropy based on clinical findings. Since the mechanism of the negative inotropic effect is unknown, we performed a variety of preclinical and mechanistic studies to explore the pharmacological profile of ITZ and understand the negative inotropic mechanism. ITZ was evaluated in: (1) an isolated rabbit heart (IRH) preparation using Langendorff retrograde perfusion; (2) ion channel studies; (3) a rat heart mitochondrial function profiling screen; (4) a mitochondrial membrane potential (MMP) assay; (5) in vitro pharmacology profiling assays (148 receptors, ion channels, transporters, and enzymes); and (6) a kinase selectivity panel (451 kinases). In the IRH, ITZ decreased cardiac contractility (> 30%) at 0.3 μM, with increasing effect at higher concentrations, which indicated a direct negative inotropic effect upon the heart. It also decreased heart rate and coronary flow (≥ 1 μM) and prolonged PR/QRS intervals (3 μM). In mechanistic studies, ITZ inhibited the cardiac NaV channel (IC{sub 50}: 4.2 μM) and was devoid of any functional inhibitory effect at the remaining pharmacological targets. Lastly, ITZ did not affect MMP, nor interfere with mitochondrial enzymes or processes involved with fuel substrate utilization or energy formation. Overall, the cardiovascular and mechanistic data suggest that ITZ-induced negative inotropy is a direct effect on the heart, in addition, the potential involvement of mitochondria function and L-type Ca{sup 2+} channels are eliminated. The exact mechanism underlying the negative inotropy is uncertain, and requires further study. - Highlights: ► Effect of itraconazole (ITZ) was assessed in the isolated rabbit heart (IRH) assay. ► ITZ decreased ventricular contractility in IRH, indicating a direct effect. ► IC{sub 50} of ITZ on L-type I{sub Ca} was greater than 30 μM, on I{sub Na} was 4

  10. Enhanced acyl-CoA dehydrogenase activity is associated with improved mitochondrial and contractile function in heart failure

    Science.gov (United States)

    Heart failure is associated with decreased myocardial fatty acid oxidation capacity and has been likened to energy starvation. Increased fatty acid availability results in an induction of genes promoting fatty acid oxidation. The aim of the present study was to investigate possible mechanisms by whi...

  11. Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

    Science.gov (United States)

    2010-06-01

    neuromuscular junction [11]. Other diseases affect the muscle directly such as muscular dystrophy and muscular atrophy [12], which cause deterioration of...generation of skeletal muscle will also increase until tetanus is induced, resulting in tonic contraction. Cardiac muscle, on the other hand, will cease...by muscle. Nature Materials 4: 180–184. 8. Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, et al. (2007) Muscular Thin Films for

  12. Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat.

    Science.gov (United States)

    Muir, Ronan; Ballan, Jean; Clifford, Bethan; McMullen, Sarah; Khan, Raheela; Shmygol, Anatoly; Quenby, Siobhan; Elmes, Matthew

    2016-02-01

    Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (Pobesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (Pobese women.

  13. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan David Kijlstra

    2015-12-01

    Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  14. Usage of echocardiography with physical loads for diagnosis of myocardial contractile reserve of the left ventricle in athletes

    Directory of Open Access Journals (Sweden)

    Nekhanevich O.B.

    2014-09-01

    Full Text Available The work purpose was studying of myocardial contractile reserve of the left ventricle and cardiohemodynamics infringements character under the influence of physical loads in athletes with functional insufficiency of mitral valve according to stress-echocardiography. We examined 72 athletes the aged 9 to 40 years with functional mitral valve insufficiency and normal systolic function of the heart at rest by echo ECG data. Possibility of stress echocardiography with physical loads usage to diagnose decrease of myocardial contractile reserve of the heart left ventricle was proved. It was found that increase in hemodynamic load during physical exercise leads to the disruption of adaptation and manifestation of systolic dysfunction in athletes with I and II degrees of mitral valve regurgitation. This should be considered when constructing training-competitive loads among athletes in terms of prevention of acute physical overloading.

  15. The bioflavonoid quercetin synergises with PPAR-γ agonist pioglitazone in reducing angiotensin-II contractile effect in fructose-streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kunasegaran, Thubasni; Mustafa, Mohd Rais; Murugan, Dharmani Devi; Achike, Francis I

    2016-06-01

    This study investigated the effects of combined minimal concentrations of quercetin and pioglitazone on angiotensin II-induced contraction of the aorta from fructose-streptozotocin (F-STZ)-induced type 2 diabetic rats and the possible role of superoxide anions (O2(-)) and nitric oxide (NO) in their potential therapeutic interaction. Contractile responses to Ang II of aortic rings from Sprague-Dawley (SD) and F-STZ rats were tested following pre-incubation of the tissues in the vehicle (DMSO; 0.05%), quercetin (Q, 0.1 μM), pioglitazone (P, 0.1 μM) or their combination (P + Q; 0.1 μM each). The amount of superoxide anion was evaluated by lucigenin-enhanced chemiluminescence and dihydroethidium fluorescence, and NO by assay of total nitrate/nitrite, and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate. The synergistic reduction of Ang II-induced contraction of diabetic but not normal aorta with minimally effective concentrations of P + Q occurs through inhibiting O2(-) and increasing NO bioavailability. This finding opens the possibility of maximal vascular protective/antidiabetic effects with low dose pioglitazone combined with quercetin, thus minimizing the risk of adverse effects.

  16. Influence of starvation on heart contractility and corticosterone level in rats.

    Science.gov (United States)

    Lee, Sung Ryul; Ko, Tae Hee; Kim, Hyoung Kyu; Marquez, Jubert; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2015-11-01

    The physiological changes, including cardiac modification, that occur during starvation are not yet completely understood. The purpose of this study is to examine the effects of a 2-week starvation period on heart contractility, muscle mass, and irisin and corticosterone levels in rats. Rats in the starved group showed a significant reduction in the body, heart, kidney, and muscle weight (n = 23, p echocardiography were further compared with the body-weight-matched control group. Starvation reduced the left ventricle mass; however, this difference was not significant compared with the body-weight-matched group (p > 0.05). In the starvation group, the impairment of cardiac output was dependent on the reduction in stroke volume and heart rate. Starvation induced a severe reduction in ejection fraction and fractional shortening when compared with the body-weight-matched control group (p < 0.05). In summary, prolonged starvation, which leads to a deficiency of available nutrition, increases the stress-related corticosterone level, impairs the cardiac output, and is associated with changes in cardiac morphogeometry.

  17. Asymmetric subcellular distribution of glucose transporters in the endothelium of small contractile arteries.

    Science.gov (United States)

    Gaudreault, N; Scriven, D R L; Moore, E D W

    2006-01-01

    The authors have recently reported the presence and asymmetric distribution of the glucose transporters GLUT-1 to -5 and SGLT-1 in the endothelium of rat coronary artery (Gaudreault et al. 2004, Diabetologica, 47, 2081-2092). In the present study the authors investigate and compare the presence and subcellular distribution of the classic glucose transporter isoforms in endothelial cells of cerebral, renal, and mesenteric arteries. The GLUTs and SGLT-1 were examined with immunohistochemistry and wide-field fluorescence microscopy coupled to deconvolution in en face preparation of intact artery. We identified GLUT-1 to -5 and SGLT-1 in the endothelial cells of all three vascular beds. The relative level of expression for each isoform was found comparable amongst arteries. Clusters of the glucose transporter isoforms were found at a high density in proximity to the cell-to-cell junctions. In addition, a consistent asymmetric distribution of GLUT-1 to -5 was found, predominantly located on the abluminal side of the endothelium in all three vascular beds examined (ranging from 68% to 91%, p<.05). The authors conclude that the expression and subcellular distribution of glucose transporters are similar in endothelial cells from vascular beds of comparable diameter and suggest that their subcellular organization may facilitate transendothelial transport of glucose in small contractile arteries.

  18. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Institute of Scientific and Technical Information of China (English)

    Tavershima Dzenda; Joseph Olusegun Ayo; Alexander Babatunde Adelaiye; Ambrose Osemattah Adaudi

    2015-01-01

    To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine (ACh)-induced contraction of isolated rabbit jejunum. Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically. Results: ACh (2.0 × 10-10 g/mL) and the extract (2.0 × 10-4 g/mL) individually increased the frequency of contraction (mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5%and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase (P < 0.001) over the effect of ACh alone. Similarly, ACh (2.0 × 10-9 g/mL) and the extract individually increased significantly (P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the effect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile effect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  19. PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling.

    Science.gov (United States)

    Meder, Benjamin; Huttner, Inken G; Sedaghat-Hamedani, Farbod; Just, Steffen; Dahme, Tillman; Frese, Karen S; Vogel, Britta; Köhler, Doreen; Kloos, Wanda; Rudloff, Jessica; Marquart, Sabine; Katus, Hugo A; Rottbauer, Wolfgang

    2011-08-01

    Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.

  20. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    Science.gov (United States)

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-07-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.

  1. Fetal cardiac muscle contractility decreases with gestational age: a color-coded tissue velocity imaging study

    Directory of Open Access Journals (Sweden)

    Elmstedt Nina

    2012-05-01

    Full Text Available Abstract Background Present data regarding how the fetal heart works and develops throughout gestation is limited. However, the possibility to analyze the myocardial velocity profile provides new possibilities to gain further knowledge in this area. Thus, the objective of this study was to evaluate human fetal myocardial characteristics and deformation properties using color-coded tissue velocity imaging (TVI. Methods TVI recordings from 55 healthy fetuses, at 18 to 42 weeks of gestation, were acquired at a frame rate of 201–273 frames/s for offline analysis using software enabling retrieval of the myocardial velocity curve and 2D anatomical information. The measurements were taken from an apical four-chamber view, and the acquired data was correlated using regression analysis. Results Left ventricular length and width increased uniformly with gestational age. Atrioventricular plane displacement and the E’/A’ ratio also increased with gestational age, while a longitudinal shortening was demonstrated. Conclusions Fetal cardiac muscle contractility decreases with gestational age. As numerous fetal- and pregnancy-associated conditions directly influence the pumping function of the fetal heart, we believe that this new insight into the physiology of the human fetal cardiovascular system could contribute to make diagnosis and risk assessment easier and more accurate.

  2. Steroids and antihistamines synergize to inhibit rat's airway smooth muscle contractility.

    Science.gov (United States)

    Liu, Shao-Cheng; Chu, Yueng-Hsiang; Kao, Chuan-Hsiang; Wu, Chi-Chung; Wang, Hsing-Won

    2015-06-01

    Both glucocorticoids and H1-antihistamines were widely used on patients with allergic rhinitis (AR) and obstructive airway diseases. However, their direct effects on airway smooth muscle were not fully explored. In this study, we tested the effectiveness of prednisolone (Kidsolone) and levocetirizine (Xyzal) on isolated rat trachea submersed in Kreb's solution in a muscle bath. Changes in tracheal contractility in response to the application of parasympathetic mimetic agents were measured. The following assessments of the drug were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6) M methacholine; (3) effect of the drug on electrical field stimulation (EFS) induced tracheal smooth muscle contractions. The result revealed sole use of Kidsolone or Xyzal elicited no significant effect or only a little relaxation response on tracheal tension after methacholine treatment. The tension was 90.5 ± 7.5 and 99.5 ± 0.8 % at 10(-4) M for Xyzal and 10(-5) M for Kidsolone, respectively. However, a dramatically spasmolytic effect was observed after co-administration of Kidsolone and Xyzal and the tension dropped to 67.5 ± 13.6 %, with statistical significance (p antihistamines to dramatically relax the trachea smooth muscle within minutes. Therefore, for AR patients with acute asthma attack, combined use of those two drugs is recommended.

  3. Simulation of the contractile response of cells on an array of micro-posts.

    LENUS (Irish Health Repository)

    McGarry, J P

    2009-09-13

    A bio-chemo-mechanical model has been used to predict the contractile responses of smooth cells on a bed of micro-posts. Predictions obtained for smooth muscle cells reveal that, by converging onto a single set of parameters, the model captures all of the following responses in a self-consistent manner: (i) the scaling of the force exerted by the cells with the number of posts; (ii) actin distributions within the cells, including the rings of actin around the micro-posts; (iii) the curvature of the cell boundaries between the posts; and (iv) the higher post forces towards the cell periphery. Similar correspondences between predictions and measurements have been demonstrated for fibroblasts and mesenchymal stem cells once the maximum stress exerted by the stress fibre bundles has been recalibrated. Consistent with measurements, the model predicts that the forces exerted by the cells will increase with both increasing post stiffness and cell area (or equivalently, post spacing). In conjunction with previous assessments, these findings suggest that this framework represents an important step towards a complete model for the coupled bio-chemo-mechanical responses of cells.

  4. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  5. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart

    Directory of Open Access Journals (Sweden)

    Jennifer Q. Kwong

    2015-07-01

    Full Text Available In the heart, augmented Ca2+ fluxing drives contractility and ATP generation through mitochondrial Ca2+ loading. Pathologic mitochondrial Ca2+ overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP opening and cardiomyocyte death. Mitochondrial Ca2+ uptake is primarily mediated by the mitochondrial Ca2+ uniporter (MCU. Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca2+ uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca2+ challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca2+ levels were normal in hearts of Mcu-deleted mice, and mitochondria lacking MCU eventually loaded with Ca2+ after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed up for 30 min. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca2+ loading underlying a “fight-or-flight” response that acutely matches cardiac workload with ATP production.

  6. Actomyosin II contractility expels von Willebrand factor from Weibel-Palade bodies during exocytosis.

    Science.gov (United States)

    Nightingale, Thomas D; White, Ian J; Doyle, Emily L; Turmaine, Mark; Harrison-Lavoie, Kimberly J; Webb, Kathleen F; Cramer, Louise P; Cutler, Daniel F

    2011-08-22

    The study of actin in regulated exocytosis has a long history with many different results in numerous systems. A major limitation on identifying precise mechanisms has been the paucity of experimental systems in which actin function has been directly assessed alongside granule content release at distinct steps of exocytosis of a single secretory organelle with sufficient spatiotemporal resolution. Using dual-color confocal microscopy and correlative electron microscopy in human endothelial cells, we visually distinguished two sequential steps of secretagogue-stimulated exocytosis: fusion of individual secretory granules (Weibel-Palade bodies [WPBs]) and subsequent expulsion of von Willebrand factor (VWF) content. Based on our observations, we conclude that for fusion, WPBs are released from cellular sites of actin anchorage. However, once fused, a dynamic ring of actin filaments and myosin II forms around the granule, and actomyosin II contractility squeezes VWF content out into the extracellular environment. This study therefore demonstrates how discrete actin cytoskeleton functions within a single cellular system explain actin filament-based prevention and promotion of specific exocytic steps during regulated secretion.

  7. Contractile dysfunction in muscle may underlie androgen-dependent motor dysfunction in spinal bulbar muscular atrophy.

    Science.gov (United States)

    Oki, Kentaro; Halievski, Katherine; Vicente, Laura; Xu, Youfen; Zeolla, Donald; Poort, Jessica; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Wiseman, Robert W; Breedlove, S Marc; Jordan, Cynthia L

    2015-04-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by progressive muscle weakness linked to a polyglutamine expansion in the androgen receptor (AR). Current evidence indicates that mutant AR causes SBMA by acting in muscle to perturb its function. However, information about how muscle function is impaired is scant. One fundamental question is whether the intrinsic strength of muscles, an attribute of muscle independent of its mass, is affected. In the current study, we assess the contractile properties of hindlimb muscles in vitro from chronically diseased males of three different SBMA mouse models: a transgenic (Tg) model that broadly expresses a full-length human AR with 97 CAGs (97Q), a knock-in (KI) model that expresses a humanized AR containing a CAG expansion in the first exon, and a Tg myogenic model that overexpresses wild-type AR only in skeletal muscle fibers. We found that hindlimb muscles in the two Tg models (97Q and myogenic) showed marked losses in their intrinsic strength and resistance to fatigue, but were minimally affected in KI males. However, diseased muscles of all three models showed symptoms consistent with myotonic dystrophy type 1, namely, reduced resting membrane potential and deficits in chloride channel mRNA. These data indicate that muscle dysfunction is a core feature of SBMA caused by at least some of the same pathogenic mechanisms as myotonic dystrophy. Thus mechanisms controlling muscle function per se independent of mass are prime targets for SBMA therapeutics.

  8. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity.

    Science.gov (United States)

    Salomon, Julie; Gaston, Cécile; Magescas, Jérémy; Duvauchelle, Boris; Canioni, Danielle; Sengmanivong, Lucie; Mayeux, Adeline; Michaux, Grégoire; Campeotto, Florence; Lemale, Julie; Viala, Jérôme; Poirier, Françoise; Minc, Nicolas; Schmitz, Jacques; Brousse, Nicole; Ladoux, Benoit; Goulet, Olivier; Delacour, Delphine

    2017-01-13

    Monolayered epithelia are composed of tight cell assemblies that ensure polarized exchanges. EpCAM, an unconventional epithelial-specific cell adhesion molecule, is assumed to modulate epithelial morphogenesis in animal models, but little is known regarding its cellular functions. Inspired by the characterization of cellular defects in a rare EpCAM-related human intestinal disease, we find that the absence of EpCAM in enterocytes results in an aberrant apical domain. In the course of this pathological state, apical translocation towards tricellular contacts (TCs) occurs with striking tight junction belt displacement. These unusual cell organization and intestinal tissue defects are driven by the loss of actomyosin network homoeostasis and contractile activity clustering at TCs, yet is reversed by myosin-II inhibitor treatment. This study reveals that adequate distribution of cortical tension is crucial for individual cell organization, but also for epithelial monolayer maintenance. Our data suggest that EpCAM modulation protects against epithelial dysplasia and stabilizes human tissue architecture.

  9. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility.

    Science.gov (United States)

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.

  10. Subendocardial contractile impairment in chronic ischemic myocardium: assessment by strain analysis of 3T tagged CMR

    Directory of Open Access Journals (Sweden)

    Nagao Michinobu

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to quantify myocardial strain on the subendocardial and epicardial layers of the left ventricle (LV using tagged cardiovascular magnetic resonance (CMR and to investigate the transmural degree of contractile impairment in the chronic ischemic myocardium. Methods 3T tagged CMR was performed at rest in 12 patients with severe coronary artery disease who had been scheduled for coronary artery bypass grafting. Circumferential strain (C-strain at end-systole on subendocardial and epicardial layers was measured using the short-axis tagged images of the LV and available software (Intag; Osirix. The myocardial segment was divided into stenotic and non-stenotic segments by invasive coronary angiography, and ischemic and non-ischemic segments by stress myocardial perfusion scintigraphy. The difference in C-strain between the two groups was analyzed using the Mann-Whitney U-test. The diagnostic capability of C-strain was analyzed using receiver operating characteristics analysis. Results The absolute subendocardial C-strain was significantly lower for stenotic (-7.5 ± 12.6% than non-stenotic segment (-18.8 ± 10.2%, p Conclusions Analysis of tagged CMR can non-invasively demonstrate predominant impairment of subendocardial strain in the chronic ischemic myocardium at rest.

  11. Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

    Science.gov (United States)

    Machado, P. F.; Blanchard, G. B.; Duque, J.; Gorfinkiel, N.

    2014-06-01

    Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure (DC), a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.

  12. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart.

    Science.gov (United States)

    Kwong, Jennifer Q; Lu, Xiyuan; Correll, Robert N; Schwanekamp, Jennifer A; Vagnozzi, Ronald J; Sargent, Michelle A; York, Allen J; Zhang, Jianyi; Bers, Donald M; Molkentin, Jeffery D

    2015-07-01

    In the heart, augmented Ca(2+) fluxing drives contractility and ATP generation through mitochondrial Ca(2+) loading. Pathologic mitochondrial Ca(2+) overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP) opening and cardiomyocyte death. Mitochondrial Ca(2+) uptake is primarily mediated by the mitochondrial Ca(2+) uniporter (MCU). Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca(2+) uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca(2+) challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca(2+) levels were normal in hearts of Mcu-deleted mice, and mitochondria lacking MCU eventually loaded with Ca(2+) after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed up for 30 min. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca(2+) loading underlying a "fight-or-flight" response that acutely matches cardiac workload with ATP production.

  13. Altered right ventricular contractile pattern after cardiac surgery: monitoring of septal function is essential.

    Science.gov (United States)

    Nguyen, Tin; Cao, Long; Movahed, Assad

    2014-10-01

    Assessment of right ventricular (RV) function is important in the management of various forms of cardiovascular disease. Accurately assessing RV volume and systolic function is a challenge in day-to-day clinical practice due to its complex geometry. Tricuspid annular plane systolic excursion (TAPSE) and systolic excursion velocity (S') have been reviewed to further assess their suitability and objectivity in evaluating RV function. Multiple studies have validated their diagnostic and prognostic values in numerous pathologic conditions. Diminished longitudinal contraction after cardiothoracic surgery is a well-known phenomenon, but it is not well validated. Despite significant reduction in RV performance along the long-axis assessed by TAPSE and S' after cardiac surgery, RV ejection fractions did not change as well as the left ventricular parameters and exercise capacity. RV contractile patterns were markedly altered with decreased longitudinal shortening and increased transverse shortening, which are likely resulted from the septal damage during cardiac surgery. The septum is essential for RV performance due to its oblique fiber orientation. This allows ventricular twisting, which is a vital mechanism against increased pulmonary vascular resistance. The septum function along with TAPSE and S' should be adequately assessed during cardiac surgery, and evidence of septal dysfunction should lead to reevaluation of myocardial protection methods.

  14. Role of capsaicin-sensitive nerve fibers in uterine contractility in the rat.

    Science.gov (United States)

    Klukovits, Anna; Gaspar, Robert; Santha, Peter; Jancso, Gabor; Falkay, George

    2004-01-01

    The possible participation of capsaicin-sensitive sensory nerves in the modulation of neurogenic contractions was studied in nonpregnant and term pregnant rat uteri. Neurogenic contractions were elicited by electric field stimulation (40 V, 1-70 Hz, 0.6 msec) in intact uteri and uteri that were previously exposed to capsaicin in vitro. In capsaicin pretreated preparations obtained both from nonpregnant and term pregnant rats, a dose-dependent increase in the amplitude of uterine contractions was detected. Prior systemic treatment of the rats with capsaicin (130 mg/kg, s.c.) abolished the effect of in vitro capsaicin administration on the amplitude of neurogenic contractions. Use of a specific antagonist of calcitonin gene-related peptide revealed that depletion of this peptide, which normally elicits uterine smooth muscle relaxation, may be responsible for the increased responsiveness of the uterus to low-frequency stimulation. Experiments on the localization of calcitonin gene-related peptide in uterine tissue specimens exposed to capsaicin revealed dose-dependent depletion of calcitonin-gene related peptide-immunoreactive nerves innervating blood vessels and the myometrium. The findings indicate that capsaicin-sensitive afferent nerves, by the release of sensory neuropeptides, significantly contribute to the modulation of uterine contractility both in nonpregnant and term pregnant rats. It is suggested that uterine sensory nerve activation may be part of a trigger mechanism leading to preterm contractions evoked by, for example, inflammation.

  15. Accuracy of Dobutamine Stress Echocardiography in Detecting Recovery of Contractile Reserve after Revascularization of Ischemic Myocardium

    Directory of Open Access Journals (Sweden)

    Abas Ali karimi

    2007-09-01

    Full Text Available Background: This study was designed to investigate the accuracy of dobutamine stress echocardiography (DSE in detecting the post-revascularization recovery rate of contractile reserve (CR in ischemic myocardium. Methods: A total of 112 segments from seven patients with low ejection fraction (<35% and coronary artery disease were evaluated with DSE one week before and 12 weeks after coronary artery bypass graft surgery (CABG. Sensitivity, specificity, and positive and negative predictive values of DSE for detecting the recovery rate of CR were calculated based upon their standard definition and were presented with 95% confidence intervals (CI. Results: The mean baseline left ventricular ejection fraction was 31±4%, which reached 35±7% after CABG unremarkably. The recovery rates of resting function and CR were 18.2% and 50% for hypokinetic and 15.6% and 24.1 for akinetic segments respectively. Specificity, sensitivity, and positive and negative predictive values of DSE for detecting the recovery of CR were 83% (CI=69-97, 89% (CI=83-96, 94% (CI = 88-99, and 73 % (CI = 55-88, respectively. Conclusion: Despite acceptable sensitivity, specificity, and positive predictive value, DSE has a relatively lower negative predictive value for detecting the recovery of CR in ischemic myocardium and, consequently, the full extent of myocardial viability. Further sensitive techniques may, therefore, be needed to provide complementary information regarding long-term functional outcome.

  16. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo.

    Science.gov (United States)

    Maître, Jean-Léon; Niwayama, Ritsuya; Turlier, Hervé; Nédélec, François; Hiiragi, Takashi

    2015-07-01

    Mammalian embryos initiate morphogenesis with compaction, which is essential for specifying the first lineages of the blastocyst. The 8-cell-stage mouse embryo compacts by enlarging its cell-cell contacts in a Cdh1-dependent manner. It was therefore proposed that Cdh1 adhesion molecules generate the forces driving compaction. Using micropipette aspiration to map all tensions in a developing embryo, we show that compaction is primarily driven by a twofold increase in tension at the cell-medium interface. We show that the principal force generator of compaction is the actomyosin cortex, which gives rise to pulsed contractions starting at the 8-cell stage. Remarkably, contractions emerge as periodic cortical waves when cells are disengaged from adhesive contacts. In line with this, tension mapping of mzCdh1(-/-) embryos suggests that Cdh1 acts by redirecting contractility away from cell-cell contacts. Our study provides a framework to understand early mammalian embryogenesis and original perspectives on evolutionary conserved pulsed contractions.

  17. Dynamic dyssynchrony and impaired contractile reserve of the left ventricle in beta-thalassaemia major: an exercise echocardiographic study.

    Directory of Open Access Journals (Sweden)

    Yiu-fai Cheung

    Full Text Available BACKGROUND: Performance of the left ventricle during exercise stress in thalassaemia patients is uncertain. We aimed to explore the phenomenon of dynamic dyssynchrony and assess contractile reserve in patients with beta-thalassaemia major and determine their relationships with myocardial iron load. METHODS AND RESULTS: Thirty-two thalassaemia patients (16 males, aged 26.8 ± 6.9 years, without heart failure and 17 healthy controls were studied. Their left ventricular (LV volumes, ejection fraction, systolic dyssynchrony index (SDI, and myocardial acceleration during isovolumic LV contraction (IVA were determined at rest and during submaximal bicycle exercise testing using 3-dimensional and tissue Doppler echocardiography. Myocardial iron load as assessed by T2* cardiac magnetic resonance in patients were further related to indices of LV dyssynchrony and contractile reserve. At rest, patients had significantly greater LV SDI (p4.6%, control+2SD increased from baseline 25% to 84% in patients. Δ SDI(exercise-baseline correlated with exercise-baseline differences in LV ejection fraction (p<0.001 and stroke volume (p = 0.006. Compared with controls, patients had significantly less exercise-induced increase in LV ejection fraction, cardiac index, and IVA (interaction, all p<0.05 and had impaired contractile reserve as reflected by the gentler IVA-heart rate slope (p = 0.018. Cardiac T2* in patients correlated with baseline LV SDI (r = -0.44, p = 0.011 and IVA-heart rate slope (r = 0.36, p = 0.044. CONCLUSIONS: Resting LV dyssynchrony is associated with myocardial iron load. Exercise stress further unveils LV dynamic dyssynchrony and impaired contractile reserve in patients with beta-thalassaemia major.

  18. Surfactant Proteins SP-A and SP-D Modulate Uterine Contractile Events in ULTR Myometrial Cell Line.

    Directory of Open Access Journals (Sweden)

    Georgios Sotiriadis

    Full Text Available Pulmonary surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules. However, there is extrapulmonary existence, especially in the amniotic fluid and at the feto-maternal interface. There is sufficient evidence to suggest that SP-A and SP-D are involved in the initiation of labour. This is of great importance given that preterm birth is associated with increased mortality and morbidity. In this study, we investigated the effects of recombinant forms of SP-A and SP-D (rhSP-A and rhSP-D, the comprising of trimeric lectin domain on contractile events in vitro, using a human myometrial cell line (ULTR as an experimental model. Treatment with rhSP-A or rhSP-D increased the cell velocity, distance travelled and displacement by ULTR cells. rhSP-A and rhSP-D also affected the contractile response of ULTRs when grown on collagen matrices showing reduced surface area. We investigated this effect further by measuring contractility-associated protein (CAP genes. Treatment with rhSP-A and rhSP-D induced expression of oxytocin receptor (OXTR and connexin 43 (CX43. In addition, rhSP-A and rhSP-D were able to induce secretion of GROα and IL-8. rhSP-D also induced the expression of IL-6 and IL-6 Ra. We provide evidence that SP-A and SP-D play a key role in modulating events prior to labour by reconditioning the human myometrium and in inducing CAP genes and pro-inflammatory cytokines thus shifting the uterus from a quiescent state to a contractile one.

  19. Mechanisms involved in carbachol-induced Ca2+ sensitization of contractile elements in rat proximal and distal colon

    OpenAIRE

    Takeuchi, Tadayoshi; Kushida, Masahiko; Hirayama, Nobue; Kitayama, Muneyoshi; Fujita, Akikazu; Hata, Fumiaki

    2004-01-01

    Mechanisms involved in Ca2+ sensitization of contractile elements induced by the activation of muscarinic receptors in membrane-permeabilized preparations of the rat proximal and distal colon were studied.In α-toxin-permeabilized preparations from the rat proximal and distal colon, Ca2+ induced a rapid phasic and subsequent tonic component. After Ca2+-induced contraction reached a plateau, guanosine 5′-triphosphate (GTP) and carbachol (CCh) in the presence of GTP further contracted preparatio...

  20. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries

    DEFF Research Database (Denmark)

    Compeer, M. G.; Janssen, G. M. J.; De Mey, J. G. R.

    2013-01-01

    Background and PurposeEndothelin (ET)-1 and ET-2 cause potent long-lasting vasoconstrictions by tight binding to smooth muscle ETA receptors. We tested the hypotheses that different mechanisms mediate initiation and maintenance of arterial contractile responses to ET-1 and ET-2 and that this diff...... and BA. Selective functional antagonism may be considered for agonist- and vascular bed selective pharmacotherapy of ET-related diseases....

  1. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors.

    Science.gov (United States)

    Pustovit, Ksenia B; Kuzmin, Vladislav S; Abramochkin, Denis V

    2016-03-01

    Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart.

  2. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yingmei Zhang; Linlin Li; Yinan Hua; Jennifer M. Nunn; Feng Dong; Masashi Yanagisawa; Jun Ren

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction.The endothelin (ET) system,which plays a key role in myocardial homeostasis,may participate in cold exposure-induced cardiovascular dysfunction.This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses.Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4℃) environment for 2 and 5 weeks prior to evaluation of cardiac geometry,contractile,and intracellular Ca2+ properties.Levels of the temperature sensor transient receptor potential vanlllold (TRPV1),mitochondrlal proteins for biogenesis and oxidative phosphorylatlon,Including UCP2,HSP90,and PGC1α were evaluated.Cold stress triggered cardiac hypertrophy,depressed myocardial contractile capacity,including fractional shortening,peak shortening,and maximal velocity of shortening/relengthening,reduced intracellular Ca2+ release,prolonged intracellular Ca2+ decay and relengthening duration,generation of ROS and superoxide,as well as apoptosls,the effects of which were blunted by ETAKO.Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β,GATA4,and CREB in cold-stressed WT mouse hearts,which were obliterated by ETAKO.Levels of HSP90,an essential regulator for thermotolerance,were unchanged.The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepino mimicked cold stress- or ET-1-induced cardiac anomalies.The GSK3β Inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation.These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrlal function.

  3. THE EFFECT OF HYPOXIA ON ELECTRICAL AND CONTRACTILE PROPERTIES OF SMOOTH MUSCLES OF THE GUINEA PIG URETER

    Directory of Open Access Journals (Sweden)

    I. V. Kovalev

    2016-01-01

    Full Text Available Aim. The effect of hypoxia on the electrical and contractile activities of smooth muscles cells (SMCs of the guinea pig ureter was studied by the method of the double sucrose bridge.Materials and methods. This method allows registering simultaneously parameters of the action potential (AP and the contraction of SMCs, caused by an electrical stimulus.Results. It was found that lowering the oxygen content in the perfusion solution for 10 min resulted to an increase of electrical and contractile activity of ureteral SMCs. Addition of tetraethylammonium chloride (TEA, 5 mM – nonselective blocker of potassium membrane conductance – in hypoxic conditions causing an additional increase in the amplitude of the AP, duration of the AP plateau and the contractile responses of smooth muscles. Thus, the hypoxia decreased the potassium membrane conductance of ureteral SMCs. Inhibition of the effect of the α1 -adrenergic receptors agonist phenylephrine (PE, 10 mM on the electrical and contractile properties of SMCs in hypoxic condition indicate the involvement of the protein kinase C-dependent signaling system in effects of hypoxia. Pretreatment of ureteral smooth muscles with bumetanide (100 mM – selective inhibitor of Na+,K+,2Cl- - cotransporter (NKCC – caused a decrease of the activating effect of hypoxia on the SMCs of guinea pig ureter.Conclusion.Thus, the impact of hypoxia on the regulation of electrical activity and contractions of smooth muscles of guinea pig ureter may be due to changes in ion permeability of membranes SMCs and operation of ion-transporting systems. 

  4. CGP 41251, a new potential anticancer drug, improves contractility of rat isolated cardiac muscle subjected to hypoxia.

    Science.gov (United States)

    Kocic, I; Dworakowska, D; Dworakowski, R; Petrusewicz, J

    2001-06-01

    The aim of the present work was to examine the effects of 4'-N-benzoyl staurosporine (CGP 41251), a protein kinase C inhibitor with broad antiproliferative activity in many cell lines, on the rat isolated heart contractility under normoxic and hypoxic conditions. Additionally, we examined the effects of CGP 41251, WB-4101 (alpha1a -adrenoceptor antagonist), chloroethylclonidine (CEC) (alpha1b-adrenoceptor antagonist) and selective damage of endocardial endothelium by Triton X-100 on the protection against hypoxia induced by preconditioning of rat heart tissue. Experiments were performed on rat isolated left ventricular papillary muscle. The following parameters were measured: force of contraction (Fc), velocity of contraction (+dF/dt) and velocity of relaxation (-dF/dt). The temperature of the bath solution was 37 degrees C +/- 0.5 degrees C, and rate of electrical stimulation was 0.5 Hz. At concentrations less than 1 microM CGP 41251 did not cause any changes in contractility of rat heart. At 1 and 3 microM, significant positive inotropic action was observed. Treatment of rat papillary muscle by CGP 41251 at 3 microM reduced decreasing of contractility by simulated hypoxia and reperfusion. Moreover, protective effects of preconditioning was not affected by addition of CGP 41251 neither at 1 nor at 3 microM. Pretreatment with CEC at 3 microM, and selective damage of endocardial endothelium induced by fast (1-s) immersion of papillary muscle in 0.5% Triton X-100, but not pretreatment with WB-4101, abolished the protective effects of preconditioning. The results imply that CGP 41251 improves contractility of heart muscle under normoxic and hypoxic conditions, and does not alter hypoxic preconditioning in rat isolated cardiac tissue. Moreover, it was shown that alpha1b-adrenoceptors and endocardial endothelium are involved in triggering of preconditioning in rat isolated heart muscle.

  5. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    Science.gov (United States)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  6. Comparison of the contractile responses to irregular and regular trains of stimuli during microstimulation of single human motor axons.

    Science.gov (United States)

    Leitch, Michael; Macefield, Vaughan G

    2014-04-01

    During voluntary contractions, human motoneurons discharge with a physiological variability of ∼20%. However, studies that have measured the contractile responses to microstimulation of single motor axons have used regular trains of stimuli with no variability. We tested the hypothesis that irregular (physiological) trains of stimuli produce greater contractile responses than regular (nonphysiological) trains of identical mean frequency but zero variability. High-impedance tungsten microelectrodes were inserted into the common peroneal nerve and guided into fascicles supplying a toe extensor muscle. Selective microstimulation was achieved for 14 single motor axons. Contractile responses were measured via an angular displacement transducer over the relevant toe. After the responses to regular trains of 10 stimuli extending from 2 to 100 Hz were recorded, irregular trains of 10 stimuli, based on the interspike intervals recorded from single motor units during voluntary contractions, were delivered. Finally, the stimulation sequences were repeated following a 2-min period of continuous stimulation at 10 Hz to induce muscle fatigue. Regular trains of stimuli generated a sigmoidal increase in displacement with frequency, whereas irregular trains, emulating the firing of volitionally driven motoneurons, displayed significantly greater responses over the same frequency range (8-24 Hz). This was maintained even in the presence of fatigue. We conclude that physiological discharge variability, which incorporates short and long interspike intervals, offers an advantage to the neuromuscular system by allowing motor units to operate on a higher level of the contraction-frequency curve and taking advantage of catch-like properties in skeletal muscle.

  7. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function

    Directory of Open Access Journals (Sweden)

    Matthew J. Birket

    2015-10-01

    Full Text Available Maximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC model of hypertrophic cardiomyopathy (HCM. A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.

  8. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function.

    Science.gov (United States)

    Birket, Matthew J; Ribeiro, Marcelo C; Kosmidis, Georgios; Ward, Dorien; Leitoguinho, Ana Rita; van de Pol, Vera; Dambrot, Cheryl; Devalla, Harsha D; Davis, Richard P; Mastroberardino, Pier G; Atsma, Douwe E; Passier, Robert; Mummery, Christine L

    2015-10-27

    Maximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC) model of hypertrophic cardiomyopathy (HCM). A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.

  9. Ca(2+)-free, high-Ca2+ coronary perfusion suppresses contractility and excitation-contraction coupling energy.

    Science.gov (United States)

    Araki, J; Takaki, M; Namba, T; Mori, M; Suga, H

    1995-03-01

    We studied the mechanoenergetic effects of a short-term Ca(2+)-free, high-Ca2+ Tyrode solution coronary perfusion in eight excised, cross-circulated canine hearts. The perfusion protocol consisted of coronary perfusion with Ca(2+)-free Tyrode solution for 10 min followed by high-Ca2+ (16 mM) Tyrode solution for 5 min. This new protocol successfully induced acute contractile failure in seven hearts, without myocardial ultrastructural changes. We studied the end-systolic pressure-volume relation (slope = Emax, a contractility index) and the relation between oxygen consumption per beat (VO2) and systolic pressure-volume area (PVA) in these failing hearts. These hearts had no increase in end-diastolic pressure at a given volume, a 40% decrease in Emax and a proportional decrease in the PVA-independent VO2 for 1-4 h, but no decrease in the oxygen cost of PVA, defined as the slope of the VO2-PVA relation. The oxygen cost of Emax for Ca2+ handling, defined as the slope of the relation between PVA-independent VO2 and Emax, was unchanged in the failing hearts. We conclude that the present protocol induced left ventricular contractile failure, primarily involving the suppression of Ca2+ handling energy for excitation-contraction coupling.

  10. High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17

    Science.gov (United States)

    2017-01-01

    Obesity is a critical risk factor for the hypertension. Although angiotensin II (Ang II) in obese individuals is known to be upregulated in obesity-induced hypertension, direct evidence that explains the underlying mechanism for increased vascular tone and consequent increase in blood pressure (BP) is largely unknown. The purpose of this study is to investigate the novel mechanism underlying Ang II-induced hyper-contractility and hypertension in obese rats. Eight-week old male Sprague-Dawley rats were fed with 60% fat diet or normal diet for 4 months. Body weight, plasma lipid profile, plasma Ang II level, BP, Ang II-induced vascular contraction, and expression of regulatory proteins modulating vascular contraction with/without Ang II stimulation were measured. As a result, high fat diet (HFD) accelerated age-dependent body weight gaining along with increased plasma Ang II concentration. It also increased BP and Ang II-induced aortic contraction. Basal expression of p-CPI-17 and myosin light chain (MLC) kinase was increased by HFD along with increased phosphorylation of MLC. Ang II-induced phosphorylation of CPI-17 and MLC were also higher in HFD group than control group. In conclusion HFD-induced hypertension is through at least in part by increased vascular contractility via increased expression and activation of contractile proteins and subsequent MLC phosphorylation induced by increased Ang II. PMID:28066146

  11. Separation and partial characterization of smooth muscle contractile material in the venom of the scorpion Heterometrus bengalensis.

    Science.gov (United States)

    Kar, P K; Sarangi, B; Datta, A; Gomes, A; Lahiri, S C

    1983-01-01

    A smooth muscle contractile material was separated from crude venom of the scorpion Heterometrus bengalensis (found in Eastern India) by solvent extraction, gel filtration and thin layer chromatography. Smooth muscle contractile material could be extracted, in descending order of efficiency, with methanol, butanol, ethanol and acetone. The contractile material separated by gel filtration (Sephadex G-25) when further extracted, using the Folch procedure, showed a single spot in thin layer chromatography with one solvent system. Rechromatography of an eluate from this spot with another solvent system resolved it into three spots (SL1, SL2 and SL3, the mixture being designated as Substance L) which could be visualized either with iodine vapour, ninhydrin or molybdenum reagent. Eluates from the three spots contracted guinea-pig ileum which had been pretreated with antagonists of ACh, histamine, 5-HT and prostaglandins. Substance L and its fractions (SL1, SL2 and SL3) contain inorganic phosphorus, amino nitrogen and amino sugar, which point to the likelihood of their being glycophosphatides.

  12. Time-lapse imaging as a tool to investigate contractility of the epididymal duct--effects of cGMP signaling.

    Directory of Open Access Journals (Sweden)

    Andrea Mietens

    Full Text Available The well orchestrated function of epididymal smooth muscle cells ensures transit of spermatozoa through the epididymal duct during which spermatozoa acquire motility and fertilizing capacity. Relaxation of smooth muscle cells is mediated by cGMP signaling and components of this pathway are found within the male reproductive tract. Whereas contractile function of caudal parts of the rat epididymal duct can be examined in organ bath studies, caput and corpus regions are fragile and make it difficult to mount them in an organ bath. We developed an ex vivo time-lapse imaging-based approach to investigate the contractile pattern in these parts of the epididymal duct. Collagen-embedding allowed immobilization without impeding contractility or diffusion of drugs towards the duct and therefore facilitated subsequent movie analyses. The contractile pattern was made visible by placing virtual sections through the acquired image stack to track wall movements over time. By this, simultaneous evaluation of contractile activity at different positions of the observed duct segment was possible. With each contraction translating into a spike, drug-induced alterations in contraction frequency could be assessed easily. Peristaltic contractions were also detectable and throughout all regions in the proximal epididymis we found regular spontaneous contractile activity that elicited movement of intraluminal contents. Stimulating cGMP production by natriuretic peptide ANP or inhibiting degradation of cGMP by the phosphodiesterase 5 inhibitor sildenafil significantly reduced contractile frequency in isolated duct segments from caput and corpus. RT-PCR analysis after laser-capture microdissection localized the corresponding molecules to the smooth muscle layer of the duct. Our time-lapse imaging approach proved to be feasible to assess contractile function in all regions of the epididymal duct under near physiological conditions and provides a tool to evaluate acute

  13. Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure.

    Science.gov (United States)

    Karimi, Ashkan; Milewicz, Dianna M

    2016-01-01

    The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibres. The SMC elastin-contractile unit is a structural unit that links the elastin fibres to the SMCs and is characterized by the following: (1) layers of elastin fibres that are surrounded by microfibrils; (2) microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs; and (3) SMC contractile filaments that are linked to the focal adhesions on the inner side of the membrane. The genes that are altered to cause thoracic aortic aneurysms and aortic dissections encode proteins involved in the structure or function of the SMC elastin-contractile unit. Included in this gene list are the genes encoding protein that are structural components of elastin fibres and microfibrils, FBN1, MFAP5, ELN, and FBLN4. Also included are genes that encode structural proteins in the SMC contractile unit, including ACTA2, which encodes SMC-specific α-actin and MYH11, which encodes SMC-specific myosin heavy chain, along with MYLK and PRKG1, which encode kinases that control SMC contraction. Finally, mutations in the gene encoding the protein linking integrin receptors to the contractile filaments, FLNA, also predispose to thoracic aortic disease. Thus, these data suggest that functional SMC elastin-contractile units are important for maintaining the structural integrity of the aorta.

  14. Chaperonin containing T-complex polypeptide subunit eta (CCT-eta is a specific regulator of fibroblast motility and contractility.

    Directory of Open Access Journals (Sweden)

    Latha Satish

    Full Text Available Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF and platelet derived growth factor (PDGF stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (alpha-SMA expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less alpha-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular

  15. The effect of substrate elasticity and actomyosin contractility on different forms of endocytosis.

    Science.gov (United States)

    Missirlis, Dimitris

    2014-01-01

    Substrate mechanical properties have emerged as potent determinants of cell functions and fate. We here tested the hypothesis that different forms of endocytosis are regulated by the elasticity of the synthetic hydrogels cells are cultured on. Towards this objective, we quantified cell-associated fluorescence of the established endocytosis markers transferrin (Tf) and cholera toxin subunit B (CTb) using a flow-cytometry based protocol, and imaged marker internalization using microscopy techniques. Our results demonstrated that clathrin-mediated endocytosis of Tf following a 10-minute incubation with a fibroblast cell line was lower on the softer substrates studied (5 kPa) compared to those with elasticities of 40 and 85 kPa. This effect was cancelled after 1-hour incubation revealing that intracellular accumulation of Tf at this time point did not depend on substrate elasticity. Lipid-raft mediated endocytosis of CTb, on the other hand, was not affected by substrate elasticity in the studied range of time and substrate elasticity. The use of pharmacologic contractility inhibitors revealed inhibition of endocytosis for both Tf and CTb after a 10-minute incubation and a dissimilar effect after 1 hour depending on the inhibitor type. Further, the internalization of fluorescent NPs, used as model drug delivery systems, showed a dependence on substrate elasticity, while transfection efficiency was unaffected by it. Finally, an independence on substrate elasticity of Tf and CTb association with HeLa cells indicated that there are cell-type differences in this respect. Overall, our results suggest that clathrin-mediated but not lipid-raft mediated endocytosis is potentially influenced by substrate mechanics at the cellular level, while intracellular trafficking and accumulation show a more complex dependence. Our findings are discussed in the context of previous work on how substrate mechanics affect the fundamental process of endocytosis and highlight important

  16. Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts

    Institute of Scientific and Technical Information of China (English)

    Yuan James RAO; Lei XI

    2009-01-01

    Phosphodiesterases (PDEs) are enzymes that degrade cellular cAMP and cGMP and are thus essential for regulating the cyclic nucleotides. At least 11 families of PDEs have been identified, each with a distinctive structure, activity, expression, and tissue distribution. The PDE type-3, -4, and -5 (PDE3, PDE4, PDE5) are localized to specific regions of the cardiomyo-cyte, such as the sarcoplasmic reticulum and Z-disc, where they are likely to influence cAMP/cGMP signaling to the end effectors of contractility. Several PDE inhibitors exhibit remarkable hemodynamic and inotropic properties that may be valuable to clinical practice. In particular, PDE3 inhibitors have potent cardiotonic effects that can be used for short-term inotropic support, especially in situations where adrenergic stimulation is insufficient. Most relevant to this review, PDE in-hibitors have also been found to have cytoprotective effects in the heart. For example, PDE3 inhibitors have been shown to be cardioprotective when given before ischemic attack, whereas PDE5 inhibitors, which include three widely used erectile dysfunction drugs (sildenafil, vardenafil and tadalafil), can induce remarkable cardioprotection when administered either prior to ischemia or upon reperfusion. This article provides an overview of the current laboratory and clinical evidence, as well as the cellular mechanisms by which the inhibitors of PDE3, PDE4 and PDE5 exert their beneficial effects on normal and ischemic hearts. It seems that PDE inhibitors hold great promise as clinically applicable agents that can improve car-diac performance and cell survival under critical situations, such as ischemic heart attack, cardiopulmonary bypass surgery, and heart failure.

  17. Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue.

    Science.gov (United States)

    Schleip, Robert; Naylor, Ian L; Ursu, Daniel; Melzer, Werner; Zorn, Adjo; Wilke, Hans-Joachim; Lehmann-Horn, Frank; Klingler, Werner

    2006-01-01

    The article introduces the hypothesis that intramuscular connective tissue, in particular the fascial layer known as the perimysium, may be capable of active contraction and consequently influence passive muscle stiffness, especially in tonic muscles. Passive muscle stiffness is also referred to as passive elasticity, passive muscular compliance, passive extensibility, resting tension, or passive muscle tone. Evidence for the hypothesis is based on five indications: (1) tonic muscles contain more perimysium and are therefore stiffer than phasic muscles; (2) the specific collagen arrangement of the perimysium is designed to fit a load-bearing function; (3) morphological considerations as well as histological observations in our laboratory suggest that the perimysium is characterized by a high density of myofibroblasts, a class of fibroblasts with smooth muscle-like contractile kinetics; (4) in vitro contraction tests with fascia have demonstrated that fascia, due to the presence of myofibroblasts, is able to actively contract, and that the resulting contraction forces may be strong enough to influence musculoskeletal dynamics; (5) the pronounced increase of the perimysium in muscle immobilization and in the surgical treatment of distraction osteogenesis indicates that perimysial stiffness adapts to mechanical stimulation and hence influences passive muscle stiffness. In conclusion, the perimysium seems capable of response to mechanostimulation with a myofibroblast facilitated active tissue contraction, thereby adapting passive muscle stiffness to increased tensional demands, especially in tonic musculature. If verified, this new concept may lead to novel pharmaceutical or mechanical approaches to complement existing treatments of pathologies which are accompanied by an increase or decrease of passive muscle stiffness (e.g., muscle fibroses such as torticollis, peri-partum pelvic pain due to pelvic instability, and many others). Methods for testing this new concept

  18. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Institute of Scientific and Technical Information of China (English)

    Tavershima; Dzenda; Joseph; Olusegun; Ayo; Alexander; Babatunde; Adelaiye; Ambrose; Osemattah; Adaudi

    2015-01-01

    Objective:To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine(ACh)-induced contraction of isolated rabbit jejunum.Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically.Results: ACh(2.0 × 10-10 g/m L) and the extract(2.0 × 10-4 g/m L) individually increased the frequency of contraction(mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5% and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase(P < 0.001) over the effect of ACh alone. Similarly, ACh(2.0 × 10-9 g/m L) and the extract individually increased significantly(P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the ef ect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile ef ect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  19. Phytoestrogen genistein decreases contractile response of aortic artery in vitro and arterial blood pressure in vivo

    Institute of Scientific and Technical Information of China (English)

    Hong-fang LI; Long-de WANG; Song-yi QU

    2004-01-01

    AIM: To determine the mechanisms of effects of phytoestrogen genistein on the contracted rabbit aortic arteries in vitro, and observe the effect of genistein and 17-β estradiol on mean arterial pressure (MAP) in ovariectomized (OVX) rats. METHODS: (1) Strips of rabbit aortic smooth muscle were suspended in organ baths containing Kreb's solution, and then isometric tension was measured. (2) Female mature Wistar rats underwent a bilateral ovariectomy (OVX). Sham-operated rats (SHAM) were used as controls. After administration of genistein (0.4(1) Similar to 17-β estradiol, genistein could dose-dependently relax 40 mmol/L KCl-precontracted arterial strips.Incubation with Nω-L-nitro-arginine (L-NNA), methylene blue (MB), indomethacin, propranolol or endothelium removal did not affect relaxation induced by genistein. In calcium-free solution containing 0.01mmol/L egtazic acid (EGTA), genistein inhibited not only the first phase contraction induced by noradrenaline (NA), but also the second contraction induced by CaCl2. In addition, genistein could reduce the contractile responses of NA, KCl and CaCl2,and shift their cumulative concentration-response curves rightward. (2) MAP in OVX rats was significantly higher compared with that of SHAM rats. However, after chronically treatment with genistein or 17-β estradiol for 21 d the baseline MAP in OVX rats was reduced significantly. CONCLUSIONS: (1) The vasodilator effect of genistein in vitro is endothelium independent and not related to the nitric oxide, its mechanisms being probably due to inhibition of Ca2+ influx through calcium channels in a noncompetitive manner and Ca2+ release from intracellular store induced by NA. (2) Administration of genistein or 17-β estradiol can chronically decrease MAP in OVX rats.

  20. Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility.

    Science.gov (United States)

    Cunnington, Ryan H; Wang, Baiqiu; Ghavami, Saeid; Bathe, Krista L; Rattan, Sunil G; Dixon, Ian M C

    2011-01-01

    Cardiac myofibroblasts are key players in chronic remodeling of the cardiac extracellular matrix, which is mediated in part by elevated transforming growth factor-β₁ (TGF-β₁). The c-Ski proto-oncoprotein has been shown to modify TGF-β₁ post-receptor signaling through receptor-activated Smads (R-Smads); however, little is known about how c-Ski regulates fibroblast phenotype and function. We sought to elucidate the function of c-Ski in primary cardiac myofibroblasts using a c-Ski overexpression system. Cardiac myofibroblasts expressed three forms of c-Ski with the predominant band at 105 kDa, and adenoviral c-Ski treatment resulted in overexpression of 95-kDa c-Ski in cellular nuclei. Exogenous c-Ski led to significant inhibition of type I collagen secretion and myofibroblast contractility using two-dimensional semifloating gel contraction assay in both basal and with TGF-β₁ (10 ng/ml for 24 h) stimulation. Overexpressed c-Ski did not inhibit nuclear translocation of phosphorylated R-Smad2, despite their binding, as demonstrated by immunoprecipitation. Acute treatment of primary myofibroblasts with TGF-β₁ in vitro revealed a marked nuclear shuttling of c-Ski at 24 and 48 h following stimulation. Remarkably, overexpression of c-Ski led to a stepwise reduction of the myofibroblast marker α-smooth muscle actin with increasing multiplicity of infection, and these results indicate that 95-kDa c-Ski overexpression may effect a loss of the myofibroblastic phenotype. Furthermore, adenovirus (Ad) for hemagglutinin-tagged c-Ski infection led to a reduction in the number of myofibroblasts versus Ad-LacZ-infected and uninfected controls, due to induction of apoptosis. Finally, we observed a significant increase in 105-kDa c-Ski in the cytosolic fraction of cells of the infarct scar and adjacent remnant myocardium vs. noninfarcted controls.

  1. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella.

    Science.gov (United States)

    Allen, R D

    1973-02-01

    An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction.

  2. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea

    Directory of Open Access Journals (Sweden)

    T.B. Vasconcelos

    2016-01-01

    Full Text Available β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties. β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50 for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated pathways. β-Citronellol (but not verapamil inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1 or transient receptor potential ankyrin 1 (TRPA1 receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by

  3. Modification of abomasum contractility by flavonoids present in ruminants diet: in vitro study.

    Science.gov (United States)

    Mendel, M; Chłopecka, M; Dziekan, N; Karlik, W

    2016-09-01

    Flavonoid supplementation is likely to be beneficial in improving rumen fermentation and in reducing the incidence of rumen acidosis and bloat. Flavonoids are also said to increase the metabolic performance during the peripartum period. Ruminants are constantly exposed to flavonoids present in feed. However, it is not clear if these phytochemicals can affect the activity of the gut smooth muscle. Therefore, the aim of the study was to verify the effect of three flavonoids on bovine isolated abomasum smooth muscle. The study was carried out on bovine isolated circular and longitudinal abomasal smooth muscle specimens. All experiments were conducted under isometric conditions. The effect of apigenin, luteolin and quercetin (0.001 to 100 µM) was evaluated on acetylcholine-precontracted preparations. The effect of multiple, but not cumulative, treatment and single treatment with each flavonoid on abomasum strips was compared. Apigenin (0.1 to 100 µM) dose-dependently showed myorelaxation effects. Luteolin and quercetin applied in low doses increased the force of the ACh-evoked reaction. However, if used in high doses in experiments testing a wide range of concentrations, their contractile effect either declined (luteolin) or was replaced by an antispasmodic effect (quercetin). Surprisingly, the reaction induced by flavonoids after repeated exposure to the same phytochemical was not reproducible in experiments testing only single exposure of abomasum strips to the same flavonoid used in a high concentration. Taking into account the physicochemical properties of flavonoids, this data suggests the ability of flavonoids to interfere with cell membranes and, subsequently, to modify their responsiveness. Assuming ruminant supplementation with luteolin or quercetin or their presence in daily pasture, a reduction of the likelihood of abomasum dysmotility should be expected.

  4. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    Science.gov (United States)

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  5. Unusual effects of SCN and lyotropic anions on contractility of vascular smooth muscle from female rats.

    Science.gov (United States)

    Zhang, A M; Altura, B T; Altura, B M

    1991-08-01

    Replacement of extracellular chloride ions by thiocyanate anions (SCN-) followed by washout in normal chloride-containing solution produced contractions in isolated rat aortas and portal veins of female rats followed by slow relaxation; these contractions consisted of fast and slow phases. These SCN(-)-induced biphasic contractions were also noted in rat aortas precontracted by 80 mM KCl and 100 microM noradrenaline. No differences were noted between isolated aortic precontracted by 80 mM KCl and 100 microM noradrenaline. No differences were noted between isolated aortic strips versus intact ring preparations. The SCN(-)-induced contractions in both the aorta and portal vein were inhibited markedly by denervation with 6-hydroxydopamine. Use of prazosin, rauwolscine, propranolol, atropine, methysergide, diphenydramine, indomethacin or procaine (10(-3) M) failed to alter the SCN(-)-induced responses. However, use of phentolamine at 10(-5) M, but not at lower concentrations of the drug, resulted in complete inhibition of SCN(-)-induced contractions. Treatment of the vascular tissues with EGTA (5 mM) or incubation in Ca(2+)-free media abolished the SCN(-)-induced contractile responses. Treatment with verapamil (10(-6) M) or washing in Ca(2+)-free Krebs Ringer solution after incubation with SCN(-)-Krebs Ringer selectively inhibited the slow phases of the aortic contractions. Replacement of SCN- anions with other foreign monovalent anions or with sucrose modified the amplitude of the SCN(-)-induced contractions. These foreign anions seemed to follow a relative order of potency similar to that for a lyotropic series of anions, where acetate greater than isethionate greater than chloride greater than bromide greater than nitrate greater than iodide ions.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Contractile and elastic ankle joint muscular properties in young and older adults.

    Directory of Open Access Journals (Sweden)

    Christopher J Hasson

    Full Text Available The purpose of this study was to investigate age-related differences in contractile and elastic properties of both dorsi- (DF and plantarflexor (PF muscles controlling the ankle joint in young and older adults. Experimental data were collected while twelve young and twelve older male and female participants performed maximal effort isometric and isovelocity contractions on a dynamometer. Equations were fit to the data to give torque-angle (Tθ and torque-angular velocity (Tω relations. Muscle series-elasticity was measured during ramped dynamometer contractions using ultrasonography to measure aponeurosis extension as a function of torque; second order polynomials were used to characterize the torque-extension (TΔL relation. The results showed no age differences in DF maximal torque and none for female PF; however, older males had smaller maximal PF torques compared to young males. In both muscle groups and genders, older adults had decreased concentric force capabilities. Both DF and PF TΔL relations were more nonlinear in the older adults. Older PF, but not DF muscles, were stiffer compared to young. A simple antagonism model suggested age-related differences in Tθ and Tω relations would be magnified if antagonistic torque contributions were included. This assessment of static, dynamic, and elastic joint properties affords a comprehensive view of age-related modifications in muscle function. Although many clinical studies use maximal isometric strength as a marker of functional ability, the results demonstrate that there are also significant age-related modifications in ankle muscle dynamic and elastic properties.

  7. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  8. Pretreatment with remifentanil protects against the reduced-intestinal contractility related to the ischemia and reperfusion injury in rat

    Directory of Open Access Journals (Sweden)

    Hale Sayan-Ozacmak

    2015-12-01

    Full Text Available BACKGROUND AND OBJECTIVES: Serious functional and structural alterations of gastrointestinal tract are observed in failure of blood supply, leading to gastrointestinal dismotility. Activation of opioid receptors provides cardioprotective effect against ischemia-reperfusion (I/R injury. The aim of the present study was to determine whether or not remifentanil could reduce I/R injury of small intestine. METHODS: Male Wistar Albino rats were subjected to mesenteric ischemia (30 min followed by reperfusion (3 h. Four groups were designed: sham control; remifentanil alone; I/R control; and remifentanil + I/R. Animals in remifentanil + I/R group were subjected to infusion of remifentanil (2 ug kg-1 min-1 for 60 min, half of which started before inducing ischemia. Collecting the ileum tissues, evaluation of damage was based on contractile responses to carbachol, levels of lipid peroxidation and neutrophil infiltration, and observation of histopathological features in intestinal tissue. RESULTS: Following reperfusion, a significant decrease in carbachol-induced contractile response, a remarkable increase in both lipid peroxidation and neutrophil infiltration, and a significant injury in mucosa were observed. An average contractile response of remifentanil + I/R group was significantly different from that of the I/R group. Lipid peroxidation and neutrophil infiltration were also significantly suppressed by the treatment. The tissue samples of the I/R group were grade 4 in histopathological evaluation. In remifentanil + I/R group, on the other hand, the mucosal damage was moderate, staging as grade 1. CONCLUSIONS: The pretreatment with remifentanil can attenuate the intestinal I/R injury at a remarkable degree possibly by lowering lipid peroxidation and leukocyte infiltration.

  9. In vitro effects of L-arginine on spontaneous and homocysteine-induced contractility of pregnant canine uteri.

    Science.gov (United States)

    Rizzo, Annalisa; Trisolini, Carmelinda; Spedicato, Massimo; Mutinati, Maddalena; Minoia, Giuseppe; Sciorsci, Raffaele Luigi

    2011-09-01

    The L-Arginine-Nitric Oxide Synthase-Nitric Oxide (L-Arg-NOS-NO) system exerts a pivotal role in the maintenance of uterine quiescence during pregnancy, whereas Homocysteine (Hcy) promotes uterine contractility. The aim of this study was to test the in vitro effects of L-Arg on spontaneous and Hcy-induced contractions of uteri excised from pregnant bitches. 104 strips cut from pregnant uteri were mounted in an organ bath. 40 out of 104 strips (16 from mid-gestation uteri and 24 from close to term uteri, respectively) were exposed to cumulative doses of L-Arg; 40 strips (16 from mid-gestation-uteri and 24 from close to term-uteri, respectively) were exposed to N-nitro-L-arginine methyl ester (L-NAME), a NOS antagonist; the remaining 24 strips (from close-to-term uteri) were first exposed to a single dose of Hcy and then to increasing doses of L-Arg. L-Arg showed no effects on spontaneous contractility both in mid-gestation- and close to term-uterine strips, whereas it promoted a relaxant effect on Hcy-induced contractility. On the contrary, L-NAME increased amplitude of contraction both in mid-gestation and close to term strips. These findings suggest that the L-Arg-NO system is present in the uterus of pregnant bitches and that Hcy is able to modulate its actions. Further investigation of this system may provide the basis of future obstetrical therapies in bitches.

  10. Getting the jump on skeletal muscle disuse atrophy: preservation of contractile performance in aestivating Cyclorana alboguttata (Gunther 1867).

    Science.gov (United States)

    Symonds, Beth L; James, Rob S; Franklin, Craig E

    2007-03-01

    Prolonged immobilisation or unloading of skeletal muscle causes muscle disuse atrophy, which is characterised by a reduction in muscle cross-sectional area and compromised locomotory function. Animals that enter seasonal dormancy, such as hibernators and aestivators, provide an interesting model for investigating atrophy associated with disuse. Previous research on the amphibian aestivator Cyclorana alboguttata (Günther 1867) demonstrated an absence of muscle disuse atrophy after 3 months of aestivation, as measured by gastrocnemius muscle contractile properties and locomotor performance. In this study, we aimed to investigate the effect of aestivation on iliofibularis and sartorius muscle morphology and contractile function of C. alboguttata over a longer, more ecologically relevant time-frame of 9 months. We found that whole muscle mass, muscle cross-sectional area, fibre number and proportions of fibre types remained unchanged after prolonged disuse. There was a significant reduction in iliofibularis fibre cross-sectional area (declined by 36% for oxidative fibre area and 39% for glycolytic fibre area) and sartorius fibre density (declined by 44%). Prolonged aestivation had little effect on the isometric properties of the skeletal muscle of C. alboguttata. There was a significant reduction in the isometric contraction times of the relatively slow-twitch iliofibularis muscle, suggesting that the muscle was becoming slower after 9 months of aestivation (time to peak twitch increased by 25%, time from peak twitch to half relaxation increased by 34% and time from last stimulus to half tetanus relation increased by 20%). However, the results of the work-loop analysis clearly demonstrate that, despite changes to muscle morphology and isometric kinetics, the overall contractile performance and power output levels of muscles from 9-month aestivating C. alboguttata are maintained at control levels.

  11. Contractile action of galanin analogues on rat isolated gastric fundus strips is modified by tachyphylaxis to substance P.

    Science.gov (United States)

    Korolkiewicz, R; Sliwiński, W; Rekowski, P; Halama, A; Mucha, P; Szczurowicz, A; Guzowski, P; Korolkiewicz, K Z

    1996-06-01

    This study was undertaken to characterize the interaction of porcine galanin (Gal) and some of its analogues with their receptors on rat gastric fundus muscle strips. Gal, galantide (M15) and Gal(1-14)-[Abu8]SCY-I evoked concentration-dependent contractions of gastric smooth muscle strips. Reproducible effects were observed in concentrations of 1-300, 3-1000 and 100-3000 nM, respectively. Specific EC50 for the contractile effect equalled 13.70 and 187 nM. Hill's coefficient for Gal is 1.03 indicating an interaction of one Gal molecule with one receptor, fulfilling the criteria of classical receptor theory. For M15 and Gal(1-14)-[Abu8]SCY-I Hill's coefficients are different from 1, namely 0.73 and 1.56, pointing out that the principle of interaction of one drug molecule with one receptor may not apply. The contraction induced by 300 nM of Gal was not significantly modified by tachyphylaxis to substance P (SP). On the contrary the introduction of tachyphylaxis to SP decreased the contractile effects of M15 and Gal(1-14)-[Abu8]SCY-I by about 57.7 +/- 3% and 39.6 +/- 5%, respectively. The findings suggest that contractile actions of M15 and Gal(1-14)-[Abu8]SCY-I are probably not only due to their agonist activities at Gal receptors but may result from a subsequent stimulation of receptors for SP or release of endogenous SP.

  12. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    Science.gov (United States)

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism.

  13. Esophagogastric Junction Contractility Integral Reflect the Anti-reflux Barrier Dysfunction in Patients with Gastroesophageal Reflux Disease

    Science.gov (United States)

    Xie, Chenxi; Wang, Jinhui; Li, Yuwen; Tan, Niandi; Cui, Yi; Chen, Minhu; Xiao, Yinglian

    2017-01-01

    Background/Aims Anti-reflux barrier dysfunction is one of the primary mechanisms in gastroesophageal reflux disease (GERD) pathogenesis. The esophagogastric junction contractile integral (EGJ-CI) is a new metric adopted to evaluate the EGJ contractility, which implies the anti-reflux barrier function. The aim of the current study was to validate this new metric in patients with GERD and its correlation with the esophageal acid exposure, as well as the efficacy of proton pump inhibitor treatment. Methods Ninety-eight patients with GERD and 21 healthy controls were included in the study. Upper endoscopy, high-resolution manometry (HRM) and 24-hour multichannel intraluminal impedance-pH monitoring were performed in all patients. Three respiration cycles were chosen at the initial HRM resting frame and the value computed with distal contractile integral tool was then divided by the duration of the cycles to yield EGJ-CI. All the patients were treated with esomeprazole 20 mg twice-daily for 8 weeks. Results EGJ-CI was lower in the patients with GERD than that of the controls (P < 0.05). For patients with GERD, EGJ-CI was lower in those with hiatal hernia (P < 0.05). The new metric correlated with esophageal acid exposure in the supine position (P < 0.05), and it also negatively correlated to the total reflux episodes (P < 0.05). There was no significant difference on EGJ-CI between patients with and without response to the esomeprazole treatment (P = 0.627). Conclusions EGJ-CI reflected the dysfunction of the anti-reflux barrier in patients with GERD, but it had little impact on the esomeprazole response. PMID:27426485

  14. Effects of Antihypertensive Agents on Intestinal Contractility in the Spontaneously Hypertensive Rat: Angiotensin Receptor System Downregulation by Losartan

    Science.gov (United States)

    Abeywardena, Mahinda Yapa

    2017-01-01

    Hypertension is an inflammatory condition controlled by the renin angiotensin system and is linked to kidney disease, diabetes mellitus, and recently to dysfunction of the gut. The aim of this study was to determine what effect antihypertensive drug treatments may have on intestinal function of the spontaneously hypertensive rat (SHR). In the first experiment, SHRs were treated with enalapril, hydralazine, or with no treatment as a control. In the second experiment, SHRs were treated with losartan or with no treatment as a control. All drug treatments led to significant lowering of blood pressure after 16 weeks. At termination, intact tissue sections of the ileum and colon were induced to contract ex vivo by KCl; electrical stimulation; and agonists carbachol, angiotensin II, and prostaglandin E2 (PGE2). There were no differences in ileal or colonic contractility due to hydralazine or enalapril compared with no-treatment SHR control. However, for the ileum, the losartan group responded significantly more to KCl and carbachol while responding less to angiotensin II, with no difference for PGE2 compared with the no-treatment SHR control. In contrast, the colon responded similarly to KCl, electrical stimulation, and PGE2 but responded significantly less to angiotensin II. These results demonstrate that the ileum responds differently (with KCl and carbachol as agonists) to the colon after losartan treatment, whereas there is a reduced contractile response in both the ileum and colon following losartan treatment. Although there are few well documented major contraindications for angiotensin receptor blockers, the modulation of gut contractility by losartan may have wider implications for bowel health. PMID:27903643

  15. Sinoatrial tissue of crucian carp heart has only negative contractile responses to autonomic agonists

    Directory of Open Access Journals (Sweden)

    Hälinen Mervi

    2010-06-01

    Full Text Available Abstract Background In the anoxia-tolerant crucian carp (Carassius carassius cardiac activity varies according to the seasons. To clarify the role of autonomic nervous control in modulation of cardiac activity, responses of atrial contraction and heart rate (HR to carbacholine (CCh and isoprenaline (Iso were determined in fish acclimatized to winter (4°C, cold-acclimated, CA and summer (18°C, warm-acclimated, WA temperatures. Results Inhibitory action of CCh was much stronger on atrial contractility than HR. CCh reduced force of atrial contraction at an order of magnitude lower concentrations (EC50 2.75-3.5·10-8 M in comparison to its depressive effect on HR (EC50 1.23-2.02·10-7 M (P -8 M and 10-7 M CCh, respectively (P + current, IK,CCh, with an EC50 value of 3-4.5·10-7 M and inhibited Ca2+ current (ICa by 28 ± 8% and 51 ± 6% at 10-7 M and 10-6 M, respectively. These currents can explain the shortening of AP. Iso did not elicit any responses in crucian carp sinoatrial preparations nor did it have any effect on atrial ICa, probably due to the saturation of the β-adrenergic cascade in the basal state. Conclusion In the crucian carp, HR and force of atrial contraction show cardio-depressive responses to the cholinergic agonist, but do not have any responses to the β-adrenergic agonist. The scope of inhibitory regulation by CCh is increased by the high basal tone of the adenylate cyclase-cAMP cascade. Higher concentrations of CCh were required to induce IK,CCh and inhibit ICa than was needed for CCh's negative inotropic effect on atrial muscle suggesting that neither IK,CCh nor ICa alone can mediate CCh's actions but they might synergistically reduce AP duration and atrial force production. Autonomic responses were similar in CA winter fish and WA summer fish indicating that cardiac sensitivity to external modulation by the autonomic nervous system is not involved in seasonal acclimatization of the crucian carp heart to cold and anoxic

  16. Changes in contractile properties by androgen hormones in sexually dimorphic muscles of male frogs (Xenopus laevis).

    Science.gov (United States)

    Regnier, M; Herrera, A A

    1993-02-01

    1. Male frogs (Xenopus laevis) were castrated then given either empty or testosterone-filled implants to produce animals with low or high levels of circulating testosterone. Eight weeks later the contractile properties of an androgen-sensitive forelimb flexor, the flexor carpi radialis muscle (FCR), were measured in vitro. Another forelimb flexor muscle, the coracoradialis, and a hindlimb muscle, the iliofibularis, were analysed similarly. 2. Plasma testosterone levels were 0.9 +/- 0.3 ng/ml (+/- S.E.M.) in castrated frogs with blank implants (C) and 61.3 +/- 4.7 ng/ml in castrates with testosterone implants (CT). Unoperated males, sampled at various times of the year, ranged between 10.8 and 51.0 ng/ml. 3. With direct electrical stimulation of the FCR, contraction time of the isometric twitch was not affected by testosterone levels. Relaxation times were affected, however. Half- and 90% relaxation times were 27 and 42% longer, respectively, for CT compared to C muscles. 4. Testosterone also had no effect on the contraction time of twitches elicited by stimulation of the FCR nerve. Half- and 90% relaxation times were 51 and 76% longer, respectively, for CT compared to C muscles. 5. Tetanus tension, elicited by direct stimulation of the FCR at 50 Hz, was 86% greater in CT compared to C muscles. The average cross-sectional area of FCR muscle fibres was 84% greater in CT muscles. These results implied that testosterone treatment had no effect on specific muscle tension. 6. Stimulation of the FCR nerve at 50 Hz resulted in 53% less tension than the same stimulus applied directly to CT muscles. In C muscles the difference was only 14%. This suggested that testosterone treatment reduced synaptic efficacy. 7. In CT muscles, direct or nerve stimulation of fibres in the shoulder region of the FCR elicited twitches that contracted and relaxed more slowly than fibres in the elbow region. In C muscles there was no difference in contraction or relaxation time between fibres in

  17. An implantable intracardiac accelerometer for monitoring myocardial contractility. The Multicenter PEA Study Group.

    Science.gov (United States)

    Rickards, A F; Bombardini, T; Corbucci, G; Plicchi, G

    1996-12-01

    implantable device. Pharmacological inotropic stimulation, but not pacing induced chronotropic stimulation, increases PEA amplitude, in keeping with experimental studies, suggesting that PEA is an index of myocardial contractility. Acute variations in PEA are closely paralleled by changes in RV dP/dtmax, but are mainly determined by LV events. The clinical applicability of the method using RV endocardial leads and an implantable device offers potential for diagnostic applications in the long-term monitoring of myocardial function in man.

  18. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Rudo F Mapanga

    Full Text Available Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP and a dysfunctional ubiquitin-proteasome system (UPS as potential mediators of this process. Since oleanolic acid (OA; a clove extract possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1 H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose; and subsequently treated with two OA doses (20 and 50 µM for 6 and 24 hr, respectively; 2 Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose for 60 min, followed by 20 min global ischemia and 60 min reperfusion ± OA treatment; 3 In vivo coronary ligations were performed on streptozotocin treated rats ± OA administration during reperfusion; and 4 Effects of long-term OA treatment (2 weeks on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These

  19. Contractile properties of the striated adductor muscle in the bay scallop Argopecten irradians at several temperatures.

    Science.gov (United States)

    Olson, J M; Marsh, R L

    1993-03-01

    The isometric and isotonic contractile properties of the cross-striated adductor muscle of the bay scallop (Argopecten irradians) were measured in vitro at 10, 15 and 20 degrees C. The length at which twitch force was maximal as a function of the closed length in situ (L0/Lcl) averaged 1.38 +/- 0.01 (mean +/- S.E.M.) at 10 degrees C. This length is very close to the typical length at maximum gape during natural swimming at this temperature. Passive force was very low over the range of lengths measured here; at L0, passive force averaged approximately 0.08 N cm-2, or only 0.5% of the corresponding peak twitch force. The mean peak isometric twitch force (Ptw,max) at 10 degrees C was 21.43 +/- 0.68 N cm-2 (S.E.M.), and the ratio of peak twitch force to tetanic force (Ptw,max/P0) averaged 0.89 +/- 0.01. Temperature did not affect either twitch force (Ptw), once fatigue was taken into account, or Ptw,max/P0. In contrast, the time-related properties of twitch contractions (latent period, tL; time to peak tension, tPtw; and time from peak tension to half-relaxation, t50%R) were positively modified by temperature at all temperatures measured (Q10 > 1.8). All three properties were more temperature-sensitive over the range 10-15 degrees C than over the range 15-20 degrees C. The force-velocity relationships of the striated adductor muscle were fitted to the hyperbolic-linear (HYP-LIN) equation. The force-velocity curves of the striated adductor muscle of the scallop were strongly influenced by temperature. Maximal velocity at zero force (Vmax), and therefore maximal power output, increased significantly with temperature. The Q10 over the temperature range 10-15 degrees C (1.42) was significantly lower than that over the range 15-20 degrees C (2.41). The shape of the force-velocity relationship, assessed through comparisons of the power ratio (Wmax/VmaxP0), was not influenced by temperature.

  20. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Yvan Devaux

    Full Text Available BACKGROUND: Prediction of clinical outcome after acute myocardial infarction (AMI is challenging and would benefit from new biomarkers. We investigated the prognostic value of 4 circulating microRNAs (miRNAs after AMI. METHODS: We enrolled 150 patients after AMI. Blood samples were obtained at discharge for determination of N-terminal pro-brain natriuretic peptide (Nt-proBNP and levels of miR-16, miR-27a, miR-101 and miR-150. Patients were assessed by echocardiography at 6 months follow-up and the wall motion index score (WMIS was used as an indicator of left ventricular (LV contractility. We assessed the added predictive value of miRNAs against a multi-parameter clinical model including Nt-proBNP. RESULTS: Patients with anterior AMI and elevated Nt-proBNP levels at discharge from the hospital were at high risk of subsequent impaired LV contractility (follow-up WMIS>1.2, n = 71. A combination of the 4 miRNAs (miR-16/27a/101/150 improved the prediction of LV contractility based on clinical variables (P = 0.005. Patients with low levels of miR-150 (odds ratio [95% confidence interval] 0.08 [0.01-0.48] or miR-101 (0.19 [0.04-0.97] and elevated levels of miR-16 (15.9 [2.63-95.91] or miR-27a (4.18 [1.36-12.83] were at high risk of impaired LV contractility. The 4 miRNA panel reclassified a significant proportion of patients with a net reclassification improvement of 66% (P = 0.00005 and an integrated discrimination improvement of 0.08 (P = 0.001. CONCLUSION: Our results indicate that panels of miRNAs may aid in prognostication of outcome after AMI.

  1. Pro-contractile action of the Na,K-ATPase/Src-kinase signaling pathway in the vascular wall

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Aalkjær, Christian; Matchkov, Vladimir

    ,K-ATPase by ouabain elevates blood pressure. Consequently, ouabain was shown to potentiate arterial contraction in vitro. In contrast, we have demonstrated that siRNA-induced down-regulation of the α-2 isoform Na,K-ATPase expression reduced arterial sensitivity to agonist stimulation and prevented the effect...... of ouabain. Here we demonstrate results of our research on the mechanisms involved in the modulation of vascular wall contractility by ouabain-sensitive Na,K-ATPase. Methods: The experiments were performed using rat mesenteric arteries in isometric myograph conditions. To inhibit kinase activity a Src-family...

  2. 心肌收缩蛋白基因表达、左室压及收缩力的近日节律%Circadian Rhythm of Gene Expression of Myocardial Contractile Protein,Left Ventricular Pressure and Contractility

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective A number of cardiovascular variables exhibit a circ adian rhythm. Whethe r myocardial contractile response and gene expression of the contractile protein also show changes with a similar period was here investigated. Method Circadi an variabilities in the left ventricular developed pressure (LVP) and contractil ity (LV dp/dt max) were measured in 24 Sprague-Dawley r ats by directly left ve ntricular catheterizing and compared with changes in the gene expression of α- myosin heavy chain (α-MHC) in myocytes obtained from the same animals by dot b lottin g analysis. Results A circadian rhythm was seen in the variabili ty of LVP (P<0.001), LV dp/dt max (P<0.001) and the bio chemically measured expression of the α- MHC gene (P<0.01). As compared to the amplitude of the rhythm i n α-MHC gene exp ression, the amplitude of the contractility rhythm was large (P< 0.01) and the ci rcadian amplitude of the LVP(P<0.001) was the largest, represent ing perhaps a co mposite of intracardiac plus any extracardiac contributions. Conclusion One of factors determing the circadian rhythm of myocardial contractile function is α -MHC gene expression level.%目的许多心血管变量存在着近日节律,心肌收缩反应及收缩蛋白基因表达是否存在着相应的周期性改变是值得深入研究.方法在24h内采用直接在大白鼠左心室内插入左心导管记录左室压(LVP)和左室压力微分最大值(dp/dtmax)以及检测比较心肌细胞的α-MHC基因表达改变.结果 LVP(P<0.001)、dp/dtmax(P<0.001)和α-MHC(P<0.01)的变化存在着近日节律.通过比较三者近日节律振幅显示LVP的振幅最大,dp/dtmax次之,α-MHC基因表达的节律振幅再次之,表明心肌收缩力的近日节律的变化是由心肌细胞内在和外在作用的结果.结论α-MHC基因表达水平的近日变化是决定着心肌收缩功能的近日节律的因素之一.

  3. Differential effect of neocuproine, a copper(I) chelator, on contractile activity in isolated ovariectomized non-pregnant rat, pregnant rat and pregnant human uterus.

    Science.gov (United States)

    Kumcu, Eda Karabal; Büyüknacar, Hacer Sinem Göktürk; Göçmen, Cemil; Evrüke, Ismail Cüneyt; Onder, Serpil

    2009-03-01

    The study was conducted to examine effects of a selective copper(I) chelator, neocuproine on the spontaneous or oxytocin-induced contractions in isolated ovariectomized non-pregnant rat, pregnant rat and pregnant human uterus. Uterus activity was evaluated in tissues obtained from bilaterally ovariectomized non-pregnant rats on the 21st day of the operation (n = 24), pregnant rats on the 19-21st day of gestation (n = 24) and women undergoing caesarean section at 38-42 weeks of pregnancy (n = 15). Neocuproine (100 microM) significantly suppressed the amplitude and frequency of the spontaneous contractions in the ovariectomized non-pregnant rat uterus while this agent facilitated the frequency of the spontaneous or oxytocin-induced contractions in the pregnant rat and human uterus without altering the amplitude of these contractions. At high concentration of 200 microM, neocuproine could enhance the amplitude of the contractions in the pregnant uterus. These effects were blocked by a purinergic receptor antagonist, suramin (100 microM) and did not occur following the administration of neocuproine-copper(I) complex or copper(II) chelator cuprizone. alpha, beta-methylene ATP increased the amplitude and frequency of contractions in the pregnant uterus, but not affected the contractions in the ovariectomized non-pregnant rat uterus, and neocuproine potentiated this facilitation effect. However, the suppressive effect of neocuproine on the ovariectomized non-pregnant rat uterus increased in the presence of alpha,beta-methylene ATP. Beta-adrenoceptor blocker, propranolol or nitric oxide synthase inhibitor, L-nitroarginine did not affect the responses to neocuproine. These findings suggest that neocuproine can affect the uterus contractile activity by modulation purinergic excitatory responses and that copper(I)-sensitive mechanisms may play a role in this effect.

  4. An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Motoaki Murakoshi

    Full Text Available Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate--the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs.

  5. Early changes in contractility and coronary blood flow in the normal areas of the ischemic porcine heart.

    Science.gov (United States)

    Pashkow, F; Holland, R; Brooks, H

    1977-03-01

    The regional responses of normal myocardium distant from an ischemic area were studied during acute anterior descending occlusion in the open-chest chloralose-anesthetized pig. Three markers of regional response in both normal and ischemic areas were used: surface ECG electrode, a force gauge in series with left ventricular outer wall fibers, and coronary blood inflow to each region as determined by electromagnetic cuff-probes. Following brief anterior descending artery occlusion (120 sec)., a characteristic rapid decline in contractile force and evolution of TQ-ST segment changes was observed in the ischemic area. In contrast, in the distant area increases in contractil force (p less than 0.001) and coronary blood flow (p less than 0.002) occurred. These distant responses were essentially obliterated following transection and cannulation of the artery supplying this region (p less than 0.05). The findings are consistent with a reflex neurovascular mechanism operating within the intact heart. This reflex is rapidly activated in order to maintain adequate levels of cardiac performance despite sudden loss of functional myocardial mass.

  6. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling.

    Science.gov (United States)

    Heemskerk, Niels; Schimmel, Lilian; Oort, Chantal; van Rijssel, Jos; Yin, Taofei; Ma, Bin; van Unen, Jakobus; Pitter, Bettina; Huveneers, Stephan; Goedhart, Joachim; Wu, Yi; Montanez, Eloi; Woodfin, Abigail; van Buul, Jaap D

    2016-01-27

    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation.

  7. Effect of long-term partial bladder outlet obstruction on caldesmon isoforms and their correlation with contractile function

    Institute of Scientific and Technical Information of China (English)

    Lin YANG; Da-lin Hei; Shu WANG; He-peng CHENG; Xin-yang WANG

    2008-01-01

    Aim: In the present study, we investigate the expression of caldesmon (CAD) isoforms in rabbit detrusor smooth muscles (DSM) during the progression of partial bladder outlet obstruction and relate them with the time course of obstruction. Methods: Detrusor samples were obtained from the bladders of rabbits with partial bladder outlet obstruction and sham-operated control rabbits after 1, 2, 4, and 8 weeks of obstruction. Contractile responses to field stimulation and carbachol were determined in the isolated bladder strips. Western blotting was used to determine the relative levels of CaD isoform expression at the protein levels. Results: The contractile responses decreased progressively over the course of obstruction. The expression of 1-CaD increased significantly to approximately the same extent as the 1-4-week obstructed groups and further in the 8-week ob-structed group. The expression of h-CaD increased in all of the obstructed bladders, but at significantly higher levels in the 1-2-week obstructed bladders compared to the control and 4-8-week obstructed bladders. Conclusions: The changes in the isoforms of CaD may be part of the molecular mechanism for bladder compensa-tion following partial bladder outlet obstruction. The overexpression of 1-CaD and the h-CaD/1-CaD ratio could be markers for the status of DSM remodeling and dysfunction.

  8. Effects of pincainide on contractile responses and /sup 45/Ca movements in rat isolated vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Barrigon, S.; Diez, J.J.; Tamargo, J.; Tejerina, M.T.

    1985-05-08

    The effects of pincainide, a new ..beta..-amino anilide, on contractile responses and /sup 45/Ca fluxes were studied in rat aorta and on spontaneous mechanical activity in rat portal veins. Pincainide (10/sup 5/ to 10/sup 2/ M) produced a dose-dependent inhibition of noradrenaline (NA) and high K/sup +/-induced contractions. These inhibitory effects were observed with pincainide added either before or after the induced contractions. The Ca/sup 2 +/-induced contractions of K/sup +/-depolarized aorta as well as the spontaneous mechanical activity of portal veins were also inhibited by pincainide. Pincainide (5 x 10/sup 3/ M) inhibited the /sup 45/Ca influx stimulated by 10/sup 6/ M NA and increased /sup 45/Ca efflux. It was concluded that in isolated rat aorta, pincainide not only inhibited the influx of Ca/sup 2 +/ reducing the contractile responses to NA and high K/sup +/ but it also inhibited other effects related to NA-induced release of intracellular Ca/sup 2 +/ stores.

  9. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster

    Science.gov (United States)

    Sechi, Stefano; Frappaolo, Anna; Fraschini, Roberta; Capalbo, Luisa; Gottardo, Marco; Belloni, Giorgio; Glover, David M.

    2017-01-01

    Cytokinesis requires a tight coordination between actomyosin ring constriction and new membrane addition along the ingressing cleavage furrow. However, the molecular mechanisms underlying vesicle trafficking to the equatorial site and how this process is coupled with the dynamics of the contractile apparatus are poorly defined. Here we provide evidence for the requirement of Rab1 during cleavage furrow ingression in cytokinesis. We demonstrate that the gene omelette (omt) encodes the Drosophila orthologue of human Rab1 and is required for successful cytokinesis in both mitotic and meiotic dividing cells of Drosophila melanogaster. We show that Rab1 protein colocalizes with the conserved oligomeric Golgi (COG) complex Cog7 subunit and the phosphatidylinositol 4-phosphate effector GOLPH3 at the Golgi stacks. Analysis by transmission electron microscopy and 3D-SIM super-resolution microscopy reveals loss of normal Golgi architecture in omt mutant spermatocytes indicating a role for Rab1 in Golgi formation. In dividing cells, Rab1 enables stabilization and contraction of actomyosin rings. We further demonstrate that GTP-bound Rab1 directly interacts with GOLPH3 and controls its localization at the Golgi and at the cleavage site. We propose that Rab1, by associating with GOLPH3, controls membrane trafficking and contractile ring constriction during cytokinesis. PMID:28100664

  10. EFFECTS OF NOVEL PHOSPHODIESTERASE 4 INHIBITORS,ARIFLO AND SB242126A, ON ENDOTHELIN-1-INDUCED CONTRACTILITY OF ISOLATED HUMAN MYOMETRIUM

    Institute of Scientific and Technical Information of China (English)

    QI Hong(祁红); ZHANG Yong(张勇); CHEN Hong-zhuan(陈红专); Marie Jo LEROY; Charles ADVENIER

    2005-01-01

    Objective To investigate the effects of novel selective phosphodiesterase4 ( PDE4) inhibitors,Ariflo and SB242126A, on the endothelin-1 ( ET-1 ) - induced contractility occurring in nonpregnant human myometrium specimens. Methods Contractile responses to Ariflo and SB242126A were recorded cumulatively on isolated human longitudinal myometrium specimens obtained through surgical operations. Results Ariflo and SB242126A could inhibit both the frequency and amplitude of spontaneous contractions of myometrium (pD2 =8.6and 7. 6,n =4) and ET-1-induced contractions in a concentration-dependent manner (pD2 =7. 7 and 8. 1 ,n =5),with a potency similar to that of Rolipram. Conclusion Ariflo and SB242126A have an obvious inhibitory effect on endothelin-1-induced contractility of isolated human myometrium. The finding suggested that PDE4 inhibitors might have clinical potential in treating preterm labour and dysmenorrhoea.

  11. Skeletal muscle contractility, self-reported pain and tissue sensitivity in females with neck/shoulder pain and upper Trapezius myofascial trigger points - a randomized intervention study

    DEFF Research Database (Denmark)

    Myburgh, Corrie; Hartvigsen, Jan; Aagaard, Per

    2012-01-01

    ABSTRACT: BACKGROUND: In relation to Myofascial Triggerpoints (MFTrPs) of the upper Trapezius, this study explored muscle contractility characteristics, the occurrence of post-intervention muscle soreness and the effect of dry needling on muscle contractile characteristics and clinical outcomes......-intervention and 48 hours post-intervention. Symptomatic and asymptomatic participant groups were each randomized into two treatment sub-groups (superficial (SDN) and deep dry needling (DDN)) after baseline testing. At 48 hours post-intervention participants were asked whether delayed onset muscle soreness (DOMS) and....../or post-needling soreness had developed. RESULTS: Muscle contractile characteristics did not differ between groups at baseline. Forty-six individuals developed muscle soreness (39 from mechanical testing and seven from needling). No inter-group differences were observed post-intervention for Fmax or RFD...

  12. Research progress on contractile modulation mechanism of non-pregnant uterine%非孕期子宫收缩调控机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    罗宁; 程忠平

    2012-01-01

    Uterine contractile activity plays an important regulatory role in many aspects of women reproductive function, including transport of sperm and embryo and implantation, menstruation, gestation and parturition. Abnormal uterine contractility may lead to many common diseases such as infertility, implantation failure, dysmenorrhea, endometriosis, spontaneous miscarriage or preterm birth. So it is very important to gain a comprehensive cognition of physiological pathways that underlie the contractile activity of uterine in non-pregnant state. This review summarized an overview of contractile apparatus of uterine myocytes, physiological pathways and the molecular mechanism by which uterine contractility might be regulated, aiming to provide deeper understanding of the mechanism of uterine contractility.%子宫收缩活动参与调控女性生殖系统许多方面的功能,如精子和胚胎的转运和着床、月经、妊娠和分娩等.子宫的异常收缩可导致许多常见疾病,如不孕、受精卵植入失败、痛经、子宫内膜异位、自然流产及早产等.因此,深入地认识非孕期子宫收缩及其调节的生理机制尤为重要.该文对子宫平滑肌细胞内收缩相关的结构、功能和调节作以综述,以期加深对参与子宫收缩调控的相关分子机制的理解.

  13. Are interstitial cells of Cajal involved in mechanical stress-induced gene expression and impairment of smooth muscle contractility in bowel obstruction?

    Directory of Open Access Journals (Sweden)

    Chester C Wu

    Full Text Available BACKGROUND AND AIMS: The network of interstitial cells of Cajal (ICC is altered in obstructive bowel disorders (OBD. However, whether alteration in ICC network is a cause or consequence of OBD remains unknown. This study tested the hypothesis that mechanical dilation in obstruction disrupts the ICC network and that ICC do not mediate mechanotranscription of COX-2 and impairment of smooth muscle contractility in obstruction. METHODS: Medical-grade silicon bands were wrapped around the distal colon to induce partial obstruction in wild-type and ICC deficient (W/W(v mice. RESULTS: In wild-type mice, colon obstruction led to time-dependent alterations of the ICC network in the proximal colon segment. Although unaffected on days 1 and 3, the ICC density decreased markedly and the network was disrupted on day 7 of obstruction. COX-2 expression increased, and circular muscle contractility decreased significantly in the segment proximal to obstruction. In W/W(v control mice, COX-2 mRNA level was 4.0 (±1.1-fold higher (n=4 and circular muscle contractility was lower than in wild-type control mice. Obstruction further increased COX-2 mRNA level in W/W(v mice to 7.2 (±1.0-fold vs. W/W(v controls [28.8 (±4.1-fold vs. wild-type controls] on day 3. Obstruction further suppressed smooth muscle contractility in W/W(v mice. However, daily administration of COX-2 inhibitor NS-398 significantly improved muscle contractility in both W/W(v sham and obstruction mice. CONCLUSIONS: Lumen dilation disrupts the ICC network. ICC deficiency has limited effect on stretch-induced expression of COX-2 and suppression of smooth muscle contractility in obstruction. Rather, stretch-induced COX-2 plays a critical role in motility dysfunction in partial colon obstruction.

  14. Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes that Cause Thoracic Aortic Aneurysms and Dissections Disrupt this Structure

    OpenAIRE

    Karimi, Ashkan; Milewicz, Dianna M.

    2015-01-01

    The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibers. The SMC elastin-contractile unit is a structural unit that links the elastin fibers to the SMCs and is characterized by the following: 1. Layers of elastin fibers that are surrounded by microfibrils. 2. Microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs. 3. SMC contractile filam...

  15. Upregulated TRPC3 and downregulated TRPC1 channel expression during hypertension is associated with increased vascular contractility in rat

    Directory of Open Access Journals (Sweden)

    Muzamil M Noorani

    2011-07-01

    Full Text Available Transient receptor potential C1 and C3 (TRPC1 and TRPC3 are expressed in vascular smooth muscle cells and are thought to be involved in vascular contractility. In the present study, we determined the effect of systemic hypertension on TRPC1/TRPC3 channel expression and vascular contractility in rat carotid artery (CA. CA were studied from male spontaneously hypertensive (SHR, Wistar Kyoto (WKY and Long-Evans (LE rats. TRPC1/3 expression was determined by RT-PCR and Western blot. TRP channel function was evaluated by whole cell patch clamp, using UTP (60 µM to stimulate TRPC1/3 channels. Contractions of endothelium-denuded CA segments to UTP (1 – 300 µM and phenylephrine (Phe; 0.1 nM-10 µM were measured in an isometric tension bath. TRPC1 and TRPC3 mRNA was present in CA of both WKY and SHR. Western blot demonstrated 3.1 ± 1.2 times greater TRPC3 expression and 0.5 ± 0.2 times TRPC1 in SHR versus WKY CA. Isolated CA showed potentiated contraction to UTP in the SHR versus WKY. Activation of voltage-dependent Ca2+ channels (VDCC in UTP-mediated constriction only occurred in SHR CA. Contraction to Phe was unaltered between WKY and SHR CA and involved equal significant VDCC activation in both groups. Patch clamp demonstrated that the UTP-stimulated current (Iutp was greater in SHR compared to the normotensive WKY and LE rats with peak Iutp (at -110 mV of -63 ± 24 pA compared to -25 ± 4 pA, respectively. We demonstrate that UTP-mediated but not Phe-mediated constrictions are potentiated in the CA during hypertension. Expression of TRPC1 is decreased whereas TRPC3 is increased in SHR CA. Interestingly, VDCC activation only contributes to UTP-mediated contraction of SHR CAs whereas it contributes substantially and equally in Phe-mediated contraction. We speculate that the alteration of TRPC channel expression in hypertension leads to greater smooth muscle depolarization, VDCC activation, and vascular contractility in the UTP (but not Phe

  16. Acute Aerobic Swimming Exercise Induces Distinct Effects in the Contractile Reactivity of Rat Ileum to KCl and Carbachol

    Science.gov (United States)

    Araujo, Layanne C. da Cunha; de Souza, Iara L. L.; Vasconcelos, Luiz H. C.; Brito, Aline de Freitas; Queiroga, Fernando R.; Silva, Alexandre S.; da Silva, Patrícia M.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.

    2016-01-01

    Aerobic exercise promotes short-term physiological changes in the intestinal smooth muscle associated to the ischemia-reperfusion process; however, few studies have demonstrated its effect on the intestinal contractile function. Thus, this work describes our observations regarding the influence of acute aerobic swimming exercise in the contractile reactivity, oxidative stress, and morphology of rat ileum. Wistar rats were divided into sedentary (SED) and acutely exercised (EX-AC) groups. Animals were acclimated by 10, 10, and 30 min of swimming exercise in intercalated days 1 week before exercise. Then they were submitted to forced swimming for 1 h with a metal of 3% of their body weight attached to their body. Animals were euthanized immediately after the exercise section and the ileum was suspended in organ baths for monitoring isotonic contractions. The analysis of lipid peroxidation was performed in order to determinate the malondialdehyde (MDA) levels as a marker of oxidative stress, and intestinal smooth muscle morphology by histological staining. Cumulative concentration-response curves to KCl were altered in the EX-AC with an increase in both its efficacy and potency (Emax = 153.2 ± 2.8%, EC50 = 1.3 ± 0.1 × 10−2 M) compared to the SED group (Emax = 100%, EC50 = 1.8 ± 0.1 × 10−2 M). Interestingly, carbachol had its efficacy and potency reduced in the EX-AC (Emax = 67.1 ± 1.4%, EC50 = 9.8 ± 1.4 × 10−7 M) compared to the SED group (Emax = 100%, EC50 = 2.0 ± 0.2 × 10−7 M). The exercise did not alter the MDA levels in the ileum (5.4 ± 0.6 μ mol/mL) in the EX-AC compared to the SED group (8.4 ± 1.7 μ mol/mL). Moreover, neither the circular nor the longitudinal smooth muscle layers thickness were modified by the exercise (66.2 ± 6.0 and 40.2 ± 2.6 μm, respectively), compared to the SED group (61.6 ± 6.4 and 34.8 ± 3.7 μm, respectively). Therefore, the ileum sensitivity to contractile agents is differentially altered by the acute aerobic

  17. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism.

    Science.gov (United States)

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Zhang, Yingmei; Ren, Jun

    2016-08-22

    Paraquat, a quarternary nitrogen herbicide, is a toxic prooxidant leading to multi-organ failure including the heart although the underlying mechanism remains poorly understood. This study was designed to examine the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile anomalies and the underlying mechanisms involved with a focus on autophagy, a conservative machinery governing protein and organelle degradation and recycling for cardiac homeostasis. Wild-type (WT) and TLR4 knockout (TLR4(-/-)) mice were challenged with paraquat (45mg/kg, i.p.) for 48h. Paraquat challenge did not affect mRNA levels of TLR2, TLR4 and TLR9 in WT mice nor did paraquat treatment alter TREM-1 levels. Paraquat challenge elicited cardiac mechanical defects including compromised cardiomyocyte contractile function, intracellular Ca(2+) handling, and overt autophagy as manifested by increased LC3BII-to-LC3BI ratio, Atg5, Atg7 and p62 levels. Interestingly, TLR4 knockout significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement as well as alterations of autophagy markers. Paraquat-elicited changes in cardiac autophagy markers (LC3BII, LC3BII-to-LC3BI ratio and p62) were augmented by lysosomal inhibition using bafilomycin A1 in WT mice. TLR4 knockout significantly attenuated or negated paraquat-elicited increase in LC3BII, LC3BII-to-LC3BI ratio and p62 levels in the presence of lysosomal inhibition. In addition, paraquat challenge promoted phosphorylation of AMPK while suppressing the phosphorylation of mTOR and ULK1 (the autophagy inhibitory Ser(757)), the effects of which were significantly attenuated by TLR4 ablation. In vitro study revealed that AMPK activation using AICAR or mTOR inhibition using rapamycin effectively negated the beneficial cardiomyocyte mechanical effects of TLR4 inhibition (CLI-095) against paraquat toxicity, supporting a permissive role for AMPK-mTOR in TLR4 inhibition

  18. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification

    OpenAIRE

    Ahmad, Shaad M.; Busser, Brian W; Huang, Di; Cozart, Elizabeth J.; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L.; Ovcharenko, Ivan; Michelson, Alan M.

    2014-01-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-c...

  19. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Osadchiy, Oleg; Olesen, Søren-Peter

    2011-01-01

    potential, effective refractory period and QT interval, an upward shift of the electrical restitution curve determined over a wide range of diastolic intervals, and reduced maximal restitution slope. The physiological right ventricular-to-LV difference in action potential duration was eliminated in ISO...... whether sustained adrenergic activation may produce a clinically relevant heart failure phenotype in the guinea-pig, an animal species whose ventricular action potential shape and restitution properties resemble those determined in humans. Isoprenaline (ISO), a ß-adrenoceptor agonist, was infused...... pressure-volume and stress-strain relationships assessed in isolated, perfused heart preparations), reduced contractile reserve in the presence of acute ß-adrenoceptor stimulation, and pulmonary oedema (increased lung weights). These changes were associated with prolongation of LV epicardial action...

  20. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  1. The left ventricular contractility of the rat heart is modulated by changes in flow and a1-adrenoceptor stimulation

    Directory of Open Access Journals (Sweden)

    P.F. Vassallo

    1998-10-01

    Full Text Available Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10 submitted to phenylephrine (PE stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (Pa1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.

  2. Increased Contractile Response to Noradrenaline Induced By Factors Associated with the Metabolic Syndrome in Cultured Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Sams, Anette; Boonen, Harrie C M

    2016-01-01

    UNLABELLED: This study investigated the effect of the metabolic syndrome associated risk factors hyperglycemia (glucose [Glc]), hyperinsulinemia (insulin [Ins]) and low-grade inflammation (tumor necrosis factor α [TNFα]) on the vasomotor responses of resistance arteries. Isolated small mesenteric...... arteries from 3-month-old Sprague-Dawley rats, were suspended for 21-23 h in tissue cultures containing either elevated Glc (30 mmol/l), Ins (100 nmol/l), TNFα (100 ng/ml) or combinations thereof. After incubation, the vascular response to noradrenaline (NA), phenylephrine, isoprenaline and NA...... in the presence of propranolol (10 µmol/l) was measured by wire myography. RESULTS: Arteries exposed only to combinations of the risk factors showed a significant 1.6-fold increase in the contractile NA sensitivity, which suggests that complex combinations of metabolic risk factors might lead to changes...

  3. Reduced rate of knee extensor torque development in older adults with knee osteoarthritis is associated with intrinsic muscle contractile deficits.

    Science.gov (United States)

    Callahan, Damien M; Tourville, Timothy W; Slauterbeck, James R; Ades, Philip A; Stevens-Lapsley, Jennifer; Beynnon, Bruce D; Toth, Michael J

    2015-12-01

    We examined the effect of knee osteoarthritis on the rate of torque development (RTD) of the knee extensors in older adults with advanced-stage knee osteoarthritis (OA; n=15) and recreationally-active controls (n=15) of similar age, sex and health status, as well as the relationship between RTD and the size and contractility of single muscle fibers. OA participants had lower RTD when expressed in absolute terms (Nm/ms). There were sex differences in peak RTD (Ptorque (PT). In knee OA volunteers, we found strong correlations between the RTD expressed relative to PT and the velocity of contraction of single myosin heavy chain (MHC) I and IIA/X muscle fibers (r=0.652 and 0.862; both Pknee osteoarthritis and healthy older adults is related, in part, to the size and function of single muscle fibers.

  4. Extract from leaf of Psidium guajava L depresses the guinea pig atrial contractility by interfering with potassium and calcium channels

    OpenAIRE

    2009-01-01

    The negative inotropic effect of aqueous fraction (AqF) obtained from the acetic extract of Psidium guajava L leaf was investigated on the guinea pig left atrium. Myocardial force was measured isometrically (27 ± 0.1 ºC, 2 Hz). AqF (100 μg/ml) reduced contractility of about 85 ± 9.4 % (n = 4, p < 0.001, Fcalc = 51.70, F(0.01; 4; 21) = 5.09, EC50 = 14.28 ± 3 μg/mL) in a concentration-dependent fashion. This effect was reduced by 20 mM of tetraethylammonium (TEA), increasing EC50 to 5...

  5. DOBUTAMINE MAGNETIC RESONANCE IMAGING PREDICTS CONTRACTILE RESERVE OF CHRONICALLY DYSFUNCTIONAL MYOCARDIUM: COMPARISON WITH FLUORINE-18 FLUORODEOXYGLUCOSE POSITRON EMISSION TOMOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. This study sought to investigate whether low-dose dobutamine-MRI can detect residual myocardial viability in patients with chronic myocardial infarction and left ventricular dysfunction.Methods. Eleven patients with chronic myocardial infarction and left ventricular dysfunction were employed for identification of viable myocardium by cine-MRI during dobutamine infusion. All patients underwent coronary angiography and left ventriculography,18FDG-PET, MRI at rest and stress.The systolic wall thickening measured at rest and during stress was compared with the results of 18FDG- PET, respectively.Results. A significant difference of either dobutamine-induced systolic wall thickening (SWthstress) or dobutamine-induced contractile reserve (ΔSWth= SWthstress- SWthrest) was present between viable and scar regions (1.0±0.3 versus -0.3 ±0.1, P<0.01; 1.0±0.3 versus -0.2±0.2, P<0.01).

  6. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    2013-01-01

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of neuromu

  7. Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: an ex vivo study.

    Science.gov (United States)

    Pandy, Vijayapandi; Narasingam, Megala; Kunasegaran, Thubasni; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1-40 mg/mL), scopoletin (1-200 μg/mL), and rutin hydrate (0.6-312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60-100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5-5 mg/mL) and rutin hydrate (0.5-5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.

  8. Effect of Noni (Morinda citrifolia Linn. Fruit and Its Bioactive Principles Scopoletin and Rutin on Rat Vas Deferens Contractility: An Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Vijayapandi Pandy

    2014-01-01

    Full Text Available This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1–40 mg/mL, scopoletin (1–200 μg/mL, and rutin hydrate (0.6–312.6 μg/mL dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60–100 mg/mL showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (60 mg/mL. However, similar contractile response at high doses of scopoletin (0.5–5 mg/mL and rutin hydrate (0.5–5 mg/mL per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.

  9. Contractility of Plaster Mould for Arc Spraying Rapid Tooling%电弧喷涂快速制模用石膏母模的收缩性

    Institute of Scientific and Technical Information of China (English)

    刘峰; 陈巧; 杨伟

    2012-01-01

    对比试验研究了水膏比、水玻璃和羧甲基纤维素加入量对电弧喷涂快速制模用石膏母模收缩性的影响.结果表明,随着水玻璃和羧甲基纤维索加入量的增加,收缩率呈现增加的趋势;在同一水青比下,收缩率变化出现一个“峰值”,最小收缩率出现时羧甲基纤维素的加入量在0.15%~0.25%之间.%Influences of water-gypsum ratio, soluble glass and CMC on the contractility of the piaster mould for the arc spraying rapid tooling were investigated. The experimental results show thai contractility of plaster mould is increased with the increase of the content of the sodium silicate and CMC, and peak value can be oberved in the contractility at a fixed water-gypsum ratio. In addition. the minimum contractility appears with 0. 15%- 0.25% CMC.

  10. Myocardial contractile depression from high-frequency vibration is not due to increased cross-bridge breakage.

    Science.gov (United States)

    Campbell, K B; Wu, Y; Kirkpatrick, R D; Slinker, B K

    1998-04-01

    Experiments were conducted in 10 isolated rabbit hearts at 25 degrees C to test the hypothesis that vibration-induced depression of myocardial contractile function was the result of increased cross-bridge breakage. Small-amplitude sinusoidal changes in left ventricular volume were administered at frequencies of 25, 50, and 76.9 Hz. The resulting pressure response consisted of a depressive response [delta Pd(t), a sustained decrease in pressure that was not at the perturbation frequency] and an infrequency response [delta Pf(t), that part at the perturbation frequency]. delta Pd(t) represented the effects of contractile depression. A cross-bridge model was applied to delta Pf(t) to estimate cross-bridge cycling parameters. Responses were obtained during Ca2+ activation and during Sr2+ activation when the time course of pressure development was slowed by a factor of 3. delta Pd(t) was strongly affected by whether the responses were activated by Ca2+ or by Sr2+. In the Sr(2+)-activated state, delta Pd(t) declined while pressure was rising and relaxation rate decreased. During Ca2+ and Sr2+ activation, velocity of myofilament sliding was insignificant as a predictor of delta Pd(t) or, when it was significant, participated by reducing delta Pd(t) rather than contributing to its magnitude. Furthermore, there was no difference in cross-bridge cycling rate constants when the Ca(2+)-activated state was compared with the Sr(2+)-activated state. An increase in cross-bridge detachment rate constant with volume-induced change in cross-bridge distortion could not be detected. Finally, processes responsible for delta Pd(t) occurred at slower frequencies than those of cross-bridge detachment. Collectively, these results argue against a cross-bridge detachment basis for vibration-induced myocardial depression.

  11. Interplay between nitric oxide and VIP in CCK-8-induced phasic contractile activity in the rabbit sphincter of Oddi

    Institute of Scientific and Technical Information of China (English)

    Attila Pálv(o)lgyi; Réka Sári; József Németh; Annamária Szabolcs; István Nagy; Péter Hegyi; János Lonovics; Zoltán Szilvássy

    2005-01-01

    AIM: The sphincter of Oddi (SO) plays an important role in delivery of bile into the duodenum. To establish whether vasoactive intestinal polypeptide (VIP) and nitric oxide (NO) were involved in phasic contractile activity of the rabbit SO stimulated by cholecystokinin-octapeptide (CCK-8).METHODS: Isolated SO muscle rings were cleaned of fat and mounted horizontally on two small L-shaped hooks one of which was connected to a force transducer for the measurement of isometric tension. The experiments were carried out in a thermostatically controlled (37±0.2 ℃) organ bath (5 mL) containing Krebs solution. The organ fluid was gassed with 95% O2 and 50 mL/L CO2 to keep the pH at 7.40±0.05. Contractile responses to CCK-8 (1 μmol/L) were evaluated in the presence and absence of NG-nitro-L-arginine (LNNA), an inhibitor of NO synthase (100 μmol/L), and (p-chloro-D-Phe6-Leu17)-VIP (VIPa,30 μmol/L), a VIP receptor antagonist. RESULTS: CCK-8 stimulated the phasic activity of the SO. NO synthase inhibition increased the frequency and amplitude of contractions with a slight increase in developed tension. Pre-incubation with VIPa also attenuated this CCK-8 effect. The combined application of LNNA and VIPa abolished the phasic activity of the musde rings with a marked increase in tension in response to CCK-8.CONCLUSION: VIP and NO together contribute to an increase in phasic activity of SO.

  12. Roles of calcium and IP3 in impaired colon contractility of rats following multiple organ dysfunction syndrome

    Directory of Open Access Journals (Sweden)

    C. Zheyu

    2007-10-01

    Full Text Available The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5-triphosphate (IP3 in colon dysmotility induced by multiple organ dysfunction syndrome (MODS caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11 vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05. After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05. Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.

  13. Expression of alternatively spliced variants of Na-Ca-exchanger-1 in experimental colitis: role in reduced colonic contractility.

    Science.gov (United States)

    Shubair, M; Oriowo, M A; Khan, I

    2012-11-01

    Inflammation-induced colonic motility dysfunction is associated with a disturbance in Ca(2+) ion transporting mechanisms. The main objective of this study was to identify the types of Na-Ca-exchanger-1 (NCX-1) variants expressed in the rat colon, and how this was affected by colitis. In addition, the effect of colitis on the possible involvement of NCX-1 in the reduced carbachol-induced contraction of the rat colon was examined. Colitis was induced in male Sprague-Dawley rats by intra-rectal instillation of trinitrobenzenesulphonic acid (TNBS). Animals were killed on day 5. Colitis was characterized by estimating myeloperoxidase (MPO) activity, body weight, and histological scores. NCX-1 mRNA and protein variants were confirmed by RT-PCR coupled nucleotide sequencing and by Western blot analysis, respectively. Contractility of the colon segments was studied using standard procedure. There was a significant reduction in body weight of TNBS-treated rats. A significant increase in MPO activity and infiltration of inflammatory cells were observed in the inflamed rat colon. RT-PCR coupled nucleotide sequencing identified NCX-1.3 mRNA variant containing exons B and D. Western blot analysis confirmed 70 and 120 kDa molecular mass NCX-1 protein variants in rat colon. There was no significant difference (p > 0.05) in the level of NCX-1 protein variants in inflamed colon as compared to non-colitis controls. Functional experiments demonstrated that NCX in reverse mode played a role in carbachol-induced contraction of colon, and this was not affected by colitis. These findings demonstrated expression of a NCX-1.3 mRNA splice variant, and 70 and 118 kDa protein variants. Inhibition of the reverse mode of NCX-1 was not different in reduced carbachol-induced contraction between the groups. These findings are interpreted to suggest that NCX-1, though expressed did not play a role in reduced contractility in experimental colitis.

  14. Contractility studies on isolated bovine choroidal small arteries: determination of the active and passive wall tension-internal circumference relation.

    Science.gov (United States)

    Delaey, C; Boussery, K; Van de Voorde, J

    2002-09-01

    Studies on isolated choroidal arteries could help to understand the regulatory mechanisms in the choroidal circulation. The aim of the present study was therefore to assess whether contractility studies on isolated choroidal arteries were feasible and to determine the active and passive wall tension-internal circumference relation of these arteries. This relation is essential for reliable further pharmacodynamic studies on these vessels. Isolated choroidal arteries were mounted on a wire myograph for isometric tension recording. After the vessel was mounted, the L(100) (the circumference of the vessel at a transmural pressure of 100 mmHg) was determined. Then the passive and active wall tension-internal circumference relation of the choroidal vessels was obtained by stepwise increasing the internal circumference. The changes in the internal circumference were expressed as a percentage of L(100). After each increase in circumference, the passive tone (in a calcium free medium), the spontaneous tone (in a Krebs--Ringer bicarbonate solution) and the active tone (in a solution containing K(+) 120 mM and prostaglandin F(2 alpha) 30 microM) was measured. The passive tone of the vessel increased exponentially with the circumference of the vessel. Both the spontaneous tone and the active tone also increased when the vessel was stretched. They peaked when the internal circumference approached 90% of the L(100) and diminished again when the circumference was further increased. The peak value of the active tension curve averaged 2.24+/-0.47 Nm(-1) (n=10). The passive tension was 0.57+/-0.08 Nm(-1) (n=10) at this circumference. The peak value of the spontaneous tension curve averaged 0.37+/-0.08 Nm(-1) (n=10). It can be concluded that in vitro contractility studies on isolated choroidal arteries are feasible. The optimal length or preload of the choroidal arteries is attained when the internal circumference of the artery is set to 90% of the L(100).

  15. Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKα1.

    Science.gov (United States)

    Noppe, Gauthier; Dufeys, Cécile; Buchlin, Patricia; Marquet, Nicolas; Castanares-Zapatero, Diego; Balteau, Magali; Hermida, Nerea; Bouzin, Caroline; Esfahani, Hrag; Viollet, Benoit; Bertrand, Luc; Balligand, Jean-Luc; Vanoverschelde, Jean-Louis; Beauloye, Christophe; Horman, Sandrine

    2014-09-01

    Cardiac fibroblasts (CF) are crucial in left ventricular (LV) healing and remodeling after myocardial infarction (MI). They are typically activated into myofibroblasts that express alpha-smooth muscle actin (α-SMA) microfilaments and contribute to the formation of contractile and mature collagen scars that minimize the adverse dilatation of infarcted areas. CF predominantly express the α1 catalytic subunit of AMP-activated protein kinase (AMPKα1), while AMPKα2 is the major catalytic isoform in cardiomyocytes. AMPKα2 is known to protect the heart by preserving the energy charge of cardiac myocytes during injury, but whether AMPKα1 interferes with maladaptative heart responses remains unexplored. In this study, we investigated the role of AMPKα1 in modulating LV dilatation and CF fibrosis during post-MI remodeling. AMPKα1 knockout (KO) and wild type (WT) mice were subjected to permanent ligation of the left anterior descending coronary artery. The absence of AMPKα1 was associated with increased CF proliferation in infarcted areas, while expression of the myodifferentiation marker α-SMA was decreased. Faulty maturation of myofibroblasts might derive from severe down-regulation of the non-canonical transforming growth factor-beta1/p38 mitogen-activated protein kinase (TGF-β1/p38 MAPK) pathway in KO infarcts. In addition, lysyl oxidase (LOX) protein expression was dramatically reduced in the scar of KO hearts. Although infarct size was similar in AMPK-KO and WT hearts subjected to MI, these changes resulted in compromised scar contractility, defective scar collagen maturation, and exacerbated adverse remodeling, as indicated by increased LV diastolic dimension 30days after MI. Our data genetically demonstrate the centrality of AMPKα1 in post-MI scar formation and highlight the specificity of this catalytic isoform in cardiac fibroblast/myofibroblast biology.

  16. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  17. Extract from leaf of Psidium guajava L depresses the guinea pig atrial contractility by interfering with potassium and calcium channels

    Directory of Open Access Journals (Sweden)

    Antonio Nei Santana Gondim

    2009-09-01

    Full Text Available The negative inotropic effect of aqueous fraction (AqF obtained from the acetic extract of Psidium guajava L leaf was investigated on the guinea pig left atrium. Myocardial force was measured isometrically (27 ± 0.1 ºC, 2 Hz. AqF (100 μg/ml reduced contractility of about 85 ± 9.4 % (n = 4, p 0.05 sugesting that the oxide nitric pathway did not participate of the action mechanism of AqF. We can conclude that AqF depresses the atrial contractile by reducing the calcium entry in myocardial cells and also by openenig potassium channels of cardiac tissue.O efeito inotrópico da fração aquosa (AqF do extrato acético das folhas de Psidium guajava L. foi investigado em átrio esquerdo de cobaia. A força miocárdica foi medida isometricamente (27 ± 0,1 ºC; 2 Hz. A AqF (100 μg/mL reduziu a contratilidade em até 85 ± 9,4 % (n = 4; p 0,05, sugerindo que a via do óxido nítrico não participa do mecanismo de ação da AqF. Conclui-se que a AqF deprime a contratilidade atrial por reduzir a entrada de cálcio nas células miocárdicas e por abrir canais de potássio deste tecido.

  18. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Inez Wens

    Full Text Available Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS. The impact of high intensity exercise remains unknown.Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11 and 2 exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12 or high intensity continuous cardiovascular training (HCTR, n = 11, both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA and proportion, knee-flexor/extensor strength, body composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks.Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21 ± 7%, HCTR: +23 ± 5%. Furthermore, fiber type I CSA increased in HCTR (+29 ± 6%, whereas type II (+23 ± 7% and IIa (+23 ± 6%, CSA increased in HITR. Muscle strength improved in HITR and HCTR (between +13 ± 7% and +45 ± 20% and body fat percentage tended to decrease (HITR: -3.9 ± 2.0% and HCTR: -2.5 ± 1.2%. Furthermore, endurance capacity (Wmax +21 ± 4%, time to exhaustion +24 ± 5%, VO2max +17 ± 5% and lean tissue mass (+1.4 ± 0.5% only increased in HITR. Finally self-reported physical activity levels increased 73 ± 19% and 86 ± 27% in HCTR and HITR, respectively.High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile characteristics and endurance capacity in MS.ClinicalTrials.gov NCT01845896.

  19. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome

    Science.gov (United States)

    Samanta, Manoj P.; Chaidez, Alexander

    2016-01-01

    In most electric fish species, the electric organ (EO) derives from striated muscle cells that suppress many muscle properties. In the gymnotiform Sternopygus macrurus, mature electrocytes, the current-producing cells of the EO, do not contain sarcomeres, yet they continue to make some cytoskeletal and sarcomeric proteins and the muscle transcription factors (MTFs) that induce their expression. In order to more comprehensively examine the transcriptional regulation of genes associated with the formation and maintenance of the contractile sarcomere complex, results from expression analysis using qRT-PCR were informed by deep RNA sequencing of transcriptomes and miRNA compositions of muscle and EO tissues from adult S. macrurus. Our data show that: (1) components associated with the homeostasis of the sarcomere and sarcomere-sarcolemma linkage were transcribed in EO at levels similar to those in muscle; (2) MTF families associated with activation of the skeletal muscle program were not differentially expressed between these tissues; and (3) a set of microRNAs that are implicated in regulation of the muscle phenotype are enriched in EO. These data support the development of a unique and highly specialized non-contractile electrogenic cell that emerges from a striated phenotype and further differentiates with little modification in its transcript composition. This comprehensive analysis of parallel mRNA and miRNA profiles is not only a foundation for functional studies aimed at identifying mechanisms underlying the transcription-independent myogenic program in S. macrurus EO, but also has important implications to many vertebrate cell types that independently activate or suppress specific features of the skeletal muscle program. PMID:27114860

  20. Label-free cardiac contractility monitoring for drug screening applications based on compact high-speed lens-free imaging

    Science.gov (United States)

    Pauwelyn, Thomas; Reumers, Veerle; Vanmeerbeeck, Geert; Stahl, Richard; Janssens, Stefan; Lagae, Liesbet; Braeken, Dries; Lambrechts, Andy

    2015-03-01

    Cardiotoxicity is the major cause of drug withdrawal from the market, despite rigorous toxicity testing during the drug development process. Existing safety screening techniques, some of which are based on simplified cellular assays, others on electrical (impedance) or optical (fluorescent microscopy) measurements, are either too limited in throughput or offer too poor predictability of toxicity to be applied on large numbers of compounds in the early stage of drug development. We present a compact optical system for direct (label-free) monitoring of fast cellular movements that enable low cost and high throughput drug screening. Our system is based on a high-speed lens-free in-line holographic microscope. When compared to a conventional microscope, the system can combine adequate imaging resolution (5.5 μm pixel pitch) with a large field-of-view (63.4 mm2) and high speed (170 fps) to capture physical cell motion in real-time. This combination enables registration of cardiac contractility parameters such as cell contraction frequency, total duration, and rate and duration of both contraction and relaxation. The system also quantifies conduction velocity, which is challenging in existing techniques. Additionally, to complement the imaging hardware we have developed image processing software that extracts all the contractility parameters directly from the raw interference images. The system was tested with varying concentration of the drug verapamil and at 100 nM, showed a decrease in: contraction frequency (-23.3% +/- 13%), total duration (-21% +/- 5%), contraction duration (-19% +/- 6%) and relaxation duration (-21% +/- 8%). Moreover, contraction displacement ceased at higher concentrations.

  1. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.

    Science.gov (United States)

    Plas, Rogier L C; Degens, Hans; Meijer, J Peter; de Wit, Gerard M J; Philippens, Ingrid H C H M; Bobbert, Maarten F; Jaspers, Richard T

    2015-07-01

    The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force-velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force-velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force-velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties.

  2. Drug: D03534 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03534 Drug Clebopride (USAN); Cleboril (TN) C20H24ClN3O2 373.1557 373.8765 D03534.... TRACT AND METABOLISM A03 DRUGS FOR FUNCTIONAL GASTROINTESTINAL DISORDERS A03F PROPULSIVES A03FA Propulsives A03FA06 Clebopride... D03534 Clebopride (USAN) Target-based classification of drugs... [BR:br08310] G Protein-coupled receptors Rhodopsin family Dopamine dopamine D1-receptor [HSA:1812] [KO:K04144] Clebopride... [ATC:A03FA06] D03534 Clebopride (USAN) dopamine D2-receptor [HSA:1813] [KO:K04145] Clebopride

  3. Prediction of left ventricular contractile recovery using tissue Doppler strain and strain rate measurements at rest in patients undergoing percutaneous coronary intervention.

    Science.gov (United States)

    Abdelgawwad, Ihab M; Al Hawary, Ahmed A; Kamal, Hanan M; Al Maghawry, Layla M

    2017-01-13

    The aim of the study was to assess the ability of tissue Doppler (TD) deformation analysis at rest to predict left ventricular contractile recovery in patients undergoing percutaneous coronary intervention (PCI). This prospective cohort enrolled 67 patients with segmental wall motion abnormality. Assessment of each segment was performed at rest and during low dose Dobutamine stress echocardiography (DSE) using a 4 point scoring system, TD peak systolic strain (PSS) and peak systolic strain rate (PSSR). The study followed up the patients for contractile improvement after 6 months of successful PCI by echocardiography. Of a 319 dysfunctional segments, 155 (49%) showed contractile recovery and 164 (51%) did not. PSS and PSSR at rest were significantly higher in recovered segments compared to segments without recovery (PSS: -7.27 ± 0.8 Vs. -6.14 ± 0.7%, PSSR: -0.34 ± 0.13 Vs. -0.24 ± 0.1/s. p recovery group at follow up (p 0.001). Resting PSSR as well as PSS and PSSR during DSE were significant independent predictors of contractile recovery (p recovery, resting PSSR with a -0.31/s cut-off point had 76% sensitivity and 59% specificity (AUC 0.74), DSE qualitative viability assessment had a sensitivity of 75% and specificity of 77%, DSE PSS with a cut-off point of -9.1% had 74% sensitivity and 63% specificity (AUC 0.77) and DSE PSSR with a cut-off point of -0.72/s had 78% sensitivity and 77% specificity (AUC 0.81). Resting PSSR is a modest predictor of segmental contractile recovery after PCI while PSSR during DSE has a comparable diagnostic performance to subjective wall motion scoring. Recovered segments show improvement of deformation parameters after PCI.

  4. Beneficial effect of medicinal plants on the contractility of post-hypoxic isolated guinea pig atria - Potential implications for the treatment of ischemic-reperfusion injury.

    Science.gov (United States)

    Bipat, Robbert; Toelsie, Jerry R; Magali, Indira; Soekhoe, Rubaina; Stender, Karin; Wangsawirana, Angelique; Oedairadjsingh, Krishan; Pawirodihardjo, Jennifer; Mans, Dennis R A

    2016-08-01

    Context Ischemic-reperfusion injury is accompanied by a decreased contractility of the myocardium. Positive-inotropic agents have proven useful for treating this condition but may exert serious side-effects. Objective In this study, aqueous preparations from Abelmoschus esculentus L. Moench (Malvaceae), Annona muricata L. (Annonaceae), Bixa orellana L. (Bixaceae), Cecropia peltata L. (Moraceae), Erythrina fusca Lour. (Fabaceae), Psidium guajava L. (Myrtaceae) and Terminalia catappa L. (Combretaceae) were evaluated for their ability to improve the decreased contractility of isolated guinea pig atria after hypoxic stress. Materials and methods Guinea pig atria isolated in Ringer-Locke buffer gassed with 100% O2 at 30 °C were exposed for 5 min to hypoxia, then allowed to recover in oxygenated buffer alone or containing a single plant extract (0.001-1 mg/mL). The contractility (g/s) and beating frequency (beats/min), as well as troponin C contents of the bathing solution (ng/mL), were determined and expressed as means ± SDs. Results The extracts of A. muricata, B. orellana, C. peltata and T. catappa caused an increase in the contractility compared to untreated atria of 340 ± 102%, 151 ± 13%, 141 ± 14% and 238 ± 44%, respectively. However, the latter two preparations increased the troponin C contents of the bathing solution to 36 ± 11 and 69 ± 33, compared to the value of 11 ± 3 ng/mL found with untreated atria. Conclusions Preparations from A. muricata and B. orellana may possess positive-inotropic properties which may improve the contractility of the post-hypoxic myocardium. Studies to assess their usefulness in ischemic-reperfusion injury are warranted.

  5. A型肉毒素抑制电场刺激及乙酰胆碱引发的大鼠胃体胃底离体平滑肌收缩%Inhibitory Effect of Botulinum Toxin Type A on Gastric Body and Gastric Fundus Smooth Muscle Contractility Induced by EFS and ACh-induced in Rats in vitro

    Institute of Scientific and Technical Information of China (English)

    周媛媛; 李超彦; 侯一平

    2012-01-01

    Objective: To observe the effect of botulinum toxin type A ( BTX-A) , electrical field stimulation (EFS) and acetylcholine ( ACh) on spontaneous contractility in gastric body and gastric fundus smooth muscle. Method; Muscle strips in gastric body and gastric fundus were prepared, and subdivided randomly into control group, EFS group, BTX-A (10 U -mL-1) group, BTX-A (10 U -mL-1) + EFS group, ACh (100 Ixmol-L-1) group, ACh (100 (xmol-L-1) + BTX-A (10 U -mL-1) group, Ach (100 μmol - L-1) + Atropine (1 (μ.mol -L-1) group. The data were recorded by physiological experimental system of BL-420. Result: EFS enhanced the tension ( P < 0. 05 ) and amplitude ( P < 0. 01 ) in gastric body contractility, and similar results was observed in gastric fundus contractility; BTX-A decreased spontaneous contractile tension and amplitude (P <0. 01) in gastric body and tension ( P < 0. 05 ) in gastric fundus; BTX-A inhibited EFS-induced smooth muscle contractility including tension and amplitude ( P < 0. 01 ) in gastric body, tension (P < 0. 01 ) and amplitude ( P < 0. 05 ) in gastric fundus, BTX-A inhibited ACh-induced smooth muscle contractility including tension and amplitude (P <0. 01) in gastric body and gastric fundus. Conclusion; EFS enhances smooth muscle spontaneous contractility in gastric body and gastric fundus; BTX-A inhibits gastric body and gastric fundus smooth muscle spontaneous contractility; BTX-A inhibits EFS and ACh-induced smooth muscle contractility in gastric body and gastric fundus.%目的:观察大鼠胃体、胃底离体平滑肌条自发性收缩及电场刺激( EFS)、乙酰胆碱(ACh)和A型肉毒素( BTX-A)对肌条收缩的影响,并探讨其机制.方法:取大鼠胃体胃底平滑肌制备肌条,肌条随机分为对照组、EFS组、BTX-A(10 U·mL-1)组、BTX-A(10 U·mL-1)+ EFS组、ACh(100 μmol· L-1)组、ACh(100 μmol·L-1)+BTX-A(10 U·mL-1)组、ACh(100 μmol· L-1)+阿托品(1 μmol· L-)组,采用Biolap 420E生物机能实验系统记录肌

  6. Protective effect of zingerone on increased vascular contractility in diabetic rat aorta.

    Science.gov (United States)

    Ghareib, Salah A; El-Bassossy, Hany M; Elberry, Ahmed A; Azhar, Ahmad; Watson, Malcolm L; Banjar, Zainy M; Alahdal, Abdulrahman M

    2016-06-05

    The aim of the present study was to investigate the effect and possible mechanism of action of zingerone, the main constituent of ginger, on vascular reactivity in isolated aorta from diabetic rats. The results show that incubation of aortae with zingerone alleviates the exaggerated vasoconstriction of diabetic aortae to phenylephrine, as well as the impaired relaxatory response to acetylcholine in a concentration-dependent manner. Furthermore, Zingerone directly relax phenylephrine-precontracted aortae. The vasorelaxatory response is significantly attenuated by the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride and the guanylate cyclase inhibitor methylene blue but no effect of either the potassium channels blocker tetraethylammonium chloride, or the cyclooxygenase inhibitor indomethacin was observed. Zingerone had no effect on advanced glycation end product formation as well. In conclusion, zingerone ameliorates enhanced vascular contraction in diabetic aortae which may be mediated by its vasodilator effect through NO- and guanylate cyclase stimulation.

  7. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization

    Directory of Open Access Journals (Sweden)

    Graham Ian R

    2010-06-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology. Results Using RNA interference (RNAi to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1, or cardiomyopathy (Obscurin, Tcap. In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro. Conclusion Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage

  8. Work Capacity of the Bladder During Voiding: A Novel Method to Evaluate Bladder Contractile Function and Bladder Outlet Obstruction

    Institute of Scientific and Technical Information of China (English)

    Ning Liu; Li-Bo Man; Feng He; Guang-Lin Huang; Ning Zhou; Xiao-Fei Zhu

    2015-01-01

    Background: Work in voiding (WIV) of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point.Few studies, however, have assessed WIV owing to the complexity of its calculations.We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO).Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (PdetQmax) of≥40 cmH2O in men, who underwent urodynamic testing.The bladder power integration method was used to calculate WIV;WIV per second (WIV/t) and WIV per liter of urine voided (WIV/v) were also calculated.In men, the relationships between these work capacity parameters and PdetQmax and Abrams-Griffiths (AG) number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman's association test.Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively.In men, WIV/v showed significant positive associations with PdetQmax (r =0.845, P =0.000), AG number (r =0.814, P =0.000), and Schafer class (r =0.726, P =0.000).Conversely, WIV and WIV/t showed no associations with PdetQmax or AG number.In patients with BOO (Schafer class > Ⅱ), WIV/v correlated positively with increasing BOO grade.Conclusions: WIV can be calculated trom simple urodynamic parameters using the bladder power integration method.WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t.

  9. Work Capacity of the Bladder During Voiding: A Novel Method to Evaluate Bladder Contractile Function and Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-01-01

    Full Text Available Background: Work in voiding (WIV of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point. Few studies, however, have assessed WIV owing to the complexity of its calculations. We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO. Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (P det Q max of ≥40 cmH 2 O in men, who underwent urodynamic testing. The bladder power integration method was used to calculate WIV; WIV per second (WIV/t and WIV per liter of urine voided (WIV/v were also calculated. In men, the relationships between these work capacity parameters and P det Q max and Abrams-Griffiths (AG number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman′s association test. Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively. In men, WIV/v showed significant positive associations with P det Q max (r = 0.845, P = 0.000, AG number (r = 0.814, P = 0.000, and Schafer class (r = 0.726, P = 0.000. Conversely, WIV and WIV/t showed no associations with P det Q max or AG number. In patients with BOO (Schafer class > II, WIV/v correlated positively with increasing BOO grade. Conclusions: WIV can be calculated from simple urodynamic parameters using the bladder power integration method. WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t.

  10. Endothelin-1-induced modulation of contractile responses elicited by an alpha 1-adrenergic agonist on human corpus cavernosum smooth muscle.

    Science.gov (United States)

    Kim, D C; Gondré, C M; Christ, G J

    1996-03-01

    The goal of these studies was to examine endothelin-1 (ET-1)-induced modulation of contractile responses elicited by the selective alpha 1-adrenergic agonist, phenylephrine (PE), on isolated human corporal tissue strips. Pharmacological studies were conducted on human corporal tissue strips obtained from 22 patients undergoing implantation of penile prostheses for erectile dysfunction. For the purposes of statistical analysis, the patients were stratified into two age groups: A, age or = 60 y (n = 12). The patients were further sub-divided into two diagnostic categories, diabetics (DM, n = 9) and nondiabetics (ND, n = 13). Cumulative concentration-response curves (CRCs) were constructed to the alpha 1-adrenergic agonist, PE, prior to constructing a CRC to a single mixture of PE and ET-1 on the same tissue. A previously described fixed molar ratio (FMR) protocol was used to generate CRCs to mixtures of PE and ET-1. In all cases, for the PE:ET-1 FMRs of 90:10, 80:20 and 70:30, the partial substitution of PE with ET-1 resulted in an approx 3-fold leftward shift in the EC50 of the PE alone CRC with an approx 4% concomitant increase in Emax and a decrease in the slope factor value. There were no significant age- or disease-related differences in any of the logistic parameter estimates that describe the FMR CRC, indicating that there are no detectable age- or disease-related alterations in ET-1-induced amplification of alpha 1-adrenergic-mediated contractions in these studies. In addition, the location of the FMR CRC was precisely predicted by the theoretical CRC for simple additivity of agonist effects. In conclusion, since relatively small increases in ET-1 concentrations were associated with significant increases in alpha 1-adrenergic-mediated contractile responses, these data provide further testimony to the importance of ET-1 in modulating corporal smooth muscle tone, and moreover, establish a conceptual framework for understanding the mechanism of its action(s).

  11. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-¿B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D......), or translation blocker (cycloheximide). Contractile responses to the ET(B) receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET(B) receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show...... that organ culture per se induced transcriptional upregulation of contractile ET(B) receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine...

  12. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-κB specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D......), or translation blocker (cycloheximide). Contractile responses to the ET(B) receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET(B) receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show...... that organ culture per se induced transcriptional upregulation of contractile ET(B) receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine...

  13. Targeted Deletion of MicroRNA-22 Promotes Stress-Induced Cardiac Dilation and Contractile Dysfunction

    Science.gov (United States)

    Gurha, Priyatansh; Abreu-Goodger, Cei; Wang, Tiannan; Ramirez, Maricela O.; Drumond, Ana L.; van Dongen, Stijn; Chen, Yuqing; Bartonicek, Nenad; Enright, Anton J.; Lee, Brendan; Kelm, Robert J.; Reddy, Anilkumar K.; Taffet, George E.; Bradley, Allan; Wehrens, Xander H.; Entman, Mark L.; Rodriguez, Antony

    2012-01-01

    Background Delineating the role of microRNAs (miRNAs) in the posttranscriptional gene regulation offers new insights into how the heart adapts to pathological stress. We developed a knockout of miR-22 in mice and investigated its function in the heart. Methods and Results Here, we show that miR-22–deficient mice are impaired in inotropic and lusitropic response to acute stress by dobutamine. Furthermore, the absence of miR-22 sensitized mice to cardiac decompensation and left ventricular dilation after long-term stimulation by pressure overload. Calcium transient analysis revealed reduced sarcoplasmic reticulum Ca2+ load in association with repressed sarcoplasmic reticulum Ca2+ ATPase activity in mutant myocytes. Genetic ablation of miR-22 also led to a decrease in cardiac expression levels for Serca2a and muscle-restricted genes encoding proteins in the vicinity of the cardiac Z disk/titin cytoskeleton. These phenotypes were attributed in part to inappropriate repression of serum response factor activity in stressed hearts. Global analysis revealed increased expression of the transcriptional/translational repressor purine-rich element binding protein B, a highly conserved miR-22 target implicated in the negative control of muscle expression. Conclusion These data indicate that miR-22 functions as an integrator of Ca2+ homeostasis and myofibrillar protein content during stress in the heart and shed light on the mechanisms that enhance propensity toward heart failure. PMID:22570371

  14. Dictyostelium discoideum RabS and Rab2 colocalize with the Golgi and contractile vacuole system and regulate osmoregulation

    Indian Academy of Sciences (India)

    Katherine Maringer; Azure Yarbrough; Sunder Sims-Lucas; Entsar Saheb; Sanaa Jawed; John Bush

    2016-06-01

    Small-molecular-weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and is required for protein transport from the ER to the Golgi complex; however, Rab2 has yet to be characterized in Dictyostelium discoideum. DdRabS is a Dictyostelium Rab that is 80% homologous to DdRab1 which is required for protein transport between the ER and Golgi. Expression of GFP-tagged DdRab2 and DdRabS proteins showed localization to Golgi membranes and to the contractile vacuole system (CV) in Dictyostelium. Microscopic imaging indicates that the DdRab2 and DdRabS proteins localize at, and are essential for, the proper structure of Golgi membranes and the CV system. Dominant negative (DN) forms show fractionation of Golgi membranes, supporting their role in the structure and function of it. DdRab2 and DdRabS proteins, and their dominant negative and constitutively active (CA) forms, affect osmoregulation of the cells, possibly by the influx and discharge of fluids, which suggests a role in the function of the CV system. This is the first evidence of GTPases being localized to both Golgi membranes and the CV system in Dictyostelium.

  15. The influence of steroids on noradrenaline-mediated contractile reactivity of the superficial nasal and facial veins in cycling gilts.

    Science.gov (United States)

    Grzegorzewski, W J; Muszak, J; Wasowska, B; Jan, B; Stefańczyk-Krzymowska, S

    2012-01-01

    The nasal venous blood may be directed through the facial vein into the systemic circulation or through the frontal vein into the venous cavernous sinus of the perihypophyseal vascular complex, where hormones and pheromones permeate from the venous blood into the arterial blood supplying the brain and hypophysis. The present study was designed to determine the effect of noradrenaline (NA) on the tension of the nasal, frontal and facial veins of cycling gilts, and influence of ovarian steroid hormones on NA-mediated contractile reactivity. Additionally, the enzyme dopamine-beta-hydroxylase catalysing the conversion of dopamine to noradrenaline (DbetaH) was immunolocalized in these vessels. Among three studied veins, the frontal proximal vein, that fulfill a key role in the supply of the nasal venous blood into the venous cavernous sinus, reacted to NA most strongly (P tension of the frontal proximal vein during the periestrous period (P superficial nasal and facial veins of gilts in both studied stages of the estrous cycle. We suggest that the reactivity of the superficial veins of the nose and face to NA combined with the previously demonstrated reactivity of these veins to steroid ovarian hormones and male steroid pheromones may regulate the access of priming pheromone androstenol (resorebed in the nasal cavity) to the brain of gilts during periestrous period via humoral local destination transfer.

  16. Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles.

    Science.gov (United States)

    Gaze, W H; Burroughs, N; Gallagher, M P; Wellington, E M H

    2003-10-01

    Acanthamoeba polyphaga feeding on Salmonella typhimurium in a simple model biofilm were observed by light microscopy and a detailed record of interactions kept by digital image capture and image analysis. A strain of S. typhimurium SL1344 carrying a fis: gfp reporter construct (pPDT105) was used to assess intracellular growth in A. polyphaga on non-nutrient agar (NNA) plates. Invasion of the contractile vacuole (CV) was observed at a frequency of 1:100-1000 acanthamoebae at 35 degrees C. The salmonellae contained in CVs illustrated significant up-regulation of fis relative to extracellular bacteria, indicating that they were in the early stages of logarithmic growth, and reached numbers of 100-200 cells per vacuole after 4 days. This is the first report of this mode of intracellular growth. Up-regulation of fis was also observed in a proportion of S. typhimurium cells contained within food vacuoles. Filamentation of S. typhimurium and E. coli cells was frequently observed in coculture with A. polyphaga on NNA plates, with bacterial cells reaching lengths of up to 500 microm after 10 days' incubation at 35 degrees C. A. polyphaga was also seen to mediate bacterial translocation over the agar surface; egested salmonellae subsequently formed microcolonies along amoebal tracks. This illustrated intracellular survival of a fraction of the S. typhimurium population. These phenomena suggest that protozoa such as A. polyhaga may play an important role in the ecology of S. typhimurium in soil and aquatic environments.

  17. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi.

    Science.gov (United States)

    Jimenez, Veronica; Docampo, Roberto

    2015-09-01

    We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX (named after SYG1, Pho81 and XPR1) domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low-affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-green fluorescent protein have significantly higher levels of pyrophosphate (PPi ) and short-chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi , they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi.

  18. Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Lewis

    2010-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.

  19. Efficacy and Safety of Intravesical OnabotulinumtoxinA Injection in Patients with Detrusor Hyperactivity and Impaired Contractility

    Directory of Open Access Journals (Sweden)

    Chung-Cheng Wang

    2016-03-01

    Full Text Available We investigated the efficacy and safety of intravesical onabotulinumtoxinA injection in patients with detrusor hyperactivity and impaired contractility (DHIC. Twenty-one patients with urodynamically proven DHIC and 21 age-matched patients with overactive bladder (OAB with urodynamic detrusor overactivity were treated with intravesical injections of 100 U of onabotulinumtoxinA. The overactive bladder symptom score, urgency severity score, patient perception of bladder condition, global response assessment, voiding diary, and procedure-related adverse events (AE at baseline, two weeks, one, three, and six months after treatment were assessed. The results showed that the subjective symptom scores improved significantly in both groups, and the scores did not differ between the groups. The decrease in urgency episodes and urgency urinary incontinence were noted in OAB patients but not in DHIC patients. Although the incidence of AEs was comparable between the groups, the therapeutic efficacy lasted for a mean of 4.9 ± 4.8 months in DHIC patients and 7.2 ± 3.3 months in OAB patients (p = 0.03. We concluded that the efficacy of intravesical onabotulinumtoxinA injection for DHIC patients was limited and short-term. Nevertheless, AEs did not increase in DHIC. Intravesical onabotulinumtoxinA might not be a good indication in patients with DHIC and high post-voiding residual urine. Physicians should inform patients of the potential benefits and risks of onabotulinumtoxinA injection for treatment of DHIC.

  20. Defective excitation-contraction coupling is partially responsible for impaired contractility in hindlimb muscles of Stac3 knockout mice

    Science.gov (United States)

    Cong, Xiaofei; Doering, Jonathan; Grange, Robert W.; Jiang, Honglin

    2016-01-01

    The Stac3 gene is exclusively expressed in skeletal muscle, and Stac3 knockout is perinatal lethal in mice. Previous data from Stac3-deleted diaphragms indicated that Stac3-deleted skeletal muscle could not contract because of defective excitation-contraction (EC) coupling. In this study, we determined the contractility of Stac3-deleted hindlimb muscle. In response to frequent electrostimulation, Stac3-deleted hindlimb muscle contracted but the maximal tension generated was only 20% of that in control (wild type or heterozygous) muscle (P < 0.05). In response to high [K+], caffeine, and 4-chloro-m-cresol (4-CMC), the maximal tensions generated in Stac3-deleted muscle were 29% (P < 0.05), 58% (P = 0.08), and 55% (P < 0.05) of those in control muscle, respectively. In response to 4-CMC or caffeine, over 90% of myotubes formed from control myoblasts contracted, but only 60% of myotubes formed from Stac3-deleted myoblasts contracted (P = 0.05). However, in response to 4-CMC or caffeine, similar increases in intracellular calcium concentration were observed in Stac3-deleted and control myotubes. Gene expression and histological analyses revealed that Stac3-deleted hindlimb muscle contained more slow type-like fibers than control muscle. These data together confirm a critical role of STAC3 in EC coupling but also suggest that STAC3 may have additional functions in skeletal muscle, at least in the hindlimb muscle. PMID:27184118

  1. Experimental stereotactic gamma knife radiosurgery. Vascular contractility studies of the rat middle cerebral artery after chronic survival.

    Science.gov (United States)

    Major, Otto; Szeifert, György Tamás; Radatz, Matthias W R; Walton, Lee; Kemeny, Andras Armand

    2002-03-01

    In vitro isometric small vessel myograph experiments and pathological investigations were performed on rat middle cerebral arteries. Thirty-four animals provided 68 normal vessels, six further rats had the endothelial layer mechanically removed from their 12 arteries. Eighteen animals received gamma knife irradiation to the middle cerebral arteries. Fifteen of these received 50 Gray, and three 25 Gray dose to the 50% isodose and the contralateral vessels offered 20 Gray and 15 Gray irradiated specimens. Survival times varied from 12 weeks to 18 months. In the acute stage, abolition of potassium-induced relaxation occurred as early as 24 h after irradiation whilst in one year this reaction seemed to recover and remained active to 18 months. The contraction response to prostaglandin F2 alpha was diminished at six weeks in the 50 Gray-irradiated vessels. However, from one year further reduction was seen and by 18 months this response was totally abolished. We demonstrated reduction of contractile capability of the irradiated normal vessels while the vessels remained patent. When using low irradiation dose there were no pathological changes even at 18 months, but marked physiological changes could be demonstrated. Different vessel wall functions appear to have different radiosensitivity, time course and capability for regeneration.

  2. Low Frequency Electromagnetic Field Conditioning Protects against I/R Injury and Contractile Dysfunction in the Isolated Rat Heart.

    Science.gov (United States)

    Bialy, Dariusz; Wawrzynska, Magdalena; Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Wozniak, Mieczyslaw; Cadete, Virgilio J J; Sawicki, Grzegorz

    2015-01-01

    Low frequency electromagnetic field (LF-EMF) decreases the formation of reactive oxygen species, which are key mediators of ischemia/reperfusion (I/R) injury. Therefore, we hypothesized that the LF-EMF protects contractility of hearts subjected to I/R injury. Isolated rat hearts were subjected to 20 min of global no-flow ischemia, followed by 30 min reperfusion, in the presence or absence of LF-EMF. Coronary flow, heart rate, left ventricular developed pressure (LVDP), and rate pressure product (RPP) were determined for evaluation of heart mechanical function. The activity of cardiac matrix metalloproteinase-2 (MMP-2) and the contents of coronary effluent troponin I (TnI) and interleukin-6 (IL-6) were measured as markers of heart injury. LF-EMF prevented decreased RPP in I/R hearts, while having no effect on coronary flow. In addition, hearts subjected to I/R exhibited significantly increased LVDP when subjected to LF-EMF. Although TnI and IL-6 levels were increased in I/R hearts, their levels returned to baseline aerobic levels in I/R hearts subjected to LF-EMF. The reduced activity of MMP-2 in I/R hearts was reversed in hearts subjected to LF-EMF. The data presented here indicate that acute exposure to LF-EMF protects mechanical function of I/R hearts and reduces I/R injury.

  3. Low Frequency Electromagnetic Field Conditioning Protects against I/R Injury and Contractile Dysfunction in the Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Dariusz Bialy

    2015-01-01

    Full Text Available Low frequency electromagnetic field (LF-EMF decreases the formation of reactive oxygen species, which are key mediators of ischemia/reperfusion (I/R injury. Therefore, we hypothesized that the LF-EMF protects contractility of hearts subjected to I/R injury. Isolated rat hearts were subjected to 20 min of global no-flow ischemia, followed by 30 min reperfusion, in the presence or absence of LF-EMF. Coronary flow, heart rate, left ventricular developed pressure (LVDP, and rate pressure product (RPP were determined for evaluation of heart mechanical function. The activity of cardiac matrix metalloproteinase-2 (MMP-2 and the contents of coronary effluent troponin I (TnI and interleukin-6 (IL-6 were measured as markers of heart injury. LF-EMF prevented decreased RPP in I/R hearts, while having no effect on coronary flow. In addition, hearts subjected to I/R exhibited significantly increased LVDP when subjected to LF-EMF. Although TnI and IL-6 levels were increased in I/R hearts, their levels returned to baseline aerobic levels in I/R hearts subjected to LF-EMF. The reduced activity of MMP-2 in I/R hearts was reversed in hearts subjected to LF-EMF. The data presented here indicate that acute exposure to LF-EMF protects mechanical function of I/R hearts and reduces I/R injury.

  4. Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility.

    Science.gov (United States)

    Martinez-Rico, Clara; Pincet, Frederic; Thiery, Jean-Paul; Dufour, Sylvie

    2010-03-01

    Cadherins and integrins are major adhesion molecules regulating cell-cell and cell-matrix interactions. In vitro and in vivo studies have demonstrated the existence of crosstalk between integrins and cadherins in cell adhesion and motility. We used a dual pipette assay to measure the force required to separate E-cadherin-producing cell doublets and to investigate the role of integrin in regulating the strength of intercellular adhesion. A greater force was required to separate cell doublets bound to fibronectin or vitronectin-coated beads than for doublets bound to polylysine-coated beads. This effect depended on cell spreading and the duration of stimulation. Cells expressing type II cadherin-7 also responded to fibronectin stimulation to produce a higher intercellular adhesion. Establishment of cadherin-mediated adhesion needed ROCK, MLCK and myosin ATPase II activity. The regulation of intercellular adhesion strength by integrin stimulation required activation of Src family kinases, ROCK and actomyosin contractility. These findings highlight the importance and mechanisms of molecular crosstalk between cadherins and integrins in the control of cell plasticity during histogenesis and morphogenesis.

  5. Sequential biventricular pacing improves regional contractility, longitudinal function and dyssynchrony in patients with heart failure and prolonged QRS

    Directory of Open Access Journals (Sweden)

    Ring Margareta

    2010-04-01

    Full Text Available Abstract Aims Biventricular pacing (BiP is an effective treatment in systolic heart failure (HF patients with prolonged QRS. However, approximately 35% of the patients receiving BiP are classified as non-responders. The aim of this study is to evaluate the acute effects of VV-optimization on systolic heart function. Methods Twenty-one HF patients aged 72 (46-88 years, QRS 154 (120-190 ms, were studied with echocardiography, Tissue Doppler Imaging (TDI and 3D-echo the first day after receiving a BiP device. TDI was performed; during simultaneous pacing (LV-lead pacing 4 ms before the RV-lead and during sequential pacing (LV 20 and 40 ms before RV and RV 20 and 40 ms before LV-lead pacing. Systolic heart function was studied by tissue tracking (TT for longitudinal function and systolic maximal velocity (SMV for regional contractility and signs of dyssynchrony assessed by time-delays standard deviation of aortic valve opening to SMV, AVO-SMV/SD and tissue synchronization imaging (TSI. Results The TT mean value preoperatively was 4,2 ± 1,5 and increased at simultaneous pacing to 5,0 ± 1,2 mm (p Conclusions VV-optimization in the acute phase improves systolic heart function more than simultaneous BiP pacing. Long-term effects should be evaluated in prospective randomized trials.

  6. Correlation between selective inhibition of the cyclic nucleotide phosphodiesterases and the contractile activity in human pregnant myometrium near term.

    Science.gov (United States)

    Leroy, M J; Cedrin, I; Breuiller, M; Giovagrandi, Y; Ferre, F

    1989-01-01

    The present study was carried out to determine the ability of various pharmacological agents to selectively inhibit each cytosolic form of phosphodiesterase isolated from the longitudinal layer of human myometria near term. Among the drugs tested, zaprinast specifically inhibits the first form of PDE which hydrolyses both substrates (cAMP and cGMP) and is stimulated by the Ca2+-calmodulin complex. A second form of PDE specific for cAMP hydrolysis and Ca2+-calmodulin insensitive is only present during pregnancy. Rolipram is the most potent and selective inhibitor of this second form. It is also the most efficient compound to inhibit in vitro the spontaneous contractions of near term myometria. The double effect of rolipram suggests an important role of the second form of PDE in the mechanisms of contractility during the pregnancy. In addition rolipram or other derivatives might be of a therapeutic interest in the prevention of prematurity in so far as they are devoid of undesirable maternal and fetal side effects.

  7. Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete's heart.

    Science.gov (United States)

    Kovács, Attila; Oláh, Attila; Lux, Árpád; Mátyás, Csaba; Németh, Balázs Tamás; Kellermayer, Dalma; Ruppert, Mihály; Török, Marianna; Szabó, Lilla; Meltzer, Anna; Assabiny, Alexandra; Birtalan, Ede; Merkely, Béla; Radovits, Tamás

    2015-04-01

    Contractile function is considered to be precisely measurable only by invasive hemodynamics. We aimed to correlate strain values measured by speckle-tracking echocardiography (STE) with sensitive contractility parameters of pressure-volume (P-V) analysis in a rat model of exercise-induced left ventricular (LV) hypertrophy. LV hypertrophy was induced in rats by swim training and was compared with untrained controls. Echocardiography was performed using a 13-MHz linear transducer to obtain LV long- and short-axis recordings for STE analysis (GE EchoPAC). Global longitudinal (GLS) and circumferential strain (GCS) and longitudinal (LSr) and circumferential systolic strain rate (CSr) were measured. LV P-V analysis was performed using a pressure-conductance microcatheter, and load-independent contractility indices [slope of the end-systolic P-V relationship (ESPVR), preload recruitable stroke work (PRSW), and maximal dP/dt-end-diastolic volume relationship (dP/dtmax-EDV)] were calculated. Trained rats had increased LV mass index (trained vs. control; 2.76 ± 0.07 vs. 2.14 ± 0.05 g/kg, P rats (GLS: -18.8 ± 0.3 vs. -15.8 ± 0.4%; LSr: -5.0 ± 0.2 vs. -4.1 ± 0.1 Hz; GCS: -18.9 ± 0.8 vs. -14.9 ± 0.6%; CSr: -4.9 ± 0.2 vs. -3.8 ± 0.2 Hz, P rat model, strain and strain rate parameters closely reflected the improvement in intrinsic contractile function induced by exercise training.

  8. Downregulation of L-type Ca2+ channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling.

    Science.gov (United States)

    Kudryavtseva, Olga; Herum, Kate Møller; Dam, Vibeke Secher; Straarup, Marthe Simonsen; Kamaev, Dmitry; Briggs Boedtkjer, Donna M; Matchkov, Vladimir V; Aalkjær, Christian

    2014-05-01

    L-type Ca(2+) channels (LTCCs) are important for vascular smooth muscle cell (VSMC) contraction, as well as VSMC differentiation, as indicated by loss of LTCCs during VSMC dedifferentiation. However, it is not clear whether loss of LTCCs is a primary event underlying phenotypic modulation or whether loss of LTCCs has significance for vascular structure. We used small interference RNA (siRNA) transfection in vivo to investigate the role of LTCCs in VSMC phenotypic expression and structure of rat mesenteric arteries. siRNA reduced LTCC mRNA and protein expression in rat mesenteric arteries 3 days after siRNA transfection to 12.7 ± 0.7% and 47.3 ± 13%, respectively: this was associated with an increased resting intracellular Ca(2+) concentration ([Ca(2+)]i). Despite the high [Ca(2+)]i, the contractility was reduced (tension development to norepinephrine was 3.5 ± 0.2 N/m and 0.8 ± 0.2 N/m for sham-transfected and downregulated arteries respectively; P arteries downregulated for LTCCs. Phenotypic changes were associated with a 45% increase in number of VSMCs and a consequent increase of media thickness and media area. Ten days after siRNA transfection arterial structure was again normalized. The contractile responses of LTCC-siRNA transfected arteries were elevated in comparison with matched controls 10 days after transfection. The study provides strong evidence for causal relationships between LTCC expression and VSMC contractile phenotype, as well as novel data addressing the complex relationship between VSMC contractility, phenotype, and vascular structure. These findings are relevant for understanding diseases, associated with phenotype changes of VSMC and vascular remodeling, such as atherosclerosis and hypertension.

  9. Selective TNF-α targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter.

    Science.gov (United States)

    Marchini, Timoteo; D'Annunzio, Verónica; Paz, Mariela L; Cáceres, Lourdes; Garcés, Mariana; Perez, Virginia; Tasat, Deborah; Vanasco, Virginia; Magnani, Natalia; Gonzalez Maglio, Daniel; Gelpi, Ricardo J; Alvarez, Silvia; Evelson, Pablo

    2015-11-15

    Inflammation plays a central role in the onset and progression of cardiovascular diseases associated with the exposure to air pollution particulate matter (PM). The aim of this work was to analyze the cardioprotective effect of selective TNF-α targeting with a blocking anti-TNF-α antibody (infliximab) in an in vivo mice model of acute exposure to residual oil fly ash (ROFA). Female Swiss mice received an intraperitoneal injection of infliximab (10 mg/kg body wt) or saline solution, and were intranasally instilled with a ROFA suspension (1 mg/kg body wt). Control animals were instilled with saline solution and handled in parallel. After 3 h, heart O2 consumption was assessed by high-resolution respirometry in left ventricle tissue cubes and isolated mitochondria, and ventricular contractile reserve and lusitropic reserve were evaluated according to the Langendorff technique. ROFA instillation induced a significant decrease in tissue O2 consumption and active mitochondrial respiration by 32 and 31%, respectively, compared with the control group. While ventricular contractile state and isovolumic relaxation were not altered in ROFA-exposed mice, impaired contractile reserve and lusitropic reserve were observed in this group. Infliximab pretreatment significantly attenuated the decrease in heart O2 consumption and prevented the decrease in ventricular contractile and lusitropic reserve in ROFA-exposed mice. Moreover, infliximab-pretreated ROFA-exposed mice showed conserved left ventricular developed pressure and cardiac O2 consumption in response to a β-adrenergic stimulus with isoproterenol. These results provides direct evidence linking systemic inflammation and altered cardiac function following an acute exposure to PM and contribute to the understanding of PM-associated cardiovascular morbidity and mortality.

  10. Dilated cardiomyopathy mutation (R134W in mouse cardiac troponin T induces greater contractile deficits against α-myosin heavy chain than against β-myosin heavy chain

    Directory of Open Access Journals (Sweden)

    Sampath K Gollapudi

    2016-10-01

    Full Text Available Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM in humans. However, it remains unclear whether a single determinant — such as myofilament Ca2+ sensitivity — is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT, which is known to modulate crossbridge (XB recruitment dynamics in a myosin heavy chain (MHC-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W of the human DCM mutation (R131W, we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC and transgenic mice (β-MHC. TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units than in β-MHC fiber bundles (0.08 pCa units. Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.

  11. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain

    OpenAIRE

    Gollapudi, Sampath K.; Murali Chandra

    2016-01-01

    Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant — such as myofilament Ca2+ sensitivity — is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms...

  12. Effects of chronic severe pulmonary regurgitation and percutaneous valve repair on right ventricular geometry and contractility assessed by tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; K. Iversen, Kasper; G Vejlstrup, Niels;

    2010-01-01

    replacement (PPVR) was performed. Tissue Doppler derived measures of global and regional myocardial contractility were obtained by transthoracic echocardiography, and compared to a sham-operated control group (N = 9).RESULTS: Free PR is associated with RV dilatation (RV end-diastolic area increased from 15...... ± 3 to 23 ± 7 cm(2) /m(2) , P strain, and strain rate were unchanged after free PR and after PPVR. No consistent relation...

  13. Progress in the Study of Microvascular Pericytes Contractile Function%微血管周细胞收缩功能的研究进展

    Institute of Scientific and Technical Information of China (English)

    鹿文葆

    2012-01-01

    周细胞定位在微血管壁外侧,是微血管的重要组成细胞之一,它在微血管的形成及局部血流调节中发挥重要作用.周细胞是类似平滑肌细胞的一类细胞,表达多种收缩蛋白,具有收缩性.周细胞收缩可调节微血管管径及血流,控制局部微血流的灌流量.近年,越来越多的研究表明周细胞的收缩功能与多种微血管疾病的病变过程有关,因此日益受到关注.对其收缩功能的进一步理解,可能为治疗微血管疾病提供新的方法.%Pericytes, as one of the components of microvessels,are considered to play an important role in the generation of microvessels and the regulation of local blood flow. Pericytes are similar to the smooth muscle cells,which express several kinds of contractile protein and have contractility,regulating the microvessels diameter and blood flow perfusion. More and more studies indicate that pericytes' contractile function is related to the pathological progress of several diseases,which has been paid much attention to recently. Further understanding of the contractile function of pericytes might provide new strategy for the treatment of mi-crovascular diseases.

  14. Expression of gastrin-releasing peptide is increased by prolonged stretch of human myometrium, and antagonists of its receptor inhibit contractility.

    Science.gov (United States)

    Tattersall, Mark; Cordeaux, Yolande; Charnock-Jones, D Stephen; Smith, Gordon C S

    2012-05-01

    Increased uterine stretch appears to increase the risk of preterm labour, but the mechanism is unknown. The aim of this study was to identify factors that mediate the effect of stretch on human myometrium.Myometrial explants, prepared from biopsies obtained at elective caesarean delivery, were either studied acutely, or were maintained in prolonged culture (up to 65 h) under tension with either a 0.6 g or a 2.4 g mass, and compared using in vitro contractility, whole genome array, and qRT-PCR. Tissue held at tonic stretch with the 2.4 g mass for either 24 or 65 h showed increased potassium chloride (KCl)-induced and oxytocin-induced contractility compared with that held with the 0.6 g mass. Gene array identified 62 differentially expressed transcripts after 65 h exposure to increased stretch. Two probes for gastrin-releasing peptide (GRP), a known stimulatory agonist of smooth muscle, were among the top five up-regulated by stretch (3.4-fold and 2.0-fold). Up-regulation of GRP mRNA by stretch was confirmed in a separate series of 10 samples using quantitative RT-PCR (qRT-PCR) (2.8-fold, P =0.01). GRP stimulated contractions acutely when added to freshly obtained myometrial strips in 2 out of 9 cases, but Western blot demonstrated expression of the GRP receptor in 9 out of a further 9 cases. Prolonged incubation of stretched explants in the GRP antagonists PD-176252 or RC-3095 (65 and 24 h, respectively) significantly reduced KCl- and oxytocin-induced contractility.Tonic stretch of human myometrium increases contractility and stimulates the expression of a known smooth muscle stimulatory agonist, GRP. Incubation of myometrium with GRP receptor antagonists attenuates the effect of stretch. GRP may be a target for novel therapies to reduce the risk of preterm birth in multiple pregnancy.

  15. Comparison of contractile responses of single human motor units in the toe extensors during unloaded and loaded isotonic and isometric conditions.

    Science.gov (United States)

    Leitch, Michael; Macefield, Vaughan G

    2015-08-01

    Much of the repertoire of muscle function performed in everyday life involves isotonic dynamic movements, either with or without an additional load, yet most studies of single motor units measure isometric forces. To assess the effects of muscle load on the contractile response, we measured the contractile properties of single motor units supplying the toe extensors, assessed by intraneural microstimulation of single human motor axons, in isotonic, loaded isotonic, and isometric conditions. Tungsten microelectrodes were inserted into the common peroneal nerve, and single motor axons (n = 10) supplying the long toe extensors were electrically stimulated through the microelectrode. Displacement was measured from the distal phalanx of the toe with either an angular displacement transducer for the unloaded (i.e., no additional load) and loaded (addition of a 4-g mass) isotonic conditions or a force transducer for the isometric conditions. Mean twitch profiles were measured at 1 Hz for all conditions: rise time, fall time, and duration were shortest for the unloaded isotonic conditions and longest for the isometric conditions. Peak displacements were lower in the loaded than unloaded isotonic conditions, and the half-maximal response in the loaded condition was achieved at lower frequencies than in the unloaded isotonic condition. We have shown that the contractile responses of single motor units supplying the human toe extensors are influenced by how they are measured: twitches are much slower when measured in loaded than unloaded isotonic conditions and slowest when measured in isometric conditions.

  16. Aerobic interval training partly reverse contractile dysfunction and impaired Ca2+ handling in atrial myocytes from rats with post infarction heart failure.

    Directory of Open Access Journals (Sweden)

    Anne Berit Johnsen

    Full Text Available BACKGROUND: There is limited knowledge about atrial myocyte Ca(2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca(2+ handling in rats with post-infarction heart failure (HF and to examine whether aerobic interval training could reverse a potential dysfunction. METHODS AND RESULTS: Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p<0.01 and time to relaxation was prolonged (p<0.01 in sedentary HF-rats compared to healthy controls. This was associated with decreased Ca(2+ amplitude, decreased SR Ca(2+ content, and slower Ca(2+ transient decay. Atrial myocytes from HF-rats had reduced sarcoplasmic reticulum Ca(2+ ATPase activity, increased Na(+/Ca(2+-exchanger activity and increased diastolic Ca(2+ leak through ryanodine receptors. High intensity aerobic interval training in HF-rats restored atrial myocyte contractile function and reversed changes in atrial Ca(2+ handling in HF. CONCLUSION: Post infarction HF in rats causes profound impairment in atrial myocyte contractile function and Ca(2+ handling. The observed dysfunction in atrial myocytes was partly reversed after aerobic interval training.

  17. Changes in joint angle, muscle-tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration.

    Science.gov (United States)

    Cochrane, Darryl J; Loram, Ian D; Stannard, Stephen R; Rittweger, Jörn

    2009-09-01

    It has been suggested that vibration causes small changes in muscle length, but to the best of our knowledge, these have yet to be demonstrated during whole-body vibration (WBV). This was an observational study to determine whether acute WBV would result in muscle lengthening. We hypothesized that acute WBV would increase electromyography (EMG) activity concurrently with measurable changes in muscle contractile length. Nine healthy males performed two conditions on a Galileo vibration machine for 15 s at 0 HZ (resting) and 6 HZ at a set knee angle of 18 degrees. Muscle tendon complex length, contractile tissue displacement of the medial gastrocnemius muscle, and EMG of soleus, tibialis anterior, and vastus lateralis muscles were measured. At 6 HZ the medial gastrocnemius (MG) muscle tendon complex (MTC) amplitude (375 microm) was significantly greater (P EMG modulation were found for all muscles during the 6 HZ compared to the 0 HZ condition. The major finding was that approximately 50% of the elongation occurred within the muscle itself and was associated with preceding changes in EMG. This indicates muscle lengthening may be a prerequisite for eliciting stretch reflexes. In conclusion, there is a temporal association between EMG activity and muscle contractile tissue displacement where low-frequency WBV results in small muscle length changes and increases muscle activation.

  18. Effect of motilin on the contractility of gastric smooth muscle via NO pathway in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Zhiming WANG; Luo XU; Jiang LU

    2009-01-01

    This study investigates the gastroprnkinetie effects of motilin and erythromycin A (EM-A) and its potential mechanism in guinea pigs Cavia porceUus in vitro. Guinea pig stomach strips were mounted under organ baths containing Krebs solution.Motilin,EM-A,N'-Nitrn-L-arginine (L-NNA),L-arginine (L-AA) were added to the bathing solution in a non-cumulative way.Then the effects of motilin and EM-A was studied during electrical field stimulation (EFS) in the absence and presence of L-NNA and L-AA in the gastric anturm and fundus of guinea pigs. In addition,we observed the co-expression of motilin receptors and neuronal nitric oxide synthase (nNOS) in the gastric myenteric plexus of guinea pigs by fluo-immunohistochemistry. The results showed that the circular muscle tissues of the gastric fundus generated on-relaxations and off-contractions with the frequency of 1 -16 Hz. The on-responses induced a relaxation,partially mediated by the release of nitric oxide (NO) because addition of L-NNA turned the relaxations into cholinergically mediated contractions. The off-contractions were also cholinergically mediated as they disappeared under non-adrenergic,non-cholinergic (NANC) conditions using atropine and guanethidine. In fundic strips,motilin and EM-A induced on-relaxation and off-contraction and beth motilin ( 1 μmol/L) and EM-A ( 100 μmol/L) may significandy increased on-response and reduced off-response ( P < 0.05 ). And the effects of motilin on strip responses were significantly enhanced compared with EM-A. The on-responses could be reversed into a cholinergically mediated contraction by addition of NOS inhibitors L-NNA. In contrast,administration of substrate of NOS,L-AA,significantly increased on-relaxations and reduced cholinergic motor responses which were induced by motilin or EM-A. However D-arginine (D-AA) did not change the above response induced by motilin or EM-A. In the antral strips,motilin and EM-A only increased off-contractions. The response to

  19. Effect of motilin on the contractility of gastric smooth muscle via NO pathway in guinea pig

    Directory of Open Access Journals (Sweden)

    Luo XU

    2009-02-01

    Full Text Available This study investigates the gastroprokinetic effects of motilin and erythromycin A (EM-A and its potential mechanism in guinea pigs Cavia porcellus in vitro. Guinea pig stomach strips were mounted under organ baths containing Krebs solution. Motilin, EM-A, Nω- Nitro-L-arginine (L-NNA, L-arginine (L-AA were added to the bathing solution in a non-cumulative way. Then the effects of motilin and EM-A was studied during electrical field stimulation (EFS in the absence and presence of L-NNA and L-AA in the gastric anturm and fundus of guinea pigs. In addition, we observed the co-expression of motilin receptors and neuronal nitric oxide synthase (nNOS in the gastric myenteric plexus of guinea pigs by fluo-immunohistochemistry. The results showed that the Circular muscle tissues of the gastric fundus generated on-relaxations and off-contractions with the frequency of 1–16 Hz. The on-responses induced a relaxation, partially mediated by the release of nitric oxide (NO because addition of L-NNA turned the relaxations into cholinergically mediated contractions. The off-contractions were also cholinergically mediated as they disappeared under non-adrenergic, non-cholinergic (NANC conditions using atropine and guanethidine. In fundic strips, motilin and EM-A induced on-relaxation and off-contraction and both motilin (1 µmol/L and EM-A (100 µmol/L may significantly increased on-response and reduced off-response (P<0.05–0.001. And the effects of motilin on strip responses were significantly enhanced compared with EM-A. The on-responses could be reversed into a cholinergically mediated contraction by addition of NOS inhibitors L-NNA. In contrast, administration of substrate of NOS, L-AA, significantly increased on-relaxations and reduced cholinergic motor responses which were induced by motilin or EM-A. However D-arginine (D-AA did not change the above response induced by motilin or EM-A. In the antral strips, motilin and EM-A only increased off

  20. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    Science.gov (United States)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    ) Fast IIb MHC gene expression was enhanced in fast-twitch muscles of normal thyroid animals exposed to spaceflight; however, thyroid deficiency markedly repressed expression of this gene independently of spaceflight. In summary, the absence of gravity, when imposed at critical stages of development, impaired body and skeletal muscle growth, as well as expression of the MHC gene family of motor proteins. This suggests that normal weightbearing activity is essential for establishing body and muscle growth in neonatal animals, and for expressing the motor gene essential for supporting antigravity functions.

  1. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice.

    Science.gov (United States)

    Stöhr, Andrea; Friedrich, Felix W; Flenner, Frederik; Geertz, Birgit; Eder, Alexandra; Schaaf, Sebastian; Hirt, Marc N; Uebeler, June; Schlossarek, Saskia; Carrier, Lucie; Hansen, Arne; Eschenhagen, Thomas

    2013-10-01

    Myosin-binding protein C (Mybpc3)-targeted knock-in mice (KI) recapitulate typical aspects of human hypertrophic cardiomyopathy. We evaluated whether these functional alterations can be reproduced in engineered heart tissue (EHT) and yield novel mechanistic information on the function of cMyBP-C. EHTs were generated from cardiac cells of neonatal KI, heterozygous (HET) or wild-type controls (WT) and developed without apparent morphological differences. KI had 70% and HET 20% lower total cMyBP-C levels than WT, accompanied by elevated fetal gene expression. Under standard culture conditions and spontaneous beating, KI EHTs showed more frequent burst beating than WT and occasional tetanic contractions (14/96). Under electrical stimulation (6Hz, 37°C) KI EHTs exhibited shorter contraction and relaxation times and a twofold higher sensitivity to external [Ca(2+)]. Accordingly, the sensitivity to verapamil was 4-fold lower and the response to isoprenaline or the Ca(2+) sensitizer EMD 57033 2- to 4-fold smaller. The loss of EMD effect was verified in 6-week-old KI mice in vivo. HET EHTs were apparently normal under basal conditions, but showed similarly altered contractile responses to [Ca(2+)], verapamil, isoprenaline and EMD. In contrast, drug-induced changes in intracellular Ca(2+) transients (Fura-2) were essentially normal. In conclusion, the present findings in auxotonically contracting EHTs support the idea that cMyBP-C's normal role is to suppress force generation at low intracellular Ca(2+) and stabilize the power-stroke step of the cross bridge cycle. Pharmacological testing in EHT unmasked a disease phenotype in HET. The altered drug response may be clinically relevant.

  2. Association between aortic stenosis severity and contractile reserve measured by two-dimensional strain under low-dose dobutamine testing

    Directory of Open Access Journals (Sweden)

    Banović Marko

    2013-01-01

    Full Text Available Background/Aim. Early detection of left ventricle (LV systolic dysfunction could be a clue for surgical treatment in patients with significant aortic stenosis (AS. Therefore, we evaluated LV peak of global longitudinal strain (PGLS using speckle tracking imaging at rest and during low-dose dobutamine infusion in asymptomatic patients with moderate and severe AS and preserved LV ejection fraction (EF. Methods. All the patients underwent coronary angiography and had no obstructive coronary disease (defined as having no stenosis greater than 50% in diameter. The patients were divided into two groups: above and below median of 0.785 cm2 aortic valve area (AVA. PGLS was measured from acquired apical 4-chamber and 2-chamber cine loops using a EchoPac PC-workstation at rest and during 5 μg/kg/min, 10 μg/kg/min, and 20 μg/kg/min dobutamine infusion, respectively. The global strain was the average of segment strains from the apical views. Results: A total of 62 patients with moderate and severe AS (AVA median reached the statistical significance (- 8.71 ± 2.68% vs -11.93 ± 3.74%, p = 0.002. In addition, PGLS increase was also significant in 4-chamber view in the patients with AVA above median, but only when comparing baseline to peak 20 μg/kg/min (-10.72 ± 3.07% vs -13.14 ± 4.79%; p = 0.034. Conversely, in both groups the increase of PGLS in 2-chamber view did not reach significance. Conclusion. Two-dimensional strain speckle tracking analysis of myocardial deformation with measurement of peak systolic strain during dobutamine infusion is a feasible and accurate method to determine myocardial longitudinal systolic function and contractile reserve and may contribute to clinical decision making in patients with significant AS.

  3. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat

    Science.gov (United States)

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis. PMID:27462274

  4. Food allergy alters jejunal circular muscle contractility and induces local inflammatory cytokine expression in a mouse model

    Directory of Open Access Journals (Sweden)

    Kovanen Petri T

    2009-05-01

    Full Text Available Abstract Background We hypothesized that food allergy causes a state of non-specific jejunal dysmotility. This was tested in a mouse model. Methods Balb/c mice were epicutaneously sensitized with ovalbumin and challenged with 10 intragastric ovalbumin administrations every second day. Smooth muscle contractility of isolated circular jejunal sections was studied in organ bath with increasing concentrations of carbamylcholine chloride (carbachol. Smooth muscle layer thickness and mast cell protease-1 (MMCP-1 positive cell density were assayed histologically. Serum MMCP-1 and immunoglobulins were quantified by ELISA, and mRNA expressions of IFN-γ, IL-4, IL-6 and TGFβ-1 from jejunal and ileal tissue segments were analyzed with quantitative real-time PCR. Results Ovalbumin-specific serum IgE correlated with jejunal MMCP-1+ cell density. In the allergic mice, higher concentrations of carbachol were required to reach submaximal muscular stimulation, particularly in preparations derived from mice with diarrhoea. Decreased sensitivity to carbachol was associated with increased expression of IL-4 and IL-6 mRNA in jejunum. Smooth muscle layer thickness, as well as mRNA of IFN-γ and TGF-β1 remained unchanged. Conclusion In this mouse model of food allergy, we demonstrated a decreased response to a muscarinic agonist, and increased levels of proinflammatory IL-6 and Th2-related IL-4, but not Th1-related IFN-γ mRNAs in jejunum. IgE levels in serum correlated with the number of jejunal MMCP-1+ cells, and predicted diarrhoea. Overall, these changes may reflect a protective mechanism of the gut in food allergy.

  5. Reptilian skeletal muscle: contractile properties of identified, single fast-twitch and slow fibers from the lizard Dipsosaurus dorsalis.

    Science.gov (United States)

    Gleeson, T T; Johnston, I A

    1987-06-01

    Contractile properties and innervation patterns were determined in identified single fibers from the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Single fibers from both the red and white regions of the iliofibularis muscle were dissected along their length under oil and a portion was mounted on transducers for determination of maximum isometric tension (Po) and unloaded shortening velocity (Vmax) using the slack test method. Fibers were chemically skinned and activated by high Ca++. The remaining portion of the muscle fiber was mounted on a glass slide and histochemically treated to demonstrate myosin ATPase activity. Fibers studied functionally could therefore be classified as fast or slow according to their myosin ATPase activity, and they could also be classified metabolically according to the region of the muscle from which they were dissected. Fast-twitch glycolytic (FG) fibers from the white region and fast-twitch oxidative, glycolytic (FOG) and slow fibers from the red region had shortening velocities at 25 degrees C of 7.5, 4.4, and 1.5 l X s-1, respectively. Po did not differ in the three fiber types, averaging 279 kN X m-2. In a second experiment, 10 microns sections were examined every 30 microns through the proximal-most 7.5 mm of the iliofibularis muscle for motor endplates. Sections were stained to demonstrate regions of acetylcholinesterase activity. Fibers with visible endplates were classified in serial sections by histochemical treatment for myosin ATPase and succinic dehydrogenase. All slow fibers examined (n = 22) exhibited multiple endplates, averaging one every 725 microns.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overload.

    Science.gov (United States)

    Ruch, Stuart R; Nishio, Manabu; Wasserstrom, J Andrew

    2003-10-01

    There is increasing evidence that cardiac glycosides act through mechanisms distinct from inhibition of the sodium pump but which may contribute to their cardiac actions. To more fully define differences between agents indicative of multiple sites of action, we studied changes in contractility and action potential (AP) configuration in cat ventricular myocytes produced by six cardiac glycosides (ouabain, ouabagenin, dihydroouabain, actodigin, digoxin, and resibufogenin). AP shortening was observed only with ouabain and actodigin. There was extensive inotropic variability between agents, with some giving full inotropic effects before automaticity occurred whereas others produced minimal inotropy before toxicity. AP shortening was not a result of alterations in calcium current or the inward rectifier potassium current, but correlated with an increase in steady-state outward current (Iss), which was sensitive to KB-R7943, a Na+-Ca2+ exchange (NCX) inhibitor. Interestingly, Iss was observed following exposure to ouabain and dihydroouabain, suggesting that an additional mechanism is operative with dihydroouabain that prevents AP shortening. Further investigation into differences in inotropy between ouabagenin, dihydroouabain and ouabain revealed almost identical responses under AP voltage clamp. Thus all agents appear to act on the sodium pump and thereby secondarily increase the outward reverse mode NCX current, but the extent of AP duration shortening and positive inotropy elicited by each agent is limited by development of their toxic actions. The quantitative differences between cardiac glycosides suggest that mechanisms independent of sodium pump inhibition may result from an altered threshold for calcium overload possibly involving direct or indirect effects on calcium release from the sarcoplasmic reticulum.

  7. Partial deletion of ROCK2 protects mice from high-fat diet-induced cardiac insulin resistance and contractile dysfunction.

    Science.gov (United States)

    Soliman, Hesham; Nyamandi, Vongai; Garcia-Patino, Marysol; Varela, Julia Nogueira; Bankar, Girish; Lin, Guorong; Jia, Zhengping; MacLeod, Kathleen M

    2015-07-01

    Obesity is associated with cardiac insulin resistance and contractile dysfunction, which contribute to the development of heart failure. The RhoA-Rho kinase (ROCK) pathway has been reported to modulate insulin resistance, but whether it is implicated in obesity-induced cardiac dysfunction is not known. To test this, wild-type (WT) and ROCK2(+/-) mice were fed normal chow or a high-fat diet (HFD) for 17 wk. Whole body insulin resistance, determined by an insulin tolerance test, was observed in HFD-WT, but not HFD-ROCK2(+/-), mice. The echocardiographically determined myocardial performance index, a measure of global systolic and diastolic function, was significantly increased in HFD-WT mice, indicating a deterioration of cardiac function. However, no change in myocardial performance index was found in hearts from HFD-ROCK2(+/-) mice. Speckle-tracking-based strain echocardiography also revealed regional impairment in left ventricular wall motion in hearts from HFD-WT, but not HFD-ROCK2(+/-), mice. Activity of ROCK1 and ROCK2 was significantly increased in hearts from HFD-WT mice, and GLUT4 expression was significantly reduced. Insulin-induced phosphorylation of insulin receptor substrate (IRS) Tyr(612), Akt, and AS160 was also impaired in these hearts, while Ser(307) phosphorylation of IRS was increased. In contrast, the increase in ROCK2, but not ROCK1, activity was prevented in hearts from HFD-ROCK2(+/-) mice, and cardiac levels of TNFα were reduced. This was associated with normalization of IRS phosphorylation, downstream insulin signaling, and GLUT4 expression. These data suggest that increased activation of ROCK2 contributes to obesity-induced cardiac dysfunction and insulin resistance and that inhibition of ROCK2 may constitute a novel approach to treat this condition.

  8. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes

    Science.gov (United States)

    Hewawasam, Ruwani P.; Liu, Dan; Casarotto, Marco G.; Board, Philip G.; Dulhunty, Angela F.

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation–contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  9. Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions.

    Science.gov (United States)

    Canver, Adam Charles; Ngo, Olivia; Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-05-24

    Macrovascular endothelial injury, which may be caused by percutaneous intervention, requires endothelial cell directed collective migration to restore an intact endothelial monolayer. While interventions are often performed in arteries stiffened by cardiovascular disease, the effect of substrate stiffness on endothelial cell collective migration has not been examined. We studied porcine aortic endothelial cell directed collective migration using a modified cage assay on 4, 14, and 50kPa collagen-coated polyacrylamide gels. Total cell migration distance was measured over time, as were nuclear alignment and nuclear:total β-catenin as measures of cell directedness and cell-cell junction integrity, respectively. In addition, fibronectin fibers were examined as a measure of extracellular matrix deposition and remodeling. We now show that endothelial cells collectively migrate farther on stiffer substrates by 24h. Cells were more directed in the migration direction on intermediate stiffness substrates from 12 to 24h, with an alignment peak 400-700µm back from the migratory interface. However, cells on the softest substrates had the highest cell-cell junction integrity. Cells on all substrates deposited fibronectin, however fibronectin fibers were most linear and aligned on the stiffer substrates. When Rho kinase (ROCK) was inhibited with Y27632, cells on soft substrates migrated farther and cells on both soft and stiff substrates were more directed. When α5 integrin was knocked down with siRNA, cells on stiffer substrates did not migrate as far and were less directed. These data suggest that ROCK-mediated myosin contractility inhibits endothelial cell collective migration on soft substrates, while cell-matrix interactions are critical to endothelial cell collective migration on stiff substrates.

  10. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated