WorldWideScience

Sample records for clebopride enhances contractility

  1. Phospholemman deficiency in postinfarct hearts: enhanced contractility but increased mortality.

    Science.gov (United States)

    Mirza, M Ayoub; Lane, Susan; Yang, Zequan; Karaoli, Themis; Akosah, Kwame; Hossack, John; McDuffie, Marcia; Wang, JuFang; Zhang, Xue-Qian; Song, Jianliang; Cheung, Joseph Y; Tucker, Amy L

    2012-06-01

    Phospholemman (PLM) regulates [Na(+) ](i), [Ca(2+)](i) and contractility through its interactions with Na(+)-K(+)-ATPase (NKA) and Na(+) /Ca(2+) exchanger (NCX1) in the heart. Both expression and phosphorylation of PLM are altered after myocardial infarction (MI) and heart failure. We tested the hypothesis that absence of PLM regulation of NKA and NCX1 in PLM-knockout (KO) mice is detrimental. Three weeks after MI, wild-type (WT) and PLM-KO hearts were similarly hypertrophied. PLM expression was lower but fractional phosphorylation was higher in WT-MI compared to WT-sham hearts. Left ventricular ejection fraction was severely depressed in WT-MI but significantly less depressed in PLM-KO-MI hearts despite similar infarct sizes. Compared with WT-sham myocytes, the abnormal [Ca(2+) ], transient and contraction amplitudes observed in WT-MI myocytes were ameliorated by genetic absence of PLM. In addition, NCX1 current was depressed in WT-MI but not in PLM-KO-MI myocytes. Despite improved myocardial and myocyte performance, PLM-KO mice demonstrated reduced survival after MI. Our findings indicate that alterations in PLM expression and phosphorylation are important adaptations post-MI, and that complete absence of PLM regulation of NKA and NCX1 is detrimental in post-MI animals.

  2. The benefit of enhanced contractility in the infarct borderzone: A virtual experiment.

    Directory of Open Access Journals (Sweden)

    Zhihong eZhang

    2012-04-01

    Full Text Available A. Objectives Contractile function in the normally perfused infarct borderzone (BZ is depressed. However, the impact of reduced BZ contractility on left ventricular (LV pump function is unknown. As a consequence, there have been no therapies specifically designed to improve BZ contractility. We tested the hypothesis that an improvement in borderzone contractility will improve LV pump function.B. Methods From a previously reported study, magnetic resonance (MRI images with non-invasive tags were used to calculate 3D myocardial strain in five sheep 16 weeks after anteroapical myocardial infarction. Animal specific finite element (FE models were created using MRI data and LV pressure obtained at early diastolic filling. Analysis of borderzone function using those FE models has been previously reported. Chamber stiffness, pump function (Starling’s law and stress in the fiber, cross fiber and circumferential directions were calculated. Animal-specific FE models were performed for three cases: a impaired BZ contractility (INJURED; b BZ contractility fully restored (100% BZ IMPROVEMENT; or c BZ contractility partially restored (50% BZ IMPROVEMENT.C. Results 100% BZ IMPROVEMENT and 50% BZ IMPROVEMENT both caused an upward shift in the Starling relationship, resulting in a large (36% and 26% increase in stroke volume at LVPED = 20 mm Hg (8.0 ml, p<0.001. Moreover, there were a leftward shift in the end systolic pressure volume relationship, resulting in a 7% and 5% increase in LVPES at 110 mm Hg (7.7 ml, p<0.005. It showed that even 50% BZ IMPROVEMENT was sufficient to drive much of the calculated increase in function. D. Conclusions. Improved borderzone contractility has a beneficial effect on LV pump function. Partial improvement of borderzone contractility was sufficient to drive much of the calculated increase in function. Therapies specifically designed to improve borderzone contractility should be developed.

  3. Stimulation of the cardiopulmonary baroreflex enhances ventricular contractility in awake dogs: a mathematical analysis study.

    Science.gov (United States)

    Sala-Mercado, Javier A; Moslehpour, Mohsen; Hammond, Robert L; Ichinose, Masashi; Chen, Xiaoxiao; Evan, Sell; O'Leary, Donal S; Mukkamala, Ramakrishna

    2014-08-15

    The cardiopulmonary baroreflex responds to an increase in central venous pressure (CVP) by decreasing total peripheral resistance and increasing heart rate (HR) in dogs. However, the direction of ventricular contractility change is not well understood. The aim was to elucidate the cardiopulmonary baroreflex control of ventricular contractility during normal physiological conditions via a mathematical analysis. Spontaneous beat-to-beat fluctuations in maximal ventricular elastance (Emax), which is perhaps the best available index of ventricular contractility, CVP, arterial blood pressure (ABP), and HR were measured from awake dogs at rest before and after β-adrenergic receptor blockade. An autoregressive exogenous input model was employed to jointly identify the three causal transfer functions relating beat-to-beat fluctuations in CVP to Emax (CVP → Emax), which characterizes the cardiopulmonary baroreflex control of ventricular contractility, ABP to Emax, which characterizes the arterial baroreflex control of ventricular contractility, and HR to Emax, which characterizes the force-frequency relation. The CVP → Emax transfer function showed a static gain of 0.037 ± 0.010 ml(-1) (different from zero; P < 0.05) and an overall time constant of 3.2 ± 1.2 s. Hence, Emax would increase and reach steady state in ∼16 s in response to a step increase in CVP, without any change to ABP or HR, due to the cardiopulmonary baroreflex. Following β-adrenergic receptor blockade, the CVP → Emax transfer function showed a static gain of 0.0007 ± 0.0113 ml(-1) (different from control; P < 0.10). Hence, Emax would change little in steady state in response to a step increase in CVP. Stimulation of the cardiopulmonary baroreflex increases ventricular contractility through β-adrenergic receptor system mediation.

  4. AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling

    OpenAIRE

    Zouein, Fouad A.; Booz, George W.

    2013-01-01

    Heart failure is a progressive, debilitating disease that is characterized by inadequate contractility of the heart. With an aging population, the incidence and economic burden of managing heart failure are anticipated to increase substantially. Drugs for heart failure only slow its progression and offer no cure. However, results of recent clinical trials using recombinant adeno-associated virus (AAV) gene delivery offer the promise, for the first time, that heart failure can be reversed. The...

  5. Enhanced Uterine Contractility and Stillbirth in Mice Lacking G Protein-Coupled Receptor Kinase 6 (GRK6): Implications for Oxytocin Receptor Desensitization.

    Science.gov (United States)

    Grotegut, Chad A; Mao, Lan; Pierce, Stephanie L; Swamy, Geeta K; Heine, R Phillips; Murtha, Amy P

    2016-04-01

    Oxytocin is a potent uterotonic agent and is used clinically for induction and augmentation of labor, as well as for prevention and treatment of postpartum hemorrhage. Oxytocin increases uterine contractility by activating the oxytocin receptor (OXTR), a member of the G protein-coupled receptor family, which is prone to molecular desensitization. After oxytocin binding, the OXTR is phosphorylated by a member of the G protein-coupled receptor kinase (GRK) family, which allows for recruitment of β-arrestin, receptor internalization, and desensitization. According to previous in vitro analyses, desensitization of calcium signaling by the OXTR is mediated by GRK6. The objective of this study was to determine the role of GRK6 in mediating uterine contractility. Here, we demonstrate that uterine GRK6 levels increase in pregnancy and using a telemetry device to measure changes in uterine contractility in live mice during labor, show that mice lacking GRK6 produce a phenotype of enhanced uterine contractility during both spontaneous and oxytocin-induced labor compared with wild-type or GRK5 knockout mice. In addition, the observed enhanced contractility was associated with high rates of term stillbirth. Lastly, using a heterologous in vitro model, we show that β-arrestin recruitment to the OXTR, which is necessary for homologous OXTR desensitization, is dependent on GRK6. Our findings suggest that GRK6-mediated OXTR desensitization in labor is necessary for normal uterine contractile patterns and optimal fetal outcome. PMID:26886170

  6. Myocardial contractility

    Energy Technology Data Exchange (ETDEWEB)

    Comet, M.; Machecourt, J.

    1988-01-01

    The myocardial contractility characterizes the intensity of the activation representing the globality of the processes which lead to the formation of the sites where the strength is generated. Some parameters allowing a quantification of the contractility are measured during the isovolumic phase of the ventricular contraction: they are essentially dP/dt/sub max/, and eventually V/sub max/. For the measurement of these parameters, a pressure detector needs to be introduced into the left ventricle. Other parameters are measured during the systolic ejection phase: they are the ejection fraction, which is easy to measure and is very load dependant, and the maximal elastance. This last parameter is not easy to measure, but seems load independant. With the radioisotopes, it is possible to measure the ejection fraction and the maximal elastance. Contractility measurements are of interest in the study of ischemic cardiopathies and of valvular desease.

  7. Enhanced transcription of contractile 5-hydroxytryptamine 2A receptors via extracellular signal-regulated kinase 1/2 after organ culture of rat mesenteric artery

    DEFF Research Database (Denmark)

    Cao, Yong-Xiao; He, Lang-Chong; Xu, Cang-Bao;

    2005-01-01

    5-Hydroxytryptamine (5-HT) has been found to elicit enhanced contractile effects in some vascular disorders. The present study was designed to examine if vascular 5-HT2A receptors are up-regulated during organ culture and if the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathways ...

  8. Enhanced Myocardial Vascularity and Contractility by Novel FGF-1 Transgene in a Porcine Model of Chronic Coronary Occlusion

    Directory of Open Access Journals (Sweden)

    Janet L. Parker

    2008-12-01

    sp-FGF-1-treated animals only. Conclusion: These results suggest that the intramyocardial delivery of our chimeric secretory FGF-1 gene can enhance vascularity and improve cardiac contractility in a chronic ischemic heart. This protocol may serve useful for developing reparative angiogenesis strategies aimed at improving the pumping function of the ischemic hearts in human patients.

  9. Novel type of ornithine-glutathione double conjugate excreted as a major metabolite into the bile of rats administered clebopride

    International Nuclear Information System (INIS)

    Rats orally given radioactive Clebopride [[14C]CP; N-(1'-benzyl-4'-piperidyl)-2-[14C]methoxy-4-amino-5-chlorobenzamide++ +], an antiulcer agent, excreted a novel type of ornithine (Orn)-GSH double conjugate in the bile as a major metabolite [(14C]BMCP), corresponding to 18% of the dose. The present study provides the first evidence for Orn conjugation of a xenobiotic in mammals and demonstrates that the structure of the radioactive conjugate differs fundamentally from those known in birds and reptiles. The structure of the biliary metabolite, [14C]BMCP, purified to homogeneity by silica gel thin layer and reverse phase high pressure liquid chromatography, was elucidated as S-[2-ornithylamino-4-[14C]methoxy-5-(1'-methyl-4'-piperidylamin o) carboxyphenyl]glutathione, based mainly on the following facts: (1) BMCP showed a protonated molecular ion (M + H)+ peak at m/z 683 in the secondary ion mass spectrum and (2) [14C]BMCP afforded Orn, glutamic acid, glycine, S-(2-amino-4-[14C]methoxy-5-carboxyphenyl)cysteine [( 14C]AMCC), and 1-methyl-4-aminopiperidine (MAP) quantitatively, in an equal molar ratio, by complete hydrolysis with peptidase. Thus, BMCP was a metabolite with three enzymatically hydrolyzable amide bonds in addition to the one existing originally in the parent structure of the drug, which produces MAP by peptic digestion. Of the three additional amide bonds of BMCP, one was a novel type of bond formed by condensation of the alpha-carboxylic acid group of Orn with the primary aromatic amino group of the drug and the other two were in the S-glutathionyl residue, substituted for the chlorine atom vicinal to the Orn-conjugating primary amino group in the aromatic ring and affording glutamic acid, glycine, and the S-cysteine conjugate AMCC by hydrolysis of BMCP with the peptidase

  10. Insulin improves cardiomyocyte contractile function through enhancement of SERCA2a activity in simulated ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Jie YU; Hai-feng ZHANG; Feng WU; Qiu-xia LI; Heng MA; Wen-yi GUO; Hai-chang WANG; Feng GAO

    2006-01-01

    Aim: Insulin exerts anti-apoptotic effects in both cardiomyocytes and coronary endothelial cells following ischemia/reperfusion (I/R) via the Akt-endothelial nitric oxide synthase survival signal pathway. This important insulin signaling might further contribute to the improvement of cardiac function after reperfusion. In this study, we tested the hypothesis that sarcoplasmic reticulum calcium-AT-Pase (SERCA2a) is involved in the insulin-induced improvement of cardiac contractile function following I/R. Methods: Ventricular myocytes were enzymatically isolated from adult SD rats. Simulated I/R was induced by perfusing cells with chemical anoxic solution for 15 min followed by reperfusion with Tyrode's solution with or without insulin for 30 min. Myocyte shortening and intracellular calcium transients were assessed and underlying mechanisms were investigated. Results: Reperfusion with insulin (10-7 mol/L) significantly improved the recovery of contractile function (n=15-20 myocytes from 6-8 hearts, P<0.05), and increased calcium transients, as evidenced by the increased calcium (Ca2+) fluorescence ratio, shortened time to peak Ca2+ and time to 50% diastolic Ca2+, compared with those in cells reperfused with vehicle (P<0.05). In addition, Akt phosphorylation and SERCA2a activity were both increased in insulin-treated I/R cardiomyocytes, which were markedly inhibited by pretreatment of cells with a specific Akt inhibitor. Moreover, inhibition of Akt activity abolished insulin-induced positive contractile and calcium transients responses in I/R cardiomyocytes. Conclusion: These data demonstrated for the first time that insulin improves the recovery of contractile function in simulated I/R cardiomyocytes in an Akt-dependent and SERCA2a-mediated fashion.

  11. Fractalkine depresses cardiomyocyte contractility.

    Directory of Open Access Journals (Sweden)

    David Taube

    Full Text Available BACKGROUND: Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO exhibit reduced cardiac function. Gene array on left ventricles (LV showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. METHODS: Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso stimulation. RESULTS: LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. CONCLUSIONS: Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  12. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement.

    Directory of Open Access Journals (Sweden)

    Kerry Wilson

    Full Text Available BACKGROUND: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated a biological microelectromechanical system (BioMEMS based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT, the time to half relaxation ((1/2RT were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and (1/2RT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine. CONCLUSIONS/SIGNIFICANCE: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery

  13. Lidocaine and structure-related mexiletine induce similar contractility-enhancing effects in ischaemia-reperfusion injured equine intestinal smooth muscle in vitro.

    Science.gov (United States)

    Tappenbeck, Karen; Hoppe, Susanne; Hopster, Klaus; Kietzmann, Manfred; Feige, Karsten; Huber, Korinna

    2013-06-01

    Postoperative ileus (POI) is a severe complication following small intestinal surgery in horses. It was hypothesised that prokinetic effects of lidocaine, the most commonly chosen drug for treatment of POI, resulted from drug integration into smooth muscle (SM) cell membranes, thereby modulating cell membrane properties. This would probably depend on the structural and lipophilic characteristics of lidocaine. To assess the influence of molecular structure and lipophilicity on prokinetic effects in vitro, the current study compared the effects of lidocaine with four structure-related drugs, namely, mexiletine, bupivacaine, tetracaine and procaine. The response to cumulative drug administration and reversibility of effects were tested by measuring isometric contractile performance of equine jejunal circular SM strips, challenged by a standardised, artificial in vivo ischaemia-reperfusion injury. A second set of SM strips were incubated with the different drugs to determine changes in creatine kinase (CK) release. All drugs caused a drug-specific increase in contractility, although only lidocaine and mexiletine induced similar concentration-dependent curve progressions, significantly reduced CK release, and featured shorter recovery times of tissue contractility after washing, compared to bupivacaine and tetracaine. In was concluded that the structural and lipophilic similarity of mexiletine and lidocaine were responsible for the similar effects of these drugs on SM contractility and cell membrane permeability, which supported the hypothesis that prokinetic effects of lidocaine are based on interactions with SM cell membranes modulated by these features. PMID:23265867

  14. Active contractility in actomyosin networks

    CERN Document Server

    Wang, Shenshen

    2012-01-01

    Contractile forces are essential for many developmental processes involving cell shape change and tissue deformation. Recent experiments on reconstituted actomyosin networks, the major component of the contractile machinery, have shown that active contractility occurs above a threshold motor concentration and within a window of crosslink concentration. We present a microscopic dynamic model that incorporates two essential aspects of actomyosin self-organization: the asymmetric load response of individual actin filaments and the correlated motor-driven events mimicking myosin-induced filament sliding. Using computer simulations we examine how the concentration and susceptibility of motors contribute to their collective behavior and interplay with the network connectivity to regulate macroscopic contractility. Our model is shown to capture the formation and dynamics of contractile structures and agree with the observed dependence of active contractility on microscopic parameters including the contractility onse...

  15. Structural comparison of contractile nanomachines

    Directory of Open Access Journals (Sweden)

    Sebastian Kube

    2015-05-01

    Full Text Available Contractile molecular machines are a common feature among bacteriophages and prokaryotes. Due to their stability and the large size, contractile-tailed bacteriophages are traditionally investigated by electron microscopic methods. Complemented by crystallographic studies, a molecular model of contraction for the T4 phage was developed. Lately, also related contractile structures like the Photorhabdus virulence cassette-like particles, the R-Type pyocins and the contractile tubule of the bacterial Type VI secretion system have been analyzed by cryo electron microscopy. Photorhabdus virulence cassette particles and R-Type pyocins are toxin complexes reminiscent of bacteriophage tails that are secreted by bacteria to kill their insect host or competing bacteria. In contrast, the Type VI secretion system is an intracellular apparatus for injection of effector proteins into bacterial and eukaryotic cells. Although it shares homology with other contractile systems, the Type VI secretion system is additionally equipped with a recycling function, which makes it suitable for multiple rounds of action. Starting from the 3D reconstructions, we compare these molecular machines structurally and functionally to their viral counterparts and summarize the current knowledge on their respective mode of action.

  16. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+/K+-ATPase Vmax in trained men

    DEFF Research Database (Denmark)

    Hostrup, Morten; Kalsen, A; Ortenblad, N;

    2014-01-01

    non-fatigue, but terbutaline counteracted exercise-induced reductions in Vmax at time of fatigue. In conclusion, increased contractile force induced by beta2-adrenergic stimulation is associated with enhanced rate of Ca(2+) release in humans. While beta2-adrenergic stimulation elicits positive...... inotropic and lusitropic effects of non-fatigued m.quadriceps, these effects are blunted when muscles fatigue. This article is protected by copyright. All rights reserved....

  17. Detecting cardiac contractile activity in the early mouse embryo using multiple modalities

    Directory of Open Access Journals (Sweden)

    Chiann-mun eChen

    2015-01-01

    Full Text Available The heart is one of the first organs to develop during mammalian embryogenesis. In the mouse, it starts to form shortly after gastrulation, and is derived primarily from embryonic mesoderm. The embryonic heart is unique in having to perform a mechanical contractile function while undergoing complex morphogenetic remodelling. Approaches to imaging the morphogenesis and contractile activity of the developing heart are important in understanding not only how this remodelling is controlled but also the origin of congenital heart defects. Here, we describe approaches for visualising contractile activity in the developing mouse embryo, using brightfield time lapse microscopy and confocal microscopy of calcium transients. We describe an algorithm for enhancing this image data and quantifying contractile activity from it. Finally we describe how atomic force microscopy can be used to record contractile activity prior to it being microscopically visible.

  18. Modulatory effects of taurine on jejunal contractility

    OpenAIRE

    Yao, Q Y; Chen, D. P.; D.M. Ye; Y.P. Diao; Lin, Y.

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Tau...

  19. Modulatory effects of taurine on jejunal contractility

    Directory of Open Access Journals (Sweden)

    Q.Y. Yao

    2014-12-01

    Full Text Available Taurine (2-aminoethanesulfonic acid is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  20. Modulatory effects of taurine on jejunal contractility

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y. [Dalian Medical University, Dalian, Liaoning (China)

    2014-10-14

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca{sup 2+} dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  1. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  2. Cellular contractility requires ubiquitin mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  3. Requirements for disordered actomyosin bundle contractility

    CERN Document Server

    Lenz, Martin

    2011-01-01

    Actomyosin contractility is essential for biological force generation, and is well understood in highly ordered structures such as striated muscle. In vitro experiments have shown that non-sarcomeric bundles comprised only of F-actin and myosin thick filaments can also display contractile behavior, which cannot be described by standard muscle models. Here we investigate the microscopic symmetries underlying this process in large non-sarcomeric bundles with long actin filaments. We prove that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. A simple disordered bundle model demonstrates a contraction mechanism based on these assumptions and predicts realistic bundle deformations. Recent experimental observations of F-actin buckling in in vitro contractile bundles support our model.

  4. [The effect of prostatic peptides on the contractile activity of smooth-muscle cells from the bladder].

    Science.gov (United States)

    Barabanova, V V; Gorbachev, A G; Parastaeva, M M; Khavinson, V Kh

    1993-02-01

    Prostatilene (PST) enhanced the functional activity of the bladder smooth-muscle cells (SMC). The possibility of activation of the SMC contractility by the PST through pharmacomechanical associations, is discussed.

  5. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    Science.gov (United States)

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  6. Effects of C-type natriuretic peptide on rat cardiac contractility

    OpenAIRE

    Brusq, Jean-Marie; Mayoux, Eric; Guigui, Laurent; Kirilovsky, Jorge

    1999-01-01

    Natriuretic peptide receptors have been found in different heart preparations. However, the role of natriuretic peptides in the regulation of cardiac contractility remains largely elusive and was, therefore, studied here.The rate of relaxation of electrically stimulated, isolated rat papillary muscles was enhanced (114.4±1.4%, P

  7. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    Science.gov (United States)

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  8. Spontaneous actin dynamics in contractile rings

    Science.gov (United States)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  9. [The effect of prostatilen on the contractile activity of the smooth-muscle cells of the blood vessels and bladder in cats].

    Science.gov (United States)

    al-Shchukri, S Kh; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1996-07-01

    Prostatilene enhanced the functional activity of the bladder and blood vessels' smooth muscle cells. A possibility of activation of the smooth muscle cells contractility with prostatilene by a pharmaco-mechanical association, is discussed.

  10. Cell stiffness, contractile stress and the role of extracellular matrix

    Science.gov (United States)

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2010-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses. PMID:19327344

  11. Cell stiffness, contractile stress and the role of extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    An, Steven S., E-mail: san@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Kim, Jina [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Ahn, Kwangmi [Division of Biostatistics, Penn State College of Medicine, Hershey, PA 17033 (United States); Trepat, Xavier [CIBER, Enfermedades Respiratorias, 07110 Bunyola (Spain); Drake, Kenneth J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Fredberg, Jeffrey J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States)

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  12. Regulation of tissue morphodynamics: an important role for actomyosin contractility

    Science.gov (United States)

    Siedlik, Michael J.; Nelson, Celeste M.

    2015-01-01

    Forces arising from contractile actomyosin filaments help shape tissue form during morphogenesis. Developmental events that result from actomyosin contractility include tissue elongation, bending, budding, and collective migration. Here, we highlight recent insights into these morphogenetic processes from the perspective of actomyosin contractility as a key regulator. Emphasis is placed on a range of results obtained through live imaging, culture, and computational methods. Combining these approaches in the future has the potential to generate a robust, quantitative understanding of tissue morphodynamics. PMID:25748251

  13. Molecular Model of the Contractile Ring

    CERN Document Server

    Biron, D; Tlusty, Tsvi; Moses, Elisha; 10.1103/PhysRevLett.95.098102

    2010-01-01

    We present a model for the actin contractile ring of adherent animal cells. The model suggests that the actin concentration within the ring and consequently the power that the ring exerts both increase during contraction. We demonstrate the crucial role of actin polymerization and depolymerization throughout cytokinesis, and the dominance of viscous dissipation in the dynamics. The physical origin of two phases in cytokinesis dynamics ("biphasic cytokinesis") follows from a limitation on the actin density. The model is consistent with a wide range of measurements of the midzone of dividing animal cells.

  14. Contractility Dispersion in Long QT Syndrome

    Directory of Open Access Journals (Sweden)

    MH Nikoo

    2009-09-01

    Full Text Available Background: Previous studies, using M mode echocardiography, provided unexpected evidence of a mechanical alteration in patients with long QT syndrome. The aim of this study was to evaluate entire left ventricular (LV wall motion characteristics in patients with long QT syndrome using tissue Doppler imaging. Methods: We enrolled 17 patients with congenital long QT syndrome [11 female and 6 male], aged 21 to 45 years. 10 subjects without cardiac disease were also selected as a control group. Two-dimensional tissue Doppler imaging (TDI recording of the LV was obtained from the basal and mid-segments from apical four-chamber, two-chamber, and long-axis views. ‘Myocardial Contraction Duration’ [MCD] was defined as the time from start of R wave on ECG to end of S wave on TDI. MCD was measured in the six LV wall positions: septal, anteroseptal, lateral, inferior, posterior and anterior positions.Results: LV contractility dispersion was significantly greater in long QT syndrome patients compared to control group [0.051 ± 0.011 vs. 0.016 ± 0.06; P < 0.001]. Conclusion: Our study evaluated left ventricular dispersion of contractility duration in patients with long QT syndrome. This mechanical dispersion may be a reflection of the inhomogeneity of repolarisation in the long QT syndrome.

  15. Contractile Dysfunction in Sarcomeric Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    MacIver, David H; Clark, Andrew L

    2016-09-01

    The pathophysiological mechanisms underlying the clinical phenotype of sarcomeric hypertrophic cardiomyopathy are controversial. The development of cardiac hypertrophy in hypertension and aortic stenosis is usually described as a compensatory mechanism that normalizes wall stress. We suggest that an important abnormality in hypertrophic cardiomyopathy is reduced contractile stress (the force per unit area) generated by myocardial tissue secondary to abnormalities such as cardiomyocyte disarray. In turn, a progressive deterioration in contractile stress provokes worsening hypertrophy and disarray. A maintained or even exaggerated ejection fraction is explained by the increased end-diastolic wall thickness producing augmented thickening. We propose that the nature of the hemodynamic load in an individual with hypertrophic cardiomyopathy could determine its phenotype. Hypertensive patients with hypertrophic cardiomyopathy are more likely to develop exaggerated concentric hypertrophy; athletic individuals an asymmetric pattern; and inactive individuals a more apical hypertrophy. The development of a left ventricular outflow tract gradient and mitral regurgitation may be explained by differential regional strain resulting in mitral annular rotation.

  16. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Spray, Stine; Skovsted, Gry F;

    2016-01-01

    Cerebral ischaemia results in enhanced endothelin B (ETB ) receptor-mediated contraction and receptor protein expression in the affected cerebrovascular smooth muscle cells (SMC). Organ culture of cerebral arteries is a method to induce similar alterations in ETB receptor expression. We hypothesize...... ETB receptor agonist sarafotoxin 6c. The involvement of extracellular regulated kinase (ERK) 1/2 and focal adhesion kinase (FAK) were studied by their specific inhibitors U0126 and PF-228, respectively. Compared to their stretched counterparts, un-stretched MCA segments showed a significantly...

  17. A quantitative analysis of contractility in active cytoskeletal protein networks.

    Science.gov (United States)

    Bendix, Poul M; Koenderink, Gijsje H; Cuvelier, Damien; Dogic, Zvonimir; Koeleman, Bernard N; Brieher, William M; Field, Christine M; Mahadevan, L; Weitz, David A

    2008-04-15

    Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F-actin, muscle myosin II motors, and alpha-actinin cross-linkers. We show that contractility occurs above a threshold motor concentration and within a window of cross-linker concentrations. We also quantify the pore size of the bundled networks and find contractility to occur at a critical distance between the bundles. We propose a simple mechanism of contraction based on myosin filaments pulling neighboring bundles together into an aggregated structure. Observations of this reconstituted system in both bulk and low-dimensional geometries show that the contracting gels pull on and deform their surface with a contractile force of approximately 1 microN, or approximately 100 pN per F-actin bundle. Cytoplasmic extracts contracting in identical environments show a similar behavior and dependence on myosin as the reconstituted system. Our results suggest that cellular contractility can be sensitively regulated by tuning the (local) activity of molecular motors and the cross-linker density and binding affinity. PMID:18192374

  18. Characteristics of deslanoside-induced modulation on jejunal contractility

    Institute of Scientific and Technical Information of China (English)

    Da-Peng Chen; Yong-Jian Xiong; Ze-Yao Tang; Qi-Ying Yao; Dong-Mei Ye; Sha-Sha Liu; Yuan Lin

    2012-01-01

    AIM:TO characterize the dual effects of deslanoside on the contractility of jejunal smooth muscle.METHODS:Eight pairs of different low and high contractile states of isolated jejunal smooth muscle fragment (JSMF) were established.Contractile amplitude of JSMF in different low and high contractile states was selected to determine the effects of deslanoside,and Western blotting analysis was performed to measure the effects of deslanoside on myosin phosphorylation of jejunal smooth muscle.RESULTS:Stimulatory effects on the contractility of JSMF were induced (45.3% ± 4.0% vs 87.0% ± 7.8%,P < 0.01) by deslanoside in 8 low contractile states,and inhibitory effects were induced (180.6% ± 17.8%vs 109.9% ± 10.8%,P < 0.01) on the contractility of JSMF in 8 high contractile states.The effect of deslanoside on the phosphorylation of myosin light chain ofJSMF in low (78.1% ± 4.1% vs 96.0% ± 8.1%,P <0.01) and high contractile state (139.2% ± 8.5% vs 105.5 ± 7.34,P < 0.01) was also bidirectional.Bidirectional regulation (BR) was abolished in the presence of tetrodotoxin.Deslanoside did not affect jejunal contractility pretreated with the Ca2+ channel blocker verapamil or in a Ca2+-free assay condition.The stimulatory effect of deslanoside on JSMF in a low contractile state (low Ca2+ induced) was abolished by atropine.The inhibitory effect of deslanoside on jejunal contractility in a high contractile state (high Ca2+ induced) was blocked by phentolamine,propranolol and L-NG-nitroarginine,respectively.CONCLUSION:Deslanoside-induced BR is Ca2+ dependent and is related to cholinergic and adrenergic systems when JSMF is in low or high contractile states.

  19. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  20. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  1. Considerations For Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Lenore Rasmussen, Lewis D. Meixler and Charles A. Gentile

    2012-02-29

    Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.

  2. Contractile Changes in the Vasculature After Subchronic Smoking

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Kruse, Lars Schack; Johansson, Helle Wulf;

    2016-01-01

    : Wild type (WT) and SP-D KO mice were exposed to cigarette smoke (CS) or room air for 12 weeks. The pulmonary artery, left anterior descending coronary artery, and basilar artery (BA) were isolated and mounted in wire myographs. Contractile concentration response curves to endothelin-1 and UDP were...... displayed no smoke induced changes, but were surprisingly similar to the CSE WT. CONCLUSION: The contractility to UDP was altered in the brain and heart vasculature of CSE mice. SP-D KO (both control and CSE) and CSE WT had similar changes in contractility compared to control WT. IMPLICATIONS: These results...

  3. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    Science.gov (United States)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  4. Genetic fuzzy system predicting contractile reactivity patterns of small arteries

    DEFF Research Database (Denmark)

    Tang, J; Sheykhzade, Majid; Clausen, B F;

    2014-01-01

    strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used...

  5. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  6. Influence of the cardiac myosin hinge region on contractile activity.

    OpenAIRE

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P.; Slayter, H. S.

    1991-01-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myos...

  7. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Science.gov (United States)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  8. Improvement of diaphragm and limb muscle isotonic contractile performance by K+ channel blockade

    Directory of Open Access Journals (Sweden)

    Pollarine Jennifer

    2010-01-01

    Full Text Available Abstract The K+ channel blocking aminopyridines greatly improve skeletal muscle isometric contractile performance during low to intermediate stimulation frequencies, making them potentially useful as inotropic agents for functional neuromuscular stimulation applications. Most restorative applications involve muscle shortening; however, previous studies on the effects of aminopyridines have involved muscle being held at constant length. Isotonic contractions differ substantially from isometric contractions at a cellular level with regards to factors such as cross-bridge formation and energetic requirements. The present study tested effects of 3,4-diaminopyridine (DAP on isotonic contractile performance of diaphragm, extensor digitorum longus (EDL and soleus muscles from rats. During contractions elicited during 20 Hz stimulation, DAP improved work over a range of loads for all three muscles. In contrast, peak power was augmented for the diaphragm and EDL but not the soleus. Maintenance of increased work and peak power was tested during repetitive fatigue-inducing stimulation using a single load of 40% and a stimulation frequency of 20 Hz. Work and peak power of both diaphragm and EDL were augmented by DAP for considerable periods of time, whereas that of soleus muscle was not affected significantly. These results demonstrate that DAP greatly improves both work and peak power of the diaphragm and EDL muscle during isotonic contractions, which combined with previous data on isometric contractions indicates that this agent is suitable for enhancing muscle performance during a range of contractile modalities.

  9. Myocardial contractile function and intradialytic hypotension.

    Science.gov (United States)

    Owen, Paul J; Priestman, William S; Sigrist, Mhairi K; Lambie, Stewart H; John, Stephen G; Chesterton, Lindsay J; McIntyre, Christopher W

    2009-07-01

    Dialysis-induced hypotension remains a significant problem in hemodialysis (HD) patients. Numerous factors result in dysregulation of blood pressure control and impaired myocardial reserve in response to HD-induced cardiovascular stress. Episodic intradialytic hypotension may be involved in the pathogenesis of evolving myocardial injury. We performed an initial pilot investigation of cardiovascular functional response to pharmacological cardiovascular stress in hypotension-resistant (HR) and hypotension-prone (HP) HD patients. We studied 10 matched chronic HD patients (5 HP, 5 HR). Dobutamine-atropine stress (DAS) was performed on a nondialysis short interval day, with noninvasive pulse-wave analysis using the Finometer to continuously measure hemodynamic variables. Baroreflex sensitivity was assessed at rest and during DAS. Baseline hemodynamic variables were not significantly different. The groups had differing hemodynamic responses to DAS. The Mean arterial pressure was unchanged in the HR group but decreased in HP patients (-13.6 +/- 3.5 mmHg; P<0.001). This was associated with failure to significantly increase cardiac output in the HP group (cf. increase in cardiac output in the HR group of +33.4 +/- 6%; P<0.05), and a reduced response in total peripheral resistance (HP -10.3 +/- 6.8%, HR -22.7 +/- 2.9%, P=NS). Baroreflex sensitivity was not significantly different between groups at baseline or within groups with increasing levels of DAS; however, the mean baroreflex sensitivity was higher in HR cf. HP subjects throughout pharmacological stress (P<0.05). Hypotension-prone patients appear to have an impaired cardiovascular response to DAS. The most significant abnormality is an impaired myocardial contractile reserve. Early identification of these patients would allow utilization of therapeutic strategies to improve intradialytic tolerability, potentially abrogating aggravation of myocardial injury.

  10. Effects of testosterone on contractile properties of sexually dimorphic forelimb muscles in male bullfrogs (Rana catesbeiana, Shaw 1802

    Directory of Open Access Journals (Sweden)

    Aaron R. Kampe

    2013-07-01

    This study examined the effects of testosterone (T on the contractile properties of two sexually dimorphic forelimb muscles and one non-dimorphic muscle in male bullfrogs (Rana catesbeiana, Shaw 1802. The dimorphic muscles in castrated males with testosterone replacement (T+ achieved higher forces and lower fatigability than did castrated males without replaced testosterone (T0 males, but the magnitude of the differences was low and many of the pair-wise comparisons of each muscle property were not statistically significant. However, when taken as a whole, the means of seven contractile properties varied in the directions expected of masculine values in T+ animals in the sexually dimorphic muscles. Moreover, these data, compared with previous data on male and female bullfrogs, show that values for T+ males are similar to normal males and are significantly different from females. The T0 males tended to be intermediate in character between T+ males and females, generally retaining masculine values. This suggests that the exposure of young males to T in their first breeding season produces a masculinizing effect on the sexually dimorphic muscles that is not reversed between breeding seasons when T levels are low. The relatively minor differences in contractile properties between T+ and T0 males may indicate that as circulating T levels rise during breeding season in normal males, contractile properties can be enhanced rapidly to maximal functional levels for breeding success.

  11. Mechanisms of impaired gallbladder contractile response in chronic acalculous cholecystitis.

    Science.gov (United States)

    Merg, Anders R; Kalinowski, Scott E; Hinkhouse, Marilyn M; Mitros, Frank A; Ephgrave, Kimberly S; Cullen, Joseph J

    2002-01-01

    The mechanisms involved in the impaired gallbladder contractile response in chronic acalculous cholecystitis are unknown. To determine the mechanisms that may lead to impaired gallbladder emptying in chronic acalculous cholecystitis, gallbladder specimens removed during hepatic resection (controls) and after cholecystectomy for chronic acalculous cholecystitis were attached to force transducers and placed in tissue baths with oxygenated Krebs solution. Electrical field stimulation (EFS) (1 to 10 Hz, 0.1 msec, 70 V) or the contractile agonists, CCK-8 (10(-9) to 10(-5)) or K(+) (80 mmol/L), were placed separately in the tissue baths and changes in tension were determined. Patients with chronic acalculous cholecystitis had a mean gallbladder ejection fraction of 12% +/- 4%. Pathologic examination of all gallbladders removed for chronic acalculous cholecystitis revealed chronic cholecystitis. Spontaneous contractile activity was present in gallbladder strips in 83% of control specimens but only 29% of gallbladder strips from patients with chronic acalculous cholecystitis (P < 0.05 vs. controls). CCK-8 contractions were decreased by 54% and EFS-stimulated contractions were decreased by 50% in the presence of chronic acalculous cholecystitis (P < 0.05 vs. controls). K(+)-induced contractions were similar between control and chronic acalculous cholecystitis gallbladder strips. The impaired gallbladder emptying in chronic acalculous cholecystitis appears to be due to diminished spontaneous contractile activity and decreased contractile responsiveness to both CCK and EFS.

  12. Changes of smooth muscle contractile filaments in small bowel atresia

    Institute of Scientific and Technical Information of China (English)

    Stefan Gfroerer; Henning Fiegel; Priya Ramachandran; Udo Rolle; Roman Metzger

    2012-01-01

    AIM:To investigate morphological changes of intestinal smooth muscle contractile fibres in small bowel atresia patients.METHODS:Resected small bowel specimens from small bowel atresia patients (n =12) were divided into three sections (proximal,atretic and distal).Standard histology hematoxylin-eosin staining and enzyme immunohistochemistry was performed to visualize smooth muscle contractile markers α-smooth muscle actin (SMA) and desmin using conventional paraffin sections of the proximal and distal bowel.Small bowel from agematched patients (n =2) undergoing Meckel's diverticulum resection served as controls.RESULTS:The smooth muscle coat in the proximal bowel of small bowel atresia patients was thickened compared with control tissue,but the distal bowel was unchanged.Expression of smooth muscle contractile fibres SMA and desmin within the proximal bowel was slightly reduced compared with the distal bowel and control tissue.There were no major differences in the architecture of the smooth muscle within the proximal bowel and the distal bowel.The proximal and distal bowel in small bowel atresia patients revealed only minimal differences regarding smooth muscle morphology and the presence of smooth muscle contractile filament markers.CONCLUSION:Changes in smooth muscle contractile filaments do not appear to play a major role in postoperative motility disorders in small bowel atresia.

  13. 氯波必利生物黏附型缓释片对实验性胃溃疡和胃肠动力障碍的作用研究%Study on Effects of Clebopride Bioadhesive Sustained-release Tablets on Experimental Gastric Ulcer and Gastrointestinal Motility Disorder

    Institute of Scientific and Technical Information of China (English)

    曾春莲; 徐雄波; 张青松; 刘鹰; 刘卫平; 马宁

    2015-01-01

    OBJECTIVE:To study the effects of Clebopride(CBP)bioadhensive sustained-release tablets on experimental gas-tric ulcer and gastrointestinal motility disorder. METHODS:Gastric ulcer rat model was induced by ethanol and aspirin,and then divided into model group (normal saline),common tablet (CBP tablet 0.072 mg/kg) and sustained-release tablet high-dose and low-dose groups (CBP bioadhensive sustained-release tablet 0.072,0.036 mg/kg);normal rats were included in normal control group (normal saline);they were given relevant medicine intragastrically,twice a day for sustained-release tablet,three times a day for other. Ulcer area were observed 2 and 4 days after medication to calculate healing rate of ulcer(n=6). Gastrointestinal mo-tility disorder mice model was induced by atropine,and then divided into model group (normal saline),common tablet group (CBP tablet 0.1 mg/kg)and sustained-release tablet high-dose,medium-dose and low-dose groups(CBP bioadhensive sustained-re-lease tablet 0.1,0.05,0.025 mg/kg);normal mice were included in normal control group(normal saline);they were given rele-vant medicine intragastrically,once a day,for consecutive 3 days. The rate of gastric emptying and small intestinal propulsion were detected (n=6). RESULTS:Compared with normal control group,ulcer area of rats increased in model group;compared with model group,that of rats decreased in common tablet group and sustained-release tablet high-dose,low-dose groups,with statisti-cal significance (P<0.01);healing rates of gastric ulcer were 32.35%-48.24% 2 days after medication,and those were above 70% 4 days after medication. Compared with normal control group,the rate of gastric emptying and small intestinal propulsion in mice decreased in model group;compared with model group,those of mice increased in common tablet group and sustained-re-lease tablet high-dose,medium-dose,low-dose groups. The effects of sustained-release tablet high-dose and medium-dose groups were better than that of

  14. Dietary Nitrate and Skeletal Muscle Contractile Function in Heart Failure.

    Science.gov (United States)

    Coggan, Andrew R; Peterson, Linda R

    2016-08-01

    Heart failure (HF) patients suffer from exercise intolerance that diminishes their ability to perform normal activities of daily living and hence compromises their quality of life. This is due largely to detrimental changes in skeletal muscle mass, structure, metabolism, and function. This includes an impairment of muscle contractile performance, i.e., a decline in the maximal force, speed, and power of muscle shortening. Although numerous mechanisms underlie this reduction in contractility, one contributing factor may be a decrease in nitric oxide (NO) bioavailability. Consistent with this, recent data demonstrate that acute ingestion of NO3 (-)-rich beetroot juice, a source of NO via the NO synthase-independent enterosalivary pathway, markedly increases maximal muscle speed and power in HF patients. This review discusses the role of muscle contractile dysfunction in the exercise intolerance characteristic of HF, and the evidence that dietary NO3 (-) supplementation may represent a novel and simple therapy for this currently underappreciated problem. PMID:27271563

  15. Geometrical origins of contractility in disordered actomyosin networks

    CERN Document Server

    Lenz, Martin

    2014-01-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings sheds light on recent $\\textit{in vitro}$ experiments, and provi...

  16. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension

    Directory of Open Access Journals (Sweden)

    Silvia Llorens

    2015-09-01

    Full Text Available Background: Endothelial dysfunction, characterized by an enhancement in vasoconstriction, is clearly associated with hypertension. Saffron (Crocus sativus L. bioactive compounds have been recognized to have hypotensive properties. Recently, we have reported that crocetin exhibits potent vasodilator effects on isolated aortic rings from hypertensive rats. In this work, we have aimed to analyze the anticontractile ability of crocetin or crocetin esters pool (crocins isolated from saffron. Thus, we have studied the effects of saffron carotenoids on endothelium-dependent and -independent regulation of smooth muscle contractility in genetic hypertension. Methods: We have measured the isometric responses of aortic segments with or without endothelium obtained from spontaneously hypertensive rats. The effects of carotenoids were studied by assessing the endothelial modulation of phenylephrine-induced contractions (10−9–10−5 M in the presence or absence of crocetin or crocins. The role of nitric oxide and prostanoids was analyzed by performing the experiments with L-NAME (NG-nitro-l-arginine methyl ester or indomethacin (both 10−5 M, respectively. Results: Crocetin, and to a minor extent crocins, diminished the maximum contractility of phenylephrine in intact rings, while crocins, but not crocetin, increased this contractility in de-endothelizated vessels. In the intact vessels, the effect of crocetin on contractility was unaffected by indomethacin but was abolished by L-NAME. However, crocetin but not crocins, lowered the already increased contractility caused by L-NAME. Conclusions: Saffron compounds, but especially crocetin have endothelium-dependent prorelaxing actions. Crocins have procontractile actions that take place via smooth muscle cell mechanisms. These results suggest that crocetin and crocins activate different mechanisms involved in the vasoconstriction pathway in hypertension.

  17. Magnetic resonance-derived circumferential strain provides a superior and incremental assessment of improvement in contractile function in patients early after ST-segment elevation myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Dennis T.L.; Psaltis, Peter J. [University of Adelaide, Discipline of Medicine, Adelaide (Australia); South Australian Health and Medical Research Institute (SAHMRI), Adelaide (Australia); Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre)Monash University and Monash Heart, Clayton, VIC (Australia); Leong, Darryl P.; Weightman, Michael J.; Richardson, James D.; Worthley, Matthew I.; Worthley, Stephen G. [University of Adelaide, Discipline of Medicine, Adelaide (Australia); Dundon, Benjamin K.; Leung, Michael C.H.; Meredith, Ian T. [Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre)Monash University and Monash Heart, Clayton, VIC (Australia)

    2014-06-15

    We evaluate whether circumferential strain derived from grid-tagged CMR is a better method for assessing improvement in segmental contractile function after STEMI compared to late gadolinium enhancement (LGE). STEMI patients post primary PCI underwent baseline CMR (day 3) and follow-up (day 90). Cine, grid-tagged and LGE images were acquired. Baseline LGE infarct hyperenhancement was categorised as ≤25 %, 26-50 %, 51-75 % and >75 % hyperenhancement. The segmental baseline circumferential strain (CS) and circumferential strain rate (CSR) were calculated from grid-tagged images. Segments demonstrating an improvement in wall motion of ≥1 grade compared to baseline were regarded as having improved segmental contractile-function. Forty-five patients (aged 58 ± 12 years) and 179 infarct segments were analysed. A baseline CS cutoff of -5 % had sensitivity of 89 % and specificity of 70 % for detection of improvement in segmental-contractile-function. On receiver-operating characteristic analysis for predicting improvement in contractile function, AUC for baseline CS (0.82) compared favourably to LGE hyperenhancement (0.68), MVO (0.67) and baseline-CSR (0.74). On comparison of AUCs, baseline CS was superior to LGE hyperenhancement and MVO in predicting improvement in contractile function (P < 0.001). On multivariate-analysis, baseline CS was the independent predictor of improvement in segmental contractile function (P < 0.001). Grid-tagged CMR-derived baseline CS is a superior predictor of improvement in segmental contractile function, providing incremental value when added to LGE hyperenhancement and MVO following STEMI. (orig.)

  18. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture.

    Science.gov (United States)

    Feinberg, Adam W; Alford, Patrick W; Jin, Hongwei; Ripplinger, Crystal M; Werdich, Andreas A; Sheehy, Sean P; Grosberg, Anna; Parker, Kevin Kit

    2012-08-01

    The heart is a muscular organ with a wrapping, laminar structure embedded with neural and vascular networks, collagen fibrils, fibroblasts, and cardiac myocytes that facilitate contraction. We hypothesized that these non-muscle components may have functional benefit, serving as important structural alignment cues in inter- and intra-cellular organization of cardiac myocytes. Previous studies have demonstrated that alignment of engineered myocardium enhances calcium handling, but how this impacts actual force generation remains unclear. Quantitative assays are needed to determine the effect of alignment on contractile function and muscle physiology. To test this, micropatterned surfaces were used to build 2-dimensional myocardium from neonatal rat ventricular myocytes with distinct architectures: confluent isotropic (serving as the unaligned control), confluent anisotropic, and 20 μm spaced, parallel arrays of multicellular myocardial fibers. We combined image analysis of sarcomere orientation with muscular thin film contractile force assays in order to calculate the peak sarcomere-generated stress as a function of tissue architecture. Here we report that increasing peak systolic stress in engineered cardiac tissues corresponds with increasing sarcomere alignment. This change is larger than would be anticipated from enhanced calcium handling and increased uniaxial alignment alone. These results suggest that boundary conditions (heterogeneities) encoded in the extracellular space can regulate muscle tissue function, and that structural organization and cytoskeletal alignment are critically important for maximizing peak force generation.

  19. Metabolism: flow and contractility of the Langendorff heart

    NARCIS (Netherlands)

    H. Stam (Hans)

    1978-01-01

    textabstractThis thesis reviews current literature and describes experimental studies on the regulation and modification of coronary flow and contractility in isolated rat hearts. In chapter I and introduction is given to the problems of fatty acid toxicity and myocardial function. Coronary flow rat

  20. Myocardial contractile function in survived neonatal piglets after cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Popov Aron-Frederik

    2010-11-01

    Full Text Available Abstract Background Hemodynamic function may be depressed in the early postoperative stages after cardiac surgery. The aim of this study was the analysis of the myocardial contractility in neonates after cardiopulmonary bypass (CPB and mild hypothermia. Methods Three indices of left ventricular myocardial contractile function (dP/dt, (dP/dt/P, and wall thickening were studied up to 6 hours after CPB in neonatal piglets (CPB group; n = 4. The contractility data were analysed and then compared to the data of newborn piglets who also underwent median thoracotomy and instrumentation for the same time intervals but without CPB (non-CPB group; n = 3. Results Left ventricular dP/dtmax and (dP/dtmax/P remained stable in CPB group, while dP/dtmax decreased in non-CPB group 5 hours postoperatively (1761 ± 205 mmHg/s at baseline vs. 1170 ± 205 mmHg/s after 5 h; p max and (dP/dtmax/P there were no statistically significant differences between the two groups. Comparably, although myocardial thickening decreased in the non-CPB group the differences between the two groups were not statistically significant. Conclusions The myocardial contractile function in survived neonatal piglets remained stable 6 hours after cardiopulmonary bypass and mild hypothermia probably due to regional hypercontractility.

  1. Clinical Relationship between Steatocholecystitis and Gallbladder Contractility Measured by Cholescintigraphy

    Directory of Open Access Journals (Sweden)

    Chang Seok Bang

    2015-01-01

    Full Text Available Objective. Contractility of gallbladder is known to be decreased in fatty gallbladder diseases. However, clinical estimation data about this relationship is still lacking. The aim of this study was to investigate the association between steatocholecystitis and contractility of gallbladder. Methods. Patients with cholecystitis (steatocholecystitis versus nonsteatocholecystitis who underwent cholescintigraphy before cholecystectomy were retrospectively evaluated in a single teaching hospital of Korea. The association of steatocholecystitis with contractility of gallbladder, measured by preoperative cholescintigraphy, was assessed by univariable and multivariable analysis. Results. A total of 432 patients were finally enrolled (steatocholecystitis versus nonsteatocholecystitis; 75 versus 357, calculous versus acalculous cholecystitis; 316 versus 116. In the multivariable analysis, age (OR: 0.94, 95% CI: 0.90–0.99, P=0.01 and total serum cholesterol (OR: 1.02, 95% CI: 1.01–1.04, P=0.04 were related to steatocholecystitis in patients with acalculous cholecystitis. Only age (OR: 0.97, 95% CI: 0.94–0.99, P=0.004 was significantly related to steatocholecystitis in patients with calculous cholecystitis. However, ejection fraction of gallbladder reflecting contractility measured by cholescintigraphy was not related to steatocholecystitis irrespective of presence of gallbladder stone in patients with cholecystitis. Conclusion. Ejection fraction of gallbladder measured by cholescintigraphy cannot be used for the detection or confirmation of steatocholecystitis.

  2. Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy

    Science.gov (United States)

    Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats...

  3. Contractility and protein phosphorylation in cardiomyocytes: effects of isoproterenol and AR-L57.

    Science.gov (United States)

    Hayes, J S; Bowling, N; Boder, G B

    1984-08-01

    The cardiotonic drugs AR-L57 [2-(2,4-dimethoxyphenyl)-1H-imidazo(4,5b)-pyridine] and isoproterenol stimulated contractility in cultured heart cells in concentration-dependent manners; only the effects of isoproterenol were blocked by propranolol. Isoproterenol, but not AR-L57, enhanced the phosphorylation state of seven protein bands [relative molecular weights (MrS) 155,000, 96,000, 27,000, 24,000, 20,000, 16,000, 12,000] and resulted in the dephosphorylation of one protein band (Mr 21,000). Also, only isoproterenol increased the activation states of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase and glycogen phosphorylase. The eight protein bands resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and detected by autoradiography were altered by isoproterenol in time- and concentration-dependent manners. The 24,000-Mr protein substrate phosphorylated in response to isoproterenol was converted to a 12,000-Mr species by heating in the presence of SDS prior to electrophoresis, suggesting that the two substrates were in fact identical proteins. A comparison of the 2-min responses to varying concentrations of isoproterenol resulted in excellent correlations between the phosphorylation states of individual protein bands and contractility. This was true even for the 21,000-Mr species that was dephosphorylated. However, only the 27,000-, 24-12,000-, and 16,000-Mr substrates were phosphorylated rapidly enough to be associated with the onset of the inotropic response. Cultured myocytes are an important feature of these studies as they are 84% pure ventricular cells that remain 100% viable throughout an experiment. Because this system is suitable for biochemical measurements and the effects of agents on heart cell contractility can be determined, it is possible to correlate changes in biochemical parameters with alterations in physiological state.

  4. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts

    Science.gov (United States)

    Guo, Rui; Hu, Nan; Kandadi, Machender R.; Ren, Jun

    2012-01-01

    Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A1, E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect. PMID:22441020

  5. Different Anti-Contractile Function and Nitric Oxide Production of Thoracic and Abdominal Perivascular Adipose Tissues.

    Science.gov (United States)

    Victorio, Jamaira A; Fontes, Milene T; Rossoni, Luciana V; Davel, Ana P

    2016-01-01

    Divergent phenotypes between the perivascular adipose tissue (PVAT) surrounding the abdominal and the thoracic aorta might be implicated in regional aortic differences, such as susceptibility to atherosclerosis. Although PVAT of the thoracic aorta exhibits anti-contractile function, the role of PVAT in the regulation of the vascular tone of the abdominal aorta is not well defined. In the present study, we compared the anti-contractile function, nitric oxide (NO) availability, and reactive oxygen species (ROS) formation in PVAT and vessel walls of abdominal and thoracic aorta. Abdominal and thoracic aortic tissue from male Wistar rats were used to perform functional and molecular experiments. PVAT reduced the contraction evoked by phenylephrine in the absence and presence of endothelium in the thoracic aorta, whereas this anti-contractile effect was not observed in the abdominal aorta. Abdominal PVAT exhibited a reduction in endothelial NO synthase (eNOS) expression compared with thoracic PVAT, without differences in eNOS expression in the vessel walls. In agreement with this result, NO production evaluated in situ using 4,5-diaminofluorescein was less pronounced in abdominal compared with thoracic aortic PVAT, whereas no significant difference was observed for endothelial NO production. Moreover, NOS inhibition with L-NAME enhanced the phenylephrine-induced contraction in endothelial-denuded rings with PVAT from thoracic but not abdominal aorta. ROS formation and lipid peroxidation products evaluated through the quantification of hydroethidine fluorescence and 4-hydroxynonenal adducts, respectively, were similar between PVAT and vessel walls from the abdominal and thoracic aorta. Extracellular superoxide dismutase (SOD) expression was similar between the vessel walls and PVAT of the abdominal and thoracic aorta. However, Mn-SOD levels were reduced, while CuZn-SOD levels were increased in abdominal PVAT compared with thoracic aortic PVAT. In conclusion, our results

  6. Glucagon Increases Beating Rate but Not Contractility in Rat Right Atrium. Comparison with Isoproterenol.

    Directory of Open Access Journals (Sweden)

    Beatriz Merino

    Full Text Available This study evaluated the chronotropic and inotropic responses to glucagon in spontaneously beating isolated right atria of rat heart. For comparison, we also investigated the effects resulting from stimulating β-adrenoceptors with isoproterenol in this tissue. Isoproterenol increased both atrial frequency and contractility but glucagon only enhanced atrial rate. The transcript levels of glucagon receptors were about three times higher in sinoatrial node than in the atrial myocardium. Chronotropic responses to glucagon and isoproterenol were blunted by the funny current (If inhibitor ZD 7288. Inhibitors of protein kinase A, H-89 and KT-5720 reduced the chronotropic response to glucagon but not to isoproterenol. Inhibition of ryanodine receptors and calcium/calmodulin dependent protein kinase II (important regulators of sarcoplasmic reticulum Ca2+ release, with ruthenium red and KN-62 respectively, failed to alter chronotropic responses of either glucagon or isoproterenol. Non selective inhibition of phosphodiesterase (PDE with 3-isobutylmethylxantine or selective inhibition of PDE3 or PDE4 with cilostamide or rolipram respectively did not affect chronotropic effects of glucagon or isoproterenol. Our results indicate that glucagon increases beating rate but not contractility in rat right atria which could be a consequence of lower levels of glucagon receptors in atrial myocardium than in sinoatrial node. Chronotropic responses to glucagon or isoproterenol are mediated by If current but not by sarcoplasmic reticulum Ca2+ release, neither are regulated by PDE activity.

  7. Implementing cell contractility in filament-based cytoskeletal models.

    Science.gov (United States)

    Fallqvist, B

    2016-02-01

    Cells are known to respond over time to mechanical stimuli, even actively generating force at longer times. In this paper, a microstructural filament-based cytoskeletal network model is extended to incorporate this active response, and a computational study to assess the influence on relaxation behaviour was performed. The incorporation of an active response was achieved by including a strain energy function of contractile activity from the cross-linked actin filaments. A four-state chemical model and strain energy function was adopted, and generalisation to three dimensions and the macroscopic deformation field was performed by integration over the unit sphere. Computational results in MATLAB and ABAQUS/Explicit indicated an active cellular response over various time-scales, dependent on contractile parameters. Important features such as force generation and increasing cell stiffness due to prestress are qualitatively predicted. The work in this paper can easily be extended to encompass other filament-based cytoskeletal models as well. PMID:26899417

  8. Dynamic regulation of β1 subunit trafficking controls vascular contractility

    OpenAIRE

    Leo, M. Dennis; Bannister, John P.; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E.; Gabrick, Kyle S.; Boop, Frederick A.; Jaggar, Jonathan H.

    2014-01-01

    Plasma membrane ion channels composed of pore-forming and auxiliary subunits regulate physiological functions in virtually all cell types. A conventional view is that ion channels assemble with their auxiliary subunits prior to surface trafficking of the multiprotein complex. Arterial myocytes express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that modulate contractility and blood pressure and flow. The data here show that although most BKα subunits ar...

  9. High-throughput screening for modulators of cellular contractile force

    OpenAIRE

    Park, Chan Young; Zhou, Enhua H; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J.; Marinkovic, Aleksandar; Tschumperlin, Daniel J.; Burger, Stephanie; Frykenberg, Matthew; Butler, James P.; Stamer, W. Daniel; Johnson, Mark

    2014-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signaling intermediates with poorly defined relationship to such a physiological endpoint. Using cellular force as the target, here we screened libraries to identify novel drug candidates in the case of human airway smooth muscle cells in the context of asthma, and also in the case of Schlemm's canal endothel...

  10. American Ginseng Acutely Regulates Contractile Function of Rat Heart

    Directory of Open Access Journals (Sweden)

    Mao eJiang

    2014-03-01

    Full Text Available Chronic ginseng treatments have been purported to improve cardiac performance. However reports of acute administration of ginseng on cardiovascular function remain controversial and potential mechanisms are not clear. In this study, we examined effects of acute North American ginseng (Panax quinquefolius administration on rat cardiac contractile function by using electrocardiogram (ECG, non-invasive blood pressure measurement (BP and Langendorff isolated, spontaneously beating, perfused heart measurements (LP. Eight-week old male Sprague Dawley rats (n= 8 per group were gavaged with a single dose of water-soluble American ginseng at 300 mg/kg body weight. Heart rate and blood pressure were measured prior to and at 1 and 24 hr after gavaging (ECG and BP. Additional groups were used for each time point for Langendorff measurements. Heart rate was significantly decreased (ECG: 1 hr: 6 ± 0.2%, 24 hr: 8 ± 0.3%; BP: 1 hr: 8.8 ± 0.2%, 24 hr: 13 ± 0.4% and LP: 1 hr: 22 ± 0.4%, 24 hr: 19 ± 0.4% in rats treated with water-soluble ginseng compared with pre or control measures. An initial marked decrease in left ventricular developed pressure was observed in LP hearts but blood pressure changes were not observed in BP group. A direct inhibitory effect of North American ginseng was observed on cardiac contractile function in LP rats and on fluorescence measurement of intracellular calcium transient in freshly isolated cardiac myocytes when exposed to ginseng (1 µg/ml and 10 µg/ml. Collectively these data present evidence of depressed cardiac contractile function by acute administration of North American ginseng in rat. This acute reduction in cardiac contractile function appears to be intrinsic to the myocardium.

  11. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    Science.gov (United States)

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension.

  12. Collective cancer cell invasion induced by coordinated contractile stresses.

    Science.gov (United States)

    Jimenez Valencia, Angela M; Wu, Pei-Hsun; Yogurtcu, Osman N; Rao, Pranay; DiGiacomo, Josh; Godet, Inês; He, Lijuan; Lee, Meng-Horng; Gilkes, Daniele; Sun, Sean X; Wirtz, Denis

    2015-12-22

    The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.

  13. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    Science.gov (United States)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  14. Anthrax lethal toxin suppresses murine cardiomyocyte contractile function and intracellular Ca2+ handling via a NADPH oxidase-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Machender R Kandadi

    Full Text Available OBJECTIVES: Anthrax infection is associated with devastating cardiovascular sequelae, suggesting unfavorable cardiovascular effects of toxins originated from Bacillus anthracis namely lethal and edema toxins. This study was designed to examine the direct effect of lethal toxins on cardiomyocyte contractile and intracellular Ca(2+ properties. METHODS: Murine cardiomyocyte contractile function and intracellular Ca(2+ handling were evaluated including peak shortening (PS, maximal velocity of shortening/ relengthening (± dL/dt, time-to-PS (TPS, time-to-90% relengthening (TR(90, intracellular Ca(2+ rise measured as fura-2 fluorescent intensity (ΔFFI, and intracellular Ca(2+ decay rate. Stress signaling and Ca(2+ regulatory proteins were assessed using Western blot analysis. RESULTS: In vitro exposure to a lethal toxin (0.05-50 nM elicited a concentration-dependent depression on cardiomyocyte contractile and intracellular Ca(2+ properties (PS, ± dL/dt, ΔFFI, along with prolonged duration of contraction and intracellular Ca(2+ decay, the effects of which were nullified by the NADPH oxidase inhibitor apocynin. The lethal toxin significantly enhanced superoxide production and cell death, which were reversed by apocynin. In vivo lethal toxin exposure exerted similar time-dependent cardiomyocyte mechanical and intracellular Ca(2+ responses. Stress signaling cascades including MEK1/2, p38, ERK and JNK were unaffected by in vitro lethal toxins whereas they were significantly altered by in vivo lethal toxins. Ca(2+ regulatory proteins SERCA2a and phospholamban were also differentially regulated by in vitro and in vivo lethal toxins. Autophagy was drastically triggered although ER stress was minimally affected following lethal toxin exposure. CONCLUSIONS: Our findings indicate that lethal toxins directly compromised murine cardiomyocyte contractile function and intracellular Ca(2+ through a NADPH oxidase-dependent mechanism.

  15. Improved Cardiac Contractility of Human Recombinant Growth Hormone on the Congestive Heart Failure of Pig

    Institute of Scientific and Technical Information of China (English)

    Yang Ping; He Yu-quan; Zeng Hong; Ni Jin-song; Yun Qing-jun; Huang Xiao-ping; Li Shu-mei

    2005-01-01

    The enhanced cardiac contractility effect of human recombinant growth hormone (hr-GH) on the congestive heart failure (CHF) was studied on the pig. To build a pig model of congestive heart failure, a temporary artificial cardiac pacemaker was implanted in the pig's body and paced at 220 beats to 240 beats per minute for 1 week. After the model of congestive heart failure was successfully set up, the frequency of the pacemaker was changed to 150 beats to 180 beats per minute to maintain the CHF model stable. Pigs were divided into three groups: The hr-GH group in which 0.5 mg/kg per day of hr-GH was administrated intramuscularly for 15 days, the injection control group in which an equal amount of physiological saline was injected intramuscularly, and a normal control group. The left ventricular diastolic end pressure was (10.60±2.41 ) mmHg in the hr-GH group, but (19.00±3.81) mmHg in the saline control group (P<0.01); Cardiac output was (1.86±0.13) L/min in the hr-GH group, but (1.56 ±0.18) L/min in the saline control group (P<0.05); Peripheral min) -1 in the saline control group (P<0.05); ± dp/dtmax was (2900 ±316.23) and (2280 ±286.36) in the hr-HG group and the saline control group respectively (P<0.05). The results show that hr-GH enhances myocardial contractility of CHF, and the CHF model built by a temporary artificial cardiac pacemaker at a high rate of stimulation is reasonable and applicable.

  16. Contractile units in disordered actomyosin bundles arise from F-actin buckling

    CERN Document Server

    Lenz, Martin; Gardel, Margaret L; Dinner, Aaron R

    2012-01-01

    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in actomyosin bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic actin-myosin detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the "contractile units" associated with this process. Consistent with these results, our reconstituted actomyosin bundles contract at relatively high motor dens...

  17. Caveolin-3 promotes a vascular smooth muscle contractile phenotype

    Directory of Open Access Journals (Sweden)

    Jorge L. Gutierrez-Pajares

    2015-06-01

    Full Text Available Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle cells are believed to play an essential role in the development of these illnesses. Vascular smooth muscle cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature contractile smooth muscle cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of smooth muscle cell phenotype. Caveolin-3 is expressed in vivo in normal arterial smooth muscle cells, but its expression appears to be lost in cultured smooth muscle cells. Our data show that caveolin-3 expression in the A7r5 smooth muscle cell line is associated with increased expression of contractility markers such as smooth muscle  actin, smooth muscle myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing smooth muscle cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic smooth muscle cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating smooth muscle function in atherosclerosis and restenosis.

  18. A comparison of the contractile properties of myometrium from singleton and twin pregnancies.

    Directory of Open Access Journals (Sweden)

    Peter Turton

    Full Text Available OBJECTIVE: Over half of twin pregnancies in US and UK deliver prematurely but the reasons for this are unclear. The contractility of myometrium from twin pregnancies has not been directly investigated. The objective of this research was to determine if there are differences in the contractile activity and response to oxytocin, between myometrium from singleton and twin pregnancies, across a range of gestational ages. Furthermore, we wished to determine if contractile activity correlates with increasing level of stretch, using neonatal birth weights as a marker of uterine stretch. METHODS: This was an in vitro, laboratory based study of myometrial contractility in women pregnant with one or two babies, using biopsies obtained from non-labouring women undergoing Caesarean section. Spontaneous, oxytocin-stimulated and depolarization induced contractile activity was compared. RESULTS: Direct measurements of myometrial contractility under controlled conditions show that the frequency of contractions and responses to oxytocin are significantly increased in twins compared to singletons. The duration of contraction however was significantly reduced. We find that contractile activity correlates with increasing levels of stretch, using neonatal birth weights as a surrogate for uterine stretch, with response to oxytocin being significantly positively correlated with birth weight. CONCLUSIONS: We have found significant differences in contractile properties between myometrium from singleton and twin pregnancies and that increasing uterine stretch can alter the contractile properties of myometrium. We discuss the implication of these findings to preterm delivery and future studies.

  19. Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility

    Institute of Scientific and Technical Information of China (English)

    Anatoly SHMYGOL; Joanna GULLAM; Andrew BLANKS; Steven THORNTON

    2006-01-01

    Oxytocin is a small peptide hormone with multiple sites of action in human body.It regulates a large number of reproduction-related processes in all species.Particularly important is its ability to stimulate uterine contractility.This is achieved by multiple mechanisms involving sarcoplasmic reticulum Ca2+ release and sensitization of the contractile apparatus to Ca2+.In this paper,we review the data published by US and other groups on oxytocin-induced modulation of uterine contractility.We conclude that sensitization of contractile apparatus to Ca2+ is the most relevant physiological effect of oxytocin on human myometrium.

  20. Effects of single or repeated administration of a carbamate, propoxur, and an organophosphate, DDVP, on jejunal cholinergic activities and contractile responses in rats.

    Science.gov (United States)

    Kobayashi, H; Sato, I; Akatsu, Y; Fujii, S; Suzuki, T; Matsusaka, N; Yuyama, A

    1994-01-01

    Wistar rats were injected once or repeatedly for 10 days with dichlorvos (DDVP, 5 mg kg-1), propoxur (10 mg kg-1), oxotremorine (0.1 mg kg-1) or atropine (5 mg kg-1). Animals were killed 20 min or 24 h after single or consecutive injections, respectively, for determinations of cholinergic activities and contractile responses to acetylcholine (ACh) of the jejunum. Single treatments: while DDVP and propoxur decreased acetylcholinesterase (AChE) activity, oxotremorine and atropine did not. Although DDVP, propoxur and oxotremorine increased levels of ACh, atropine decreased them. Contractile responses to ACh were enhanced by DDVP and reduced by oxotremorine and atropine. The Bmax value of binding of [3H]quinuclidinyl benzylate (QNB) to muscarinic ACh receptors was decreased by atropine. Consecutive treatments: DDVP and oxotremorine decreased AChE activity markedly and slightly, respectively. Although DDVP and oxotremorine increased levels of ACh, propoxur decreased them. Without affecting the contractile responses, DDVP caused a reduction and propoxur and atropine caused an increase in the Bmax value for binding of [3H]QNB. Both the contractile responses and the value of Bmax for binding of [3H]-QNB were decreased by oxotremorine. In summary, propoxur and DDVP showed similar effects mainly through their anticholinesterase properties in the case of single injection, but DDVP had similar effects to those of oxotremorine and propoxur had similar effects to those of atropine in the case of repeated injection.

  1. Human Engineered Heart Tissue: Analysis of Contractile Force

    OpenAIRE

    Ingra Mannhardt; Kaja Breckwoldt; David Letuffe-Brenière; Sebastian Schaaf; Herbert Schulz; Christiane Neuber; Anika Benzin; Tessa Werner; Alexandra Eder; Thomas Schulze; Birgit Klampe; Torsten Christ; Marc N. Hirt; Norbert Huebner; Alessandra Moretti1

    2016-01-01

    Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histological...

  2. Human Engineered Heart Tissue: Analysis of Contractile Force

    Directory of Open Access Journals (Sweden)

    Ingra Mannhardt

    2016-07-01

    Full Text Available Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM. This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling.

  3. Influence of the cardiac myosin hinge region on contractile activity.

    Science.gov (United States)

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  4. Human Engineered Heart Tissue: Analysis of Contractile Force.

    Science.gov (United States)

    Mannhardt, Ingra; Breckwoldt, Kaja; Letuffe-Brenière, David; Schaaf, Sebastian; Schulz, Herbert; Neuber, Christiane; Benzin, Anika; Werner, Tessa; Eder, Alexandra; Schulze, Thomas; Klampe, Birgit; Christ, Torsten; Hirt, Marc N; Huebner, Norbert; Moretti, Alessandra; Eschenhagen, Thomas; Hansen, Arne

    2016-07-12

    Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves) reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling. PMID:27211213

  5. Resolving the role of actoymyosin contractility in cell microrheology.

    Directory of Open Access Journals (Sweden)

    Christopher M Hale

    Full Text Available Einstein's original description of Brownian motion established a direct relationship between thermally-excited random forces and the transport properties of a submicron particle in a viscous liquid. Recent work based on reconstituted actin filament networks suggests that nonthermal forces driven by the motor protein myosin II can induce large non-equilibrium fluctuations that dominate the motion of particles in cytoskeletal networks. Here, using high-resolution particle tracking, we find that thermal forces, not myosin-induced fluctuating forces, drive the motion of submicron particles embedded in the cytoskeleton of living cells. These results resolve the roles of myosin II and contractile actomyosin structures in the motion of nanoparticles lodged in the cytoplasm, reveal the biphasic mechanical architecture of adherent cells-stiff contractile stress fibers interdigitating in a network at the cell cortex and a soft actin meshwork in the body of the cell, validate the method of particle tracking-microrheology, and reconcile seemingly disparate atomic force microscopy (AFM and particle-tracking microrheology measurements of living cells.

  6. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Marie-Louise; Ward; David; J; Crossman

    2014-01-01

    Cardiac dysfunction is a well-known consequence of diabetes,with sustained hyperglycaemia leading to the development of a cardiomyopathy that is independent of cardiovascular disease or hypertension.Animal models of diabetes are commonly used to study the pathophysiology of diabetic cardiomyopathy,with the hope that increased knowledge will lead ultimately to better therapeutic strategies being developed.At physiological temperature,left ventricular trabeculae isolated from the streptozotocin rat model of type 1 diabetes showed decreased stress and prolonged relaxation,but with no evidence that decreased contractility was a result of altered myocardial Ca2+handling.Although sarcoplasmic reticulum(SR)Ca2+reuptake appeared slower in diabetic trabeculae,it was offset by an increase in actionpotential duration,thereby maintaining SR Ca2+content and favouring increased contraction force.Frequency analysis of t-tubule distribution by confocal imaging of ventricular tissue labeled with wheat germ agglutinin or ryanodine receptor antibodies showed a reduced T-power for diabetic tissue,but the differences were minor in comparison to other models of heart failure.The contractile dysfunction appeared to be the result of disrupted F-actin in conjunction with the increased typeⅠcollagen,with decreased myofilament Ca2+sensitivity contributing to the slowed relaxation.

  7. Prostaglandins attenuate cardiac contractile dysfunction produced by free radical generation but not by hydrogen peroxide.

    Science.gov (United States)

    Zimmer, K M; Karmazyn, M

    1997-11-01

    The aim of this study was to examine and compare the potential influence of cyclooxygenase or lipoxygenase derived metabolites of arachidonic acid on myocardial injury produced either by a free radical generating system consisting of purine plus xanthine oxidase or that produced by hydrogen peroxide. A free radical generating system consisting of purine (2.3 mM) and xanthine oxidase (10 U/L) as well as hydrogen peroxide (75 microM) produced significant functional changes in the absence of either significant deficits in high energy phosphates or ultrastructural damage. Prostaglandin F2 alpha (30 nM) significantly attenuated both the negative inotropic effect of purine plus xanthine oxidase as well as the ability of the free radical generator to elevate diastolic pressure. An identical concentration of prostaglandin 12 (prostacyclin) significantly reduced diastolic pressure elevation only and had no effect on contractile depression. The salutary effects of the two PGs occurred in the absence of any inhibitory influence on superoxide anion generation produced by the purine and xanthine oxidase reaction. None of prostaglandins modulated the response to hydrogen peroxide. In addition, neither prostaglandin E2 nor leukotrienes exerted any effect on changes produced by either type of oxidative stress. A 5 fold elevation in the concentrations of free radical generators or hydrogen peroxide produced extensive injury as characterized by a virtual total loss in contractility, 400% elevation in diastolic pressure, ultrastructural damage and significant depletions in high energy phosphate content. None of these effects were modulated by eicosanoid treatment. Our results therefore demonstrate a selective ability of both prostaglandin F2 alpha and to a lesser extent prostacyclin, to attenuate dysfunction produced by purine plus xanthine oxidase but not hydrogen peroxide. It is possible that these eicosanoids may represent endogenous protective factors under conditions of enhanced

  8. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    Science.gov (United States)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  9. Insulin improves cardiac myocytes contractile function recovery in simulated ischemia-reperfusion: Key role of Akt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; ZHANG Haifeng; FAN Qian; MA Xinliang; GAO Feng

    2003-01-01

    The present study examined cardiac myocyte contractile and Ca2+ transient responses to insulin during simulated ischemia/reperfusion (I/R) and furtherinvestigated the role of protein kinase B (Akt) in the insulin- induced inotropic effect. Ventricular myocytes were enzymatically isolated from adult Sprague-Dawley rats and perfused with Tyrode solution while electrically field-stimulated. Simulated I/R was induced by perfusing the cells with chemical anoxic solution including sodium cyanide-sodium lactate for 15 min followed by reperfusion with normal oxygenated Tyrode solution with or without insulin. It is found that insulin only at concentration as high as 10 IU/L could increase cell shortening (16±5%, P < 0.05) in normal myocytes, whereas it concentration-dependently (0.01-10 IU/L) increased the contraction,the velocity of shortening/releng- theningand Ca2+ transient in I/R myocytes. In addition, insulin treatment (1 IU/L) increased Akt phosphorylation of I/R cardiomyocytes by 2.4-fold compared with that of the control (P < 0.01). Most importantly, pretreatment with LY 294002, a specific inhibitor of phosphatidylinositol 3′-kinase (PI3-kinase), significantly inhibited both Akt phosphorylation and the positive inotropic response to insulin in the I/R cardiomyocytes. These results suggest that insulin exerts direct positive inotropic effect by increasing Ca2+ transient of cardiomyocytes, which is enhanced in the pathological condition of I/R. Akt activation plays an important role in the insulin-induced improvement of myocyte contractile function following I/R.

  10. Effects of lengthening contraction on calcium kinetics and skeletal muscle contractility in humans

    DEFF Research Database (Denmark)

    Nielsen, J S; Madsen, K; Jørgensen, L V;

    2005-01-01

    We have tested the hypothesis that the altered muscle contractility after lengthening contractions (LC) is caused by altered calcium (Ca2+) kinetics.......We have tested the hypothesis that the altered muscle contractility after lengthening contractions (LC) is caused by altered calcium (Ca2+) kinetics....

  11. Contractility of the guinea pig bladder measured in situ and in vitro

    NARCIS (Netherlands)

    J.M. Groen (Jan); R. van Mastrigt (Ron); J.L.H.R. Bosch (Ruud)

    1994-01-01

    textabstractTo study the relative importance of neurogenic factors in detrusor contractility and to relate a total bladder in vitro contractility model to a previously described bladder wall strip model, active intravesical pressure values were compared in situ and in vitro in eight male guinea pigs

  12. Image Processing Techniques for Assessing Contractility in Isolated Neonatal Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Carlos Bazan

    2011-01-01

    employed in determining myocyte contractility almost simultaneously with the acquisition of the Ca2+ transient and other correlates of cell contraction. The proposed methodology can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease models, transgeneity, or other common applications of neonatal cardiocytes.

  13. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    DEFF Research Database (Denmark)

    Hvid, L G; Gejl, Kasper Degn; Bech, R D;

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  14. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per;

    2011-01-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...

  15. Effect of contractile protein alterations on cardiac myofilament function in human heart failure

    NARCIS (Netherlands)

    Narolska, N.A.

    2006-01-01

    The main objective of this thesis was to elucidate the effect of translational and post-translational alterations in contractile proteins occurring during heart failure on contractile function in human cardiac tissue. Isometric force and ATPase activity measurements were performed in skinned human

  16. Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Akima, Hiroshi; Lott, Donovan; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Arpan, Ishu; Bendixen, Roxanna; Lee Sweeney, H; Walter, Glenn; Vandenborne, Krista

    2012-01-01

    The purpose of this study was to assess the contractile and non-contractile content in thigh muscles of patients with Duchenne muscular dystrophy (DMD) and determine the relationship with functional abilities. Magnetic resonance images of the thigh were acquired in 28 boys with DMD and 10 unaffected boys. Muscle strength, timed functional tests, and the Brookes Lower Extremity scale were also assessed. Non-contractile content in the DMD group was significantly greater than in the control group for six muscles, including rectus femoris, biceps femoris-long head and adductor magnus. Non-contractile content in the total thigh musculature assessed by MRI correlated with the Brookes scale (r(s)=0.75) and supine-up test (r(s)=0.68), as well as other functional measures. An age-related specific torque increase was observed in the control group (r(s)=0.96), but not the DMD (r(s)=0.06). These findings demonstrate that MRI measures of contractile and non-contractile content can provide important information about disease progression in DMD. PMID:21807516

  17. Procedures for rat in situ skeletal muscle contractile properties.

    Science.gov (United States)

    MacIntosh, Brian R; Esau, Shane P; Holash, R John; Fletcher, Jared R

    2011-01-01

    There are many circumstances where it is desirable to obtain the contractile response of skeletal muscle under physiological circumstances: normal circulation, intact whole muscle, at body temperature. This includes the study of contractile responses like posttetanic potentiation, staircase and fatigue. Furthermore, the consequences of disease, disuse, injury, training and drug treatment can be of interest. This video demonstrates appropriate procedures to set up and use this valuable muscle preparation. To set up this preparation, the animal must be anesthetized, and the medial gastrocnemius muscle is surgically isolated, with the origin intact. Care must be taken to maintain the blood and nerve supplies. A long section of the sciatic nerve is cleared of connective tissue, and severed proximally. All branches of the distal stump that do not innervate the medial gastrocnemius muscle are severed. The distal nerve stump is inserted into a cuff lined with stainless steel stimulating wires. The calcaneus is severed, leaving a small piece of bone still attached to the Achilles tendon. Sonometric crystals and/or electrodes for electromyography can be inserted. Immobilization by metal probes in the femur and tibia prevents movement of the muscle origin. The Achilles tendon is attached to the force transducer and the loosened skin is pulled up at the sides to form a container that is filled with warmed paraffin oil. The oil distributes heat evenly and minimizes evaporative heat loss. A heat lamp is directed on the muscle, and the muscle and rat are allowed to warm up to 37°C. While it is warming, maximal voltage and optimal length can be determined. These are important initial conditions for any experiment on intact whole muscle. The experiment may include determination of standard contractile properties, like the force-frequency relationship, force-length relationship, and force-velocity relationship. With care in surgical isolation, immobilization of the origin of the

  18. Contractile reaction of isolated frog aorta after X-irradiation

    International Nuclear Information System (INIS)

    The action of X-rays (50 kV, filtered by 0.3 mm Al) on helical strip of frog aorta (rana esculenta) has been investigated. The isolated preparations have a stable basal tone and are radio-sensitive to X-rays which induce reversible, dose-dependent, contractile responses. After repeated irradiational tachyphylaxis appears. The threshold doses are about 250 R at 3 to 6 kR/min, antiadrenergic (phentolamine, propranolol), anticholinergic (atropin), antihistaminic (Neo-Bridal) and serotoninergic (Deseril) drugs have no visible influence on the X-ray induced reaction, i.e. these action mechanisms of the irradiation-induced contraction do not seem probable. Theophylline and cAMP inhibit the X-ray contraction probably non-specifically. Indometacin also inhibits the X-ray contraction: this suggests participation of prostaglandin-mechanism on the contraction of frog aorta after irradiation. (orig.)

  19. High-throughput screening for modulators of cellular contractile force

    CERN Document Server

    Park, Chan Young; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J; Marinkovic, Aleksandar; Tschumperlin, Daniel J; Burger, Stephanie; Frykenberg, Matthew; Butler, James P; Stamer, W Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J; Krishnan, Ramaswamy

    2014-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signaling intermediates with poorly defined relationship to such a physiological endpoint. Using cellular force as the target, here we screened libraries to identify novel drug candidates in the case of human airway smooth muscle cells in the context of asthma, and also in the case of Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery.

  20. Cardiac contractility, central haemodynamics and blood pressure regulation during semistarvation

    DEFF Research Database (Denmark)

    Stokholm, K H; Breum, L; Astrup, A

    1991-01-01

    pressure (BP) declined. The fall in BP was caused by the reduction in cardiac output as the total peripheral resistance was unchanged. Finally, the decline in total blood volume was not significant. These findings together with a reduction in heart rate indicated that a reduced sympathetic tone via......Eight obese patients were studied before and after 2 weeks of treatment by a very-low-calorie diet (VLCD). Cardiac output and central blood volume (pulmonary blood volume and left atrial volume) were determined by indicator dilution (125I-albumin) and radionuclide angiocardiography (first pass...... and equilibrium technique by [99Tcm]red blood cells). Cardiac output decreased concomitantly with the reduction in oxygen uptake as the calculated systemic arteriovenous difference of oxygen was unaltered. There were no significant decreases in left ventricular contractility indices, i.e. the ejection fraction...

  1. Contractile 5-HT1B receptors in human cerebral arteries

    DEFF Research Database (Denmark)

    Nilsson, T; Longmore, J; Shaw, D;

    1999-01-01

    immunocytochemistry with antibodies selective for human 5-HT1B and human 5-HT1D receptors and also studied the contractile effects of a range of 5-HT receptor agonists and antagonists in HCA. 2 Immunocytochemistry of cerebral arteries showed dense 5-HT1B receptor immunoreactivity (but no 5-HT1D receptor......1 The cerebrovascular receptor(s) that mediates 5-hydroxytryptamine (5-HT)-induced vasoconstriction in human cerebral arteries (HCA)has proven difficult to characterize, yet these are essential in migraine. We have examined 5-HT receptor subtype distribution in cerebral blood vessels by...... immunoreactivity) within the smooth muscle wall of the HCA. The endothelial cell layer was well preserved and weak 5-HT1B receptor immunoreactivity was present. 3 Pharmacological experiments on HCA with intact endothelium showed that 5-carboxamidotryptamine was significantly more potent than alpha-methyl-5-HT, 2...

  2. Electrically contractile polymers augment right ventricular output in the heart.

    Science.gov (United States)

    Ruhparwar, Arjang; Piontek, Patricia; Ungerer, Matthias; Ghodsizad, Ali; Partovi, Sasan; Foroughi, Javad; Szabo, Gabor; Farag, Mina; Karck, Matthias; Spinks, Geoffrey M; Kim, Seon Jeong

    2014-12-01

    Research into the development of artificial heart muscle has been limited to assembly of stem cell-derived cardiomyocytes seeded around a matrix, while nonbiological approaches to tissue engineering have rarely been explored. The aim of the study was to apply electrically contractile polymer-based actuators as cardiomyoplasty for positive inotropic support of the right ventricle. Complex trilayer polypyrrole (PPy) bending polymers for high-speed applications were generated. Bending motion occurred directly as a result of electrochemically driven charging and discharging of the PPy layers. In a rat model (n = 5), strips of polymers (3 × 20 mm) were attached and wrapped around the right ventricle (RV). RV pressure was continuously monitored invasively by direct RV cannulation. Electrical activation occurred simultaneously with either diastole (in order to evaluate the polymer's stand-alone contraction capacity; group 1) or systole (group 2). In group 1, the pressure generation capacity of the polymers was measured by determining the area under the pressure curve (area under curve, AUC). In group 2, the RV pressure AUC was measured in complexes directly preceding those with polymer contraction and compared to RV pressure complexes with simultaneous polymer contraction. In group 1, the AUC generated by polymer contraction was 2768 ± 875 U. In group 2, concomitant polymer contraction significantly increased AUC compared with complexes without polymer support (5987 ± 1334 U vs. 4318 ± 691 U, P ≤ 0.01). Electrically contractile polymers are able to significantly augment right ventricular contraction. This approach may open new perspectives for myocardial tissue engineering, possibly in combination with fetal or embryonic stem cell-derived cardiomyocytes.

  3. Dynamic regulation of β1 subunit trafficking controls vascular contractility

    Science.gov (United States)

    Leo, M. Dennis; Bannister, John P.; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E.; Gabrick, Kyle S.; Boop, Frederick A.; Jaggar, Jonathan H.

    2014-01-01

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca2+ sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types. PMID:24464482

  4. Endothelium protectant and contractile effects of the antivaricose principle escin in rat aorta.

    Science.gov (United States)

    Carrasco, Omar F; Vidrio, Horacio

    2007-07-01

    The triterpene saponin escin is the active component of the extract of seeds of Aesculus hippocastanum used in the treatment of chronic venous insufficiency. Escin is also used experimentally to increase membrane permeability in isolated cells. Since endothelial dysfunction is postulated to be involved in venous insufficiency, the possible endothelium-protectant effect of escin was explored in rat aortic rings, a model widely used to study such effects with cardiovascular agents. Escin enhanced endothelium-dependent relaxation induced by acetylcholine when such relaxation had been reduced by exposure to the superoxide ion generator pyrogallol. This effect was attributed to enhanced nitric oxide production by endothelial nitric oxide synthase, a calcium-dependent enzyme, activated by the increased endothelial cell permeability to calcium induced by escin. Another effect of escin thought to contribute to its therapeutic activity is its ability to produce venous contraction. The compound was found to induce concentration-related contraction also in rat aortic rings. This response was partially inhibited by removal of the endothelium or by preincubation with indomethacin, and was completely abolished by incubation in a calcium-free perfusion fluid. Contraction was considered to be due mainly to the aforementioned effect on calcium permeability, with some mediation by release of endothelial vasoconstrictor prostanoids. It was concluded that, in rat aorta, escin possesses an endothelium-protectant action and a direct contractile effect. The former could contribute to its beneficial effect in the treatment of venous insufficiency, while the latter could constitute a limiting side effect. PMID:17512261

  5. Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts.

    Directory of Open Access Journals (Sweden)

    Scot J Matkovich

    Full Text Available Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC, the splice variant PLCβ1b. Previous studies from our group showed that increasing PLCβ1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCβ1b and PLCβ1a (closely related but inactive splice variant hearts 8 weeks after injection, when reduced contractility was manifest in PLCβ1b hearts without evidence of induced hypertrophy. Expression of PLCβ1b resulted in expression changes in only 9 genes at FDR<0.1 when compared with control and these genes appeared unrelated to contractility. Importantly, PLCβ1a caused similar mild expression changes to PLCβ1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCβ1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function.

  6. Contractile responses to ergotamine and dihydroergotamine in the perfused middle cerebral artery of rat

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Nilsson, Elisabeth; Edvinsson, Lars

    2007-01-01

    mmHg and luminally perfused. All vessels used attained spontaneous contractile tone (34.9+/-1.8% of resting tone) and responded to luminal adenosine triphosphate (ATP) with dilatation (24.1+/-4.0%), which showed functioning endothelium. Luminally added ergotamine or DHE induced maximal contractions...... no significant effect. Using a myograph technique, isolated ring segments of the MCA with intact endothelium were mounted on two metal wires. Neither agonist caused relaxation of resting vessels, however, they both responded by weak contractile responses (26+/-3% of submaximal contractile capacity relative to 60...

  7. Role of nitric oxide in the impairment of circular muscle contractility of distended, uninflamed mid-colon in TNBS-induced acute distal colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Luciano Onori; Giovanni Latella; Annalisa Aggio; Simona D'Alo'; Paola Muzi; Maria Grazia Cifone; Gabriella Mellillo; Rachele Ciccocioppo; Gennaro Taddei; Giuseppe Frieri

    2005-01-01

    AIM: To evaluate the role of nitric oxide (NO) in the motor disorders of the dilated uninflamed mid-colon (DUMC)from trinitrobenzene sulfonic acid (TNBS)-induced acute distal colitis in rats.METHODS: Colitis was induced in male Sprague-Dawley rats by a single intracolonic administration of TNBS.Control rats received an enema of 0.9% saline. The rats were killed 48 h after TNBS or saline administration.Macroscopic and histologic lesions of the colon were evaluated. Myeloperoxidase (MPO) and nitric oxide synthase (NOS) activity were measured on the colonic tissue. In TNBS rats, we evaluated spontaneous and evoked contractile activity in circular muscle strips derived from DUMC in comparison to the same colonic segment of control rats, both in the presence and in the absence of a non-selective NOS isoforms inhibitor N-nitro-Larginine (L-NNA). Pharmacological characterization of electric field stimulation (EFS)-evoked contractile responses was also performed.RESULTS: In TNBS rats, the distal colon showed severe histological lesions and a high MPO activity, while the DUMC exhibited normal histology and MPO activity.Constitutive NOS activity was similar in TNBS and control rats, whereas inducible NOS activity was significantly increased only in the injured distal colon of TNBS rats.Isometrically recorded mechanical activity of circular muscle strips from DUMC of TNBS rats showed a marked reduction of the force and frequency of spontaneous contractions compared to controls, as well as of the contractile responses to a contracting stimulus. In the presence of L-NNA, the contractile activity and responses displayed a significantly greater enhancement compared to controls. The pharmacological characterization of EFS contractile responses showed that a cooperative-like interaction between cholinergic muscarinic and tachykinergic neurokinin 1 and 2 receptors mediated transmission in DUMC of TNBS rats vs a simple additive interaction in controls.CONCLUSION: The results of this

  8. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease.

    NARCIS (Netherlands)

    Verhoekx, J.S.; Mudera, V.; Walbeehm, E.T.; Hovius, S.E.

    2013-01-01

    BACKGROUND: In an attempt to provide minimally invasive treatment for Dupuytren's disease, percutaneous disruption of the affected tissue followed by lipografting is being tested. Contractile myofibroblasts drive this fibroproliferative disorder, whereas stem cells have recently been implicated in p

  9. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility

    Institute of Scientific and Technical Information of China (English)

    Ming ZHENG; Rong HOU; Rui-ping XIAO

    2004-01-01

    AIM: To determine the possible role of pH in mediating activation of p38 mitogen-activated protein kinase (MAPK) and the consequent function of activated p38 MAPK in regulating cardiac contractility. METHODS: Adult rat cardiomyocytes were isolated and cultured. Low pH media was used to induce intracellular acidosis and contraction of single cardiomyocyte was measured. RESULTS: Phosphorylation of p38 MAPK was increased during ischemia, and pHi was decreased. Intracellular acidosis activated p38 MAPK to a similar level as ischemia. Inhibition of p38 MAPK activation by SB203580, a specific inhibitor of p38 MAPK, reversed acidosis-mediated reduction of myocyte contractility. CONCLUSION: In adult rat cardiomyocytes, intracellular acidification activated p38 MAPK and decreased cardiac contractility. Pretreatment of cardiomyocytes with SB203580 completely blocked p38 MAPK activation and partially reversed acidosis-mediated decline of cardiac contractility.

  10. Motor-free actin bundle contractility driven by molecular crowding

    CERN Document Server

    Schnauß, Jörg; Schuldt, Carsten; Schmidt, B U Sebastian; Glaser, Martin; Strehle, Dan; Heussinger, Claus; Käs, Josef A

    2015-01-01

    Modeling approaches of suspended, rod-like particles and recent experimental data have shown that depletion forces display different signatures depending on the orientation of these particles. It has been shown that axial attraction of two rods yields contractile forces of 0.1pN that are independent of the relative axial shift of the two rods. Here, we measured depletion-caused interactions of actin bundles extending the phase space of single pairs of rods to a multi-particle system. In contrast to a filament pair, we found forces up to 3pN . Upon bundle relaxation forces decayed exponentially with a mean decay time of 3.4s . These different dynamics are explained within the frame of a mathematical model by taking pairwise interactions to a multi-filament scale. The macromolecular content employed for our experiments is well below the crowding of cells. Thus, we propose that arising forces can contribute to biological force generation without the need to convert chemical energy into mechanical work.

  11. Contractile Force of Human Extraocular Muscle: A Theoretical Analysis

    Science.gov (United States)

    Guo, Hongmei; Gao, Zhipeng; Chen, Weiyi

    2016-01-01

    Aim. The length-contractile force relationships of six human extraocular muscles (EOMs) in primary innervations should be determined during eye movement modeling and surgery of clinical EOMs. This study aims to investigate these relationships. Method. The proposal is based on the assumption that six EOMs have similar constitutive relationships, with the eye suspended in the primary position. The constitutive relationships of EOMs are obtained by optimizing from previous experimental data and the theory of mechanical equilibrium using traditional model. Further, simulate the existing experiment of resistance force, and then compare the simulated results with the existing experimental results. Finally, the mechanical constitutive relationships of EOMs are obtained. Results. The results show that the simulated resistance forces from the other four EOMs except for the horizontal recti well agree with previous experimental results. Conclusion. The mechanical constitutive relationships of six EOMs in primary innervations are obtained, and the rationality of the constitutive relationships is verified. Whereafter, the active stress-strain relationships of the six EOMs in the primary innervations are obtained. The research results can improve the eye movement model to predict the surgical amounts of EOMs before EOM surgery more precisely. PMID:27087774

  12. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Charles; Bernasek, Stephen L.; Abelev, Esta

    2009-06-16

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  13. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface

  14. Contractile apparatus dysfunction early in thepathophysiology of diabetic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Diabetes mellitus significantly increases the risk ofcardiovascular disease and heart failure in patients.Independent of hypertension and coronary arterydisease, diabetes is associated with a specific cardiomyopathy,known as diabetic cardiomyopathy (DCM).Four decades of research in experimental animalmodels and advances in clinical imaging techniquessuggest that DCM is a progressive disease, beginningearly after the onset of type 1 and type 2 diabetes,ahead of left ventricular remodeling and overt diastolicdysfunction. Although the molecular pathogenesis ofearly DCM still remains largely unclear, activation ofprotein kinase C appears to be central in driving theoxidative stress dependent and independent pathwaysin the development of contractile dysfunction. Multiplesubcellular alterations to the cardiomyocyte are nowbeing highlighted as critical events in the early changesto the rate of force development, relaxation and stabilityunder pathophysiological stresses. These changes includeperturbed calcium handling, suppressed activity ofaerobic energy producing enzymes, altered transcriptionaland posttranslational modification of membrane andsarcomeric cytoskeletal proteins, reduced actin-myosincross-bridge cycling and dynamics, and changed myofilamentcalcium sensitivity. In this review, we will presentand discuss novel aspects of the molecular pathogenesisof early DCM, with a special focus on the sarcomericcontractile apparatus.

  15. A comparative study of contractility of the heart ventricle in some ectothermic vertebrates

    OpenAIRE

    Sergey Kharin; Dmitry Shmakov

    2009-01-01

    The purpose of this study was to analyze contractility of the heart ventricle in selected reptilian and amphibian species having the same ventricular excitation pattern. Systolic time intervals and indices of contractility of the heart ventricle were measured in anaesthetized frogs, snakes, and tortoises by use of polycardiography. The electromechanical delay was significantly shorter in tortoises compared with the other two species. The isovolumetric contraction time in frogs was approximate...

  16. A comparative study of contractility of the heart ventricle in some ectothermic vertebrates

    Directory of Open Access Journals (Sweden)

    Sergey Kharin

    2009-07-01

    Full Text Available The purpose of this study was to analyze contractility of the heart ventricle in selected reptilian and amphibian species having the same ventricular excitation pattern. Systolic time intervals and indices of contractility of the heart ventricle were measured in anaesthetized frogs, snakes, and tortoises by use of polycardiography. The electromechanical delay was significantly shorter in tortoises compared with the other two species. The isovolumetric contraction time in frogs was approximately twofold longer than in reptiles. The pre-ejection period was the longest in frogs and the shortest in tortoises, whereas snakes were intermediate. The ejection time was slightly longer in tortoises compared with the other two species. The greatest isovolumetric contraction index and the smallest myocardial tension index corresponded to the frog and tortoise heart ventricle, respectively. The intrasystolic index in tortoises was significantly greater than in frogs, whereas quite similar to that in snakes. The frog ventricle had lower contractility compared with the reptilian one. Although ventricular contractility tended to be lower in snakes compared with tortoises, this difference was not statistically significant. Possible causes for these differences are discussed. We suppose a large variety in ventricular contractility among amphibian and reptilian species having the same ventricular activation pattern. This variety may be conditioned by heart anatomy, intracardiac shunting, lifestyles, and habitats. It can only be hypothesized that on the average, ventricular contractility is higher in reptiles compared with amphibians and in chelonians compared with snakes.

  17. Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts.

    Science.gov (United States)

    Matkovich, Scot J; Grubb, David R; McMullen, Julie R; Woodcock, Elizabeth A

    2016-01-01

    Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC), the splice variant PLCβ1b. Previous studies from our group showed that increasing PLCβ1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCβ1b and PLCβ1a (closely related but inactive splice variant) hearts 8 weeks after injection, when reduced contractility was manifest in PLCβ1b hearts without evidence of induced hypertrophy. Expression of PLCβ1b resulted in expression changes in only 9 genes at FDRcaused similar mild expression changes to PLCβ1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCβ1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function. PMID:27359099

  18. Reliability of contractile properties of the knee extensor muscles in individuals with post-polio syndrome.

    Directory of Open Access Journals (Sweden)

    Eric L Voorn

    Full Text Available To assess the reliability of contractile properties of the knee extensor muscles in 23 individuals with post-polio syndrome (PPS and 18 age-matched healthy individuals.Contractile properties of the knee extensors were assessed from repeated electrically evoked contractions on 2 separate days, with the use of a fixed dynamometer. Reliability was determined for fatigue resistance, rate of torque development (MRTD, and early and late relaxation time (RT50 and RT25, using the intraclass correlation coefficient (ICC and standard error of measurement (SEM, expressed as % of the mean.In both groups, reliability for fatigue resistance was good, with high ICCs (>0.90 and small SEM values (PPS: 7.1%, healthy individuals: 7.0%. Reliability for contractile speed indices varied, with the best values found for RT50 (ICCs>0.82, SEM values <2.8%. We found no systematic differences between test and retest occasions, except for RT50 in healthy subjects (p = 0.016.In PPS and healthy individuals, the reliability of fatigue resistance, as obtained from electrically evoked contractions is high. The reliability of contractile speed is only moderate, except for RT50 in PPS, demonstrating high reliability.This was the first study to examine the reliability of electrically evoked contractile properties in individuals with PPS. Our results demonstrate its potential to study mechanisms underlying muscle fatigue in PPS and to evaluate changes in contractile properties over time in response to interventions or from natural course.

  19. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  20. Menthol inhibits detrusor contractility independently of TRPM8 activation.

    Directory of Open Access Journals (Sweden)

    Antonio Celso Saragossa Ramos-Filho

    Full Text Available Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25-30 g were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM-30 µM, CaCl2 (1 µM to 100 mM and electrical field stimulation (EFS; 8, 16, 32 Hz were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM or nifedipine (1 µM inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM, replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.

  1. The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity

    DEFF Research Database (Denmark)

    Nordling, Jørgen; Bouchelouche, Kirsten; Andersson, Karl-Erik;

    2013-01-01

    prostatic hyperplasia undergoing cystoscopy and from patients undergoing radical prostatectomy/cystectomy (in total 33 donors). Detrusor contractility was evaluated by organ bath studies and strips were incubated with carbachol (1μM) to induce and enhance tension. Both mirabegron and isoprenaline reduced...... preparations from patients with bladder outflow obstruction (BOO) with and without detrusor overactivity (DO), and from patients with normal bladder function. We compared the effects to those of isoprenaline, a non-selective β-adrenoceptor agonist. Detrusor specimens were obtained from patients with benign...

  2. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    Science.gov (United States)

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  3. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  4. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies.

    Science.gov (United States)

    Dasbiswas, K; Alster, E; Safran, S A

    2016-01-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range "macroscopic modes" in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development. PMID:27283037

  5. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    Science.gov (United States)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  6. Myocardial ischemia-reperfusion induces upregulation of contractile endothelin ETB receptor in rat coronary arteries

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Sheykhzade, Majid; Trautner, Simon;

    2011-01-01

    are situated in the vascular smooth muscle cells mediating vasoconstriction. This study aims to examine whether heart ischemia-reperfusion leads to upregulation of contractile ETB receptors in the smooth muscle layer of the coronary arteries and to investigate the signaling pathways involved in the putative...... ETB receptor upregulation. Methods and Results Thirteen Sprague-Dawley male rats (body weight 260-410 g) were anaesthetized with Hypnorm-Midazolam and subjected to 15 min occlusion of left anterior descending coronary artery (LAD) followed by 22 h of reperfusion. The contractile response...... of contractile ETB receptors in the vascular smooth muscle cells in coronary arteries in the post-ischemic area. This study suggests that the upregulation of the ETB receptors depends on a transcriptional upregulation and involves the MEK/ERK type of MAPK....

  7. Study of myogenic spontaneous contractile activities in the detrusor instability rats

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-hong; WEN Qian-jun; SONG Bo

    2006-01-01

    Objective: To explore a myogenic basis of the spontaneous contractions on the rat bladder smooth muscle strip in a detrusor instability (DI) model in vitro, and to study a nerve blocker's cocktail affecting the spontaneous contractions as well as electrical stimulated contractile response. Methods: DI model rats were made by partial bladder outlet obstruction (BOO) and confirmed by the filling cystometry. Detrusor strip was dissected from fresh bladder, fixed for an isometric tension trial. The contractions were recorded during electrical stimulation or exposure to some agents. Results: The cocktail diminished the nerve-mediated contractile response effectively in DI preparation. DI's spontaneous contractions remained during the presence of the cocktail with a significant change in its contractile amplitude. Conclusion: With the local nerve-concerned factors abolishment by the cocktail, the DI bladder preparations still have the spontaneous contractions, indicating a myogenic basis from themselves.

  8. Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus

    DEFF Research Database (Denmark)

    Malmström, Johan; Lindberg, Henrik Have; Lindberg, Claes;

    2004-01-01

    pattern changes that were identified by mass spectrometry and represent specific induction of several members of the contractile apparatus such as calgizzarin, cofilin, and profilin. These proteins have not previously been shown to be regulated by TGF-beta(1), and the functional role of these proteins...... is to participate in the depolymerization and stabilization of the microfilaments. These results show that TGF-beta(1) induces not only alpha-SMA but a whole set of actin-associated proteins that may contribute to the increased contractile properties of the myofibroblast. These proteins accompany the induced...... expression of alpha-SMA and may participate in the formation of stress fibers, cell contractility, and cell spreading characterizing the myofibroblasts phenotype....

  9. EFFECTS OF DESENSITIZATION AND REBOUND TO ADENOSINE ON ACTION POTENTIAL AND CONTRACTILITY IN ATRIAL CELLS IN GUINEA-PIGS

    Institute of Scientific and Technical Information of China (English)

    张凤杰; 臧伟进; 于晓江; 胡浩; 张春虹; 孙强; 吕军

    2002-01-01

    Objective To investigate the effects of desensitization and rebound to adenosine(Ado) on action potential duration(APD) and contractility in guinea-pig atrial cells. Methods Electrical activity was recorded using standard intracellular microelectrode technique and contractility was recorded using. We studied the effects of adenosine on the action potential and desensitization of contractility and rebound of contractility. Results The results showed that action potential duration were shortened by 1,10,100μmol*L-1Ado, the ratio of shortened APD was (9.58±1.40)%,(13.80±2.26)%,(24.80±3.19)%, respectively. 1μmol*L-1Ado had no desensitization (P>0.05), but the time of desensitization of 10μmol*L-1 Ado and 100μmol*L-1 Ado was 1 minute(P<0.05) and 5 minutes(P<0.05), respectively. The desensitization of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility of 10*!μmol*L-1 Ado was obvious in atrial cells, the decrease of contractility was changed from (31.4±16.04)%(2 minutes) to (50.60±15.87)% (4 minutes), compared with control. After washing out Ado, contractility was shown to rebound, the ratio of increase of contractility by 1,10,100μmol*L-1 Ado was (12.38±7.50)%,(19.00±8.14)% and (27.60±13.44)%, respectively. Conclusion Ado can abbreviate APD in atrial cells. The desensitization of Ado on APD is characterized by concentration-dependent and time-dependent in atrial cells, and the desensitization of contractility of Ado is obvious and contractility was shown to rebound after washing out Ado.

  10. Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2011-10-01

    Full Text Available Abstract Background Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH due to reduced cerebral blood flow (CBF and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC via activation of mitogen-activated protein kinase (MAPK of the extracellular signal-regulated kinase (ERK1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH. Results Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1, 5-carboxamidotryptamine (5-CT and angiotensin II (Ang II, upregulates ETB, 5-HT1B and AT1 receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score. Conclusion These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy.

  11. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Douglas G., E-mail: douglas.tilley@jefferson.edu [Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University (United States); Center for Translational Medicine, Thomas Jefferson University (United States); Nguyen, Anny D. [Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University (United States); Rockman, Howard A. [Department of Medicine, Duke University Medical Center (United States); Department of Cell Biology, Duke University Medical Center (United States); Department of Molecular Genetics and Microbiology, Duke University Medical Center (United States)

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  12. The Effects of Histamine H3 Receptors on Contractile Responses on Rat Gastric Fundus

    Directory of Open Access Journals (Sweden)

    Aşkın Hekimoğlu

    2006-01-01

    Full Text Available The aim of this study is to determine the effects of histamine receptors on the gastrointestinal system smooth muscle contractions and the role of histamine H3 receptors on these effects. İsolated rat gastric fundus preparations were hanged on isolated organ bath and histamine receptor agonist and anthagonists were added to the bath solution and the electrical field stimulation-induced contractile responses were evaluated. In our study groups after blocking one of the histamine receptors H1, H2,H3; contractile responses were observed. Then, other two receptors were blocked one by one or combination of them to observe the changes on the contractile responses given to the electrical stimulation .To blocke histamine receptors pyrilamine (10-6м as H1 receptor blocker, famotidine (10-6м as H2 receptor blocker and thioperamide (10-5м as H3 receptor blocker and various combination of them were used. All groups were treated with H3 receptor anthagonist thioperamide (10-5м and agonist (R-α-methylhistamine (RMHA on 10-8, 10-7, 10-6 ve 10-5 molar concentrations cumulatively to observe its mediator effects on contractile responses. We suggested that (R-α-methylhistamine mediates the inhibition on the contractile effects of rat gastric fundus. This conclusion was supported by these findings: a the selective agonists (RMHA caused a dumping of the contractile effect of acetylcholine; b the effect of (RMHA was prevented by the selective H3 receptor antagonist thioperamide.

  13. Actions of genistein on contractile response of smooth muscle isolated from guinea pig gallbladder

    Institute of Scientific and Technical Information of China (English)

    Ya-Li Luo; Ya-Li Wang; Neng-Lian Li; Tian-Zhen Zheng; Li Zhang; Ya-Li She; Shu-Ming Hu

    2009-01-01

    BACKGROUND: Defective contractile motility of the gallbladder is an important factor for gallstone formation. Estrogen might increase the risk of gallstones and cholecystitis, and estradiol inhibits the contractile activity of isolated strips of guinea pig gallbladder. The potential risks associated with hormone replacement therapy (HRT) include symptomatic gallstones. Phytoestrogen have been used to treat menopause syndromes by replacing traditional estrogen. This experiment aimed to determine the effects of the phytoestrogen genistein on the contractile response of smooth muscle strips isolated from guinea pig gallbladder and its possible mechanism of action. METHODS: Guinea pigs were sacriifced to remove the whole gallbladder. Two or three smooth muscle strips were cut longitudinally. Each strip was suspended in a tissue chamber containing Krebs solution. After 2 hours of equilibration, contractile response indexes were recorded. Different concentrations of genistein were added to the chamber and the contractile responses were measured. Each antagonist was added 2 minutes before genistein to study possible mechanisms. The effect of genistein on calcium-dependent contraction curves and biphasic contraction in calcium-free Krebs solution were measured. RESULTS: Genistein decreased the resting tension dose-dependently, and reduced the mean contractile amplitude and frequency in gallbladder strips. Ranitidine partly inhibited the effect of genistein, but methylene blue, Nω-nitro-L-arginine, and propranolol hydrochloride did not inlfuence this action. Genistein had no signiifcant effects on calcium-dependent contraction. Genistein reduced the ifrst contraction induced by acetylcholine chloride, but did not affect the second contraction caused by CaCl2. CONCLUSIONS: Genistein relaxed smooth muscle isolated from the gallbladder of guinea pigs and this might contribute to the formation of gallstones. The inhibitory action might be related to H2 receptors and

  14. Accessory left atrial diverticulae: contractile properties depicted with 64-slice cine-cardiac CT.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    To assess the contractility of accessory left atrial appendages (LAAs) using multiphasic cardiac CT. We retrospectively analyzed the presence, location, size and contractile properties of accessory LAAs using multiphasic cardiac 64-slice CT in 102 consecutive patients (63 males, 39 females, mean age 57). Multiplanar reformats were used to create image planes in axial oblique, sagittal oblique and coronal oblique planes. For all appendages with an orifice diameter >or= 10 mm, axial and sagittal diameters and appendage volumes were recorded in atrial diastole and systole. Regression analysis was performed to assess which imaging appearances best predicted accessory appendage contractility. Twenty-three (23%) patients demonstrated an accessory LAA, all identified along the anterior LA wall. Dimensions for axial oblique (AOD) and sagittal oblique (SOD) diameters and sagittal oblique length (SOL) were 6.3-19, 3.4-20 and 5-21 mm, respectively. All appendages (>or=10 mm) demonstrated significant contraction during atrial systole (greatest diameter reduction was AOD [3.8 mm, 27%]). Significant correlations were noted between AOD-contraction and AOD (R = 0.57, P < 0.05) and SOD-contraction and AOD, SOD and SOL (R = 0.6, P < 0.05). Mean diverticulum volume in atrial diastole was 468.4 +\\/- 493 mm(3) and in systole was 171.2 +\\/- 122 mm(3), indicating a mean change in volume of 297.2 +\\/- 390 mm(3), P < 0.0001. Stepwise multiple regression analysis revealed SOL to be the strongest independent predictor of appendage contractility (R(2) = 0.86, P < 0.0001) followed by SOD (R(2) = 0.91, P < 0.0001). Accessory LAAs show significant contractile properties on cardiac CT. Those accessory LAAs with a large sagittal height or depth should be evaluated for contractile properties, and if present should be examined for ectopic activity during electrophysiological studies.

  15. Effect of a crude sulfated polysaccharide from Halymenia floresia (Rhodophyta) on gastrointestinal smooth muscle contractility

    OpenAIRE

    José Ronaldo Vasconcelos Graça; Mirna Marques Bezerra; Vilma Lima; José Ariévilo Gurgel Rodrigues; Diego Levi Silveira Monteiro; Ana Luíza Gomes Quinderé; Rodrigo César das Neves Amorim; Regina Célia Monteiro de Paula; Norma Maria Barros Benevides

    2011-01-01

    The aim of this work was to study the effect of Halymenia floresia (Hf) on duodenum contractility, and on experimental protocols of gastric compliance (GC) in rats. Fraction Hf2s exhibited a concentration-dependent myocontractile effect (EC50 12.48 µg/ml), and an inhibitory effect after consecutive washing. The contractile response promoted by Hf2s in the duodenum strips was completely inhibited by verapamil, and the effects were prevented in the presence of Ca2+-free medium. The pretreatment...

  16. Validation of an in vitro contractility assay using canine ventricular myocytes

    International Nuclear Information System (INIS)

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  17. Appearance of contractile endothelin-B receptors in rat mesenteric arterial segments following organ culture

    DEFF Research Database (Denmark)

    Adner, M; Geary, G G; Edvinsson, L

    1998-01-01

    contraction. The maximum contractile response to S6c was not altered in segments cultured with foetal calf serum or in buffer solution, but was reduced to about 20% of the control value when cultured in glucose-free buffer solution. The contraction to S6c was abolished in segments placed in cold (4 degrees C......) buffer solution. Removal of the endothelium had no effect on the S6c-induced contractions. Arteries cultured at isometric tension (at 2 mN) for 1 day achieved the same contractile response for ETB agonists as resting segments. Pressurized arteries (60 mmHg) did not constrict to S6c when mounted...

  18. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells.

    Science.gov (United States)

    Davidson, Reshma; Liu, Yajun; Gerien, Kenneth S; Wu, Jian-Qiu

    2016-01-01

    Single-cell microscopy provides a powerful tool to visualize cellular and subcellular processes in wild-type and mutant cells by observing fluorescently tagged proteins. Here, we describe three simple methods to visualize fission yeast cells: gelatin slides, coverslip-bottom dishes, and tetrad fluorescence microscopy. These imaging methods and data analysis using free software make it possible to quantify protein localization, dynamics, and concentration with high spatial and temporal resolution. In fission yeast, the actomyosin contractile ring is essential for cytokinesis. We use the visualization and quantification of contractile ring proteins as an example to demonstrate how to use these methods.

  19. Influence of muscle temperature on the contractile properties of the quadriceps muscle in humans with spinal cord injury

    NARCIS (Netherlands)

    Gerrits, H L; de Haan, A; Hopman, M T; van der Woude, L H; Sargeant, A J

    2000-01-01

    Low muscle temperature in paralysed muscles of individuals with spinal cord injury may affect the contractile properties of these muscles. The present study was therefore undertaken to assess the effects of increased muscle temperature on the isometric contractile properties of electrically stimulat

  20. Influence of bladder outlet obstruction and detrusor contractility on residual urine in patients with benign prostatic hyperplasia

    Institute of Scientific and Technical Information of China (English)

    张鹏; 武治津; 高居忠

    2003-01-01

    Objective To study the relationship between the degree of bladder outlet obstruction (BOO), detrusor contractility and residual urine in patients suffering from benign prostatic hyperplasia (BPH).Methods In 181 patients with BPH, degree of BOO, detrusor contractility, residual urine caculated from cathetering combined with the difference between the filling and the voiding were recorded and analysized statistically using urodynamic technique.Results Residual urine increased when the detusor contractility was weakened (F=12.134, P=0.001). In patients wih severe BOO, there was no significant difference in residual urine (F=2.386, P=0.071).Conclusions Increased residual urine is mainly resulted from decreased detrusor contractility. BOO has no significant influence on residual urine. Some patients with normal or weakened detrusor contractility may have more residual urine

  1. Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle.

    NARCIS (Netherlands)

    Gerrits, H.L.; Hopman, M.T.E.; Sargeant, A.J.; Haan, A. de

    2001-01-01

    This study assessed the reproducibility of electrically evoked, isometric quadriceps contractile properties in eight people with spinal cord injury (SCI) and eight able-bodied (AB) individuals. Over all, the pooled coefficients of variation (CVps) in the SCI group were significantly lower (ranging f

  2. Influence of Contractility on Myocardial Ultrasonic Integrated Backscatter and Cyclic Variation in Integrated Backscatter

    Institute of Scientific and Technical Information of China (English)

    毕小军; 邓又斌; 潘敏; 杨好意; 向慧娟; 常青; 黎春雷

    2002-01-01

    Summary: To evaluate the effects of left ventricular contractility on the changes of average image intensity (AII) of the myocardial integrated backscatter (IB) and cyclic variation in IB (CVIB), 7 adult mongrel dogs were studied. The magnitude of AII and CVIB were measured from myocardial IB carves before and after dobutamine or propranolol infusion. Dobutamine or propranolol did not affect the magnitude of AII (13.8±0. 7 vs 14.7±0. 5, P>0. 05 or 14.3±0.5 vs 14.2±0. 4, P>0. 05). However, dobutamine produced a significant increase in the magnitude of CVIB (6.8±0.3 vs 9.5 ± 0. 6, P<0. 001) and propranolol induced significant decrease in the magnitude of CVIB (7.1±0. 2 vs 5.2±0. 3, P<0. 001). The changes of the magnitude of AII and CVIB in the myocardium have been demonstrated to reflect different myocardial physiological and pathological changes respectively. The alteration of contractility did not affect the magnitude of AII but induced significant change in CVIB. The increase of left ventricular contractility resulted in a significant rise of the magnitude of CVIB and the decrease of left ventricular contractility resulted in a significant fall of the magnitude of CVIB.

  3. Protective Effect of Capsicum Frutescens on Contractile Reactivity of Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    F. Roghani-Dehkordi

    2005-07-01

    Full Text Available Introduction & Objective : Considering the higher incidence of atherosclerosis and cardiovascular disorders in diabetes mellitus, this study was conducted to evaluate the effect of oral one-month administration of red pepper (Capsicum frutescens on the contractile reactivity of isolated aorta in diabetic rats. Materials & Methods : For this purpose, male Wistar rats(n=32 were randomly divided into control, pepper-treated control, diabetic, and pepper-treated diabetic groups. For induction of diabetes, streptozotcin (STZ was intraperitoneally administered (60 mg/Kg. Pepper-treated groups received pepper mixed with standard pelleted food at a weight ratio of 1/15. After one month, contractile reactivity of aortic rings to KCl and noreadrenaline was determined using isolated tissue setup. Results : Serum glucose level showed a significant increase in diabetic group at 2nd and 4th weeks (P<0.001, while this increase was less marked in pepper-treated diabetic group at the 2nd week (P<0.05. In addition, the latter group showed a lower contraction to KCl (P<0.05 and noreadrenaline (P<0.05 as compared to diabetic group. Meanwhile, there was no significant difference between control and pepper-treated control groups regarding contractile reactivity. Conclusion : It can be concluded that oral administration of pepper for one month could attenuate the contractile responsiveness of the vascular system and may prevent the development of hypertension in diabetic rats.

  4. Studies of membrane fluidity and heart contractile force in Trypanosoma cruzi infected mice

    Directory of Open Access Journals (Sweden)

    Julio E Enders

    2004-11-01

    Full Text Available In Chagas disease serious cardiac dysfunction can appear. We specifically studied the cardiac function by evaluating: ventricle contractile force and norepinephrine response, affinity and density of beta-adrenergic receptors, dynamic properties of myocardial membranes, and electrocardiography. Albino swiss mice (n = 250 were infected with 55 trypomastigotes, Tulahuen strain and studied at 35, 75, and 180 days post-infection, that correspond to the acute, indeterminate, and chronic phase respectively. Cardiac beta-adrenergic receptors' affinity, myocardial contractility, and norepinephrine response progressively decreased from the acute to the chronic phase of the disease (p < 0.01. The density (expressed as fmol/mg.prot of the receptors was similar to non-infected mice (71.96 ± 0.36 in both the acute (78.24 ± 1.67 and indeterminate phases (77.28 ± 0.91, but lower in the chronic disease (53.32 ± 0.71. Electrocardiographic abnormalities began in the acute phase and were found in 65% of the infected-mice during the indeterminate and chronic phases. Membrane contents of triglycerides, cholesterol, and anisotropy were similar in all groups. A quadratic correlation between the affinity to beta-adrenergic receptors and cardiac contractile force was obtained. In conclusion the changes in cardiac beta-adrenergic receptors suggests a correlation between the modified beta-adrenergic receptors affinity and the cardiac contractile force.

  5. Redundant mechanisms recruit actin into the contractile ring in silkworm spermatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2008-09-01

    Full Text Available Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation. Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation. To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex. In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.

  6. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    Science.gov (United States)

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.

  7. Effect of pinaverium bromide on stress-induced colonic smooth muscle contractility disorder in rats

    OpenAIRE

    Dai, Yun; Liu, Jian-Xiang; Li, Jun-Xia; Xu, Yun-Feng

    2003-01-01

    AIM: To investigate the effect of pinaverium bromide, a L-type calcium channel blocker with selectivity for the gastrointestinal tract on contractile activity of colonic circular smooth muscle in normal or cold-restraint stressed rats and its possible mechanism.

  8. Hydrogen ion changes and contractile behavior in the perfused rat heart

    NARCIS (Netherlands)

    Cingolani, H.E.; Maas, A.H.J.; Zimmerman, A.N.E.; Meijler, F.L.

    1975-01-01

    The effect of acid-base alterations was analyzed using isolated rat hearts perfused at constant coronary perfusion pressure, and stimulated to contract at constant rate. The amount of shortening in the major axis and its derivative were measured to assess myocardial contractility. Both the 'respirat

  9. Contractile properties of the quadriceps muscle in individuals with spinal cord injury

    NARCIS (Netherlands)

    Gerrits, H L; De Haan, A; Hopman, M T; van Der Woude, L H; Jones, D A; Sargeant, A J

    1999-01-01

    Selected contractile properties and fatigability of the quadriceps muscle were studied in seven spinal cord-injured (SCI) and 13 able-bodied control (control) individuals. The SCI muscles demonstrated faster rates of contraction and relaxation than did control muscles and extremely large force oscil

  10. A device for rapid and quantitative measurement of cardiac myocyte contractility

    Science.gov (United States)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  11. Contractile speed and fatigue of adductor pollicis muscle in multiple sclerosis

    NARCIS (Netherlands)

    de Ruiter, C J; Jongen, P J; van der Woude, L H; de Haan, A

    2001-01-01

    The purpose of the study was to investigate differences in contractile speed, force, and fatigability of the adductor pollicis muscle between 12 patients with multiple sclerosis (MS) and 8 sedentary control subjects matched for age and gender. There were no differences between the patients with MS a

  12. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Coffey, Vernon G; Pilegaard, Henriette; Garnham, Andrew P;

    2009-01-01

    -activated receptor gamma coactivator-1alpha mRNA did not reveal an order effect. We conclude that acute responses to diverse bouts of contractile activity are modified by the exercise order. Moreover, undertaking divergent exercise in close proximity influences the acute molecular profile and likely exacerbates...

  13. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars G; Suetta, Charlotte; Aagaard, Per;

    2013-01-01

    The purpose of the study was to investigate the effects of 4days of disuse (knee brace) on contractile function of isolated vastus lateralis fibers (n=486) from 11 young (24.3±0.9yrs) and 11 old (67.2±1.0yrs) healthy men having comparable levels of physical activity. Prior to disuse single fiber...

  14. Prolonged ischemic heart disease and coronary artery bypass - relation to contractile reserve

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Bangsgaard, Regitze; Carstensen, Steen;

    2002-01-01

    OBJECTIVE: A major effect of coronary artery bypass grafting (CABG) in patients with ischemic heart disease and impaired left ventricular (LV) contractile function is believed to be an improvement in LV function due to recovery of dysfunctional, but viable myocardium. However, recent studies have...

  15. In vivo visualization and quantification of collecting lymphatic vessel contractility using near-infrared imaging

    Science.gov (United States)

    Chong, Chloé; Scholkmann, Felix; Bachmann, Samia B.; Luciani, Paola; Leroux, Jean-Christophe; Detmar, Michael; Proulx, Steven T.

    2016-01-01

    Techniques to image lymphatic vessel function in either animal models or in the clinic are limited. In particular, imaging methods that can provide robust outcome measures for collecting lymphatic vessel function are sorely needed. In this study, we aimed to develop a method to visualize and quantify collecting lymphatic vessel function in mice, and to establish an in vivo system for evaluation of contractile agonists and antagonists using near-infrared fluorescence imaging. The flank collecting lymphatic vessel in mice was exposed using a surgical technique and a near-infrared tracer was infused into the inguinal lymph node. Collecting lymphatic vessel contractility and valve function could be easily visualized after the infusion. A diameter tracking method was established and the diameter of the vessel was found to closely correlate to near-infrared fluorescence signal. Phasic contractility measures of frequency and amplitude were established using an automated algorithm. The methods were validated by tracking the vessel response to topical application of a contractile agonist, prostaglandin F2α, and by demonstrating the potential of the technique for non-invasive evaluation of modifiers of lymphatic function. These new methods will enable high-resolution imaging and quantification of collecting lymphatic vessel function in animal models and may have future clinical applications. PMID:26960708

  16. Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Johnsson, E.; Maddahi, A.; Wackenfors, A.;

    2008-01-01

    . In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh...... but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture...... and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries...

  17. Dietary exposure to ergot alkaloids decreases contractility of bovine mesenteric vasculature.

    Science.gov (United States)

    Egert, A M; Kim, D H; Schrick, F N; Harmon, D L; Klotz, J L

    2014-04-01

    Ergot alkaloids are hypothesized to cause vasoconstriction in the midgut, and prior exposure may affect the vasoactivity of these compounds. The objectives of this study were to profile vasoactivity of ergot alkaloids in bovine mesenteric artery (MA) and vein (MV) and determine if previous exposure to endophyte-infected tall fescue seed affected vasoactivity of ergocryptine (ERP), ergotamine (ERT), ergocristine (ERS), ergocornine (ERO), ergonovine (ERN), lysergic acid (LSA), ergovaline-containing tall fescue seed extract (EXT), and 5-hydroxytryptamine (5HT; serotonin). Ruminally cannulated Angus steers (n = 12; BW = 547 ± 31 kg) were paired by weight and randomly assigned to 6 blocks. Steers were ruminally dosed daily with 1 kg of either endophyte-infected (E+; 4.45 mg ergovaline/kg DM) or endophyte-free (E-; 0 mg ergovaline/kg DM) tall fescue seed for 21 d before slaughter. Branches of MA and MV supporting the cranial portion of the ileum were collected after slaughter on d 22, placed in a modified Krebs-Henseleit buffer on ice, cleaned, sectioned, and mounted in a multimyograph chamber. Contractile response was normalized to a maximum KCl response. Inner diameter (P = 0.04) and outer diameter (P = 0.02) of MA were smaller for E+ steers than E- steers. Maximum contractile responses to 120 mM KCl were not different between seed treatments in MA (P = 0.33; E-: 2.67 ± 0.43 g; E+: 3.33 ± 0.43 g) or MV (P = 0.26; E-: 2.01 ± 0.18 g; E+: 1.81 ± 0.18 g). Steers receiving E+ had a smaller (P < 0.01) MA contractile response than E- steers to ERP, ERT, ERS, ERO, ERN, EXT, and 5HT. Steers receiving E+ had a smaller (P < 0.05) MV contractile response than E- steers to ERP, ERT, ERS, ERN, EXT, and 5HT. Lysergic acid failed to induce a contractile response in MA and MV. The contractile response in MA and MV of E- steers produced by 5HT was very large. The EXT was the most potent (P < 0.05) agonist in MV and MA of E+ steers. These data showed that ergot alkaloids were

  18. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  19. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  20. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    Science.gov (United States)

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage. PMID:26089164

  1. Short-Chain Fatty Acid Propionate Alleviates Akt2 Knockout-Induced Myocardial Contractile Dysfunction

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2012-01-01

    Full Text Available Background and Aims. Dysregulation of Akt has been implicated in diseases such as cancer and diabetes, although little is known about the role of Akt deficiency on cardiomyocyte contractile function. This study was designed to examine the effect of Akt2 knockout-induced cardiomyocyte contractile response and the effect of dietary supplementation of short-chain fatty acid propionate on Akt2 knockout-induced cardiac dysfunction, if any. Methods and Results. Adult male wild-type (WT and Akt2 knockout mice were treated with propionate (0.3 g/kg, p.o. or vehicle for 7 days. Oral glucose tolerance test (OGTT was performed. Cardiomyocyte contractile function and mitochondrial membrane potential were assessed. Expression of insulin-signaling molecules Akt, PTEN, GSK3β, and eNOS receptors for short-chain fatty acids GPR41, and GPR43 as well as protein phosphatase PP2AA, PP2AB, PP2C were evaluated using Western blot analysis. Our results revealed that Akt2 knockout led to overt glucose intolerance, compromised cardiomyocyte contractile function (reduced peak shortening and maximal velocity of shortening/relengthening as well as prolonged relengthening, loss of mitochondrial membrane potential, decreased GPR41 and elevated GPR43 expression, all of which, with the exception of glucose intolerance and elevated GPR43 level, were significantly attenuated by propionate. Neither Akt2 knockout nor propionate affected the expression of protein phosphatases, eNOS, pan, and phosphorylated PTEN and GSK3β. Conclusions. Taken together, these data depicted that Akt2 knockout may elicit cardiomyocyte contractile and mitochondrial defects and a beneficial role of propionate or short-chain fatty acids against Akt2 deficiency-induced cardiac anomalies.

  2. Mechanism underlying the reversal of contractility dysfunction in experimental colitis by cyclooxygenase-2 inhibition.

    Science.gov (United States)

    Khan, I; Oriowo, M A

    2006-03-01

    Inflammatory bowel diseases are associated with reduced colonic contractility and induction of cyclooxygenase-2. In this study a possible role of cyclooxygenase-2 in and the underlying mechanism of the reduced contractility were investigated in experimental colitis. The effects of meloxicam, a cyclooxygenase-2 selective inhibitor were examined on colonic contractility and MAP kinase p38 and ERK(1/2) expression. Colitis was induced in Sprague-Dawley male rats by intra-colonic instillation of trinitrobenzenesulphonic acid (TNBS; 40 mg/rat in 50 ethanol). The animals were divided into three groups. Group 1 (n=9) received meloxicam (3 mg/kg-day) gavage 1 h before and 1 day (Group 2) after induction of colitis. Group 3 (n=9) received phosphate buffered saline (PBS) in a similar manner and served as colitic control. The non colitic control animals received meloxicam in a similar manner. The animals were sacrificed after 5 days of treatment, colon was cleaned with PBS and colonic smooth muscle was obtained which was used in this study. Meloxicam treatment given 1 h before or 1 day after administration of colitis restored the reduced colonic contractility without affecting the sensitivity to carbachol. The levels of colonic smooth muscle IL-1beta mRNA, PGE(2), ERK(1/2), p38, malondialdehyde, myeloperoxidase activity and colonic mass were increased, whereas the body weight was decreased due to TNBS. The changes except colonic muscle mass and p38 expression were reversed by meloxicam treatment. These findings indicate that restoration of reduced colonic contractility by meloxicam is mediated by ERK(1/2), and that ERK(1/2) may serve as an important anti inflammatory target for treatment of colitis. PMID:16835710

  3. Action of progesterone on contractile activity of isolated gastric strips in rats

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Tian-Zhen Zheng; Wei Li; Song-Yi Qu; Di-Ying He

    2003-01-01

    AIM: To study the effect of progesterone on contractile activity of isolated gastric strips in rats.METHODS: Wistar rats were sacrificed to remove whole stomach. Then, the stomach was opened and the mucosal layer was removed. Parellel to either the circular or the longitudial fibers, muscle strips were cut from fundus, body,antrum and pylorus. Each muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution. Then the motility of gastric strips in tissue chambers was simultaneously recorded. The preparations were subjected to 1 g load tension and washed with 5 ml Krebs solution every 20 min. After 1 h equilibration, progesterone or antagonists were added in the tissue chamber separately. The antagonists were added 3 min before using progesterone (50 μmol. L-1).RESULTS: Progesterone decreased the resting tension of fundus and body longitudinal muscle (LM) (P<0.05). It inhibited the mean contractile amplitude of body and antrum LM and circular muscle (CM), and the motility index of pyloric CM (P<0.05). The inhibition of progesterone on the mean contractile amplitude could be partially blocked by phentolamine in LM of the stomach body (the mean contractile amplitude of body LM decreased from -7.5±5.5to -5.2±4.5 P<0.01), and by phentolamine or indomethacin in CM of body (The inhibition of progesterone on the mean contractile amplitude of body CM decreased from -5.6±3.0to -3.6±2.7 by phentolamine and from -5.6±3.0 to -3.5±2.5by indomethacin, P<0.01). Hexamethonium, propranolol and L-NNA (inhibitor of NO synthetase) didn′t affect the action of progesterone (P>0.05).CONCLUSION: The study suggested that progesterone can inhibit the contractile activity of isolated gastric strips in rats and the mechanism seems to be a direct one except that the action on gastric body is mediated through prostaglandin and adrenergic α receptor partly.

  4. β-Alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity.

    OpenAIRE

    Hannah, R; Stannard, R. L.; Minshull, C; Artioli, G. G.; Harris, R. C.; Sale, C.

    2015-01-01

    β-Alanine (BA) supplementation improves human exercise performance. One possible explanation for this is an enhancement of muscle contractile properties, occurring via elevated intramuscular carnosine resulting in improved calcium sensitivity and handling. This study investigated the effect of BA supplementation on in vivo contractile properties and voluntary neuromuscular performance. Twenty-three men completed two experimental sessions, pre- and post-28 days supplementation with 6.4 g/day o...

  5. Increased Intracellular [dATP] Enhances Cardiac Contraction in Embryonic Chick Cardiomyocytes

    OpenAIRE

    Schoffstall, Brenda; Chase, P. Bryant

    2008-01-01

    Although ATP is the physiological substrate for cardiac contraction, cardiac contractility is significantly enhanced in vitro when only 10% of ATP substrate is replaced with 2’-deoxy-ATP (dATP). To determine the functional effects of increased intracellular [dATP] ([dATP]i) within living cardiac cells, we used hypertonic loading with varying exogenous dATP/ATP ratios, but constant total nucleotide concentration, to elevate [dATP]i in contractile monolayers of embryonic chick cardiomyocytes. T...

  6. Effect of a crude sulfated polysaccharide from Halymenia floresia (Rhodophyta on gastrointestinal smooth muscle contractility

    Directory of Open Access Journals (Sweden)

    José Ronaldo Vasconcelos Graça

    2011-10-01

    Full Text Available The aim of this work was to study the effect of Halymenia floresia (Hf on duodenum contractility, and on experimental protocols of gastric compliance (GC in rats. Fraction Hf2s exhibited a concentration-dependent myocontractile effect (EC50 12.48 µg/ml, and an inhibitory effect after consecutive washing. The contractile response promoted by Hf2s in the duodenum strips was completely inhibited by verapamil, and the effects were prevented in the presence of Ca2+-free medium. The pretreatment with atropine prevented the Hf2s myocontractile effect. Hf2s was also capable to decrease the GC (from 3.8±0.06 to 3.4±0.13 ml, P<0.05, which did not return to basal levels after more 50 min of observation. These results indicated that the algal polysaccharide possessed in vitro and in vivo gastrointestinal effects.

  7. Myosin-II dependent cell contractility contributes to spontaneous nodule formation of mesothelioma cells

    CERN Document Server

    Tárnoki-Zách, Julia; Méhes, Elod; Paku, Sándor; Neufeld, Zoltán; Hegedus, Balázs; Döme, Balázs; Czirok, Andras

    2015-01-01

    We demonstrate that characteristic nodules emerge in cultures of several malignant pleural mesothelioma (MPM) cell lines. Instead of excessive local cell proliferation, the nodules arise by Myosin II-driven cell contractility. The aggregation process can be prevented or reversed by suitable pharmacological inhibitors of acto-myosin contractility. A cell-resolved elasto-plastic model of the multicellular patterning process indicates that the morphology and size of the nodules as well as the speed of their formation is determined by the mechanical tension cells exert on their neighbors, and the stability of cell-substrate adhesion complexes. A linear stability analysis of a homogenous, self-tensioned Maxwell fluid indicates the unconditional presence of a patterning instability.

  8. Inhibitory effect of pinaverium bromide on gastrointestinal contractile activity in conscious dogs.

    Science.gov (United States)

    Itoh, Z; Takahashi, I

    1981-01-01

    The inhibitory effect of 4-(6-bromoveratryl)-4-(2-[2-(6,6-dimethyl-2-norpinyl)-ethoxy]-ethyl)-morpholinium hydroxide (pinaverium bromide), a quaternary ammonium derivative, on the contractile activity of the gastrointestinal tract from the stomach to the colon was investigated in six conscious dogs. Gastrointestinal motor activity was monitored by means of chronically implanted force transducers. Pinaverium bromide was continuously administered i.v. for 30 min in doses of 10 and 20 mg/kg/h during both the digestive and interdigestive states. It was found that pinaverium bromide strongly inhibited gastrointestinal contractile activity during both the digestive and interdigestive states; contractions in the stomach were most strongly inhibited; however, those in the small and large bowels were also significantly inhibited. No significant side effects in the circulatory and respiratory systems and the gastrointestinal tract such as nausea, vomiting or diarrhea were observed during and after the infusion of this agent. PMID:7197953

  9. Cell contractility facilitates alignment of cells and tissues to static uniaxial stretch

    CERN Document Server

    Rens, Elisabeth G

    2016-01-01

    During animal development and homeostasis, the structure of tissues, including muscles, blood vessels and connective tissues adapts to mechanical strains in the extracellular matrix (ECM). These strains originate from the differential growth of tissues or forces due to muscle contraction or gravity. Here we show using a computational model that by amplifying local strain cues, active cell contractility can facilitate and accelerate the reorientation of single cells to static strains. At the collective cell level, the model simulations show that active cell contractility can facilitate the formation of strings along the orientation of stretch. The computational model is based on a hybrid cellular Potts and finite-element simulation framework describing a mechanical cell-substrate feedback, where: 1) cells apply forces on the ECM, such that 2) local strains are generated in the ECM, and 3) cells preferentially extend protrusions along the strain orientation. In accordance with experimental observations, simulat...

  10. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle

    DEFF Research Database (Denmark)

    Layne, Jeffrey J; Nausch, Bernhard; Olesen, Søren-Peter;

    2009-01-01

    activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P......Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether......(o)) and whole cell BK channel currents. The frequency of spontaneous action potentials in UBSM strips was reduced by NS11021 from a control value of 20.9 + or - 5.9 to 10.9 + or - 3.7 per minute. NS11021 also reduced the force of UBSM spontaneous phasic contractions by approximately 50%, and this force...

  11. Contractile activity is required for Z-disc sarcomere maturation in vivo

    Science.gov (United States)

    Geach, Timothy J; Hirst, Elizabeth MA; Zimmerman, Lyle B

    2015-01-01

    Sarcomere structure underpins structural integrity, signaling, and force transmission in the muscle. In embryos of the frog Xenopus tropicalis, muscle contraction begins even while sarcomerogenesis is ongoing. To determine whether contractile activity plays a role in sarcomere formation in vivo, chemical tools were used to block acto-myosin contraction in embryos of the frog X. tropicalis, and Z-disc assembly was characterized in the paralyzed dicky ticker mutant. Confocal and ultrastructure analysis of paralyzed embryos showed delayed Z-disc formation and defects in thick filament organization. These results suggest a previously undescribed role for contractility in sarcomere maturation in vivo. genesis 53:299–307, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:25845369

  12. Measuring the Contractile Response of Isolated Tissue Using an Image Sensor

    Directory of Open Access Journals (Sweden)

    David Díaz-Martín

    2015-04-01

    Full Text Available Isometric or isotonic transducers have traditionally been used to study the contractile/relaxation effects of drugs on isolated tissues. However, these mechanical sensors are expensive and delicate, and they are associated with certain disadvantages when performing experiments in the laboratory. In this paper, a method that uses an image sensor to measure the contractile effect of drugs on blood vessel rings and other luminal organs is presented. The new method is based on an image-processing algorithm, and it provides a fast, easy and non-expensive way to analyze the effects of such drugs. In our tests, we have obtained dose-response curves from rat aorta rings that are equivalent to those achieved with classical mechanic sensors.

  13. An Estimating Method of Contractile State Changes Come From Continuous Isometric Contraction of Skeletal Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Lee, S.J. [Wonkwang University, Iksan (Korea)

    2003-01-01

    In this study was proposed that a new estimating method for investigation of contractile state changes which generated from continuous isometric contraction of skeletal muscle. The physiological changes (EMG, ECG) and the psychological changes by CNS(central nervous system) were measured by experiments, while the muscle of subjects contracted continuously with isometric contraction in constant load. The psychological changes were represented as three-step-change named 'fatigue', 'pain' and 'sick(greatly pain)' from oral test, and the method which compared physiological change with psychological change on basis of these three steps was developed. The result of analyzing the physiological signals, EMG and ECG signal changes were observed at the vicinity of judging point in time of psychological changes. Namely, it is supposed that contractile states have three kind of states pattern (stable, fatigue, pain) instead of two states (stable, fatigue). (author). 24 refs., 7 figs.

  14. Effects of a hydrogen sulfide donor on spontaneous contractile activity of rat stomach and jejunum.

    Science.gov (United States)

    Shafigullin, M Y; Zefirov, R A; Sabirullina, G I; Zefirov, A L; Sitdikova, G F

    2014-07-01

    We studied the effect of sodium hydrosulfite (NaHS), a donor of hydrogen sulfide (H2S), on spontaneous contractive activity of isolated preparations of rat stomach and jejunum under isometric conditions. NaHS in concentrations of 10-200 μM reduced the amplitude, tonic tension, and frequency of contractions of the preparations. Blockade of K(+) channels with a non-specific antagonist tetraethylammonium (10 mM) increased contraction amplitude in the stomach strip and jejunum segment. The effects of NaHS on all parameters of contractile activity of the stomach and jejunum were fully preserved against the background of tetraethylammonium application. These data suggest that H2S in physiologically relevant concentrations inhibited spontaneous contractile activity of smooth muscle cells in rat stomach and jejunum by reducing the amplitude and frequency of contractions and decreased tonic tension without affecting the function of voltage- and calcium-dependent K(+) channels.

  15. Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes

    OpenAIRE

    Shenouda, Sylvia K.; Varner, Kurt J.; Carvalho, Felix; Lucchesi, Pamela A.

    2009-01-01

    Repeated administration of MDMA (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown; oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included: al...

  16. The p90 ribosomal S6 kinase (RSK is a mediator of smooth muscle contractility.

    Directory of Open Access Journals (Sweden)

    Mykhaylo Artamonov

    Full Text Available In the canonical model of smooth muscle (SM contraction, the contractile force is generated by phosphorylation of the myosin regulatory light chain (RLC20 by the myosin light chain kinase (MLCK. Moreover, phosphorylation of the myosin targeting subunit (MYPT1 of the RLC20 phosphatase (MLCP by the RhoA-dependent ROCK kinase, inhibits the phosphatase activity and consequently inhibits dephosphorylation of RLC20 with concomitant increase in contractile force, at constant intracellular [Ca(2+]. This pathway is referred to as Ca(2+-sensitization. There is, however, emerging evidence suggesting that additional Ser/Thr kinases may contribute to the regulatory pathways in SM. Here, we report data implicating the p90 ribosomal S6 kinase (RSK in SM contractility. During both Ca(2+- and agonist (U46619 induced SM contraction, RSK inhibition by the highly selective compound BI-D1870 (which has no effect on MLCK or ROCK resulted in significant suppression of contractile force. Furthermore, phosphorylation levels of RLC20 and MYPT1 were both significantly decreased. Experiments involving the irreversible MLCP inhibitor microcystin-LR, in the absence of Ca(2+, revealed that the decrease in phosphorylation levels of RLC20 upon RSK inhibition are not due solely to the increase in the phosphatase activity, but reflect direct or indirect phosphorylation of RLC20 by RSK. Finally, we show that agonist (U46619 stimulation of SM leads to activation of extracellular signal-regulated kinases ERK1/2 and PDK1, consistent with a canonical activation cascade for RSK. Thus, we demonstrate a novel and important physiological function of the p90 ribosomal S6 kinase, which to date has been typically associated with the regulation of gene expression.

  17. Contractile properties of the pigeon supracoracoideus during different modes of flight

    OpenAIRE

    Tobalske, Brett W.; Biewener, Andrew Austin

    2008-01-01

    The supracoracoideus (SUPRA) is the primary upstroke muscle for avian flight and is the antagonist to the downstroke muscle, the pectoralis (PECT). We studied in vivo contractile properties and mechanical power output of both muscles during take-off, level and landing flight. We measured muscle length change and activation using sonomicrometry and electromyography, and muscle force development using strain recordings on the humerus. Our results support a hypothesis that the primary role of ...

  18. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    Science.gov (United States)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  19. Vascular smooth muscle cell-derived adiponectin: a paracrine regulator of contractile phenotype

    OpenAIRE

    Ding, Min; Carrao, Ana Catarina; Wagner, Robert J.; Xie, Yi; Jin, Yu; Rzucidlo, Eva M.; Yu, Jun; Li, Wei; Tellides, George; Hwa, John; Aprahamian, Tamar R.; Martin, Kathleen A.

    2011-01-01

    Adiponectin is a cardioprotective adipokine derived predominantly from visceral fat. We recently demonstrated that exogenous adiponectin induces vascular smooth muscle cell (VSMC) differentiation via repression of mTORC1 and FoxO4. Here we report for the first time that VSMC express and secrete adiponectin, which acts in an autocrine and paracrine manner to regulate VSMC contractile phenotype. Adiponectin was found to be expressed in human coronary artery and mouse aortic VSMC. Importantly, s...

  20. Raloxifene acutely suppresses ventricular myocyte contractility through inhibition of the L-type calcium current

    OpenAIRE

    Liew, Reginald; Stagg, Mark A; MacLeod, Kenneth T; Collins, Peter

    2004-01-01

    The selective oestrogen (ER) receptor modulator, raloxifene, is widely used in the treatment of postmenopausal osteoporosis, but may also possess cardioprotective properties. We investigated whether it directly suppresses myocyte contractility through Ca2+ channel antagonism in a similar way to 17β-oestradiol.Cell shortening and Ca2+ transients were measured in single guinea-pig ventricular myocytes field-stimulated (1 Hz, 37°C) in a superfusion chamber. Electrophysiological recordings were p...

  1. Formation of mitochondrial apparatus of contractile cardiomyocytes during normal and hypoxic injury of cardi-ogenesis

    OpenAIRE

    Ivanchenko M.V.; Tverdokhlib I.V.

    2013-01-01

    Changes of cardiomyocytes mitochondrial apparatus can be marked as the main factors which are the basis of various forms of cardiovascular disease, but the dynamics of morphogenetic rearrangements heart mitochondria are poorly researched under normal conditions and under the influence of harmful factors. Mitochondria of contractile cardiomyocytes are different in their morphology and localization in the cell, the biochemical properties and are able to form differently association with other i...

  2. The contribution of Kv7 channels to pregnant mouse and human myometrial contractility

    OpenAIRE

    McCallum, Laura A; Pierce, Stephanie L.; ENGLAND, SARAH K.; Greenwood, Iain A.; Tribe, Rachel M.

    2010-01-01

    Abstract Premature birth accounts for approximately 75% of neonatal mortality and morbidity in the developed world. Despite this, methods for identifying and treating women at risk of preterm labour are limited and many women still present in preterm labour requiring tocolytic therapy to suppress uterine contractility. The aim of this study was to assess the utility of Kv7 channel activators as potential uterine smooth muscle (myometrium) relaxants in tissues from pregnant mice and women. Myo...

  3. Lymphatic filariasis: Perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis

    OpenAIRE

    Chakraborty, Sanjukta; Gurusamy, Manokaran; Zawieja, David C.; Muthuchamy, Mariappan

    2013-01-01

    Lymphatic filariasis, one of the most debilitating diseases associated with the lymphatic system, affects over a hundred million people worldwide and manifests itself in a variety of severe clinical pathologies. The filarial parasites specifically target the lymphatics and impair lymph flow, which is critical for the normal functions of the lymphatic system in maintenance of body fluid balance and physiological interstitial fluid transport. The resultant contractile dysfunction of the lymphat...

  4. Contractile activity-induced adaptations in the mitochondrial protein import system.

    Science.gov (United States)

    Takahashi, M; Chesley, A; Freyssenet, D; Hood, D A

    1998-05-01

    We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4-to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis. PMID:9612226

  5. Impaired contractility and remodeling of the upper gastrointestinal tract in diabetes mellitus type-1

    Institute of Scientific and Technical Information of China (English)

    Jens Brφndum Frφkjaer; Sφren Due Andersen; Niels Ejskjaer; Peter Funch-Jensen; Asbjφrn Mohr Drewes; Hans Gregersen

    2007-01-01

    AIM: To investigate that both the neuronal function of the contractile system and structural apparatus of the gastrointestinal tract are affected in patients with longstanding diabetes and auto mic neuropathy.METHODS: The evoked esophageal and duodenal contractile activity to standardized bag distension was assessed using a specialized ultrasound-based probe. Twelve type-1 diabetic patients with autonomic neuropathy and severe gastrointestinal symptoms and 12 healthy controls were studied. The geometry and biomechanical parameters (strain, tension/stress, and stiffness) were assessed.RESULTS: The diabetic patients had increased frequency of distension-induced contractions (6.0 ±0.6 vs 3.3 ± 0.5, P < 0.001). This increased reactivity was correlated with the duration of the disease (P =0.009). Impaired coordination of the contractile activity in diabetic patients was demonstrated as imbalance between the time required to evoke the first contraction at the distension site and proximal to it (1.5 ± 0.6 vs 0.5± 0.1, P = 0.03). The esophageal wall and especially the mucosa-submucosa layer had increased thickness in the patients (P < 0.001), and the longitudinal and radial compressive stretch was less in diabetics (P <0.001). The esophageal and duodenal wall stiffness and circumferential deformation induced by the distensions were not affected in the patients (all P > 0.14).CONCLUSION: The impaired contractile activity with an imbalance in the distension-induced contractions likely reflects neuronal abnormalities due to autonomic neuropathy. However, structural changes and remodeling of the gastrointestinal tract are also evident and may add to the neuronal changes. This may contribute to the pathophysiology of diabetic gut dysfunction and impact on future management of diabetic patients with gastrointestinal symptoms.

  6. Inhibitory effects of genistein and resveratrol on guinea pig gallbladder contractility in vitro

    Institute of Scientific and Technical Information of China (English)

    Long-De Wang; Xiao-Qing Qiu; Zhi-Feng Tian; Ying-Fu Zhang; Hong-Fang Li

    2008-01-01

    AIM:To observe and compare the effects of phytoestrogen genistein,resveratrol and 17β-estradiol on the tonic contraction and the phasic contraction of isolated gallbladder muscle strips and to study the underlying mechanisms.METHODS:Isolated strips of gallbladder muscle from guinea pigs were suspended in organ baths containing Kreb's solution,and the contractilities of strips were measured before and after incubation with genistein,resveratrol and 17β-estradiol respectively.RESULTS:Similar to 17β-estradiol,genistein and resveratrol could dose-dependently inhibit the phasic contractile activities,they decreased the mean contractlie amplitude and the contractlie frequencies of gallbladder muscle strips,and also produced a marked reduction in resting tone.The blocker of estrogen receptor ICI 182780 failed to alter the inhibitory effects induced by genistein and resveratrol,but potassium bisperoxo(1,10 phenanthroline)oxovanadate bpV(phen),a potent protein tyrosine phosphatase inhibitor,markedly attenuated the inhibitory effects induced by genistein and resveratrol.In calcium-free Kreb's solution containing 0.01 mmol/L egtazic acid(EGTA),genistein and resveratrol inhibited the first phasic contraction induced by acetylcholine(Ach),but did not affect the second contraction induced by CaCl2.In addition,genistein,resveratrol and 17β-estradiol also could reduce the contractile responses of Ach and KCI,and shift their cumulative concentration-response curves rightward.CONCLUSION:Phytoestrogen genistein and resveratrol can directly inhibit the contractile activity of isolated gallbladder muscle both at rest and in response to stimulation.The mechanisms responsible for the inhibitory effects probably due mainly to inhibition of tyrosine kinase,Ca2+ influx through potential-dependent calcium channels(PDCs)and Ca2+ release from sarcoplasmic reticulum(SR),but were not related to the estrogen receptors.

  7. Physiological and clinical aspects of uterine contractility during the postpartum period in cows

    OpenAIRE

    Bajcsy, Árpád Csaba

    2005-01-01

    The individual studies, presented in separate chapters of this thesis, were designed to get answers to certain methodological problems and biological questions associated with the myometrial function of early postpartum dairy cows. Chapter 1 introduces the topic by briefly summarizing the events occuring in the puerperal uterus, focusing on the role of myometrial contractions, and listing some of the possibilities used to record uterine contractility. The demand for an accurate, non-invasive,...

  8. PP2A regulatory subunit Bα controls endothelial contractility and vessel lumen integrity via regulation of HDAC7.

    Science.gov (United States)

    Martin, Maud; Geudens, Ilse; Bruyr, Jonathan; Potente, Michael; Bleuart, Anouk; Lebrun, Marielle; Simonis, Nicolas; Deroanne, Christophe; Twizere, Jean-Claude; Soubeyran, Philippe; Peixoto, Paul; Mottet, Denis; Janssens, Veerle; Hofmann, Wolf-Karsten; Claes, Filip; Carmeliet, Peter; Kettmann, Richard; Gerhardt, Holger; Dequiedt, Franck

    2013-09-11

    To supply tissues with nutrients and oxygen, the cardiovascular system forms a seamless, hierarchically branched, network of lumenized tubes. Here, we show that maintenance of patent vessel lumens requires the Bα regulatory subunit of protein phosphatase 2A (PP2A). Deficiency of Bα in zebrafish precludes vascular lumen stabilization resulting in perfusion defects. Similarly, inactivation of PP2A-Bα in cultured ECs induces tubulogenesis failure due to alteration of cytoskeleton dynamics, actomyosin contractility and maturation of cell-extracellular matrix (ECM) contacts. Mechanistically, we show that PP2A-Bα controls the activity of HDAC7, an essential transcriptional regulator of vascular stability. In the absence of PP2A-Bα, transcriptional repression by HDAC7 is abrogated leading to enhanced expression of the cytoskeleton adaptor protein ArgBP2. ArgBP2 hyperactivates RhoA causing inadequate rearrangements of the EC actomyosin cytoskeleton. This study unravels the first specific role for a PP2A holoenzyme in development: the PP2A-Bα/HDAC7/ArgBP2 axis maintains vascular lumens by balancing endothelial cytoskeletal dynamics and cell-matrix adhesion. PMID:23955003

  9. Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall.

    Science.gov (United States)

    North, Gretchen B; Brinton, Erin K; Garrett, Tadao Y

    2008-08-01

    Contractile roots (CRs) that pull shoots further down in the soil are a possible example of convergent evolution in two monocot families, the Agavaceae and the Asphodelaceae. The association between CRs, water uptake and habitat aridity was investigated for agaves, yuccas and aloes by assessing the occurrence of CRs and the amount of root contraction for glasshouse-grown plants with respect to mean annual rainfall of their native habitats. Structural features of CRs as well as root hydraulic conductance were compared with those of non-contractile roots (NCRs). CRs occurred in 55% of the 73 species examined, including 64% of the agaves and 85% of the yuccas, but in none of the aloes despite the occurrence of CRs in related genera. The phylogenetic distribution of CRs was consistent with multiple acquisitions or losses of the trait. The amount of root contraction showed a highly significant negative relationship with mean annual rainfall, although other environmental factors may also be important. Radial hydraulic conductance of the basal (contractile) zone exceeded that of the midroot zone for CRs; for NCRs, the opposite was true. Thus, CRs in the species examined may provide a mechanism for greater water uptake near the soil surface in regions with limited rainfall. PMID:18507804

  10. Proteome dynamics during contractile and metabolic differentiation of bovine foetal muscle.

    Science.gov (United States)

    Chaze, T; Meunier, B; Chambon, C; Jurie, C; Picard, B

    2009-07-01

    Contractile and metabolic properties of bovine muscles play an important role in meat sensorial quality, particularly tenderness. Earlier studies based on Myosin heavy chain isoforms analyses and measurements of glycolytic and oxidative enzyme activities have demonstrated that the third trimester of foetal life in bovine is characterized by contractile and metabolic differentiation. In order to complete this data and to obtain a precise view of this phase and its regulation, we performed a proteomic analysis of Semitendinosus muscle from Charolais foetuses analysed at three stages of the third trimester of gestation (180, 210 and 260 days). The results complete the knowledge of important changes in the profiles of proteins from metabolic and contractile pathways. They provide new insights about proteins such as Aldehyde dehydrogenase family, Enolase, Dihydrolipoyl dehydrogenase, Troponin T or Myosin light chains isoforms. These data have agronomical applications not only for the management of beef sensorial quality but also in medical context, as bovine myogenesis appears very similar to human one. PMID:22444818

  11. Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro.

    Science.gov (United States)

    Capulli, Andrew K; MacQueen, Luke A; O'Connor, Blakely B; Dauth, Stephanie; Parker, Kevin Kit

    2016-01-01

    Medications based on ergoline-derived dopamine and serotonin agonists are associated with off-target toxicities that include valvular heart disease (VHD). Reports of drug-induced VHD resulted in the withdrawal of appetite suppressants containing fenfluramine and phentermine from the US market in 1997 and pergolide, a Parkinson's disease medication, in 2007. Recent evidence suggests that serotonin receptor activity affected by these medications modulates cardiac valve interstitial cell activation and subsequent valvular remodeling, which can lead to cardiac valve fibrosis and dysfunction similar to that seen in carcinoid heart disease. Failure to identify these risks prior to market and continued use of similar drugs reaffirm the need to improve preclinical evaluation of drug-induced VHD. Here, we present two complimentary assays to measure stiffness and contractile stresses generated by engineered valvular tissues in vitro. As a case study, we measured the effects of acute (24 h) pergolide exposure to engineered porcine aortic valve interstitial cell (AVIC) tissues. Pergolide exposure led to increased tissue stiffness, but it decreased both basal and active contractile tone stresses generated by AVIC tissues. Pergolide exposure also disrupted AVIC tissue organization (i.e., tissue anisotropy), suggesting that the mechanical properties and contractile functionality of these tissues are governed by their ability to maintain their structure. We expect further use of these assays to identify off-target drug effects that alter the phenotypic balance of AVICs, disrupt their ability to maintain mechanical homeostasis, and lead to VHD. PMID:27174867

  12. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    Science.gov (United States)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  13. [Contractile reaction of the myocardium of patients with heart diseases to chemical scarification of cell membranes].

    Science.gov (United States)

    Shumakov, V I; Tsyv'ian, P B; Markhasin, V S; Shtengol'd, E Sh

    1978-03-01

    Strips of the myocardium from the auricula atria of patients suffering from mitral stenosis (MS) and septal defects of the heart (SDH) removed during the operation were treated with ethylenediaminetetraacetic acid (DETA)--3mM--to increase the cell membrane permeability (scarification). The mechanical response of the contractile proteins to the change in the Ca2+ was recorded in the ethylene-hexaaminetetraacetic acid (EHTA)--3mM--against the background of increased membrane permeability to the Ca-EHTA complex permitting to regulate Ca2+ concentration in myofibrillae from 10(-9) to 10(-4)M. As shown, with the same threshold concentrations (5.10(-8)M) and saturation concentrations (10(-4)M) of Ca2+ the strips from the patients with MS developed the maximal tension per cross section unit of the strip half as great as the preparations from patients with SDH, this indicating a possible affection of the contractile proteins in the hearts of patients with MS. The ratio between the tension amplitudes under conditions of a complete calcium activation of the contractile proteins and a single isometric contraction for the preparations obtained from the patients with MS was 8 to 10, and with SDH--from 4 to 5. It is supposed that this was the result of more pronounced changes in the apparatus of electromechanical conjugation of the myocardium of patients suffering from MS. PMID:96886

  14. Modulation of ureteric Ca signaling and contractility in humans and rats by uropathogenic E. coli.

    Science.gov (United States)

    Floyd, Rachel V; Winstanley, Craig; Bakran, Ali; Wray, Susan; Burdyga, Theodor V

    2010-04-01

    Ascending urinary tract infections, a significant cause of kidney damage, are predominantly caused by uropathogenic Escherichia coli (UPEC). However, the role and mechanism of changes in ureteric function during infection are poorly understood. We therefore investigated the effects of UPEC on Ca signaling and contractions in rat (n = 17) and human (n = 6) ureters. Ca transients and force were measured and effects of UPEC on the urothelium were monitored in live tissues. In both species, luminal exposure of ureters to UPEC strains J96 and 536 caused significant time-dependent decreases in phasic and high K depolarization-induced contractility, associated with decreases in the amplitude and duration of the Ca transients. These changes were significant after 3-5 h and irreversible over the next 5 h. The infection causes increased activity of K channels, causing inhibition of voltage-gated Ca entry, and K channel blockers could reverse the effects of UPEC on ureteric function. A smaller direct effect on Ca entry also occurs. Nonpathogenic E. coli (TG2) or abluminal application of UPEC did not produce changes in Ca signaling or contractility. UPEC exposure also caused significant impairment of urothelial barrier function; luminal application of the Ca channel blocker nifedipine caused a reduction in contractions as it entered the tissue, an effect not observed in untreated ureters. Thus, UPEC impairs ureteric contractility in a Ca-dependent manner, largely caused by stimulation of potassium channels and this mechanism is dependent on host-urothelium interaction.

  15. A functional connection of Dictyostelium paracaspase with the contractile vacuole and a possible partner of the vacuolar proton ATPase

    Indian Academy of Sciences (India)

    Entsar Saheb; Ithay Biton; Katherine Maringer; John Bush

    2013-09-01

    Dictyostelium discoideum possesses only one caspase family member, paracaspase (pcp). Two separate mutant cell lines were first analysed: one cell line was an over-expressed GFP-tagged Pcp (GFP-Pcp), while the other cell line was a pcp-null (pcp-). Microscopic analysis of cells expressing GFP-Pcp revealed that Pcp was associated with the contractile vacuole membrane consisting of bladder-like vacuoles. This association was disrupted when cells were exposed to osmotic stress conditions. Compared with wild-type cells, the GFP-Pcp-over-expressing cells were susceptible to osmotic stress and were seen to be very rounded in hypo-osmotic conditions and contained more abnormally swollen contractile vacuole. Cells with pcp- were also rounded but had few, if any, contractile vacuoles. These observations suggest that Pcp is essential for Dictyostelium osmotic regulation via its functioning in the contractile vacuole system. Subjecting these cells to selected contractile vacuole inhibitor provided additional support for these findings. Furthermore, yeast two-hybrid system identified vacuolar proton ATPase (VatM) as the protein interacting with Pcp. Taken together, this work gives evidence for an eukaryotic paracaspase to be associated with both localization in and regulation of the contractile vacuolar system, an organelle critical for maintaining the normal morphology of the cell.

  16. Effect of rhubarb on contractile response of gallbladder smooth muscle strips isolated from guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Ya-Li Luo; Jun-Wei Zeng; Mei Yu; Yu-Ling Wei; Song-Yi Qu; Wei Li; Tian Zhen Zheng

    2005-01-01

    AIM: To investigate the effect of rhubarb on contractile response of isolated gallbladder muscle strips from guinea pigs and its mechanism.METHODS: Guinea pigs were killed to remove the whole gallbladder. Two or three smooth muscle strips (8 mm×3mm) were cut along the longitudinal direction. The mucosa on each strip was carefully removed. Each longitudinal muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution (37 ℃), bubbled continuously with 950 mL/L O2 and 50 mL/L CO2. The resting tension (g), mean contractile amplitude (mm),and contractile frequency (waves/min) were simultaneously recorded on recorders. After 2-h equilibration, rhubarb (10, 20, 70, 200, 700, 1 000 g/L) was added cumulatively to the tissue chamber in turns every 2 min to observe their effects on gallbladder.Antagonists were given 3 min before administration of rhubarb to investigate the possible mechanism.RESULTS: Rhubarb increased the resting tension (from 0 to 0.40±0.02, P<0.001), and decreased the mean contractile amplitude (from 5.22±0.71 to 2.73±0.41,P<0.001). It also increased the contractile frequency of the gallbladder muscle strips in guinea pigs (from 4.09±0.46to 6.08±0.35, P<0.001). The stimulation of rhubarb on the resting tension decreased from 3.98±0.22 to 1.58±0.12by atropine (P<0.001), from3.98±0.22 to 2.09±0.19 by verapamil (P<0.001) and from 3.98±0.22 to 2.67±0.43by phentolamine (P<0.005). But the effect was not inhibited by hexamethonium (P>0.05). In addition, the action of mean amplitude and frequency was not inhibited by the above antagonists.CONCLUSION: Rhubarb can stimulate the motility of isolated gallbladder muscle strips from guinea pigs. The stimulation of rhubarb might be relevant with M receptor,Ca2+ channel and α receptor partly.

  17. Opportunities to Target Specific Contractile Abnormalities with Smooth Muscle Protein Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Annegret Ulke-Lemée

    2010-05-01

    Full Text Available Smooth muscle is a major component of most hollow organ systems (e.g., airways, vasculature, bladder and gut/gastrointestine; therefore, the coordinated regulation of contraction is a key property of smooth muscle. When smooth muscle functions normally, it contributes to general health and wellness, but its dysfunction is associated with morbidity and mortality. Rho-associated protein kinase (ROCK is central to calcium-independent, actomyosin-mediated contractile force generation in the vasculature, thereby playing a role in smooth muscle contraction, cell motility and adhesion. Recent evidence supports an important role for ROCK in the increased vasoconstriction and remodeling observed in various models of hypertension. This review will provide a commentary on the development of specific ROCK inhibitors and their clinical application. Fasudil will be discussed as an example of bench-to-bedside development of a clinical therapeutic that is used to treat conditions of vascular hypercontractility. Due to the wide spectrum of biological processes regulated by ROCK, many additional clinical indications might also benefit from ROCK inhibition. Apart from the importance of ROCK in smooth muscle contraction, a variety of other protein kinases are known to play similar roles in regulating contractile force. The zipper-interacting protein kinase (ZIPK and integrin-linked kinase (ILK are two well-described regulators of contraction. The relative contribution of each kinase to contraction depends on the muscle bed as well as hormonal and neuronal stimulation. Unfortunately, specific inhibitors for ZIPK and ILK are still in the development phase, but the success of fasudil suggests that inhibitors for these other kinases may also have valuable clinical applications. Notably, the directed inhibition of ZIPK with a pseudosubstrate molecule shows unexpected effects on the contractility of gastrointestinal smooth muscle.

  18. Active self-polarization of contractile cells in asymmetrically shaped domains

    Science.gov (United States)

    Zemel, A.; Safran, S. A.

    2007-08-01

    Mechanical forces generated by contractile cells allow the cells to sense their environment and to interact with other cells. By locally pulling on their environment, cells can sense and respond to mechanical features such as the local stress (or strain), the shape of a cellular domain, and the surrounding rigidity; at the same time, they also modify the mechanical state of the system. This creates a mechanical feedback loop that can result in self-polarization of cells. In this paper, we present a quantitative mechanical model that predicts the self-polarization of cells in spheroidally shaped domains, comprising contractile cells and an elastic matrix, that are embedded in a three-dimensional, cell-free gel. The theory is based on a generalization of the known results for passive inclusions in solids to include the effects of cell activity. We use the active cellular susceptibility tensor presented by Zemel [Phys. Rev. Lett. 97, 128103 (2006)] to calculate the polarization response and hence the elastic stress field developed by the cells in the cellular domain. The cell polarization is analyzed as a function of the shape and the elastic moduli of the cellular domain compared with the cell-free surrounding material. Consistent with experiment, our theory predicts the development of a stronger contractile force for cells in a gel that is surrounded by a large, cell-free material whose elastic modulus is stiffer than that of the gel that contains the cells. This provides a quantitative explanation of the differences in the development of cellular forces as observed in free and fixed gels. In the case of an asymmetrically shaped (spheroidal) domain of cells, we show that the anisotropic elastic field within the domain leads to a spontaneous self-polarization of the cells along the long axis of the domain.

  19. Poor spontaneous and oxytocin-stimulated contractility in human myometrium from postdates pregnancies.

    Directory of Open Access Journals (Sweden)

    Sarah Arrowsmith

    Full Text Available Prolongation of pregnancy i.e. going more than 10 days over the estimated due date, complicates up to 10% of all pregnancies and is associated with increased risk to both mother and fetus. Despite the obvious need for contractions of the uterus to end pregnancy, there have been no studies directly examining the role of uterine smooth muscle, myometrium, in the aetiology of prolonged pregnancy. This study tested the hypothesis that the intrinsic contractile characteristics of myometrium taken from women with prolonged pregnancy (>41 weeks and 3 days was reduced compared to those delivering at term (39-41 weeks. We recruited women undergoing Caesarean Section (CS delivery either pre-labour (n = 27 or in labour (n = 66 at term or postdates. The contractile ability of the postdates myometrium, whether spontaneous or elicited by oxytocin or high-K solution, was significantly reduced compared to term myometrium. These differences remained when adjusted for parity and other maternal characteristics. The findings remained significant when expressed per cross sectional area. Histological examination revealed no differences between the two groups. The contractile differences were however related to intracellular Ca transients suggesting an effect of [Ca] on reduced force production in the postdates group. In summary, myometrium from prolonged pregnancies contracts poorly in vitro even when stimulated with oxytocin and in active labour. Responses to high K(+ and measurements of Ca suggest that alterations in excitation contraction coupling, rather than any histological changes of the myometrium, may underlie the differences between term and postdates myometrium. We show that postdates pregnancy is associated with poor myometrial activity and suggest that this may contribute to increased myometrial quiescence and hence, prolonged gestation.

  20. Changes of mitochondria in the contractile cardiomyocytes during postnatal rat ontogenesis

    Directory of Open Access Journals (Sweden)

    Kozlov S.V.

    2014-12-01

    Full Text Available Background. CVDs are the number 1 cause of death globally: more people die annually from CVDs than from any other cause. An estimated 17.5 million people died from CVDs in 2012, representing 31% of all global deaths. Of these deaths, an estimated 7.4 million were due to coronary heart disease and 6.7 million were due to stroke. Over three quarters of CVD deaths take place in low- and middle-income countries. Objective. Ultrastructural analysis of mitochondria in the rat contractile cardiomyocytes during postnatal ontogenesis. Methods. As the object of the study were used neonatal rat hearts, on the 5th, 10th, 15th, 30th days of life and mature animals. Hearts were investigated by the transmission electron microscopy. Volume density and numerical density of mitochondria were estimated. The Paired Student’s t-test was applied. Results. Was conducted a comprehensive ultrastructural analysis of mitochondria contractile cardiomyocytes, which allowed us to determine changes in the qualitative and quantitative parameters of mitochondria during postnatal ontogenesis, and helps to explain the dynamics and the development of mitochondria heart muscles cells after birth. Conclusion. It was shown that from the 1st to the 5th day there was a significant increase in volume density of mitochondria, which was accompanied by the increasing complexity of the ultrastructural organization of organelles. Following 20th day of postnatal ontogenesis mitochondrial structure was approaching the definitive condition and on the 30th day was the same as the mature myocardium. Citation: Kozlov SV, Mayevsky AE, Mіshalov VD, Sulayeva ON. [Changes of mitochondria in the contractile cardiomyocytes during postnatal rat ontogenesis]. Morphologia. 2014;8(4:37-42. Russian.

  1. Contractile profile of esophageal and gastric fundus strips in experimental doxorubicin-induced esophageal atresia

    Directory of Open Access Journals (Sweden)

    F.A. Capeto

    2015-05-01

    Full Text Available Esophageal atresia (EA is characterized by esophageal and gastric motility changes secondary to developmental and postsurgical damage. This study evaluated the in vitro contractile profile of the distal esophagus and gastric fundus in an experimental model of EA induced by doxorubicin (DOXO. Wistar pregnant rats received DOXO 2.2 mg/kg on the 8th and 9th gestational days. On day 21.5, fetuses were collected, sacrificed, and divided into groups: control, DOXO without EA (DOXO-EA, and DOXO with EA (DOXO+EA. Strips from the distal esophagus and gastric fundus were mounted on a wire myograph and isolated organ-bath system, respectively, and subjected to increasing concentrations of carbamylcholine chloride (carbachol, CCh. The isolated esophagus was also stimulated with increasing concentrations of KCl. In esophagus, the concentration-effect curves were reduced in response to CCh in the DOXO+EA and DOXO-EA groups compared to the control group (P0.05. In response to KCl, the distal esophagus samples in the three groups were not statistically different with regard to Emax or EC50 values (P>0.05. No significant difference was noted for EC50 or Emax values in fundic strips stimulated with CCh (P>0.05. In conclusion, exposure of dams to DOXO during gestation inhibited the contractile behavior of esophageal strips from offspring in response to CCh but not KCl, regardless of EA induction. The gastric fundus of DOXO-exposed offspring did not have altered contractile responsiveness to cholinergic stimulation.

  2. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    Directory of Open Access Journals (Sweden)

    Amanda L Baryshyan

    Full Text Available Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment

  3. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin.

    Directory of Open Access Journals (Sweden)

    Martin Braun

    Full Text Available Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/- mice and wildtypes (WT. In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24% in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.

  4. A single resistance exercise session improves myocardial contractility in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    A.A. Fernandes

    2015-01-01

    Full Text Available Resistance training evokes myocardial adaptation; however, the effects of a single resistance exercise session on cardiac performance are poorly understood or investigated. This study aimed to investigate the effects of a single resistance exercise session on the myocardial contractility of spontaneously hypertensive rats (SHRs. Male 3-month-old SHRs were divided into two groups: control (Ct and exercise (Ex. Control animals were submitted to sham exercise. Blood pressure was measured in conscious rats before the exercise session to confirm the presence of arterial hypertension. Ten minutes after the exercise session, the animals were anesthetized and killed, and the hearts were removed. Cardiac contractility was evaluated in the whole heart by the Langendorff technique and by isometric contractions of isolated left ventricular papillary muscles. SERCA2a, phospholamban (PLB, and phosphorylated PLB expression were investigated by Western blot. Exercise increased force development of isolated papillary muscles (Ex=1.0±0.1 g/mg vs Ct=0.63±0.2 g/mg, P<0.05. Post-rest contraction was greater in the exercised animals (Ex=4.1±0.4% vs Ct=1.7±0.2%, P<0.05. Papillary muscles of exercised animals developed greater force under increasing isoproterenol concentrations (P<0.05. In the isolated heart, exercise increased left ventricular isovolumetric systolic pressure (LVISP; Δ +39 mmHg; P<0.05 from baseline conditions. Hearts from the exercised rats presented a greater response to increasing diastolic pressure. Positive inotropic intervention to calcium and isoproterenol resulted in greater LVISP in exercised animals (P<0.05. The results demonstrated that a single resistance exercise session improved myocardial contractility in SHRs.

  5. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.

    Science.gov (United States)

    Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A

    2010-10-01

    Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

  6. Assessment of Muscle Contractile Properties at Acute Moderate Altitude Through Tensiomyography.

    Science.gov (United States)

    Morales-Artacho, Antonio J; Padial, Paulino; Rodríguez-Matoso, Dario; Rodríguez-Ruiz, David; García-Ramos, Amador; García-Manso, Juan Manuel; Calderón, Carmen; Feriche, Belén

    2015-12-01

    Under hypoxia, alterations in muscle contractile properties and faster fatigue development have been reported. This study investigated the efficacy of tensiomyography (TMG) in assessing muscle contractile function at acute moderate altitude. Biceps femoris (BF) and vastus lateralis (VL) muscles of 18 athletes (age 20.1 ± 6.1 years; body mass 65.4 ± 13.9 kg; height 174.6 ± 9.5 cm) were assessed at sea level and moderate altitude using electrically evoked contractions on two consecutive days. Maximum radial displacement (Dm), time of contraction (Tc), reaction time (Td), sustained contraction time (Ts), and relaxation time (Tr) were recorded at 40, 60, 80, and 100 mA. At altitude, VL showed lower Dm values at 40 mA (p = 0.008; ES = -0.237). Biceps femoris showed Dm decrements in all electrical stimulations (p  0.61). In VL, Tc was longer at altitude at 40 (p = 0.031, ES = 0.56), and 100 mA (p = 0.03, ES = 0.51). Regarding Td, VL showed significant increases in all electrical intensities under hypoxia (p ≤ 0.03, ES ≥ 0.33). TMG appears effective at detecting slight changes in the muscle contractile properties at moderate altitude. Further research involving TMG along with other muscle function assessment methods is needed to provide additional insight into peripheral neuromuscular alterations at moderate altitude. PMID:26562625

  7. Paradoxical effects of ginkgolide B on cardiomyocyte contractile function in normal and high-glucose environments

    Institute of Scientific and Technical Information of China (English)

    Jihye KIM; Qun LI; Cindy X FANG; Jun REN

    2006-01-01

    Aim: Ginkgo biloba extract is a natural product used widely for cerebral and cardiovascular diseases. It is mainly composed of terpene lactones (ginkgolide A and B) and flavone glycosides (eg quercetin and kaempferol).To better understand the cardiac electromechanical action of Ginkgo biloba extract in normal and diabetic states, this study was designed to examine the effect of ginkgolide B on cardiomyocyte contractile function under normal and high-glucose environments. Methods: Isolated adult rat ventricular myocytes were cultured for 6 h in a serum-free medium containing either normal (NG;5.5 mmol/L) or high (HG;25.5 mmol/L) glucose with or without ginkgolide B (0.5-2.0μg/mL). Mechanical properties were evaluated using the IonOptix MyoCam system. Contractile properties analyzed included peak shortening (PS),maximal velocity of shortening/relengthening (+dl/dt),time-to-PS (TPS) and time-to-90% relengthening (TR90). Levels of essential Ca2+ regulatory proteins sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA2a),phospholamban (PLB) and Na+-Ca2+ exchanger (NCX) were assessed by Western blotting. Results: Ginkgolide B nullified HG-induced prolongation in TR90. However, ginkgolide B depressed PS.±dl/dt and shortened TPS in NG and HG cells. Ginkgolide B also prolonged TR90 in NG cells. Western blot analysis revealed that HG upregulated SERCA2a and downregulated PLB expression without affecting that of NCX. Ginkgolide B disrupted the NG-HG response pattern in SERCA2a and NCX without affecting that of PLB. Conclusion: Ginkgolide B affects cardiomyocyte contractile function under NG or HG environments in a paradoxical manner, which may be attributed to uneven action on Ca2+ regulatory proteins under NG and HG conditions.

  8. Negative Modulation of NO for Diaphragmatic Contractile Reduction Induced by Sepsis and Restraint Position

    Institute of Scientific and Technical Information of China (English)

    XIANG Jian; GUAN Su-dong; SONG Xiang-he; WANG Hui-yun; GU Zhen-yong

    2014-01-01

    In practice of forensic medicine, potential disease can be associated with fatal asphyxia in re-straint position. Research has demonstrated that nitric oxide (NO) and nitric oxide synthase (NOS) are plentifully distributed in skeletal muscle, contributing to the regulation of contractile and relaxation. In the current study, respiratory functions, indices of diaphragmatic biomechanical functions ex vivo, as well as NO levels in serum, the expressions of diaphragmatic inducible NOS (iNOS) mRNA, and the effects of L-NNA on contractility of the diaphragm were observed in sepsis induced by cecal ligation and punc-ture (CLP) under the condition of restraint position. The results showed that in the CLP12-18 h rats, respiratory dysfunctions; indices of diaphragmatic biomechanical functions (Pt, +dT/dtmax, -dT/dtmax, CT, Po, force over the full range of the force-frequency relationship and fatigue resistance ) declined progressive-ly; the NO level in serum, and iNOS mRNA expression in the diaphragm increased progressively; force increased significantly at all stimulation frequencies after L-NNA pre-incubation. Restraint position 1 h in CLP12 h rats resulted in severe respiratory dysfunctions after relative stable respiratory functions, almost all the indices of diaphragmatic biomechanical functions declined further, whereas little change took place in NO level in serum and diaphragmatic iNOS mRNA expression; and the effects of L-NNA were lack of statistical significance compared with those of CLP12 h, but differed from CLP18 h group. These results suggest that restraint position and sepsis act together in a synergistic manner to aggravate the great reduction of diaphragmatic contractility via, at least in part, the negative modulation of NO, which may contribute to the pathogenesis of positional asphyxia.

  9. Adiponectin alleviates contractile dysfunction of genioglossus in rats exposed to chronic intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jing; LU Gan; DING Ning; HUANG Han-peng; DING Wen-xiao; ZHANG Xi-long

    2013-01-01

    Background Genioglossal dysfuntion takes an important role in pathogenesis of obstructive sleep apnea hypopnea syndrome (OSAHS) in which chronic intermittent hypoxia (CIH) is the major pathological origin.Recent studies have suggested genioglossal injury induced by CIH might be improved by adiponectin.The aim of this study was to investigate the effects of adiponectin on genioglossus contractile properties in rats exposed to CIH.Methods Thirty-nine healthy male Wistar rats were randomly divided into three groups:normal control (NC),CIH and adiponectin supplement (CIH+Ad) with 13 rats in each.Rats in NC were kept breathing normal air,while rats in CIH and CIH+Ad experienced the same CIH environment eight hours per day for 35 successive days.Rats in CIH+Ad were given intravenous adiponectin of 10 μg twice a week for 30 successive days.Rats in the NC and CIH were injected with normal saline as a control.After 35 days' CIH exposure,the levels of serum adiponectin and genioglossus contractile properties were compared.Results Serum adiponectin level was significantly lower in CIH than in NC (1210 ng/ml vs.2236 ng/ml).Serum adiponectin level in CIH+Ad (1844 ng/ml) was significantly higher than CIH but lower than NC.Twitch tension,time to peak tension,half relaxation time and tetanic tension were significantly lower in CIH than NC and improved in CIH+Ad.All mean tetanic fatigue indices decreased more rapidly in the first 20 seconds than during the subsequent 100 seconds.Tetanic fatigue indices in NC and CIH+Ad were significantly higher compared to CIH.Conclusions CIH could lead to hypoadiponectinaemia,impaired genioglossus contractile properties and decreased fatigue resistance in rats.Such changes could be partially offset by supplementation of adiponectin.

  10. A型肉毒毒素对P物质所致大鼠胃体、胃底离体平滑肌收缩的抑制作用%Inhibitory effect of botulinum toxin type A on SP-induced rat smooth muscle contractility of gastric body and gastric fundus in vitro

    Institute of Scientific and Technical Information of China (English)

    周媛媛; 李超彦; 侯一平

    2012-01-01

    目的 观察A型肉毒毒素(botulinum toxin type A,BTX-A)对P物质(substance P,SP)所致肌条收缩的影响,探讨BTX-A在SP与NK1受体结合过程中可能存在的作用机制.方法 取大鼠胃体、胃底平滑肌制备肌条并随机分为对照组、SP组、SP+ APTL-SP(NK1受体拮抗剂)组、BTX-A组、BTX-A+ SP组、SP+ BTX-A组,采用Biolap420E生物机能实验系统记录肌条收缩数据.结果 SP增加胃体平滑肌自发性收缩张力及振幅、胃底平滑肌自发性收缩张力(P均<0.01);APTL-SP降低SP引发的胃体、胃底平滑肌收缩张力(P<0.01); BTX-A作用后的胃体、胃底平滑肌条振幅降低(P均<0.01).BTX-A降低SP引发的胃体(P<0.05,P<0.01)、胃底(P均<0.01)平滑肌自发性收缩张力及振幅;SP对BTX-A作用后的胃体、胃底平滑肌收缩能力未产生增强作用.结论 SP可增强胃体、胃底平滑肌收缩能力,而BTX-A可抑制SP对胃体、胃底平滑肌的收缩作用.%Objective To observe the effect of botulinum toxin type A (BTX-A) on the SP-induced smooth muscle contractility of gastric body and gastric fundus, so as to investigate the role of BTX-A in the binding between SP and NKi receptor. Methods Muscle strips were prepared from gastric body and gastric fundus and were randomly divided into control group, SP group, SP+APTL-SP (NK, receptor antagonist) group, BTX-A group, BTX-A+SP group, and SP+BTX-A group. The contractility data were recorded by physiological experimental system of Biolap420E. Results SP significantly enhanced the tension and amplitude of gastric body contractility and the tension of gastric fundus contractility (P<0. 01). APTL-SP signficantly inhibited SP-induced smooth muscle contractility tension in gastric body and gastric fundus (P<0. 01). BTX-A significantly inhibited the smooth muscle contractility amplitude in gastric body and gastric fundus (P<0. 01). BTX-A significantly inhibited SP-induced smooth muscle contractility, including the

  11. Nitric oxide in the bovine oviduct: influence on contractile activity and nitric oxide synthase isoforms localization.

    Science.gov (United States)

    Yilmaz, O; Całka, J; Bukowski, R; Zalecki, M; Wasowicz, K; Jaroszewski, J J; Markiewicz, W; Bulbul, A; Ucar, M

    2012-04-15

    The oviducts of 64 Holstein cows in luteal (early I, early II and late) and follicular phases were evaluated to determine the protein expression and mRNA transcription of different nitric oxide synthase isoforms (eNOS, iNOS, nNOS) as well as the effect of nitric oxide (NO) on spontaneous contractility in vitro. The expression patterns of nitric oxide synthase (NOS) isoforms in isthmus and ampulla (n = 6 for each phase) were determined by immunohistochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. In the contractility studies, longitudinal and circular isolated strips of isthmus and ampulla (n = 10 for each phase) of oviducts located ipsilateral to the luteal structure or preovulatory follicle were treated as follows: a) L-arginine, an endogenous NO donor (10(-8) to 10(-3)m), b) N(ω)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor (10(-5)m) and L-arginine (10(-3)m), c) methylene blue (MB), an inhibitor of soluble guanylate (10(-5)m) and L-arginine (10(-3)m) and d) sodium nitroprusside (SNP), an exogenous NO donor (10(-8) to 10(-4)m). Immunohistochemical evaluation revealed that endothelial NOS (eNOS) expression detected in epithelial layer of isthmus and ampulla was strong in early I luteal phase, moderate in follicular phase and weak in other phases. Neuronal NOS (nNOS) immunoreactivity was strong in isthmus and moderate in ampulla, and staining of nerve fibers was observed mostly in early I luteal and follicular phases. All eNOS, nNOS and inducible NOS (iNOS) isoforms were detected by RT-PCR. eNOS and iNOS proteins were evident, whereas nNOS was undetectable by Western blot analysis in the tissue examined. L-arginine applied alone or after L-NAME did not alter or increase the contractile tension of the strips in most tissues examined. However, L-arginine applied after MB increased contractile tension in the strips of ampulla and longitudinal isthmus from early I luteal phase and circular isthmus from

  12. Relationship between muscle volume and contractile properties of the human knee extensors.

    Science.gov (United States)

    Behrens, Martin; Brown, Niklas; Bollinger, Robert; Bubeck, Dieter; Mau-Moeller, Anett; Weippert, Matthias; Zschorlich, Volker; Bruhn, Sven; Alt, Wilfried

    2016-01-01

    The present study was designed to investigate the relationship between volume and electrically evoked twitch properties of the quadriceps muscle. Supramaximal single and doublet stimulation of the femoral nerve was used to assess contractile properties at 45° and 80° knee flexion. Muscle volume was measured using a 1.5-Tesla magnetic resonance imaging scanner. Quadriceps muscle volume was only significantly correlated (r = 0.629) with peak twitch torque induced by doublet stimulation at 80° but not at 45° knee flexion.

  13. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To study the effect of 4-6 weeks' treadmill training of male SD rats on the contractile function of their gastrocnemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4-6 weeks at an intensity of about 75% VO2max (18.5-24 m/min,gradient of 0°,each training session lasting 50 minutes,twice a day). The content of gastrocnemius MHC mRNA was tested by rever...

  14. Changes of mitochondria in the contractile cardiomyocytes during postnatal rat ontogenesis

    OpenAIRE

    Kozlov S.V.; Mayevsky A.E.; Mіshalov V.D.; Sulayeva O.N.

    2014-01-01

    Background. CVDs are the number 1 cause of death globally: more people die annually from CVDs than from any other cause. An estimated 17.5 million people died from CVDs in 2012, representing 31% of all global deaths. Of these deaths, an estimated 7.4 million were due to coronary heart disease and 6.7 million were due to stroke. Over three quarters of CVD deaths take place in low- and middle-income countries. Objective. Ultrastructural analysis of mitochondria in the rat contractile cardiomyoc...

  15. Effect of pinaverium bromide on stress-induced colonic smooth muscle contractility disorder in rats

    Institute of Scientific and Technical Information of China (English)

    Yun Dai; Jian-Xiang Liu; Jun-Xia Li; Yun-Feng Xu

    2003-01-01

    AIM: To investigate the effect of pinaverium bromide, a Ltype calcium channel blocker with selectivity for the gastrointestinal tract on contractile activity of colonic circular smooth muscle in normal or cold-restraint stressed rats and its possible mechanism.METHODS: Cold-restraint stress was conducted on rats to increase fecal pellets output. Each isolated colonic circular muscle strip was suspended in a tissue chamber containing warm oxygenated Tyrode-Ringer solution. The contractile response to ACh or KCl was measured isometrically on inkwriting recorder. Incubated muscle in different concentrations of pinaverium and the effects of pinaverium were investigated on ACh or KCl-induced contraction. Colon smooth muscle cells were cultured from rats and [Ca2+]i was measured in cell suspension using the Ca2+ fluorescent dye fura-2/AlMl.RESULTS: During stress, rats fecal pellet output increased 61% (P<0.01). Stimulated with ACh or KCl, the muscle contractility was higher in stress than that in control. Pinaverium inhibited the increment of [Ca2+]i and the muscle contraction in response to ACh or KCl in a dose dependent manner. A significant inhibition of pinaverium to ACh or KCl induced [Ca2+]i increment was observed at 10-6 mol/L. The IC50 values for inhibition of ACh induced contraction for the stress and control group were 1.66×10-6 mol/L and 0.91×10-6mol/L, respectively. The ICs0 values for inhibition of KCl induced contraction for the stress and control group were 8.13×10-7 mol/L and 3.80×10-7 mol/L, respectively.CONCLUSION: Increase in [Ca2+]i of smooth muscle cells is directly related to the generation of contraction force in colon. L-type Ca2+ channels represent the main route of Ca2+ entry.Pinaverium inhibits the calcium influx through L-type channels;decreases the contractile response to many kinds of agonists and regulates the stress-induced colon hypermotility.

  16. Effect of cholecystokinin and secretin on contractile activity of isolated gastric muscle strips in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Tian Zhen Zheng; Song Yi Qu

    2000-01-01

    AIM To study the effect of cholecystokininoctapeptide (CCK-8) and secretin on contractile activity of isolated gastric muscle strips in guinea pigs.METHODS Each isolated gastric muscle strip was suspended in a tissue chamber containing5 mL Krebs solution constantly warmed by water jacked at 37℃ and supplied with a mixed gas of 95% O2 and 5% CO2. After incubating for 1 h under 1 g tension, varied concentrations of CCK-8 and secretin were added respectively in the tissue chamber and the contractile response was measured isometrically on ink-writing recorders.circular and longitudinal muscular tension at rest (fundus LM 19.7%±2.1%, P<0.01; fundus CM 16.7%±2.2%, P<0.01; gastric body LM 16.8% ± 2.3%, P<0.01; body CM 12.7% ± 2.6%,P<0.01; antrum LM 12.3%±1.3%, P<0.01;antrum CM 16.7%±4.5%, P<0.01; pylous CM frequencies of body LM, both LM and CM of antrum and pylorus CM (5.1/min ± 0.2/min to 5.6/min ± 0.2/min, 5.9/min ± 0.2/min to 6.6/min ±0.1/min, 5.4/min ± 0.3/min to 6.3/min ± 0.4/min, 1.3/min ± 0.2/min to 2.3/min ± 0.3/min,amplitude of antral circular muscle (58.6%±pylorus CM (145.0% ± 23.8%, P<0.01), but decrease the mean contractile amplitude of gastric body and antral LM ( - 10.3% ± 3.3%, -10.5% ±4.6%, respectively, P<0.05). All the CCK-8 effects were not blocked by atropine or indomethacin. Secretin had no effect on gastric smooth muscle activity.CONCLUSION CCK-8 possessed both excitatory and inhibitory action on contractile activity of different regions of stomach in guinea pigs. Its action was not mediated via cholinergic M receptor and endogenous prostaglandin receptor.

  17. Certain characteristics of myocardial contractility of isovolumic dog heart at randomly variable heart rhythm.

    Science.gov (United States)

    Bershitskaya, O N; Izakov VYa; Lysenko, L T; Protsenko, J L; Trubetskoy, A V

    1985-01-01

    The relationship "heart rate - left ventricular pressure" was investigated in the isolated canine heart perfused with constant pressure at different preloads. Rhythmical stimulation was performed with constant stimulus interval duration and with stimulus intervals randomly changed near the average value (150-200 stimuli in series). Correlation and dispersion function analysis show that rhythm dispersion had a negative inotropic effect which was independent of the preload of the ventricle in the range of 120-180 beat/min, but this dependence occurred with low rats of stimulation. This method is proposed for the assessment of contractility under conditions of heart rate variations (physiological and pathological arrhythmias).

  18. Contractile responses to ergotamine and dihydroergotamine in the perfused middle cerebral artery of rat

    OpenAIRE

    Tfelt-Hansen, Peer; Nilsson, Elisabeth; Edvinsson, Lars

    2007-01-01

    The vasomotor effects of ergotamine and dihydroergotamine (DHE) on the middle cerebral artery (MCA) of rats were studied using the pressurised arteriography method and in vitro myographs. MCAs from Sprague–Dawley rats were mounted on two glass micropipettes using the arteriograph, pressurised to 85 mmHg and luminally perfused. All vessels used attained spontaneous contractile tone (34.9±1.8% of resting tone) and responded to luminal adenosine triphosphate (ATP) with dilatation (24.1±4.0%), wh...

  19. Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    Directory of Open Access Journals (Sweden)

    Giannoni Massimo

    2009-05-01

    Full Text Available Abstract Background New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates. Aim To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system. Methods We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording. Results Interpretable sensor recordings were obtained in all patients (feasibility = 100%. Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value was more frequent in patients than controls (27% vs 8%, p 1 in 20 patients and in none of the controls (p 1 in only 3 patients (p Conclusion Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.

  20. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  1. Quantitative circumferential strain analysis using adenosine triphosphate-stress/rest 3-T tagged magnetic resonance to evaluate regional contractile dysfunction in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masashi, E-mail: m.nakamura1230@gmail.com [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan); Kido, Tomoyuki [Department of Radiology, Saiseikai Matsuyama Hospital, Ehime 791-0295 (Japan); Kido, Teruhito; Tanabe, Yuki; Matsuda, Takuya; Nishiyama, Yoshiko; Miyagawa, Masao; Mochizuki, Teruhito [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan)

    2015-08-15

    Highlights: • Infarcted segments could be differentiated from non-ischemic and ischemic segments with high sensitivity and specificity under at rest conditions. • The time-to-peak circumferential strain values in infarcted segments were more significantly delayed than those in non-ischemic and ischemic segments. • Both circumferential strain and circumferential systolic strain rate values under ATP-stress conditions were significantly lower in ischemic segments than in non-ischemic segments. • Subtracting stress and rest circumferential strain had a higher diagnostic capability for ischemia relative to only utilizing rest or ATP-stress circumferential strain values. • A circumferential strain analysis using tagged MR can quantitatively assess contractile dysfunction in ischemic and infarcted myocardium. - Abstract: Purpose: We evaluated whether a quantitative circumferential strain (CS) analysis using adenosine triphosphate (ATP)-stress/rest 3-T tagged magnetic resonance (MR) imaging can depict myocardial ischemia as contractile dysfunction during stress in patients with suspected coronary artery disease (CAD). We evaluated whether it can differentiate between non-ischemia, myocardial ischemia, and infarction. We assessed its diagnostic performance in comparison with ATP-stress myocardial perfusion MR and late gadolinium enhancement (LGE)-MR imaging. Methods: In 38 patients suspected of having CAD, myocardial segments were categorized as non-ischemic (n = 485), ischemic (n = 74), or infarcted (n = 49) from the results of perfusion MR and LGE-MR. The peak negative CS value, peak circumferential systolic strain rate (CSR), and time-to-peak CS were measured in 16 segments. Results: A cutoff value of −12.0% for CS at rest allowed differentiation between infarcted and other segments with a sensitivity of 79%, specificity of 76%, accuracy of 76%, and an area under the curve (AUC) of 0.81. Additionally, a cutoff value of 477.3 ms for time-to-peak CS at rest

  2. Abnormal glucose metabolism is associated with reduced left ventricular contractile reserve and exercise intolerance in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Egstrup, M; Kistorp, C N; Schou, M;

    2013-01-01

    AIMS: To investigate the associations between glucose metabolism, left ventricular (LV) contractile reserve, and exercise capacity in patients with chronic systolic heart failure (HF). METHODS AND RESULTS: From an outpatient HF clinic, 161 patients with systolic HF were included (mean age 70 ± 10...... years, 69% male, 59% had ischaemic heart disease, mean LV ejection fraction (LVEF) 37 ± 9%). Thirty-four (21%) patients had known diabetes mellitus (DM). Oral glucose tolerance testing (OGTT) classified patients without a prior DM diagnosis as normal glucose tolerance (NGT), impaired glucose tolerance...... (467 m) (P <0.001). Differences in clinical variables, resting echocardiographic parameters or contractile reserve, did not explain the exercise intolerance related to diabetes. CONCLUSION: Diabetes, known or newly detected by OGTT, is independently associated with reduced LV contractile reserve and...

  3. Selective increase of the contractile response to endothelin-1 in subcutaneous arteries from patients with essential hypertension

    DEFF Research Database (Denmark)

    Lind, H; Adner, M; Erlinge, D;

    1999-01-01

    arteries from subjects with established essential hypertension with matched controls. Furthermore, with RT-PCR, the occurrence of mRNA for the ETA and ET(B) receptors was shown in the tunica media layer of subcutaneous arteries in controls and hypertensives. The maximum contractile response to endothelin-1...... was significantly higher in the subcutaneous arteries of the hypertensives (by 88% with no change in potency) as compared to controls. The responses to noradrenaline, acetylcholine and potassium chloride did not differ between the groups. This selective increase in the contractile response to......Endothelin-1 has been shown to contribute to basal vascular tone in man. Since endothelin-1 is a potent vasoconstrictor putatively involved in hypertension, we have compared the contractile responses of endothelin-1 and noradrenaline in relation to potassium chloride in subcutaneous resistance...

  4. The Effects of Electroacupuncture at the Heart Meridian on Myocardial Contractile Function in Rabbits with Myocardial Ischemia

    Institute of Scientific and Technical Information of China (English)

    方志斌; 周逸平; 王月兰

    2002-01-01

    @@ Acute myocardial ischemia was induced by intravenous injection of pituitrin, and electroacupuncture (EA) was applied at the Heart and Lung Meridians (HM and LM), 3 points on each meridian. The changes in the left intraventricular pressure (LVP), the maximum rise rate of intraventricular pressure (LVP dp/dtmax), the area of cardiac force loop (ACFL), and the maximum shortening velocity of myocardial contractile element (Vmax) were observed. As a result, there were significant differences in the improvement of LVP, LVP dp/dtmax, ACFL and Vmax between EA at HM and LM. The regulatory action of EA at HM on the myocardial contractile function was significantly better than that of EA at LM, indicating that HM has a close relationship with the myocardial contractile function.

  5. Drug: D01742 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D01742 Drug Clebopride malate (JP16); Clast (TN) C20H25ClN3O2. C4H5O5 507.1772 507.... Propulsives A03FA06 Clebopride D01742 Clebopride malate (JP16) Target-based clas...[HSA:1812] [KO:K04144] Clebopride [ATC:A03FA06] D01742 Clebopride malate (JP16) dopamine D2-receptor [HSA:1813] [KO:K04145] Cleboprid...e [ATC:A03FA06] D01742 Clebopride malate (JP16) CAS: 576

  6. Oxidative Stress in Hypertensive Patients Induces an Increased Contractility in Vein Grafts Independent of Endothelial Function

    Directory of Open Access Journals (Sweden)

    Claudio Joo Turoni

    2011-01-01

    Full Text Available Objective. To evaluate the impact of oxidative stress on vascular reactivity to vasoconstrictors and on nitric oxide (NO bioavailability in saphenous vein (SV graft with endothelial dysfunction from hypertensive patients (HT. Methods. Endothelial function, vascular reactivity, oxidative state, nitrites and NO release were studied in isolated SV rings from HT and normotensive patients (NT. Only rings with endothelial dysfunction were used. Results. HT rings presented a hyperreactivity to vasoconstrictors that was reverted by diphenylene iodonium (DPI. In NT, no effect of DPI was obtained, but Nω-nitro-L-arginine methyl ester (L-NAME increased the contractile response. NO was present in SV rings without endothelial function. Nitrites were higher in NT than in HT (1066.1 ± 86.3 pmol/mg; n=11 versus 487.8 ± 51.6; n=23; P<0.01 and inhibited by nNOS inhibitor. L-arginine reversed this effect. Antioxidant agents increased nitrites and NO contents only in HT. The anti-nNOS-stained area by immunohistochemistry was higher in NT than HT. HT showed an elevation of oxidative state. Conclusions. Extraendothelial NO counter-regulates contractility in SV. However, this action could be altered in hypertensive situations by an increased oxidative stress or a decreased ability of nNOS to produce NO. Further studies should be performed to evaluate the implication of these results in graft patency rates.

  7. Epigenetic Reprogramming of Human Embryonic Stem Cells into Skeletal Muscle Cells and Generation of Contractile Myospheres

    Directory of Open Access Journals (Sweden)

    Sonia Albini

    2013-03-01

    Full Text Available Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB, but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3 confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for “disease in a dish” models of muscular physiology and dysfunction.

  8. Long-term vascular contractility assay using genipin-modified muscular thin films

    International Nuclear Information System (INIS)

    Vascular disease is a leading cause of death globally and typically manifests chronically due to long-term maladaptive arterial growth and remodeling. To date, there is no in vitro technique for studying vascular function over relevant disease time courses that both mimics in vivo-like tissue structure and provides a simple readout of tissue stress. We aimed to extend tissue viability in our muscular thin film contractility assay by modifying the polydimethylsiloxane (PDMS) substrate with micropatterned genipin, allowing extracellular matrix turnover without cell loss. To achieve this, we developed a microfluidic delivery system to pattern genipin and extracellular matrix proteins on PDMS prior to cell seeding. Tissues constructed using this method showed improved viability and maintenance of in vivo-like lamellar structure. Functional contractility of tissues fabricated on genipin-modified substrates remained consistent throughout two weeks in culture. These results suggest that muscular thin films with genipin-modified PDMS substrates are a viable method for conducting functional studies of arterial growth and remodeling in vascular diseases. (paper)

  9. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres.

    Science.gov (United States)

    Albini, Sonia; Coutinho, Paula; Malecova, Barbora; Giordani, Lorenzo; Savchenko, Alex; Forcales, Sonia Vanina; Puri, Pier Lorenzo

    2013-03-28

    Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for "disease in a dish" models of muscular physiology and dysfunction.

  10. Effects of Substrate Mechanics on Contractility of Cardiomyocytes Generated from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Laurie B. Hazeltine

    2012-01-01

    Full Text Available Human pluripotent stem cell (hPSC- derived cardiomyocytes have potential applications in drug discovery, toxicity testing, developmental studies, and regenerative medicine. Before these cells can be reliably utilized, characterization of their functionality is required to establish their similarity to native cardiomyocytes. We tracked fluorescent beads embedded in 4.4–99.7 kPa polyacrylamide hydrogels beneath contracting neonatal rat cardiomyocytes and cardiomyocytes generated from hPSCs via growth-factor-induced directed differentiation to measure contractile output in response to changes in substrate mechanics. Contraction stress was determined using traction force microscopy, and morphology was characterized by immunocytochemistry for α-actinin and subsequent image analysis. We found that contraction stress of all types of cardiomyocytes increased with substrate stiffness. This effect was not linked to beating rate or morphology. We demonstrated that hPSC-derived cardiomyocyte contractility responded appropriately to isoprenaline and remained stable in culture over a period of 2 months. This study demonstrates that hPSC-derived cardiomyocytes have appropriate functional responses to substrate stiffness and to a pharmaceutical agent, which motivates their use in further applications such as drug evaluation and cardiac therapies.

  11. Stress activated contractile wavefronts in the mechanically-excitable embryonic heart

    Science.gov (United States)

    Chiou, Kevin; Majkut, Stephanie; Discher, Dennis; Lubensky, Tom; Liu, Andrea

    2014-03-01

    The heart is a prime example of a robust, active system with behavior-the heart beat-that is extraordinarily well timed and coordinated. For more than half a century, electrical activity induced by ion release and diffusion has been argued to be the mechanism driving cardiac action. But recent work indicates that this phenomenon is also regulated by mechanical activity. In the embryonic avian heart tube, the speed of the contractile wavefront traversing the heart tube with each beat is measured to be a monotonic, linear function of tissue stiffness. Traditional electrical conduction models of excitation-contraction cannot explain this dependence; such a result indicates that the myocardium is mechanically excitable. Here, we extend this work by using experimental observations of stiffness-dependent behavior in isolated cardiomyocytes as an input to study contractile wavefronts in the tissue as a whole. We model the heart tube as an active, overdamped elastic network where the primary stress mediator is the extracellular matrix. Using this simple model, we explain experimental observations of the systolic wave and predict qualitatively new behavior.

  12. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2011-08-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.

  13. Cell adhesion molecules regulate contractile ring-independent cytokinesis in Dictyostelium discoideum

    Institute of Scientific and Technical Information of China (English)

    Akira Nagasaki; Masamitsu Kanada; Taro QP Uyeda

    2009-01-01

    To investigate the roles of substrate adhesion in cytokinesis, we established cell lines lacking paxiUin (PAXB) or vinculin (VINA), and those expressing the respective GFP fusion proteins in Dictyostelium discoideum. As in mammalian cells, GFP-PAXB and GFP-VINA formed focal adhesion-like complexes on the cell bottom, paxB cells in suspension grew normally, but on substrates, often failed to divide after regression of the furrow. The efficient cytokinesis of paxB cells in suspension is not because of shear forces to assist abscission, as they divided normally in static suspension culture as well. Double knockout strains lacking mhcA, which codes for myosin I1, and paxB or vinA displayed more severe cytokinetic defects than each single knockout strain. In mitotic wild-type cells, GFP-PAXB was diffusely distributed on the basal membrane, but was strikingly condensed along the polar edges in mitotic mhcA cells. These results are consistent with our idea that Dictyostelium displays two forms of cytokinesis, one that is contractile ringdependent and adhesion-independent, and the other that is contractile ring-independent and adhesion-dependent, and that the latter requires PAXB and VINA. Furthermore, that paxB cells fail to divide normally in the presence of substrate adhesion suggests that this adhesion molecule may play additional signaling roles.

  14. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    Energy Technology Data Exchange (ETDEWEB)

    Ojkic, Nikola; Vavylonis, Dimitrios [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Wu Jianqiu, E-mail: vavylonis@lehigh.edu [Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States)

    2011-09-21

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  15. The effects of cannabidiolic acid and cannabidiol on contractility of the gastrointestinal tract of Suncus murinus.

    Science.gov (United States)

    Cluny, Nina L; Naylor, Robert J; Whittle, Brian A; Javid, Farideh A

    2011-09-01

    Cannabidiol (CBD) has been shown to inhibit gastrointestinal (GI) transit in pathophysiologic in vivo models, while having no effect in physiologic controls. The actions of the precursor of CBD, cannabidiolic acid (CBDA), have not been investigated in the GI tract. The actions of these phytocannabinoids on the contractility of the GI tract of Suncus murinus were investigated in the current study. The effects of CBDA and CBD in resting state and pre-contracted isolated intestinal segments, and on the contractile effects of carbachol and electrical field stimulation (EFS) on the intestines of S. murinus were examined. CBDA and CBD induced a reduction in resting tissue tension of isolated intestinal segments which was not blocked by the cannabinoid CB1 receptor antagonist, AM251, the CB(2) receptor antagonist AM630, or tetrodotoxin. CBDA and CBD reduced the magnitude of contractions induced by carbachol and the tension of intestinal segments that were pre-contracted with potassium chloride. In tissues stimulated by EFS, CBDA inhibited contractions induced by lower frequencies (0.1-4.0 Hz) of EFS, while CBD inhibited contractions induced by higher frequencies (4.0-20.0 Hz) of EFS. The data suggest that CBDA and CBD have inhibitory actions on the intestines of S. murinus that are not neuronallymediated or mediated via CB(1) or CB(2) receptors. PMID:21975813

  16. Natural Antioxidant-Isoliquiritigenin Ameliorates Contractile Dysfunction of Hypoxic Cardiomyocytes via AMPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhang

    2013-01-01

    Full Text Available Isoliquiritigenin (ISL, a simple chalcone-type flavonoid, is derived from licorice compounds and is mainly present in foods, beverages, and tobacco. Reactive oxygen species (ROS is a critical factor involved in modulating cardiac stress response signaling during ischemia and reperfusion. We hypothesize that ISL as a natural antioxidant may protect heart against ischemic injury via modulating cellular redox status and regulating cardioprotective signaling pathways. The fluorescent probe H2DCFDA was used to measure the level of intracellular ROS. The glucose uptake was determined by 2-deoxy-D-glucose-3H accumulation. The IonOptix System measured the contractile function of isolated cardiomyocytes. The results demonstrated that ISL treatment markedly ameliorated cardiomyocytes contractile dysfunction caused by hypoxia. ISL significantly stimulated cardioprotective signaling, AMP-activated protein kinase (AMPK, and extracellular signal-regulated kinase (ERK signaling pathways. The ROS fluorescent probe H2DCFDA determination indicated that ISL significantly reduced cardiac ROS level during hypoxia/reoxygenation. Moreover, ISL reduced the mitochondrial potential (Δψ of isolated mouse cardiomyocytes. Taken together, ISL as a natural antioxidant demonstrated the cardioprotection against ischemic injury that may attribute to the activation of AMPK and ERK signaling pathways and balance of cellular redox status.

  17. PPARγ Ligands Regulate Noncontractile and Contractile Functions of Airway Smooth Muscle: Implications for Asthma Therapy

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    2012-01-01

    Full Text Available In asthma, the increase in airway smooth muscle (ASM can contribute to inflammation, airway wall remodeling and airway hyperresponsiveness (AHR. Targetting peroxisome proliferator-activated receptor γ (PPARγ, a receptor upregulated in ASM in asthmatic airways, may provide a novel approach to regulate these contributions. This review summarises experimental evidence that PPARγ ligands, such as rosiglitazone (RGZ and pioglitazone (PGZ, inhibit proliferation and inflammatory cytokine production from ASM in vitro. In addition, inhaled administration of these ligands reduces inflammatory cell infiltration and airway remodelling in mouse models of allergen-induced airways disease. PPARγ ligands can also regulate ASM contractility, with acute treatment eliciting relaxation of mouse trachea in vitro through a PPARγ-independent mechanism. Chronic treatment can protect against the loss of bronchodilator sensitivity to β2-adrenoceptor agonists and inhibit the development of AHR associated with exposure to nicotine in utero or following allergen challenge. Of particular interest, a small clinical trial has shown that oral RGZ treatment improves lung function in smokers with asthma, a group that is generally unresponsive to conventional steroid treatment. These combined findings support further investigation of the potential for PPARγ agonists to target the noncontractile and contractile functions of ASM to improve outcomes for patients with poorly controlled asthma.

  18. Contractile effects of 3,4-methylenedioxymethamphetamine on the human internal mammary artery.

    Science.gov (United States)

    Silva, Sónia; Carvalho, Félix; Fernandes, Eduarda; Antunes, Manuel J; Cotrim, Maria Dulce

    2016-08-01

    Since the late 1980s numerous reports have detailed adverse reactions to the use of 3,4-methylenedioxymethamphetamine (MDMA) associated with cardiovascular collapse and sudden death, following ventricular tachycardia and hypertension. For a better understanding of the effects of MDMA on the cardiovascular system, it is critical to determine their effects at the vasculature level, including the transporter or neurotransmitter systems that are most affected at the whole range of drug doses. With this purpose in mind, the aim of our study was to evaluate the contractile effect of MDMA in the human internal mammary artery, the contribution of SERT for this effect and the responsiveness of this artery to 5-HT in the presence of MDMA. We have also studied the possible involvement of 5-HT2 receptors on the MDMA contractile effect in this human blood vessel using ketanserin. Our results showed that MDMA contracted the studied human's internal mammary artery in a SERT-independent form, through activation of 5-HT2A receptors. Considering the high plasma concentrations achieved in heavy users or in situations of acute exposure to drugs, this effect is probably involved in the cardiovascular risk profile of this psychostimulant, especially in subjects with pre-existing cardiovascular disease. PMID:27079619

  19. A stepwise procedure to test contractility and susceptibility to injury for the rodent quadriceps muscle

    Directory of Open Access Journals (Sweden)

    Stephen J.P. Pratt

    2014-07-01

    Full Text Available In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies.  Biological markers can also be used in measuring muscle injury, such as increased creatine kinase levels in the blood, but these are not always correlated with loss in muscle function (i.e. loss of force production.  This is even true of histological findings from animals, which provide a “direct measure” of damage, but do not account for loss of function.  The most comprehensive measure of the overall health of the muscle is contractile force.  To date, animal models testing contractile force have been limited to the muscle groups moving the ankle.  Here we describe an in vivo animal model for the quadriceps, with abilities to measure torque, produce a reliable muscle injury, and follow muscle recovery within the same animal over time.  We also describe a second model used for direct measurement of force from an isolated quadriceps muscle in situ. 

  20. Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction.

    Science.gov (United States)

    McComb, Christie; Carrick, David; McClure, John D; Woodward, Rosemary; Radjenovic, Aleksandra; Foster, John E; Berry, Colin

    2015-08-01

    Imaging changes in left ventricular (LV) volumes during the cardiac cycle and LV ejection fraction do not provide information on regional contractility. Displacement ENcoding with Stimulated Echoes (DENSE) is a strain-encoded cardiac magnetic resonance (CMR) technique that measures strain directly. We investigated the relationships between strain revealed by DENSE and the presence and extent of infarction in patients with recent myocardial infarction (MI). 50 male subjects were invited to undergo serial CMR within 7 days of MI (baseline) and after 6 months (follow-up; n = 47). DENSE and late gadolinium enhancement (LGE) images were acquired to enable localised regional quantification of peak circumferential strain (Ecc) and the extent of infarction, respectively. We assessed: (1) receiver operating characteristic (ROC) analysis for the classification of LGE, (2) strain differences according to LGE status (remote, adjacent, infarcted) and (3) changes in strain revealed between baseline and follow-up. 300 and 258 myocardial segments were available for analysis at baseline and follow-up respectively. LGE was present in 130/300 (43%) and 97/258 (38%) segments, respectively. ROC analysis revealed moderately high values for peak Ecc at baseline [threshold 12.8%; area-under-curve (AUC) 0.88, sensitivity 84%, specificity 78%] and at follow-up (threshold 15.8%; AUC 0.76, sensitivity 85%, specificity 64%). Differences were observed between remote, adjacent and infarcted segments. Between baseline and follow-up, increases in peak Ecc were observed in infarcted segments (median difference of 5.6%) and in adjacent segments (1.5%). Peak Ecc at baseline was indicative of the change in LGE status between baseline and follow-up. Strain-encoded CMR with DENSE has the potential to provide clinically useful information on contractility and its recovery over time in patients with MI.

  1. Effect of exercise training and myocardial infarction on force development and contractile kinetics in isolated canine myocardium.

    Science.gov (United States)

    Canan, Benjamin D; Haizlip, Kaylan M; Xu, Ying; Monasky, Michelle M; Hiranandani, Nitisha; Milani-Nejad, Nima; Varian, Kenneth D; Slabaugh, Jessica L; Schultz, Eric J; Fedorov, Vadim V; Billman, George E; Janssen, Paul M L

    2016-04-15

    It is well known that moderate exercise training elicits a small increase in ventricular mass (i.e., a physiological hypertrophy) that has many beneficial effects on overall cardiac health. It is also well known that, when a myocardial infarction damages part of the heart, the remaining myocardium remodels to compensate for the loss of viable functioning myocardium. The effects of exercise training, myocardial infarction (MI), and their interaction on the contractile performance of the myocardium itself remain largely to be determined. The present study investigated the contractile properties and kinetics of right ventricular myocardium isolated from sedentary and exercise trained (10-12 wk progressively increasing treadmill running, begun 4 wk after MI induction) dogs with and without a left ventricular myocardial infarction. Exercise training increased force development, whereas MI decreased force development that was not improved by exercise training. Contractile kinetics were significantly slower in the trained dogs, whereas this impact of training was less or no longer present after MI. Length-dependent activation, both evaluated on contractile force and kinetics, was similar in all four groups. The control exercise-trained group exhibited a more positive force-frequency relationship compared with the sedentary control group while both sedentary and trained post-MI dogs had a more negative relationship. Last, the impact of the β-adrenergic receptor agonist isoproterenol resulted in a similar increase in force and acceleration of contractile kinetics in all groups. Thus, exercise training increased developed force but slowed contractile kinetics in control (noninfarcted animals), actions that were attenuated or completely absent in post-MI dogs. PMID:26823341

  2. Effect of exercise training and myocardial infarction on force development and contractile kinetics in isolated canine myocardium.

    Science.gov (United States)

    Canan, Benjamin D; Haizlip, Kaylan M; Xu, Ying; Monasky, Michelle M; Hiranandani, Nitisha; Milani-Nejad, Nima; Varian, Kenneth D; Slabaugh, Jessica L; Schultz, Eric J; Fedorov, Vadim V; Billman, George E; Janssen, Paul M L

    2016-04-15

    It is well known that moderate exercise training elicits a small increase in ventricular mass (i.e., a physiological hypertrophy) that has many beneficial effects on overall cardiac health. It is also well known that, when a myocardial infarction damages part of the heart, the remaining myocardium remodels to compensate for the loss of viable functioning myocardium. The effects of exercise training, myocardial infarction (MI), and their interaction on the contractile performance of the myocardium itself remain largely to be determined. The present study investigated the contractile properties and kinetics of right ventricular myocardium isolated from sedentary and exercise trained (10-12 wk progressively increasing treadmill running, begun 4 wk after MI induction) dogs with and without a left ventricular myocardial infarction. Exercise training increased force development, whereas MI decreased force development that was not improved by exercise training. Contractile kinetics were significantly slower in the trained dogs, whereas this impact of training was less or no longer present after MI. Length-dependent activation, both evaluated on contractile force and kinetics, was similar in all four groups. The control exercise-trained group exhibited a more positive force-frequency relationship compared with the sedentary control group while both sedentary and trained post-MI dogs had a more negative relationship. Last, the impact of the β-adrenergic receptor agonist isoproterenol resulted in a similar increase in force and acceleration of contractile kinetics in all groups. Thus, exercise training increased developed force but slowed contractile kinetics in control (noninfarcted animals), actions that were attenuated or completely absent in post-MI dogs.

  3. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries

    DEFF Research Database (Denmark)

    Compeer, M. G.; Janssen, G. M. J.; De Mey, J. G. R.

    2013-01-01

    , but relaxed ET-1-induced contractions in MRA. A PLC inhibitor prevented contractile responses to ET-1 and ET-2 in MRA and BA, and relaxed ET-1- and ET-2-induced responses in MRA and ET-1 effects in BA. A Rho-kinase inhibitor did not modify sensitivity, maximum and maintenance of responses to both peptides...... in both arteries but relaxed ET-2, but not ET-1, effects in MRA and ET-1 effects in BA. Conclusions and ImplicationsPLC played a key role in arterial contractile responses to ETs, but ET-1 and ET-2 initiated and maintained vasoconstriction through different mechanisms, and these differed between MRA...

  4. Toward a Concept of Stretch Coupling in Smooth Muscle: A Thesis by Lars Thuneberg on Contractile Activity in Neonatal Interstitial Cells of Cajal

    DEFF Research Database (Denmark)

    Huizinga, Jan D; Lammers, Wim J E P; Mikkelsen, Hanne B;

    2010-01-01

    for the contractile nature of ICC as perceived by Thuneberg. The contractile activity is shown by video frame subtraction and by tracking areas of interest in sequential video frames. Thuneberg used neonatal ICC in culture maintained between two coverslips thereby allowing growth factors to quickly reach optimal...

  5. Skeletal muscle contractility, self-reported pain and tissue sensitivity in females with neck/shoulder pain and upper Trapezius myofascial trigger points - a randomized intervention study

    DEFF Research Database (Denmark)

    Myburgh, Corrie; Hartvigsen, Jan; Aagaard, Per;

    2012-01-01

    ABSTRACT: BACKGROUND: In relation to Myofascial Triggerpoints (MFTrPs) of the upper Trapezius, this study explored muscle contractility characteristics, the occurrence of post-intervention muscle soreness and the effect of dry needling on muscle contractile characteristics and clinical outcomes...

  6. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    and JNK MAPK-mediated transcription and translation of new contractile ET(B) receptors. Thus, the MAPK-mediated upregulation of contractile ET(B) receptors in cerebral arteries might be a pharmacological target for the treatment of smoke-associated cerebral vascular disease like stroke....... that organ culture per se induced transcriptional upregulation of contractile ET(B) receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine...... particles (DSP) induces upregulation of contractile endothelin type B (ET(B)) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle...

  7. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    and JNK MAPK-mediated transcription and translation of new contractile ET(B) receptors. Thus, the MAPK-mediated upregulation of contractile ET(B) receptors in cerebral arteries might be a pharmacological target for the treatment of smoke-associated cerebral vascular disease like stroke....... that organ culture per se induced transcriptional upregulation of contractile ET(B) receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine...... particles (DSP) induces upregulation of contractile endothelin type B (ET(B)) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-¿B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle...

  8. Protective Effects of Estradiol on Myocardial Contractile Function Following Hemorrhagic Shock and Resuscitation in Rats

    Institute of Scientific and Technical Information of China (English)

    Mona Soliman

    2015-01-01

    Background:Hemorrhagic shock (HS) results in myocardial contractile dysfunction.Studies showed that 17β-estradiol protects the myocardium against contractile dysfunction.The study investigated the cardioprotective effects of treatment with 17β-estradiol before resuscitation following 1 h of HS and resuscitation.Methods:Male Sprague-Dawley rats were assigned to 2 sets of experimental protocols:Ex vivo and in vivo treatment and resuscitation.Each set had three experimental groups (n =6 per group):Normotensive (N),HS and resuscitation (HS-R) and HS rats treated with 17β-estradiol (E) and resuscitated (HS-E-R).Rats were hemorrhaged over 60-min to reach a mean arterial blood pressure of 40 mmHg.In the ex vivo group,hearts were resuscitated by perfusion in the Langendorff system.In the 17β-estradiol treated group,17β-estradiol 280 μg/kg was added for the first 5 min.Cardiac function was measured.Left ventricular generated pressure (LVGP) and +dP/dt were calculated.In the in vivo group,rats were treated with 17β-estradiol 280 μg/kg s.c.after 60-min HS.Resuscitation was performed in vivo by the reinfusion of the shed blood for 30-min to restore normotension.Results:Treatment with 17β-estradiol before resuscitation in ex vivo treated and resuscitated isolated hearts and in the in vivo treated and resuscitated rats following HS improved myocardial contractile function.In the in vivo treated group,LVGP and +dP/dt max were significantly higher in 17β-estradiol treated rats compared to the untreated group (LVGP 136.40 ± 6.61 compared to 47.58 ± 17.55,and +dP/dt 661.85 ± 49.88 compared to 88.18 ± 0.85).Treatment with 17β-estradiol improved LVGP following HS.Conclusions:The results indicate that treatment with 17β-estradiol before resuscitation following HS protects the myocardium against dysfunction.

  9. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Osadchiy, Oleg; Olesen, Søren-Peter

    2011-01-01

    pressure-volume and stress-strain relationships assessed in isolated, perfused heart preparations), reduced contractile reserve in the presence of acute ß-adrenoceptor stimulation, and pulmonary oedema (increased lung weights). These changes were associated with prolongation of LV epicardial action...

  10. Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day “dry” immersion

    Science.gov (United States)

    Ogneva, I. V.; Ponomareva, E. V.; Kartashkina, N. L.; Altaeva, E. G.; Fokina, N. M.; Kurushin, V. A.; Kozlovskaya, I. B.; Shenkman, B. S.

    2011-05-01

    The simulation model of "dry" immersion was used to evaluate the effects of plantar mechanical stimulation (PMS) and high frequency electromyostimulation (EMS) on the mechanical properties of human soleus fibers under the conditions of gravitational unloading. We examined contractile properties of single fibers by means of tensometry, transversal stiffness of sarcolemma and different areas of the contractile apparatus by means of atomic force microscopy. It was shown that there is a reduction of transversal stiffness in single muscle fibers under hypogravitational conditions. Application of different countermeasures could compensate this effect. Meanwhile pneumostimulation and electro stimulation act in quite different way. Therefore, pneumostimulation seems to be more effective. The data obtained can be considered as the evidence of the fact that such countermeasures as PMS and electromyostimulation influence on muscle fibers in quite different ways and PMS efficiency is likely to be higher. On the basis of our experimental data on transverse stiffness of mechanotransductional nodes and the contractile apparatus, we can assume that support stimulation allows prevention of destructive processes in muscle fibers. Electrostimulation seems to stimulate contractile activity only without suppression of impairment of the fiber mechanical properties.

  11. The Effect of Cleft Palate Repair on Contractile Properties of Single Permeabilized Muscle Fibers From Congenitally Cleft Goats Palates

    Science.gov (United States)

    A cleft palate goat model was used to study the contractile properties of the levator veli palatini (LVP) muscle which is responsible for the movement of the soft palate. In 15-25% of patients that undergo palatoplasty, residual velopharyngeal insufficiency (VPI) remains a problem and often require...

  12. Myocardial performance index is sensitive to changes in cardiac contractility, but is also affected by vascular load condition.

    Science.gov (United States)

    Uemura, Kazunori; Kawada, Toru; Zheng, Can; Li, Meihua; Shishido, Toshiaki; Sugimachi, Masaru

    2013-01-01

    Myocardial performance index (MPI), or Tei index, is measured by Doppler echocardiography in clinical practice. MPI has been shown to be useful in evaluating left ventricular (LV) performance and predicting prognosis in cardiac patients. However, the effects of LV load and contractile states on MPI remain to be thoroughly investigated. In 14 anesthetized dogs, we obtained LV pressure-volume relationship with use of sonomicrometry and catheter-tip manometry. MPI was determined from the time derivative of LV volume and pressure. LV end-systolic pressure-volume ratio (Ees'), effective arterial elastance (Ea) and LV end-diastolic volume (Ved) were used as indices of LV contractility, afterload and preload, respectively. Hemodynamic conditions were varied over wide ranges [heart rate (HR), 66-192 bpm; mean arterial pressure, 71-177 mmHg] by infusing cardiovascular agents, by inducing ischemic heart failure and by electrical atrial pacing. Multiple linear regression analysis of pooled data (66 data sets) indicated that MPI (0.6-1.8) significantly correlated with Ees' [1.5-17.5 mmHg · ml(-1), pVed (11-100 ml, p0.1). Theoretical analysis also indicated that MPI decreases following the increases in LV contractility and in preload, while it increases in response to an increase in LV afterload. We conclude that MPI sensitively detects changes in LV contractility. However, MPI is also affected by changes in LV afterload and preload. PMID:24109782

  13. Effect of training on contractile and metabolic properties of wrist extensors in spinal cord-injured individuals

    DEFF Research Database (Denmark)

    Hartkopp, Andreas; Harridge, Stephen D R; Mizuno, Masao;

    2003-01-01

    Paretic human muscle rapidly loses strength and oxidative endurance, and electrical stimulation training may partly reverse this. We evaluated the effects of two training protocols on the contractile and metabolic properties of the wrist extensor in 12 C-5/6 tetraplegic individuals. The wrist...

  14. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  15. Effect of a Periodized Power Training Program on the Functional Performances and Contractile Properties of the Quadriceps in Sprinters

    Science.gov (United States)

    Kamandulis, Sigitas; Skurvydas, Albertas; Brazaitis, Marius; Stanislovaitis, Aleksas; Duchateau, Jacques; Stanislovaitiene, Jurate

    2012-01-01

    Our purpose was to compare the effect of a periodized preparation consisting of power endurance training and high-intensity power training on the contractile properties of the quadriceps muscle and functional performances in well trained male sprinters (n = 7). After 4 weeks of high-intensity power training, 60-m sprint running time improved by an…

  16. Effects of silver ions (Ag+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta

    Science.gov (United States)

    Conrad, A. H.; Stephens, A. P.; Paulsen, A. Q.; Schwarting, S. S.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.

  17. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers

    Directory of Open Access Journals (Sweden)

    Yaming Jiu

    2015-06-01

    Full Text Available The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.

  18. A new strain gage method for measuring the contractile strain ratio of Zircaloy tubing

    International Nuclear Information System (INIS)

    An improved strain gage method for determining the contractile strain ratio (CSR) of Zircaloy tubing was developed. The new method consists of a number of load-unload cyclings at approximately 0.2% plastic strain interval. With this method the CSR of Zircaloy-4 tubing could be determined accurately because it was possible to separate the plastic strains from the elastic strain involvement. The CSR values determined by use of the new method were in good agreement with those calculated from conventional post-test manual measurements. The CSR of the tubing was found to decrease with the amount of deformation during testing because of uneven plastic flow in the gage section. A new technique of inscribing gage marks by use of a YAG laser is discussed. (orig.)

  19. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    Science.gov (United States)

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-08-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations.

  20. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues.

    Science.gov (United States)

    Bordeleau, Francois; Reinhart-King, Cynthia A

    2016-01-01

    There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors. PMID:27508074

  1. Orchestrated content release from Drosophila glue-protein vesicles by a contractile actomyosin network.

    Science.gov (United States)

    Rousso, Tal; Schejter, Eyal D; Shilo, Ben-Zion

    2016-02-01

    Releasing content from large vesicles measuring several micrometres in diameter poses exceptional challenges to the secretory system. An actomyosin network commonly coats these vesicles, and is thought to provide the necessary force mediating efficient cargo release. Here we describe the spatial and temporal dynamics of the formation of this actomyosin coat around large vesicles and the resulting vesicle collapse, in live Drosophila melanogaster salivary glands. We identify the Formin family protein Diaphanous (Dia) as the main actin nucleator involved in generating this structure, and uncover Rho as an integrator of actin assembly and contractile machinery activation comprising this actomyosin network. High-resolution imaging reveals a unique cage-like organization of myosin II on the actin coat. This myosin arrangement requires branched-actin polymerization, and is critical for exerting a non-isotropic force, mediating efficient vesicle contraction.

  2. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    Science.gov (United States)

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-01-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. PMID:27558758

  3. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    Directory of Open Access Journals (Sweden)

    Mouli Chakraborty

    2015-12-01

    Full Text Available Up to 80% of individuals with myotonic dystrophy type 1 (DM1 will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.

  4. Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice.

    Directory of Open Access Journals (Sweden)

    Sunkuk Kwon

    Full Text Available OBJECTIVE: To investigate the redirection of lymphatic drainage post-lymphadenectomy using non-invasive near-infrared fluorescence (NIRF imaging, and to subsequently assess impact on metastasis. BACKGROUND: Cancer-acquired lymphedema arises from dysfunctional fluid transport after lymphadenectomy performed for staging and to disrupt drainage pathways for regional control of disease. However, little is known about the normal regenerative processes of the lymphatics in response to lymphadenectomy and how these responses can be accelerated, delayed, or can impact metastasis. METHODS: Changes in lymphatic "pumping" function and drainage patterns were non-invasively and longitudinally imaged using NIRF lymphatic imaging after popliteal lymphadenectomy in mice. In a cohort of mice, B16F10 melanoma was inoculated on the dorsal aspect of the paw 27 days after lymphadenectomy to assess how drainage patterns affect metastasis. RESULTS: NIRF imaging demonstrates that, although lymphatic function and drainage patterns change significantly in early response to popliteal lymph node (PLN removal in mice, these changes are transient and regress dramatically due to a high regenerative capacity of the lymphatics and co-opting of collateral lymphatic pathways around the site of obstruction. Metastases followed the pattern of collateral pathways and could be detected proximal to the site of lymphadenectomy. CONCLUSIONS: Both lymphatic vessel regeneration and co-opting of contralateral vessels occur following lymphadenectomy, with contractile function restored within 13 days, providing a basis for preclinical and clinical investigations to hasten lymphatic repair and restore contractile lymphatic function after surgery to prevent cancer-acquired lymphedema. Patterns of cancer metastasis after lymphadenectomy were altered, consistent with patterns of re-directed lymphatic drainage.

  5. Direct, differential effects of tamoxifen, 4-hydroxytamoxifen, and raloxifene on cardiac myocyte contractility and calcium handling.

    Directory of Open Access Journals (Sweden)

    Michelle L Asp

    Full Text Available Tamoxifen (Tam, a selective estrogen receptor modulator, is in wide clinical use for the treatment and prevention of breast cancer. High Tam doses have been used for treatment of gliomas and cancers with multiple drug resistance, but long QT Syndrome is a side effect. Tam is also used experimentally in mice for inducible gene knockout in numerous tissues, including heart; however, the potential direct effects of Tam on cardiac myocyte mechanical function are not known. The goal of this study was to determine the direct, acute effects of Tam, its active metabolite 4-hydroxytamoxifen (4OHT, and related drug raloxifene (Ral on isolated rat cardiac myocyte mechanical function and calcium handling. Tam decreased contraction amplitude, slowed relaxation, and decreased Ca²⁺ transient amplitude. Effects were primarily observed at 5 and 10 μM Tam, which is relevant for high dose Tam treatment in cancer patients as well as Tam-mediated gene excision in mice. Myocytes treated with 4OHT responded similarly to Tam-treated cells with regard to both contractility and calcium handling, suggesting an estrogen-receptor independent mechanism is responsible for the effects. In contrast, Ral increased contraction and Ca²⁺ transient amplitudes. At 10 μM, all drugs had a time-dependent effect to abolish cellular contraction. In conclusion, Tam, 4OHT, and Ral adversely and differentially alter cardiac myocyte contractility and Ca²⁺ handling. These findings have important implications for understanding the Tam-induced cardiomyopathy in gene excision studies and may be important for understanding effects on cardiac performance in patients undergoing high-dose Tam therapy.

  6. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    Science.gov (United States)

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-01-01

    ABSTRACT Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats. PMID:26515653

  7. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture.

    Science.gov (United States)

    Berger, H J; Prasad, S K; Davidoff, A J; Pimental, D; Ellingsen, O; Marsh, J D; Smith, T W; Kelly, R A

    1994-01-01

    To model with greater fidelity the electromechanical function of freshly isolated heart muscle cells in primary culture, we describe a technique for the continual electrical stimulation of adult myocytes at physiological frequencies for several days. A reusable plastic cover was constructed to fit standard, disposable 175-cm2 tissue culture flasks and to hold parallel graphite electrodes along the long axis of each flask, which treated a uniform electric field that resulted in a capture efficiency of ventricular myocytes of 75-80%. Computer-controlled amplifiers were designed to be capable of driving a number of flasks concurrently, each containing up to 4 x 10(6) myocytes, over a range of stimulation frequencies (from 0.1 to 7.0 Hz) with reversal of electrode polarity after each stimulus to prevent the development of pH gradients around each electrode. Unlike quiescent, unstimulated myocytes, the amplitude of contraction, and velocities of shortening and relaxation did not change in myocytes paced at 3-5 Hz for up to 72 h. The maintenance of normal contractile function in paced myocytes required mechanical contraction per se, since paced myocytes that remained quiescent due to the inclusion of 2.5 microM verapamil in the culture medium for 48 h also exhibited a decline in contractility when paced after verapamil removal. Similarly, pacing increased peak calcium current compared with quiescent cells that had not been paced. Thus myocyte contraction at physiological frequencies induced by continual uniform electric field stimulation in short-term primary culture in defining medium maintains some biophysical parameters of myocyte phenotype that are similar to those observed in freshly isolated adult ventricular myocytes.

  8. Effect of aerobic exercise on the contractile function of gastrocnemius myosin heavy chain

    Institute of Scientific and Technical Information of China (English)

    Wen-jun Ren

    2009-01-01

    Objective To study the effect of 4- 6 weeks' treadmill training of male SD rats on the contractile function of their gnstroenemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4- 6 weeks at an intensity of about 75% VO2max (18. 5- 24 m/min, gradient of 0°, each training session lasting 50 minutes, twice a day). The content of gastrocnemlas MHC mRNA was tested by reverse transcription polymernse chain reaction (RT-PCR), and the changes of muscle fibre and its cross-section area (CSA) were measured using immunohistochemistry. Electric stimulation tests were used to determine the maximal tension of isometric contraction of the post-training gastrocnemius. Results ① After continuous treadmill training for 4 - 6 weeks, we found that the content of the total MHC, MHC Ⅰ , MHC Ⅱ x, MHC Ⅱ a mRNAs was 105%, 105%, 109% and 108% of that in the resting control group, respectively, and the MHC Ⅱ b mRNA content did not change significantly. The percentage of MHC Ⅰ mRNA in the total MHC mRNA increased while that of MHC Ⅱ mRNA decreased after aerobic training. ② The slow type of fibre type Ⅰ was the main part of the MHC after training and the CSA of the muscle fibres increased simultaneously. ③ The maximal tension of isometric contraction by pulse stimulation of square wave in the training group increased significantly compared with that in the control group (P<0. 01). Conclusion The findings indicate that aerobic exercise may promote an increase in the contractile function of MHC.

  9. Effects of benactyzine on action potentials and contractile force of guinea pig papillary muscles

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aim:To explore the effects of benactyzine (BEN) on the action potential and contractile force in guinea pig papillary muscles.Methods:Conventional microelectrode technique was used to record the fast action potentials (FAP) and slow action potentials (SAP) of guinea pig papillary muscles.Results:Benactyzine 5,10,50 μmol·L-1 suppressed the maximal upstroke velocity (vmax) of FAP and contractile force (Fc) concentration-dependently while prolonged the action potential duration at 50%,90% repolarization (APD50,APD90) and effective refractory period (ERP) of FAP.The suppression on the vmax was frequency-dependent.Benactyzine 5,10,50μmol·L-1 lengthened the APD50,APD90 of SAP induced by isoprenaline or histamine when perfused with KCl 22 mmol·L-1 Tyrode's solution.The vmax of the SAP was not decreased by benactyzine 5,10 μmol·L-1 but by 50 μmol·L-1.The effects on the SAP were antagonized by elevation of the extracellular calcium from 2.0 to 5.6 mmol·L-1.The effects of benactyzine on SAP elicited by tetrodotoxin resembled that by isoprenaline or histamine except the more pronounced suppression on vmax and action potential amplitude (APA).The persistent rapid spontaneous activity and triggered tachyarrhythmia induced by ouabain were also abolished immediately by benactyzine 5 μmol·L-1.Conclusion:Benactyzine can inhibit Na+,K+,Ca2+ transmembrane movement and intracellular Ca2+ mobilization in the myocardium,and this may be the electrophysiological basis of its effects against experimental arrhythmias.

  10. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction.

    Science.gov (United States)

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-12-01

    Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.

  11. Right atrial contractile dynamics are impaired in patients with postcapillary pulmonary hypertension

    Science.gov (United States)

    Bening, Constanze; Leyh, Rainer

    2016-01-01

    Left ventricular (LV) dysfunction in conjunction with postcapillary pulmonary hypertension (PH) is frequently associated with right ventricular (RV) dysfunction, determining the patient prognosis. Compensatory mechanisms for RV dysfunction have not been previously evaluated in detail. Since calcium dependent right atrial (RA) dynamics are a surrogate for RA contractile properties, the present study examined the calcium dependency of RA tissue obtained from patients with or without postcapillary PH. In total, 15 patients with PH (PH group; mean age, 70.7±7.2 years) and 10 patients without postcapillary PH (non-PH group; mean age, 55.7±11.8 years) who were scheduled to undergo elective left heart valve surgery were included in the current study. Calcium concentration (pCa; shown as the negative log10) against force curves were generated, while LV and RV function was evaluated by echocardiography. Echocardiography data revealed a significantly reduced LV function in the PH group, while the RV function was preserved in the two groups, precluding overt RV dysfunction. In the PH group, significantly reduced force values were detected at high pCa values when compared with the non-PH group force, indicating impaired RA function. Furthermore, reduced calcium sensitivity was observed (which was determined as the pCa at half maximal activation) in the PH group, and the presence of a compensatory mechanism for reduced force capacity was hypothesized. In conclusion, the preliminary results of the current study showed impaired RA contractile properties in postcapillary hypertension with preserved RV function. The diminished RA compensatory mechanisms may lead to accelerated RV dysfunction in the clinical course of postcapillary PH.

  12. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  13. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility.

    Science.gov (United States)

    Dickerson, L W; Rodak, D J; Fleming, T J; Gatti, P J; Massari, V J; McKenzie, J C; Gillis, R A

    1998-05-28

    We hypothesized that selective control of ventricular contractility might be mediated by postganglionic parasympathetic neurons in the cranial medial ventricular (CMV) ganglion plexus located in a fat pad at the base of the aorta. Sinus rate, atrioventricular (AV) conduction (ventricular rate during atrial pacing), and left ventricular contractile force (LV dP/dt during right ventricular pacing) were measured in eight chloralose-anesthetized dogs both before and during bilateral cervical vagus stimulation (20-30 V, 0.5 ms pulses, 15-20 Hz). Seven of these dogs were tested under beta-adrenergic blockade (propranolol, 0.8 mg kg(-1) i.v.). Control responses included sinus node bradycardia or arrest during spontaneous rhythm, high grade AV block or complete heart block, and a 30% decrease in contractility from 2118 +/- 186 to 1526 +/- 187 mm Hg s(-1) (P 0.05) decrease in contractility but still elicited the same degree of sinus bradycardia and AV block (N = 8, P < 0.05). Five dogs were re-tested 3 h after trimethaphan fat pad injection, at which time blockade of vagally-induced negative inotropy was partially reversed, as vagal stimulation decreased LV dP/dt by 19%. The same dose of trimethaphan given either locally into other fat pads (PVFP or IVC-ILA) or systemically (i.v.) had no effect on vagally-induced negative inotropy. Thus, parasympathetic ganglia located in the CMV fat pad mediated a decrease in ventricular contractility during vagal stimulation. Blockade of the CMV fat pad had no effect on vagally-mediated slowing of sinus rate or AV conduction.

  14. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com; Cui, Yong-Yao, E-mail: yongyaocui@yahoo.com.cn

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  15. Vasodilatory effects of nifedipine, methoxyverapamil, and sodium nitroprusside on contractile responses of the ewe uterine artery at term pregnancy.

    Science.gov (United States)

    Isla, M; Dyer, D C

    1990-10-01

    The differential inhibitory effect of the vasodilators on contractile responses to norepinephrine, serotonin, and potassium on isolated uterine artery ring segments from pregnant ewes within 2 weeks of term was quantified and correlated with the source of Ca++ for the vasoconstrictors producing the smooth muscle contraction. The contraction evoked by the vasoconstrictors was dependent on extracellular Ca++ and in agonist-induced contractions also on an intracellular pool of Ca++. Nifedipine effectively inhibited K(+)-induced (90 mmol/L) contractions (antagonist concentration to reduce the maximum contractile effect to the agonist to 50%, 1.95 +/- 0.9 x 10(-8) mol/L), whereas it was relatively ineffective in blocking norepinephrine-induced (10(-5) mol/L) or serotonin-induced (10(-5) mol/L) vasoconstriction (antagonist concentration to reduce the maximum contractile effect to the agonist to 50%, 1.38 +/- 0.4 x 10(-4) mol/L and 2.04 +/- 0.4 x 10(-5) mol/L, respectively). Methoxyverapamil (D-600) strongly inhibited serotonin-induced contractions (antagonist concentration to reduce the maximum contractile effect to the agonist to 50%, 3.3 +/- 0.3 x 10(-7) mol/L). The phasic rather than the tonic components of the serotonin- and norepinephrine-induced contractions were more effectively inhibited by D-600 (p less than 0.05). Sodium nitroprusside preferentially blocked (p less than 0.05) the sustained tonic components of norepinephrine- and serotonin-induced vasoconstrictions (antagonist concentration to reduce the maximum contractile effect to the agonist to 50%, 7.1 +/- 0.4 x 10(-7) mol/L and 8.2 +/- 0.6 x 10(-7) mol/L, respectively). On the basis of these findings it is concluded that D-600 and sodium nitroprusside are more effective than nifedipine in blocking contractile responses due to receptor stimulation, and therefore might be more effective in the treatment of hypertensive emergencies in which these amines might be implicated. PMID:2220945

  16. Itraconazole decreases left ventricular contractility in isolated rabbit heart: Mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yusheng, E-mail: yqu@amgen.com [Toxicology Science, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States); Fang, Mei; Gao, BaoXi; Amouzadeh, Hamid R. [Toxicology Science, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States); Li, Nianyu; Narayanan, Padma [Discovery Toxicology, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States); Acton, Paul; Lawrence, Jeff; Vargas, Hugo M. [Toxicology Science, Amgen, Inc, One Amgen Center Drive, Thousand Oaks, CA 91320 (United States)

    2013-04-15

    Itraconazole (ITZ) is an approved antifungal agent that carries a “black box warning” in its label regarding a risk of negative cardiac inotropy based on clinical findings. Since the mechanism of the negative inotropic effect is unknown, we performed a variety of preclinical and mechanistic studies to explore the pharmacological profile of ITZ and understand the negative inotropic mechanism. ITZ was evaluated in: (1) an isolated rabbit heart (IRH) preparation using Langendorff retrograde perfusion; (2) ion channel studies; (3) a rat heart mitochondrial function profiling screen; (4) a mitochondrial membrane potential (MMP) assay; (5) in vitro pharmacology profiling assays (148 receptors, ion channels, transporters, and enzymes); and (6) a kinase selectivity panel (451 kinases). In the IRH, ITZ decreased cardiac contractility (> 30%) at 0.3 μM, with increasing effect at higher concentrations, which indicated a direct negative inotropic effect upon the heart. It also decreased heart rate and coronary flow (≥ 1 μM) and prolonged PR/QRS intervals (3 μM). In mechanistic studies, ITZ inhibited the cardiac NaV channel (IC{sub 50}: 4.2 μM) and was devoid of any functional inhibitory effect at the remaining pharmacological targets. Lastly, ITZ did not affect MMP, nor interfere with mitochondrial enzymes or processes involved with fuel substrate utilization or energy formation. Overall, the cardiovascular and mechanistic data suggest that ITZ-induced negative inotropy is a direct effect on the heart, in addition, the potential involvement of mitochondria function and L-type Ca{sup 2+} channels are eliminated. The exact mechanism underlying the negative inotropy is uncertain, and requires further study. - Highlights: ► Effect of itraconazole (ITZ) was assessed in the isolated rabbit heart (IRH) assay. ► ITZ decreased ventricular contractility in IRH, indicating a direct effect. ► IC{sub 50} of ITZ on L-type I{sub Ca} was greater than 30 μM, on I{sub Na} was 4

  17. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  18. Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat.

    Science.gov (United States)

    Muir, Ronan; Ballan, Jean; Clifford, Bethan; McMullen, Sarah; Khan, Raheela; Shmygol, Anatoly; Quenby, Siobhan; Elmes, Matthew

    2016-02-01

    Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (Pobesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (Pobese women.

  19. Usage of echocardiography with physical loads for diagnosis of myocardial contractile reserve of the left ventricle in athletes

    Directory of Open Access Journals (Sweden)

    Nekhanevich O.B.

    2014-09-01

    Full Text Available The work purpose was studying of myocardial contractile reserve of the left ventricle and cardiohemodynamics infringements character under the influence of physical loads in athletes with functional insufficiency of mitral valve according to stress-echocardiography. We examined 72 athletes the aged 9 to 40 years with functional mitral valve insufficiency and normal systolic function of the heart at rest by echo ECG data. Possibility of stress echocardiography with physical loads usage to diagnose decrease of myocardial contractile reserve of the heart left ventricle was proved. It was found that increase in hemodynamic load during physical exercise leads to the disruption of adaptation and manifestation of systolic dysfunction in athletes with I and II degrees of mitral valve regurgitation. This should be considered when constructing training-competitive loads among athletes in terms of prevention of acute physical overloading.

  20. THE EFFECT OF HYPOXIA ON ELECTRICAL AND CONTRACTILE PROPERTIES OF SMOOTH MUSCLES OF THE GUINEA PIG URETER

    Directory of Open Access Journals (Sweden)

    I. V. Kovalev

    2016-01-01

    Full Text Available Aim. The effect of hypoxia on the electrical and contractile activities of smooth muscles cells (SMCs of the guinea pig ureter was studied by the method of the double sucrose bridge.Materials and methods. This method allows registering simultaneously parameters of the action potential (AP and the contraction of SMCs, caused by an electrical stimulus.Results. It was found that lowering the oxygen content in the perfusion solution for 10 min resulted to an increase of electrical and contractile activity of ureteral SMCs. Addition of tetraethylammonium chloride (TEA, 5 mM – nonselective blocker of potassium membrane conductance – in hypoxic conditions causing an additional increase in the amplitude of the AP, duration of the AP plateau and the contractile responses of smooth muscles. Thus, the hypoxia decreased the potassium membrane conductance of ureteral SMCs. Inhibition of the effect of the α1 -adrenergic receptors agonist phenylephrine (PE, 10 mM on the electrical and contractile properties of SMCs in hypoxic condition indicate the involvement of the protein kinase C-dependent signaling system in effects of hypoxia. Pretreatment of ureteral smooth muscles with bumetanide (100 mM – selective inhibitor of Na+,K+,2Cl- - cotransporter (NKCC – caused a decrease of the activating effect of hypoxia on the SMCs of guinea pig ureter.Conclusion.Thus, the impact of hypoxia on the regulation of electrical activity and contractions of smooth muscles of guinea pig ureter may be due to changes in ion permeability of membranes SMCs and operation of ion-transporting systems. 

  1. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    OpenAIRE

    Lennart Hilbert; Genevieve Bates; Roman, Horia N.; Jenna L Blumenthal; Zitouni, Nedjma B.; Apolinary Sobieszek; Mackey, Michael C.; Anne-Marie Lauzon

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text...

  2. Acute contractile recovery extent during biventricular pacing is not associated with follow-up in patients undergoing resynchronization

    OpenAIRE

    Federica DeVecchi; Emanuela Facchini; Anna Degiovanni; Chiara Sartori; Chiara Cavallino; Matteo Santagostino; Virginia Di Ruocco; Andrea Magnani; Eraldo Occhetta; Paolo Nicola Marino

    2016-01-01

    Background: It has been reported that contractility, as assessed using dobutamine infusion, is independently associated with reverse remodeling after CRT. Controversy, however, exists about the capacity of this approach to predict a long-term clinical response. This study's purpose was to assess whether long-term CRT clinical effects can be predicted according to acute inotropic response induced by biventricular stimulation (CRT on), as compared with AAI–VVI right stimulation pacing mode (CRT...

  3. Surfactant Proteins SP-A and SP-D Modulate Uterine Contractile Events in ULTR Myometrial Cell Line.

    Directory of Open Access Journals (Sweden)

    Georgios Sotiriadis

    Full Text Available Pulmonary surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules. However, there is extrapulmonary existence, especially in the amniotic fluid and at the feto-maternal interface. There is sufficient evidence to suggest that SP-A and SP-D are involved in the initiation of labour. This is of great importance given that preterm birth is associated with increased mortality and morbidity. In this study, we investigated the effects of recombinant forms of SP-A and SP-D (rhSP-A and rhSP-D, the comprising of trimeric lectin domain on contractile events in vitro, using a human myometrial cell line (ULTR as an experimental model. Treatment with rhSP-A or rhSP-D increased the cell velocity, distance travelled and displacement by ULTR cells. rhSP-A and rhSP-D also affected the contractile response of ULTRs when grown on collagen matrices showing reduced surface area. We investigated this effect further by measuring contractility-associated protein (CAP genes. Treatment with rhSP-A and rhSP-D induced expression of oxytocin receptor (OXTR and connexin 43 (CX43. In addition, rhSP-A and rhSP-D were able to induce secretion of GROα and IL-8. rhSP-D also induced the expression of IL-6 and IL-6 Ra. We provide evidence that SP-A and SP-D play a key role in modulating events prior to labour by reconditioning the human myometrium and in inducing CAP genes and pro-inflammatory cytokines thus shifting the uterus from a quiescent state to a contractile one.

  4. Dynamic dyssynchrony and impaired contractile reserve of the left ventricle in beta-thalassaemia major: an exercise echocardiographic study.

    Directory of Open Access Journals (Sweden)

    Yiu-fai Cheung

    Full Text Available BACKGROUND: Performance of the left ventricle during exercise stress in thalassaemia patients is uncertain. We aimed to explore the phenomenon of dynamic dyssynchrony and assess contractile reserve in patients with beta-thalassaemia major and determine their relationships with myocardial iron load. METHODS AND RESULTS: Thirty-two thalassaemia patients (16 males, aged 26.8 ± 6.9 years, without heart failure and 17 healthy controls were studied. Their left ventricular (LV volumes, ejection fraction, systolic dyssynchrony index (SDI, and myocardial acceleration during isovolumic LV contraction (IVA were determined at rest and during submaximal bicycle exercise testing using 3-dimensional and tissue Doppler echocardiography. Myocardial iron load as assessed by T2* cardiac magnetic resonance in patients were further related to indices of LV dyssynchrony and contractile reserve. At rest, patients had significantly greater LV SDI (p4.6%, control+2SD increased from baseline 25% to 84% in patients. Δ SDI(exercise-baseline correlated with exercise-baseline differences in LV ejection fraction (p<0.001 and stroke volume (p = 0.006. Compared with controls, patients had significantly less exercise-induced increase in LV ejection fraction, cardiac index, and IVA (interaction, all p<0.05 and had impaired contractile reserve as reflected by the gentler IVA-heart rate slope (p = 0.018. Cardiac T2* in patients correlated with baseline LV SDI (r = -0.44, p = 0.011 and IVA-heart rate slope (r = 0.36, p = 0.044. CONCLUSIONS: Resting LV dyssynchrony is associated with myocardial iron load. Exercise stress further unveils LV dynamic dyssynchrony and impaired contractile reserve in patients with beta-thalassaemia major.

  5. Efficacy and Safety of Intravesical OnabotulinumtoxinA Injection in Patients with Detrusor Hyperactivity and Impaired Contractility

    OpenAIRE

    Chung-Cheng Wang; Cheng-Ling Lee; Hann-Chorng Kuo

    2016-01-01

    We investigated the efficacy and safety of intravesical onabotulinumtoxinA injection in patients with detrusor hyperactivity and impaired contractility (DHIC). Twenty-one patients with urodynamically proven DHIC and 21 age-matched patients with overactive bladder (OAB) with urodynamic detrusor overactivity were treated with intravesical injections of 100 U of onabotulinumtoxinA. The overactive bladder symptom score, urgency severity score, patient perception of bladder condition, global respo...

  6. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yingmei Zhang; Linlin Li; Yinan Hua; Jennifer M. Nunn; Feng Dong; Masashi Yanagisawa; Jun Ren

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction.The endothelin (ET) system,which plays a key role in myocardial homeostasis,may participate in cold exposure-induced cardiovascular dysfunction.This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses.Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4℃) environment for 2 and 5 weeks prior to evaluation of cardiac geometry,contractile,and intracellular Ca2+ properties.Levels of the temperature sensor transient receptor potential vanlllold (TRPV1),mitochondrlal proteins for biogenesis and oxidative phosphorylatlon,Including UCP2,HSP90,and PGC1α were evaluated.Cold stress triggered cardiac hypertrophy,depressed myocardial contractile capacity,including fractional shortening,peak shortening,and maximal velocity of shortening/relengthening,reduced intracellular Ca2+ release,prolonged intracellular Ca2+ decay and relengthening duration,generation of ROS and superoxide,as well as apoptosls,the effects of which were blunted by ETAKO.Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β,GATA4,and CREB in cold-stressed WT mouse hearts,which were obliterated by ETAKO.Levels of HSP90,an essential regulator for thermotolerance,were unchanged.The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepino mimicked cold stress- or ET-1-induced cardiac anomalies.The GSK3β Inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation.These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrlal function.

  7. PVP formulated Fullerene (C60) increases Rho-kinase dependent Vascular Tissue Contractility in Pregnant Sprague Dawley Rats

    OpenAIRE

    Vidanapathirana, Achini K.; Thompson, Leslie C.; Mann, Erin E.; Odom, Jillian T.; Holland, Nathan A.; Sumner, Susan J.; Han, Li; Lewin, Anita H.; Fennell, Timothy R.; Brown, Jared M.; Wingard, Christopher J.

    2014-01-01

    Pregnancy is a unique physiological state, in which C60 fullerene is reported to be distributed in both maternal and fetal tissues. Tissue distribution of C60 differs between pregnant and non-pregnant states, presumably due to functional changes in vasculature during pregnancy. We hypothesized that, polyvinylpyrorrolidone (PVP) formulated C60 (C60/PVP) increases vascular tissue contractility during pregnancy by increasing Rho-kinase activity. C60/PVP was administered intravenously to pregnant...

  8. Time-Lapse Imaging as a Tool to Investigate Contractility of the Epididymal Duct – Effects of Cgmp Signaling

    OpenAIRE

    Andrea Mietens; Sabine Tasch; Angelika Stammler; Lutz Konrad; Caroline Feuerstacke; Ralf Middendorff

    2014-01-01

    The well orchestrated function of epididymal smooth muscle cells ensures transit of spermatozoa through the epididymal duct during which spermatozoa acquire motility and fertilizing capacity. Relaxation of smooth muscle cells is mediated by cGMP signaling and components of this pathway are found within the male reproductive tract. Whereas contractile function of caudal parts of the rat epididymal duct can be examined in organ bath studies, caput and corpus regions are fragile and make it diff...

  9. Simulation of the contractile response of cells on an array of micro-posts.

    LENUS (Irish Health Repository)

    McGarry, J P

    2009-09-13

    A bio-chemo-mechanical model has been used to predict the contractile responses of smooth cells on a bed of micro-posts. Predictions obtained for smooth muscle cells reveal that, by converging onto a single set of parameters, the model captures all of the following responses in a self-consistent manner: (i) the scaling of the force exerted by the cells with the number of posts; (ii) actin distributions within the cells, including the rings of actin around the micro-posts; (iii) the curvature of the cell boundaries between the posts; and (iv) the higher post forces towards the cell periphery. Similar correspondences between predictions and measurements have been demonstrated for fibroblasts and mesenchymal stem cells once the maximum stress exerted by the stress fibre bundles has been recalibrated. Consistent with measurements, the model predicts that the forces exerted by the cells will increase with both increasing post stiffness and cell area (or equivalently, post spacing). In conjunction with previous assessments, these findings suggest that this framework represents an important step towards a complete model for the coupled bio-chemo-mechanical responses of cells.

  10. The effects of endurance exercise on dystrophic mdx mice. II. Contractile properties of skinned muscle fibres.

    Science.gov (United States)

    Lynch, G S; Hayes, A; Lam, M H; Williams, D A

    1993-07-22

    Dystrophic (mdx) mice were subjected to a 15 week exercise programme consisting of endurance swimming. Single fibres from the extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, mixed fast- and slow-twitch) muscles were attached to a sensitive force-recording apparatus, and activated in Ca(2+)- and Sr(2+)-buffered solutions. In addition to the normal well-defined fibre types in these muscles, a small number of fibres were also sampled from the soleus of both experimental groups, which were 'Intermediate' to the other two SOL fibre types. Type IIB fibres from the EDL and type IIA fibres from the soleus of the Swim group were significantly less sensitive to Ca2+ and Sr2+ compared with those fibres sampled from the sedentary (Sedent) group, suggesting that endurance exercise was able to modify Ca(2+)- and Sr(2+)-activated contractile characteristics. The swim-trained (Swim) group's increased incidence of SOL fibres with characteristics intermediate to those of the fast- and slow-twitch fibre types suggests a possible exercise-induced fibre type transformation as an adaptation to the functional demand. PMID:8396775

  11. Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility.

    Science.gov (United States)

    Ata, Hirotaka; Rawat, Dhwajbhadur K; Lincoln, Thomas; Gupte, Sachin A

    2011-06-01

    We previously identified glucose-6-phosphate dehydrogenase (G6PD) as a regulator of vascular smooth muscle contraction. In this study, we tested our hypothesis that G6PD activated by KCl via a phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-protein kinase C (PKC) pathway increases vascular smooth muscle contraction and that inhibition of G6PD relaxes smooth muscle by decreasing intracellular Ca(2+) ([Ca(2+)](i)) and Ca(2+) sensitivity to the myofilament. Here we show that G6PD is activated by membrane depolarization via PKC and PTEN pathway and that G6PD inhibition decreases intracellular free calcium ([Ca(2+)](i)) in vascular smooth muscle cells and thus arterial contractility. In bovine coronary artery (CA), KCl (30 mmol/l) increased PKC activity and doubled G6PD V(max) without affecting K(m). KCl-induced PKC and G6PD activation was inhibited by bisperoxo(pyridine-2-carboxyl)oxovanadate (Bpv; 10 μmol/l), a PTEN inhibitor, which also inhibited (P PET-cGMPs (100 nmol/l) diminished 6AN-evoked VASP phosphorylation (P PET-cGMPs increased 6AN-induced relaxation. These findings suggest G6PD inhibition relaxes CA by decreasing Ca(2+) influx, increasing Ca(2+) sequestration, and inhibiting Rho kinase but not by increasing Ca(2+) extrusion or activating PKG. PMID:21398595

  12. Altered right ventricular contractile pattern after cardiac surgery: monitoring of septal function is essential.

    Science.gov (United States)

    Nguyen, Tin; Cao, Long; Movahed, Assad

    2014-10-01

    Assessment of right ventricular (RV) function is important in the management of various forms of cardiovascular disease. Accurately assessing RV volume and systolic function is a challenge in day-to-day clinical practice due to its complex geometry. Tricuspid annular plane systolic excursion (TAPSE) and systolic excursion velocity (S') have been reviewed to further assess their suitability and objectivity in evaluating RV function. Multiple studies have validated their diagnostic and prognostic values in numerous pathologic conditions. Diminished longitudinal contraction after cardiothoracic surgery is a well-known phenomenon, but it is not well validated. Despite significant reduction in RV performance along the long-axis assessed by TAPSE and S' after cardiac surgery, RV ejection fractions did not change as well as the left ventricular parameters and exercise capacity. RV contractile patterns were markedly altered with decreased longitudinal shortening and increased transverse shortening, which are likely resulted from the septal damage during cardiac surgery. The septum is essential for RV performance due to its oblique fiber orientation. This allows ventricular twisting, which is a vital mechanism against increased pulmonary vascular resistance. The septum function along with TAPSE and S' should be adequately assessed during cardiac surgery, and evidence of septal dysfunction should lead to reevaluation of myocardial protection methods. PMID:24919944

  13. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo.

    Science.gov (United States)

    Maître, Jean-Léon; Niwayama, Ritsuya; Turlier, Hervé; Nédélec, François; Hiiragi, Takashi

    2015-07-01

    Mammalian embryos initiate morphogenesis with compaction, which is essential for specifying the first lineages of the blastocyst. The 8-cell-stage mouse embryo compacts by enlarging its cell-cell contacts in a Cdh1-dependent manner. It was therefore proposed that Cdh1 adhesion molecules generate the forces driving compaction. Using micropipette aspiration to map all tensions in a developing embryo, we show that compaction is primarily driven by a twofold increase in tension at the cell-medium interface. We show that the principal force generator of compaction is the actomyosin cortex, which gives rise to pulsed contractions starting at the 8-cell stage. Remarkably, contractions emerge as periodic cortical waves when cells are disengaged from adhesive contacts. In line with this, tension mapping of mzCdh1(-/-) embryos suggests that Cdh1 acts by redirecting contractility away from cell-cell contacts. Our study provides a framework to understand early mammalian embryogenesis and original perspectives on evolutionary conserved pulsed contractions. PMID:26075357

  14. Subendocardial contractile impairment in chronic ischemic myocardium: assessment by strain analysis of 3T tagged CMR

    Directory of Open Access Journals (Sweden)

    Nagao Michinobu

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to quantify myocardial strain on the subendocardial and epicardial layers of the left ventricle (LV using tagged cardiovascular magnetic resonance (CMR and to investigate the transmural degree of contractile impairment in the chronic ischemic myocardium. Methods 3T tagged CMR was performed at rest in 12 patients with severe coronary artery disease who had been scheduled for coronary artery bypass grafting. Circumferential strain (C-strain at end-systole on subendocardial and epicardial layers was measured using the short-axis tagged images of the LV and available software (Intag; Osirix. The myocardial segment was divided into stenotic and non-stenotic segments by invasive coronary angiography, and ischemic and non-ischemic segments by stress myocardial perfusion scintigraphy. The difference in C-strain between the two groups was analyzed using the Mann-Whitney U-test. The diagnostic capability of C-strain was analyzed using receiver operating characteristics analysis. Results The absolute subendocardial C-strain was significantly lower for stenotic (-7.5 ± 12.6% than non-stenotic segment (-18.8 ± 10.2%, p Conclusions Analysis of tagged CMR can non-invasively demonstrate predominant impairment of subendocardial strain in the chronic ischemic myocardium at rest.

  15. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    Science.gov (United States)

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-07-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.

  16. Shortening actin filaments cause force generation in actomyosin network to change from contractile to extensile

    Science.gov (United States)

    Kumar, Nitin; Gardel, Margaret

    Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.

  17. Contractile dysfunction in muscle may underlie androgen-dependent motor dysfunction in spinal bulbar muscular atrophy.

    Science.gov (United States)

    Oki, Kentaro; Halievski, Katherine; Vicente, Laura; Xu, Youfen; Zeolla, Donald; Poort, Jessica; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Wiseman, Robert W; Breedlove, S Marc; Jordan, Cynthia L

    2015-04-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by progressive muscle weakness linked to a polyglutamine expansion in the androgen receptor (AR). Current evidence indicates that mutant AR causes SBMA by acting in muscle to perturb its function. However, information about how muscle function is impaired is scant. One fundamental question is whether the intrinsic strength of muscles, an attribute of muscle independent of its mass, is affected. In the current study, we assess the contractile properties of hindlimb muscles in vitro from chronically diseased males of three different SBMA mouse models: a transgenic (Tg) model that broadly expresses a full-length human AR with 97 CAGs (97Q), a knock-in (KI) model that expresses a humanized AR containing a CAG expansion in the first exon, and a Tg myogenic model that overexpresses wild-type AR only in skeletal muscle fibers. We found that hindlimb muscles in the two Tg models (97Q and myogenic) showed marked losses in their intrinsic strength and resistance to fatigue, but were minimally affected in KI males. However, diseased muscles of all three models showed symptoms consistent with myotonic dystrophy type 1, namely, reduced resting membrane potential and deficits in chloride channel mRNA. These data indicate that muscle dysfunction is a core feature of SBMA caused by at least some of the same pathogenic mechanisms as myotonic dystrophy. Thus mechanisms controlling muscle function per se independent of mass are prime targets for SBMA therapeutics.

  18. PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling.

    Science.gov (United States)

    Meder, Benjamin; Huttner, Inken G; Sedaghat-Hamedani, Farbod; Just, Steffen; Dahme, Tillman; Frese, Karen S; Vogel, Britta; Köhler, Doreen; Kloos, Wanda; Rudloff, Jessica; Marquart, Sabine; Katus, Hugo A; Rottbauer, Wolfgang

    2011-08-01

    Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.

  19. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  20. Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish

    Directory of Open Access Journals (Sweden)

    Joshua D. Wythe

    2011-09-01

    The vertebrate heart is one of the first organs to form, and its early function and morphogenesis are crucial for continued embryonic development. Here we analyze the effects of loss of Heart adaptor protein 1 (Hadp1, which we show is required for normal function and morphogenesis of the embryonic zebrafish heart. Hadp1 is a pleckstrin homology (PH-domain-containing protein whose expression is enriched in embryonic cardiomyocytes. Knockdown of hadp1 in zebrafish embryos reduced cardiac contractility and altered late myocyte differentiation. By using optical mapping and submaximal levels of hadp1 knockdown, we observed profound effects on Ca2+ handling and on action potential duration in the absence of morphological defects, suggesting that Hadp1 plays a major role in the regulation of intracellular Ca2+ handling in the heart. Hadp1 interacts with phosphatidylinositol 4-phosphate [PI4P; also known as PtdIns(4P] derivatives via its PH domain, and its subcellular localization is dependent upon this motif. Pharmacological blockade of the synthesis of PI4P derivatives in vivo phenocopied the loss of hadp1 in zebrafish. Collectively, these results demonstrate that hadp1 is required for normal cardiac function and morphogenesis during embryogenesis, and suggest that hadp1 modulates Ca2+ handling in the heart through its interaction with phosphatidylinositols.

  1. Formation of mitochondrial apparatus of contractile cardiomyocytes during normal and hypoxic injury of cardi-ogenesis

    Directory of Open Access Journals (Sweden)

    Ivanchenko M.V.

    2013-01-01

    Full Text Available Changes of cardiomyocytes mitochondrial apparatus can be marked as the main factors which are the basis of various forms of cardiovascular disease, but the dynamics of morphogenetic rearrangements heart mitochondria are poorly researched under normal conditions and under the influence of harmful factors. Mitochondria of contractile cardiomyocytes are different in their morphology and localization in the cell, the biochemical properties and are able to form differently association with other intracellular structures. Question of the relationship between function and heterogeneity of regional specialization of mitochondria and the realization of the heterogeneity in the cell and the degree of their dependence on the disease during ontogeny is important and relevant. There are relatively few ultrastructural studies that investigate adaptive techniques and alternative processes in the mitochondria of atrial and ventricular myocardium under prenatal hypoxia during the development of the myocardium. It is interesting to find mechanisms for the implementation of the ultrastructural changes in the mitochondrial apparatus and extracellular tissue levels in hypoxic conditions on the stages of ontogeny.

  2. The contribution of Kv7 channels to pregnant mouse and human myometrial contractility.

    Science.gov (United States)

    McCallum, Laura A; Pierce, Stephanie L; England, Sarah K; Greenwood, Iain A; Tribe, Rachel M

    2011-03-01

    Premature birth accounts for approximately 75% of neonatal mortality and morbidity in the developed world. Despite this, methods for identifying and treating women at risk of preterm labour are limited and many women still present in preterm labour requiring tocolytic therapy to suppress uterine contractility. The aim of this study was to assess the utility of Kv7 channel activators as potential uterine smooth muscle (myometrium) relaxants in tissues from pregnant mice and women. Myometrium was obtained from early and late pregnant mice and from lipopolysaccharide (LPS)-injected mice (day 15 of gestation; model of infection in pregnancy). Human myometrium was obtained at the time of Caesarean section from women at term (38-41 weeks). RT-PCR/qRT-PCR detected KCNQ and KCNE expression in mouse and human myometrium. In mice, there was a global suppression of all KCNQ isoforms, except KCNQ3, in early pregnancy (n= 6, P flupirtine (20 μM, Kv7 channel activators) caused profound myometrial relaxation (P < 0.05). In summary, Kv7 activators suppressed myometrial contraction and KCNQ gene expression was sustained throughout gestation, particularly at term. Consequently, activation of the encoded channels represents a novel mechanism for treatment of preterm labour. PMID:20132415

  3. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Institute of Scientific and Technical Information of China (English)

    Tavershima Dzenda; Joseph Olusegun Ayo; Alexander Babatunde Adelaiye; Ambrose Osemattah Adaudi

    2015-01-01

    To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine (ACh)-induced contraction of isolated rabbit jejunum. Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically. Results: ACh (2.0 × 10-10 g/mL) and the extract (2.0 × 10-4 g/mL) individually increased the frequency of contraction (mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5%and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase (P < 0.001) over the effect of ACh alone. Similarly, ACh (2.0 × 10-9 g/mL) and the extract individually increased significantly (P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the effect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile effect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  4. Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

    Science.gov (United States)

    Machado, P. F.; Blanchard, G. B.; Duque, J.; Gorfinkiel, N.

    2014-06-01

    Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure (DC), a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.

  5. Accuracy of Dobutamine Stress Echocardiography in Detecting Recovery of Contractile Reserve after Revascularization of Ischemic Myocardium

    Directory of Open Access Journals (Sweden)

    Abas Ali karimi

    2007-09-01

    Full Text Available Background: This study was designed to investigate the accuracy of dobutamine stress echocardiography (DSE in detecting the post-revascularization recovery rate of contractile reserve (CR in ischemic myocardium. Methods: A total of 112 segments from seven patients with low ejection fraction (<35% and coronary artery disease were evaluated with DSE one week before and 12 weeks after coronary artery bypass graft surgery (CABG. Sensitivity, specificity, and positive and negative predictive values of DSE for detecting the recovery rate of CR were calculated based upon their standard definition and were presented with 95% confidence intervals (CI. Results: The mean baseline left ventricular ejection fraction was 31±4%, which reached 35±7% after CABG unremarkably. The recovery rates of resting function and CR were 18.2% and 50% for hypokinetic and 15.6% and 24.1 for akinetic segments respectively. Specificity, sensitivity, and positive and negative predictive values of DSE for detecting the recovery of CR were 83% (CI=69-97, 89% (CI=83-96, 94% (CI = 88-99, and 73 % (CI = 55-88, respectively. Conclusion: Despite acceptable sensitivity, specificity, and positive predictive value, DSE has a relatively lower negative predictive value for detecting the recovery of CR in ischemic myocardium and, consequently, the full extent of myocardial viability. Further sensitive techniques may, therefore, be needed to provide complementary information regarding long-term functional outcome.

  6. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart.

    Science.gov (United States)

    Kwong, Jennifer Q; Lu, Xiyuan; Correll, Robert N; Schwanekamp, Jennifer A; Vagnozzi, Ronald J; Sargent, Michelle A; York, Allen J; Zhang, Jianyi; Bers, Donald M; Molkentin, Jeffery D

    2015-07-01

    In the heart, augmented Ca(2+) fluxing drives contractility and ATP generation through mitochondrial Ca(2+) loading. Pathologic mitochondrial Ca(2+) overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP) opening and cardiomyocyte death. Mitochondrial Ca(2+) uptake is primarily mediated by the mitochondrial Ca(2+) uniporter (MCU). Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca(2+) uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca(2+) challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca(2+) levels were normal in hearts of Mcu-deleted mice, and mitochondria lacking MCU eventually loaded with Ca(2+) after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed up for 30 min. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca(2+) loading underlying a "fight-or-flight" response that acutely matches cardiac workload with ATP production.

  7. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart

    Directory of Open Access Journals (Sweden)

    Jennifer Q. Kwong

    2015-07-01

    Full Text Available In the heart, augmented Ca2+ fluxing drives contractility and ATP generation through mitochondrial Ca2+ loading. Pathologic mitochondrial Ca2+ overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP opening and cardiomyocyte death. Mitochondrial Ca2+ uptake is primarily mediated by the mitochondrial Ca2+ uniporter (MCU. Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca2+ uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca2+ challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca2+ levels were normal in hearts of Mcu-deleted mice, and mitochondria lacking MCU eventually loaded with Ca2+ after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed up for 30 min. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca2+ loading underlying a “fight-or-flight” response that acutely matches cardiac workload with ATP production.

  8. Altered right ventricular contractile pattern after cardiac surgery: monitoring of septal function is essential.

    Science.gov (United States)

    Nguyen, Tin; Cao, Long; Movahed, Assad

    2014-10-01

    Assessment of right ventricular (RV) function is important in the management of various forms of cardiovascular disease. Accurately assessing RV volume and systolic function is a challenge in day-to-day clinical practice due to its complex geometry. Tricuspid annular plane systolic excursion (TAPSE) and systolic excursion velocity (S') have been reviewed to further assess their suitability and objectivity in evaluating RV function. Multiple studies have validated their diagnostic and prognostic values in numerous pathologic conditions. Diminished longitudinal contraction after cardiothoracic surgery is a well-known phenomenon, but it is not well validated. Despite significant reduction in RV performance along the long-axis assessed by TAPSE and S' after cardiac surgery, RV ejection fractions did not change as well as the left ventricular parameters and exercise capacity. RV contractile patterns were markedly altered with decreased longitudinal shortening and increased transverse shortening, which are likely resulted from the septal damage during cardiac surgery. The septum is essential for RV performance due to its oblique fiber orientation. This allows ventricular twisting, which is a vital mechanism against increased pulmonary vascular resistance. The septum function along with TAPSE and S' should be adequately assessed during cardiac surgery, and evidence of septal dysfunction should lead to reevaluation of myocardial protection methods.

  9. Cigarette smoke extracts promote vascular smooth muscle cell proliferation and enhances contractile responses in the vasculature and airway

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Lei, Ying; Chen, Qingwen;

    2010-01-01

    Cigarette smoke exposure is a strong risk factor for cardiovascular and respiratory diseases. However, the knowledge about how cigarette smoke induces damage to vasculature and airway is limited. The present study was designed to examine the effects of cigarette smoke particles extracted by heptane...... (heptane-soluble smoke particles, HSP), by water (water-soluble smoke particles, WSP) and by DMSO (DMSO-soluble smoke particles, DSP), which represent lipophilic, hydrophilic and ambiphoteric constituents from the cigarette smoke, respectively. Human aortic smooth muscle cell (HASMC) proliferation...... responses to sarafotoxin 6c, U46619 or bradykinin in rat mesenteric artery and/or in bronchi. ERK1/2 is activated by HSP and DSP in HASMCs and inhibition of ERK1/2 abrogated the smoke extracts-induced HASMC proliferation, while blockage of nicotinic receptors had no effects, suggesting that the toxic...

  10. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function.

    Science.gov (United States)

    Birket, Matthew J; Ribeiro, Marcelo C; Kosmidis, Georgios; Ward, Dorien; Leitoguinho, Ana Rita; van de Pol, Vera; Dambrot, Cheryl; Devalla, Harsha D; Davis, Richard P; Mastroberardino, Pier G; Atsma, Douwe E; Passier, Robert; Mummery, Christine L

    2015-10-27

    Maximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC) model of hypertrophic cardiomyopathy (HCM). A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.

  11. The contractile vacuole in Ca2+-regulation in Dictyostelium: its essential function for cAMP-induced Ca2+-influx

    Directory of Open Access Journals (Sweden)

    Schlatterer Christina

    2006-06-01

    Full Text Available Abstract Background cAMP-induced Ca2+-influx in Dictyostelium is controlled by at least two non-mitochondrial Ca2+-stores: acidic stores and the endoplasmic reticulum (ER. The acidic stores may comprise the contractile vacuole network (CV, the endosomal compartment and acidocalcisomes. Here the role of CV in respect to function as a potential Ca2+-store was investigated. Results Dajumin-GFP labeled contractile vacuoles were purified 7-fold by anti-GFP-antibodies in a magnetic field. The purified CV were shown for the first time to accumulate and release Ca2+. Release of Ca2+ was elicited by arachidonic acid or the calmodulin antagonist W7, the latter due to inhibition of the pump. The characteristics of Ca2+-transport and Ca2+-release of CV were compared to similarly purified vesicles of the ER labeled by calnexin-GFP. Since the CV proved to be a highly efficient Ca2+-compartment we wanted to know whether or not it takes part in cAMP-induced Ca2+-influx. We made use of the LvsA--mutant expected to display reduced Ca2+-transport due to loss of calmodulin. We found a severe reduction of cAMP-induced Ca2+-influx into whole cells. Conclusion The contractile vacuoles in Dictyostelium represent a highly efficient acidic Ca2+-store that is required for cAMP-induced Ca2+-influx.

  12. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    Science.gov (United States)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  13. Effects of Using Tricaine Methanesulfonate and Metomidate before Euthanasia on the Contractile Properties of Rainbow Trout (Oncorhynchus mykiss) Myocardium.

    Science.gov (United States)

    Roberts, Jordan C; Syme, Douglas A

    2016-01-01

    Because many anesthetics work through depressing cell excitability, unanesthetized euthanasia has become common for research involving excitable tissues (for example muscle and nerve) to avoid these depressive effects. However, anesthetic use during euthanasia may be indicated for studies involving isolated tissues if the potential depressive effects of brief anesthetic exposure dissipate after subsequent tissue isolation, washout, and saline perfusion. We explore this here by measuring whether, when applied prior to euthanasia, standard immersion doses of 2 fish anesthetics, tricaine methanesulfonate (TMS; 100 mg/L, n = 6) and methyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (metomidate, 10 mg/L, n = 6), have residual effects on the contractile properties (force and work output) of isolated and saline-perfused ventricular compact myocardium from rainbow trout (Oncorhynchus mykiss). Results suggest that direct exposure of muscle to immersion doses of TMS-but not metomidate-impairs muscle contractile performance. However, brief exposure (2 to 3 min) to either anesthetic during euthanasia only-providing that the agent is washed out prior to tissue experimentation-does not have an effect on the contractile properties of the myocardium. Therefore, the use of TMS, metomidate, and perhaps other anesthetics that depress cell excitability during euthanasia may be indicated when conducting research on isolated and rinsed tissues. PMID:27657711

  14. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function

    Directory of Open Access Journals (Sweden)

    Matthew J. Birket

    2015-10-01

    Full Text Available Maximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC model of hypertrophic cardiomyopathy (HCM. A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.

  15. Time-lapse imaging as a tool to investigate contractility of the epididymal duct--effects of cGMP signaling.

    Directory of Open Access Journals (Sweden)

    Andrea Mietens

    Full Text Available The well orchestrated function of epididymal smooth muscle cells ensures transit of spermatozoa through the epididymal duct during which spermatozoa acquire motility and fertilizing capacity. Relaxation of smooth muscle cells is mediated by cGMP signaling and components of this pathway are found within the male reproductive tract. Whereas contractile function of caudal parts of the rat epididymal duct can be examined in organ bath studies, caput and corpus regions are fragile and make it difficult to mount them in an organ bath. We developed an ex vivo time-lapse imaging-based approach to investigate the contractile pattern in these parts of the epididymal duct. Collagen-embedding allowed immobilization without impeding contractility or diffusion of drugs towards the duct and therefore facilitated subsequent movie analyses. The contractile pattern was made visible by placing virtual sections through the acquired image stack to track wall movements over time. By this, simultaneous evaluation of contractile activity at different positions of the observed duct segment was possible. With each contraction translating into a spike, drug-induced alterations in contraction frequency could be assessed easily. Peristaltic contractions were also detectable and throughout all regions in the proximal epididymis we found regular spontaneous contractile activity that elicited movement of intraluminal contents. Stimulating cGMP production by natriuretic peptide ANP or inhibiting degradation of cGMP by the phosphodiesterase 5 inhibitor sildenafil significantly reduced contractile frequency in isolated duct segments from caput and corpus. RT-PCR analysis after laser-capture microdissection localized the corresponding molecules to the smooth muscle layer of the duct. Our time-lapse imaging approach proved to be feasible to assess contractile function in all regions of the epididymal duct under near physiological conditions and provides a tool to evaluate acute

  16. Chaperonin containing T-complex polypeptide subunit eta (CCT-eta is a specific regulator of fibroblast motility and contractility.

    Directory of Open Access Journals (Sweden)

    Latha Satish

    Full Text Available Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF and platelet derived growth factor (PDGF stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (alpha-SMA expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less alpha-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular

  17. Modification of abomasum contractility by flavonoids present in ruminants diet: in vitro study.

    Science.gov (United States)

    Mendel, M; Chłopecka, M; Dziekan, N; Karlik, W

    2016-09-01

    Flavonoid supplementation is likely to be beneficial in improving rumen fermentation and in reducing the incidence of rumen acidosis and bloat. Flavonoids are also said to increase the metabolic performance during the peripartum period. Ruminants are constantly exposed to flavonoids present in feed. However, it is not clear if these phytochemicals can affect the activity of the gut smooth muscle. Therefore, the aim of the study was to verify the effect of three flavonoids on bovine isolated abomasum smooth muscle. The study was carried out on bovine isolated circular and longitudinal abomasal smooth muscle specimens. All experiments were conducted under isometric conditions. The effect of apigenin, luteolin and quercetin (0.001 to 100 µM) was evaluated on acetylcholine-precontracted preparations. The effect of multiple, but not cumulative, treatment and single treatment with each flavonoid on abomasum strips was compared. Apigenin (0.1 to 100 µM) dose-dependently showed myorelaxation effects. Luteolin and quercetin applied in low doses increased the force of the ACh-evoked reaction. However, if used in high doses in experiments testing a wide range of concentrations, their contractile effect either declined (luteolin) or was replaced by an antispasmodic effect (quercetin). Surprisingly, the reaction induced by flavonoids after repeated exposure to the same phytochemical was not reproducible in experiments testing only single exposure of abomasum strips to the same flavonoid used in a high concentration. Taking into account the physicochemical properties of flavonoids, this data suggests the ability of flavonoids to interfere with cell membranes and, subsequently, to modify their responsiveness. Assuming ruminant supplementation with luteolin or quercetin or their presence in daily pasture, a reduction of the likelihood of abomasum dysmotility should be expected. PMID:27534882

  18. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea.

    Science.gov (United States)

    Vasconcelos, T B; Ribeiro-Filho, H V; Lucetti, L T; Magalhães, P J C

    2016-02-01

    β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties). β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50) for K(+)-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated) pathways. β-Citronellol (but not verapamil) inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by receptor

  19. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea

    Directory of Open Access Journals (Sweden)

    T.B. Vasconcelos

    2016-01-01

    Full Text Available β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties. β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50 for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated pathways. β-Citronellol (but not verapamil inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1 or transient receptor potential ankyrin 1 (TRPA1 receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by

  20. Phytoestrogen genistein decreases contractile response of aortic artery in vitro and arterial blood pressure in vivo

    Institute of Scientific and Technical Information of China (English)

    Hong-fang LI; Long-de WANG; Song-yi QU

    2004-01-01

    AIM: To determine the mechanisms of effects of phytoestrogen genistein on the contracted rabbit aortic arteries in vitro, and observe the effect of genistein and 17-β estradiol on mean arterial pressure (MAP) in ovariectomized (OVX) rats. METHODS: (1) Strips of rabbit aortic smooth muscle were suspended in organ baths containing Kreb's solution, and then isometric tension was measured. (2) Female mature Wistar rats underwent a bilateral ovariectomy (OVX). Sham-operated rats (SHAM) were used as controls. After administration of genistein (0.4(1) Similar to 17-β estradiol, genistein could dose-dependently relax 40 mmol/L KCl-precontracted arterial strips.Incubation with Nω-L-nitro-arginine (L-NNA), methylene blue (MB), indomethacin, propranolol or endothelium removal did not affect relaxation induced by genistein. In calcium-free solution containing 0.01mmol/L egtazic acid (EGTA), genistein inhibited not only the first phase contraction induced by noradrenaline (NA), but also the second contraction induced by CaCl2. In addition, genistein could reduce the contractile responses of NA, KCl and CaCl2,and shift their cumulative concentration-response curves rightward. (2) MAP in OVX rats was significantly higher compared with that of SHAM rats. However, after chronically treatment with genistein or 17-β estradiol for 21 d the baseline MAP in OVX rats was reduced significantly. CONCLUSIONS: (1) The vasodilator effect of genistein in vitro is endothelium independent and not related to the nitric oxide, its mechanisms being probably due to inhibition of Ca2+ influx through calcium channels in a noncompetitive manner and Ca2+ release from intracellular store induced by NA. (2) Administration of genistein or 17-β estradiol can chronically decrease MAP in OVX rats.

  1. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.

    Science.gov (United States)

    Hansen, Anders Krogh; Clausen, Torben; Nielsen, Ole Baekgaard

    2005-07-01

    Intensive exercise is associated with a pronounced increase in extracellular K+ ([K+]o). Because of the ensuing depolarization and loss of excitability, this contributes to muscle fatigue. Intensive exercise also increases the level of circulating catecholamines and lactic acid, which both have been shown to alleviate the depressing effect of hyperkalemia in slow-twitch muscles. Because of their larger exercise-induced loss of K+, fast-twitch muscles are more prone to fatigue caused by increased [K+]o than slow-twitch muscles. Fast-twitch muscles also produce more lactic acid. We therefore compared the effects of catecholamines and lactic acid on the maintenance of contractility in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles. Intact muscles were mounted on force transducers and stimulated electrically to evoke short isometric tetani. Elevated [K+]o (11 and 13 mM) was used to reduce force to approximately 20% of control force at 4 mM K+. In EDL, the beta2-agonist salbutamol (10(-5) M) restored tetanic force to 83 +/- 2% of control force, whereas in soleus salbutamol restored tetanic force to 93 +/- 1%. In both muscles, salbutamol induced hyperpolarization (5-8 mV), reduced intracellular Na+ content and increased Na+-K+ pump activity, leading to an increased K+ tolerance. Lactic acid (24 mM) restored force from 22 +/- 4% to 58 +/- 2% of control force in EDL, an effect that was significantly lower than in soleus muscle. These results amplify and generalize the concept that the exercise-induced acidification and increase in plasma catecholamines counterbalance fatigue arising from rundown of Na+ and K+ gradients. PMID:15743886

  2. Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts

    Institute of Scientific and Technical Information of China (English)

    Yuan James RAO; Lei XI

    2009-01-01

    Phosphodiesterases (PDEs) are enzymes that degrade cellular cAMP and cGMP and are thus essential for regulating the cyclic nucleotides. At least 11 families of PDEs have been identified, each with a distinctive structure, activity, expression, and tissue distribution. The PDE type-3, -4, and -5 (PDE3, PDE4, PDE5) are localized to specific regions of the cardiomyo-cyte, such as the sarcoplasmic reticulum and Z-disc, where they are likely to influence cAMP/cGMP signaling to the end effectors of contractility. Several PDE inhibitors exhibit remarkable hemodynamic and inotropic properties that may be valuable to clinical practice. In particular, PDE3 inhibitors have potent cardiotonic effects that can be used for short-term inotropic support, especially in situations where adrenergic stimulation is insufficient. Most relevant to this review, PDE in-hibitors have also been found to have cytoprotective effects in the heart. For example, PDE3 inhibitors have been shown to be cardioprotective when given before ischemic attack, whereas PDE5 inhibitors, which include three widely used erectile dysfunction drugs (sildenafil, vardenafil and tadalafil), can induce remarkable cardioprotection when administered either prior to ischemia or upon reperfusion. This article provides an overview of the current laboratory and clinical evidence, as well as the cellular mechanisms by which the inhibitors of PDE3, PDE4 and PDE5 exert their beneficial effects on normal and ischemic hearts. It seems that PDE inhibitors hold great promise as clinically applicable agents that can improve car-diac performance and cell survival under critical situations, such as ischemic heart attack, cardiopulmonary bypass surgery, and heart failure.

  3. Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue.

    Science.gov (United States)

    Schleip, Robert; Naylor, Ian L; Ursu, Daniel; Melzer, Werner; Zorn, Adjo; Wilke, Hans-Joachim; Lehmann-Horn, Frank; Klingler, Werner

    2006-01-01

    The article introduces the hypothesis that intramuscular connective tissue, in particular the fascial layer known as the perimysium, may be capable of active contraction and consequently influence passive muscle stiffness, especially in tonic muscles. Passive muscle stiffness is also referred to as passive elasticity, passive muscular compliance, passive extensibility, resting tension, or passive muscle tone. Evidence for the hypothesis is based on five indications: (1) tonic muscles contain more perimysium and are therefore stiffer than phasic muscles; (2) the specific collagen arrangement of the perimysium is designed to fit a load-bearing function; (3) morphological considerations as well as histological observations in our laboratory suggest that the perimysium is characterized by a high density of myofibroblasts, a class of fibroblasts with smooth muscle-like contractile kinetics; (4) in vitro contraction tests with fascia have demonstrated that fascia, due to the presence of myofibroblasts, is able to actively contract, and that the resulting contraction forces may be strong enough to influence musculoskeletal dynamics; (5) the pronounced increase of the perimysium in muscle immobilization and in the surgical treatment of distraction osteogenesis indicates that perimysial stiffness adapts to mechanical stimulation and hence influences passive muscle stiffness. In conclusion, the perimysium seems capable of response to mechanostimulation with a myofibroblast facilitated active tissue contraction, thereby adapting passive muscle stiffness to increased tensional demands, especially in tonic musculature. If verified, this new concept may lead to novel pharmaceutical or mechanical approaches to complement existing treatments of pathologies which are accompanied by an increase or decrease of passive muscle stiffness (e.g., muscle fibroses such as torticollis, peri-partum pelvic pain due to pelvic instability, and many others). Methods for testing this new concept

  4. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Institute of Scientific and Technical Information of China (English)

    Tavershima; Dzenda; Joseph; Olusegun; Ayo; Alexander; Babatunde; Adelaiye; Ambrose; Osemattah; Adaudi

    2015-01-01

    Objective:To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine(ACh)-induced contraction of isolated rabbit jejunum.Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically.Results: ACh(2.0 × 10-10 g/m L) and the extract(2.0 × 10-4 g/m L) individually increased the frequency of contraction(mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5% and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase(P < 0.001) over the effect of ACh alone. Similarly, ACh(2.0 × 10-9 g/m L) and the extract individually increased significantly(P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the ef ect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile ef ect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  5. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  6. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    Science.gov (United States)

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  7. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function.

    Directory of Open Access Journals (Sweden)

    Elie Simard

    Full Text Available Increased blood glucose concentrations promote reactions between glucose and proteins to form advanced glycation end-products (AGE. Circulating AGE in the blood plasma can activate the receptor for advanced end-products (RAGE, which is present on both endothelial and vascular smooth muscle cells (VSMC. RAGE exhibits a complex signaling that involves small G-proteins and mitogen activated protein kinases (MAPK, which lead to increased nuclear factor kappa B (NF-κB activity. While RAGE signaling has been previously addressed in endothelial cells, little is known regarding its impact on the function of VSMC. Therefore, we hypothesized that RAGE signaling leads to alterations in the mechanical and functional properties of VSMC, which could contribute to complications associated with diabetes. We demonstrated that RAGE is expressed and functional in the A7r5 VSMC model, and its activation by AGE significantly increased NF-κB activity, which is known to interfere with the contractile phenotype of VSMC. The protein levels of the contraction-related transcription factor myocardin were also decreased by RAGE activation with a concomitant decrease in the mRNA and protein levels of transgelin (SM-22α, a regulator of VSMC contraction. Interestingly, we demonstrated that RAGE activation increased the overall cell rigidity, an effect that can be related to an increase in myosin activity. Finally, although RAGE stimulation amplified calcium signaling and slightly myosin activity in VSMC challenged with vasopressin, their contractile capacity was negatively affected. Overall, RAGE activation in VSMC could represent a keystone in the development of vascular diseases associated with diabetes by interfering with the contractile phenotype of VSMC through the modification of their mechanical and functional properties.

  8. Pretreatment with remifentanil protects against the reduced-intestinal contractility related to the ischemia and reperfusion injury in rat

    Directory of Open Access Journals (Sweden)

    Hale Sayan-Ozacmak

    2015-12-01

    Full Text Available BACKGROUND AND OBJECTIVES: Serious functional and structural alterations of gastrointestinal tract are observed in failure of blood supply, leading to gastrointestinal dismotility. Activation of opioid receptors provides cardioprotective effect against ischemia-reperfusion (I/R injury. The aim of the present study was to determine whether or not remifentanil could reduce I/R injury of small intestine. METHODS: Male Wistar Albino rats were subjected to mesenteric ischemia (30 min followed by reperfusion (3 h. Four groups were designed: sham control; remifentanil alone; I/R control; and remifentanil + I/R. Animals in remifentanil + I/R group were subjected to infusion of remifentanil (2 ug kg-1 min-1 for 60 min, half of which started before inducing ischemia. Collecting the ileum tissues, evaluation of damage was based on contractile responses to carbachol, levels of lipid peroxidation and neutrophil infiltration, and observation of histopathological features in intestinal tissue. RESULTS: Following reperfusion, a significant decrease in carbachol-induced contractile response, a remarkable increase in both lipid peroxidation and neutrophil infiltration, and a significant injury in mucosa were observed. An average contractile response of remifentanil + I/R group was significantly different from that of the I/R group. Lipid peroxidation and neutrophil infiltration were also significantly suppressed by the treatment. The tissue samples of the I/R group were grade 4 in histopathological evaluation. In remifentanil + I/R group, on the other hand, the mucosal damage was moderate, staging as grade 1. CONCLUSIONS: The pretreatment with remifentanil can attenuate the intestinal I/R injury at a remarkable degree possibly by lowering lipid peroxidation and leukocyte infiltration.

  9. Effect of lead on cholinergic contractile function in the forestomach, ileum and colon of the male Wistar rat

    Energy Technology Data Exchange (ETDEWEB)

    Ryden, E.B.

    1986-01-01

    Gastrointestinal symptoms, including colic, are signs of lead poisoning in man, but the mechanism of these effects has not been elucidated. In order to understand the effects of lead on acetylcholine (ACh)-mediated responses, studies were undertaken to determine the isometric contractile response to methacholine, KCl and electric field stimulation in rat forestomach, ileum and colon under conditions of in vitro and in vivo treatment with lead acetate. Rats were dosed with 4% lead acetate in their diet, NIH-07, for 7 weeks, which resulted in renal and hematologic toxicity and blood lead levels of 180-389 ug/dl (1.2 x 10/sup -5/ M). Tissues from in vivo treated rats were exposed to 1.2 x 10/sup -5/ M lead acetate during in vitro contractile studies. E/sub max/ or ED/sub 50/ methacholine was not affected by 1.2 x 10/sup -5/ M lead acetate, administered in vitro to control tissue. In the forestomach, a 10-fold higher concentration of lead (16 x 10/sup -5/ M), administered in vitro, increased baseline tension and inhibition response to methacholine. However, in vivo lead treatment potentiated response to methacholine in the forestomach and increased baseline tension in the presence of physostigmine. The EFS response, attributable to ACh release, was not affected in the forestomach or ileum by 1.2 x 10/sup -5/ M in vitro lead treatment. These data indicate that lead, administered in vivo in concentrations which cause renal and hematologic toxicity, does not impair cholinergic contractile response in gastrointestinal smooth muscle. Instead, the response to methacholine may be potentiated in the forestomach. Possible mechanisms of lead-induced potentiation of baseline or evoked tension include increased levels of non-elicited ACh release, inhibition of acetylcholinesterase or sensitization of muscarinic receptors.

  10. The C Isoform of Dictyostelium Tetraspanins Localizes to the Contractile Vacuole and Contributes to Resistance against Osmotic Stress.

    Science.gov (United States)

    Albers, Tineke; Maniak, Markus; Beitz, Eric; von Bülow, Julia

    2016-01-01

    Tetraspanins (Tsps) are membrane proteins that are widely expressed in eukaryotic organisms. Only recently, Tsps have started to acquire relevance as potential new drug targets as they contribute, via protein-protein interactions, to numerous pathophysiological processes including infectious diseases and cancer. However, due to a high number of isoforms and functional redundancy, knowledge on specific functions of most Tsps is still scarce. We set out to characterize five previously annotated Tsps, TspA-E, from Dictyostelium discoideum, a model for studying proteins that have human orthologues. Using reverse transcriptase PCRs, we found mRNAs for TspA-E in the multicellular slug stage, whereas vegetative cells expressed only TspA, TspC and, to a lesser extent, TspD. We raised antibodies against TspA, TspC and TspD and detected endogenous TspA, as well as heterologously expressed TspA and TspC by Western blot. N-deglycosylation assays and mutational analyses showed glycosylation of TspA and TspC in vivo. GFP-tagged Tsps co-localized with the proton pump on the contractile vacuole network. Deletion strains of TspC and TspD exibited unaltered growth, adhesion, random motility and development. Yet, tspC- cells showed a defect in coping with hypo-osmotic stress, due to accumulation of contractile vacuoles, but heterologous expression of TspC rescued their phenotype. In conclusion, our data fill a gap in Dictyostelium research and open up the possibility that Tsps in contractile vacuoles of e.g. Trypanosoma may one day constitute a valuable drug target for treating sleeping sickness, one of the most threatening tropical diseases. PMID:27597994

  11. The effects of buthionine sulfoximine treatment on diaphragm contractility and SERCA pump function in adult and middle aged rats

    OpenAIRE

    Smith, Ian C; Vigna, Chris; Levy, Andrew S; Steven G Denniss; Rush, James W E; Tupling, A. Russell

    2015-01-01

    This study examined the effects of 10 days of buthionine sulfoximine (BSO) treatment on in vitro contractility and sarcoplasmic reticulum calcium pump (SERCA) expression and function in adult (AD; 6–8 months old) and middle aged (MA; 14–17 months old) rat diaphragm in both the basal state and following fatiguing stimulation. BSO treatment reduced the cellular concentrations of free glutathione (GSH) by >95% and oxidized glutathione (GSSG) by >80% in both age cohorts. GSH content in AD Control...

  12. Relaxant effect of a novel calcium-activated potassium channel modulator on human myometrial spontaneous contractility in vitro

    DEFF Research Database (Denmark)

    Rosenbaum, S.T.; Larsen, T.; Joergensen, J.C.;

    2012-01-01

    . Simultaneous vehicle controls were performed for all experiments. The effects of drugs were studied on spontaneous contractions. Results: NS4591 exerted an inhibitory effect on myometrial contractions in muscle strips from non-pregnant and pregnant women. The contractility in non-pregnant and pregnant...... section at term (N=11) or hysterectomy (N=11). NS4591 was added cumulatively in the concentration range of 0.3-30μm. In separate experiments, the effects of pre-incubation of muscle preparation with the SK or IK channel blockers apamin (1μm) and TRAM34 (10μm) on the outcomes of NS4591 were evaluated...

  13. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Yvan Devaux

    Full Text Available BACKGROUND: Prediction of clinical outcome after acute myocardial infarction (AMI is challenging and would benefit from new biomarkers. We investigated the prognostic value of 4 circulating microRNAs (miRNAs after AMI. METHODS: We enrolled 150 patients after AMI. Blood samples were obtained at discharge for determination of N-terminal pro-brain natriuretic peptide (Nt-proBNP and levels of miR-16, miR-27a, miR-101 and miR-150. Patients were assessed by echocardiography at 6 months follow-up and the wall motion index score (WMIS was used as an indicator of left ventricular (LV contractility. We assessed the added predictive value of miRNAs against a multi-parameter clinical model including Nt-proBNP. RESULTS: Patients with anterior AMI and elevated Nt-proBNP levels at discharge from the hospital were at high risk of subsequent impaired LV contractility (follow-up WMIS>1.2, n = 71. A combination of the 4 miRNAs (miR-16/27a/101/150 improved the prediction of LV contractility based on clinical variables (P = 0.005. Patients with low levels of miR-150 (odds ratio [95% confidence interval] 0.08 [0.01-0.48] or miR-101 (0.19 [0.04-0.97] and elevated levels of miR-16 (15.9 [2.63-95.91] or miR-27a (4.18 [1.36-12.83] were at high risk of impaired LV contractility. The 4 miRNA panel reclassified a significant proportion of patients with a net reclassification improvement of 66% (P = 0.00005 and an integrated discrimination improvement of 0.08 (P = 0.001. CONCLUSION: Our results indicate that panels of miRNAs may aid in prognostication of outcome after AMI.

  14. A RabGAP protein and BEACH Family proteins regulate contractile vacuole formation and activity and chemotaxis in Dictyostelium

    OpenAIRE

    Du, Fei

    2007-01-01

    The contractile vacuole (CV) system is the osmoregulatory organelle of free-living amoebae and protozoa. I present data showing that the RabGAP RabGAP1 acts as a switch for discharging the CVs into the extracellular medium in Dictyostelium. rabgap1 null (rabgap1⁻) cells have highly enlarged CVs whose structure and activity are aberrant. In rabgap1- cells, the dynamic fusion of the CV with the plasma membrane is absent and the discharge of CV content is inefficient. RabGAP1 localizes to the CV...

  15. Alpha 2-adrenoceptor-mediated contractile response to catecholamines in smooth muscle strips isolated from rainbow trout stomach (Salmo gairdneri).

    OpenAIRE

    Kitazawa, T.; Kondo, H.; Temma, K.

    1986-01-01

    The type of adrenoceptor involved in the contractile response to catecholamines in smooth muscle strips isolated from rainbow trout stomach was determined. Noradrenaline (10 nM-10 microM) and adrenaline (10 nM-3 microM) caused non-sustained contractions which were markedly decreased by phentolamine (5.4 microM) but not by carteolol (5 microM). Phenylephrine (1 microM-1 mM) was less effective in causing muscle contraction and methoxamine produced no contraction. Clonidine (100 nM-300 microM) c...

  16. Sinoatrial tissue of crucian carp heart has only negative contractile responses to autonomic agonists

    Directory of Open Access Journals (Sweden)

    Hälinen Mervi

    2010-06-01

    Full Text Available Abstract Background In the anoxia-tolerant crucian carp (Carassius carassius cardiac activity varies according to the seasons. To clarify the role of autonomic nervous control in modulation of cardiac activity, responses of atrial contraction and heart rate (HR to carbacholine (CCh and isoprenaline (Iso were determined in fish acclimatized to winter (4°C, cold-acclimated, CA and summer (18°C, warm-acclimated, WA temperatures. Results Inhibitory action of CCh was much stronger on atrial contractility than HR. CCh reduced force of atrial contraction at an order of magnitude lower concentrations (EC50 2.75-3.5·10-8 M in comparison to its depressive effect on HR (EC50 1.23-2.02·10-7 M (P -8 M and 10-7 M CCh, respectively (P + current, IK,CCh, with an EC50 value of 3-4.5·10-7 M and inhibited Ca2+ current (ICa by 28 ± 8% and 51 ± 6% at 10-7 M and 10-6 M, respectively. These currents can explain the shortening of AP. Iso did not elicit any responses in crucian carp sinoatrial preparations nor did it have any effect on atrial ICa, probably due to the saturation of the β-adrenergic cascade in the basal state. Conclusion In the crucian carp, HR and force of atrial contraction show cardio-depressive responses to the cholinergic agonist, but do not have any responses to the β-adrenergic agonist. The scope of inhibitory regulation by CCh is increased by the high basal tone of the adenylate cyclase-cAMP cascade. Higher concentrations of CCh were required to induce IK,CCh and inhibit ICa than was needed for CCh's negative inotropic effect on atrial muscle suggesting that neither IK,CCh nor ICa alone can mediate CCh's actions but they might synergistically reduce AP duration and atrial force production. Autonomic responses were similar in CA winter fish and WA summer fish indicating that cardiac sensitivity to external modulation by the autonomic nervous system is not involved in seasonal acclimatization of the crucian carp heart to cold and anoxic

  17. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Rudo F Mapanga

    Full Text Available Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP and a dysfunctional ubiquitin-proteasome system (UPS as potential mediators of this process. Since oleanolic acid (OA; a clove extract possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1 H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose; and subsequently treated with two OA doses (20 and 50 µM for 6 and 24 hr, respectively; 2 Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose for 60 min, followed by 20 min global ischemia and 60 min reperfusion ± OA treatment; 3 In vivo coronary ligations were performed on streptozotocin treated rats ± OA administration during reperfusion; and 4 Effects of long-term OA treatment (2 weeks on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These

  18. 心肌收缩蛋白基因表达、左室压及收缩力的近日节律%Circadian Rhythm of Gene Expression of Myocardial Contractile Protein,Left Ventricular Pressure and Contractility

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective A number of cardiovascular variables exhibit a circ adian rhythm. Whethe r myocardial contractile response and gene expression of the contractile protein also show changes with a similar period was here investigated. Method Circadi an variabilities in the left ventricular developed pressure (LVP) and contractil ity (LV dp/dt max) were measured in 24 Sprague-Dawley r ats by directly left ve ntricular catheterizing and compared with changes in the gene expression of α- myosin heavy chain (α-MHC) in myocytes obtained from the same animals by dot b lottin g analysis. Results A circadian rhythm was seen in the variabili ty of LVP (P<0.001), LV dp/dt max (P<0.001) and the bio chemically measured expression of the α- MHC gene (P<0.01). As compared to the amplitude of the rhythm i n α-MHC gene exp ression, the amplitude of the contractility rhythm was large (P< 0.01) and the ci rcadian amplitude of the LVP(P<0.001) was the largest, represent ing perhaps a co mposite of intracardiac plus any extracardiac contributions. Conclusion One of factors determing the circadian rhythm of myocardial contractile function is α -MHC gene expression level.%目的许多心血管变量存在着近日节律,心肌收缩反应及收缩蛋白基因表达是否存在着相应的周期性改变是值得深入研究.方法在24h内采用直接在大白鼠左心室内插入左心导管记录左室压(LVP)和左室压力微分最大值(dp/dtmax)以及检测比较心肌细胞的α-MHC基因表达改变.结果 LVP(P<0.001)、dp/dtmax(P<0.001)和α-MHC(P<0.01)的变化存在着近日节律.通过比较三者近日节律振幅显示LVP的振幅最大,dp/dtmax次之,α-MHC基因表达的节律振幅再次之,表明心肌收缩力的近日节律的变化是由心肌细胞内在和外在作用的结果.结论α-MHC基因表达水平的近日变化是决定着心肌收缩功能的近日节律的因素之一.

  19. Insulin-like growth factor-I and slow, bi-directional perfusion enhance the formation of tissue-engineered cardiac grafts.

    Science.gov (United States)

    Cheng, Mingyu; Moretti, Matteo; Engelmayr, George C; Freed, Lisa E

    2009-03-01

    Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac grafts. Heart cells were cultured on three-dimensional porous scaffolds in medium with or without supplemental IGF and in the presence or absence of slow, bi-directional perfusion that enhanced transport and provided shear stress. Structural, molecular, and electrophysiologic properties of the resulting grafts were quantified on culture day 8. IGF had independent, beneficial effects on apoptosis (p < 0.01), cellular viability (p < 0.01), contractile amplitude (p < 0.01), and excitation threshold (p < 0.01). Perfusion independently affected the four aforementioned parameters and also increased amounts of cardiac troponin-I (p < 0.01), connexin-43 (p < 0.05), and total protein (p < 0.01) in the grafts. Interactive effects of IGF and perfusion on apoptosis were also present (p < 0.01). Myofibrillogenesis and spontaneous contractility were present only in grafts cultured with perfusion, although contractility was inducible by electrical field stimulation of grafts from all groups. Our findings demonstrate that multi-factorial stimulation of tissue-engineered cardiac grafts using IGF and perfusion resulted in independent and interactive effects on heart cell survival, differentiation, and contractility. PMID:18759675

  20. EFFECTS OF NOVEL PHOSPHODIESTERASE 4 INHIBITORS,ARIFLO AND SB242126A, ON ENDOTHELIN-1-INDUCED CONTRACTILITY OF ISOLATED HUMAN MYOMETRIUM

    Institute of Scientific and Technical Information of China (English)

    QI Hong(祁红); ZHANG Yong(张勇); CHEN Hong-zhuan(陈红专); Marie Jo LEROY; Charles ADVENIER

    2005-01-01

    Objective To investigate the effects of novel selective phosphodiesterase4 ( PDE4) inhibitors,Ariflo and SB242126A, on the endothelin-1 ( ET-1 ) - induced contractility occurring in nonpregnant human myometrium specimens. Methods Contractile responses to Ariflo and SB242126A were recorded cumulatively on isolated human longitudinal myometrium specimens obtained through surgical operations. Results Ariflo and SB242126A could inhibit both the frequency and amplitude of spontaneous contractions of myometrium (pD2 =8.6and 7. 6,n =4) and ET-1-induced contractions in a concentration-dependent manner (pD2 =7. 7 and 8. 1 ,n =5),with a potency similar to that of Rolipram. Conclusion Ariflo and SB242126A have an obvious inhibitory effect on endothelin-1-induced contractility of isolated human myometrium. The finding suggested that PDE4 inhibitors might have clinical potential in treating preterm labour and dysmenorrhoea.

  1. Contractility as a global regulator of cellular morphology, velocity, and directionality in low-adhesive fibrillary micro-environments.

    Science.gov (United States)

    Schuster, Simon L; Segerer, Felix J; Gegenfurtner, Florian A; Kick, Kerstin; Schreiber, Christoph; Albert, Max; Vollmar, Angelika M; Rädler, Joachim O; Zahler, Stefan

    2016-09-01

    Recent reports demonstrated that migration in fibrillary environments can be mimicked by spatial confinement achieved with micro-patterning [1]. Here we investigated whether a model system based on linearly structured surfaces allows to draw conclusions about migration of endothelial cells (ECs) in fibrillary 3D environments. We found that ECs on 3 μm wide tracks (termed as 1D) migrate less efficient in comparison to ECs on broader tracks in regard to velocity and directional persistence. The frequent changes of direction in ECs on narrow tracks are accompanied by pronounced cell rounding and membrane blebbing, while cells migrating with an elongated morphology display a single lamellipodium. This behavior is contractility-dependent as both modes can be provoked by manipulating activity of myosin II (blebbistatin or calyculin A, respectively). The comparison between 1D and 3D migrating cells revealed a striking similarity in actin architecture and in switching between two morphologies. ECs move more directed but slower upon inhibition of contractility in 1D and 3D, in contrast to 2D cell culture. We conclude that micro-patterning can be used to study morphological switches in a controlled manner with a prognostic value for 3D environments. Moreover, we identified blebbing as a new aspect of EC migration. PMID:27336186

  2. Analysis on oscillating actuator frequency influence of the fluid flow characterization for 2D contractile water jet thruster

    Science.gov (United States)

    Shaari, M. F.; Abu Bakar, H.; Nordin, N.; Saw, S. K.; Samad, Z.

    2013-12-01

    Contractile body is an alternative mechanism instead of rotating blade propeller to generate water jet for locomotion. The oscillating motion of the actuator at different frequencies varies the pressure and volume of the pressure chamber in time to draw in and jet out the water at a certain mass flow rate. The aim of this research was to analyze the influence of the actuating frequency of the fluid flow in the pressure chamber of the thruster during this inflation-deflation process. A 70mm × 70mm × 18mm (L × W × T) 2D water jet thruster was fabricated for this purpose. The contractile function was driven using two lateral pneumatic actuators where the fluid flow analysis was focused on the X-Y plane vector. Observation was carried out using a video camera and Matlab image measurement technique to determine the volume of the flowing mass. The result demonstrated that the greater actuating frequency decreases the fluid flow rate and the Reynolds number. This observation shows that the higher frequency would give a higher mass flow rate during water jet generation.

  3. Effect of long-term partial bladder outlet obstruction on caldesmon isoforms and their correlation with contractile function

    Institute of Scientific and Technical Information of China (English)

    Lin YANG; Da-lin Hei; Shu WANG; He-peng CHENG; Xin-yang WANG

    2008-01-01

    Aim: In the present study, we investigate the expression of caldesmon (CAD) isoforms in rabbit detrusor smooth muscles (DSM) during the progression of partial bladder outlet obstruction and relate them with the time course of obstruction. Methods: Detrusor samples were obtained from the bladders of rabbits with partial bladder outlet obstruction and sham-operated control rabbits after 1, 2, 4, and 8 weeks of obstruction. Contractile responses to field stimulation and carbachol were determined in the isolated bladder strips. Western blotting was used to determine the relative levels of CaD isoform expression at the protein levels. Results: The contractile responses decreased progressively over the course of obstruction. The expression of 1-CaD increased significantly to approximately the same extent as the 1-4-week obstructed groups and further in the 8-week ob-structed group. The expression of h-CaD increased in all of the obstructed bladders, but at significantly higher levels in the 1-2-week obstructed bladders compared to the control and 4-8-week obstructed bladders. Conclusions: The changes in the isoforms of CaD may be part of the molecular mechanism for bladder compensa-tion following partial bladder outlet obstruction. The overexpression of 1-CaD and the h-CaD/1-CaD ratio could be markers for the status of DSM remodeling and dysfunction.

  4. Role of histidyl dipeptides in contractile function of fast and slow motor units in rat skeletal muscle.

    Science.gov (United States)

    Kaczmarek, Dominik; Łochyński, Dawid; Everaert, Inge; Pawlak, Maciej; Derave, Wim; Celichowski, Jan

    2016-07-01

    The physiological role of the muscle histidyl dipeptides carnosine and anserine in contractile function of various types of muscle fibers in vivo is poorly understood. Ten adult male Wistar rats were randomly assigned to two groups: control and supplemented for 10 wk with beta-alanine, the precursor of carnosine (∼640 mg·kg body wt(-1)·day(-1)). Thereafter, contractile properties and fatigability of isolated fast fatigable (FF), fast resistant to fatigue (FR), and slow motor units (MUs) from the medial gastrocnemius were determined in deeply anaesthetized animals. The fatigue resistance was tested with a 40-Hz fatigue protocol followed by a second protocol at 40 Hz in fast and 20 Hz in slow units. In the supplemented rats, histidyl dipeptide concentrations significantly increased (P carnosine increased by 94% in the white portion. The twitch force of FF units and maximum tetanic force of FR units were significantly increased (P Carnosine and anserine seem to play an important yet divergent role in various MUs. PMID:27197862

  5. Early changes in contractility and coronary blood flow in the normal areas of the ischemic porcine heart.

    Science.gov (United States)

    Pashkow, F; Holland, R; Brooks, H

    1977-03-01

    The regional responses of normal myocardium distant from an ischemic area were studied during acute anterior descending occlusion in the open-chest chloralose-anesthetized pig. Three markers of regional response in both normal and ischemic areas were used: surface ECG electrode, a force gauge in series with left ventricular outer wall fibers, and coronary blood inflow to each region as determined by electromagnetic cuff-probes. Following brief anterior descending artery occlusion (120 sec)., a characteristic rapid decline in contractile force and evolution of TQ-ST segment changes was observed in the ischemic area. In contrast, in the distant area increases in contractil force (p less than 0.001) and coronary blood flow (p less than 0.002) occurred. These distant responses were essentially obliterated following transection and cannulation of the artery supplying this region (p less than 0.05). The findings are consistent with a reflex neurovascular mechanism operating within the intact heart. This reflex is rapidly activated in order to maintain adequate levels of cardiac performance despite sudden loss of functional myocardial mass.

  6. An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Motoaki Murakoshi

    Full Text Available Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate--the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs.

  7. pHj, contractility and Ca-balance under hypercapnic acidosis in the myocardium of different vertebrate species

    DEFF Research Database (Denmark)

    Gesser, H; Bonefeld-Jørgensen, Eva Cecilie

    1982-01-01

    The influence of hypercapnic acidosis upon the heart was examined in four vertebrate species. The CO2 in the tissue bath was increased from 2.7 to 15% at 12 degrees C for flounder (Platichthys flesus) and cod (Gadus morhua) and from 3 to 13% at 22 degrees C for turtle (Pseudemys scripta) and rain......The influence of hypercapnic acidosis upon the heart was examined in four vertebrate species. The CO2 in the tissue bath was increased from 2.7 to 15% at 12 degrees C for flounder (Platichthys flesus) and cod (Gadus morhua) and from 3 to 13% at 22 degrees C for turtle (Pseudemys scripta......) and rainbow trout (Salmo gairdneri). During hypercapnia, as previously described, there was a decline and recovery of contractility in heart strips of flounder and turtle, and a sustained decrease in cod and rainbow trout. At high CO2 the increase in contractile force following increases in the extracellular...... concentration of hydrogen ions was larger in the turtle than in the trout myocardium. Intracellular Ca-activity, measured by efflux of 45Ca from preloaded heart strips, was unaffected by high CO2 in trout, but was raised in the other three species. Thus the ability to counteract the negative inotropic effect...

  8. Mechanisms involved in the in vitro contractile dysfunction induced by different concentrations of ferrous iron in the rat myocardium.

    Science.gov (United States)

    Ávila, Renata Andrade; Silva, Marito Afonso Sousa Costa; Peixoto, João Victor; Kassouf-Silva, Ilana; Fogaça, Rosalvo T H; Dos Santos, Leonardo

    2016-10-01

    Iron intoxication is related to reactive oxygen species (ROS) production and organic damage including the cardiovascular system, and is a leading cause of poisoning deaths in children. In this study we examined whether a range of ferrous iron (Fe(2+)) concentrations can interfere differently on the myocardial mechanics, investigating the ROS-mediated effects. Developed force of isolated rat papillary muscles was depressed with a concentration- and time-dependency by Fe(2+) 100-1000μM. The contractile response to Ca(2+) was reduced, but it was partially reversed by co-incubation with catalase and DMSO, but not TEMPOL. In agreement, in situ detection of OH was increased by Fe(2+) whereas O2(-) was unchanged. The myosin-ATPase activity was significantly decreased. Contractions dependent on the sarcolemal Ca(2+) influx were impaired only by Fe(2+) 1000μM, and antioxidants had no effect. In skinned fibers, Fe(2+) reduced the pCa-force relationship, and pCa50 was right-shifted by 0.55. In conclusion, iron overload can acutely impair myocardial contractility by reducing myosin-ATPase activity and myofibrillar Ca(2+) sensitivity. These effects are mediated by local production of OH and H2O2. Nevertheless, in a such high concentration as 1000μM, Fe(2+) appears to depress force also by reducing Ca(2+) influx, probably due to a competition at Ca(2+) channels. PMID:27396687

  9. Are interstitial cells of Cajal involved in mechanical stress-induced gene expression and impairment of smooth muscle contractility in bowel obstruction?

    Directory of Open Access Journals (Sweden)

    Chester C Wu

    Full Text Available BACKGROUND AND AIMS: The network of interstitial cells of Cajal (ICC is altered in obstructive bowel disorders (OBD. However, whether alteration in ICC network is a cause or consequence of OBD remains unknown. This study tested the hypothesis that mechanical dilation in obstruction disrupts the ICC network and that ICC do not mediate mechanotranscription of COX-2 and impairment of smooth muscle contractility in obstruction. METHODS: Medical-grade silicon bands were wrapped around the distal colon to induce partial obstruction in wild-type and ICC deficient (W/W(v mice. RESULTS: In wild-type mice, colon obstruction led to time-dependent alterations of the ICC network in the proximal colon segment. Although unaffected on days 1 and 3, the ICC density decreased markedly and the network was disrupted on day 7 of obstruction. COX-2 expression increased, and circular muscle contractility decreased significantly in the segment proximal to obstruction. In W/W(v control mice, COX-2 mRNA level was 4.0 (±1.1-fold higher (n=4 and circular muscle contractility was lower than in wild-type control mice. Obstruction further increased COX-2 mRNA level in W/W(v mice to 7.2 (±1.0-fold vs. W/W(v controls [28.8 (±4.1-fold vs. wild-type controls] on day 3. Obstruction further suppressed smooth muscle contractility in W/W(v mice. However, daily administration of COX-2 inhibitor NS-398 significantly improved muscle contractility in both W/W(v sham and obstruction mice. CONCLUSIONS: Lumen dilation disrupts the ICC network. ICC deficiency has limited effect on stretch-induced expression of COX-2 and suppression of smooth muscle contractility in obstruction. Rather, stretch-induced COX-2 plays a critical role in motility dysfunction in partial colon obstruction.

  10. Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice.

    Science.gov (United States)

    Yajima, Masako; Kimura, Shunsuke; Karaki, Shinichiro; Nio-Kobayashi, Junko; Tsuruta, Takeshi; Kuwahara, Atsukazu; Yajima, Takaji; Iwanaga, Toshihiko

    2016-04-01

    Intestinal epithelial cells sense short-chain fatty acids (SCFAs) to secrete non-neuronal acetylcholine (ACh). However, the roles of luminalSCFAs and epithelialACh under normal and pathological conditions remain unknown. We examined ileal contractile responses toSCFAs at different ages and their mucosal cholinergic alterations under inflammatory conditions. Ileal contractile responses toSCFAs in 1-day-old pups to 7-week-old mice were compared using an isotonic transducer, and responses to an intraperitoneal injection of lipopolysaccharide (LPS) were analyzed in 7-week-old mice. ThemRNAexpression levels of aSCFAactivate free fatty acid receptor, acetylcholinesterase (AChE), choline acetyltransferase (Chat), and choline transporter-like protein 4 (CTL4) were measured using real-time quantitativeRT-PCRAChE was analyzed by histochemical and optical enzymatic assays. Atropine-sensitive ileal contractile responses toSCFAs occurred in all 1-day-old pups, but were frequently desensitized after the weaning period. These contractile responses were not inhibited by tetrodotoxin and did not appear when the mucosal layer had been scraped off. Contractile desensitization in 7-week-old mice was abolished in the presence of theAChE inhibitor, eserine, which was consistent with increasedAChE activity after weaning. Ileal contractions toSCFAs in adult mice were restored byLPS, which significantly increased the epithelialmRNAexpression of Chat andCTL4. Atropine-sensitive ileal contractile responses toSCFAs constitutively occur in the newborn period, and are desensitized during developmental stages following the up-regulated expression ofAChE in the villous mucosa, but are restored under inflammatory conditions possibly via the release of epithelialACh. PMID:27053293

  11. Research progress on contractile modulation mechanism of non-pregnant uterine%非孕期子宫收缩调控机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    罗宁; 程忠平

    2012-01-01

    Uterine contractile activity plays an important regulatory role in many aspects of women reproductive function, including transport of sperm and embryo and implantation, menstruation, gestation and parturition. Abnormal uterine contractility may lead to many common diseases such as infertility, implantation failure, dysmenorrhea, endometriosis, spontaneous miscarriage or preterm birth. So it is very important to gain a comprehensive cognition of physiological pathways that underlie the contractile activity of uterine in non-pregnant state. This review summarized an overview of contractile apparatus of uterine myocytes, physiological pathways and the molecular mechanism by which uterine contractility might be regulated, aiming to provide deeper understanding of the mechanism of uterine contractility.%子宫收缩活动参与调控女性生殖系统许多方面的功能,如精子和胚胎的转运和着床、月经、妊娠和分娩等.子宫的异常收缩可导致许多常见疾病,如不孕、受精卵植入失败、痛经、子宫内膜异位、自然流产及早产等.因此,深入地认识非孕期子宫收缩及其调节的生理机制尤为重要.该文对子宫平滑肌细胞内收缩相关的结构、功能和调节作以综述,以期加深对参与子宫收缩调控的相关分子机制的理解.

  12. The contractile response during steady lengthening of stimulated frog muscle fibres.

    Science.gov (United States)

    Lombardi, V; Piazzesi, G

    1990-12-01

    1. Steady lengthenings at different velocities (0.025-1.2 microns/s per half-sarcomere; temperature 2-5.5 degrees C) were imposed on isolated frog muscle fibres at the isometric tetanus plateau by means of a loudspeaker motor. The lengthening at the sarcomere level was measured by means of a striation follower either in fixed-end or in length-clamp mode. The force response was measured by a capacitance gauge transducer (resonance frequency 50 kHz). Preparations showing gross non-homogeneity during lengthening were excluded. 2. A steady tension was in all cases reached after about 20 nm per half-sarcomere of lengthening. Tension during this steady phase rose with speed of elongation up to 0.25-0.4 micron/s per half-sarcomere, when tension was 1.9-2 times isometric tetanic force (T0). Further increase in speed produced only very little increase in the steady tension. 3. During the transitory phase, before steady tension was reached, the tension rose monotonically if speed of lengthening was less than 0.25-0.3 micron/s per half-sarcomere; at higher speed the tension rose above the steady level, reaching a peak when extension was 10-14 nm per half-sarcomere, and then fell to the steady level. Tension at the peak continued to rise with speed of lengthening above 0.3 micron/s per half-sarcomere. 4. During the tension rise within the transitory phase of force response the segment elongated at a speed 15-20% lower than that imposed on the whole fibre, as a consequence of tendon compliance. 5. During the steady phase, non-homogeneity of lengthening speed began above a speed of lengthening which varied from fibre to fibre. At speeds below this value, segments elongated at the same speed as that imposed on the fibre. 6. Tension responses to large step stretches (up to 12 nm per half-sarcomere), applied at the plateau of isometric tetanus, showed that the instantaneous elasticity of contractile machinery is not responsible for the limit in force attained with high

  13. Upregulated TRPC3 and downregulated TRPC1 channel expression during hypertension is associated with increased vascular contractility in rat

    Directory of Open Access Journals (Sweden)

    Muzamil M Noorani

    2011-07-01

    Full Text Available Transient receptor potential C1 and C3 (TRPC1 and TRPC3 are expressed in vascular smooth muscle cells and are thought to be involved in vascular contractility. In the present study, we determined the effect of systemic hypertension on TRPC1/TRPC3 channel expression and vascular contractility in rat carotid artery (CA. CA were studied from male spontaneously hypertensive (SHR, Wistar Kyoto (WKY and Long-Evans (LE rats. TRPC1/3 expression was determined by RT-PCR and Western blot. TRP channel function was evaluated by whole cell patch clamp, using UTP (60 µM to stimulate TRPC1/3 channels. Contractions of endothelium-denuded CA segments to UTP (1 – 300 µM and phenylephrine (Phe; 0.1 nM-10 µM were measured in an isometric tension bath. TRPC1 and TRPC3 mRNA was present in CA of both WKY and SHR. Western blot demonstrated 3.1 ± 1.2 times greater TRPC3 expression and 0.5 ± 0.2 times TRPC1 in SHR versus WKY CA. Isolated CA showed potentiated contraction to UTP in the SHR versus WKY. Activation of voltage-dependent Ca2+ channels (VDCC in UTP-mediated constriction only occurred in SHR CA. Contraction to Phe was unaltered between WKY and SHR CA and involved equal significant VDCC activation in both groups. Patch clamp demonstrated that the UTP-stimulated current (Iutp was greater in SHR compared to the normotensive WKY and LE rats with peak Iutp (at -110 mV of -63 ± 24 pA compared to -25 ± 4 pA, respectively. We demonstrate that UTP-mediated but not Phe-mediated constrictions are potentiated in the CA during hypertension. Expression of TRPC1 is decreased whereas TRPC3 is increased in SHR CA. Interestingly, VDCC activation only contributes to UTP-mediated contraction of SHR CAs whereas it contributes substantially and equally in Phe-mediated contraction. We speculate that the alteration of TRPC channel expression in hypertension leads to greater smooth muscle depolarization, VDCC activation, and vascular contractility in the UTP (but not Phe

  14. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.

    Science.gov (United States)

    Sakamoto, Yusuke; Buchanan, Rachel M; Sacks, Michael S

    2016-02-01

    Heart valve interstitial cells (VICs) play a critical role in the maintenance and pathophysiology of heart valve tissues. Normally quiescent in the adult, VICs can become activated in periods of growth and disease. When activated, VICs exhibit increased levels of cytokines and extracellular matrix (ECM) synthesis, and upregulated expression and strong contraction of α-smooth muscle actin (α-SMA) fibers. However, it remains unknown how expression and contraction of the α-SMA fibers, which vary among different VIC types, contribute to the overall VIC mechanical responses, including the nucleus and cytoskeleton contributions. In the present study, we developed a novel solid-mixture model for VIC biomechanical behavior that incorporated 1) the underlying cytoskeletal network, 2) the oriented α-SMA stress fibers with passive elastic and active contractile responses, 3) a finite deformable elastic nucleus. We implemented the model in a full 3D finite element simulation of a VIC based on known geometry. Moreover, we examined the respective mechanical responses of aortic and pulmonary VICs (AVICs and PVICs, respectively), which are known to have different levels of α-SMA expression levels and contractile behaviors. To calibrate the model, we simulated the combined mechanical responses of VICs in both micropipette aspiration (MA) and atomic force microscopy (AFM) experiments. These two states were chosen as the VICs were under significantly different mechanical loading conditions and activation states, with the α-SMA fibers inactivated in the MA studies while fully activated in the AFM studies. We also used the AFM to study the mechanical property of the nucleus. Our model predicted that the substantial differences found in stiffening of the AVIC compared to the PVICs was due to a 9 to 16 times stronger intrinsic AVIC α-SMA stress fiber contractile force. Model validation was done by simulating a traction force microscopy experiment to estimate the forces the VICs

  15. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism.

    Science.gov (United States)

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Zhang, Yingmei; Ren, Jun

    2016-08-22

    Paraquat, a quarternary nitrogen herbicide, is a toxic prooxidant leading to multi-organ failure including the heart although the underlying mechanism remains poorly understood. This study was designed to examine the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile anomalies and the underlying mechanisms involved with a focus on autophagy, a conservative machinery governing protein and organelle degradation and recycling for cardiac homeostasis. Wild-type (WT) and TLR4 knockout (TLR4(-/-)) mice were challenged with paraquat (45mg/kg, i.p.) for 48h. Paraquat challenge did not affect mRNA levels of TLR2, TLR4 and TLR9 in WT mice nor did paraquat treatment alter TREM-1 levels. Paraquat challenge elicited cardiac mechanical defects including compromised cardiomyocyte contractile function, intracellular Ca(2+) handling, and overt autophagy as manifested by increased LC3BII-to-LC3BI ratio, Atg5, Atg7 and p62 levels. Interestingly, TLR4 knockout significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement as well as alterations of autophagy markers. Paraquat-elicited changes in cardiac autophagy markers (LC3BII, LC3BII-to-LC3BI ratio and p62) were augmented by lysosomal inhibition using bafilomycin A1 in WT mice. TLR4 knockout significantly attenuated or negated paraquat-elicited increase in LC3BII, LC3BII-to-LC3BI ratio and p62 levels in the presence of lysosomal inhibition. In addition, paraquat challenge promoted phosphorylation of AMPK while suppressing the phosphorylation of mTOR and ULK1 (the autophagy inhibitory Ser(757)), the effects of which were significantly attenuated by TLR4 ablation. In vitro study revealed that AMPK activation using AICAR or mTOR inhibition using rapamycin effectively negated the beneficial cardiomyocyte mechanical effects of TLR4 inhibition (CLI-095) against paraquat toxicity, supporting a permissive role for AMPK-mTOR in TLR4 inhibition

  16. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    2013-01-01

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of neuromu

  17. Effect of Noni (Morinda citrifolia Linn. Fruit and Its Bioactive Principles Scopoletin and Rutin on Rat Vas Deferens Contractility: An Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Vijayapandi Pandy

    2014-01-01

    Full Text Available This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1–40 mg/mL, scopoletin (1–200 μg/mL, and rutin hydrate (0.6–312.6 μg/mL dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60–100 mg/mL showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (60 mg/mL. However, similar contractile response at high doses of scopoletin (0.5–5 mg/mL and rutin hydrate (0.5–5 mg/mL per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.

  18. Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: an ex vivo study.

    Science.gov (United States)

    Pandy, Vijayapandi; Narasingam, Megala; Kunasegaran, Thubasni; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1-40 mg/mL), scopoletin (1-200 μg/mL), and rutin hydrate (0.6-312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60-100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5-5 mg/mL) and rutin hydrate (0.5-5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.

  19. Contractility of Plaster Mould for Arc Spraying Rapid Tooling%电弧喷涂快速制模用石膏母模的收缩性

    Institute of Scientific and Technical Information of China (English)

    刘峰; 陈巧; 杨伟

    2012-01-01

    对比试验研究了水膏比、水玻璃和羧甲基纤维素加入量对电弧喷涂快速制模用石膏母模收缩性的影响.结果表明,随着水玻璃和羧甲基纤维索加入量的增加,收缩率呈现增加的趋势;在同一水青比下,收缩率变化出现一个“峰值”,最小收缩率出现时羧甲基纤维素的加入量在0.15%~0.25%之间.%Influences of water-gypsum ratio, soluble glass and CMC on the contractility of the piaster mould for the arc spraying rapid tooling were investigated. The experimental results show thai contractility of plaster mould is increased with the increase of the content of the sodium silicate and CMC, and peak value can be oberved in the contractility at a fixed water-gypsum ratio. In addition. the minimum contractility appears with 0. 15%- 0.25% CMC.

  20. Reduced rate of knee extensor torque development in older adults with knee osteoarthritis is associated with intrinsic muscle contractile deficits.

    Science.gov (United States)

    Callahan, Damien M; Tourville, Timothy W; Slauterbeck, James R; Ades, Philip A; Stevens-Lapsley, Jennifer; Beynnon, Bruce D; Toth, Michael J

    2015-12-01

    We examined the effect of knee osteoarthritis on the rate of torque development (RTD) of the knee extensors in older adults with advanced-stage knee osteoarthritis (OA; n=15) and recreationally-active controls (n=15) of similar age, sex and health status, as well as the relationship between RTD and the size and contractility of single muscle fibers. OA participants had lower RTD when expressed in absolute terms (Nm/ms). There were sex differences in peak RTD (Ptorque (PT). In knee OA volunteers, we found strong correlations between the RTD expressed relative to PT and the velocity of contraction of single myosin heavy chain (MHC) I and IIA/X muscle fibers (r=0.652 and 0.862; both Pknee osteoarthritis and healthy older adults is related, in part, to the size and function of single muscle fibers.

  1. The left ventricular contractility of the rat heart is modulated by changes in flow and a1-adrenoceptor stimulation

    Directory of Open Access Journals (Sweden)

    P.F. Vassallo

    1998-10-01

    Full Text Available Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10 submitted to phenylephrine (PE stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (Pa1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.

  2. DOBUTAMINE MAGNETIC RESONANCE IMAGING PREDICTS CONTRACTILE RESERVE OF CHRONICALLY DYSFUNCTIONAL MYOCARDIUM: COMPARISON WITH FLUORINE-18 FLUORODEOXYGLUCOSE POSITRON EMISSION TOMOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. This study sought to investigate whether low-dose dobutamine-MRI can detect residual myocardial viability in patients with chronic myocardial infarction and left ventricular dysfunction.Methods. Eleven patients with chronic myocardial infarction and left ventricular dysfunction were employed for identification of viable myocardium by cine-MRI during dobutamine infusion. All patients underwent coronary angiography and left ventriculography,18FDG-PET, MRI at rest and stress.The systolic wall thickening measured at rest and during stress was compared with the results of 18FDG- PET, respectively.Results. A significant difference of either dobutamine-induced systolic wall thickening (SWthstress) or dobutamine-induced contractile reserve (ΔSWth= SWthstress- SWthrest) was present between viable and scar regions (1.0±0.3 versus -0.3 ±0.1, P<0.01; 1.0±0.3 versus -0.2±0.2, P<0.01).

  3. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Directory of Open Access Journals (Sweden)

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  4. Myocardial contractile depression from high-frequency vibration is not due to increased cross-bridge breakage.

    Science.gov (United States)

    Campbell, K B; Wu, Y; Kirkpatrick, R D; Slinker, B K

    1998-04-01

    Experiments were conducted in 10 isolated rabbit hearts at 25 degrees C to test the hypothesis that vibration-induced depression of myocardial contractile function was the result of increased cross-bridge breakage. Small-amplitude sinusoidal changes in left ventricular volume were administered at frequencies of 25, 50, and 76.9 Hz. The resulting pressure response consisted of a depressive response [delta Pd(t), a sustained decrease in pressure that was not at the perturbation frequency] and an infrequency response [delta Pf(t), that part at the perturbation frequency]. delta Pd(t) represented the effects of contractile depression. A cross-bridge model was applied to delta Pf(t) to estimate cross-bridge cycling parameters. Responses were obtained during Ca2+ activation and during Sr2+ activation when the time course of pressure development was slowed by a factor of 3. delta Pd(t) was strongly affected by whether the responses were activated by Ca2+ or by Sr2+. In the Sr(2+)-activated state, delta Pd(t) declined while pressure was rising and relaxation rate decreased. During Ca2+ and Sr2+ activation, velocity of myofilament sliding was insignificant as a predictor of delta Pd(t) or, when it was significant, participated by reducing delta Pd(t) rather than contributing to its magnitude. Furthermore, there was no difference in cross-bridge cycling rate constants when the Ca(2+)-activated state was compared with the Sr(2+)-activated state. An increase in cross-bridge detachment rate constant with volume-induced change in cross-bridge distortion could not be detected. Finally, processes responsible for delta Pd(t) occurred at slower frequencies than those of cross-bridge detachment. Collectively, these results argue against a cross-bridge detachment basis for vibration-induced myocardial depression.

  5. Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate

    Science.gov (United States)

    Ashouri, Hazar; Orlandic, Lara; Inan, Omer T.

    2016-01-01

    Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r2 = 0.85 vs. r2 = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r2 = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by

  6. Label-free cardiac contractility monitoring for drug screening applications based on compact high-speed lens-free imaging

    Science.gov (United States)

    Pauwelyn, Thomas; Reumers, Veerle; Vanmeerbeeck, Geert; Stahl, Richard; Janssens, Stefan; Lagae, Liesbet; Braeken, Dries; Lambrechts, Andy

    2015-03-01

    Cardiotoxicity is the major cause of drug withdrawal from the market, despite rigorous toxicity testing during the drug development process. Existing safety screening techniques, some of which are based on simplified cellular assays, others on electrical (impedance) or optical (fluorescent microscopy) measurements, are either too limited in throughput or offer too poor predictability of toxicity to be applied on large numbers of compounds in the early stage of drug development. We present a compact optical system for direct (label-free) monitoring of fast cellular movements that enable low cost and high throughput drug screening. Our system is based on a high-speed lens-free in-line holographic microscope. When compared to a conventional microscope, the system can combine adequate imaging resolution (5.5 μm pixel pitch) with a large field-of-view (63.4 mm2) and high speed (170 fps) to capture physical cell motion in real-time. This combination enables registration of cardiac contractility parameters such as cell contraction frequency, total duration, and rate and duration of both contraction and relaxation. The system also quantifies conduction velocity, which is challenging in existing techniques. Additionally, to complement the imaging hardware we have developed image processing software that extracts all the contractility parameters directly from the raw interference images. The system was tested with varying concentration of the drug verapamil and at 100 nM, showed a decrease in: contraction frequency (-23.3% +/- 13%), total duration (-21% +/- 5%), contraction duration (-19% +/- 6%) and relaxation duration (-21% +/- 8%). Moreover, contraction displacement ceased at higher concentrations.

  7. Roles of calcium and IP3 in impaired colon contractility of rats following multiple organ dysfunction syndrome

    Directory of Open Access Journals (Sweden)

    C. Zheyu

    2007-10-01

    Full Text Available The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5-triphosphate (IP3 in colon dysmotility induced by multiple organ dysfunction syndrome (MODS caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11 vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05. After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05. Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.

  8. Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate.

    Science.gov (United States)

    Ashouri, Hazar; Orlandic, Lara; Inan, Omer T

    2016-01-01

    Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r² = 0.85 vs. r² = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r² = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by

  9. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  10. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome

    Science.gov (United States)

    Samanta, Manoj P.; Chaidez, Alexander

    2016-01-01

    In most electric fish species, the electric organ (EO) derives from striated muscle cells that suppress many muscle properties. In the gymnotiform Sternopygus macrurus, mature electrocytes, the current-producing cells of the EO, do not contain sarcomeres, yet they continue to make some cytoskeletal and sarcomeric proteins and the muscle transcription factors (MTFs) that induce their expression. In order to more comprehensively examine the transcriptional regulation of genes associated with the formation and maintenance of the contractile sarcomere complex, results from expression analysis using qRT-PCR were informed by deep RNA sequencing of transcriptomes and miRNA compositions of muscle and EO tissues from adult S. macrurus. Our data show that: (1) components associated with the homeostasis of the sarcomere and sarcomere-sarcolemma linkage were transcribed in EO at levels similar to those in muscle; (2) MTF families associated with activation of the skeletal muscle program were not differentially expressed between these tissues; and (3) a set of microRNAs that are implicated in regulation of the muscle phenotype are enriched in EO. These data support the development of a unique and highly specialized non-contractile electrogenic cell that emerges from a striated phenotype and further differentiates with little modification in its transcript composition. This comprehensive analysis of parallel mRNA and miRNA profiles is not only a foundation for functional studies aimed at identifying mechanisms underlying the transcription-independent myogenic program in S. macrurus EO, but also has important implications to many vertebrate cell types that independently activate or suppress specific features of the skeletal muscle program. PMID:27114860

  11. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Inez Wens

    Full Text Available Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS. The impact of high intensity exercise remains unknown.Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11 and 2 exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12 or high intensity continuous cardiovascular training (HCTR, n = 11, both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA and proportion, knee-flexor/extensor strength, body composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks.Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21 ± 7%, HCTR: +23 ± 5%. Furthermore, fiber type I CSA increased in HCTR (+29 ± 6%, whereas type II (+23 ± 7% and IIa (+23 ± 6%, CSA increased in HITR. Muscle strength improved in HITR and HCTR (between +13 ± 7% and +45 ± 20% and body fat percentage tended to decrease (HITR: -3.9 ± 2.0% and HCTR: -2.5 ± 1.2%. Furthermore, endurance capacity (Wmax +21 ± 4%, time to exhaustion +24 ± 5%, VO2max +17 ± 5% and lean tissue mass (+1.4 ± 0.5% only increased in HITR. Finally self-reported physical activity levels increased 73 ± 19% and 86 ± 27% in HCTR and HITR, respectively.High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile characteristics and endurance capacity in MS.ClinicalTrials.gov NCT01845896.

  12. Sodium Glucose Cotransporter 2 (SGLT2 Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells.

    Directory of Open Access Journals (Sweden)

    Masanori Wakisaka

    Full Text Available Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2.The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR. Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor.Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction.These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells.

  13. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.

    Science.gov (United States)

    Plas, Rogier L C; Degens, Hans; Meijer, J Peter; de Wit, Gerard M J; Philippens, Ingrid H C H M; Bobbert, Maarten F; Jaspers, Richard T

    2015-07-01

    The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force-velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force-velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force-velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties.

  14. Beneficial effect of medicinal plants on the contractility of post-hypoxic isolated guinea pig atria - Potential implications for the treatment of ischemic-reperfusion injury.

    Science.gov (United States)

    Bipat, Robbert; Toelsie, Jerry R; Magali, Indira; Soekhoe, Rubaina; Stender, Karin; Wangsawirana, Angelique; Oedairadjsingh, Krishan; Pawirodihardjo, Jennifer; Mans, Dennis R A

    2016-08-01

    Context Ischemic-reperfusion injury is accompanied by a decreased contractility of the myocardium. Positive-inotropic agents have proven useful for treating this condition but may exert serious side-effects. Objective In this study, aqueous preparations from Abelmoschus esculentus L. Moench (Malvaceae), Annona muricata L. (Annonaceae), Bixa orellana L. (Bixaceae), Cecropia peltata L. (Moraceae), Erythrina fusca Lour. (Fabaceae), Psidium guajava L. (Myrtaceae) and Terminalia catappa L. (Combretaceae) were evaluated for their ability to improve the decreased contractility of isolated guinea pig atria after hypoxic stress. Materials and methods Guinea pig atria isolated in Ringer-Locke buffer gassed with 100% O2 at 30 °C were exposed for 5 min to hypoxia, then allowed to recover in oxygenated buffer alone or containing a single plant extract (0.001-1 mg/mL). The contractility (g/s) and beating frequency (beats/min), as well as troponin C contents of the bathing solution (ng/mL), were determined and expressed as means ± SDs. Results The extracts of A. muricata, B. orellana, C. peltata and T. catappa caused an increase in the contractility compared to untreated atria of 340 ± 102%, 151 ± 13%, 141 ± 14% and 238 ± 44%, respectively. However, the latter two preparations increased the troponin C contents of the bathing solution to 36 ± 11 and 69 ± 33, compared to the value of 11 ± 3 ng/mL found with untreated atria. Conclusions Preparations from A. muricata and B. orellana may possess positive-inotropic properties which may improve the contractility of the post-hypoxic myocardium. Studies to assess their usefulness in ischemic-reperfusion injury are warranted. PMID:26730936

  15. Two kinds of modification by 5-methoxy-N,N-dimethyltryptamine of contractile responses to electrical stimulation of isolated guinea-pig vas deferens.

    Science.gov (United States)

    Yoshida, S; Kuga, T

    1987-04-01

    Two kinds of electrical stimulation, low frequency stimulation (5 Hz, 1 msec, 5 pulses, every 20 sec) and high frequency stimulation (30 Hz, 0.1 msec, 20 pulses, every 20 sec), produced contractions in isolated guinea-pig vas deferens. These responses were blocked by alpha, beta-methylene-ATP, but not prazosin. Phentolamine potentiated the contractions produced by low frequency stimulation, while it had little or no effect on the contractions produced by high frequency stimulation. The effect of 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), a potent short acting hallucinogen, on the contractile response to two kinds of electrical stimulation was examined. On the contraction produced by low frequency stimulation, 5-MeODMT showed a biphasic action. 5-MeODMT at concentrations of 3 X 10(-8)-10(-6) M reduced the contractile response. 5-MeODMT at concentrations of 3 X 10(-6)-2 X 10(-5) M potentiated the contractile response, and this potentiation was reversed by prazosin and ketanserin. Clonidine caused an inhibition of the contractile response to low frequency stimulation. This action of clonidine was reversed by 5-MeODMT. The reverse action of 5-MeODMT was greatly inhibited in the presence of prazosin and ketanserin. The results suggest that 5-MeODMT exerts two different kinds of modification on the contractile response to low frequency stimulation of isolated guinea-pig vas deferens: in one type of modification, 5-MeODMT at concentrations higher than 3 x 10(-8) M exerts an action similar to that of 5-hydroxytryptamine on postganglionic sympathetic nerve terminals and reduces the release of transmitter presynaptically, and in the other type, 5-MeODMT at concentrations higher than 3 x 10(-6) M causes the release of noradrenaline from postganglionic sympathetic nerve terminals. PMID:2886688

  16. Beneficial effect of medicinal plants on the contractility of post-hypoxic isolated guinea pig atria - Potential implications for the treatment of ischemic-reperfusion injury.

    Science.gov (United States)

    Bipat, Robbert; Toelsie, Jerry R; Magali, Indira; Soekhoe, Rubaina; Stender, Karin; Wangsawirana, Angelique; Oedairadjsingh, Krishan; Pawirodihardjo, Jennifer; Mans, Dennis R A

    2016-08-01

    Context Ischemic-reperfusion injury is accompanied by a decreased contractility of the myocardium. Positive-inotropic agents have proven useful for treating this condition but may exert serious side-effects. Objective In this study, aqueous preparations from Abelmoschus esculentus L. Moench (Malvaceae), Annona muricata L. (Annonaceae), Bixa orellana L. (Bixaceae), Cecropia peltata L. (Moraceae), Erythrina fusca Lour. (Fabaceae), Psidium guajava L. (Myrtaceae) and Terminalia catappa L. (Combretaceae) were evaluated for their ability to improve the decreased contractility of isolated guinea pig atria after hypoxic stress. Materials and methods Guinea pig atria isolated in Ringer-Locke buffer gassed with 100% O2 at 30 °C were exposed for 5 min to hypoxia, then allowed to recover in oxygenated buffer alone or containing a single plant extract (0.001-1 mg/mL). The contractility (g/s) and beating frequency (beats/min), as well as troponin C contents of the bathing solution (ng/mL), were determined and expressed as means ± SDs. Results The extracts of A. muricata, B. orellana, C. peltata and T. catappa caused an increase in the contractility compared to untreated atria of 340 ± 102%, 151 ± 13%, 141 ± 14% and 238 ± 44%, respectively. However, the latter two preparations increased the troponin C contents of the bathing solution to 36 ± 11 and 69 ± 33, compared to the value of 11 ± 3 ng/mL found with untreated atria. Conclusions Preparations from A. muricata and B. orellana may possess positive-inotropic properties which may improve the contractility of the post-hypoxic myocardium. Studies to assess their usefulness in ischemic-reperfusion injury are warranted.

  17. Drug: D03534 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03534 Drug Clebopride (USAN); Cleboril (TN) C20H24ClN3O2 373.1557 373.8765 D03534.... TRACT AND METABOLISM A03 DRUGS FOR FUNCTIONAL GASTROINTESTINAL DISORDERS A03F PROPULSIVES A03FA Propulsives A03FA06 Clebopride... D03534 Clebopride (USAN) Target-based classification of drugs... [BR:br08310] G Protein-coupled receptors Rhodopsin family Dopamine dopamine D1-receptor [HSA:1812] [KO:K04144] Clebopride... [ATC:A03FA06] D03534 Clebopride (USAN) dopamine D2-receptor [HSA:1813] [KO:K04145] Clebopride

  18. A型肉毒素抑制电场刺激及乙酰胆碱引发的大鼠胃体胃底离体平滑肌收缩%Inhibitory Effect of Botulinum Toxin Type A on Gastric Body and Gastric Fundus Smooth Muscle Contractility Induced by EFS and ACh-induced in Rats in vitro

    Institute of Scientific and Technical Information of China (English)

    周媛媛; 李超彦; 侯一平

    2012-01-01

    Objective: To observe the effect of botulinum toxin type A ( BTX-A) , electrical field stimulation (EFS) and acetylcholine ( ACh) on spontaneous contractility in gastric body and gastric fundus smooth muscle. Method; Muscle strips in gastric body and gastric fundus were prepared, and subdivided randomly into control group, EFS group, BTX-A (10 U -mL-1) group, BTX-A (10 U -mL-1) + EFS group, ACh (100 Ixmol-L-1) group, ACh (100 (xmol-L-1) + BTX-A (10 U -mL-1) group, Ach (100 μmol - L-1) + Atropine (1 (μ.mol -L-1) group. The data were recorded by physiological experimental system of BL-420. Result: EFS enhanced the tension ( P < 0. 05 ) and amplitude ( P < 0. 01 ) in gastric body contractility, and similar results was observed in gastric fundus contractility; BTX-A decreased spontaneous contractile tension and amplitude (P <0. 01) in gastric body and tension ( P < 0. 05 ) in gastric fundus; BTX-A inhibited EFS-induced smooth muscle contractility including tension and amplitude ( P < 0. 01 ) in gastric body, tension (P < 0. 01 ) and amplitude ( P < 0. 05 ) in gastric fundus, BTX-A inhibited ACh-induced smooth muscle contractility including tension and amplitude (P <0. 01) in gastric body and gastric fundus. Conclusion; EFS enhances smooth muscle spontaneous contractility in gastric body and gastric fundus; BTX-A inhibits gastric body and gastric fundus smooth muscle spontaneous contractility; BTX-A inhibits EFS and ACh-induced smooth muscle contractility in gastric body and gastric fundus.%目的:观察大鼠胃体、胃底离体平滑肌条自发性收缩及电场刺激( EFS)、乙酰胆碱(ACh)和A型肉毒素( BTX-A)对肌条收缩的影响,并探讨其机制.方法:取大鼠胃体胃底平滑肌制备肌条,肌条随机分为对照组、EFS组、BTX-A(10 U·mL-1)组、BTX-A(10 U·mL-1)+ EFS组、ACh(100 μmol· L-1)组、ACh(100 μmol·L-1)+BTX-A(10 U·mL-1)组、ACh(100 μmol· L-1)+阿托品(1 μmol· L-)组,采用Biolap 420E生物机能实验系统记录肌

  19. Increased CCT-eta expression is a marker of latent and active disease and a modulator of fibroblast contractility in Dupuytren's contracture.

    Science.gov (United States)

    Satish, Latha; O'Gorman, David B; Johnson, Sandra; Raykha, Christina; Gan, Bing Siang; Wang, James H-C; Kathju, Sandeep

    2013-07-01

    Dupuytren's contracture (DC) is a fibroproliferative disorder of unknown etiology characterized by a scar-like contracture that develops in the palm and/or digits. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is increased in fibrotic wound healing, and is essential for the accumulation of α-smooth muscle actin (α-SMA) in fibroblasts. The purpose of this study was to determine if CCT-eta is similarly implicated in the aberrant fibrosis seen in DC and to investigate the role of CCT-eta in the behavior of myo/fibroblasts in DC. Fibroblasts were obtained from DC-affected palmar fascia, from adjacent phenotypically normal palmar fascia in the same DC patients (PF), and from non-DC palmar fascial tissues in patients undergoing carpal tunnel (CT) release. Inherent contractility in these three populations was examined using fibroblast-populated collagen lattices (FPCLs) and by cell traction force microscopy. Expression of CCT-eta and α-SMA protein was determined by Western blot. The effect of CCT-eta inhibition on the contractility of DC cells was determined by deploying an siRNA versus CCT-eta. DC cells were significantly more contractile than both matching palmar fascial (PF) cells and CT cells in both assays, with PF cells demonstrating an intermediate contractility in the FPCL assay. Whereas α-SMA protein was significantly increased only in DC cells compared to PF and CT cells, CCT-eta protein was significantly increased in both PF and DC cells compared to CT cells. siRNA-mediated depletion of CCT-eta inhibited the accumulation of both CCT-eta and α-SMA protein in DC cells, and also significantly decreased the contractility of treated DC cells. These observations suggest that increased expression of CCT-eta appears to be a marker for latent and active disease in these patients and to be essential for the increased contractility exhibited by these fibroblasts. PMID:23292503

  20. Mouse embryonic stem cells irradiated with γ-rays differentiate into cardiomyocytes but with altered contractile properties.

    Science.gov (United States)

    Rebuzzini, Paola; Fassina, Lorenzo; Mulas, Francesca; Bellazzi, Riccardo; Redi, Carlo Alberto; Di Liberto, Riccardo; Magenes, Giovanni; Adjaye, James; Zuccotti, Maurizio; Garagna, Silvia

    2013-08-30

    Embryonic stem cells (ESCs) for their derivation from the inner cell mass of a blastocyst represent a valuable in vitro model to investigate the effects of ionizing radiation on early embryonic cellular response. Following irradiation, both human and mouse ESCs (mESCs) maintain their pluripotent status and the capacity to differentiate into embryoid bodies and to form teratomas. Although informative of the maintenance of a pluripotent status, these studies never investigated the capability of irradiated ESCs to form specific differentiated phenotypes. Here, for the first time, 5Gy-irradiated mESCs were differentiated into cardiomyocytes, thus allowing the analysis of the long-term effects of ionizing radiations on the differentiation potential of a pluripotent stem cell population. On treated mESCs, 96h after irradiation, a genome-wide expression analysis was first performed in order to determine whether the treatment influenced gene expression of the surviving mESCs. Microarrays analysis showed that only 186 genes were differentially expressed in treated mESCs compared to control cells; a quarter of these genes were involved in cellular differentiation, with three main gene networks emerging, including cardiogenesis. Based on these results, we differentiated irradiated mESCs into cardiomyocytes. On day 5, 8 and 12 of differentiation, treated cells showed a significant alteration (qRT-PCR) of the expression of marker genes (Gata-4, Nkx-2.5, Tnnc1 and Alpk3) when compared to control cells. At day 15 of differentiation, although the organization of sarcomeric α-actinin and troponin T proteins appeared similar in cardiomyocytes differentiated from either mock or treated cells, the video evaluation of the kinematics and dynamics of the beating cardiac syncytium evidenced altered contractile properties of cardiomyocytes derived from irradiated mESCs. This alteration correlated with significant reduction of Connexin 43 foci. Our results indicate that mESCs populations

  1. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization

    Directory of Open Access Journals (Sweden)

    Graham Ian R

    2010-06-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology. Results Using RNA interference (RNAi to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1, or cardiomyopathy (Obscurin, Tcap. In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro. Conclusion Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage

  2. Work Capacity of the Bladder During Voiding: A Novel Method to Evaluate Bladder Contractile Function and Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-01-01

    Full Text Available Background: Work in voiding (WIV of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point. Few studies, however, have assessed WIV owing to the complexity of its calculations. We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO. Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (P det Q max of ≥40 cmH 2 O in men, who underwent urodynamic testing. The bladder power integration method was used to calculate WIV; WIV per second (WIV/t and WIV per liter of urine voided (WIV/v were also calculated. In men, the relationships between these work capacity parameters and P det Q max and Abrams-Griffiths (AG number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman′s association test. Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively. In men, WIV/v showed significant positive associations with P det Q max (r = 0.845, P = 0.000, AG number (r = 0.814, P = 0.000, and Schafer class (r = 0.726, P = 0.000. Conversely, WIV and WIV/t showed no associations with P det Q max or AG number. In patients with BOO (Schafer class > II, WIV/v correlated positively with increasing BOO grade. Conclusions: WIV can be calculated from simple urodynamic parameters using the bladder power integration method. WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t.

  3. Work Capacity of the Bladder During Voiding: A Novel Method to Evaluate Bladder Contractile Function and Bladder Outlet Obstruction

    Institute of Scientific and Technical Information of China (English)

    Ning Liu; Li-Bo Man; Feng He; Guang-Lin Huang; Ning Zhou; Xiao-Fei Zhu

    2015-01-01

    Background: Work in voiding (WIV) of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point.Few studies, however, have assessed WIV owing to the complexity of its calculations.We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO).Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (PdetQmax) of≥40 cmH2O in men, who underwent urodynamic testing.The bladder power integration method was used to calculate WIV;WIV per second (WIV/t) and WIV per liter of urine voided (WIV/v) were also calculated.In men, the relationships between these work capacity parameters and PdetQmax and Abrams-Griffiths (AG) number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman's association test.Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively.In men, WIV/v showed significant positive associations with PdetQmax (r =0.845, P =0.000), AG number (r =0.814, P =0.000), and Schafer class (r =0.726, P =0.000).Conversely, WIV and WIV/t showed no associations with PdetQmax or AG number.In patients with BOO (Schafer class > Ⅱ), WIV/v correlated positively with increasing BOO grade.Conclusions: WIV can be calculated trom simple urodynamic parameters using the bladder power integration method.WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t.

  4. Protective effect of zingerone on increased vascular contractility in diabetic rat aorta.

    Science.gov (United States)

    Ghareib, Salah A; El-Bassossy, Hany M; Elberry, Ahmed A; Azhar, Ahmad; Watson, Malcolm L; Banjar, Zainy M; Alahdal, Abdulrahman M

    2016-06-01

    The aim of the present study was to investigate the effect and possible mechanism of action of zingerone, the main constituent of ginger, on vascular reactivity in isolated aorta from diabetic rats. The results show that incubation of aortae with zingerone alleviates the exaggerated vasoconstriction of diabetic aortae to phenylephrine, as well as the impaired relaxatory response to acetylcholine in a concentration-dependent manner. Furthermore, Zingerone directly relax phenylephrine-precontracted aortae. The vasorelaxatory response is significantly attenuated by the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride and the guanylate cyclase inhibitor methylene blue but no effect of either the potassium channels blocker tetraethylammonium chloride, or the cyclooxygenase inhibitor indomethacin was observed. Zingerone had no effect on advanced glycation end product formation as well. In conclusion, zingerone ameliorates enhanced vascular contraction in diabetic aortae which may be mediated by its vasodilator effect through NO- and guanylate cyclase stimulation. PMID:27020549

  5. Non-invasive assessment of left ventricular contractility from end-systolic pressure-volume relation (E(max)) determined by gated radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Left ventricular end-systolic pressure-volume relation has been shown experimentally to be an useful index of left ventricular contractility relatively independent of preload or afterload. But the clinical application has been reported less frequently because of the invasiveness in the measurement of ventricular volume and simultaneous intraventricular pressure. We evaluated this relationship using non-invasive method such as the volume determination by gated radionuclide angiocartiography and the pressure measurement by cuff sphyngomanometer in arm. In measuring ventricular volume, gated radionuclide angiocardiography is a non-invasive method less affected by the geometry of left ventricle. Using the volume by radionuclide and the blood pressure by cuff, non-invasive determination of endsystolic pressure-volume relation provides much clinical usefulness in the assessment of left ventricular contractility

  6. An Sfi1p-Like Centrin-Binding Protein Mediates Centrin-Based Ca2+-Dependent Contractility in Paramecium tetraurelia▿ †

    OpenAIRE

    Gogendeau, Delphine; Beisson, Janine; de Loubresse, Nicole Garreau; Le Caer, Jean-Pierre; Ruiz, Françoise; Cohen, Jean; Sperling, Linda; Koll, France; Klotz, Catherine

    2007-01-01

    The previous characterization and structural analyses of Sfi1p, a Saccharomyces cerevisiae centrin-binding protein essential for spindle pole body duplication, have suggested molecular models to account for centrin-mediated, Ca2+-dependent contractility processes (S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams, and J. V. Kilmartin, J. Cell Biol. 173:867-877, 2006). Such processes can be analyzed by using Paramecium tetraurelia, which harbors a large Ca2+-dependent contrac...

  7. An Sfi1p-Like Centrin-Binding Protein Mediates Centrin-Based Ca2+-Dependent Contractility in Paramecium tetraurelia▿ †

    Science.gov (United States)

    Gogendeau, Delphine; Beisson, Janine; de Loubresse, Nicole Garreau; Le Caer, Jean-Pierre; Ruiz, Françoise; Cohen, Jean; Sperling, Linda; Koll, France; Klotz, Catherine

    2007-01-01

    The previous characterization and structural analyses of Sfi1p, a Saccharomyces cerevisiae centrin-binding protein essential for spindle pole body duplication, have suggested molecular models to account for centrin-mediated, Ca2+-dependent contractility processes (S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams, and J. V. Kilmartin, J. Cell Biol. 173:867-877, 2006). Such processes can be analyzed by using Paramecium tetraurelia, which harbors a large Ca2+-dependent contractile cytoskeletal network, the infraciliary lattice (ICL). Previous biochemical and genetic studies have shown that the ICL is composed of diverse centrin isoforms and a high-molecular-mass centrin-associated protein, whose reduced size in the démaillé (dem1) mutant correlates with defective organization of the ICL. Using sequences derived from the high-molecular-mass protein to probe the Paramecium genome sequence, we characterized the PtCenBP1 gene, which encodes a 460-kDa protein. PtCenBP1p displays six almost perfect repeats of ca. 427 amino acids (aa) and harbors 89 potential centrin-binding sites with the consensus motif LLX11F/LX2WK/R, similar to the centrin-binding sites of ScSfi1p. The smaller (260-kDa) protein encoded by the dem1 mutant PtCenBP1 allele comprises only two repeats of 427 aa and 46 centrin-binding sites. By using RNA interference and green fluorescent protein fusion experiments, we showed that PtCenBP1p forms the backbone of the ICL and plays an essential role in its assembly and contractility. This study provides the first in vivo demonstration of the role of Sfi1p-like proteins in centrin-mediated Ca2+-dependent contractile processes. PMID:17675401

  8. An Sfi1p-like centrin-binding protein mediates centrin-based Ca2+ -dependent contractility in Paramecium tetraurelia.

    Science.gov (United States)

    Gogendeau, Delphine; Beisson, Janine; de Loubresse, Nicole Garreau; Le Caer, Jean-Pierre; Ruiz, Françoise; Cohen, Jean; Sperling, Linda; Koll, France; Klotz, Catherine

    2007-11-01

    The previous characterization and structural analyses of Sfi1p, a Saccharomyces cerevisiae centrin-binding protein essential for spindle pole body duplication, have suggested molecular models to account for centrin-mediated, Ca2+-dependent contractility processes (S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams, and J. V. Kilmartin, J. Cell Biol. 173:867-877, 2006). Such processes can be analyzed by using Paramecium tetraurelia, which harbors a large Ca2+ -dependent contractile cytoskeletal network, the infraciliary lattice (ICL). Previous biochemical and genetic studies have shown that the ICL is composed of diverse centrin isoforms and a high-molecular-mass centrin-associated protein, whose reduced size in the démaillé (dem1) mutant correlates with defective organization of the ICL. Using sequences derived from the high-molecular-mass protein to probe the Paramecium genome sequence, we characterized the PtCenBP1 gene, which encodes a 460-kDa protein. PtCenBP1p displays six almost perfect repeats of ca. 427 amino acids (aa) and harbors 89 potential centrin-binding sites with the consensus motif LLX11F/LX2WK/R, similar to the centrin-binding sites of ScSfi1p. The smaller (260-kDa) protein encoded by the dem1 mutant PtCenBP1 allele comprises only two repeats of 427 aa and 46 centrin-binding sites. By using RNA interference and green fluorescent protein fusion experiments, we showed that PtCenBP1p forms the backbone of the ICL and plays an essential role in its assembly and contractility. This study provides the first in vivo demonstration of the role of Sfi1p-like proteins in centrin-mediated Ca2+-dependent contractile processes. PMID:17675401

  9. Effects of chronic severe pulmonary regurgitation and percutaneous valve repair on right ventricular geometry and contractility assessed by tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; K. Iversen, Kasper; G Vejlstrup, Niels;

    2010-01-01

    replacement (PPVR) was performed. Tissue Doppler derived measures of global and regional myocardial contractility were obtained by transthoracic echocardiography, and compared to a sham-operated control group (N = 9).RESULTS: Free PR is associated with RV dilatation (RV end-diastolic area increased from 15...... ± 3 to 23 ± 7 cm(2) /m(2) , P strain, and strain rate were unchanged after free PR and after PPVR. No consistent relation...

  10. The increase in hydric volume is associated to contractile impairment in the calf after the world’s most extreme mountain ultra-marathon

    OpenAIRE

    Vitiello, Damien; Degache, Francis; Jonas J Saugy; Place, Nicolas; Schena, Federico; Millet, Grégoire P.

    2015-01-01

    Background Studies have recently focused on the effect of running a mountain ultra-marathon (MUM) and their results show muscular inflammation, damage and force loss. However, the link between peripheral oedema and muscle force loss is not really established. We tested the hypothesis that, after a MUM, lower leg muscles’ swelling could be associated with muscle force loss. The knee extensor (KE) and the plantar flexor (PF) muscles’ contractile function was measured by supramaximal electrical ...

  11. Aerobic interval training partly reverse contractile dysfunction and impaired Ca2+ handling in atrial myocytes from rats with post infarction heart failure

    OpenAIRE

    Johnsen, Anne Berit; Høydal, Morten Andre; Røsbjørgen, Ragnhild; Stølen, Tomas; Wisløff, Ulrik

    2013-01-01

    Background: There is limited knowledge about atrial myocyte Ca2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca2+ handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction. Methods and results: Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p

  12. Aerobic Interval Training Partly Reverse Contractile Dysfunction and Impaired Ca2+ Handling in Atrial Myocytes from Rats with Post Infarction Heart Failure

    OpenAIRE

    Johnsen, Anne Berit; Høydal, Morten; Røsbjørgen, Ragnhild; Stølen, Tomas; Wisløff, Ulrik

    2013-01-01

    Background There is limited knowledge about atrial myocyte Ca2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca2+ handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction. Methods and results Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p

  13. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    OpenAIRE

    Guttridge Denis C; Peterson Jennifer M; Xu Ying; Delfín Dawn A; Rafael-Fortney Jill A; Janssen Paul ML

    2011-01-01

    Abstract Background Duchenne muscular dystrophy (DMD) is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain), targeted at blunting Nuclear F...

  14. Progress in the Study of Microvascular Pericytes Contractile Function%微血管周细胞收缩功能的研究进展

    Institute of Scientific and Technical Information of China (English)

    鹿文葆

    2012-01-01

    周细胞定位在微血管壁外侧,是微血管的重要组成细胞之一,它在微血管的形成及局部血流调节中发挥重要作用.周细胞是类似平滑肌细胞的一类细胞,表达多种收缩蛋白,具有收缩性.周细胞收缩可调节微血管管径及血流,控制局部微血流的灌流量.近年,越来越多的研究表明周细胞的收缩功能与多种微血管疾病的病变过程有关,因此日益受到关注.对其收缩功能的进一步理解,可能为治疗微血管疾病提供新的方法.%Pericytes, as one of the components of microvessels,are considered to play an important role in the generation of microvessels and the regulation of local blood flow. Pericytes are similar to the smooth muscle cells,which express several kinds of contractile protein and have contractility,regulating the microvessels diameter and blood flow perfusion. More and more studies indicate that pericytes' contractile function is related to the pathological progress of several diseases,which has been paid much attention to recently. Further understanding of the contractile function of pericytes might provide new strategy for the treatment of mi-crovascular diseases.

  15. Expression of gastrin-releasing peptide is increased by prolonged stretch of human myometrium, and antagonists of its receptor inhibit contractility.

    Science.gov (United States)

    Tattersall, Mark; Cordeaux, Yolande; Charnock-Jones, D Stephen; Smith, Gordon C S

    2012-05-01

    Increased uterine stretch appears to increase the risk of preterm labour, but the mechanism is unknown. The aim of this study was to identify factors that mediate the effect of stretch on human myometrium.Myometrial explants, prepared from biopsies obtained at elective caesarean delivery, were either studied acutely, or were maintained in prolonged culture (up to 65 h) under tension with either a 0.6 g or a 2.4 g mass, and compared using in vitro contractility, whole genome array, and qRT-PCR. Tissue held at tonic stretch with the 2.4 g mass for either 24 or 65 h showed increased potassium chloride (KCl)-induced and oxytocin-induced contractility compared with that held with the 0.6 g mass. Gene array identified 62 differentially expressed transcripts after 65 h exposure to increased stretch. Two probes for gastrin-releasing peptide (GRP), a known stimulatory agonist of smooth muscle, were among the top five up-regulated by stretch (3.4-fold and 2.0-fold). Up-regulation of GRP mRNA by stretch was confirmed in a separate series of 10 samples using quantitative RT-PCR (qRT-PCR) (2.8-fold, P =0.01). GRP stimulated contractions acutely when added to freshly obtained myometrial strips in 2 out of 9 cases, but Western blot demonstrated expression of the GRP receptor in 9 out of a further 9 cases. Prolonged incubation of stretched explants in the GRP antagonists PD-176252 or RC-3095 (65 and 24 h, respectively) significantly reduced KCl- and oxytocin-induced contractility.Tonic stretch of human myometrium increases contractility and stimulates the expression of a known smooth muscle stimulatory agonist, GRP. Incubation of myometrium with GRP receptor antagonists attenuates the effect of stretch. GRP may be a target for novel therapies to reduce the risk of preterm birth in multiple pregnancy.

  16. Dictyostelium discoideum RabS and Rab2 colocalize with the Golgi and contractile vacuole system and regulate osmoregulation

    Indian Academy of Sciences (India)

    Katherine Maringer; Azure Yarbrough; Sunder Sims-Lucas; Entsar Saheb; Sanaa Jawed; John Bush

    2016-06-01

    Small-molecular-weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and is required for protein transport from the ER to the Golgi complex; however, Rab2 has yet to be characterized in Dictyostelium discoideum. DdRabS is a Dictyostelium Rab that is 80% homologous to DdRab1 which is required for protein transport between the ER and Golgi. Expression of GFP-tagged DdRab2 and DdRabS proteins showed localization to Golgi membranes and to the contractile vacuole system (CV) in Dictyostelium. Microscopic imaging indicates that the DdRab2 and DdRabS proteins localize at, and are essential for, the proper structure of Golgi membranes and the CV system. Dominant negative (DN) forms show fractionation of Golgi membranes, supporting their role in the structure and function of it. DdRab2 and DdRabS proteins, and their dominant negative and constitutively active (CA) forms, affect osmoregulation of the cells, possibly by the influx and discharge of fluids, which suggests a role in the function of the CV system. This is the first evidence of GTPases being localized to both Golgi membranes and the CV system in Dictyostelium.

  17. Defective excitation-contraction coupling is partially responsible for impaired contractility in hindlimb muscles of Stac3 knockout mice

    Science.gov (United States)

    Cong, Xiaofei; Doering, Jonathan; Grange, Robert W.; Jiang, Honglin

    2016-01-01

    The Stac3 gene is exclusively expressed in skeletal muscle, and Stac3 knockout is perinatal lethal in mice. Previous data from Stac3-deleted diaphragms indicated that Stac3-deleted skeletal muscle could not contract because of defective excitation-contraction (EC) coupling. In this study, we determined the contractility of Stac3-deleted hindlimb muscle. In response to frequent electrostimulation, Stac3-deleted hindlimb muscle contracted but the maximal tension generated was only 20% of that in control (wild type or heterozygous) muscle (P < 0.05). In response to high [K+], caffeine, and 4-chloro-m-cresol (4-CMC), the maximal tensions generated in Stac3-deleted muscle were 29% (P < 0.05), 58% (P = 0.08), and 55% (P < 0.05) of those in control muscle, respectively. In response to 4-CMC or caffeine, over 90% of myotubes formed from control myoblasts contracted, but only 60% of myotubes formed from Stac3-deleted myoblasts contracted (P = 0.05). However, in response to 4-CMC or caffeine, similar increases in intracellular calcium concentration were observed in Stac3-deleted and control myotubes. Gene expression and histological analyses revealed that Stac3-deleted hindlimb muscle contained more slow type-like fibers than control muscle. These data together confirm a critical role of STAC3 in EC coupling but also suggest that STAC3 may have additional functions in skeletal muscle, at least in the hindlimb muscle. PMID:27184118

  18. Experimental stereotactic gamma knife radiosurgery. Vascular contractility studies of the rat middle cerebral artery after chronic survival.

    Science.gov (United States)

    Major, Otto; Szeifert, György Tamás; Radatz, Matthias W R; Walton, Lee; Kemeny, Andras Armand

    2002-03-01

    In vitro isometric small vessel myograph experiments and pathological investigations were performed on rat middle cerebral arteries. Thirty-four animals provided 68 normal vessels, six further rats had the endothelial layer mechanically removed from their 12 arteries. Eighteen animals received gamma knife irradiation to the middle cerebral arteries. Fifteen of these received 50 Gray, and three 25 Gray dose to the 50% isodose and the contralateral vessels offered 20 Gray and 15 Gray irradiated specimens. Survival times varied from 12 weeks to 18 months. In the acute stage, abolition of potassium-induced relaxation occurred as early as 24 h after irradiation whilst in one year this reaction seemed to recover and remained active to 18 months. The contraction response to prostaglandin F2 alpha was diminished at six weeks in the 50 Gray-irradiated vessels. However, from one year further reduction was seen and by 18 months this response was totally abolished. We demonstrated reduction of contractile capability of the irradiated normal vessels while the vessels remained patent. When using low irradiation dose there were no pathological changes even at 18 months, but marked physiological changes could be demonstrated. Different vessel wall functions appear to have different radiosensitivity, time course and capability for regeneration.

  19. The influence of steroids on noradrenaline-mediated contractile reactivity of the superficial nasal and facial veins in cycling gilts.

    Science.gov (United States)

    Grzegorzewski, W J; Muszak, J; Wasowska, B; Jan, B; Stefańczyk-Krzymowska, S

    2012-01-01

    The nasal venous blood may be directed through the facial vein into the systemic circulation or through the frontal vein into the venous cavernous sinus of the perihypophyseal vascular complex, where hormones and pheromones permeate from the venous blood into the arterial blood supplying the brain and hypophysis. The present study was designed to determine the effect of noradrenaline (NA) on the tension of the nasal, frontal and facial veins of cycling gilts, and influence of ovarian steroid hormones on NA-mediated contractile reactivity. Additionally, the enzyme dopamine-beta-hydroxylase catalysing the conversion of dopamine to noradrenaline (DbetaH) was immunolocalized in these vessels. Among three studied veins, the frontal proximal vein, that fulfill a key role in the supply of the nasal venous blood into the venous cavernous sinus, reacted to NA most strongly (P tension of the frontal proximal vein during the periestrous period (P superficial nasal and facial veins of gilts in both studied stages of the estrous cycle. We suggest that the reactivity of the superficial veins of the nose and face to NA combined with the previously demonstrated reactivity of these veins to steroid ovarian hormones and male steroid pheromones may regulate the access of priming pheromone androstenol (resorebed in the nasal cavity) to the brain of gilts during periestrous period via humoral local destination transfer.

  20. Efficacy and Safety of Intravesical OnabotulinumtoxinA Injection in Patients with Detrusor Hyperactivity and Impaired Contractility.

    Science.gov (United States)

    Wang, Chung-Cheng; Lee, Cheng-Ling; Kuo, Hann-Chorng

    2016-03-01

    We investigated the efficacy and safety of intravesical onabotulinumtoxinA injection in patients with detrusor hyperactivity and impaired contractility (DHIC). Twenty-one patients with urodynamically proven DHIC and 21 age-matched patients with overactive bladder (OAB) with urodynamic detrusor overactivity were treated with intravesical injections of 100 U of onabotulinumtoxinA. The overactive bladder symptom score, urgency severity score, patient perception of bladder condition, global response assessment, voiding diary, and procedure-related adverse events (AE) at baseline, two weeks, one, three, and six months after treatment were assessed. The results showed that the subjective symptom scores improved significantly in both groups, and the scores did not differ between the groups. The decrease in urgency episodes and urgency urinary incontinence were noted in OAB patients but not in DHIC patients. Although the incidence of AEs was comparable between the groups, the therapeutic efficacy lasted for a mean of 4.9 ± 4.8 months in DHIC patients and 7.2 ± 3.3 months in OAB patients (p = 0.03). We concluded that the efficacy of intravesical onabotulinumtoxinA injection for DHIC patients was limited and short-term. Nevertheless, AEs did not increase in DHIC. Intravesical onabotulinumtoxinA might not be a good indication in patients with DHIC and high post-voiding residual urine. Physicians should inform patients of the potential benefits and risks of onabotulinumtoxinA injection for treatment of DHIC. PMID:26999209

  1. Efficacy and Safety of Intravesical OnabotulinumtoxinA Injection in Patients with Detrusor Hyperactivity and Impaired Contractility

    Directory of Open Access Journals (Sweden)

    Chung-Cheng Wang

    2016-03-01

    Full Text Available We investigated the efficacy and safety of intravesical onabotulinumtoxinA injection in patients with detrusor hyperactivity and impaired contractility (DHIC. Twenty-one patients with urodynamically proven DHIC and 21 age-matched patients with overactive bladder (OAB with urodynamic detrusor overactivity were treated with intravesical injections of 100 U of onabotulinumtoxinA. The overactive bladder symptom score, urgency severity score, patient perception of bladder condition, global response assessment, voiding diary, and procedure-related adverse events (AE at baseline, two weeks, one, three, and six months after treatment were assessed. The results showed that the subjective symptom scores improved significantly in both groups, and the scores did not differ between the groups. The decrease in urgency episodes and urgency urinary incontinence were noted in OAB patients but not in DHIC patients. Although the incidence of AEs was comparable between the groups, the therapeutic efficacy lasted for a mean of 4.9 ± 4.8 months in DHIC patients and 7.2 ± 3.3 months in OAB patients (p = 0.03. We concluded that the efficacy of intravesical onabotulinumtoxinA injection for DHIC patients was limited and short-term. Nevertheless, AEs did not increase in DHIC. Intravesical onabotulinumtoxinA might not be a good indication in patients with DHIC and high post-voiding residual urine. Physicians should inform patients of the potential benefits and risks of onabotulinumtoxinA injection for treatment of DHIC.

  2. Sequential biventricular pacing improves regional contractility, longitudinal function and dyssynchrony in patients with heart failure and prolonged QRS

    Directory of Open Access Journals (Sweden)

    Ring Margareta

    2010-04-01

    Full Text Available Abstract Aims Biventricular pacing (BiP is an effective treatment in systolic heart failure (HF patients with prolonged QRS. However, approximately 35% of the patients receiving BiP are classified as non-responders. The aim of this study is to evaluate the acute effects of VV-optimization on systolic heart function. Methods Twenty-one HF patients aged 72 (46-88 years, QRS 154 (120-190 ms, were studied with echocardiography, Tissue Doppler Imaging (TDI and 3D-echo the first day after receiving a BiP device. TDI was performed; during simultaneous pacing (LV-lead pacing 4 ms before the RV-lead and during sequential pacing (LV 20 and 40 ms before RV and RV 20 and 40 ms before LV-lead pacing. Systolic heart function was studied by tissue tracking (TT for longitudinal function and systolic maximal velocity (SMV for regional contractility and signs of dyssynchrony assessed by time-delays standard deviation of aortic valve opening to SMV, AVO-SMV/SD and tissue synchronization imaging (TSI. Results The TT mean value preoperatively was 4,2 ± 1,5 and increased at simultaneous pacing to 5,0 ± 1,2 mm (p Conclusions VV-optimization in the acute phase improves systolic heart function more than simultaneous BiP pacing. Long-term effects should be evaluated in prospective randomized trials.

  3. Correlation between selective inhibition of the cyclic nucleotide phosphodiesterases and the contractile activity in human pregnant myometrium near term.

    Science.gov (United States)

    Leroy, M J; Cedrin, I; Breuiller, M; Giovagrandi, Y; Ferre, F

    1989-01-01

    The present study was carried out to determine the ability of various pharmacological agents to selectively inhibit each cytosolic form of phosphodiesterase isolated from the longitudinal layer of human myometria near term. Among the drugs tested, zaprinast specifically inhibits the first form of PDE which hydrolyses both substrates (cAMP and cGMP) and is stimulated by the Ca2+-calmodulin complex. A second form of PDE specific for cAMP hydrolysis and Ca2+-calmodulin insensitive is only present during pregnancy. Rolipram is the most potent and selective inhibitor of this second form. It is also the most efficient compound to inhibit in vitro the spontaneous contractions of near term myometria. The double effect of rolipram suggests an important role of the second form of PDE in the mechanisms of contractility during the pregnancy. In addition rolipram or other derivatives might be of a therapeutic interest in the prevention of prematurity in so far as they are devoid of undesirable maternal and fetal side effects.

  4. Inhibitory Effect of Cinobufagin on L-Type Ca2+ Currents, Contractility, and Ca2+ Homeostasis of Isolated Adult Rat Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Pinya Li

    2014-01-01

    Full Text Available Cinobufagin (CBG, a major bioactive ingredient of the bufanolide steroid compounds of Chan Su, has been widely used to treat coronary heart disease. At present, the effect of CBG on the L-type Ca2+ current (ICa-L of ventricular myocytes remains undefined. The aim of the present study was to characterize the effect of CBG on intracellular Ca2+ ([Ca2+]i handling and cell contractility in rat ventricular myocytes. CBG was investigated by determining its influence on ICa-L, Ca2+ transient, and contractility in rat ventricular myocytes using the whole-cell patch-clamp technique and video-based edge-detection and dual-excitation fluorescence photomultiplier systems. The dose of CBG (10−8 M decreased the maximal inhibition of CBG by 47.93%. CBG reduced ICa-L in a concentration-dependent manner with an IC50 of 4 × 10−10 M, upshifted the current-voltage curve of ICa-L, and shifted the activation and inactivation curves of ICa-L leftward. Moreover, CBG diminished the amplitude of the cell shortening and Ca2+ transients with a decrease in the time to peak (Tp and the time to 50% of the baseline (Tr. CBG inhibited L-type Ca2+ channels, and reduced [Ca2+]i and contractility in adult rat ventricular myocytes. These findings contribute to the understanding of the cardioprotective efficacy of CBG.

  5. Comparison of the effect of alpha1- and alpha2-adrenoceptor agonists and antagonists on muscle contractility of the rabbit abdominal aorta in vitro.

    Science.gov (United States)

    Gnus, Jan; Rusiecka, Agnieszka; Czerski, Albert; Zawadzki, Wojciech; Witkiewicz, Wojciech; Hauzer, Willy

    2013-01-01

    The aim of the study was to demonstrate the effect of selected agonists and antagonists of alpha-adrenergic receptors on muscle contractility of the rabbit abdominal aorta in vitro with particular emphasis on alpha2-adrenergic receptor subtypes. The study was conducted on 30 New Zealand breed rabbits from which specimens of the abdominal aorta were collected. The sections were set up in an automatic water bath in a Krebs-Henseleit buffer at 37 degrees C. The experiments showed that alpha1-adrenergic receptors played the main role in the contractile response ofthe rabbit abdominal aorta. Stimulation of alpha1-adrenergic receptor by administration ofphenylephrine resulted in an increase in smooth muscle tonus ofthe rabbit abdominal aorta by an average of 4.75 mN. The reaction after stimulation of alpha2-adrenergic receptors by similar doses of their agonists was much weaker. Prolonged tissue response time and time needed to reach maximum tonus for alpha2-adrenergic receptor agonists were observed. The obtained results confirm the thesis that the alpha1-adrenergic receptor is the most important factor controlling the contractility of the rabbit abdominal aorta, but the alpha2-adrenergic receptor is also involved in maintaining muscle tissue tonus. PMID:23767297

  6. Aerobic interval training partly reverse contractile dysfunction and impaired Ca2+ handling in atrial myocytes from rats with post infarction heart failure.

    Directory of Open Access Journals (Sweden)

    Anne Berit Johnsen

    Full Text Available BACKGROUND: There is limited knowledge about atrial myocyte Ca(2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca(2+ handling in rats with post-infarction heart failure (HF and to examine whether aerobic interval training could reverse a potential dysfunction. METHODS AND RESULTS: Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p<0.01 and time to relaxation was prolonged (p<0.01 in sedentary HF-rats compared to healthy controls. This was associated with decreased Ca(2+ amplitude, decreased SR Ca(2+ content, and slower Ca(2+ transient decay. Atrial myocytes from HF-rats had reduced sarcoplasmic reticulum Ca(2+ ATPase activity, increased Na(+/Ca(2+-exchanger activity and increased diastolic Ca(2+ leak through ryanodine receptors. High intensity aerobic interval training in HF-rats restored atrial myocyte contractile function and reversed changes in atrial Ca(2+ handling in HF. CONCLUSION: Post infarction HF in rats causes profound impairment in atrial myocyte contractile function and Ca(2+ handling. The observed dysfunction in atrial myocytes was partly reversed after aerobic interval training.

  7. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt.

    Science.gov (United States)

    Kitazawa, Takio; Shimazaki, Misato; Kikuta, Ayumi; Yaosaka, Noriko; Teraoka, Hiroki; Kaiya, Hiroyuki

    2016-06-01

    Ghrelin has been identified in some amphibians and is known to stimulate growth hormone release and food intake as seen in mammals. Ghrelin regulates gastrointestinal motility in mammals and birds. The aim of this study was to determine whether ghrelin affects gastrointestinal smooth muscle contractility in bullfrogs (anuran) and Japanese fire belly newts (urodelian) in vitro. Neither bullfrog ghrelin nor rat ghrelin affected longitudinal smooth muscle contractility of gastrointestinal strips from the bullfrog. Expression of growth hormone secretagogue receptor 1a (GHS-R1a) mRNA was confirmed in the bullfrog gastrointestinal tract, and the expression level in the gastric mucosa was lower than that in the intestinal mucosa. In contrast, some gastrointestinal peptides, including substance P, neurotensin and motilin, and the muscarinic receptor agonist carbachol showed marked contraction, indicating normality of the smooth muscle preparations. Similar results were obtained in another amphibian, the Japanese fire belly newt. Newt ghrelin and rat ghrelin did not cause any contraction in gastrointestinal longitudinal muscle, whereas substance P and carbachol were effective causing contraction. In conclusion, ghrelin does not affect contractility of the gastrointestinal smooth muscle in anuran and urodelian amphibians, similar to results for rainbow trout and goldfish (fish) but different from results for rats and chickens. The results suggest diversity of ghrelin actions on the gastrointestinal tract across animals. This study also showed for the first time that motilin induces gastrointestinal contraction in amphibians. PMID:26704852

  8. Inactivation of the EP3 receptor attenuates the Angiotensin II pressor response via decreasing arterial contractility

    Science.gov (United States)

    Chen, Lihong; Miao, Yifei; Zhang, Yahua; Dou, Dou; Liu, Limei; Tian, Xiaoyu; Yang, Guangrui; Pu, Dan; Zhang, Xiaoyan; Kang, Jihong; Gao, Yuansheng; Wang, Shiqiang; Breyer, Matthew D.; Wang, Nanping; Zhu, Yi; Huang, Yu; Breyer, Richard M; Guan, Youfei

    2012-01-01

    Objective The present studies aimed at elucidating the role of prostaglandin E2 (PGE2) receptor subtype 3 (EP3) in regulating blood pressure. Methods and Results Mice bearing a genetic disruption of the EP3 gene (EP3−/−) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonists M&B28767 and sulprostone were markedly attenuated in EP3−/− mice, while the reduction of BP induced by PGE2 was comparable in both genotypes. Vasopressor effect of acute or chronic infusion of angiotensin II (AngII) was attenuated in EP3−/− mice. AngII–induced vasoconstriction in mesenteric arteries decreased in EP3−/− group. In mesenteric arteries from wild type mice, AngII–induced vasoconstriction was inhibited by EP3 selective antagonist DG-041 or L798106. The expression of Arhgef-1 is attenuated in EP3 deficient mesenteric arteries. EP3 antagonist DG-041 diminished AngII-induced phosphorylation of MLC20 and MYPT1 in isolated mesenteric arteries. Furthermore, in vascular smooth muscle cells (VSMCs), AngII induced intracellular Ca2+ increase was potentiated by EP3 agonist sulprostone, while inhibited by DG-041. Conclusions Activation of the EP3 receptor raises baseline blood pressure and contributes to AngII-dependent hypertension at least partially via enhancing Ca2+ sensitivity and intracellular calcium concentration in VSMCs. Selective targeting of the EP3 receptor may represent a potential therapeutic target for the treatment of hypertension. PMID:23065824

  9. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    Science.gov (United States)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    ) Fast IIb MHC gene expression was enhanced in fast-twitch muscles of normal thyroid animals exposed to spaceflight; however, thyroid deficiency markedly repressed expression of this gene independently of spaceflight. In summary, the absence of gravity, when imposed at critical stages of development, impaired body and skeletal muscle growth, as well as expression of the MHC gene family of motor proteins. This suggests that normal weightbearing activity is essential for establishing body and muscle growth in neonatal animals, and for expressing the motor gene essential for supporting antigravity functions.

  10. Association between aortic stenosis severity and contractile reserve measured by two-dimensional strain under low-dose dobutamine testing

    Directory of Open Access Journals (Sweden)

    Banović Marko

    2013-01-01

    Full Text Available Background/Aim. Early detection of left ventricle (LV systolic dysfunction could be a clue for surgical treatment in patients with significant aortic stenosis (AS. Therefore, we evaluated LV peak of global longitudinal strain (PGLS using speckle tracking imaging at rest and during low-dose dobutamine infusion in asymptomatic patients with moderate and severe AS and preserved LV ejection fraction (EF. Methods. All the patients underwent coronary angiography and had no obstructive coronary disease (defined as having no stenosis greater than 50% in diameter. The patients were divided into two groups: above and below median of 0.785 cm2 aortic valve area (AVA. PGLS was measured from acquired apical 4-chamber and 2-chamber cine loops using a EchoPac PC-workstation at rest and during 5 μg/kg/min, 10 μg/kg/min, and 20 μg/kg/min dobutamine infusion, respectively. The global strain was the average of segment strains from the apical views. Results: A total of 62 patients with moderate and severe AS (AVA median reached the statistical significance (- 8.71 ± 2.68% vs -11.93 ± 3.74%, p = 0.002. In addition, PGLS increase was also significant in 4-chamber view in the patients with AVA above median, but only when comparing baseline to peak 20 μg/kg/min (-10.72 ± 3.07% vs -13.14 ± 4.79%; p = 0.034. Conversely, in both groups the increase of PGLS in 2-chamber view did not reach significance. Conclusion. Two-dimensional strain speckle tracking analysis of myocardial deformation with measurement of peak systolic strain during dobutamine infusion is a feasible and accurate method to determine myocardial longitudinal systolic function and contractile reserve and may contribute to clinical decision making in patients with significant AS.

  11. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  12. Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions.

    Science.gov (United States)

    Canver, Adam Charles; Ngo, Olivia; Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-05-24

    Macrovascular endothelial injury, which may be caused by percutaneous intervention, requires endothelial cell directed collective migration to restore an intact endothelial monolayer. While interventions are often performed in arteries stiffened by cardiovascular disease, the effect of substrate stiffness on endothelial cell collective migration has not been examined. We studied porcine aortic endothelial cell directed collective migration using a modified cage assay on 4, 14, and 50kPa collagen-coated polyacrylamide gels. Total cell migration distance was measured over time, as were nuclear alignment and nuclear:total β-catenin as measures of cell directedness and cell-cell junction integrity, respectively. In addition, fibronectin fibers were examined as a measure of extracellular matrix deposition and remodeling. We now show that endothelial cells collectively migrate farther on stiffer substrates by 24h. Cells were more directed in the migration direction on intermediate stiffness substrates from 12 to 24h, with an alignment peak 400-700µm back from the migratory interface. However, cells on the softest substrates had the highest cell-cell junction integrity. Cells on all substrates deposited fibronectin, however fibronectin fibers were most linear and aligned on the stiffer substrates. When Rho kinase (ROCK) was inhibited with Y27632, cells on soft substrates migrated farther and cells on both soft and stiff substrates were more directed. When α5 integrin was knocked down with siRNA, cells on stiffer substrates did not migrate as far and were less directed. These data suggest that ROCK-mediated myosin contractility inhibits endothelial cell collective migration on soft substrates, while cell-matrix interactions are critical to endothelial cell collective migration on stiff substrates.

  13. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat

    Science.gov (United States)

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis. PMID:27462274

  14. Food allergy alters jejunal circular muscle contractility and induces local inflammatory cytokine expression in a mouse model

    Directory of Open Access Journals (Sweden)

    Kovanen Petri T

    2009-05-01

    Full Text Available Abstract Background We hypothesized that food allergy causes a state of non-specific jejunal dysmotility. This was tested in a mouse model. Methods Balb/c mice were epicutaneously sensitized with ovalbumin and challenged with 10 intragastric ovalbumin administrations every second day. Smooth muscle contractility of isolated circular jejunal sections was studied in organ bath with increasing concentrations of carbamylcholine chloride (carbachol. Smooth muscle layer thickness and mast cell protease-1 (MMCP-1 positive cell density were assayed histologically. Serum MMCP-1 and immunoglobulins were quantified by ELISA, and mRNA expressions of IFN-γ, IL-4, IL-6 and TGFβ-1 from jejunal and ileal tissue segments were analyzed with quantitative real-time PCR. Results Ovalbumin-specific serum IgE correlated with jejunal MMCP-1+ cell density. In the allergic mice, higher concentrations of carbachol were required to reach submaximal muscular stimulation, particularly in preparations derived from mice with diarrhoea. Decreased sensitivity to carbachol was associated with increased expression of IL-4 and IL-6 mRNA in jejunum. Smooth muscle layer thickness, as well as mRNA of IFN-γ and TGF-β1 remained unchanged. Conclusion In this mouse model of food allergy, we demonstrated a decreased response to a muscarinic agonist, and increased levels of proinflammatory IL-6 and Th2-related IL-4, but not Th1-related IFN-γ mRNAs in jejunum. IgE levels in serum correlated with the number of jejunal MMCP-1+ cells, and predicted diarrhoea. Overall, these changes may reflect a protective mechanism of the gut in food allergy.

  15. Insulin Preconditioning Elevates p-Akt and Cardiac Contractility after Reperfusion in the Isolated Ischemic Rat Heart

    Directory of Open Access Journals (Sweden)

    Tamaki Sato

    2014-01-01

    Full Text Available Insulin induces cardioprotection partly via an antiapoptotic effect. However, the optimal timing of insulin administration for the best quality cardioprotection remains unclear. We tested the hypothesis that insulin administered prior to ischemia provides better cardioprotection than insulin administration after ischemia. Isolated rat hearts were prepared using Langendorff method and divided into three groups. The Pre-Ins group (Pre-Ins received 0.5 U/L insulin prior to 15 min no-flow ischemia for 20 min followed by 20 min of reperfusion. The Post-Ins group (Post-Ins received 0.5 U/L insulin during the reperfusion period only. The control group (Control was perfused with KH buffer throughout. The maximum of left ventricular derivative of pressure development (dP/dt(max was recorded continuously. Measurements of TNF-α and p-Akt in each time point were assayed by ELISA. After reperfusion, dP/dt(max in Pre-Ins was elevated, compared with Post-Ins at 10 minutes after reperfusion and Control at all-time points. TNF-α levels at 5 minutes after reperfusion in the Pre-Ins were lower than the others. After 5 minutes of reperfusion, p-Akt was elevated in Pre-Ins compared with the other groups. Insulin administration prior to ischemia provides better cardioprotection than insulin administration only at reperfusion. TNF-α suppression is possibly mediated via p-Akt leading to a reduction in contractile myocardial dysfunction.

  16. 薯蓣皂苷对大鼠心肌收缩力影响的研究%Effects of dioscin on rat myocardial contractility

    Institute of Scientific and Technical Information of China (English)

    韩钰; 杨帆; 丛恬駪; 孙凯; 李燕; 康毅; 尹永强; 娄建石

    2016-01-01

    目的:观察薯蓣皂苷( dioscin,Dio)对大鼠心肌收缩力的影响。方法采用 Langendorff 逆行主动脉灌流法对大鼠离体心脏进行灌流,利用压力感受器插管法测定左心室相关心功能参数,记录低、中和高3个浓度Dio对左心室收缩压(LVSP)、左心室舒张末期压(LVEDP)、左心室内压最大上升/下降速率(± dp/dtmax )的影响。利用激光共聚焦显微镜观察Dio对H9c2细胞内Ca2+浓度的影响,并利用多功能酶标仪观察药物对细胞线粒体膜电位的影响。结果0.1、1μmol·L-1 Dio可明显增加LVSP,由(11.55±0.52)、(10.53±0.28) kPa 分别增加至(13.08±0.72)、(12.53±0.64) kPa( P<0.01);增加+dp/dtmax由(0.38±0.10)、(0.40±0.07) kPa·ms-1分别增加至(0.42±0.11)、(0.43±0.02) kPa· ms-1( P <0.05)。10μmol · L-1 Dio 则使 LVSP 由(12.13±0.33) kPa减至(9.46±0.77) kPa(P<0.01),使+dp/dtmax由(0.42±0.04) kPa · ms-1降为(0.24±0.04) kPa·ms-1( P <0.01)。0.1、1、10μmol · L-1的 Dio 可使H9c2细胞中Ca2+相对荧光强度由(16.62±0.89)分别增加至(21.48±0.80)、(25.68±0.69)和(19.84±0.66)(P <0.01)。0.1、1μmol·L-1 Dio对H9c2细胞线粒体膜电位无明显影响,而10μmol · L-1 Dio会使JC-1单体与聚合物的比值由(1.14±0.03)增加为(1.35±0.06)(P<0.01),即引起线粒体膜电位下降。结论低、中浓度Dio可增加LVSP和+dp/dtmax ,表现正性肌力作用,机制为增加细胞内Ca2+浓度。并且,其在增加细胞内Ca2+浓度的同时并不会引起钙超载,仅高浓度出现。%Aim To investigate the effects of dioscin ( Dio) on rat myocardial contractility. Methods Left ventricular contractile function was measured using the Langendorff non-recirculating mode of isolated rat heart perfusion. Effects of low, middle and high concentra-tion of Dio were investigated by measuring left ventricu-lar systolic pressure ( LVSP ) and left

  17. Rho kinase enhances contractions of rat mesenteric collecting lymphatics.

    Science.gov (United States)

    Kurtz, Kristine H; Souza-Smith, Flavia M; Moor, Andrea N; Breslin, Jerome W

    2014-01-01

    The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1-10 μM) and Y-27632 (0.5-50 μM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 μg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1-10 μM H1152 or 25-50 μM Y-27632. H1152 (10 μM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose that

  18. Rho Kinase Enhances Contractions of Rat Mesenteric Collecting Lymphatics

    Science.gov (United States)

    Kurtz, Kristine H.; Souza-Smith, Flavia M.; Moor, Andrea N.; Breslin, Jerome W.

    2014-01-01

    The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1–10 μM) and Y-27632 (0.5–50 μM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 μg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1–10 μM H1152 or 25–50 μM Y-27632. H1152 (10 μM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose

  19. Rho kinase enhances contractions of rat mesenteric collecting lymphatics.

    Directory of Open Access Journals (Sweden)

    Kristine H Kurtz

    Full Text Available The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+ sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1-10 μM and Y-27632 (0.5-50 μM. In addition, lymphatics were transfected with constitutively active (ca-ROCK protein (2 μg/ml to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1-10 μM H1152 or 25-50 μM Y-27632. H1152 (10 μM also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We

  20. Expression of cystathionine β-synthase and cystathionine γ-lyase in human pregnant myometrium and their roles in the control of uterine contractility.

    Directory of Open Access Journals (Sweden)

    Xing-Ji You

    Full Text Available BACKGROUND: Human uterus undergoes distinct molecular and functional changes during pregnancy and parturition. Hydrogen sulfide (H(2S has recently been shown to play a key role in the control of smooth muscle tension. The role of endogenous H(2S produced locally in the control of uterine contractility during labour is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Human myometrium biopsies were obtained from pregnant women undergoing cesarean section at term. Immunohistochemistry analysis showed that cystathionine-γ-lyase (CSE and cystathionine-β-synthetase (CBS, the principle enzymes responsible for H(2S generation, were mainly localized to smooth muscle cells of human pregnant myometrium. The mRNA and protein expression of CBS as well as H(2S production rate were down-regulated in labouring tissues compared to nonlabouring tissues. Cumulative administration of L-cysteine (10(-7-10(-2 mol/L, a precursor of H(2S, caused a dose-dependent decrease in the amplitude of spontaneous contractions in nonlabouring and labouring myometrium strips. L-cysteine at high concentration (10(-3 mol/L increased the frequency of spontaneous contractions and induced tonic contraction. These effects of L-cysteine were blocked by the inhibitors of CBS and CSE. Pre-treatment of myometrium strips with glibenclamide, an inhibitor of ATP-sensitive potassium (K(ATP channels, abolished the inhibitory effect of L-cysteine on spontaneous contraction amplitude. The effects of L-cysteine on the amplitude of spontaneous contractions and baseline muscle tone were less potent in labouring tissues than that in nonlabouring strips. CONCLUSION/SIGNIFICANCE: H(2S generated by CSE and CBS locally exerts dual effects on the contractility of pregnant myometrium. Expression of H(2S synthetic enzymes is down-regulated during labour, suggesting that H(2S is one of the factors involved in the transition of pregnant uterus from quiescence to contractile state after onset of parturition.

  1. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  2. Impact of acute changes of left ventricular contractility on the transvalvular impedance: validation study by pressure-volume loop analysis in healthy pigs.

    Directory of Open Access Journals (Sweden)

    Vincenzo Lionetti

    Full Text Available BACKGROUND: The real-time and continuous assessment of left ventricular (LV myocardial contractility through an implanted device is a clinically relevant goal. Transvalvular impedance (TVI is an impedentiometric signal detected in the right cardiac chambers that changes during stroke volume fluctuations in patients. However, the relationship between TVI signals and LV contractility has not been proven. We investigated whether TVI signals predict changes of LV inotropic state during clinically relevant loading and inotropic conditions in swine normal heart. METHODS: The assessment of RVTVI signals was performed in anesthetized adult healthy anesthetized pigs (n = 6 instrumented for measurement of aortic and LV pressure, dP/dtmax and LV volumes. Myocardial contractility was assessed with the slope (Ees of the LV end systolic pressure-volume relationship. Effective arterial elastance (Ea and stroke work (SW were determined from the LV pressure-volume loops. Pigs were studied at rest (baseline, after transient mechanical preload reduction and afterload increase, after 10-min of low dose dobutamine infusion (LDDS, 10 ug/kg/min, i.v, and esmolol administration (ESMO, bolus of 500 µg and continuous infusion of 100 µg·kg-1·min-1. RESULTS: We detected a significant relationship between ESTVI and dP/dtmax during LDDS and ESMO administration. In addition, the fluctuations of ESTVI were significantly related to changes of the Ees during afterload increase, LDDS and ESMO infusion. CONCLUSIONS: ESTVI signal detected in right cardiac chamber is significantly affected by acute changes in cardiac mechanical activity and is able to predict acute changes of LV inotropic state in normal heart.

  3. The effects of a high-fat, high-cholesterol diet on markers of uterine contractility during parturition in the rat.

    Science.gov (United States)

    Elmes, M J; Tan, D S-Y; Cheng, Z; Wathes, D C; McMullen, S

    2011-02-01

    Increasing levels of obesity within women of reproductive age is a major concern in the UK. Approximately, 13% of women aged obese. Obesity increases complications during pregnancy and the risk of caesarean section due to prolonged labour and poor uterine activity. The aim was to investigate whether a high-fat, high-cholesterol (HFHC) diet decreases markers of uterine contractility during parturition in the rat. Female Wistar rats were fed control (CON, n=10) or HFHC (n=10) diets for 6 weeks. Animals were mated and, once pregnant, maintained on their diet throughout gestation. On gestational day 19, rats were monitored continuously and killed at the onset of parturition. Body and fat depot weights were recorded. Myometrial tissue was analysed for cholesterol (CHOL), triglycerides (TAG), and expression of the contractile associated proteins gap junction protein alpha 1 (GJA1; also known as connexin-43, CX-43), prostaglandin-endoperoxide synthase 2 (PTGS2; also known as cyclo-oxygenase-2, COX-2) and caveolin-1 (CAV1) and maternal plasma for prostaglandin F(2)(α) (PGF(2)(α)) and progesterone. HFHC fed rats gained greater weight than CON (P<0.003) with significant increases in peri-renal fat (P<0.01). The HFHC diet increased plasma CHOL, TAG and progesterone, but decreased PGF(2)(α) versus CON (P<0.01, P<0.01, P=0.05 and P<0.02 respectively). Total CHOL and TAG levels of uterine tissue were similar. However, HFHC fed rats showed significant increases in PTGS2 (P<0.037), but decreases in GJA1 and CAV1 (P=0.059). In conclusion, a HFHC diet significantly increases body weight and alters lipid profiles that correlate with decreases in key markers of uterine contractility. Further work is required to ascertain whether these changes have adverse effects on uterine activity.

  4. Inhibition of PKC-dependent extracellular Ca2+ entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    International Nuclear Information System (INIS)

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT2R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT2R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca2+-free medium or the subsequent tonic constrictions induced by the addition of Ca2+ in the absence of agonists. Thus, the contractions induced by Ca2+ release from intracellular stores and Ca2+ influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca2+ channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca2+. Neither levels of angiotensins nor of AT2R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca2+ entry

  5. [The cardioprotective action of the anticonvulsant preparation sodium valproate in disorders of cardiac contractile function caused by acute myocardial infarct in rats].

    Science.gov (United States)

    Belkina, L M; Korchazhkina, N B; Kamskova, Iu G; Fomin, N A

    1997-01-01

    The preventive and therapeutical effects of sodium valproate (SV), 200 mg/kg, on cardiac contractile disorders (developed pressure, rate-pressure products, dp/dt) were studied in rats having 2-day myocardial infarction (MI). The postinfarction rather than preinfarction use of SV substantially restricted the depressed resting left ventricular function. Given by two regimens, SV increased cardiac resistance to the maximum isometric load induced by 60-sec ligation of the ascending aorta. The cardioprotective effect of the drug was shown due to its positive chronotropic action rather than its inotropic one. Thus, SV may be used as an effective drug for the prevention and treatment of postinfarct cardiac dysfunctions. PMID:9235532

  6. Stimuli of sensory-motor nerves terminate arterial contractile effects of endothelin-1 by CGRP and dissociation of ET-1/ET(A)-receptor complexes

    DEFF Research Database (Denmark)

    Meens, Merlijn J P M T; Compeer, Matthijs G; Hackeng, Tilman M;

    2010-01-01

    BACKGROUND: Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the...... antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In isolated rat mesenteric resistance arteries, ET(A)-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1...

  7. Peak torque and rate of torque development influence on repeated maximal exercise performance: contractile and neural contributions.

    Directory of Open Access Journals (Sweden)

    Baptiste Morel

    Full Text Available Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD and peak torque (T(peak on the overall performance (i.e. mean torque, T(mean decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240° · s(-1, beginning every 30 seconds. RTD, T(peak and T(mean as well as the Rate of EMG Rise (RER, peak EMG (EMG(peak and mean EMG (EMG(mean of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (if(mean calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD and maximal evoked torque (eT(peak induced by high frequency doublet (100 Hz. T(mean decrease was correlated to RTD and T(peak decrease (R(² = 0.62; p<0.001; respectively β=0.62 and β=0.19. RER, eRTD and initial if(mean (0-225 ms decreased after 20 sets (respectively -21.1 ± 14.1, -25 ± 13%, and ~20%. RTD decrease was correlated to RER decrease (R(² = 0.36; p<0.05. The eT(peak decreased significantly after 20 sets (24 ± 5%; p<0.05 contrary to EMG(peak (-3.2 ± 19.5 %; p=0.71. Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.

  8. Changes in the profile of NO synthases affect coronary blood flow autoregulation and myocardial contractile activity during restraint stress in rats.

    Science.gov (United States)

    Solodkov, A P; Lazuko, S S; Knyazev, E N; Nechaev, I N; Krainova, N A

    2014-12-01

    The efficiency of autoregulation of the coronary blood flow and contractile activity of the myocardium in the presence of inhibitors of constitutive and inducible NO synthases was studied in rats exposed to 6-h restraint stress. Intracoronary administration of S-methylisothiourea (10 μmol/liter), but not L-NAME (60 μmol/liter) fully prevented post-stress increase in the volume coronary blood flow rate, intensity of heart perfusion, and reduction of ventricular developed pressure at all levels of perfusion pressure. Real-time PCR showed 6-fold increased expression of inducible NO-synthase mRNA in the heart tissue against the background of unchanged expression of neuronal and endothelial NO synthases and 2-3-fold elevated content of transcripts of stress-inducible genes Hspa1a and Hspbp1. It was shown that the hypotension of coronary vessels and reduced contractile function of the myocardium are related to NO production by inducible NO synthase in endotheliocytes of coronary vessels and cardiomyocytes. PMID:25430647

  9. Active fascial contractility: Fascia may be able to contract in a smooth muscle-like manner and thereby influence musculoskeletal dynamics.

    Science.gov (United States)

    Schleip, R; Klingler, W; Lehmann-Horn, F

    2005-01-01

    Dense connective tissue sheets, commonly known as fascia, play an important role as force transmitters in human posture and movement regulation. Fascia is usually seen as having a passive role, transmitting mechanical tension which is generated by muscle activity or external forces. However, there is some evidence to suggest that fascia may be able to actively contract in a smooth muscle-like manner and consequently influence musculoskeletal dynamics. General support for this hypothesis came with the discovery of contractile cells in fascia, from theoretical reflections on the biological advantages of such a capacity, and from the existence of pathological fascial contractures. Further evidence to support this hypothesis is offered by in vitro studies with fascia which have been reported in the literature: the biomechanical demonstration of an autonomous contraction of the human lumbar fascia, and the pharmacological induction of temporary contractions in normal fascia from rats. If verified by future research, the existence of an active fascial contractility could have interesting implications for the understanding of musculoskeletal pathologies with an increased or decreased myofascial tonus. It may also offer new insights and a deeper understanding of treatments directed at fascia, such as manual myofascial release therapies or acupuncture. Further research to test this hypothesis is suggested.

  10. Peptide-based inhibition of NF-κB rescues diaphragm muscle contractile dysfunction in a murine model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Peterson, Jennifer M; Kline, William; Canan, Benjamin D; Ricca, Daniel J; Kaspar, Brian; Delfín, Dawn A; DiRienzo, Kelly; Clemens, Paula R; Robbins, Paul D; Baldwin, Albert S; Flood, Pat; Kaumaya, Pravin; Freitas, Michael; Kornegay, Joe N; Mendell, Jerry R; Rafael-Fortney, Jill A; Guttridge, Denis C; Janssen, Paul M L

    2011-01-01

    Deterioration of diaphragm function is one of the prominent factors that contributes to the susceptibility of serious respiratory infections and development of respiratory failure in patients with Duchenne Muscular Dystrophy (DMD). The NF-κB signaling pathway has been implicated as a contributing factor of dystrophic pathology, making it a potential therapeutic target. Previously, we demonstrated that pharmacological inhibition of NF-κB via a small NEMO Binding Domain (NBD) peptide was beneficial for reducing pathological features of mdx mice. Now, we stringently test the effectiveness and clinical potential of NBD by treating mdx mice with various formulations of NBD and use diaphragm function as our primary outcome criteria. We found that administering DMSO-soluble NBD rescued 78% of the contractile deficit between mdx and wild-type (WT) diaphragm. Interestingly, synthesis of a GLP NBD peptide as an acetate salt permitted its solubility in water, but as a negative consequence, also greatly attenuated functional efficacy. However, replacing the acetic acid counterion of the NBD peptide with trifluoroacetic acid retained the peptide's water solubility and significantly restored mdx diaphragm contractile function and improved histopathological indices of disease in both diaphragm and limb muscle. Together, these results support the feasibility of using a mass-produced, water-soluble NBD peptide for clinical use. PMID:21267511

  11. The R21C Mutation in Cardiac Troponin I Imposes Differences in Contractile Force Generation between the Left and Right Ventricles of Knock-In Mice

    Directory of Open Access Journals (Sweden)

    Jingsheng Liang

    2015-01-01

    Full Text Available We investigated the effect of the hypertrophic cardiomyopathy-linked R21C (arginine to cysteine mutation in human cardiac troponin I (cTnI on the contractile properties and myofilament protein phosphorylation in papillary muscle preparations from left (LV and right (RV ventricles of homozygous R21C+/+ knock-in mice. The maximal steady-state force was significantly reduced in skinned papillary muscle strips from the LV compared to RV, with the latter displaying the level of force observed in LV or RV from wild-type (WT mice. There were no differences in the Ca2+ sensitivity between the RV and LV of R21C+/+ mice; however, the Ca2+ sensitivity of force was higher in RV-R21C+/+ compared with RV-WT and lower in LV- R21C+/+ compared with LV-WT. We also observed partial loss of Ca2+ regulation at low [Ca2+]. In addition, R21C+/+-KI hearts showed no Ser23/24-cTnI phosphorylation compared to LV or RV of WT mice. However, phosphorylation of the myosin regulatory light chain (RLC was significantly higher in the RV versus LV of R21C+/+ mice and versus LV and RV of WT mice. The difference in RLC phosphorylation between the ventricles of R21C+/+ mice likely contributes to observed differences in contractile force and the lower tension monitored in the LV of HCM mice.

  12. Intravenous Followed by X-ray Fused with MRI-Guided Transendocardial Mesenchymal Stem Cell Injection Improves Contractility Reserve in a Swine Model of Myocardial Infarction

    Science.gov (United States)

    Schmuck, Eric G.; Koch, Jill M.; Hacker, Timothy A.; Hatt, Charles R.; Tomkowiak, Michael T.; Vigen, Karl K.; Hendren, Nicholas; Leitzke, Cathlyn; Zhao, Ying-qi; Li, Zhanhai; Centanni, John M.; Hei, Derek J.; Schwahn, Denise; Kim, Jaehyup; Hematti, Peiman

    2016-01-01

    The aim of this study is to determine the effects of early intravenous (IV) infusion later followed by transendocardial (TE) injection of allogeneic mesenchymal stem cells (MSCs) following myocardial infarction (MI). Twenty-four swine underwent balloon occlusion reperfusion MI and were randomized into 4 groups: IV MSC (or placebo) infusion (post-MI day 2) and TE MSC (or placebo) injection targeting the infarct border with 2D X-ray fluoroscopy fused to 3D magnetic resonance (XFM) co-registration (post-MI day 14). Continuous ECG recording, MRI, and invasive pressure-volume analyses were performed. IV MSC plus TE MSC treated group was superior to other groups for contractility reserve (p=0.02) and freedom from VT (p=0.03) but had more lymphocytic foci localized to the peri-infarct region (p= 0.002). No differences were observed in post-MI remodeling parameters. IV followed by XFM targeted TE MSC therapy improves contractility reserve and suppresses VT but does not affect post-MI remodeling and may cause an immune response. PMID:26374144

  13. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Directory of Open Access Journals (Sweden)

    Yüksel Korkmaz

    2010-01-01

    Full Text Available The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  14. Insulin-like Growth Factor-I and Slow, Bi-directional Perfusion Enhance the Formation of Tissue-Engineered Cardiac Grafts

    OpenAIRE

    Cheng, Mingyu; Moretti, Matteo; Engelmayr, George C.; Freed, Lisa E.

    2008-01-01

    Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac grafts. Heart cells were cultured on three-dimensional porous scaffolds in medium with or without supplemental IGF and in the presence or ab...

  15. Effects of Berberine on Contractile Activity of Circular Muscle in Rat Gastric Body Under High Glucose and Insulin Conditions%高糖高胰岛素环境下小檗碱对大鼠胃体环形肌收缩活动的影响

    Institute of Scientific and Technical Information of China (English)

    王霄; 马建红; 郝璋森; 赵丁

    2012-01-01

    Objective To observe the effects of berberine on the contractile responses in circular muscle strips of rat gastric body at high glucose or/and high insulin conditions. Methods By measuring muscular tone, we observed the contractions induced by adenosine triphosphate (ATP) or carbachol ( CCh ) in circular muscle strips of the rat gastric body, and the effects of berberine on the contractions in normal rats or rats with high glucose or/and high insulin. Results (1 )Berberine inhibited the contractile responses to CCh(0.3 μmo·L-1) or ATP(3 μmol·L-1) in circular muscle strips of the rat gastric body with dose-dependent manner. (2)Compared to the normal condition, the contractions of gastric circular muscle to CCh and ATP were not changed significantly under high glucose (15.6, 31.2 mmol·L-1) or high insulin( 50-200 mU · L-1 ) conditions(P > 0.05). ( 3 )The inhibited effect of berberine on the contractile responses to CCh was enhanced (P < 0.05 or P < 0.01), but on that to ATP was decreased significantly under high glu cose (31.2 mmol·L-1) and high insulin (200 mU ·L-1) conditions (P < 0.05) when compared to the normal condition. Conclusion Berberine inhibits the contractile responses to CCh and ATP significantly in circular muscle strips of the rat gastric body. Under high glucose or high insulin condition, the inhibited effect of berberine on the contractile activity in circular muscle of the rat gastric body are different, and the inhibition of berberine on the contractile re sponses to CCh is enhanced, which may aggravate the diabetic gastrointestinal dysfunction in rats.%目的 探讨小檗碱在高糖高胰岛素环境下对大鼠胃体环形肌收缩活动的影响.方法 采用张力测定法,在正常、高糖或/和高胰岛素环境下观察小檗碱对三磷酸腺苷( ATP)、卡巴胆碱(CCh)诱导大鼠胃体环形肌收缩反应的影响.结果 (1)小檗碱对ATP(3μmol· L-1)、CCh(0.3 μmol·L-1)引起的大鼠胃体环形肌收缩有明显

  16. Effect of acute hyperglycemia on left ventricular contractile function in diabetic patients with and without heart failure: two randomized cross-over studies.

    Directory of Open Access Journals (Sweden)

    Roni Nielsen

    Full Text Available It is unknown whether changes in circulating glucose levels due to short-term insulin discontinuation affect left ventricular contractile function in type 2 diabetic patients with (T2D-HF and without (T2D-nonHF heart failure.In two randomized cross-over-designed trials, 18 insulin-treated type 2 diabetic patients with (Ejection Fraction (EF 36 ± 6%, n = 10 (trial 2 and without systolic heart failure (EF 60 ± 3%, n = 8 (trial 1 were subjected to hyper- and normoglycemia for 9-12 hours on two different occasions. Advanced echocardiography, bicycle exercise tests and 6-minute hall walk distance were applied.Plasma glucose levels differed between study arms (6.5 ± 0.8 mM vs 14.1 ± 2.6 mM (T2D-HF, 5.8 ± 0.4 mM vs 9.9 ± 2.1 mM (T2D-nonHF, p<0.001. Hyperglycemia was associated with an increase in several parameters: maximal global systolic tissue velocity (Vmax (p<0.001, maximal mitral annulus velocity (S'max (p<0.001, strain rate (p = 0.02 and strain (p = 0.05. Indices of increased myocardial systolic contractile function were significant in both T2D-HF (Vmax: 14%, p = 0.02; S'max: 10%, p = 0.04, T2D-nonHF (Vmax: 12%, p<0.01; S'max: 9%, p<0.001 and in post exercise S'max (7%, p = 0.049 during hyperglycemia as opposed to normoglycemia. LVEF did not differ between normo- and hyperglycemia (p = 0.17, and neither did peak exercise capacity nor catecholamine levels. Type 2 diabetic heart failure patients' 6-minute hall walk distance improved by 7% (p = 0.02 during hyperglycemia as compared with normoglycemia.Short-term hyperglycemia by insulin discontinuation is associated with an increase in myocardial systolic contractile function in type 2 diabetic patients with and without heart failure and with a slightly prolonged walking distance in type 2 diabetic heart failure patients. (Clinicaltrials.gov identifier NCT00653510.

  17. Passive heating following the prematch warm-up in soccer: examining the time-course of changes in muscle temperature and contractile function.

    Science.gov (United States)

    Marshall, Paul W M; Cross, Rebecca; Lovell, Ric

    2015-12-01

    This study examined changes in muscle temperature, electrically evoked muscle contractile properties, and voluntary power before and after a soccer specific active warm-up and subsequent rest period. Ten amateur soccer players performed two experimental sessions that involved performance of a modified FIFA 11+ soccer specific warm-up, followed by a 12.5-min rest period where participants were required to wear either normal clothing or a passive electrical heating garment was applied to the upper thigh muscles. Assessments around the warm-up and cool-down included measures of maximal torque, rate of torque development, muscle temperature (Tm), and electrically evoked measures of quadriceps contractile function. Tm was increased after the warm-up by 3.2 ± 0.7°C (P < 0.001). Voluntary and evoked rates of torque development increased after the warm-up between 20% and 30% (P < 0.05), despite declines in both maximal voluntary torque and voluntary activation (P < 0.05). Application of a passive heating garment in the cool-down period after the warm-up did not effect variables measured. While Tm was reduced by 1.4 ± 0.4°C after the rest period (P < 0.001), this value was still higher than pre warm-up levels. Voluntary and evoked rate of torque development remained elevated from pre warm-up levels at the end of the cool-down (P < 0.05). The soccer specific warm-up elevated muscle temperature by 3.2°C and was associated with concomitant increases of between 20% and 30% in voluntary rate of torque development, which seems explained by elevations in rate-dependent measures of intrinsic muscle contractile function. Application of a passive heating garment did not attenuate declines in muscle temperature during a 12.5-min rest period. PMID:26634901

  18. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

    Science.gov (United States)

    O'Connell, Grant; Guo, Ge; Stricker, Janelle; Quinn, LeBris S; Ma, Averil; Pistilli, Emidio E

    2015-02-15

    Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.

  19. Anterior thigh composition measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: a potential biomarker for musculoskeletal health

    International Nuclear Information System (INIS)

    This study aimed to use ultrasound imaging to provide objective data on the effects of ageing and gender on relative thickness of quadriceps muscle and non-contractile tissue thickness (subcutaneous fat, SF, combined with perimuscular fascia). In 136 healthy males and females (aged 18–90 years n = 63 aged 18–35 years; n = 73 aged 65–90) images of the anterior thigh (dominant) were taken in relaxed supine using B-mode ultrasound imaging. Thickness of muscle, SF and perimuscular fascia were measured, and percentage thickness of total anterior thigh thickness calculated. Independent t-tests compared groups. Correlation between tissue thickness and BMI was examined using Pearson’s coefficient. Muscle thickness was: 39  ±  8 mm in young males, 29  ±  6 mm in females, 25  ±  4 mm in older males and 20  ±  5 mm in females. Percentage muscle to thigh thickness was greater in young participants (p = 0.001). Percentage SF and fascia was 17  ±  6% in young and 26  ±  8% in older males, 32  ±  7% in young and 44  ±  7% in older females. BMI was similar for age and correlated moderately with non-contractile tissue (r = 0.54; p < 0.001) and poorly with muscle (r = −0.01; p = 0.93). In conclusion, this novel application of ultrasound imaging as a simple and rapid means of assessing thigh composition (relative thickness of muscle and non-contractile tissue) may help inform health status, e.g. in older people at risk of frailty and loss of mobility, and aid monitoring effects of weight loss or gain, deconditioning and exercise. (paper)

  20. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice

    NARCIS (Netherlands)

    Ciapaite, Jolita; van den Berg, Sjoerd A.; Houten, Sander M.; Nicolay, Klaas; van Dijk, Ko Willems; Jeneson, Jeroen

    2015-01-01

    High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard (HFL

  1. Spasmogenic effect of the aqueous extract of Tamarindus indica L. (Caesalpiniaceae) on the contractile activity of guinea-pig taenia coli.

    Science.gov (United States)

    Souza, A; Aka, K J

    2007-02-16

    The effect of aqueous extract of Tamarindus indica (AETI) was studied on the guinea pig taenia coli, due to its use for treatment of constipation in traditional medicines. AETI, at concentrations ranging from 10(-8) mg/ml to 10(-2) mg/ml, increased the spontaneous contractile activity of guinea pig taenia coli in a dose-dependent manner (EC50 = 4x10(-6) mg/ml). This activity was unaffected by atropine. In high K(+), Ca(2+)-free solution containing EDTA, AETI as well as acetylcholine, used as a control, induced tonic contraction. These results suggest that the plant extract exert a spasmogenic effect that would not involve cholinergic mechanism of action. However, these active principles could mobilize both extra cellular calcium and intracellular calcium from internal stores.

  2. Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction.

    Science.gov (United States)

    Okamoto, Y; Chaves, A; Chen, J; Kelley, R; Jones, K; Weed, H G; Gardner, K L; Gangi, L; Yamaguchi, M; Klomkleaw, W; Nakayama, T; Hamlin, R L; Carnes, C; Altschuld, R; Bauer, J; Hai, T

    2001-08-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the alpha-myosin heavy chain promoter have atrial enlargement, and atrial and ventricular hypertrophy. Microscopic examination showed myocyte degeneration and fibrosis. Functionally, the transgenic heart has reduced contractility and aberrant conduction. Interestingly, expression of sorcin, a gene whose product inhibits the release of calcium from sarcoplasmic reticulum, is increased in these transgenic hearts. Taken together, our results indicate that expression of ATF3, a stress-inducible gene, in the heart leads to altered gene expression and impaired cardiac function. PMID:11485922

  3. Involvement of α-adrenoceptors to the implementation of the contractile effects in the capsule of mesenteric lymph nodes in response to electrostimulation.

    Science.gov (United States)

    Lobov, G I; Pan'kova, M N

    2013-03-01

    We studied changes in the contractile function of smooth muscle cells in bovine mesenteric lymph node capsule caused by electrical stimulation of nerve fibers in vitro. It was found that electrostimulation increased tonic tension and frequency of smooth muscle contractions in the node capsule. Tetrodotoxin prevented the stimulatory effect of electrical stimulation on the smooth muscle cells. Phentolamine, prazosin, and yohimbine significantly reduced the capsule response to electrical stimulation and norepinephrine application. It was concluded that excitation of nerve fibers in the capsule of bovine mesenteric lymph nodes upon electrical stimulation is realized, at least in part, via activation of α1-adrenoceptors and, to a lesser extent, via α2-adrenoceptors located on the membrane of smooth muscle cells.

  4. THE ROLE OF CARBON MONOXIDE IN THE REGULATION OF ELECTRICAL AND CONTRACTILE PROPERTIES OF SMOOTH MUSCLE CELLS OF THE GUINEA PIG URETER

    Directory of Open Access Journals (Sweden)

    I. V. Kovalyov

    2014-01-01

    Full Text Available Carbon monoxide CO, as well as nitric oxide and hydrogen sulfide, make up the family of labile biological mediators termed gasotransmitters. We hypothesized that CO may be involved in the mechanisms of regulation electrical and contractile properties of smooth muscles.The effects of carbon monoxide donor CORM II (tricarbonyldichlororuthenium(II-dimer on the electrical and contractile activities of smooth muscles of the guinea pig ureter were studied by the method of the double sucrose bridge. This method allows to register simultaneously the parameters of the action potential (AP and the contraction of smooth muscle cells (SMCs, caused by an electrical stimulus.CORM II in a concentration of 10 mmol has reduced the amplitude of contractions SMCs to (86.5 ± 9.7% (n = 6, p < 0.05, the amplitude of the AP to (88.9 ± 4.2% (n = 6, p < 0.05 and the duration of the plateau of the AP to (91.7 ± 6.0% (n = 6, p < 0.05. On the background of the action of biologically active substances (phenylephrine, 10 µmol or histamine, 10 µmol, these effects of CORM II amplified. The inhibitory action of СORM II on the parameters of the contractile and electrical activities of the smooth muscles of guinea pig ureter has been decreased by blocking potassium channels in membrane of SMCs by tetraethylammonium chloride (TEA оr inhibition of soluble guanylate cyclase (ODQ [1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-l-one]. On the background of TEA (5 mmol, a donor of CO (10 mmol caused a reduction the amplitude of contraction SMCs to (87.0 ± 10.8% (n = 6, p < 0.05, the amplitude of the AP to (91.7 ± 6.4% (n = 6, p < 0.05 and the duration of the plateau of the AP to (93.4 ± 7.5% (n = 6, p < 0.05. After the pretreatment of ODQ (1 µmol adding CORM II (10 mmol in solution has resulted to augment of the amplitude of contraction ureteral smooth muscle strips to (90.9 ± 4.2% (n = 6, p < 0.05, the amplitude of the AP to (97.2 ± 10.3% (n = 6, p < 0.05 and the duration of the

  5. Contractile responses to sumatriptan and ergotamine in the rabbit saphenous vein: effect of selective 5-HT1F receptor agonists and PGF2α

    OpenAIRE

    Cohen, Marlene L; Schenck, Kathryn

    2000-01-01

    Contractile responses to ergotamine, sumatriptan and the novel 5-HT1F receptor agonists, LY334370 and LY344864 were examined using the rabbit saphenous vein.Ergotamine (pEC50=8.7±0.06) was 30 fold more potent than 5-hydroxytryptamine (5-HT) (pEC50=7.2±0.13) and 300 fold more potent than sumatriptan (pEC50=6.0±0.08) in contracting the rabbit saphenous vein in vitro. The selective 5-HT1F receptor agonists, LY334370 or LY344864 (up to 10−4 M), did not contract the rabbit saphenous vein.The contr...

  6. Regional variation in aortic AT1b receptor mRNA abundance is associated with contractility but unrelated to atherosclerosis and aortic aneurysms.

    Directory of Open Access Journals (Sweden)

    Aruna Poduri

    Full Text Available BACKGROUND: Angiotensin II (AngII, the main bioactive peptide of the renin angiotensin system, exerts most of its biological actions through stimulation of AngII type 1 (AT1 receptors. This receptor is expressed as 2 structurally similar subtypes in rodents, termed AT1a and AT1b. Although AT1a receptors have been studied comprehensively, roles of AT1b receptors in the aorta have not been defined. METHODOLOGY/RESULTS: We initially compared the regional distribution of AT1b receptor mRNA with AT1a receptor mRNA in the aorta. mRNA abundance of both subtypes increased from the proximal to the distal aorta, with the greatest abundance in the infra-renal region. Corresponding to the high mRNA abundance for both receptors, only aortic rings from the infra-renal aorta contracted in response to AngII stimulation. Despite the presence of both receptor transcripts, deletion of AT1b receptors, but not AT1a receptors, diminished AngII-induced contractility. To determine whether absence of AT1b receptors influenced aortic pathologies, we bred AT1b receptor deficient mice into an LDL receptor deficient background. Mice were fed a diet enriched in saturated fat and infused with AngII (1,000 ng/kg/min. Parameters that could influence development of aortic pathologies, including systolic blood pressure and plasma cholesterol concentrations, were not impacted by AT1b receptor deficiency. Absence of AT1b receptors also had no effect on size of aortic atherosclerotic lesions and aortic aneurysms in both the ascending and abdominal regions. CONCLUSIONS/SIGNIFICANCE: Regional abundance of AT1b receptor mRNA coincided with AngII-induced regional contractility, but it was not associated with AngII-induced aortic pathologies.

  7. Peri-infarct dysfunction in post-myocardial infarction: assessment of 3-T tagged and late enhancement MRI

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yuma; Nagao, Michinobu; Higashino, Hiroshi; Hosokawa, Kohei; Kido, Teruhito; Kurata, Akira; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Diagnostic and Therapeutic Radiology, Toon-city, Ehime (Japan); Yang, Xiaomei [Sichuan University, College of Electrical Engineering and Information Technology, Sichuan (China); Okayama, Hideki; Higaki, Jitsuo [Ehime University Graduate School of Medicine, Department of Integrated Medicine and Informatics, Matsuyama City (Japan); Murase, Kenya [Osaka University Medical School, Department of Medical Engineering Division of Allied Health Sciences, Osaka (Japan)

    2010-05-15

    To determine LV function at different distances from myocardial infarction (MI) by using 3-T tagged MRI and late gadolinium enhancement (LGE). Cardiac MR images were acquired from 21 patients with previous MI. The harmonic phase (HARP) method was used to calculate radial and circumferential strain (RS, CS). The two strains were synchronised by subtracting the CS from the RS at the same time, and this was defined as the efficient strain (ES). Peak strain (P-RS, P-CS, P-ES) and time to peak strain (T-RS, T-CS, T-ES) were used as estimates of contractile function. Based on the presence of LGE, myocardium was classified into infarct, border zone, adjacent and remote areas. P-RS and P-ES were significantly greater for remote than for adjacent and infarct areas. P-CS values were significantly greater for remote and border zone than for infarct areas. T-RS and T-ES were significantly shorter for remote and border zone than for infarct areas. T-CS was significantly shorter for border zone than for infarct areas. Contractile dysfunction demonstrated by peak strain was correlated with location at different distances from the infarct. In the border zone, contractile deformation was characterised as earlier T-RS, T-CS and T-ES and greater P-CS than in the infarct area. (orig.)

  8. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility.

    Science.gov (United States)

    Parajuli, Shankar P; Soder, Rupal P; Hristov, Kiril L; Petkov, Georgi V

    2012-01-01

    Small conductance Ca²⁺-activated K⁺ (SK) and intermediate conductance Ca(2+)-activated K⁺ (IK) channels are thought to be involved in detrusor smooth muscle (DSM) excitability and contractility. Using naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a novel and highly specific SK/IK channel activator, we investigated whether pharmacological activation of SK/IK channels reduced guinea pig DSM excitability and contractility. We detected the expression of all known isoforms of SK (SK1-SK3) and IK channels at mRNA and protein levels in DSM by single-cell reverse transcription-polymerase chain reaction and Western blot. Using the perforated patch-clamp technique on freshly isolated DSM cells, we observed that SKA-31 (10 μM) increased SK currents, which were blocked by apamin (1 μM), a selective SK channel inhibitor. In current-clamp mode, SKA-31 (10 μM) hyperpolarized the cell resting membrane potential, which was blocked by apamin (1 μM) but not by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), a selective IK channel inhibitor. SKA-31 (10 nM-10 μM) significantly inhibited the spontaneous phasic contraction amplitude, frequency, duration, and muscle force in DSM isolated strips. The SKA-31 inhibitory effects on DSM contractility were blocked by apamin (1 μM) but not by TRAM-34 (1 μM), which did not per se significantly affect DSM spontaneous contractility. SK channel activation with SKA-31 reduced contractions evoked by electrical field stimulation. SKA-31 effects were reversible upon washout. In conclusion, SK channels, but not IK channels, mediate SKA-31 effects in guinea pig DSM. Pharmacological activation of SK channels reduces DSM excitability and contractility and therefore may provide a novel therapeutic approach for controlling bladder dysfunction.

  9. Tip enhancement

    CERN Document Server

    Kawata, Satoshi

    2007-01-01

    This book discusses the recent advances in the area of near-field Raman scattering, mainly focusing on tip-enhanced and surface-enhanced Raman scattering. Some of the key features covered here are the optical structuring and manipulations, single molecule sensitivity, analysis of single-walled carbon nanotubes, and analytic applications in chemistry, biology and material sciences. This book also discusses the plasmonic materials for better enhancement, and optical antennas. Further, near-field microscopy based on second harmonic generation is also discussed. Chapters have been written by some of the leading scientists in this field, who present some of their recent work in this field.·Near-field Raman scattering·Tip-enhanced Raman spectroscopy·Surface-enhanced Raman spectroscopy·Nano-photonics·Nanoanalysis of Physical, chemical and biological materials beyond the diffraction limits·Single molecule detection

  10. Postovulatory effect of intravenous administration of lipopolysaccharide (E. coli, O55:B5) on the contractile activity of the oviduct, ova transport, binding of accessory spermatozoa to the zona pellucida and embryo development in sows.

    Science.gov (United States)

    Mwanza, A M; Rodríguez-Martínez, H; Kindahl, H; Einarsson, S

    2002-10-01

    The effect of lipopolysaccharide (LPS) (E. coli, O55:B5), administered 18 h after ovulation in the second oestrus after weaning, on the contractile activity of the oviduct, ova transport, sperm binding to zona pellucida (ZP) and embryo development, was studied in 14 Swedish crossbred (Landrace Yorkshire) multiparous sows. The endotoxin group (E-group) sows were administered with 300 ng/kg of LPS while the control group (C-group) sows were administered with 5 ml of saline i.v. via an indwelling jugular cannula. Immediately after evidence of standing oestrus, a Millar pressure transducer was placed intraluminally about 3 cm into the mid-isthmus, via laparotomy. Pressure recordings of the oviduct were collected from all conscious sows until slaughter. After slaughter, the genital tract opposite to the side with the transducer was retrieved, and three equal isthmic segments and the first third of the uterine horn part adjacent to the utero-tubal-junction (UTJ) were flushed separately to recover the ova. The intervals (mean+/-SD) from ovulation to slaughter (OS) and insemination to ovulation (IO) were not different between the E-group (44.5 +/- 5.7 h; 13.3 +/- 6.5 h) and the C-group (42.7 +/- 5.9 h; 14.8 +/- 4.1 h), respectively. Ova recovery rate (RR) in the E-group (80.2 +/- 22.9%) did not differ from that in the C-group (85.2 +/- 4.5%). The frequency distribution of ova recovered in the different segments did not significantly (p > 0.05) differ between the groups. The E-group showed higher cleavage rate than controls. A higher proportion of spermatozoa bound to the ZP was also found in the E-group compared with controls. The isthmic intraluminal pressure slightly increased (p = 0.07) 18 h after ovulation and immediately following LPS in the E-group, compared with the C-group. The frequencies of phasic pressure fluctuations were significantly (p pressure and the frequency of phasic pressure fluctuations, increased numbers of spermatozoa attached to the ZP and an

  11. Enhanced cardiac TBC1D10C expression lowers heart rate and enhances exercise capacity and survival

    Science.gov (United States)

    Volland, Cornelia; Bremer, Sebastian; Hellenkamp, Kristian; Hartmann, Nico; Dybkova, Nataliya; Khadjeh, Sara; Kutschenko, Anna; Liebetanz, David; Wagner, Stefan; Unsöld, Bernhard; Didié, Michael; Toischer, Karl; Sossalla, Samuel; Hasenfuß, Gerd; Seidler, Tim

    2016-01-01

    TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII. However, cardiomyocyte-specific TBC1D10C overexpressing transgenic mice exhibited enhanced longevity. Ejection fraction and exercise capacity were enhanced in transgenic mice, but shortening of isolated cardiomyocytes was not increased. This suggests longevity resulted from enhanced cardiac performance but independent of cardiomyocyte contractile force. In further search for mechanisms, a transcriptome-wide analysis revealed expressional changes in several genes pertinent to control of heart rate (HR) including Hcn4, Scn10a, Sema3a and Cacna2d2. Indeed, telemetric holter recordings demonstrated slower atrial conduction and significantly lower HR. Pharmacological reduction of HR was previously demonstrated to enhance survival in mice. Thus, in addition to inhibition of stress signaling, TBC1D10C economizes generation of cardiac output via HR reduction, enhancing exercise capacity and survival. TBC1D10C may be a new target for HR reduction and longevity. PMID:27667030

  12. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart.

    Science.gov (United States)

    Vielma, Alejandra Z; León, Luisa; Fernández, Ignacio C; González, Daniel R; Boric, Mauricio P

    2016-01-01

    S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (-25-30%) and basal S-nitrosylation of total proteins (-25-60%), RyR2, SERCA2 and LTCC (-60-75%). NOS-1 inhibition reduced (-25-40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (-85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect.

  13. Dichrostachys cinerea (L. Wight et Arn (Mimosaceae hydro-alcoholic extract action on the contractility of tracheal smooth muscle isolated from guinea-pig

    Directory of Open Access Journals (Sweden)

    Datté Jacques Y

    2011-03-01

    Full Text Available Abstract Background Dichrostachys cinerea (L. Wight et Arn. (Mimosaceae is largely used in ethno-medically across Africa, and mainly employed for the treatment of asthma in Ivory Coast and Gabon. The paper analyses the relaxation induced by the methanolic extract of D. cinerea (Edici in the guinea-pig trachea preparations (GPTPs. Purpose: This study aimed to bring out the scientific basis to the use of this plant leading to the validation of this phytomedicine. Method The aorta obtained from guinea-pigs was immediately placed in a Mac Ewen solution. Experiments were performed in preparations suspended between two L-shaped stainless steel hooks in a 10 ml organ bath containing Mac Ewen solution. The isometric contractile force of the aorta strips of guinea-pig were recorded by using a strain gauge. The different drugs were directly administered into the organ bath and the magnitude of GPTPs was evaluated. Results Phytochemical analysis of the methanolic extract of Dichrostachys cinerea (Edici using chemical methods revealed the presence of flavenoids, tannins, sterols, triterpenes and polyphenols. Pharmacological studies performed in GPTPs show that of Dichrostachys cinerea (0.1 mg/ml - 2 mg/ml evoked a broncho-constriction in GPTPs. Whereas, at concentration up to 2 mg/ml, Edici induced a significant dose-dependent relaxation in the GPTPs. KCl-, ACh- or histamine-evoked contractions of isolated trachea was significantly inhibited by increasing concentrations of Edici (3.5-10 mg/ml. Edici (10 mg/ml as well as promethazine (0.25 mg/ml significantly inhibited contractions induced by increasing concentrations of histamine (1×10-7-1×10-4mg/ml. In the presence of atropine at a concentration of 10-6mg/ml, contractile response curve (CRC evoked by ACh (1×10-5-1×10-2 mg/ml was significantly abolished in concentration-dependent manner. Edici did not significantly reduced ACh evoked contraction (10-5-10-2mg/ml. Conclusion These observations suggest

  14. Blebbistain, a myosin II inhibitor, as a novel strategy to regulate detrusor contractility in a rat model of partial bladder outlet obstruction.

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    Full Text Available Partial bladder outlet obstruction (PBOO, a common urologic pathology mostly caused by benign prostatic hyperplasia, can coexist in 40-45% of patients with overactive bladder (OAB and is associated with detrusor overactivity (DO. PBOO that induces DO results in alteration in bladder myosin II type and isoform composition. Blebbistatin (BLEB is a myosin II inhibitor we recently demonstrated potently relaxed normal detrusor smooth muscle (SM and reports suggest varied BLEB efficacy for different SM myosin (SMM isoforms and/or SMM vs nonmuscle myosin (NMM. We hypothesize BLEB inhibition of myosin II as a novel contraction protein targeted strategy to regulate DO. Using a surgically-induced male rat PBOO model, organ bath contractility, competitive and Real-Time-RT-PCR were performed. It was found that obstructed-bladder weight significantly increased 2.74-fold while in vitro contractility of detrusor to various stimuli was impaired ∼50% along with decreased shortening velocity. Obstruction also altered detrusor spontaneous activities with significantly increased amplitude but depressed frequency. PBOO switched bladder from a phasic-type to a more tonic-type SM. Expression of 5' myosin heavy chain (MHC alternatively spliced isoform SM-A (associated with tonic-type SM increased 3-fold while 3' MHC SM1 and essential light chain isoform MLC(17b also exhibited increased relative expression. Total SMMHC expression was decreased by 25% while the expression of NMM IIB (SMemb was greatly increased by 4.5-fold. BLEB was found to completely relax detrusor strips from both sham-operated and PBOO rats pre-contracted with KCl, carbachol or electrical field stimulation although sensitivity was slightly decreased (20% only at lower doses for PBOO. Thus we provide the first thorough characterization of the response of rat bladder myosin to PBOO and demonstrate complete BLEB-induced PBOO bladder SM relaxation. Furthermore, the present study provides valuable

  15. Speech enhancement

    CERN Document Server

    Benesty, Jacob; Chen, Jingdong

    2006-01-01

    We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be ""cleaned"" with digital signal processing tools before it is played out, transmitted, or stored.This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise red

  16. DETRUSOR HYPERACTIVITY WITH IMPAIRED CONTRACTILE FUNCTION に類似する排尿障害を呈した神経因性膀胱症例の検討

    OpenAIRE

    安川, 元信; 百瀬, 均; 山本, 雅司; 平尾, 佳彦; 平田, 直也; 塩見, 努

    2000-01-01

    Clinical features of 21 patients with neurogenic bladder dysfunction which meeting the criteria of "detrusor hyperactivity with impaired contractile function (DHIC)" as reported by Resnick NM in 1987, were reviewed in terms of clinical symptoms, urogra- phic findings, urodynamic findings, and treatment. Chief complaints of urination problems were of irritation in 14 patients (irritative group) and of obstruction in 7 patients (obstruc- tive group). Incidence of bladder deformity as a risk fac...

  17. Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization.

    Science.gov (United States)

    Li, Jingan; Qin, Wei; Zhang, Kun; Wu, Feng; Yang, Ping; He, Zikun; Zhao, Ansha; Huang, Nan

    2016-09-01

    Building healthy and oriented smooth muscle cells (SMCs) environment is an effective method for improving the surface endothelialization of the cardiovascular implants. However, a long-term and stable source of SMCs for implantation without immune rejection and inflammation has not been solved, and mesenchymal stem cells (MSCs) differentiation may be a good choice. In this work, two types of TiO2 micro/nano interfaces were fabricated on titanium surface by photolithography and anodic oxidation. These TiO2 micro/nano interfaces were used to regulate the differentiation of the MSCs. The X-ray diffraction (XRD) detection showed that the TiO2 micro/nano interfaces possessed the anatase crystal structure, suggesting good cytocompatibility. The CCK-8 results indicated the TiO2 micro/nano interfaces improved MSC proliferation, further immunofluorescence staining and calculation of the cell morphology index proved the micro/nano surfaces also elongated MSCs and regulated MSCs oriented growth. The specific staining of α-SMA, CNN-1, vWF, CD44 and CD133 markers revealed that the micro/nano surfaces induced MSCs differentiation to contractile SMCs, and the endothelial cells (ECs) culture experiment indicated that the MSCs induced by micro/nano interfaces contributed to the ECs attachment and proliferation. This method will be further studied and applied for the surface modification of the cardiovascular implants. PMID:27232304

  18. Hydrogen sulfide-mediated regulation of contractility in the mouse ileum with electrical stimulation: roles of L-cysteine, cystathionine β-synthase, and K+ channels.

    Science.gov (United States)

    Yamane, Satoshi; Kanno, Toshio; Nakamura, Hiroyuki; Fujino, Hiromichi; Murayama, Toshihiko

    2014-10-01

    Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine β-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum.

  19. [NO-DEPENDENT MECHANISM OF THE CARDIOPROTECTIVE ACTION OF PHENIBUT ON STRESS-INDUCED VIOLATION OF CONTRACTILE FUNCTION OF THE HEART].

    Science.gov (United States)

    Tyurenkov, I N; Perfilova, V N; Sadikova, N V; Prokofiev, I I

    2015-01-01

    A stressor action for 24 h reduces both ino- and chronotropic reserves of animal heart as evidenced by a decrease in rate growth increments of contraction and relaxation of the myocardium, left ventricular pressure (LVP), heart rate, and the maximum intensity of functioning (MIF) as compared to intact animals during testing for adrenoreactivity and maximum isometric load caused by clamping of the ascending part of the aortic arch. Blockade of NO-synthase leads to a high percentage of animal death during the stressor action, anesthesia, opening of the chest, and functional tests and causes marked reduction in the growth rates of contraction (+dP/dt max) and relaxation (-dP/dt max) speed, LVP, heart rate, and MIF--on the average about 2 times (p Phenibut limits stress-induced violations of the myocardium contractility, as indicated by a higher growth of performance in stress tests--on the average about 1.8 times (p phenibut is less pronounced when it is introduced on the background of the blockade of NO-ergic system. Under these conditions, there are cases of animal death, predominantly during the stressor action. The results obtained suggest that, for ensuring cardioprotective action of phenibut under conditions of stress-induced myocardial damage, it is necessary to provide for participation of nitric oxide system. PMID:27017698

  20. Crocin, a carotenoid component of Crocus cativus, exerts inhibitory effects on L-type Ca(2+) current, Ca(2+) transient, and contractility in rat ventricular myocytes.

    Science.gov (United States)

    Liu, Tao; Chu, Xi; Wang, Hua; Zhang, Xuan; Zhang, Yuanyuan; Guo, Hui; Liu, Zhenyi; Dong, Yongsheng; Liu, Hongying; Liu, Yang; Chu, Li; Zhang, Jianping

    2016-03-01

    Crocin, a carotenoid component of Crocus sativus L. belonging to the Iridaceae family, has demonstrated cardioprotective effects. To investigate the cellular mechanisms of these cardioprotective effects, here we studied the influence of crocin on L-type Ca(2+)current (I(Ca-L)), intracellular Ca(2+) ([Ca(2+)]i), and contraction of isolated rat cardiomyocytes by using the whole-cell patch-clamp technique and video-based edge detection and dual excitation fluorescence photomultiplier systems. Crocin inhibited I(Ca-L) in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) of 45 μmol/L and the maximal inhibitory effect of 72.195% ± 1.54%. Neither current-voltage relationship of I(Ca-L), reversal potential of I(Ca-L), nor the activation/inactivation of I(Ca-L) was significantly changed. Crocin at 1 μmol/L reduced cell shortening by 44.64% ± 2.12% and the peak value of the Ca(2+) transient by 23.66% ± 4.52%. Crocin significantly reduced amplitudes of myocyte shortening and [Ca(2+)]i with an increase in the time to reach 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of crocin may be attributed to the attenuation of [Ca(2+)]i through the inhibition of I(Ca-L) in rat cardiomyocytes and negative inotropic effects on myocardial contractility.

  1. Chinese Herbal Medicine Treatment Improves the Overall Survival Rate of Individuals with Hypertension among Type 2 Diabetes Patients and Modulates In Vitro Smooth Muscle Cell Contractility.

    Directory of Open Access Journals (Sweden)

    Ying-Ju Lin

    Full Text Available Type 2 diabetes (T2D is a chronic, multifactorial, and metabolic disorder accounting for 90% diabetes cases worldwide. Among them, almost half of T2D have hypertension, which is responsible for cardiovascular disease, morbidity, and mortality in these patients. The Chinese herbal medicine (CHM prescription patterns of hypertension individuals among T2D patients have yet to be characterized. This study, therefore, aimed to determine their prescription patterns and evaluate the CHM effect. A cohort of one million randomly sampled cases from the National Health Insurance Research Database (NHIRD was used to investigate the overall survival rate of CHM users, and prescription patterns. After matching CHM and non-CHM users for age, gender and date of diagnosis of hypertension, 980 subjects for each group were selected. The CHM users were characterized with slightly longer duration time from diabetes to hypertension, and more cases for hyperlipidaemia. The cumulative survival probabilities were higher in CHM users than in non-CHM users. Among these top 12 herbs, Liu-Wei-Di-Huang-Wan, Jia-Wei-Xiao-Yao-San, Dan-Shen, and Ge-Gen were the most common herbs and inhibited in vitro smooth muscle cell contractility. Our study also provides a CHM comprehensive list that may be useful in future investigation of the safety and efficacy for individuals with hypertension among type 2 diabetes patients.

  2. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia.

    Science.gov (United States)

    Biolo, Gianni; Cederholm, Tommy; Muscaritoli, Maurizio

    2014-10-01

    Skeletal muscle is the most abundant body tissue accounting for many physiological functions. However, muscle mass and functions are not routinely assessed. Sarcopenia is defined as skeletal muscle loss and dysfunction in aging and chronic diseases. Inactivity, inflammation, age-related factors, anorexia and unbalanced nutrition affect changes in skeletal muscle. Mechanisms are difficult to distinguish in individual subjects due to the multifactorial character of the condition. Sarcopenia includes both muscle loss and dysfunction which induce contractile impairment and metabolic and endocrine abnormalities, affecting whole-body metabolism and immune/inflammatory response. There are different metabolic trajectories for muscle loss versus fat changes in aging and chronic diseases. Appetite regulation and physical activity affect energy balance and changes in body fat mass. Appetite regulation by inflammatory mediators is poorly understood. In some patients, inflammation induces anorexia and fat loss in combination with sarcopenia. In others, appetite is maintained, despite activation of systemic inflammation, leading to sarcopenia with normal or increased BMI. Inactivity contributes to sarcopenia and increased fat tissue in aging and diseases. At the end of the metabolic trajectories, cachexia and sarcopenic obesity are paradigms of the two patient categories. Pre-cachexia and cachexia are observed in patients with cancer, chronic heart failure or liver cirrhosis. Sarcopenic obesity and sarcopenia with normal/increased BMI are observed in rheumatoid arthritis, breast cancer patients with adjuvant chemotherapy and in most of patients with COPD or chronic kidney disease. In these conditions, sarcopenia is a powerful prognostic factor for morbidity and mortality, independent of BMI.

  3. The budding yeast amphiphysin complex is required for contractile actin ring (CAR assembly and post-contraction GEF-independent accumulation of Rho1-GTP.

    Directory of Open Access Journals (Sweden)

    Michael John Cundell

    Full Text Available The late events of the budding yeast cell division cycle, cytokinesis and cell separation, require the assembly of a contractile actomyosin ring (CAR, primary and secondary septum formation followed by enzymatic degradation of the primary septum. Here we present evidence that demonstrates a role for the budding yeast amphiphysin complex, a heterodimer comprising Rvs167 and Rvs161, in CAR assembly and cell separation. The iqg1-1 allele is synthetically lethal with both rvs167 and rvs161 null mutations. We show that both Iqg1 and the amphiphysin complex are required for CAR assembly in early anaphase but cells are able to complete assembly in late anaphase when these activities are, respectively, either compromised or absent. Amphiphysin dependent CAR assembly is dependent upon the Rvs167 SH3 domain, but this function is insufficient to explain the observed synthetic lethality. Dosage suppression of the iqg1-1 allele demonstrates that endocytosis is required for the default cell separation pathway in the absence of CAR contraction but is unlikely to be required to maintain viability. The amphiphysin complex is required for normal, post-mitotic, localization of Chs3 and the Rho1 GEF, Rom2, which are responsible for secondary septum deposition and the accumulation of GTP bound Rho1 at the bud neck. It is concluded that a failure of polarity establishment in the absence of CAR contraction and amphiphysin function leads to loss of viability as a result of the consequent cell separation defect.

  4. Failing Left Ventricles Have an Enhanced Post-Stimulation Potentiation Despite Their Impaired Force Frequency Relationship.

    Science.gov (United States)

    Watanabe, Tohru; Kashimura, Takeshi; Kodama, Makoto; Tanaka, Komei; Fujiki, Shinya; Hayashi, Yuka; Obata, Hiroaki; Hanawa, Haruo; Minamino, Tohru

    2016-05-25

    The left ventricular contractile force (LV dP/dtmax) of patients with left ventricular systolic dysfunction does not increase effectively with an increase in heart rate. In other words, their force-frequency relationship (FFR) is impaired. However, it is unknown whether a longer coupling interval subsequent to tachycardia causes a stronger contraction (poststimulation potentiation, PSP) in a rate-dependent manner.In 16 patients with idiopathic dilated cardiomyopathy (DCM) (48 ± 2 years old, LVEF 30 ± 10%) and 6 control patients (58 ± 4 years old, LVEF 70 ± 7%), FFR was assessed by right atrial pacing using a micro-manometer-tipped catheter. At each pacing rate, the increase of LV dP/dtmax over basal LV dP/dt (ΔFFR) and the increase of LV dP/dtmax of the first beat after pacing cessation over LV dP/dtmax during pacing (ΔPSP) were evaluated.Patients with DCM had smaller LV dP/dtmax at baseline (872 ± 251 versus 1370 ± 123 mmHg/second, P = 0.0002) and developed smaller ΔFFR (eg, at 120/minute, 77 ± 143 versus 331 ± 131 mmHg/second, P = 0.0011). In contrast, they showed a rate-dependent increase of LV dP/dtmax of PSP and had greater ΔPSP (eg, at 120/minute, 294 ± 173 versus -152 ± 131 mmHg/second, P < 0.0001).Failing left ventricles develop little contractile force during tachycardia despite their rate-dependent enhancement in post-stimulation potentiation, suggesting that refractoriness of contractile force underlies impaired FFR. PMID:27181036

  5. IL-1对大鼠胸主动脉收缩功能的影响%Effect of interleukin-1 on contractile function of rat thoracic aorta

    Institute of Scientific and Technical Information of China (English)

    曹忠平; 刘文娜; 杜洪印

    2015-01-01

    目的 探讨白细胞介素1(IL-1)对大鼠胸主动脉收缩功能的影响.方法 雄性Wistar大鼠40只,体重250~ 300 g,用以制备离体胸主动脉环.实验Ⅰ 取大鼠胸主动脉环,分为2段,采用随机配伍原则分为2组(n=20):对照组(C组)和IL-1组.IL-1组用含20 ng/ml IL-1的Kreb培养液孵育2h,再以10-9、10-8、10-7、10-6和10-5 mol/L累积浓度的苯肾上腺素(PE)诱发胸主动脉血管环收缩,C组用不含IL-1的空白培养液孵育2h,其余操作同IL-1组.实验Ⅱ 取大鼠胸主动脉环,分为3段,采用随机配伍原则分为3组(n=20):IL-1组、IL-1+一氧化氮合酶抑制剂L-NAME组(IL-1+L-NAME组)和IL-1+环氧化酶抑制剂吲哚美辛组(IL-1+I组).3组用含20 ng/ml IL-1的Kreb培养液孵育1.5 h,IL-1+L-NAME组和IL-1+Ⅰ组再分别用含100 μmol/L-L-NAME或2.5 mmol/L吲哚美辛的Kreb培养液孵育30 min,然后以10-9、10-8、10-7、10-6、10-5 mol/L累积浓度的PE诱发血管环收缩,方法同实验Ⅰ,IL-1组用不含L-NAME或吲哚美辛的Kreb培养液孵育.记录PE各浓度下胸主动脉环最大收缩张力,取与C组10-6mol/L浓度下最大收缩张力的百分比.结果 实验Ⅰ 与C组比较,IL-1组胸主动脉环对10-8、10-7、10-6和10-5mol/L PE诱发的收缩张力百分比降低(P<0.05).实验Ⅱ 与IL-1组比较,IL-1+L-NAME组和IL-1+Ⅰ组胸主动脉环对10-7、10-6和10-5 mol/L PE诱发的收缩张力百分比升高(P<0.05).结论 IL-1可抑制大鼠胸主动脉收缩,其机制可能与促进一氧化氮和前列环素合成有关.%Objective To investigate the effect of interleukin-1 (IL-1) on contractile function of rat thoracic aorta.Methods Forty male Sprague-Dawley rats,weighing 250-300 g,were sacrificed to obtain the thoracic aortic rings.The experiment was performed in 2 parts.Part Ⅰ The thoracic aortic rings were divided into 2 segments and randomly divided into 2 groups (n =20 each):control group and IL-1 group.In IL-1 group,the thoracic aortic rings were

  6. 辛弗林对大鼠离体小肠收缩性的调节特征%The effect of synephrine on contractility of rat's isolated intestine

    Institute of Scientific and Technical Information of China (English)

    孙兢喆

    2015-01-01

    Objective To investigate the effect of Ca2+ concentration on contractility of rat's isolated intestine,and the effect of synephrine on contractility of rat's isolated intestine under the most suitable Ca2+ concentration.Methods Isolated rat intestine was selected in the assay to test the changeextent of contractile amplitude using Krebs' solution in different Ca2+ concentration,observed the effect of synephrine on contractility of isolated rat intestine in different Ca2+ concentration.Result The contractile amplitude decreased most significantly after adding synephrine when the concentration of Ca2+ was 5 mmol/L.Conclusion 5 mmol/L Ca2+ is the most suitable concentration to study inhibitory effect of a drug on isolated rat intestine in the corresponding assay condition.%目的 考察不同Ca2+浓度对大鼠离体小肠收缩性的影响;选择最佳Ca2+浓度,探讨在该条件下辛弗林对离体肠收缩性的影响.方法 本研究以大鼠的离体小肠为模型,通过不同浓度的Ca2+克氏液,使小肠处于不同收缩状态;考察在不同Ca2+浓度条件下,辛弗林对离体小肠的收缩的影响.结果通过辛弗林对不同浓度的Ca2+条件下的作用比较,结果 提示在5 mmol/L的Ca2+情况下,加入辛弗林后,肠平滑肌收缩幅度降低最明显.结论结果提示5 mmol/L Ca2+的浓度是在本实验条件下,用于研究对肠道平滑肌收缩具有抑制作用药物的最佳条件.

  7. Enhancement of Methacholine-Evoked Tracheal Contraction Induced by Bacterial Lipopolysaccharides Depends on Epithelium and Tumor Necrosis Factor

    Directory of Open Access Journals (Sweden)

    T. Secher

    2012-01-01

    Full Text Available Inhaled bacterial lipopolysaccharides (LPSs induce an acute tumour necrosis factor-alpha (TNF-α- dependent inflammatory response in the murine airways mediated by Toll-like receptor 4 (TLR4 via the myeloid differentiation MyD88 adaptor protein pathway. However, the contractile response of the bronchial smooth muscle and the role of endogenous TNFα in this process have been elusive. We determined the in vivo respiratory pattern of C57BL/6 mice after intranasal LPS administration with or without the presence of increasing doses of methacholine (MCh. We found that LPS administration altered the basal and MCh-evoked respiratory pattern that peaked at 90 min and decreased thereafter in the next 48 h, reaching basal levels 7 days later. We investigated in controlled ex vivo condition the isometric contraction of isolated tracheal rings in response to MCh cholinergic stimulation. We observed that preincubation of the tracheal rings with LPS for 90 min enhanced the subsequent MCh-induced contractile response (hyperreactivity, which was prevented by prior neutralization of TNFα with a specific antibody. Furthermore, hyperreactivity induced by LPS depended on an intact epithelium, whereas hyperreactivity induced by TNFα was well maintained in the absence of epithelium. Finally, the enhanced contractile response to MCh induced by LPS when compared with control mice was not observed in tracheal rings from TLR4- or TNF- or TNF-receptor-deficient mice. We conclude that bacterial endotoxin-mediated hyperreactivity of isolated tracheal rings to MCh depends upon TLR4 integrity that signals the activation of epithelium, which release endogenous TNFα.

  8. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  9. Effects of dietary curcumin or N-acetylcysteine on NF-κB activity and contractile performance in ambulatory and unloaded murine soleus

    Directory of Open Access Journals (Sweden)

    Gerken Eric

    2005-08-01

    Full Text Available Abstract Background Unloading of skeletal muscle causes atrophy and loss of contractile function. In part, this response is believed to be mediated by the transcription factor nuclear factor-kappa B (NF-κB. Both curcumin, a component of the spice turmeric, and N-acetylcysteine (NAC, an antioxidant, inhibit activation of NF-κB by inflammatory stimuli, albeit by different mechanisms. In the present study, we tested the hypothesis that dietary curcumin or NAC supplementation would inhibit unloading-induced NF-κB activity in skeletal muscle and thereby protect muscles against loss of mass and function caused by prolonged unloading. Methods We used hindlimb suspension to unload the hindlimb muscles of adult mice. Animals had free access to drinking water or drinking water supplemented with 1% NAC and to standard laboratory diet or diet supplemented with 1% curcumin. For 11 days, half the animals in each dietary group were suspended by the tail (unloaded and half were allowed to ambulate freely. Results Unloading caused a 51–53% loss of soleus muscle weight and cross-sectional area relative to freely-ambulating controls. Unloading also decreased total force and force per cross-sectional area developed by soleus. Curcumin supplementation decreased NF-κB activity measured in peripheral tissues of ambulatory mice by gel shift analysis. In unloaded animals, curcumin supplementation did not inhibit NF-κB activity or blunt the loss of muscle mass in soleus. In contrast, NAC prevented the increase in NF-κB activity induced by unloading but did not prevent losses of muscle mass or function. Conclusion In conclusion, neither dietary curcumin nor dietary NAC prevents unloading-induced skeletal muscle dysfunction and atrophy, although dietary NAC does prevent unloading induced NF-κB activation.

  10. Effects of DL-homocysteine thiolactone on cardiac contractility, coronary flow, and oxidative stress markers in the isolated rat heart: the role of different gasotransmitters.

    Science.gov (United States)

    Zivkovic, Vladimir; Jakovljevic, Vladimir; Pechanova, Olga; Srejovic, Ivan; Joksimovic, Jovana; Selakovic, Dragica; Barudzic, Nevena; Djuric, Dragan M

    2013-01-01

    Considering the adverse effects of DL-homocysteine thiolactone hydrochloride (DL-Hcy TLHC) on vascular function and the possible role of oxidative stress in these mechanisms, the aim of this study was to assess the influence of DL-Hcy TLHC alone and in combination with specific inhibitors of important gasotransmitters, such as L-NAME, DL-PAG, and PPR IX, on cardiac contractility, coronary flow, and oxidative stress markers in an isolated rat heart. The hearts were retrogradely perfused according to the Langendorff technique at a 70 cm H2O and administered 10  μM DL-Hcy TLHC alone or in combination with 30  μM L-NAME, 10  μM DL-PAG, or 10  μM PPR IX. The following parameters were measured: dp/dt max, dp/dt min, SLVP, DLVP, MBP, HR, and CF. Oxidative stress markers were measured spectrophotometrically in coronary effluent through TBARS, NO2, O2(-), and H2O2 concentrations. The administration of DL-Hcy TLHC alone decreased dp/dt max, SLVP, and CF but did not change any oxidative stress parameters. DL-Hcy TLHC with L-NAME decreased CF, O2(-), H2O2, and TBARS. The administration of DL-Hcy TLHC with DL-PAG significantly increased dp/dt max but decreased DLVP, CF, and TBARS. Administration of DL-Hcy TLHC with PPR IX caused a decrease in dp/dt max, SLVP, HR, CF, and TBARS.

  11. Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters

    Directory of Open Access Journals (Sweden)

    Vladimir Zivkovic

    2013-01-01

    Full Text Available Considering the adverse effects of DL-homocysteine thiolactone hydrochloride (DL-Hcy TLHC on vascular function and the possible role of oxidative stress in these mechanisms, the aim of this study was to assess the influence of DL-Hcy TLHC alone and in combination with specific inhibitors of important gasotransmitters, such as L-NAME, DL-PAG, and PPR IX, on cardiac contractility, coronary flow, and oxidative stress markers in an isolated rat heart. The hearts were retrogradely perfused according to the Langendorff technique at a 70 cm H2O and administered 10 μM DL-Hcy TLHC alone or in combination with 30 μM L-NAME, 10 μM DL-PAG, or 10 μM PPR IX. The following parameters were measured: dp/dt max, dp/dt min, SLVP, DLVP, MBP, HR, and CF. Oxidative stress markers were measured spectrophotometrically in coronary effluent through TBARS, NO2, O2-, and H2O2 concentrations. The administration of DL-Hcy TLHC alone decreased dp/dt max, SLVP, and CF but did not change any oxidative stress parameters. DL-Hcy TLHC with L-NAME decreased CF, O2-, H2O2, and TBARS. The administration of DL-Hcy TLHC with DL-PAG significantly increased dp/dt max but decreased DLVP, CF, and TBARS. Administration of DL-Hcy TLHC with PPR IX caused a decrease in dp/dt max, SLVP, HR, CF, and TBARS.

  12. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  13. Postovulatory effect of repeated intravenous administration of ACTH on the contractile activity of the oviduct, ova transport and endocrine status of recently ovulated and unrestrained sows.

    Science.gov (United States)

    Mwanza, A M; Madej, A; Kindahl, H; Lundeheim, N; Einarsson, S

    2000-11-01

    The effect of repeated intravenous administration of ACTH (Synacthen depot) on the contractile activity of the oviduct, ova transport and endocrine status was studied in 11 Swedish crossbred (Landrace x Yorkshire) multiparous sows. In the second estrus after weaning, the ACTH group (Group A, n=6) sows were administered 0.01 mg/kg body weight of ACTH every 6 h commencing 4 to 8 h after ovulation, whereas the control group (Group C, n=5) sows were administered saline solution. Immediately after standing estrus, a Millar pressure transducer was placed about 3 cm into the isthmus via a laparotomy. Blood samples for hormonal analyses and pressure recordings of the oviduct were collected from all sows until slaughter. After slaughter, the genital tract opposite to the side with the transducer was retrieved, and 3 equal isthmic segments and the first third of the uterine horn portion adjacent to the UTJ were flushed separately for ova recovery. Cortisol levels were significantly (P0.05) were seen in the mean pressure and frequencies of phasic pressure fluctuations either before or after every ACTH administration between Groups A and C. No significant difference (P>0.05) was seen in the proportion of ova recovered in the different segments between Groups A and C. It can be concluded from the present study that the administration of ACTH (0.01 mg/kg body weight) to sows at 4 to 8 h after ovulation, and after each subsequent ACTH administration, elevates cortisol levels, whereas progesterone and PGF2alpha metabolite levels are elevated only after the first treatment, and that this has no effect on the mean isthmic pressure, the frequency of phasic pressure fluctuations or ova transport. PMID:11192189

  14. EDITORIAL: Enhancing nanolithography Enhancing nanolithography

    Science.gov (United States)

    Demming, Anna

    2012-01-01

    Lithography was invented in late 18th century Bavaria by an ambitious young playwright named Alois Senefelder. Senefelder experimented with stone, wax, water and ink in the hope of finding a way of reproducing text so that he might financially gain from a wider distribution of his already successful scripts. His discovery not only facilitated the profitability of his plays, but also provided the world with an affordable printing press that would ultimately democratize the dissemination of art, knowledge and literature. Since Senefelder, experiments in lithography have continued with a range of innovations including the use of electron beams and UV that allow increasingly higher-resolution features [1, 2]. Applications for this have now breached the limits of paper printing into the realms of semiconductor and microelectronic mechanical systems technology. In this issue, researchers demonstrate a technique for fabricating periodic features in poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) [3]. Their method combines field enhancements from silica nanospheres with laser-interference lithography to provide a means of patterning a polymer that has the potential to open the market of low-end, high-volume microelectronics. Laser-interference lithography has already been used successfully in patterning. Researchers in Korea used laser-interference lithography to generate stamps for imprinting a two-dimensional photonic crystal structure into green light emitting diodes (LEDs) [4]. The imprinted patterns comprised depressions 100 nm deep and 180 nm wide with a periodicity of 295 nm. In comparison with unpatterned LEDs, the intensity of photoluminescence was enhanced by a factor of seven in the LEDs that had the photonic crystal structures imprinted in them. The potential of exploiting field enhancements around nanostructures for new technologies has also attracted a great deal of attention. Researchers in the USA and Australia have used the field

  15. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 10(12 vector genome particles per mouse. Three months later, we observed a approximately 2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy and ameliorate muscle disease.

  16. Mechanism and Progress of Cardiac Contractility Modulation in the Therapy of Heart Failure%心肌收缩调节器治疗心力衰竭的机制和研究进展

    Institute of Scientific and Technical Information of China (English)

    顾凯; 杨兵

    2013-01-01

    As a novel kind of cardiovascular implantable electronic devices , the cardiac contractility modulation delivers a strong stim -ulation at absolute refractory period of cardiac muscle , as to produce inotropic effects , so that it can improve heart function and reverse re -modeling if activated for a longer time in patients with heart failure . Its safety and efficacy have been proved by zooscopy and human studies , with no additional arrhymias and oxygen -consumption found. Patients for whom cardiac resynchronization therapy is contraindicated or unsuc -cessful may benefit from cardiac contractility modulation especially . Cardiac contractility modulation is a promising therapy strategy to treat patients with heart failure , although large, well-designed trials are needed to confirm its role.%心脏收缩力调节器是一种治疗心力衰竭的新型植入性心脏电子装置,其原理是于心肌的绝对不应期给予强刺激以增强心肌收缩力,从而达到改善临床症状的目的,长期作用可逆转心肌重构.动物研究和临床研究均提示其治疗心力衰竭安全、有效,且不增加心肌耗氧量和新发心律失常,尤其适用于不符合心脏再同步治疗适应证或心脏再同步治疗无反应者.

  17. Coronary microembolization induced myocardial contractile dysfunction and tumor necrosis factor-α mRNA expression partly inhibited by SB203580 through a p38 mitogen-activated protein kinase pathway

    Institute of Scientific and Technical Information of China (English)

    LI Lang; QU Nan; LI Dong-hua; WEN Wei-ming; HUANG Wei-qiang

    2011-01-01

    Background The microemboli produced during spontaneous plaque rupture and ulceration and during coronary intervention will reduce coronary reserve and cause cardiac dysfunction. It is though that inflammation caused by the microinfarction induced by the microembolization may play an essential role. It is known that the activation of p38mitogen-activated protein kinases (MAPK) in both infected and non-infected inflammation in myocardium may cause a contractile dysfunction. But the relation between the activation of p38 MAPK and microembolization is still unknown.Methods Sprague-Dawley rats were randomly divided into three groups: Sham group, coronary microembolization (CME) group and SB203580 group (n=10 per group). CME rats were produced by injection of 42 μm microspheres into the left ventricle with occlusion of the ascending aorta. SB203580, a p38 MAPK inhibitor, was injected into the femoral vein after the injection of microspheres to make the SB203580 group. Left ventricular ejection fraction (LVEF) was determined by echocardiography. The protein concentration of P38 MAPK in the myocardium was assessed by Western blotting. The relative expression of mRNA for tumor necrosis factor (TNF)-a was assessed by the technique of semi-quantitative polymerase chain reaction amplification.Results LVEF was depressed at three hours up to 12 hours in the CME group. Increased p38 MAPK activity and TNF-α mRNA expression were observed in the CME group. The administration of SB203580 partly inhibited p38 MAPK activity,but did not fully depress the TNF-α expression, and partly preserved cardiac contractile function.Conclusions p38 MAPK is significantly activated by CME and the inhibition of p38 MAPK can partly depress the TNF-α expression and preserve cardiac contractile function.

  18. 染料木素抑制大鼠离体胃肠平滑肌收缩活动的研究%Inhibitory effects of genistein on contractile activity of isolated gastrointestinal smooth muscle in rats

    Institute of Scientific and Technical Information of China (English)

    李长兴; 李红芳; 张立雪; 豆兴成; 田治峰

    2014-01-01

    Objective To investigate the effects of genistein(Gen)on contractile activity of gastrointestinal smooth muscle of rat and explore its underlying mechanisms.Methods Gastrointestinal smooth muscle strips were taken out from rat.Each isolated muscle strip was put in a tissue chamber which contains 5 mL krebs solution and the motility of muscle strips was recorded simulta-neously.At the same time the CaCl2 concentration-response curves were done.Results Genistein reduced the resting tension of gas-trointestinal smooth muscle strips and decreased mean contractile amplitude of gastrointestinal smooth muscle strips,which were dose-dependent.Phentolamine,l-NG-nitroarginine,glibenclamide,SQ22536 partially blocked the inhibition of puerarin on the con-tractile activity of the rat gastric body.Genistein(1.00μmol/L)had no significant effect on calcium-dependent contraction,while genistein(50.00μmol/L)markedly prevented contractile effects of CaCl2 on body of stomach.Conclusion Genistein has inhibitory action on the isolated gastrointestinal smooth muscle strips of rats.%目的:观察染料木素对大鼠离体胃肠平滑肌收缩活动的影响,并探讨其作用机制。方法取大鼠胃肠平滑肌条安置在恒温灌流肌槽中,记录其收缩活动,同时做CaCl2的量效曲线。结果染料木素能降低胃肠平滑肌条的张力,减小其收缩波平均振幅。酚妥拉明、左旋-NG-硝基精氨酸、格列本脲、SQ22536可部分阻断染料木素对大鼠离体胃肠收缩活动的抑制作用。1.00 mol/L的染料木素对CaCl2的量效曲线无影响,50.0 mol/L染料木素使 CaCl2的量效曲线右移。结论染料木素对大鼠胃肠平滑肌条收缩活动具有抑制作用。

  19. Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: Rationale and design of a novel software toolbox

    Directory of Open Access Journals (Sweden)

    Cramer Maarten J

    2008-05-01

    of local 2-D echocardiographic deformation data into a 3-D model by dedicated software allows a comprehensive analysis of spatio-temporal distribution patterns of myocardial dyssynchrony, of the global left ventricular deformation and of newer indices that may better reflect myocardial dyscoordination and/or impaired ventricular contractile efficiency. The potential value of such an analysis is highlighted in two dyssynchronous pathologies that impose particular challenges to deformation imaging.

  20. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  1. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  2. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    BACKGROUND: MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored...... of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed...... is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1...

  3. 花椒毒酚对家兔离体回肠的作用%Effect of Xanthnotoxol on Contractility of Isolated Rabbit Ileum

    Institute of Scientific and Technical Information of China (English)

    胡晓; 周俐; 连其深; 曾靖; 杨敬格; 赖飞

    2001-01-01

    Objective: To study the effects of Xanthnotoxol on contractility of isolated rabbit ileum and its relationship with Ca2+. Method: Routime experimental methods for isolated ileum were adopted. Result: Xanthnotoxol (XT) and Verapamil (Ver) inhibited the contraction of iso lated rabbit ileum smoth muscle induced by submaximal concentrations of acetylcholine (ACh) and serotonim (5-TH), with a IC50 value (μmol*L-1) of 10.495±1.521,0.428±0.001and 18.132±1.627,0.249±0.003,respectively. XT and Ver inhibited the contraction induced by Ca2+after high K+ depolorization and for noncompetitively antagonist CaCl2 cumulative dose-response curve, the pD'2 value was 4.69±0.03 and 6.35±0.10, respectively. XT (10μmol*L-1)and Ver(0.06μmol*L-1)inhibited the contraction induced by ACh in Ca2+-free medium, while XT (100μmol*L-1)but not Ver(0.6μmol*L-1) inhibited the extracellar Ca2+-dependent contraction induced by ACh. Conclusion: XT has a calcium-antagonistic effect which was not similar to that of Ver.%目的:研究花椒毒酚对家兔离体回肠平滑肌的作用及其与Ca2+的关系。方法:采用常规回肠离体标本运动的实验方法。结果:花椒毒酚(XT)、维拉帕米(Ver)可剂量依赖性地抑制次大剂量ACh,5-HT所致的家兔离体回肠平滑肌收缩,非竞争性拮抗CaCl2累积量-效曲线,pD2′分别为4.69±0.03,6.35±0.10。XT 10 μmol*L-1,Ver 0.06 μmol*L-1可抑制ACh诱导的依内钙性收缩。XT 100 μmol*L-1尚可抑制ACh诱导的依外钙性收缩,但Ver 0.6 μmol*L-1对此相收缩没有影响。结论:XT具有钙拮抗作用,其作用方式不完全相同于Ver。

  4. β-Alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity.

    Science.gov (United States)

    Hannah, Ricci; Stannard, Rebecca Louise; Minshull, Claire; Artioli, Guilherme Giannini; Harris, Roger Charles; Sale, Craig

    2015-03-01

    β-Alanine (BA) supplementation improves human exercise performance. One possible explanation for this is an enhancement of muscle contractile properties, occurring via elevated intramuscular carnosine resulting in improved calcium sensitivity and handling. This study investigated the effect of BA supplementation on in vivo contractile properties and voluntary neuromuscular performance. Twenty-three men completed two experimental sessions, pre- and post-28 days supplementation with 6.4 g/day of BA (n = 12) or placebo (PLA; n = 11). During each session, force was recorded during a series of knee extensor contractions: resting and potentiated twitches and octet (8 pulses, 300 Hz) contractions elicited via femoral nerve stimulation; tetanic contractions (1 s, 1-100 Hz) via superficial muscle stimulation; and maximum and explosive voluntary contractions. BA supplementation had no effect on the force-frequency relationship, or the force responses (force at 25 and 50 ms from onset, peak force) of resting or potentiated twitches, and octet contractions (P > 0.05). Resting and potentiated twitch electromechanical delay and time-to-peak tension were unaffected by BA supplementation (P > 0.05), although half-relaxation time declined by 7-12% (P < 0.05). Maximum and explosive voluntary forces were unchanged after BA supplementation. BA supplementation had no effect on evoked force responses, implying that altered calcium sensitivity and/or release are not the mechanisms by which BA supplementation influences exercise performance. The reduced half-relaxation time with BA supplementation might, however, be explained by enhanced reuptake of calcium, which has implications for the efficiency of muscle contraction following BA supplementation. PMID:25539942

  5. Inhibition of PKC-dependent extracellular Ca{sup 2+} entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F. [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF (Mexico)

    2014-08-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT{sub 2}R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT{sub 2}R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca{sup 2+}-free medium or the subsequent tonic constrictions induced by the addition of Ca{sup 2+} in the absence of agonists. Thus, the contractions induced by Ca{sup 2+} release from intracellular stores and Ca{sup 2+} influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca{sup 2+} channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca{sup 2+}. Neither levels of angiotensins nor of AT{sub 2}R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca{sup 2+} entry.

  6. Smoking particles enhance endothelin A and endothelin B receptor-mediated contractions by enhancing translation in rat bronchi

    DEFF Research Database (Denmark)

    Granström, Bengt W; Xu, Cang-Bao; Nilsson, Elisabeth;

    2006-01-01

    of ETA and ETB receptor mRNA through exposure to DMSO or to nicotine exposure alone occurred, although immunohistochemistry revealed a clear increase in ETA and ETB receptors in the smooth muscle after incubation in the presence of DSP. Taken as a whole, this is seen as the presence of a translation...... segments showed an increased contractility mediated by ETA and ETB receptors, whereas culturing them together with nicotine did not affect their contractility. The up-regulation of their contractility was blunted by cycloheximide treatment, a translational inhibitor. No significant change in the expression...... mechanism. CONCLUSION: The increased contractility of rat bronchi when exposed to DSP appears to be due to a translation mechanism....

  7. Current enhancement update

    International Nuclear Information System (INIS)

    Net current enhancement to levels in excess of the beam current has been observed in gases at pressures excess of 50 torr. We delineate the regimes where enhancement is observed. The experimental results fall into two very distinct classes; current enhancement at injection where the beam is only slightly displaced and current enhancement clearly associated with the high amplitude hose instability. A careful theoretical and experimental study of the diagnostics revealed no fundamental flaws although there are several complex and unlikely scenarios which could introduce fictitious current enhancement. Theoretical efforts indicate several mechanisms for generating enhancement but none of the theories can account for the detailed observations. 4 references, 4 figures

  8. Enhanced airway smooth muscle cell thromboxane receptor signaling via activation of JNK MAPK and extracellular calcium influx

    DEFF Research Database (Denmark)

    Lei, Ying; Cao, Yongxiao; Zhang, Yaping;

    2011-01-01

    airway smooth muscle cells by using an organ culture model and a set of selective pharmacological inhibitors for mitogen-activated protein kinase (MAPK) and calcium signal pathways. Western-blot, immunohistochemistry, myograph and a selective TP receptor agonist U46619 were used for examining TP receptor...... signal proteins and function. Organ culture of rat bronchial segments for up to 48 h induces a time-dependently increased airway contractile response to U46619. This indicates that organ culture increases TP receptor signaling in the airway smooth muscle cells. The enhanced bronchial contraction was...... attenuated by the inhibition of c-Jun N-terminal kinase (JNK) MAPK activity, chelation of extracellular calcium and calcium channel blocker nifedipine, suggesting that JNK MAPK activity and elevated intracellular calcium level are required for the TP receptor signaling. In conclusion, airway smooth muscle...

  9. Angiopoietin-1 enhances skeletal muscle regeneration in mice

    Science.gov (United States)

    Mofarrahi, Mahroo; McClung, Joseph M.; Kontos, Christopher D.; Davis, Elaine C.; Tappuni, Bassman; Moroz, Nicolay; Pickett, Amy E.; Huck, Laurent; Harel, Sharon; Danialou, Gawiyou

    2015-01-01

    Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells. PMID:25608750

  10. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a