WorldWideScience

Sample records for clear-pem detector modules

  1. Reconstruction of Clear-PEM data with STIR

    CERN Document Server

    Martins, M V; Rodrigues, P; Trindade, A; Oliveira, N; Correia, M; Cordeiro, H; Ferreira, N C; Varela, J; Almeida, P

    2006-01-01

    The Clear-PEM scanner is a device based on planar detectors that is currently under development within the Crystal Clear Collaboration, at CERN. The basis for 3D image reconstruction in Clear-PEM is the software for tomographic image reconstruction (STIR). STIR is an open source object-oriented library that efficiently deals with the 3D positron emission tomography data sets. This library was originally designed for the traditional cylindrical scanners. In order to make its use compatible with planar scanner data, new functionalities were introduced into the library's framework. In this work, Monte Carlo simulations of the Clear-PEM scanner acquisitions were used as input for image reconstruction with the 3D OSEM algorithm available in STIR. The results presented indicate that dual plate PEM data can be accurately reconstructed using the enhanced STIR framework.

  2. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, M.C. [LIP, Lab. de Instrumentacao e Fisica Exp. Particulas (Portugal); Aguiar, D. [INESC-ID and INOV, Lisbon (Portugal); Albuquerque, E. [INEGI Inst. Eng. Mecanica Gestao Industrial, Porto (Portugal)] (and others)

    2007-02-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  3. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  4. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Science.gov (United States)

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Trindade, A.; Varela, J.

    2009-10-01

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Português de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 × 2 × 20 mm3 LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean CDOI-1 is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  5. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Energy Technology Data Exchange (ETDEWEB)

    Bugalho, R; Carrico, B; Ferreira, C S; Frade, M; Ferreira, M; Moura, R; Ortigao, C; Pinheiro, J F; Rodrigues, P; Rolo, I; Silva, J C; Trindade, A; Varela, J [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Av. Elias Garcia 14-1, 1000-149 Lisboa (Portugal)], E-mail: frade@lip.pt

    2009-10-15

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Portugues de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 x 2 x 20 mm{sup 3} LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean C{sub DOI}{sup -1} is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  6. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  7. Clear-PEM, a dedicated PET camera for mammography

    CERN Document Server

    Lecoq, P

    2002-01-01

    Preliminary results suggest that Positron Emission Mammography (PEM) can offer a noninvasive method for the diagnosis of breast cancer. Metabolic images from PEM contain unique information not available from conventional morphologic imaging techniques and aid in expeditiously establishing the diagnosis of cancer. A dedicated machine seems to offer better perspectives in terms of position resolution and sensitivity. This paper describes the concept of Clear-PEM, the system presently developed by the Crystal Clear Collaboration at CERN for an evaluation of this approach. This device is based on new crystals introduced by the Crystal Clear as well as on modern data acquisition techniques developed for the large experiments in high energy physics experiments.

  8. Simulation results of a veto counter for the ClearPEM

    CERN Document Server

    Trummer, J; Lecoq, P

    2009-01-01

    The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.

  9. Gamma ray detector modules

    Science.gov (United States)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  10. PET detector modules based on novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, W.W.; Derenzo, S.E.; Budinger, T.F.

    1994-05-01

    A successful PET detector module must identify 511 keV photons with: high efficiency (>85%), high spatial resolution (<5 mm fwhm), low cost (<$600 / in{sup 2}), low dead time (<4 {mu}s in{sup 2}), good timing resolution (<5 ns fwhm for conventional PET, <200 ps fwhm for time of flight), and good energy resolution (<100 keV fwhm), where these requirements are listed in decreasing order of importance. The ``high efficiency`` requirement also implies that the detector modules must pack together without inactive gaps. Several novel and emerging radiation detector technologies could improve the performance of PET detectors. Avalanche photodiodes, PIN photodiodes, metal channel dynode photomultiplier tubes, and new scintillators all have the potential to improve PET detectors significantly.

  11. Position-sensitive CZT detector module

    Science.gov (United States)

    Matteson, James L.; Duttweiler, Fred; Huszar, George L.; Leblanc, Philippe C.; Skelton, Robert E.; Stephan, Edwin A.; Hink, Paul L.; Dowkontt, Paul F.; Slavis, Kimberly R.; Tumer, Tumay O.; Kravis, Scott D.

    1998-07-01

    Coded mask imagers for future high energy x-ray astronomy missions will require detector planes with areas of hundreds to thousands of cm(superscript 2) and position resolutions CZT detector systems with crossed-strip readout to meet these requirements. We report progress on a compact detector module with 41 cm(superscript 2) area and 0.5 mm spatial resolution. The design includes the bias network and ASIC readout electronics, and allows modules to be combined in large area arrays with very high live-area factors. Results from laboratory and balloon flight tests are presented.

  12. The ALPHA detector : Module Production and Assembly

    CERN Document Server

    Andresen, G; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hangst, J S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y; Ashkezari, M D; Baquero-Ruiz, M; Butler, E; Deller, A; Eriksson, S; Friesen, T; Gutierrez, A; Hardy, W N; Hayden, M E; Humphries, A J; Jonsell, S; McKenna, J T K; Menary, S; Pusa, P; Sampson, J; Seddon, D; Seif el Nasr, S; So, C; Thornhill, J; Wells, D; Jorgensen, L V

    2012-01-01

    ALPHA is one of the experiments situated at CERN's Antiproton Decelerator (AD). A Silicon Vertex Detector (SVD) is placed to surround the ALPHA atom trap. The main purpose of the SVD is to detect and locate antiproton annihilation events by means of the emitted charged pions. The SVD system is presented with special focus given to the design, fabrication and performance of the modules.

  13. The ALPHA - detector: Module Production and Assembly

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; JØrgensen, L. V.; Kurchaninov, L.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sampson, J.; Sarid, E.; Seddon, D.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Thornhill, J.; Wells, D.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2012-01-01

    ALPHA is one of the experiments situated at CERN's Antiproton Decelerator (AD). A Silicon Vertex Detector (SVD) is placed to surround the ALPHA atom trap. The main purpose of the SVD is to detect and locate antiproton annihilation events by means of the emitted charged pions. The SVD system is presented with special focus given to the design, fabrication and performance of the modules.

  14. Thermal Module Tests with Irradiated 070 Detectors.

    CERN Document Server

    HOWCROFT, C L F

    1998-01-01

    Four n-in-n detectors were irradiated at KEK to a fluence of 3*1014 protons cm-2. These were used to construct a thermal barrel module to 070 drawings with an A3-90 baseboard at the Rutherford Appleton Laboratory. Thermal testes were conducted on the module, examining the runaway point and the temperatures across the silicon. The results obtained were used to calculate the runaway point under ATLAS conditions. It was concluded that this module meets the specifications in the Technical Design Report, of 160 mW mm-2@ 0°C for runaway and less than 5°C across the silicon. The module was also compared to a Finite Element Analysis, and showed a good agreement.

  15. Cryogenic detector modules and edgeless silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rouby, X. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium)]. E-mail: rouby@fynu.ucl.ac.be; Eremin, V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Grohmann, S. [ILK Dresden, Bertolt-Brecht-Allee 20, D-01309 Dresden (Germany); Haerkoenen, J. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Luukka, P. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Militaru, O. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Niinikoski, T. [CERN, CH-1211 Geneva (Switzerland); Nuessle, G. [CERN, CH-1211 Geneva (Switzerland); Perea Solano, B. [CERN, CH-1211 Geneva (Switzerland); Piotrzkowski, K. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Tuovinen, E. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Verbitskaya, E. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2007-01-11

    We are studying the operation of silicon microstrip detector with readout electronics in the temperature range from 90 to 130K. The sensor can be operated in the current-injection mode which significantly improves its radiation hardness. A first module prototype has been built, with APV25 readout chips and an embedded microtube, providing efficient low-mass cooling of the whole module with a two-phase flow of N{sub 2} or Ar. First pedestal and pulse shape temperature dependencies are presented for this module. We have also built an edgeless test module with two pairs of laser cut sensors, with both angular and parallel cuts with respect to the strips (at 120{mu}m pitch). We are studying the efficiency of the microstrip sensors very close (<200{mu}m) to the physical border of the cut silicon crystal and present here some electrical characteristics.

  16. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  17. Electronics design of a PET detector module with APD array

    CERN Document Server

    Wang Yong

    2002-01-01

    The author summarizes the advantages of APD-array for using in PET scanner. The front-end electronics for an experimental APD detector module was built and tested. According to the characteristics of APD-array and the demands of the signal readout in PET scanner, the full electronics system of an APD detector module was designed and presented in detail

  18. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  19. Evaluation of Irradiated Barrel Detector Modules for the Upgrade of the CMS Pixel Detector

    CERN Document Server

    Sibille, Jennifer Ann

    2013-01-01

    Prototype detector modules comprising sensors and the new readout chips were assembled and irradiated with protons at the CERN PS, and readout chips without sensors have been irradiated with protons at the Karls...

  20. In-Situ Performance Characterization of CRESST Detector Modules

    CERN Document Server

    Kiefer, M; Bento, A; Bucci, C; Canonica, L; Erb, A; Feilitzsch, F v; Iachellini, N Ferreiro; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Sivers, M v; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2015-01-01

    The CRESST experiment (Cryogenic Rare Event Search with Superconducting Thermometers) searches for dark matter via the phonon and light signal of elastic scattering processes in scintillating crystals. The discrimination between a possible dark matter signal and background requires good energy resolution of the light detector, therefore a high light yield is important. In this article, we present a method for understanding the light yield measured with entire detector modules in terms of the efficiencies of light production and detection. Based on data taken during a dark matter search phase, it considers the entire process of conversion of deposited energy into scintillation light as well as transport and collection of the light that occur in a detector module. We can confirm the results by using a cross-check method with different systematic uncertainties. We found that with the detectors operated in CRESST-II phase 1, about 20% of the produced scintillation light is detected. A part of the light loss is li...

  1. Analog readout modules for the ZEUS microvertex detector

    CERN Document Server

    Fusayasu, T

    1999-01-01

    Analog readout modules have been developed for a silicon microvertex detector of the electron-proton collision experiment ZEUS. Analog signals kept in the front end are read out and digitized by ADCs and processed afterwards to reduce the data volume while keeping the signal information. We have developed prototype modules with 10-bit 10 MHz ADCs and digital processors built in Field Programmable Gate Arrays. Their performance was investigated.

  2. Validation of the excore detector module of PANBOX 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Du Ill; Kang, Jung Kil; Hwang, Sun Tack [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yeong Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Finnemann, H; Boer, R. [Siemens/KWU N, Erlangen (Germany)

    1998-12-31

    In the PANBOX 2 system an excore detector module simulating the excore signal responses during a short term transient is implemented in order to simulate the reaction of the flux detector and control system upon rapid power changes as it occurs e. g., in rod drop events. This module has been verified in the past by comparison calculations with the PANBOX 1 system. This report describes additional PANBOX 2 validation calculations which have been compared with experimental data measured at german plant KKG, cycle 1, for a rod drop event. In general, the PANBOX 2 results are in very good agreement with the KKG experiments. Therefore it is concluded that the excore detector model of PANBOX 2 is successfully validated. 6 refs., 11 figs., 2 tabs. (Author)

  3. Detector module development for the CBM Silicon Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Lymanets, Anton [Physikalisches Institut, Universitaet Tuebingen (Germany); Collaboration: CBM-Collaboration

    2013-07-01

    The central detector of the CBM experiment at FAIR, the Silicon Tracking System (STS), is being designed to reconstruct hundreds of charged particles produced at rates up to 10 MHz in interactions of ion beams of up to 45 AGeV projectile energies with nuclear targets. The building block of the tracking system is a module suitable for a low-mass detector construction. In a module, the basic functional unit of the STS, radiation tolerant microstrip sensors are read out through low-mass multi-line cables with self-triggering front-end electronics located at the periphery of the system. Light-weight carbon fibre support structures will carry 10 of such modules and build up the STS stations. In the presentation, the concept of the detector module construction is presented. Quality assurance tests under development for the module components (double-sided silicon microstrip sensors, stacked polyimide microcables, front-end ASICs and boards) and the assembled structures are discussed.

  4. Response of plasmonic terahertz detectors to amplitude modulated signals

    Science.gov (United States)

    Rupper, Greg; Rudin, Sergey; Shur, Michael

    2015-09-01

    We present theoretical study of the response of two-dimensional gated electron gas to an amplitude modulated signals with carrier frequency in the terahertz range. The model is based on complete hydrodynamic equations, and includes effects of viscosity, pressure gradients and thermal transport in the conduction channel of a high electron mobility semiconductor transistor (HEMT). The modulation response was evaluated as a function of modulation frequency fM for a wide range of mobility values. Maximum modulation frequency fMAX was evaluated as a function of channel mobility, with typical values of fMAX in the subterahertz range of frequencies. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet all the requirements for applications as terahertz detectors and modulators in ultra high-speed wireless communication circuits.

  5. Response of Plasmonic Terahertz Detectors to Modulated Signals

    Science.gov (United States)

    Rudin, Sergey; Rupper, Greg; Reed, Meredith; Shur, Michael

    We present theoretical study of the response of two-dimensional gated electron gas to an amplitude modulated signals with carrier frequency in the terahertz range. Our model is based on complete hydrodynamic equations, and includes effects of viscosity, pressure gradients and thermal transport in the conduction channel of a high electron mobility semiconductor transistor. The modulation response was evaluated as a function of modulation frequency for a range of mobility values in different semiconductor materials. Maximum modulation frequency was evaluated as a function of channel mobility, with typical values in the subterahertz range of frequencies. Our analysis shows that short channel field effect transistors operating in the plasmonic regime meets the requirements for applications as terahertz detectors and modulators in high-speed wireless communication circuits.

  6. Detectors and Focal Plane Modules for Weather Satellites

    Science.gov (United States)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Ely, P.; Khalap, V.; Babu, S.; Smith, D. S.

    2016-01-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 micron band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lamba(sub c) approximately 5 micron at 98K), MWIR (lambda(sub c) approximately 9 micron at 98K) and LWIRs (lamba(sub c) approximately 15.5 micron at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 micron to 8.6 micron and (iii) a 9.6 micron to 13.3 micron, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 micron to 0.86 micron channels. The thirteen channels above 1 micron are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 micron to 9.61 micron channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE

  7. Beam test of CSES silicon strip detector module

    Science.gov (United States)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  8. Beam test of CSES silicon strip detector module

    CERN Document Server

    Zhang, Da-Li; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, heng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2016-01-01

    The silicon-strip tracker of China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSD). It provides the tracking information of incident particles. The low-noise analog ASIC VA140 was used for signal readout of DSSD. A beam test of the DSSD module was performed in the Beijing test beam Facility of the Beijing Electron Positron Collider (BEPC) using proton beam of 400~800MeV/c. Results on pedestal analysis, RMSE noise, gain correction and reconstruction of incident position of DSSD module are presented.

  9. Detector module development for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, Olga [GSI Helmholtzzentrum, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2014-07-01

    The central detector of the CBM experiment at FAIR, the Silicon Tracking System (STS), is designed to reconstruct hundreds of charged particle tracks produced at rates up to 10 MHz in interactions of ion beams of up to 45 AGeV projectile energies with nuclear targets. The building block of the tracking system is a module suitable for a low-mass detector construction. In a module, the basic functional unit of the STS, radiation tolerant microstrip sensors are read out through low-mass multi-line cables with self-triggering front-end electronics located at the periphery of the system. Light-weight carbon fibre support structures will carry 10 of such modules and build up the STS stations. The performance of module prototypes has been evaluated, resembling the structure of the intended STS module. The shown prototypes comprise a full-size CBM05 sensor and two 128-channel read-out cables attached to the read-out pads on either side of the sensor. The cables end in connector boards interfacing to two front-end boards each hosting one n-XYTER chip.

  10. Qualification of Barrel Pixel Detector Modules for the Phase 1 Upgrade of the CMS Vertex Detector

    CERN Document Server

    Kudella, Simon

    2016-01-01

    To withstand the higher particle rates of LHC Runs 2 and 3, with expected luminosities of up to $2\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$, the current CMS pixel detector at the LHC will be replaced as part of the CMS Phase I Upgrade during the extended winter shutdown in 2016/17. The new pixel detector features a new geometry with one additional detector layer in the barrel region~(BPIX) and one pair of additional disks in the forward region~(FPIX), new digital readout chips as well as a new CO$_{2}$-based cooling system for both the barrel and forward region. The BPIX detector module production is summarized, with special focus on the different stages of quality assurance. The quality tests as well as the calibrations which all produced modules undergo in a temperature and humidity controlled environment are described. Exemplarily, the KIT/Aachen production line and its subprocesses are presented together with its quality and yields.

  11. A large area, silicon photomultiplier-based PET detector module.

    Science.gov (United States)

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner.

  12. New gamma detector modules based on micropixel avalanche photodiode

    Science.gov (United States)

    Ahmadov, F.; Ahmadov, G.; Guliyev, E.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Suleymanov, S.; Akberov, R.; Nuriyev, S.; Zerrouk, F.

    2017-01-01

    In this paper presented the results of the ionizing radiation detector modules, which developed on the basis of a new generation of micropixel avalanche photodiode (MAPD) of MAPD-3NK type. The samples were produced in cooperation with the Zecotek Photonics and characterized by the following parameters: sensitive area—3.7 mm × 3.7 mm, density of pixels—10000 pixels/mm2, photon detection efficiency—35-40% (at wavelength of 450-550 nm) and operation voltage—91 V. The beta particle and gamma ray detection performance of MAPD with different single scintillation crystal such as NaI, LFS and p-terphenyl was investigated. The gamma ray detector modules demonstrated a perfect linear behavior of detected signal amplitudes as a function of the gamma ray energy (from 26.3 keV up to 1.33 MeV). Energy resolution for 662 keV gamma rays was 11.2% and the minimum detectable energy was 26.3 keV.

  13. Residual Amplitude Modulation in Interferometric Gravitational Wave Detectors

    CERN Document Server

    Kokeyama, Keiko; Korth, William Z; Smith-Lefebvre, Nicolas; Arai, Koji; Adhikari, Rana X

    2013-01-01

    The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an opto-mechanical spring, which also varies the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO detectors, and show that the RAM expected in Advanced LIGO will not limit its sensitivity.

  14. Residual amplitude modulation in interferometric gravitational wave detectors.

    Science.gov (United States)

    Kokeyama, Keiko; Izumi, Kiwamu; Korth, William Z; Smith-Lefebvre, Nicolas; Arai, Koji; Adhikari, Rana X

    2014-01-01

    The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an optomechanical spring, which also perturbs the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO (aLIGO) detectors, and show that the RAM expected in aLIGO will not limit its sensitivity.

  15. A Prototype Large Area Detector Module for Muon Scattering Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Boakes, J.; Burns, J.; Snow, S.; Stapleton, M.; Thompson, L.F.; Quillin, S. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree of material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)

  16. Characterization and selection of CZT detector modules for HEX experiment onboard Chandrayaan-1

    Energy Technology Data Exchange (ETDEWEB)

    Vadawale, S.V. [Physical Research Laboratory, Navarangpura, Ahmedabad 380 009 (India)], E-mail: santoshv@prl.res.in; Purohit, S.; Shanmugam, M.; Acharya, Y.B.; Goswami, J.N. [Physical Research Laboratory, Navarangpura, Ahmedabad 380 009 (India); Sudhakar, M.; Sreekumar, P. [Space Astronomy and Instrumentation Division, ISRO Satellite Center, Bangalore 560 017 (India)

    2009-01-11

    We present the results of characterization of a large sample of Cadmium Zinc Telluride (CZT) detector modules planned to be used for the HEX (High Energy X-ray spectrometer) experiment onboard India's first mission to the Moon, Chandrayaan-1. We procured forty modules from Orbotech Medical Solutions Ltd. and carried out a detailed characterization of each module at various temperatures and selected final nine detector modules for the flight model of HEX. Here we present the results of the characterization of all modules and the selection procedure for the HEX flight detector modules. These modules show 5-6% energy resolution (at 122 keV, for best 90% of pixels) at room temperature which is improved to {approx}4% when these modules are cooled to sub-0 deg. C temperature. The gain and energy resolution were stable during the long duration tests.

  17. Performance And Radiation Hardness Of The Atlas/sct Detector Module

    CERN Document Server

    Eklund, L

    2003-01-01

    The ATLAS experiment is a general purpose experiment being constructed at the Large Hadron Collider (LHC) at FERN, Geneva. ATLAS is designed to exploit the full physics potential of LHC, in particular to study topics concerning the Higgs mechanism, Super-symmetry and CP violation. The cross sections for the processes under study are extremely small, requiring very high luminosity colliding beams. The Semiconductor Tracker (SCT) is an essential part of the Inner Detector tracking system of ATLAS. The active elements of the SCT is 4088 detector modules, tiled on four barrel cylinders and eighteen endcap disks. As a consequence of the high luminosity, the detector modules will operate in a harsh radiation environment. This thesis describes work concerning radiation hardness, beam test performance and methods for production testing of detector modules. The radiation hardness studies have been focused on the electrical performance of the front-end ASIC and the detector module. The results have identified features ...

  18. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  19. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    Science.gov (United States)

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  20. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. (Riley, KS); Shultis, John K. (Manhattan, KS); Rice, Blake B. (Manhattan, KS); McNeil, Walter J. (Winnfield, KS); Solomon, Clell J. (Wichita, KS); Patterson, Eric L. (Manhattan, KS); Bellinger, Steven L. (Manhattan, KS)

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  1. Detector Developments for the LHC CMS TOB Silicon Detector Modules and ATLAS TileCal Read-Out Driver

    CERN Document Server

    Poveda, J; Ferrer, A

    2005-01-01

    This Research Report is divided in two different parts corresponding to two different periods of time working in different collaborations. First, a general approach to the framework where this work is set is presented at the Introduction: the CERN laboratory near Geneva, the LHC accelerator and its two general purpose experiments CMS and ATLAS. The first part of this report consists in the study of the performance of the silicon strip detectors specifically designed for the Tracker Outer Barrel (TOB) of the CMS Tracker detector. Results of the performance of CMS TOB silicon detector modules mounted on the first assembled double-sided rod at CERN are presented. These results are given in terms of noise, noise occupancies, signal to noise ratios and signal efficiencies. The detector signal efficiencies and noise occupancies are also shown as a function of threshold for a particular clustering algorithm. Signal efficiencies versus noise occupancy plots as a function of the threshold level, which could also be us...

  2. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and deliver a turn-key photon counting detector module for near-infrared wavelengths, based on large-area InGaAs/InP avalanche photodiodes...

  3. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    Science.gov (United States)

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF.

  4. Qualification of the modules for the Phase 1 upgrade of the CMS forward pixel detector

    Science.gov (United States)

    Sandoval Gonzalez, Irving; CMS Collaboration

    2017-01-01

    The innermost component of the Compact Muon Solenoid (CMS) detector, the silicon pixel tracker, will be replaced by a new device in early 2017 to cope with the significant increase in instantaneous luminosity expected for the remainder of Run 2 of the Large Hadron Collider. The upgraded detector is composed of two subcomponents: the barrel pixel (BPIX) and the forward pixel (FPIX). In this work, we describe the testing and calibration procedures that the FPIX detector subcomponents underwent as well as the quality assurance criteria used for selecting the best detector modules for the final installation. NSF

  5. Quality tests for SM1 MicroMegas detector module

    CERN Document Server

    Del Gaudio, M

    2016-01-01

    The Phase-I ATLAS upgrade (2018) aims to improve the detector performance at high luminosity (2 × 10$^{34}$ cm$^{−2}s$^{−1}$). In particular, the upgrade of the muon spectrometer focuses on the Small Wheels (SW) in the end-cap region, which cover 1.3 < |η| < 2.7. The SW will be replaced by the New Small Wheels (NSW), which is a set of precision tracking and trigger detectors able to work at high rates with excellent real-time spatial and time resolution. Each NSW will be constituted by multiplet of planar gaseous detectors, with trapezoidal shape: smallstrip Thin Gap Chamber (sTGC) and Micro-MEsh Gaseous Structure (MM). This paper describes some of the quality controls that the MM detectors must comply: planarity, thickness and gas tightness.

  6. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    Science.gov (United States)

    Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.

    2014-05-01

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.

  7. A fast method for optical simulation of flood maps of light-sharing detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Han [Tsinghua University, Beijing (China); Lawrence Berkeley National Laboratory, CA (United States); Du, Dong [Tsinghua University, Beijing (China); Xu, JianFeng [Huazhong University of Science and Technology, Wuhan (China); Moses, William W. [Lawrence Berkeley National Laboratory, CA (United States); Peng, Qiyu, E-mail: qiyupeng@gmail.com [Lawrence Berkeley National Laboratory, CA (United States)

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  8. Detectors and Focal Plane Modules for Weather Instruments

    Science.gov (United States)

    D'Souza, A.I.; Robinson, E.; Masterjohn, S.; Khalap, V.; Bhargava, S.; Rangel, E.; Babu, S.; Smith, D. S.

    2016-01-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lambda(sub c) (is) approximately 5 micrometers at 98 K), MWIR (lambda(sub c) (is) approximately 9 micrometers at 98 K) and LWIRs (lambda(sub c) (is) approximately 15.4 ?m at 81 K) bands in three Focal Plane Array Assemblies (FPAAs). CrIS detectors are 850 micrometers diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the detectors fabricated in a modified Double Layer Planar Heterostructure (DLPH) architecture. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak 14.01 micrometers wavelength are greater than 5.0E+10 Jones for LWIR, greater than 7.5E+10 Jones at 8.26 micrometers for MWIR and greater than 3.0E+11 Jones at peak 4.64 micrometers wavelength for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 10(exp 10) cm-Hz1/2/W at 14.0 micrometers, 9.6 x 10(exp 10) cm-Hz1/2/W at 8.0 micrometers and 3.4 x 10(exp 11) cm-Hz1/2/W at 4.64 micrometers.

  9. Detectors and focal plane modules for weather instruments

    Science.gov (United States)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Khalap, V.; Bhargava, S.; Rangel, E.; Babu, S.; Smith, D. S.

    2016-05-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (λc ~ 5 μm at 98 K), MWIR (λc ~ 9 μm at 98 K) and LWIRs (λc ~ 15.4 μm at 81 K) bands in three Focal Plane Array Assemblies (FPAAs). CrIS detectors are 850 μm diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the detectors fabricated in a modified Double Layer Planar Heterostructure (DLPH) architecture. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak 14.01 μm wavelength are >= 5.0E+10 Jones for LWIR, >= 7.5E+10 Jones at 8.26 μm for MWIR and >= 3.0E+11 Jones at peak 4.64 μm wavelength for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 μm, 9.6 x 1010 cm-Hz1/2/W at 8.0 μm and 3.4 x 1011 cm-Hz1/2/W at 4.64 μm.

  10. Performance evaluation of a parallel-hole collimated detector module for animal SPECT imaging

    Institute of Scientific and Technical Information of China (English)

    HUANG Xian-Chao; WANG Ying-Jie; WEI Long; SHAN Bao-Ci; WANG Bao-Yi; ZHANG Zhi-Ming; LI Dao-Wu; TANG Hao-Hui; LI Ting; LIAO Yan-Fei; LIU Jun-Hui; WANG Pei-Lin; CHEN Yan

    2011-01-01

    We have built and investigated a detector module for animal SPECT imaging,especially for use in large field of view (FOV) conditions.The module consists of a PMT-based detector and a parallel-hole collimator with an effective area of 80 mm × 80 mm.The detector is composed of a NaI scintillation crystal array coupled to four H8500 position sensitive photomultiplier tubes (PS-PMT).The intrinsic energy resolution of the detector is 11.5% at 140 keV on average.The planar spatial resolution of the module changes from 2.2 mm to 5.1 mm at different source-to-collimator distances with an unchanged sensitivity of about 34cps/MBq.Additionally,the SPECT Micro Deluxe Phantom imaging was performed with a radius of rotation (ROR)of 40 mm.Using the FBP reconstruction algorithm,a high performance image was obtained,indicating the feasibility of this detector module.

  11. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  12. A facility for long term evaluation and quality assurance of LHCb Vertex Detector modules

    CERN Document Server

    Marinho, F; Dimattia, R; Doherty, F; Dumps, R; Gersabeck, M; Melone, J; Parkes, C; Saavedra, A; Tobin, M

    2007-01-01

    This note describes the facility developed for long term evaluation and quality assurance of the LHCb Vertex Detector modules, known as the 'Glasgow Burn-in System'. This facility was developed to ensure that the modules conform to stringent quality levels. The system was able to uncover any weaknesses that could be introduced during the manufacturing and assembly of the components or during the transport of the modules to CERN. The system consisted of: a high resolution microscope for visual inspections; and a burn-in system to operate cooled modules in vacuum. The main components of the burn-in system were a vacuum system, a cooling system and a DAQ system.

  13. Test of CMS tracker silicon detector modules with the ARC readout system

    CERN Document Server

    Axer, M; Flügge, G; Franke, T; Hegner, B; Hermanns, T; Kasselmann, S T; Mnich, J; Nowack, A; Pooth, O; Pottgens, M

    2004-01-01

    The CMS tracker will be equipped with 16,000 silicon microstrip detector modules covering a surface of approximately 220 m**2. For quality control, a compact and inexpensive DAQ system is needed to monitor the mass production in industry and in the CMS production centres. To meet these requirements a set-up called APV Readout Controller (ARC) system was developed and distributed among all collaborating institutes to perform full readout tests of hybrids and modules at each production step. The system consists of all necessary hardware components, C++ based readout software using LabVIEW **1 Lab VIEW is a product of National Instruments, Austin, USA. as graphical user interface and provides full database connection to track every single module component during the production phase. Two preseries of Tracker End Cap (TEC) silicon detector modules have been produced by the TEC community and tested with the ARC system at Aachen. The results of the second series are presented.

  14. Detector level ABI spectral response function: FM4 analysis and comparison for different ABI modules

    Science.gov (United States)

    Efremova, Boryana; Pearlman, Aaron J.; Padula, Frank; Wu, Xiangqian

    2016-09-01

    A new generation of imaging instruments Advanced Baseline Imager (ABI) is to be launched aboard the Geostationary Operational Environmental Satellites - R Series (GOES-R). Four ABI flight modules (FM) are planned to be launched on GOES-R,S,T,U, the first one in the fall of 2016. Pre-launch testing is on-going for FM3 and FM4. ABI has 16 spectral channels, six in the visible/near infrared (VNIR 0.47 - 2.25 μm), and ten in the thermal infrared (TIR 3.9 - 13.3 μm) spectral regions, to be calibrated on-orbit by observing respectively a solar diffuser and a blackbody. Each channel has hundreds of detectors arranged in columns. Operationally one Analytic Generation of Spectral Response (ANGEN) function will be used to represent the spectral response function (SRF) of all detectors in a band. The Vendor conducted prelaunch end-to-end SRF testing to compare to ANGEN; detector specific SRF data was taken for: i) best detector selected (BDS) mode - for FM 2,3, and 4; and ii) all detectors (column mode) - for four spectral bands in FM3 and FM4. The GOES-R calibration working group (CWG) has independently used the SRF test data for FM2 and FM3 to study the potential impact of detector-to-detector SRF differences on the ABI detected Earth view radiances. In this paper we expand the CWG analysis to include the FM4 SRF test data - the results are in agreement with the Vendor analysis, and show excellent instrument performance and compare the detector-to-detector SRF differences and their potential impact on the detected Earth view radiances for all of the tested ABI modules.

  15. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.

    Science.gov (United States)

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-05-07

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  16. Parallel phase modulation scheme for interferometric gravitational-wave detectors.

    Science.gov (United States)

    Hartman, M T; Quetschke, V; Tanner, D B; Reitze, D H; Mueller, G

    2014-11-17

    Advanced LIGO (aLIGO) requires multiple frequency sidebands to disentangle all of the main interferometer's length signals. This paper presents the results of a risk reduction experiment to produce two sets of frequency sidebands in parallel, avoiding mixed 'sidebands on sidebands'. Two phase modulation frequencies are applied to separate Electro-Optic Modulators (EOMs), with one EOM in each of the two arms of a Mach-Zehnder interferometer. In this system the Mach-Zehnder's arm lengths are stabilized to reduce relative intensity noise in the recombined carrier beam by feeding a corrective control signal back to the Rubidium Titanyl Phosphate (RTP) EOM crystals to drive the optical path length difference to zero. This setup's use of the RTP crystals as length actuators provides enough bandwidth in the feedback to meet arm length stability requirements for aLIGO.

  17. Module Production and Qualification for the Phase I Upgrade of the CMS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2086689

    2015-01-01

    After consolidation of the LHC in 2013/14 its centre-of-mass energy will increase to 13TeV and the luminosity will reach $2 \\cdot 10^{34}\\, \\textnormal{cm}^{-2} \\textnormal{s}^{-1}$, which is twice the design luminosity. The latter will result in more simultaneous particle collisions, which would significantly increase the dead time of the current readout chip of the CMS pixel detector. Therefore the entire CMS pixel detector is replaced in 2016/17 and a new digital readout with larger buffers will be used to handle increasing pixel hit rates. An additional fourth barrel-layer provides more space points to improve track reconstruction. Half of the required modules for layer four is being produced at Karlsruhe Institute of Technology (KIT). This poster deals with the smallest discrete subunit of the pixel detector, the module and its assembly process. Moreover first production experience will be shown.

  18. Comparison of approaches and artefacts in the measurement of detector modulation transfer functions

    DEFF Research Database (Denmark)

    Boothroyd, Chris; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2013-01-01

    In order to investigate the reproducibility of measurements of transmission electron microscope detector modulation transfer functions (MTFs) we measure the MTF of a charge-coupled device (CCD) camera using five different methods. MTFs derived from a sharp edge, a circular aperture and electron h...

  19. LHCb: Detector Module Design, Construction and Performance for the LHCb SciFi Tracker

    CERN Multimedia

    Ekelhof, R

    2014-01-01

    The Scintillating Fibre (SciFi) Tracker for the LHCb Upgrade (CERN/LHCC 2014-001; LHCb TDR 15) is based on 2.5 m long multi-layered ribbons from 10,000 km of scintillating fibre over 12 planes covering 350 m2. The planes are separated into modular detectors, each with cooled silicon photomultiplier (SiPM) arrays for photo-readout. In this talk, we will present the construction and performance of this novel detector, including the intricacies of scintillating fibre ribbon production, constructing precision detector planes with a rigid and light module design, and the integration of the readout components for this detector. The complexities and issues regarding this active part of the SciFi Tracker will be emphasised along with the current solutions and measured performances.

  20. Automated assembly in the construction of silicon microstrip detector modules

    CERN Document Server

    Eckert, S; Meinhardt, J; Runge, K; Benes, J

    2002-01-01

    The paper concerns silicon microstrip trackers for future experiments at the Large Hadron Collider (LHC). It describes a system for the automated assembly of the trackers. The aim is uniform quality and a mechanical precision of better than 5 mu m. It has been implemented based on an industrial gantry robot. The gantry is equipped with a complex vacuum system which dispenses glue, and places the mechanical parts and the ASICS and the four silicon sensors with the required precision. The modules are double sided and 18 cm * 6 cm in dimension. (5 refs).

  1. Integrated optical and nuclear simulation of a monolithic LYSO:Ce based PET detector module

    Science.gov (United States)

    Játékos, B.; Patay, G.; Lőrincz, E.; Erdei, G.

    2017-05-01

    In the recent years new digital photon counter devices (also known as silicon photomultipliers, SiPMs) were designed and manufactured to be used specifically in positron emission tomography (PET) scanners. Finely pixelated SiPM arrays have opened new opportunities in PET detector development, such as the utilization of monolithic scintillator crystals. We worked out a simulation tool (SCOPE2) to assist the optimization and characterization of such PET detector modules. In the present paper we report the first application of SCOPE2 on the performance evaluation of a prototype PET detector module. The PET detector is based on monolithic LYSO:Ce scintillator crystal and a fully digital, silicon photon-counter, SPADnet-I. A new interface has been developed for SCOPE2 to access GATE simulation results. A combination of GATE and SCOPE2 was used to simulate excitation of the prototype PET detector with an electronically collimated γ -beam. Measurement results from the collimated γ-beam experiment were compared with the combined simulation. A good agreement was observed in the tendencies of total count spectrum and point of interaction distribution. We used the performance evaluation to understand and explain the measurement results in detail.

  2. Performance of the modules for layer 1 of the CMS phase 1 pixel detector upgrade

    CERN Document Server

    Meinhard, Maren Tabea; Berger, Pirmin; Starodumov, Andrey

    2017-01-01

    The instantaneous luminosity of the Large Hadron Collider will increase to up to 2x10$^{34}$\\;cm$^{-2}$s$^{-1}$ by 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced in January 2017. The upgraded detector features four sensitive layers in the barrel part. A designated readout chip (PROC600V2) is used for layer 1, which is closest to the interaction point and therefore has to handle larger particle fluxes. An irradiation campaign has been performed with PROC600V2 to verify its radiation tolerance up to the maximum expected dose for 2017 of 0.2\\;MGy. Modules for layer 1 have been built with PROC600V2 for the detector production. The quality of every inserted module was assessed in a number of tests, some of which were performed using X-radiation. The characteristics of the modules used in the detector as well as the main failure modes will be presented.

  3. Signal-to-Noise Measurements on Irradiated CMS Tracker Detector Modules in an Electron Testbeam

    CERN Document Server

    Bleyl, Mark; Steinbruck, G; Stoye, M; Dragicevica, M; Hrubec, Josef; Krammer, M; Frey, M; Hartmann, F; Weiler, T; Hegner, B

    2006-01-01

    The CMS experiment at the Large Hadron Collider at CERN is in the last phase of its construction. The harsh radiation environment at LHC will put strong demands in radiation hardness to the innermost parts of the detector. To assess the performance of irradiated microstrip detector modules, a testbeam was conducted at the Testbeam 22 facility of the DESY research center. The primary objective was the signal-to-noise measurement of irradiated CMS Tracker modules to ensure their functionality up to 10 years of LHC operation. The paper briefly summarises the basic setup at the facility and the hardware and software used to collect and analyse the data. Some interesting subsidiary results are shown, which confirm the expected behaviour of the detector with respect to the signal-to-noise performance over the active detector area and for different electron energies. The main focus of the paper are the results of the signal-to-noise measurements for CMS Tracker Modules which were exposed to different radiation doses...

  4. Module production for the Phase 1 upgrade of the CMS forward pixel detector

    Science.gov (United States)

    Siado Castaneda, Joaquin

    2017-01-01

    For Run 2 the Large Hadron Collider will run at a much higher instantaneous luminosity, which requires an upgrade of the CMS pixel detector. The detector consists of rectangular silicon sensors, segmented into 100 μm by 150 μm pixels, bonded to readout chips, with one sensor and a 8x2 array of readout chips forming a module. Due to its high granularity and good spatial resolution, about 10 μm for a single hit, the pixel detector is used for track reconstruction, pileup mitigation, and b-quark tagging in many physics analyses. Being the innermost sub-detector of CMS it receives the most radiation damage, and therefore needs to be replaced most often. For the phase 1 upgrade an additional disk in the forward region and increased buffer space in the readout chip will improve the pixel performance by increasing efficiency and reducing fake rates. The University of Nebraska-Lincoln is one of the two sites where modules are being assembled. This talk features the steps of the assembly process as well as challenges encountered and overcome during production of over 500 modules. The CMS Collaboration.

  5. Assembly procedure of the module (half-stave) of the ALICE Silicon Pixel Detector

    CERN Document Server

    Caselle, M; Antinori, F; Burns, M; Campbell, M; Chochula, P; Dinapoli, R; Elia, D; Formenti, F; Fini, R A; Ghidini, B; Kluge, A; Lenti, V; Manzari, V; Meddi, F; Morel, M; Navach, F; Nilsson, P; Pepato, Adriano; Riedler, P; Santoro, R; Stefanini, G; Viesti, G; Wyllie, K

    2004-01-01

    The Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). The detector includes 1200 readout ASICs, each containing 8192 pixel cells, bump-bonded to Si sensor elements. The thickness of the readout chip and the sensor element is 150mum and 200mum, respectively. Low-mass solutions are implemented for the bus and the mechanical support. In this contribution, we describe the basic module (half-stave) of the two SPD layers and we give an overview of its assembly procedure.

  6. Development of high data readout rate pixel module and detector hybridization at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Sergio Zimmermann et al.

    2001-03-20

    This paper describes the baseline design and a variation of the pixel module to handle the data rate required for the BTeV experiment at Fermilab. The present prototype has shown good electrical performance characteristics. Indium bump bonding is proven to be capable of successful fabrication at 50 micron pitch on real detectors. For solder bumps at 50 micron pitch, much better results have been obtained with the fluxless PADS processed detectors. The results are adequate for our needs and our tests have validated it as a viable technology.

  7. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  8. ENC Measurement for ASIC Preamp Board as a Detector Module for PET System

    Directory of Open Access Journals (Sweden)

    N. Nagara

    2016-08-01

    Full Text Available We developed a gamma ray detector with an LuAG:Pr scintillator and an avalanche photodiode as a detector for a positron emission tomography (PET system. Studies have been performed on the influences of gamma irradiation on application-specific integrated circuit (ASIC preamp boards used as a detector module. As a device used in nuclear environments for substantial durations, the ASIC has to have a lifetime long enough to ensure that there will be a negligible failure rate during this period. These front-end systems must meet the requirements for standard positron emission tomography (PET systems. Therefore, an equivalent noise charge (ENC experiment is needed to measure the front-end system's characteristics. This study showed that minimum ENC conditions can be achieved if a shorter shaping time could be applied.

  9. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, M.N. [Oak Ridge National Lab., TN (United States); Allen, M.D. [Univ. of Tennessee, Knoxville, TN (United States); Boissevain, J. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented.

  10. Neutron monitors and muon detectors for solar modulation studies: 2. $\\phi$ time series

    CERN Document Server

    Ghelfi, A; Cheminet, A; Derome, L; Hubert, G; Melot, F

    2016-01-01

    The level of solar modulation at different times (related to the solar activity) is a central question of solar and galactic cosmic-ray physics. In the first paper of this series, we have established a correspondence between the uncertainties on ground-based detectors count rates and the parameter $\\phi$ (modulation level in the force-field approximation) reconstructed from these count rates. In this second paper, we detail a procedure to obtain a reference $\\phi$ time series from neutron monitor data. We show that we can have an unbiased and accurate $\\phi$ reconstruction ($\\Delta\\phi/\\phi\\simeq 10\\%$). We also discuss the potential of Bonner spheres spectrometers and muon detectors to provide $\\phi$ time series. Two by-products of this calculation are updated $\\phi$ values for the cosmic-ray database and a web interface to retrieve and plot $\\phi$ from the 50's to today (\\url{http://lpsc.in2p3.fr/crdb}).

  11. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, M.N. [Oak Ridge National Lab., TN (United States); Allen, M.D. [Univ. of Tennessee, Knoxville, TN (United States); Boissevain, J. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented.

  12. Neutron monitors and muon detectors for solar modulation studies: 2. ϕ time series

    Science.gov (United States)

    Ghelfi, A.; Maurin, D.; Cheminet, A.; Derome, L.; Hubert, G.; Melot, F.

    2017-08-01

    The level of solar modulation at different times (related to the solar activity) is a central question of solar and galactic cosmic-ray physics. In the first paper of this series, we have established a correspondence between the uncertainties on ground-based detectors count rates and the parameter ϕ (modulation level in the force-field approximation) reconstructed from these count rates. In this second paper, we detail a procedure to obtain a reference ϕ time series from neutron monitor data. We show that we can have an unbiased and accurate ϕ reconstruction (Δϕ / ϕ ≃ 10 %). We also discuss the potential of Bonner spheres spectrometers and muon detectors to provide ϕ time series. Two by-products of this calculation are updated ϕ values for the cosmic-ray database and a web interface to retrieve and plot ϕ from the 50's to today (http://lpsc.in2p3.fr/crdb).

  13. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

    CERN Document Server

    Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J

    2014-01-01

    A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.

  14. Development of the MCM-D technique for pixel detector modules

    CERN Document Server

    Grah, Christian

    2005-01-01

    This thesis treats a copper--polymer based thin film technology, the MCM-D technique and its application when building hybrid pixel detector modules. The ATLAS experiment at the LHC will be equipped with a pixel detector system. The basic mechanical units of the pixel detector are multi chip modules. The main components of these modules are: 16 electronic chips, a controller chip and a large sensor tile, featuring more than 46000 sensor cells. MCM-D is a superior technique to build the necessary signal bus system and the power distribution system directly on the active sensor tile. In collaboration with the Fraunhofer Institute for Reliability and Microintegration, IZM, the thin film process is reviewed and enhanced. The multi layer system was designed and optimized for the interconnection system as well as for the 46000 pixel contacts. Laboratory measurements on prototypes prove that complex routing schemes for geometrically optimized single chips are suitable and have negligible influence on the front--end ...

  15. A dual-ended readout PET detector module based on GAPDs with large-area microcells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Lim, Hyun Keong [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-07-15

    The use of a dual-ended readout PET detector module based on Geiger-mode avalanche photodiodes (GAPDs) with large-area microcells was proposed to obtain high photon detection efficiency (PDE) and overcome energy non-linearity problems. A simulation study was performed and experimental measurement were taken for the single- and dual-ended PET detector modules consisting of the two types of GAPDs with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcells. A Monte Carlo simulation was conducted to predict the number of incident photons impinging on the GAPD entrance surface to estimate the light collection efficiency (LCE) and energy linearity performance. A depth of interaction (DOI) ratio histogram was also obtained. An experimental study was performed to acquire the spectra of different energy {gamma}-rays, and the energy linearity was evaluated by analyzing the photo-peak channels. The simulation results showed that the LCE and energy linearity of the dual-ended PET detector modules were considerably improved compared to the single-ended one, with 100 x 100 {mu}m{sup 2} microcell GAPDs. We also estimated that the proposed method can provide accurate (3-4 mm) and uniform DOI resolution. In the experimental measurement, the 511 keV photo-peak channels of the dual-ended PET detector modules were increased 26% and 71% compared to the single-ended one, with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcell GAPDs, respectively. The coefficients of determination (R{sup 2}) were increased from 0.97 to 0.99 and from 0.86 to 0.93 with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcell GAPDs, respectively. The results of this study demonstrate that the dual-ended readout scheme using GAPDs with large-area microcells provides high LCE and DOI information with minimized energy non-linearity. This will enable investigators to configure PET detector modules with high sensitivity and resolution.

  16. Investigation of a clinical PET detector module design that employs large-area avalanche photodetectors.

    Science.gov (United States)

    Peng, Hao; Olcott, Peter D; Spanoudaki, Virginia; Levin, Craig S

    2011-06-21

    We investigated the feasibility of designing an Anger-logic PET detector module using large-area high-gain avalanche photodiodes (APDs) for a brain-dedicated PET/MRI system. Using Monte Carlo simulations, we systematically optimized the detector design with regard to the scintillation crystal, optical diffuser, surface treatment, layout of large-area APDs, and signal-to-noise ratio (SNR, defined as the 511 keV photopeak position divided by the standard deviation of noise floor in an energy spectrum) of the APD devices. A detector prototype was built comprising an 8 × 8 array of 2.75 × 3.00 × 20.0 mm3 LYSO (lutetium-yttrium-oxyorthosilicate) crystals and a 22.0 × 24.0 × 9.0 mm3 optical diffuser. From the four designs of the optical diffuser tested, two designs employing a slotted diffuser are able to resolve all 64 crystals within the block with good uniformity and peak-to-valley ratio. Good agreement was found between the simulation and experimental results. For the detector employing a slotted optical diffuser, the energy resolution of the global energy spectrum after normalization is 13.4 ± 0.4%. The energy resolution of individual crystals varies between 11.3 ± 0.3% and 17.3 ± 0.4%. The time resolution varies between 4.85 ± 0.04 (center crystal), 5.17 ± 0.06 (edge crystal), and 5.18 ± 0.07 ns (corner crystal). The generalized framework proposed in this work helps to guide the design of detector modules for selected PET system configurations, including scaling the design down to a preclinical PET system, scaling up to a whole-body clinical scanner, as well as replacing APDs with other novel photodetectors that have higher gain or SNR such as silicon photomultipliers.

  17. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    Science.gov (United States)

    Bertsche, David

    2016-11-01

    The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP) 2015 [1].

  18. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    Directory of Open Access Journals (Sweden)

    Bertsche David

    2016-01-01

    Full Text Available The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP 2015 [1].

  19. Testbeam studies of silicon microstrip sensor architectures modified to facilitate detector module mass production

    CERN Document Server

    Poley, Anne-luise; The ATLAS collaboration

    2016-01-01

    For the High Luminosity Upgrade of the LHC, the Inner Detector of the ATLAS detector will be replaced by an all-silicon tracker, consisting of pixel and strip sensor detector modules. Silicon strip sensors are being developed to meet both the tracking requirements in a high particle density environment and constraints imposed by the construction process. Several thousand wire bonds per module, connecting sensor strips and readout channels, need to be produced with high reliability and speed, requiring wire bond pads of sufficient size on each sensor strip. These sensor bond pads change the local sensor architecture and the resulting electric field and thus alter the sensor performance. These sensor regions with bond pads, which account for up to 10 % of a silicon strip sensor, were studied using both an electron beam at DESY and a micro-focused X-ray beam at the Diamond Light Source. This contribution presents measurements of the effective strip width in sensor regions where the structure of standard parallel...

  20. First testbeam results of prototype modules for the upgrade of the ATLAS strip tracking detector

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, totalling 1x1035cm-2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at a integrated luminosity of 3000fb-1, requiring the tracking detectors to withstand hadron equivalences to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixellated silicon detectors. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics is glued on top of a silicon sensor. These so-called modules are glued on carbon structures and will span about 200m2 of active area. A broad R&D program is ongoing to develop and prototype many detector components. The modu...

  1. Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors

    CERN Document Server

    Abrahão, T; Anjos, J E dos; Appel, S; Baussan, E; Bekman, I; Bezerra, T J C; Bezrukov, L; Blucher, E; Brugière, T; Buck, C; Busenitz, J; Cabrera, A; Camilleri, L; Carr, R; Cerrada, M; Chauveau, E; Chimenti, P; Corpace, O; Crespo-Anadón, J I; Dawson, J V; Dhooghe, J; Djurcic, Z; Dracos, M; Etenko, A; Fallot, M; Franco, D; Franke, M; Furuta, H; Gil-Botella, I; Giot, L; Givaudan, A; Gögger-Neff, M; Gómez, H; Gonzalez, L F G; Goodman, M; Hara, T; Haser, J; Hellwig, D; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Kale, K; Kampmann, P; Kaneda, M; Kaplan, D M; Kawasaki, T; Kemp, E; de Kerret, H; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C; Laserre, T; Lastoria, C; Lhuillier, D; Lima, H; Lindner, M; López-Castaño, J M; LoSecco, J M; Lubsandorzhiev, B; Maeda, J; Mariani, C; Maricic, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Nagasaka, Y; Navas-Nicolás, D; Novella, P; Oberauer, L; Obolensky, M; Onillon, A; Oralbaev, A; Palomares, C; Pepe, I; Pronost, G; Reinhold, B; Rybolt, B; Sakamoto, Y; Santorelli, R; Schönert, S; Schoppmann, S; Sharankova, R; Sibille, V; Sinev, V; Skorokhvatov, M; Soiron, M; Soldin, P; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, B; Tonazzo, A; Veyssiere, C; Vivier, M; Wagner, S; Wiebusch, C; Wurm, M; Yang, G; Yermia, F; Zimmer, V

    2016-01-01

    A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at $\\sim$120 and $\\sim$300 m.w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed to measure the muon flux reaching both detectors to be (3.64 $\\pm$ 0.04) $\\times$ 10$^{-4}$ cm$^{-2}$s$^{-1}$ for the near detector and (7.00 $\\pm$ 0.05) $\\times$ 10$^{-5}$ cm$^{-2}$s$^{-1}$ for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of $\\alpha_{T}$ = 0.212 $\\pm$ 0.024 and 0.355 $\\pm$ 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations.

  2. Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment

    Science.gov (United States)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Bumble, B.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Hailey-Dunsheath, S.; Gong, Y.; Kenyon, M.; Koch, P.; Li, C.-T.; O'Brient, R.; Shirokoff, E.; Shiu, C.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.

    2016-08-01

    We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 \\upmu m emission line of singly ionized carbon ([CII]) from redshift z ˜ 5 to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of R ˜ 100. The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of {˜ }10^{-17} mathrm {W}/mathrm {Hz}^{1/2}. This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.

  3. Gamma-spectrometric module based on HPGe detector for radiation portal monitors

    Directory of Open Access Journals (Sweden)

    Kondratjev Vladimir

    2015-01-01

    Full Text Available The appearance of small-sized and powerful enough electric cryocoolers of various types on the market, has opened the perspective of HPGe detectors application, cooled by such coolers, in radiation portal monitors. The first results of a spectrometric module based on HPGe detector with relative efficiency of 45% cooled by a Stirling-cycle cryocooler, are presented. The spectrometer has provided energy resolutions of less than 0.95 keV and 1.95 keV at energies of 122 keV and 1332 keV, respectively. The deterioration of the energy resolution of HPGe detector cooled by electric cryocooler in comparison to the resolution with liquid nitrogen cooling was about 8% at the energy of 1332 keV. With the use of activated filters to suppress pulses produced by the mechanical vibrations, the energy resolution of the spectrometer was 0.8 keV and 1.8 keV, respectively, however, the detector relative efficiency at the energy of 1332 keV has dropped to 39 %.

  4. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Science.gov (United States)

    Kang, K. H.; Jeon, H. B.; Park, H.; Uozumi, S.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Joo, C. W.; Kandra, J.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaia, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor "Origami" method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force.

  5. Test of electrical multi-chip module for Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with few material. They will be used at Belle II and are a candidate for an ILC vertex detector. The Electrical Multi-Chip Module (EMCM) has been designed to study the back end of line (BEOL) and the metal layer interconnectivity of the DEPFET matrix production for Belle II. The electrical characterization of the EMCM allows studying the signal and control line routings. Having verified the integrity of the electrical network three different types of ASICs are flip-chipped on the EMCM. The electrical characterization of the assembled module allows the analysis and optimization of the ASICs in terms of data integrity. The EMCM serves also as a mechanical test structure to exercise flip-chip and wire bonding. Finally a small DEPFET prototype matrix is mounted on the module which acts as silicon PCB. Consequently, the full study of the complete readout chain can be done. An overview of the EMCM concept and first characterization results with the latest ASIC generation are presented.

  6. Characterization of Ni/SnPb-TiW/Pt Flip Chip Interconnections in Silicon Pixel Detector Modules

    CERN Document Server

    Karadzhinova, Aneliya; Härkönen, Jaakko; Luukka, Panja-riina; Mäenpää, Teppo; Tuominen, Eija; Haeggstrom, Edward; Kalliopuska, Juha; Vahanen, Sami; Kassamakov, Ivan

    2014-01-01

    In contemporary high energy physics experiments, silicon detectors are essential for recording the trajectory of new particles generated by multiple simultaneous collisions. Modern particle tracking systems may feature 100 million channels, or pixels, which need to be individually connected to read-out chains. Silicon pixel detectors are typically connected to readout chips by flip-chip bonding using solder bumps. High-quality electro-mechanical flip-chip interconnects minimizes the number of dead read-out channels in the particle tracking system. Furthermore, the detector modules must endure handling during installation and withstand heat generation and cooling during operation. Silicon pixel detector modules were constructed by flip-chip bonding 16 readout chips to a single sensor. Eutectic SnPb solder bumps were deposited on the readout chips and the sensor chips were coated with TiW/Pt thin film UBM (under bump metallization). The modules were assembled at Advacam Ltd, Finland. We studied the uniformity o...

  7. A sub-millimeter resolution detector module for small-animal PET applications

    Science.gov (United States)

    Sacco, I.; Dohle, R.; Fischer, P.; Gola, A.; Piemonte, C.; Ritzert, M.

    2017-01-01

    We present a gamma detection module optimized for very high resolution PET applications, able to resolve arrays of scintillating crystals with sub-millimeter pitch. The detector is composed of a single ceramic substrate (LTCC): it hosts four flip-chip mounted PETA5 ASICs on the bottom side and an array of SiPM sensors on the top surface, fabricated in HD-RGB technology by FBK. Each chip has 36 channels, for a maximum of 144 readout channels on a sensitive area of about 32 mm × 32 mm. The module is MR-compatible. The thermal decoupling of the readout electronics from the photon sensors is obtained with an efficient internal liquid channel, integrated within the ceramic substrate. Two modules have been designed, based on different SiPM topologies: • Light spreader-based: an array of 12 × 12 SiPMs, with an overall pitch of 2.5 mm, is coupled with a scintillators array using a 1 mm thick glass plate. The light from one crystal is spread over a group of SiPMs, which are read out in parallel using PETA5 internal neighbor logic. • Interpolating SiPM-based: ISiPMs are intrinsic position-sensitive sensors. The photon diodes in the array are connected to one of the four available outputs so that the center of gravity of any bunch of detected photons can be reconstructed using a proper weight function of the read out amplitudes. An array of ISiPMs, each 7.5 mm× 5 mm sized, is directly coupled with the scintillating crystals. Both modules can clearly resolve LYSO arrays with a pitch of only 0.833 mm. The detector can be adjusted for clinical PET, where it has already shown ToF resolution of about 230 ps CRT at FWHM. The module designs, their features and results are described.

  8. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  9. Alignment of the Near Detector scintillator modules using cosmic ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Ospanov, Rustem; Lang, Karol; /Texas U.

    2008-05-01

    The authors describe the procedures and the results of the first alignment of the Near Detector. Using 15.5 million cosmic ray muon tracks, collected from October, 2004 through early january, 2005, they derive the effective transverse positions of the calorimeter scintillator modules. The residuals from straight line fits indicate that the current alignment has achieved better than 1 mm precision. They estimate the size of the remaining misalignment and using tracks recorded with a magnetic field test the effect of the magnetic field on the alignment.

  10. First test beam results of prototype modules for the upgrade of the ATLAS strip tracking detector

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2016-01-01

    The LHC is foreseen to be upgraded to the High-Luminosity LHC (HL-LHC). This will result in higher particle rates and radiation doses. The ATLAS experiment plans to replace its inner tracking detector by a new all-silicon tracker which is based on the concept of modularity. For the new silicon strip tracker a large prototyping and evaluation campaign is ongoing. Many modules of different types were built and tested both in the laboratories and in test beams. In the following first results obtained in test beams are presented. Both mini and full-size modules for the central and forward regions were tested before and after irradiation to fluences as expected at the HL-LHC.

  11. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  12. Diagnostic analysis of silicon strips detector readout in the ATLAS Semi-Conductor Tracker module production

    CERN Document Server

    Ciocio, Alessandra

    2005-01-01

    The ATLAS Semi-Conductor Tracker (SCT) Collaboration is currently in the production phase of fabricating and testing silicon strips modules for the ATLAS detector at the Large Hadron Collider being built at the CERN laboratory in Geneva, Switzerland. A small but relevant percentage of ICs developed a new set of defects after being mounted on hybrids that were not detected in the wafer screening. To minimize IC replacement and outright module failure, analysis methods were developed to study IC problems during the production of SCT modules. These analyses included studying wafer and hybrid data correlations to finely tune the selection of ICs and tests to utilize the ability to adjust front-end parameters of the IC in order to reduce the rejection and replacement rate of fabricated components. This paper will discuss a few examples of the problems encountered during the production of SCT hybrids and modules in the area of ICs performance, and will demonstrate the value of the flexibility built into the ABCD3T ...

  13. Test of the Hamamatsu MPPC module S11834 as a RICH photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Korpar, S. [Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor (Slovenia); J. Stefan Institute, Ljubljana (Slovenia); Tahirović, E. [J. Stefan Institute, Ljubljana (Slovenia); Križan, P., E-mail: peter.krizan@ijs.si [J. Stefan Institute, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Pestotnik, R. [J. Stefan Institute, Ljubljana (Slovenia)

    2014-12-01

    In our previous studies, we have shown that silicon photo-multipliers can be used as single photon detectors in a RICH counter (Korpar et al., 2009, 2010 [1,2]). Their main advantage with respect to the classical photo-multiplier tubes is the operation in high magnetic fields, while their disadvantage is a relatively high dark count rate. Recently, Hamamatsu made commercially available sensors with a rather low dark count rate (≈0.1 MHz/mm{sup 2}) and with a larger active area, offering a possibility for a much better signal-to-noise ratio. We have designed, constructed and tested a module with Hamamatsu 8×8 channel S11834 MPPCs. To increase the geometric acceptance, light concentrators have been employed. In the present contribution we discuss the results of studies of the light concentrator design optimization and of the detector module response to fast light pulses. Also presented are the results of RICH prototype tests in a test beam. - Highlights: • Single Cherenkov photons were detected with a novel 8×8 channel array of SiPMs, Hamamatsu S11834 MPPCs. • To increase the signal-to-noise ratio, pyramidal light concentrators were designed and successfully employed. • The sensor was successfully tested in an electron test beam at DESY.

  14. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    Science.gov (United States)

    Niknejad, Tahereh; Pizzichemi, Marco; Stringhini, Gianluca; Auffray, Etiennette; Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino; Ferramacho, Luis; Lecoq, Paul; Leong, Carlos; Paganoni, Marco; Rolo, Manuel; Silva, Rui; Silveira, Miguel; Tavernier, Stefaan; Varela, Joao; Zorraquino, Carlos

    2017-02-01

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm3 matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM.

  15. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.H.; Jeon, H.B. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, H., E-mail: sunshine@knu.ac.kr [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Uozumi, S. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); and others

    2016-09-21

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  16. Optimisation of the design for the LOFT Large Area Detector Module

    CERN Document Server

    Walton, D; Zane, S; Kennedy, T; Coker, A J; Feroci, M; Herder, J -W Den; Argan, A; Azzarello, P; Barret, D; Bradley, L; Cadoux, F; Cros, A; Evangelista, Y; Favre, Y; Fraser, G; Hailey, M R; Hunt, T; Martindale, A; Muleri, F; Pacciani, L; Pohl, M; Smith, P; Santangelo, A; Suchy, S; Tenzer, C; Zampa, G; Zampa, N

    2014-01-01

    LOFT (Large Observatory for X-ray Timing) is an X-ray timing observatory that, with four other candidates, was considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30 keV range, which is designed to perform X-ray timing of compact objects with unprecedented resolution down to millisecond time scales. Although LOFT was not downselected for launch, during the assessment most of the trade-offs have been closed, leading to a robust and well documented design that will be reproposed in future ESA calls. The building block of the LAD instrument is the Module, and in this paper we summarize the rationale for the module concept, the characteristics of the module and the trade-offs/optimisations which have led to the current design.

  17. Construction and Performance of a Double-Sided Silicon Detector Module Using the Origami Concept

    CERN Document Server

    Irmler, C; Pernicka, M

    2009-01-01

    The APV25 front-end chip with short shaping time will be used in the Belle II Silicon Vertex Detector (SVD) in order to achive low occupancy. Since fast amplifiers are more susceptible to noise caused by their capacitive input load, they have to be placed as close to the sensor as possible. On the other hand, material budget inside the active volume has to be kept low in order to constrain multiple scattering. We built a low mass sensor module with double-sided readout, where thinned APV25 chips are placed on a single flexible circuit glued onto one side of the sensor. The interconnection to the other side is done by Kapton fanouts, which are wrapped around the edge of the sensor, hence the name Origami. Since all front-end chips are aligned in a row on the top side of the module, cooling can be done by a single aluminum pipe. The performance of the Origami module was evaluated in a beam test at CERN in August 2009, of which first results are presented here.

  18. Design consideration of a multipinhole collimator with septa for ultra high-resolution silicon drift detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Jun [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Choi, Yong [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)], E-mail: ychoi@skku.edu; Lee, Nam-Yong [School of Computer Aided Science, Institute of Basic Science, Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Kisung [Department of Radiologic Science, Korea University, Seoul 136-703 (Korea, Republic of); Ahn, Young Bok [Department of Electronic Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Joung, Jinhun [Molecular Imaging, Siemens Medical Solutions USA, Inc., Hoffman Estates, IL 60195 (United States)

    2009-07-21

    The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180 deg. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/{mu}Ci and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180 deg. orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.

  19. Design and Fabrication of Detector Module for UFFO Burst Alert & Trigger Telescope

    DEFF Research Database (Denmark)

    Jung, A.; Ahmad, S.; Ahn, K. -B.

    2011-01-01

    The Ultra-Fast Flash Observatory (UFFO) pathfinder is a space mission devoted to the measurement of Gamma-Ray Bursts (GRBs), especially their early light curves which will give crucial information on the progenitor stars and central engines of the GRBs. It consists of two instruments: the UFFO...... Burst Alert & Trigger telescope (UBAT) for the detection of GRB locations and the Slewing Mirror Telescope (SMT) for the UV/optical afterglow observations, upon triggering by UBAT. The UBAT employs a coded-mask {\\gamma}/X-ray camera with a wide field of view (FOV), and is comprised of three parts......: a coded mask, a hopper, and a detector module (DM). The UBAT DM consists of a LYSO scintillator crystal array, multi-anode photo multipliers, and analog and digital readout electronics. We present here the design and fabrication of the UBAT DM, as well as its preliminary test results....

  20. Design and Fabrication of Detector Module for UFFO Burst Alert & Trigger Telescope

    CERN Document Server

    Jung, A; Ahn, K -B; Barrillon, P; Blin-Bondil, S; Brandt, S; Budtz-JØRgensen, C; Ca-Stro-Tirado, A J; Chen, P; Choi, H S; Choi, Y J; Connell, P; Dagoret-Campagne, S; De La Taille, C; Eyles, C; Grossan, B; Hermann, I; Huang, M -H A; Jeong, S; Kim, J E; Kim, S -W; Kim, Y W; Lee, J; Lim, H; Linder, E V; Liu, T -C; Lund, N; Min, K W; Na, G W; Nam, J W; Nam, K H; Panayuk, M I; Park, I H; Reglero, V; Rodrigo, J M; Smoot, G F; Suh, Y D; Svelitov, S; Vedenken, N; Wang, M -Z; Yashin, I; Zhao, M H

    2011-01-01

    The Ultra-Fast Flash Observatory (UFFO) pathfinder is a space mission devoted to the measurement of Gamma-Ray Bursts (GRBs), especially their early light curves which will give crucial information on the progenitor stars and central engines of the GRBs. It consists of two instruments: the UFFO Burst Alert & Trigger telescope (UBAT) for the detection of GRB locations and the Slewing Mirror Telescope (SMT) for the UV/optical afterglow observations, upon triggering by UBAT. The UBAT employs a coded-mask {\\gamma}/X-ray camera with a wide field of view (FOV), and is comprised of three parts: a coded mask, a hopper, and a detector module (DM). The UBAT DM consists of a LYSO scintillator crystal array, multi-anode photo multipliers, and analog and digital readout electronics. We present here the design and fabrication of the UBAT DM, as well as its preliminary test results.

  1. Testbeam Studies with Silicon Strip Module Prototypes for the ATLAS-Detector towards the HL-LHC

    CERN Document Server

    Moser, Brian

    2016-01-01

    In this report I give a brief overview about my studies as a summer student at CERN from July to September 2016. I worked on testbeam studies with prototype modules for the High-Luminosity LHC (Phase-II) upgrade of the silicon strip tracker of the ATLAS detector.

  2. In-situ study of light production and transport in phonon/light detector modules for dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, M., E-mail: kiefer@mpp.mpg.de [Max-Planck-Institut für Physik, D-80805 München (Germany); Angloher, G. [Max-Planck-Institut für Physik, D-80805 München (Germany); Bento, A. [CIUC, Departamento de Fisica, Universidade de Coimbra, P3004 516 Coimbra (Portugal); Bucci, C.; Canonica, L. [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi (Italy); Erb, A. [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Walther-Meißner-Institut für Tieftemperaturforschung, D-85748 Garching (Germany); Feilitzsch, F. von [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Ferreiro Iachellini, N. [Max-Planck-Institut für Physik, D-80805 München (Germany); Gorla, P. [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi (Italy); Gütlein, A. [Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, A-1050 Wien (Austria); Atominstitut, Vienna University of Technology, A-1020 Wien (Austria); Hauff, D. [Max-Planck-Institut für Physik, D-80805 München (Germany); Jochum, J. [Physikalisches Institut, Eberhard-Karls-Universität Tübingen, D-72076 Tübingen (Germany); and others

    2016-06-11

    The CRESST experiment (Cryogenic Rare Event Search with Superconducting Thermometers) searches for dark matter via the phonon and light signals of elastic scattering processes in scintillating crystals. The discrimination between a possible dark matter signal and background is based on the light yield. We present a new method for evaluating the two characteristics of a phonon/light detector module that determine how much of the deposited energy is converted to scintillation light and how efficiently a module detects the produced light. In contrast to former approaches with dedicated setups, we developed a method which allows us to use data taken with the cryogenic setup, during a dark matter search phase. In this way, we accounted for the entire process that occurs in a detector module, and obtained information on the light emission of the crystal as well as information on the performance of the module (light transport and detection). We found that with the detectors operated in CRESST-II phase 1, about 20% of the produced scintillation light is detected. A part of the light is likely absorbed by creating meta-stable excitations in the scintillating crystals. The light not detected is not absorbed entirely, as an additional light detector can help to increase the fraction of detected light.

  3. Comparison of approaches and artefacts in the measurement of detector modulation transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Boothroyd, C.B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kasama, T. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Dunin-Borkowski, R.E. [Ernst Ruska-Centre and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2013-06-15

    In order to investigate the reproducibility of measurements of transmission electron microscope detector modulation transfer functions (MTFs) we measure the MTF of a charge-coupled device (CCD) camera using five different methods. MTFs derived from a sharp edge, a circular aperture and electron holographic interference fringes are found to agree closely with one other. The difficulty of obtaining accurate measurements of MTFs and the potential of using focused electron probes to make direct measurements of MTFs is discussed. We highlight the sensitivity of image contrast after deconvolution to small differences in the measured MTF. - Highlights: ► The modulation transfer function (MTF) of a CCD camera is measured using five different methods. ► Only methods that involve the use of a sharp aperture or holographic interference fringes work well. ► The use of a focused spot promises to be the best method in the future if it can be focused small enough. ► Apparently small errors in the measurement of the MTF can have a large effect on deconvoluted images. ► MTFs must be measured accurately if images are to be compared quantitatively with simulations.

  4. Graphical user interface for a dual-module EMCCD x-ray detector array

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  5. Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out.

    Science.gov (United States)

    Dokhale, P A; Silverman, R W; Shah, K S; Grazioso, R; Farrell, R; Glodo, J; McClish, M A; Entine, G; Tran, V H; Cherry, S R

    2004-09-21

    We are developing a high-resolution, high-efficiency positron emission tomography (PET) detector module with depth of interaction (DOI) capability based on a lutetium oxyorthosilicate (LSO) scintillator array coupled at both ends to position-sensitive avalanche photodiodes (PSAPDs). In this paper we present the DOI resolution, energy resolution and timing resolution results for complete detector modules. The detector module consists of a 7 x 7 matrix of LSO scintillator crystals (1 x 1 x 20 mm3 in dimension) coupled to 8 x 8 mm2 PSAPDs at both ends. Flood histograms were acquired and used to generate crystal look-up tables. The DOI resolution was measured for individual crystals within the array by using the ratio of the signal amplitudes from the two PSAPDs on an event-by-event basis. A measure of the total scintillation light produced was obtained by summing the signal amplitudes from the two PSAPDs. This summed signal was used to measure the energy resolution. The DOI resolution was measured to be 3-4 mm FWHM irrespective of the position of the crystal within the array, or the interaction location along the length of the crystal. The total light signal and energy resolution was almost independent of the depth of interaction. The measured energy resolution averaged 14% FWHM. The coincidence timing resolution measured using a pair of identical detector modules was 4.5 ns FWHM. These results are consistent with the design goals and the performance required of a compact, high-resolution and high-efficiency PET detector module for small animal and breast imaging applications.

  6. Response of detector modules of the neutron hodoscope SENECA to neutrons with energies 7-70 MeV

    Science.gov (United States)

    v. Edel, G.; Selke, O.; Pöch, C.; Smend, F.; Schumacher, M.; Nolte, R.; Schrewe, U.; Brede, H. J.; Schuhmacher, H.; Henneck, R.

    1993-07-01

    SENECA is a hodoscope for recoil neutrons from photoreactions on nuclei and nucleons in the photon energy range 50-900 MeV. It consists of 32 hexagonal scintillation detector modules in a honeycomb array. Differential detection efficiency spectra of a single module as well as the cross-talk between neighbouring modules were measured at neutron energies between 7 and 70 MeV. Neutron detection efficiencies were determined in the same energy range with an average experimental uncertainty of 7.6%. The experimental results agree with predictions from Monte Carlo codes within the limits of the experimental error.

  7. Status and performance of the wavelength-shifting optical module for in-ice neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Dustin [HU-Berlin (Germany); DESY (Germany)

    2016-07-01

    The Wavelength-shifting Optical Module is a single-photon sensor that employs wavelength-shifting and light-guiding techniques to maximize the collection area while minimizing the dark noise rate. The sensor is tailored towards application in ice-Cherenkov neutrino detectors, such as IceCube-Gen2 or MICA. It is aimed at decreasing the energy threshold as well as increasing the energy resolution and the vetoing capability of the neutrino telescope, when compared to a setup with optical sensors similar to those used in IceCube. The proposed sensor captures photons with wavelengths between 250 nm and 400 nm. These photons are re-emitted with wavelengths above 400 nm by a wavelength shifter coating applied to a 90 mm diameter polymer tube. This tube guides the light towards a small-diameter PMT via total internal reflection. As a core component the wavelength shifting and light guiding inner tubes performance has been investigated with multiple methods that are presented. Furthermore the status of the whole prototype development and its performance are discussed.

  8. Search for An Annual Modulation in Three Years of CoGeNT Dark Matter Detector Data

    CERN Document Server

    Aalseth, C E; Colaresi, J; Collar, J I; Leon, J Diaz; Fast, J E; Fields, N E; Hossbach, T W; Knecht, A; Kos, M S; Marino, M G; Miley, H S; Miller, M L; Orrell, J L; Yocum, K M

    2014-01-01

    Weakly Interacting Massive Particles (WIMPs) are well-established dark matter candidates. WIMP interactions with sensitive detectors are expected to display a characteristic annual modulation in rate. We release a dataset spanning 3.4 years of operation from a low-background germanium detector, designed to search for this signature. A previously reported modulation persists, concentrated in a region of the energy spectrum populated by an exponential excess of unknown origin. Its phase and period agree with phenomenological expectations, but its amplitude is a factor $\\sim$4-7 larger than predicted for a standard WIMP galactic halo. We consider the possibility of a non-Maxwellian local halo velocity distribution as a plausible explanation, able to help reconcile recently reported WIMP search anomalies.

  9. Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector.

    Science.gov (United States)

    Gilles, Hervé; Girard, Sylvain; Hamel, Joseph

    2002-08-15

    An original approach to directly measuring the Goos-Hänchen longitudinal shift between TE and TM polarization states during a total internal reflection is introduced. The technique is based on the modulation of the polarization state of a laser by an electro-optic modulator combined with a precise measurement of the resulting spatial displacement with a position-sensitive detector. This method presents many advantages over other techniques and allows measurements at different wavelengths over a broad range for the incident angle.

  10. Testbeam Results from Pre and Post Irradiated Modules for the Upgrade of the ATLAS Strip Tracking Detector

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x1035cm-2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at a integrated luminosity of 3000fb-1, requiring the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics is glued on top of a silicon sensor. These so-called modules are glued on carbon structures and will span about 200m^2 of active area. A broad R&D program is ongoing to develop and prototype many detector components. The modules ...

  11. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  12. First results of the deployment of a SoLid detector module at the SCK-CEN BR2 reactor

    CERN Document Server

    Ryder, Nick

    2015-01-01

    The SoLid experiment aims to resolve the reactor neutrino anomaly by searching for electron-to-sterile anti-neutrino oscillations. The search will be performed between 5.5 and 10 m from the highly enriched uranium core of the BR2 reactor at SCK-CEN. The experiment utilises a novel approach to anti-neutrino detection based on a highly segmented, composite scintillator detector design. High experimental sensitivity can be achieved using a combination of high neutron-gamma discrimination using 6 LiF:ZnS(Ag) and precise localisation of the inverse beta decay products. This compact detector system requires limited passive shielding as it relies on spacial topology to determine the different classes of backgrounds. The first full scale, 288 kg, detector module was deployed at the BR2 reactor in November 2014. A phased three tonne experimental deployment will begin in the second half of 2016, allowing a precise search for oscillations that will resolve the reactor anomaly using a three tonne detector running for thr...

  13. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the prototype photon counter developed during Phase I, we will deliver a next-generation photon counting detector optimized for LIDAR applications within...

  14. Design of a high-resolution gamma-ray detector module for tomography applications

    Energy Technology Data Exchange (ETDEWEB)

    Bieberle, A. [Forschungszentrum Dresden-Rossendorf e. V., Institute of Safety Research, P.O. BOX 510119, 01314 Dresden (Germany) and AREVA NP GmbH, P.O. Box 3220, 91050 Erlangen (Germany)]. E-mail: A.Bieberle@fzd.de; Kronenberg, J. [AREVA NP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Schleicher, E. [Forschungszentrum Dresden-Rossendorf e. V., Institute of Safety Research, P.O. BOX 510119, 01314 Dresden (Germany); Hampel, U. [Forschungszentrum Dresden-Rossendorf e. V., Institute of Safety Research, P.O. BOX 510119, 01314 Dresden (Germany)

    2007-03-11

    We present a modular gamma-ray detector design for gamma-ray tomography applications. As a key electronic component we use the APD array S8550 of Hamamatsu Corp. with 4x8 single APD elements each of 1.6 mmx1.6 mm size. For this APD array we tested and evaluated different configurations of 2 mm wide lutetium yttrium orthosilicate scintillation crystals. Emphasize was given to high counting efficiency and low dead time in order to secure applicability of the detector to tomography of objects with highly attenuating materials. For electronic processing, we designed a low-cost low-power charge-sensitive preamplifier circuit using commercially available operational amplifier ICs. The modular design of the detectors allows us to build up larger line or arc detectors.

  15. The crystal zero degree detector at BESIII as a realistic high rate environment for evaluating PANDA data acquisition modules

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Marcel

    2015-03-15

    The BESIII experiment located in Beijing, China, is investigating physics in the energy region of the charm-quark via electron positron annihilation reactions. A small detector to be placed in the very forward/backward region around θ=0 at BESIII is foreseen to measure photons from the initial state. This is especially interesting, because it opens the door for various physics measurements over a wide range of energies, even below the experiment's designated energy threshold, which is fixed by the accelerator. This thesis is investigating the capabilities of a crystal zero degree detector (cZDD) consisting of PbWO{sub 4} crystals placed in that region of BESIII. Detailed Geant4-based simulations have been performed, and the energy resolution of the detector has been determined to be σ/μ=0.06+0.025/√(E[GeV]). The determination of the center-of-mass energy √(s){sub isr} after the emission of the photon is of great importance for the study of such events. Preliminary simulations estimated the resolution of the reconstructed √(s){sub isr} using the cZDD information to be significantly better than 10 % for appropriate photon impacts on the detector. Such events can only be investigated, when data from the cZDD and other detectors of BESIII can be correlated. A fast and powerful Data Acquisition (DAQ) capable of performing event correlation in real time is needed. DAQ modules capable of performing real time event correlation are being developed for the PANDA experiment at the future FAIR facility in Darmstadt, Germany. Investigating these modules in a realistic high-rate environment such as provided at BESIII, offers a great opportunity to gain experience in real time event correlation before the start of PANDA. Developments for the cZDD's DAQ using prototype PANDA DAQ modules have been done and successfully tested in experiments with radioactive sources and a beamtest with 210 MeV electrons at the Mainz Microtron.

  16. Pyroelectric detectors with integrated operational amplifier for high modulation frequencies; Pyroelektrische Detektoren mit integriertem Operationsverstaerker fuer hohe Modulationsfrequenzen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, N.; Saenze, H.; Heinze, M. [InfraTec GmbH Dresden (Germany)

    2006-02-01

    In order to use the advantages of the current mode operation a pyroelectric detector family with integrated transimpedance amplifier (TIA) was developed particularly for modulation frequencies up to the kHz range with a simplified external circuitry for new application fields, e.g. absorption spectroscopy using quantum-cascade-laser. The essential advantages of the TIA arise from the small electrical time constant {tau}{sub E} and the short-circuiting of the pyroelectric element. A flat amplitude response up to some kHz was aimed at for a sufficiently high response of 7500 V/W, appr., also at high modulation frequencies. This can be achieved through a electrical time constant of 1 ms or less and a wide bandwidth of the op amp. The article describes in detail how these demands were accomplished and which compromises had to be accepted. (orig.)

  17. Measurements of the modulation transfer function, normalized noise power spectrum and detective quantum efficiency for two flat panel detectors: a fluoroscopic and a cone beam computer tomography flat panel detectors.

    Science.gov (United States)

    Benítez, Ricardo Betancourt; Ning, Ruola; Conover, David; Liu, Shaohua

    2009-01-01

    The physical performance of two Flat Panel Detectors has been evaluated. The first Flat Panel Detector is for Fluoroscopic applications, Varian PaxScan 2520, and the second is for Cone Beam Computer Tomography applications, Varian PaxScan 4030CB. First, the spectrum of the X-ray source was measured. Second, the linearity of the detectors was investigated by using an ionization chamber and the average ADU values of the detectors. Third, the temporal resolution was characterized by evaluating their image lag. Fourth, their spatial resolution was characterized by the pre-sampling Modulation Transfer Function. Fifth, the Normalized Noise Power Spectrum was calculated for various exposures levels. Finally, the Detective Quantum Efficiency was obtained as a function of spatial frequency and entrance exposure. The results illustrate that the physical performance in Detective Quantum Efficiency and Normalized Noise Power Spectrum of the Cone Beam Computer Tomography detector is superior to that of the fluoroscopic detector whereas the latter detector has a higher spatial resolution as demonstrated by larger values of its Modulation Transfer Function at large spatial frequencies.

  18. ATLAS ITk Short Strip Prototype Module with Integrated DCDC Powering and Control Phase II Upgrade of the ATLAS Inner Tracker detector at the HL - LHC

    CERN Document Server

    Greenall, Ashley; The ATLAS collaboration

    2017-01-01

    The prototype Barrel module design, for the Phase II upgrade of the of the new Inner Tracker (ITk) detector at the LHC, has adopted an integrated low mass assembly featuring single-sided flexible circuits, with readout ASICs, glued to the silicon strip sensor. Further integration has been achieved by the attachment of module DCDC powering, HV sensor biasing switch and autonomous monitoring and control to the sensor. This low mass, integrated module approach benefits further in a reduced width stave structure to which the modules are attached. The results of preliminary electrical tests of such an integrated module will be presented.

  19. Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics

    Science.gov (United States)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2017-03-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.

  20. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  1. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Bloch, Ingo [DESY, Zeuthen (Germany); Edwards, Sam [Birmingham Univ. (United Kingdom); and others

    2016-04-15

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  2. Detector modules and spectrometers for the TIME-Pilot [CII] intensity mapping experiment

    Science.gov (United States)

    Hunacek, Jonathon; Bock, James; Bradford, C. Matt; Bumble, Bruce; Chang, Tzu-Ching; Cheng, Yun-Ting; Cooray, Asantha; Crites, Abigail; Hailey-Dunsheath, Steven; Gong, Yan; Li, Chao-Te; O'Brient, Roger; Shirokoff, Erik; Shiu, Corwin; Sun, Jason; Staniszewski, Zachary; Uzgil, Bade; Zemcov, Michael

    2016-07-01

    This proceeding presents the current TIME-Pilot instrument design and status with a focus on the close-packed modular detector arrays and spectrometers. Results of laboratory tests with prototype detectors and spectrometers are discussed. TIME-Pilot is a new mm-wavelength grating spectrometer array under development that will study the Epoch of Reionization (the period of time when the first stars and galaxies ionized the intergalactic medium) by mapping the fluctuations of the redshifted 157:7 μm emission line of singly ionized carbon ([CII]) from redshift z 5:2 to 8:5. As a tracer of star formation, the [CII] power spectrum can provide information on the sources driving reionization and complements 21 cm data (which traces neutral hydrogen in the intergalactic medium). Intensity mapping provides a measure of the mean [CII] intensity without the need to resolve and detect faint sources individually. We plan to target a 1 degree by 0.35 arcminute field on the sky and a spectral range of 199-305 GHz, producing a spatial-spectral slab which is 140 Mpc by 0.9 Mpc on-end and 1230 Mpc in the redshift direction. With careful removal of intermediate-redshift CO sources, we anticipate a detection of the halo-halo clustering term in the [CII] power spectrum consistent with current models for star formation history in 240 hours on the JCMT. TIME-Pilot will use two stacks of 16 parallel-plate waveguide spectrometers (one stack per polarization) with a resolving power R 100 and a spectral range of 183 to 326 GHz. The range is divided into 60 spectral channels, of which 16 at the band edges on each spectrometer serve as atmospheric monitors. The diffraction gratings are curved to produce a compact instrument, each focusing the diffracted light onto an output arc sampled by the 60 bolometers. The bolometers are built in buttable dies of 8 (low freqeuency) or 12 (high frequency) spectral channels by 8 spatial channels and are mated to the spectrometer stacks. Each detector

  3. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  4. Experience in fabrication of multichip-modules for the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, T. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany)]. E-mail: thomas.fritzsch@izm.fraunhofer.de; Jordan, R. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Toepper, M. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Roeder, J. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Kuna, I. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Lutz, M. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Defo Kamga, F. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Wolf, J. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Ehrmann, O. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Oppermann, H. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Reichl, H. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany)

    2006-09-01

    About 1100 ATLAS bare modules will be assembled at Fraunhofer IZM. The bumping and assembly technology of these multichip-modules is described in this paper. Pixel contacts and lead-tin interconnection bumps are deposited by electroplating. A high yield manufacturing technology requires electrical test and optical inspection on wafer level as well as on chip level. In this paper, the result of optical inspection of more than 7600 readout chips is presented. Handling mistakes are the main reason for rejection of chips before flip chip assembly. A reliable process technology, the assembly of electrical Known Good Die (KGD), optical inspection after bumping and the development of a single chip repair technology result in 98% of good modules after flip chip assembly. The reliability of the bump interconnections was even checked by thermal cycling and accelerated thermal aging.

  5. Optical properties studies of glass samples for prototyping a TORCH detector module

    CERN Multimedia

    Castillo García, L

    2014-01-01

    TORCH (Time Of internally Reflected CHerenkov light) ) is a proposed particle identification system to achieve positive π/K/p separation at a ≥3σ level in the momentum range below 10 GeV/c. Cherenkov photons are generated from charged particle tracks crossing a 1cm-thick quartz plate. They propagate by total internal reflection to the edge and are focused onto an array of micro-channel plate photon detectors. Their position and arrival time are recorded. This allows the reconstruction of the photon trajectory and the particle crossing time. Results on optical tests are presented.

  6. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  7. Development of a pixelated CdTe detector module for a hard-x and gamma-ray imaging spectrometer application

    Science.gov (United States)

    Galvèz, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-07-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of novae and supernovae in X and gamma-rays, with the use of space missions. We have also been involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae and Classical Novae. In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm with a pixel pitch of 1mm x 1mm. Two kinds of CdTe pixel detectors with different contacts have been tested: ohmic and Schottky. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout VATAGP7.1 ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. The study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the detector design. We will report on the spectroscopy characterisation of the CdTe detector module as well as the study of charge sharing.

  8. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    INSPIRE-00407830; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid M.; Jones, T; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  9. A 12GHz 210fs 6mW digital PLL with sub-sampling binary phase detector and voltage-time modulated DCO

    NARCIS (Netherlands)

    Ru, Z.; Geraedts, P.F.J.; Klumperink, Eric A.M.; He, X.; Nauta, Bram

    2013-01-01

    An integer-N digital PLL architecture is presented that simplifies the critical phase path using a sub-sampling binary (bang-bang) phase detector. Two power-efficient techniques are presented that can reduce DCO frequency tuning step by voltage-domain and time-domain (pulse-width) modulating the DCO

  10. A 12GHz 210fs 6mW digital PLL with sub-sampling binary phase detector and voltage-time modulated DCO

    NARCIS (Netherlands)

    Ru, Z.; Geraedts, P.; Klumperink, E.; He, X.; Nauta, B.

    2013-01-01

    An integer-N digital PLL architecture is presented that simplifies the critical phase path using a sub-sampling binary (bang-bang) phase detector. Two power-efficient techniques are presented that can reduce DCO frequency tuning step by voltage-domain and time-domain (pulse-width) modulating the DCO

  11. Design of the ATLAS New Small Wheel Gas Distribution System for the Micromegas Detector Modules

    CERN Document Server

    Gazis, Evangelos; The ATLAS collaboration

    2016-01-01

    In this work we present and describe the methodology, the particular calculations and simulations accordingly to achieve the appropriate gas flow rates ensuring a uniform gas distribution among the same type of NSW Micromegas modules. The majority of the components used are in large multiplicity so space saving criteria is taking into account and simplicity on the performance with respect to the total cost as well. An appropriate simulation program has been developed for studying the overall gas system determining the gauge pressure, flow rate in the crucial points and branches, respectively. Moreover, an overall prototype configuration, implemented at the NTUA laboratory and based on the Lock-in Amplifier technique to be used in conjunction with the gas leak test via the FRL method is presented. The obtained performances, by means of sensitivity and S/N ratio improvement, are also discussed.

  12. Simulations of gamma quanta scattering in a single module of the J-PET detector

    CERN Document Server

    Szymański, K; Bednarski, T; Białas, P; Czerwiński, E; Giergiel, K; Kapłon, Ł; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemień, W; Molenda, M; Moskal, I; Niedźwiecki, Sz; Pałka, M; Pawlik, M; Raczyński, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; Słomski, A; Smyrski, J; Strzelecki, A; Witkowski, P; Wiślicki, W; Zieliński, M; Zoń, N

    2013-01-01

    This article describes simulations of scattering of annihilation gamma quanta in a strip of plastic scintillator. Such strips constitute basic detection modules in a newly proposed Positron Emission Tomography which utilizes plastic scintillators instead of inorganic crystals. An algorithm simulating chain of Compton scatterings was elaborated and series of simulations have been conducted for the scintillator strip with the cross section of 5 mm x 19 mm. Obtained results indicate that secondary interactions occur only in the case of about 8% of events and out of them only 25$\\%$ take place in the distance larger than 0.5 cm from the primary interaction. It was also established that light signals produced at primary and secondary interactions overlap with the delay which distribution is characterized by FWHM of about 40 ps.

  13. Design study of the precision optical calibration module for the PINGU detector

    Energy Technology Data Exchange (ETDEWEB)

    Veenkamp, Joost; Krings, Kai [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The Precision IceCube Next Generation Upgrade (PINGU) will measure atmospheric neutrinos with a threshold of a few GeV. The primary goal for this extension is to determine the Neutrino mass hierarchy. A new level of precision is needed in order to reach this. The calibration of the DOM's is an important aspect in raising the precision to the needed level. A better calibration system will enable a better understanding of the ice and will therefore significantly reduce systematic effects. We present the Precision Optical Calibration Module (POCAM). By keeping the outer topology identical to that of the DOM, cost effective construction and deployment is ensured. The design of the POCAM is based on the principle of the integrating sphere. An appropriately placed LED in combination with a diffusive layer on the inside of the sphere results in an isotropic light emission from the apertures in the spherical housing. The output of the LED is controllable and known to high precision, it therefore ensures control over the output from the apertures. We report on the first investigations.

  14. Novel Trigger-Capable Modules for the Future CMS Tracking Detector and Inclusive Top Quark Pair Production Cross Section at $\\sqrt{s} = 13$ TeV

    CERN Document Server

    Harb, Ali; Mussgiller, Andreas

    2017-01-01

    This work covers two important aspects in the field of high-energy physics; detector development and physics data analysis. The first part of this thesis is devoted to the detector development activities for the Phase-II upgrade of the Compact Muon Solenoid (CMS) experiment’s outer tracking detector. To cope with the increased luminosity during the high-luminosity era of the Large Hadron Collider (LHC), it is foreseen to replace the existing tracking system of CMS with an entirely new system. Owing to a novel module concept called the $p_T$–module, the upgraded tracking system will be able to provide first level trigger information by means of an on-board momentum discrimination logic. This will be achieved using a new readout chip, the so-called CMS Binary Chip (CBC). The very first test beam measurement using $p_T$ –module prototypes, equipped with the CBC chip is presented and discussed. The obtained results serve as a proof-of-concept for such modules and shows that the CBC performs as expected. In...

  15. A PET detector module with monolithic crystal, single end readout, SiPM array and high depth-of-interaction resolution

    Science.gov (United States)

    Zhang, H.; Zhou, R.; Yang, C.

    2016-08-01

    Depth of interaction (DOI) technology can improve the spatial resolution of nuclear medicine imaging system which uses scintillation detectors such as Positron Emission Tomography (PET). In this paper, a prototype detector module with DOI capability is established to make complementary characteristic tests on an existing method and to improve the experimental performance using the same method. We investigate the gamma incident surface and incident angle effects on the positioning method with our model in simulations and evaluate its 3-D positioning results in experiment. It shows that the positioning results are highly affected by the gamma incident surface and incident angle. The 137Cs energy resolution is 12.1% and the DOI resolution is estimated at 2.26 mm in average by our detector in experiment.

  16. Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012

    Science.gov (United States)

    de Mendonça, Rafael R. S.; Braga, Carlos. R.; Echer, Ezequiel; Dal Lago, Alisson; Rockenbach, Marlos; Schuch, Nelson J.; Munakata, Kazuoki

    2017-10-01

    It is well known that the cosmic ray intensity observed at the Earth's surface presents an 11 and 22-yr variations associated with the solar activity cycle. However, the observation and analysis of this modulation through ground muon detectors datahave been difficult due to the temperature effect. Furthermore, instrumental changes or temporary problems may difficult the analysis of these variations. In this work, we analyze the cosmic ray intensity observed since October 1970 until December 2012 by the Nagoya muon detector. We show the results obtained after analyzing all discontinuities and gaps present in this data and removing changes not related to natural phenomena. We also show the results found using the mass weighted method for eliminate the influence of atmospheric temperature changes on muon intensity observed at ground. As a preliminary result of our analyses, we show the solar cycle modulation in the muon intensity observed for more than 40 years.

  17. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  18. Characterization of a module with pixelated CdTe detectors for possible PET, PEM and compton camera applications

    Science.gov (United States)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Puigdengoles, C.; Martínez, R.; Cabruja, E.

    2014-05-01

    We present the measurement of the energy resolution and the impact of charge sharing for a pixel CdTe detector. This detector will be used in a novel conceptual design for diagnostic systems in the field of nuclear medicine such as positron emission tomography (PET), positron emission mammography (PEM) and Compton camera. The detector dimensions are 10 mm × 10 mm × 2 mm and with a pixel pitch of 1 mm × 1 mm. The pixel CdTe detector is a Schottky diode and it was tested at a bias of -1000 V. The VATAGP7.1 frontend ASIC was used for the readout of the pixel detector and the corresponding single channel electronic noise was found to be σ < 2 keV for all the pixels. We have achieved an energy resolution, FWHM/Epeak, of 7.1%, 4.5% and 0.98% for 59.5, 122 and 511 keV respectively. The study of the charge sharing shows that 16% of the events deposit part of their energy in the adjacent pixel.

  19. Solar modulation of Cosmic Rays as Measured by A Muon Detector at Mid-latitude site during November- December 2013.

    Science.gov (United States)

    Maghrabi, Abdullrahman; Alghamdi, Abdullrahman; otabi, Rkan Al; Almotery, Mohammed; Garawi, Mohammed

    2014-05-01

    Between November and December 2013 three Forbush decreases (FDs) with amplitudes between 4-6 % have been observed by cosmic ray monitors around the world. In this paper, the response of a cosmic ray muon detector (area of 0.25 m2) to these events will be given. This detector was locally constructed and is in operation since September 20013. Interplanetary data, interplanetary magnetic fields, solar x-ray fluxes, and solar energetic particles were used to characterize the solar and interplanetary conditions causing the FDs. Cosmic ray data from twenty-two ground-based stations were used to investigate these FDs and compare them with our data.

  20. Development and Evaluation of a Test System for the Quality Assurance during the Mass Production of Silicon Microstrip Detector Modules for the CMS Experiment

    CERN Document Server

    Franke, Torsten

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of four large-scale experiments that is going to be installed at the Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). For CMS an inner tracking system entirely equipped with silicon microstrip detectors was chosen. With an active area of about 198 m2 it will be the largest tracking device of the world that was ever constructed using silicon sensors. The basic components in the construction of the tracking system are approximately 16,000 so-called modules, which are pre-assembled units consisting of the sensors, the readout electronics and a support structure. The module production is carried out by a cooperation of number of institutes and industrial companies. To ensure the operation of the modules within the harsh radiation environment extensive tests have to be performed on all components. An important contribution to the quality assurance of the modules is made by a test system of which all components were developed in Aachen. In ad...

  1. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R. [Max-Planck-Institut fuer Physik, Munich (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Angloher, G.; Ferreiro, N.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Reindl, F.; Seidel, W.; Stodolsky, L.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, CIUC, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Schaeffner, K. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Erb, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Feilitzsch, F. von; Guetlein, A.; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Roth, S.; Schoenert, S.; Stanger, M.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Jochum, J.; Loebell, J.; Rottler, K.; Sailer, C.; Scholl, S.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Kluck, H. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Vienna University of Technology, Atominstitut, Wien (Austria); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Schieck, J. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Sivers, M. von [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-08-15

    The cryogenic dark matter experiment CRESSTII aims at the direct detection of WIMPs via elastic scattering off nuclei in scintillating CaWO{sub 4} crystals. We present a new, highly improved, detector design installed in the current run of CRESST-II Phase 2 with an efficient active rejection of surface-alpha backgrounds. Using CaWO{sub 4} sticks instead of metal clamps to hold the target crystal, a detector housing with fully-scintillating inner surface could be realized. The presented detector (TUM40) provides an excellent threshold of ∝0.60 keV and a resolution of σ ∼ 0.090 keV (at 2.60 keV).With significantly reduced background levels, TUM40 sets stringent limits on the spin-independent WIMP nucleon scattering cross section and probes a new region of parameter space for WIMP masses below 3GeV/c{sup 2}. In this paper, we discuss the novel detector design and the surface-alpha event rejection in detail. (orig.)

  2. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2

    CERN Document Server

    Strauss, R; Bento, A; Bucci, C; Canonica, L; Erb, A; Feilitzsch, F v; Ferreiro, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schieck, J; Scholl, S; Schönert, S; Seidel, W; Sivers, M v; Stanger, M; Stodolsky, L; Strandhagen, C; Tanzke, A; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2014-01-01

    The cryogenic dark matter experiment CRESST-II aims at the direct detection of WIMPs via elastic scattering off nuclei in scintillating CaWO$_4$ crystals. We present a new, highly improved, detector design installed in the current run of CRESST-II Phase 2 with an efficient active rejection of surface-alpha backgrounds. Using CaWO$_4$ sticks to hold the target crystal a detector housing with fully-scintillating inner surface could be realized. The presented detector (TUM40) provides an excellent threshold of ${\\sim}\\,0.60\\,$keV and a resolution of $\\sigma\\,{\\approx}\\,0.090\\,$keV (at 2.60$\\,$keV). With significantly reduced background levels, TUM40 sets stringent limits on the spin-independent WIMP-nucleon scattering cross section and probes a new region of parameter space for WIMP masses below 3$\\,$GeV/c$^2$. In this paper, we discuss the novel detector design and the surface-alpha event rejection in detail.

  3. Flow-modulated comprehensive two-dimensional gas chromatography combined with a vacuum ultraviolet detector for the analysis of complex mixtures.

    Science.gov (United States)

    Zoccali, Mariosimone; Schug, Kevin A; Walsh, Phillip; Smuts, Jonathan; Mondello, Luigi

    2017-05-12

    The present paper is focused on the use of a vacuum ultraviolet absorption spectrometer (VUV) for gas chromatography (GC), within the context of flow modulated comprehensive two-dimensional gas chromatography (FM GC×GC). The features of the VUV detector were evaluated through the analysis of petrochemical and fatty acids samples. Besides responding in a predictable fashion via Beer's law principles, the detector provides additional spectroscopic information for qualitative analysis. Virtually all chemical species absorb and have unique gas phase absorption features in the 120-240nm wavelength range monitored. The VUV detector can acquire up to 90 full range absorption spectra per second, allowing its coupling with comprehensive two-dimensional gas chromatography. This recent form of detection can address specific limitations related to mass spectrometry (e.g., identification of isobaric and isomeric species with very similar mass spectra or labile chemical compounds), and it is also able to deconvolute co-eluting peaks. Moreover, it is possible to exploit a pseudo-absolute quantitation of analytes based on pre-recorded absorption cross-sections for target analytes, without the need for traditional calibration. Using this and the other features of the detector, particular attention was devoted to the suitability of the FM GC×GC-VUV system toward qualitative and quantitative analysis of bio-diesel fuel and different kinds of fatty acids. Satisfactory results were obtained in terms of tailing factor (1.1), asymmetry factor (1.1), and similarity (average value 97%), for the FAMEs mixtures analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    CERN Document Server

    Olcese, M; Castiglioni, G; Cereseto, R; Cuneo, S; Dameri, M; Gemme, C; Glitza, K W; Lenzen, G; Mora, F; Netchaeva, P; Ockenfels, W; Piano, E; Pizzorno, C; Puppo, R; Rebora, A; Rossi, L; Thadome, J; Vernocchi, F; Vigeolas, E; Vinci, A

    2004-01-01

    The design of an ultra light structure, the so-called "stave", to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high- dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed.

  5. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Science.gov (United States)

    Leem, Hyun Tae; Choi, Yong; Kim, Kyu Bom; Lee, Sangwon; Yamamoto, Seiichi; Yeom, Jung-Yeol

    2017-02-01

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO4 reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm2 and the size of each LGSO scintillator element was 0.7×0.7×6 mm3. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400-600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  6. Study of a prototype module of a precision time-of-flight detector for particle identification at low momentum

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00388630

    In this thesis, Time Of internally Reflected Cherenkov light detector (TORCH), proposed for the LHCb Upgrade to perform three-sigma separation between kaon and pion up to 10$\\ \\rm{GeV}/\\textit{c}$, was studied. TORCH is designed to add significant particle identification capability to the existing LHCb system based on two gas Ring Imaging Cherenkov detectors. TORCH would be placed at $\\sim$ 10 m from the interaction point, where the flight time difference between a primary pion and kaon is 37.5 ps. TORCH will give a pion-kaon separation of three sigma at 10$\\ \\rm{GeV}/\\textit{c}$ from the flight time using the Cherenkov photons generated by the charged particle in a 1 cm-thick quartz plate. In order to calculate accurately the flight time in a busy LHCb environment, Cherenkov angle and photon detection time information, as well as the momentum information from the tracking detector are included in the analysis. For the required TORCH performance, the flight time difference must be measured with a resolution o...

  7. The Central Logic Board and its auxiliary boards for the optical module of the KM3NeT detector

    CERN Document Server

    Biagi, S

    2014-01-01

    The KM3NeT neutrino telescope will be composed of many optical modules, each of them containing 31 (3") photomultipliers, connected to a Central Logic Board. The Central Logic Board integrates Time to Digital Converters that measure Time Over Threshold of the photomulti- pliers signals while White Rabbit is used for the optical modules time synchronization. Auxiliary boards have also been designed and built in order to test and extend the performance of the Cen- tral Logic Board. The Central Logic Board, as well as the auxiliary boards, will be presented by focusing on the design consideration, prototyping issues and tests.

  8. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    Science.gov (United States)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  9. Photocapacitive MIS infrared detectors

    Science.gov (United States)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  10. Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.

    Science.gov (United States)

    Zhang, Qingfang; Liu, Yan; Yan, Jing; Zhang, Chunfu; Hao, Yue; Han, Genquan

    2015-03-23

    We theoretically investigate a tensile strained GeSn waveguide integrated with Si₃N₄ liner stressor for the applications in mid-infrared (MIR) detector and modulator. A substantial tensile strain is induced in a 1 × 1 μm² GeSn waveguide by the expansion of 500 nm Si₃N₄ liner stressor and the contour plots of strain are simulated by the finite element simulation. Under the tensile strain, the direct bandgap E(G,Γ) of GeSn is significantly reduced by lowering the Γ conduction valley in energy and lifting of degeneracy of valence bands. Absorption coefficients of tensile strained GeSn waveguides with different Sn compositions are calculated. As the Si₃N₄ liner stressor expands by 1%, the cut-off wavelengths of tensile strained Ge(0.97)Sn(0.03), Ge(0.95)Sn(0.05), and Ge(0.90)Sn(0.10) waveguide photodetectors are extended to 2.32, 2.69, and 4.06 μm, respectively. Tensile strained Ge(0.90)Sn(0.10) waveguide electro-absorption modulator based on Franz-Keldysh (FK) effect is demonstrated in theory. External electric field dependence of cut-off wavelength and propagation loss of tensile strained Ge(0.90)Sn(0.10) waveguide is observed, due to the FK effect.

  11. Electrical tests of silicon detector modules for the ATLAS experiment and a study of the discovery potential of the $t\\overline{t}H, H \\to W^{+}W^{-}$ process

    CERN Document Server

    Ludwig, Inga

    2011-01-01

    The first part of this thesis was a contribution to the construction of the ATLAS Semiconductor Tracking detector (SCT). About 200 SCT endcap modules were assembled at the University of Freiburg. Before installation in the experiment, each module was subject to thorough testing in order to ensure their functionality within the ATLAS specifications. A large part of these tests concerned the electrical functionality of the readout electronics and the bias current behaviour of the sensors. The responsibility for the electrical characterization of the Freiburg modules was part of this thesis. To be suited for the analysis of physics processes, the signals measured in the detector need to be transferred into particle four-momenta, requiring the reconstruction and identification of different particle types. This thesis contributes to the physics object identification by a study of methods to separate isolated electrons from real electron background produced in the decays of heavy quarks. A standard set of four disc...

  12. Thermal Characterization and Optimization of the Pixel Module Support Structure for the Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Rauch, Max Philip

    2015-01-01

    article/pii/0011747168900570, accessed on 7/21/2015.[38] Torayca, T300 Data Sheet, http://www.toraycfa.com/pdfs/T300DataSheet.pdf, accessedon 8/12/2015.[39] Araldite, Araldite Standard,http://www.chemcenters.com/images/suppliers/169257/Araldite%20Standard.pdf, accessed on 6/19/2015.[40] S. Streuli, Paul-Scherrer-Institut (Villigen, Switzerland), private communication.[41] KERAFOL, Keratherm Thermal Grease: KP 98,http://www.mhw-intl.com/assets/greaseKP98.pdf, accessed on 6/19/2015.[42] K. Klein, 1. Physikalisches Institut B, RWTH Aachen, private communication.[43] COMSOL Multiphysics R Modeling Software,https://www.comsol.de/, accessed on 7/28/2015.[44] COMSOL Multiphysics R Heat Transfer Software,https://www.comsol.de/heat-transfer-module, accessed on 28.7.2015.[45] Picture taken from https://commons.wikimedia.org/wiki/File:Composite_3d.png, accessed on 7/28/2015.[46] Mitsubishi Chemical, Dialead, K13D2U, http://www.mitsubishichemical.com/DataSheets/CarbonFiber/PD%20K13D2U.pdf, accessed on 7/29/2015.[47] Tenc...

  13. Infrared detectors for space applications

    Science.gov (United States)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  14. Multi-chip module development for the ATLAS pixel detector. Analysis of the front-end chip electronics in radiation hard 0.25-{mu}m technology as well as development and realization of a serial power concept; Multi-Chip-Modul-Entwicklung fuer den ATLAS-Pixeldetektor. Analyse der Front-End-Chip-Elektronik in strahlenharter0,25-{mu}m-Technologie sowie Entwicklung und Realisierung eines Serial-Powering-Konzeptes

    Energy Technology Data Exchange (ETDEWEB)

    Stockmanns, T.

    2004-08-01

    The innermost layer of the ATLAS tracking system is a silicon pixel detector. The use of radiation tolerant components is mandatory due to the harsh radiation environment. The smallest independent component of the pixel detector is a hybride pixel module consisting of a large oxygen enriched silicon sensor and 16 specifically developed ASICs. To achieve the necessary radiation tolerance the ASICs are produced in a 0.25 {mu}m technology in combination with special design techniques. The measurements of the readout electronics during all stages of production of a full module are presented and the performance of the modules is compared with the strict requirements of the ATLAS pixel detector. Furthermore a new powering scheme for pixel detectors is presented, aiming at reducing the total power consumption, the material for the electrical services and the amount of power cables. The advantages and disadvantages of this concept are discussed on the example of the ATLAS pixel detector with pixel modules modified accounting to the new powering scheme. The performance of six of those modules operating at the same time in a small system test is compared to that of normal ATLAS pixel modules. (orig.)

  15. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  16. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  17. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  18. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  19. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  20. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  1. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  2. The Detector Control System of the ATLAS experiment at CERN An application to the calibration of the modules of the Tile Hadron Calorimeter

    CERN Document Server

    Varelá-Rodriguez, F

    2002-01-01

    The principle subject of this thesis work is the design and development of the Detector Control System (DCS) of the ATLAS experiment at CERN. The DCS must ensure the coherent and safe operation of the detector and handle the communication with external systems, like the LHC accelerator and CERN services. A bidirectional data flow between the Data AcQuisition (DAQ) system and the DCS will enable coherent operation of the experiment. The LHC experiments represent new challenges for the design of the control system. The extremely high complexity of the project forces the design of different components of the detector and related systems to be performed well ahead to their use. The long lifetime of the LHC experiments imposes the use of evolving technologies and modular design. The overall dimensions of the detector and the high number of I/O channels call for a control system with processing power distributed all over the facilities of the experiment while keeping a low cost. The environmental conditions require...

  3. Characterization of 1.2×1.2 mm2 silicon photomultipliers with Ce:LYSO, Ce:GAGG, and Pr:LuAG scintillation crystals as detector modules for positron emission tomography

    Science.gov (United States)

    Omidvari, N.; Sharma, R.; Ganka, T. R.; Schneider, F. R.; Paul, S.; Ziegler, S. I.

    2017-04-01

    The design of a positron emission tomography (PET) scanner is specially challenging since it should not compromise high spatial resolution, high sensitivity, high count-rate capability, and good energy and time resolution. The geometrical design of the system alongside the characteristics of the individual PET detector modules contributes to the overall performance of the scanner. The detector performance is mainly influenced by the characteristics of the photo-detector and the scintillation crystal. Although silicon photomultipliers (SiPMs) have already proven to be promising photo-detectors for PET, their performance is highly influenced by micro-cell structure and production technology. Therefore, five types of SiPMs produced by KETEK with an active area size of 1.2 × 1.2 mm2 were characterized in this study. The SiPMs differed in the production technology and had micro-cell sizes of 25, 50, 75, and 100 μm. Performance of the SiPMs was evaluated in terms of their breakdown voltage, temperature sensitivity, dark count rate, and correlated noise probability. Subsequently, energy resolution and coincidence time resolution (CTR) of the SiPMs were measured with five types of crystals, including two Ce:LYSO, two Ce:GAGG, and one Pr:LuAG. Two crystals with a geometry of 1.5 × 1.5 × 6 mm3 were available from each type. The best CTR achieved was ~ 240 ps, which was obtained with the Ce:LYSO crystals coupled to the 50 μm SiPM produced with the trench technology. The best energy resolution for the 511 keV photo-peak was ~ 11% and was obtained with the same SiPM coupled to the Ce:GAGG crystals.

  4. Metal Detectors.

    Science.gov (United States)

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  5. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  6. Polarization modulators for CMBPol

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P A R; Savini, G [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Chuss, D T [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD, 20771 (United States); Hanany, S [School of Physics and Astronomy, University of Minnesota/Twin Cities, Minneapolis, MN, 55455 (United States); Haynes, V; Pisano, G [University of Manchester, School of Physics and Astronomy - Alan Turing Building, Upper Brooke street, Manchester, M13 4PL (United Kingdom); Keating, B G [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0424 (United States); Kogut, A [Code 665 Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ruhl, J E [Physics Department, Case Western Reserve University, Cleveland, OH, 44106 (United States); Wollack, E J [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2009-03-01

    We review a number of technologies that are candidates for active polarization modulators for CMBPol. The technologies are appropriate for instruments that use bolometric detectors and include birefringent crystal-based and metal-mesh-based half-wave plates, variable phase polarization modulator, Faraday rotator, and photolithographed modulators. We also give a current account of the status of millimeter-wave orthomode transducers.

  7. MI 6040 Thermoelectric Modules.

    Science.gov (United States)

    The report covers the design justification, physical specification and characterization of the MI 6040 module . The purpose of the thermoelectric... modules is the cooling of infrared detector arrays to temperature of 170K or colder. The completed modules were also subjected to limited demonstration tests of reliability and useful life.

  8. The Readout Electronics for the Continuous Crystal PET Detector Module%基于连续晶体 PET 探测器模块电子学设计

    Institute of Scientific and Technical Information of China (English)

    周宇; 王永纲

    2014-01-01

    和传统的基于分割晶体PET探测器相比,基于连续晶体的PET探测器具有设计结构简单、能量分辨率高、探测器效率高以及低造价等优点,近年来得到广泛的研究。基于连续晶体PET探测器的最大难点是要用探测器获得闪烁光分布,进而通过作用点定位算法计算γ光子的作用位置。探测器模块电子学需要读出和获取闪烁光的分布,因而电子学变得相对复杂。论文针对自行建立的基于连续LYSO晶体和神经网络定位算法的PET探测器模块的信号读出和数据获取的要求,设计和实现了64通道数据读出和获取电子学系统。该系统采用8片8通道、50 Mbps、串行输出、12 bit ADC对每个通道进行数字化,从海量的核事例中遴选出有效的核事例,在FPGA内实现数据打包、定时符合、基线恢复等功能。经过测试,电路各通道噪声低,增益一致性好。整个电子学系统结构紧凑、性能优良,适合基于连续晶体PET探测器的相关实验研究和应用研究。%Compared with PET detectors basing on the traditional split crystals ,PET detectors basing on continu-ous crystals having a simple structure , high energy resolution and the detector efficiency is high , as well as low cost, etc..The biggest difficulty of the continuous crystal PET detector is using the probe to get the blinking light distribution to calculate the interaction point of the γ-photon by the interaction point position algorithm . The detector module electronics needs to read out and obtain the distribution of the scintillation light , and thus reading out and data acquisition electronics becomes relatively complex .In this paper , we create our own PET detector basing on continuous LYSO crystals and neural network positioning algorithm module , design and real-ize 64 channel data acquisition and readout electronics system .The system uses eight 8-channel, 50Mbps, 12bit ADC for each channel to

  9. Cherenkov Detector for Beam Quality Measurement

    CERN Document Server

    Orfanelli, Stella

    2015-01-01

    A new detector to measure the machine induced background at larger radiihas been developed and installed in the CMS experiment at LHC. Itconsists of 40 modules, each comprising a quartz bar read out by aphotomultiplier. Since Cerenkov radiation is emitted in a forward conearound the charged particle trajectory, these detectors can distinguishthe directions of the machine induced background.The back-end consists of a microTCA readout with excellent time resolution.The performance of the detector modules measured in several test-beamcampaigns will be reported. The installation in CMS will be described, andfirst results about operating the detector during data taking will begiven.

  10. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  11. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  12. A PET imaging system dedicated to mammography

    CERN Document Server

    Varela, J

    2007-01-01

    The imaging system Clear-PEM for positron emission mammography, under development within the framework of the Crystal Clear Collaboration at CERN, is presented. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes (APD) and readout by a fast low-noise electronic system. A dedicated digital trigger and data acquisition system is used for on-line selection of coincidence events with high efficiency, large bandwidth and negligible dead-time. The detector module performance was characterized in detail.

  13. Nanorod Array Solid State Neutron Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR project, Synkera proposes to develop and commercialize solid-state neutron detectors of a unique architecture that will enable sensor modules...

  14. MRI compatibility of position-sensitive photomultiplier depth-of-interaction PET detectors modules for in-line multimodality preclinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero, J.J., E-mail: juanjose.vaquero@uc3m.es [Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial, Avda. de la Universidad 30 Leganés, 28911 Madrid (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid (Spain); Sánchez, J.J. [Instituto de Investigación Sanitaria Gregorio Marañón, Madrid (Spain); Udías, J.M.; Cal-González, J. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid (Spain); Desco, M. [Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial, Avda. de la Universidad 30 Leganés, 28911 Madrid (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid (Spain)

    2013-02-21

    This work addresses the feasibility of a small-animal, in-line PET/MR system based on Position-Sensitive Photo Multiplier Tubes (PS-PMTs). To this end, we measured the effects of static magnetic fields on the PS-PMTs performance in order to explore the minimal tandem separation between the PET and MR subsystems to preserve their respective performances. We concluded that it is possible to achieve minimal degradation of the PET scanner performance (after a system recalibration) if the magnetic field strength influencing the PET detectors is less than 1 mT and if it is oriented perpendicularly to the longitudinal axis of the tube. Therefore, we predict that it will be possible to maintain the PET image quality if it is placed outside the 1 mT line.

  15. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  16. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  17. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sfyrla, Anna [Univ. of Geneva (Switzerland)

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  18. XMASS detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Nishiie, H; Ogawa, H; Oka, N; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Nishitani, Y; Masuda, K; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2013-01-01

    The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  19. XMASS detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-11

    The XMASS project aims to detect dark matter, pp and {sup 7}Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  20. Neutron Monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    CERN Document Server

    Maurin, D; Derome, L; Ghelfi, A; Hubert, G

    2014-01-01

    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation $\\phi$ (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10% level on $\\phi$ values. We find no clear ranking...

  1. HIgh Rate X-ray Fluorescence Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grudberg, Peter Matthew [XIA LLC

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  2. Accurate determination of segmented X-ray detector geometry.

    Science.gov (United States)

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A; Chapman, Henry N; Barty, Anton

    2015-11-02

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments.

  3. Accurate determination of segmented X-ray detector geometry

    Science.gov (United States)

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A.; Chapman, Henry N.; Barty, Anton

    2015-01-01

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments. PMID:26561117

  4. A Design of Signal Acquisition Module for 288 × 4 Long-wavelength Infrared Detectors%288×4长波红外探测器数据采集模块的设计

    Institute of Scientific and Technical Information of China (English)

    陈晓东

    2011-01-01

    针对288×4长波焦平面红外探测器组件的特点,设计了一个数据采集模块,以FPGA为核心,为探测器提供时序与控制信号,同时对探测器输出的四路红外模拟图像信号进行高精度的模数转换,然后将红外数字图像信号向后端传送.实验结果表明,采集到的红外图像具有噪声低、稳定性好等特点.当探测器在293 K黑体的照射下,并且积分时间为19μs时,整个红外图像采集系统的平均噪声等效温差(NETD)在30mK左右.%According to the characteristic of 288×4 LWIR CMOS Integrated Detector Dewar Cooler Assembly, a data acquisition module is designed based on FPGA to provide clock and control signals,translating four channels of infrared analog image signals to digital signals accurately, and then sending the infrared digital image signals to the back end.Experimental results show that the collected infrared images have the characteristic of low noise and high stability.The average NETD of the whole infrared image collecting system is about 30 mK, when the detector is radiated by the 293 K blackbody and the integral time is set to 19 μs.

  5. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  6. The ANTARES Optical Module

    CERN Document Server

    Amram, P; Anvar, S; Ardellier-Desages, F E; Aslanides, Elie; Aubert, Jean-Jacques; Azoulay, R; Bailey, D; Basa, S; Battaglieri, M; Bellotti, R; Benhammou, Ya; Bernard, F; Berthier, R; Bertin, V; Billault, M; Blaes, R; Bland, R W; Blondeau, F; De Botton, N R; Boulesteix, J; Brooks, B; Brunner, J; Cafagna, F; Calzas, A; Capone, A; Caponetto, L; Cârloganu, C; Carmona, E; Carr, J; Carton, P H; Cartwright, S L; Cassol, F; Cecchini, S; Ciacio, F; Circella, M; Compere, C; Cooper, S; Coyle, P; Croquette, J; Cuneo, S; Danilov, M; Van Dantzig, R; De Marzo, C; De Vita, R; Deck, P; Destelle, J J; Dispau, G; Drougou, J F; Druillole, F; Engelen, J; Feinstein, F; Festy, D; Fopma, J; Gallone, J M; Giacomelli, G; Goret, P; Gosset, L G; Gournay, J F; Heijboer, A; Hernández-Rey, J J; Herrouin, G; Hubbard, John R; Jacquet, M; De Jong, M; Karolak, M; Kooijman, P M; Kouchner, A; Kudryavtsev, V A; Lachartre, D; Lafoux, H; Lamare, P; Languillat, J C; Laubier, L; Laugier, J P; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lemoine, L; Lo Nigro, L; Lo Presti, D; Loucatos, Sotirios S; Louis, F; Lyashuk, V I; Magnier, P; Marcelin, M; Margiotta, A; Massol, A; Masullo, R; Mazéas, F; Mazeau, B; Mazure, A; McMillan, J E; Michel, J L; Migneco, E; Millot, C; Mols, P; Montanet, François; Montaruli, T; Morel, J P; Moscoso, L; Navas, S; Nezri, E; Nooren, G J L; Oberski, J; Olivetto, C; Oppelt-pohl, A; Palanque-Delabrouille, Nathalie; Payre, P; Perrin, P; Petruccetti, M; Petta, P; Piattelli, P; Poinsignon, J; Popa, V; Potheau, R; Queinec, Y; Racca, C; Raia, G; Randazzo, N; Rethore, F; Riccobene, G; Ricol, J S; Ripani, M; Roca-Blay, V; Rolin, J F; Rostovtsev, A A; Russo, G V; Sacquin, Yu; Salusti, E; Schuller, J P; Schuster, W; Soirat, J P; Suvorova, O; Spooner, N J C; Spurio, M; Stolarczyk, T; Stubert, D; Taiuti, M; Tao, Charling; Tayalati, Y; Thompson, L F; Tilav, S; Triay, R; Valente, V; Varlamov, I; Vaudaine, G; Vernin, P; De Witt-Huberts, P K A; De Wolf, E; Zakharov, V; Zavatarelli, S; De Dios-Zornoza-Gomez, Juan; Zúñiga, J

    2002-01-01

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.

  7. The ANTARES optical module

    Energy Technology Data Exchange (ETDEWEB)

    Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F.E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Benhammou, Y.; Bernard, F.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R.W.; Blondeau, F.; Botton, N. de; Boulesteix, J.; Brooks, C.B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carloganu, C.; Carmona, E.; Carr, J.; Carton, P.-H.; Cartwright, S.L.; Cassol, F.; Cecchini, S.; Ciacio, F.; Circella, M.; Compere, C.; Cooper, S.; Coyle, P.; Croquette, J.; Cuneo, S.; Danilov, M.; Dantzig, R. van; De Marzo, C.; DeVita, R.; Deck, P.; Destelle, J.-J.; Dispau, G.; Drougou, J.F.; Druillole, F.; Engelen, J.; Feinstein, F.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gosset, L.; Gournay, J.-F.; Heijboer, A.; Hernandez-Rey, J.J.; Herrouin, G.; Hubbard, J.R.; Jaquet, M.; Jong, M. de; Karolak, M.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V.A.; Lachartre, D.; Lafoux, H. E-mail: lafoux@cea.fr; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Le Guen, Y.; Le Provost, H.; Le Van Suu, A.; Lemoine, L.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Massol, A.; Masullo, R.; Mazeas, F.; Mazeau, B.; Mazure, A.; McMillan, J.E.; Michel, J.L.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Morel, J.P.; Moscoso, L.; Musumeci, M.; Navas, S.; Nezri, E.; Nooren, G.J.; Oberski, J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Rolin, J.F.; Rostovstev, A.; Russo, G.V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N.J.C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Tayalati, Y.; Thompson, L.F.

    2002-05-21

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km{sup 2} and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R and D studies and is reviewed here in detail.

  8. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  9. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    Science.gov (United States)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  10. System Test of a Prototype LHCb RICH Detector

    CERN Document Server

    Patel, M

    2004-01-01

    A prototype of the LHCb Ring Imaging Cherenkov detector has been constructed. The prototype module contained a pre-production Pixel Hybrid Photon Detector, mounted on the final photon detector mechanics. The photon detector was read out at the full LHC speed of 40 MHz using the full prototype on-detector RICH electronics readout chain. The readout uses radiation-tolerant FPGA technology, 1.6 GHz optical links and 40 MHz trigger-timing and control (TTC). The photon detector was mounted in a gas vessel and Cherenkov rings have been observed from and N$_2$ radiator using electron and pion beams.

  11. Electronic detectors for electron microscopy.

    Science.gov (United States)

    Faruqi, A R; McMullan, G

    2011-08-01

    Electron microscopy (EM) is an important tool for high-resolution structure determination in applications ranging from condensed matter to biology. Electronic detectors are now used in most applications in EM as they offer convenience and immediate feedback that is not possible with film or image plates. The earliest forms of electronic detector used routinely in transmission electron microscopy (TEM) were charge coupled devices (CCDs) and for many applications these remain perfectly adequate. There are however applications, such as the study of radiation-sensitive biological samples, where film is still used and improved detectors would be of great value. The emphasis in this review is therefore on detectors for use in such applications. Two of the most promising candidates for improved detection are: monolithic active pixel sensors (MAPS) and hybrid pixel detectors (of which Medipix2 was chosen for this study). From the studies described in this review, a back-thinned MAPS detector appears well suited to replace film in for the study of radiation-sensitive samples at 300 keV, while Medipix2 is suited to use at lower energies and especially in situations with very low count rates. The performance of a detector depends on the energy of electrons to be recorded, which in turn is dependent on the application it is being used for; results are described for a wide range of electron energies ranging from 40 to 300 keV. The basic properties of detectors are discussed in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE) as a function of spatial frequency.

  12. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya

    2012-01-01

      The major activity of the DT group during this Year-End Technical Stop has been the reworking of LV modules. It has been a large campaign, carefully planned, to try to solve, once and for all, the long-standing problem of Anderson Power connectors overheating. The solution involved removing the 140 CAEN modules from the detector (6.5 kg each), soldering of “pigtails” in a temporary workshop in USC, and thorough testing of all the modules in a local system installed in USC. The operation has been satisfactorily smooth, taking into account the magnitude of the intervention. The system is now back in good shape and ready for commissioning. In addition, HV boards have been cleaned up, HV USC racks have been equipped with water detection cables, and the gas and HV have been switched back on smoothly. Other significant activities have also taken place during this YETS, such as the installation of a new and faster board for the Minicrates secondary link and the migration to Scienti...

  13. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  14. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  15. RFID tag modification for full depth backscatter modulation

    Science.gov (United States)

    Scott, Jeffrey Wayne [Pasco, WA; Pratt, Richard M [Richland, WA

    2010-07-20

    A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes. Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.

  16. Characterization of CZT Detectors for the ASIM Mission

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Skogseide, Y.

    2009-01-01

    The National Space Institute, of the Technical University of Denmark is responsible for the selection and characterization of the CZT detector crystals for the X- and Gamma-ray instrument, MXGS, onboard ESA's Atmospheric Space Interaction Monitor (ASIM) mission. The first CZT pixel detector modules...... for MXGS have recently been delivered by Redlen. Measurements at the University of Bergen demonstrate that the detectors exhibit the expected spectral performance; however, it was also found that the detector modules showed unexplained pixel-to-pixel count rate variations. At The National Space Institute...

  17. MUON DETECTORS: DT

    CERN Document Server

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  18. Status of the Mu3e detector

    Science.gov (United States)

    Wiedner, D.

    2017-06-01

    Mu3e is an experiment searching for charged lepton flavour violation in the decay μ+ → e+e-e+. Decay vertex position, decay time and particle momenta have to be precisely measured in order to reject both accidental and physics background. A silicon pixel tracker based on 50 μm thin High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) in a 1 T magnetic field provides precise vertex and momentum information. A scintillating fibre detector and a scintillating tile detector provide sub-nanosecond time information. The status of the Mu3e detector is presented, summarizing the development of HV-MAPS chips, the pixel detector modules as well as the timing detectors.

  19. The CMS Tracker Detector Control System

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf Shah, S. [University of California, Santa Barbara, CA (United States)], E-mail: yousaf.shah@cern.ch; Tsirou, Andromachi; Verdini, Piero Giorgio [CERN, Geneva (Switzerland); Hartmann, Frank [University of Karlsruhe, Karlsruhe (Germany); Masetti, Lorenzo [CERN, Geneva (Switzerland); Dirkes, Guido H. [University of Karlsruhe, Karlsruhe (Germany); Stringer, Robert [University of California, Riverside, CA (United States); Fahrer, Manuel [CERN, Geneva (Switzerland)

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m{sup 2} consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates {approx}2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10{sup 3} environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10{sup 5} parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10{sup 5} parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  20. The CMS Tracker Detector Control System

    Science.gov (United States)

    Yousaf Shah, S.; Tsirou, Andromachi; Verdini, Piero Giorgio; Hartmann, Frank; Masetti, Lorenzo; Dirkes, Guido H.; Stringer, Robert; Fahrer, Manuel

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m 2 consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates ˜2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10 3 environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10 5 parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10 5 parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  1. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  2. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  3. Active metamaterials terahertz modulators and detectors

    CERN Document Server

    Rout, Saroj

    2017-01-01

    This book covers the theoretical background and experimental methods for engineers and physicist to be able to design, fabricate and characterize terahertz devices using metamaterials. Devices utilize mainstream semiconductor foundry processes to make them for communication and imaging applications. This book will provide engineers and physicists a comprehensive reference to construct such devices with general background in circuits and electromagnetics. The authors describe the design and construction of electromagnetic (EM) devices for terahertz frequencies (108-1010cycles/sec) by embedding solid state electronic devices into artificial metamaterials where each unit cell is only a fraction of the wavelength of the incident EM wave. The net effect is an electronically tunable bulk properties with effective electric (permittivity) and magnetic (permeability) that can be utilized to make novel devices to fill the terahertz gap.

  4. The Impact of Inner Detector Misalignments on Selected Physics

    CERN Document Server

    The ATLAS Collaboration

    2009-01-01

    Many physics analyses at ATLAS are dependent on the delivery of high quality tracking performance from the Inner Detector. This performance can be substantially degraded by misalignments of the Inner Detector modules which are not corrected for by the alignment procedure. In this note we show results from a number of studies into the impact of misalignments of the Inner Detector on physics and performance. Both random and global systematic misalignments of the Inner Detector are used in these studies. Their impact on Z->mumu reconstruction using Inner Detector tracks, B-physics observables and Tau identification and rejection performance are investigated.

  5. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2013-01-01

    During LS1, the Resistive Plate Chamber (RPC) collaboration is focusing its efforts on installation and commissioning of the fourth endcap station (RE4) and on the reparation and maintenance of the present system (1100 detectors). The 600 bakelite gaps, needed to build 200 double-gap RE4 chambers are being produced in Korea. Chamber construction and testing sites are located at CERN, in Ghent University, and at BARC (India). At present, 42 chambers have been assembled, 32 chambers have been successfully tested with cosmic rays runs and 7 Super Modules, made by two chambers, have been built at CERN by a Bulgarian/Georgian/Italian team and are now ready to be installed in the positive endcap. The 36 Super Modules needed to complete the positive endcap will be ready in September and installation is scheduled for October 2013. The Link-Board system for RE4 is under construction in Naples. Half of the system has been delivered at CERN in June. Six crates (Link-Board Boxes) and 75 boards, needed to instrument t...

  6. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  7. Multispectral imaging using a single bucket detector

    CERN Document Server

    Bian, Liheng; Situ, Guohai; Li, Ziwei; Chen, Feng; Dai, Qionghai

    2015-01-01

    Current multispectral imagers suffer from low photon efficiency and limited spectrum range. These limitations are partially due to the technological limitations from array sensors (CCD or CMOS), and also caused by separative measurement of the entries/slices of a spatial-spectral data cube. Besides, they are mostly expensive and bulky. To address above issues, this paper proposes to image the 3D multispectral data with a single bucket detector in a multiplexing way. Under the single pixel imaging scheme, we project spatial-spectral modulated illumination onto the target scene to encode the scene's 3D information into a 1D measurement sequence. Conventional spatial modulation is used to resolve the scene's spatial information. To avoid increasing requisite acquisition time for 2D to 3D extension of the latent data, we conduct spectral modulation in a frequency-division multiplexing manner in the speed gap between slow spatial light modulation and fast detector response. Then the sequential reconstruction falls...

  8. Radiation hardness studies of silicon pixel detectors

    CERN Document Server

    Lari, T

    2006-01-01

    At the LHC silicon vertex detectors will be exposed to hadron fluences of the order of . In order to study the effects of radiation damage on the performances of the ATLAS Pixel Vertex Detector, several full-size detector modules were irradiated to a fluence of and tested in a beam at CERN. After irradiation only a modest degradation of the detector performances is observed. At the operating ATLAS bias voltage of 600 V the average signal is still 80% of the pre-irradiation value, the spatial resolution is and the detection efficiency is 98.2%. The LHC luminosity upgrade will increase the radiation hardness requirements by a factor of 10 and will require the development of new ultra-radiation hard vertex detectors. A detailed simulation of silicon pixel detectors irradiated to very high fluence is presented and used to study the possibility to use silicon pixel detectors at the LHC after the luminosity upgrade. The charge collection properties and the detector response were computed for different silicon mater...

  9. The Mu3e Tile Detector

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Hans Patrick

    2015-05-06

    The Mu3e experiment is designed to search for the lepton flavour violating decay μ→e{sup +}e{sup +}e{sup -} with a sensitivity of one in 10{sup 16} decays. An observation of such a decay would be a clear sign of physics beyond the Standard Model. Achieving the targeted sensitivity requires a high precision detector with excellent momentum, vertex and time resolution. The Mu3e Tile Detector is a highly granular sub-detector system based on scintillator tiles with Silicon Photomultiplier (SiPM) readout, and aims at measuring the timing of the muon decay products with a resolution of better than 100 ps. This thesis describes the development of the Tile Detector concept and demonstrates the feasibility of the elaborated design. In this context, a comprehensive simulation framework has been developed, in order to study and optimise the detector performance. The central component of this framework is a detailed simulation of the SiPM response. The simulation model has been validated in several measurements and shows good agreement with the data. Furthermore, a 16-channel prototype of a Tile Detector module has been constructed and operated in an electron beam. In the beam tests, a time resolution up to 56 ps has been achieved, which surpasses the design goal. The simulation and measurement results demonstrate the feasibility of the developed Tile Detector design and show that the required detector performance can be achieved.

  10. Single photon light detector for deep ocean applications

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, S.; Babson, J.; Learned, J.G.; O' Connor, D.; Grieder, P.K.F.; Kitamura, T.; Mitsui, K.; Ohashi, Y.; Okada, A.; Clem, J.

    1989-03-15

    We have developed a single photon sensitive light detector module which can be operated in the ocean to a depth of 5000 m. It was designed primarily to be used as a Cherenkov light detector in conjunction with the DUMAND (Deep Underwater Muon And Neutrino Detector) experiment. After calibration in the laboratory, seven detectors, assembled in a vertical string geometry, have been operated simultaneously in the deep ocean off the coast of the island of Hawaii. Cosmic ray muons have been recorded successfully at dephts ranging from 2000 to 4000 m. The results have demonstrated the capability of the detector; it fulfills the specifications required for the modules to be used in a deep ocean muon and neutrino detector.

  11. Single photon light detector for deep ocean applications

    Science.gov (United States)

    Matsuno, S.; Babson, J.; Learned, J. G.; O'Connor, D.; Grieder, P. K. F.; Kitamura, T.; Mitsui, K.; Ohashi, Y.; Okada, A.; Clem, J.; Webster, M.; Wilson, C.

    1989-03-01

    We have developed a single photon sensitive light detector module which can be operated in the ocean to a depth of 5000 m. It was designed primarily to be used as a Cherenkov light detector in conjunction with the DUMAND (Deep Underwater Muon And Neutrino Detector) experiment. After calibration in the laboratory, seven detectors, assembled in a vertical string geometry, have been operated simultaneously in the deep ocean off the coast of the island of Hawaii. Cosmic ray muons have been recorded successfully at depths ranging from 2000 to 4000 m. The results have demonstrated the capability of the detector; it fulfills the specifications required for the modules to be used in a deep ocean muon and neutrino detector.

  12. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  13. The design of the TASD (totally active scintillator detector) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Mefodiev, A. V., E-mail: Mefodiev@inr.ru; Kudenko, Yu. G. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2015-12-15

    Totally active and magnetic segmented scintillation neutrino detectors are developed for the nextgeneration accelerator neutrino experiments. Such detectors will incorporate scintillation modules with scintillation counters that form X and Y planes. A single counter is a 7 × 10 × 90 mm{sup 3} scintillation bar with gluedin wavelength-shifting fibers and micropixel avalanche photodiodes. The results of measurements of the parameters of these detectors are presented.

  14. Characteristics of detectors for prevention of nuclear radiation terrorism

    Science.gov (United States)

    Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.

    2017-01-01

    There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.

  15. The MINOS Detectors

    CERN Document Server

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  16. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  17. The TALE Tower Detector

    Science.gov (United States)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  18. Alignment of the NOMAD-STAR detector

    CERN Document Server

    Cervera-Villanueva, A

    2000-01-01

    This note describes the alignment of the NOMAD-STAR detector. This is the B/sub 4/C-silicon target installed in the NOMAD spectrometer in 1997. NOMAD-STAR is composed of modules of 12 silicon detectors each giving a total length of 72 cm. Ten of these modules (called ladders) are assembled to form a layer. There are five layers interleaved with passive boron carbide plates. The total surface of silicon is 1.14 m /sup 2/. Energetic muons from the flat-top of the CERN SPS cycle provide the necessary information to perform a very precise software alignment. This alignment is needed to ensure that the impact parameter measurement needed for the identification of taus in a detector like NOMAD-STAR will not be limited by the error in the alignment. (15 refs).

  19. End-view of the DELPHI detector

    CERN Multimedia

    1996-01-01

    End-view of the 10-m diameter DELPHI detector at CERN's LEP electron-positron collider from 1989 to 2000. Its concentric modules, including a pioneer large-scale application of the Ring Imaging Cherenkov technique to differentiate between all the various secondary particles, ensure high precision and 'granularity'.

  20. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  1. Bulk micromegas detectors for large TPC applications

    CERN Document Server

    Bouchez, J; Cavata, Ch; Colas, P; De La Broise, X; Delbart, A; Giganon, Arnaud; Giomataris, Ioanis; Graffin, P; Mols, J Ph; Pierre, F; Ritou, J L; Sarrat, A; Virique, E; Zito, M; Radicioni, E; De Oliveira, R; Dumarchez, J; Abgrall, N; Bene, P; Blondel, A; Cervera-Villanueva, Anselmo; Ferrère, D; Maschiocchi, F; Perrin, E; Richeux, J P; Schroeter, R; Jover, G; Lux,; Rodriguez, A Y; Sánchez, F

    2007-01-01

    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have built several large bulk Micromegas detectors and we have tested them in the former HARP field cage setup with a magnetic field. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances and space point resolution have been achieved.

  2. Polarisation Encryption/Decryption Module

    DEFF Research Database (Denmark)

    2002-01-01

    A polarisation encryption/decryption module comprising at least two array based modulating devices, preferably spatial light modulators (SLMs), at least one array based intensity detector, and at least one source of electromagnetic radiation. A local region of information displayed on a first of ...... rapidly. May be used for real time encryption/decryption of motion pictures. Further, a method of polarisation encrypting and decrypting information. The encryption/decryption is performed optically while the communication is performed electronically....

  3. Thermal kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  4. Forward tracking detectors

    Indian Academy of Sciences (India)

    Klaus Mönig

    2007-11-01

    Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  5. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  6. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  7. Comparison measurements of DQE for two flat panel detectors: fluoroscopic detector vs. cone beam CT detector

    Science.gov (United States)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David

    2006-03-01

    The physical performance of two flat panel detectors (FPD) has been evaluated using a standard x-ray beam quality set by IEC, namely RQA5. The FPDs evaluated in this study are based on an amorphous silicon photodiode array that is coupled to a thallium-doped Cesium Iodide scintillator and to a thin film transistor (TFT) array. One detector is the PaxScan 2520 that is designed for fluoro imaging, and has a small dynamic range and a large image lag. The other detector is the PaxScan 4030CB that is designed for cone beam CT, and has a large dynamic range (>16-bit), a reduced image lag and many imaging modes. Varian Medical Systems manufactured both detectors. The linearity of the FPDs was investigated by using an ionization chamber and aluminum filtration in order to obtain the beam quality. Since the FPDs are used in fluoroscopic mode, image lag of the FPD was measured in order to investigate its effect on this study, especially its effect on DQE. The spatial resolution of the FPDs was determined by obtaining the pre-sampling modulation transfer function for each detector. A sharp edge was used in accordance to IEC 62220-1. Next, the Normalized Noise Power Spectrum (NNPS) was calculated for various exposures levels at RQA5 radiation quality. Finally, the DQE of each FPD was obtained with a modified version of the international standard set by IEC 62220-1. The results show that the physical performance in DQE and MTF of the PaxScan 4030CB is superior to that of PaxScan2520.

  8. MUON DETECTORS: RPC

    CERN Multimedia

    Pierluigi Paolucci

    2013-01-01

    In the second part of 2013 the two main activities of the RPC project are the reparation and maintenance of the present system and the construction and installation of the RE4 system. Since the opening of the barrel, repair activities on the gas, high-voltage and electronic systems are being done in parallel, in agreement with the CMS schedule. In YB0, the maintenance of the RPC detector was in the shadow of other interventions, nevertheless the scaffolding turned out to be a good solution for our gas leaks searches. Here we found eight leaking channels for about 100 l/h in total. 10 RPC/DT modules were partially extracted –– 90 cm –– in YB0, YB–1 and YB–2 to allow for the replacement of FE and LV distribution boards. Intervention was conducted on an additional two chambers on the positive endcap to solve LV and threshold control problems. Until now we were able to recover 0.67% of the total number of RPC electronic channels (1.5% of the channels...

  9. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  10. MUON DETECTORS: RPC

    CERN Multimedia

    G. Pugliese

    2010-01-01

    In the second half of 2010 run, the overall behavior of the RPC system has been very satisfactory, both in terms of detector and trigger performance. This result was achieved through interventions by skilled personnel and fine-tuned analysis procedures. The hardware was quite stable: both gas and power systems did not present significant problems during the data-taking period, confirming the high reliability achieved. Only few interventions on some HV or LV channels were necessary during the periodical technical accesses. The overall result is given by the stable percentage of active channels at about 98.5%. The single exception was at beginning of the ion collisions, when it dipped to 97.4% because of the failure of one LV module, although this was recovered after a few days. The control and monitoring software is now more robust and efficient, providing prompt diagnostics on the status of the entire system. Significant efforts were made in collaboration with the CMS cooling team to secure proper working ...

  11. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    2010-01-01

    During the technical stop, the RPC team was part of the CMS task force team working on bushing replacements in the Endcap cooling system, also validating the repairs in terms of connectivity (HV, LV and signal cables), and gas leak, on RE chambers. In parallel, the RPC team profited from the opportunity to cure several known problems: six chambers with HV problems (1 off + 5 single gaps) were recovered on both gaps; four known HV problems were localized at chamber level; additional temperature sensors were installed on cooling pipes on negative REs; one broken LV module in RE-1 was replaced. During the last month, the RPC group has made big improvements in the operations tools. New trigger supervisor software has substantially reduced the configuration time. Monitoring is now more robust and more efficient in providing prompt diagnostics. The detector has been under central DCS control for two weeks. Improvements have been made to both functionality and documentation and no major problems were found. Beam s...

  12. The ANTARES detector: background sources and effects on detector performance

    CERN Document Server

    Escoffier, S

    2007-01-01

    The ANTARES Collaboration is deploying a large neutrino detector at a depth of 2475 m in the Mediterranean Sea, 40 km off shore from La Seyne-sur-Mer in South France. The construction of this 12-line detector with 75 phototubes per line will be completed early 2008. Data taking has begun since April 2005 with an instrumentation line also equipped with optical modules. The first 5 detector lines are operational since January 2007. The telescope is aimed to observe high energy cosmic neutrinos through the detection of the Cerenkov light produced by up-going induced muons. Background sources are due to atmospheric neutrinos as well as misreconstructed atmospheric muons. Additional backgrounds inherent to the sea water environment come from 40K decay and marine organisms' luminescence. While the contribution of the former is expected to be constant at a level of about 45 kHz, the bioluminescence has shown large time variations, with periods of very high activity, up to several hundred kHz. Description of these ba...

  13. Proposal to develop GaAs detectors for physics at the LHC

    CERN Document Server

    Beaumont, S P; Booth, C N; Buttar, C M; Carraresi, L; Colocci, M; Combley, F; D'Auria, S D; del Papa, C; Dogru, M; Edwards, M; Fiori, F; Francescato, A; Hou, Y; Lynch, J G; Lisowski, B; Matheson, J; Newett, S; Nuti, M; O'Shea, V; Pelfer, P G; Raine, P H; Sharp, P H; Skillicorn, Ian O; Smith, K M; Tartoni, N; ten Have, I; Turnbull, R M; Vanni, U; Vinattieri, A; Zichichi, Antonino; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    The present proposal first describes the results obtained using GaAs Schottky diode detectors which we have constructed, and the initial steps which we have taken towards the design of a GaAs preamplifier to match the detectors. We then propose a continuation of the programme of work towards a demonstration detector module for an LHC pre-shower tracker detector based on GaAs, within a time-scale of two years. The module will be compatible with the design of the proposed pre-shower tracker using silicon detectors (DRDC/P3), and should allow direct substitution for comparison purposes.

  14. Antihydrogen annihilation reconstruction with the ALPHA silicon detector

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Hayano, R. S.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Yamazaki, Y.; Alpha Collaboration

    2012-08-01

    The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.

  15. Antihydrogen annihilation reconstruction with the ALPHA silicon detector

    CERN Document Server

    Andresen, G B; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D.R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Hayano, R S; Humphries, A J; Hydomako, R; Jonsell, S; Jorgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Yamazaki, Y

    2012-01-01

    The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.

  16. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  17. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  18. Line profile modelling for multi-pixel CZT detectors

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.

    2016-07-01

    Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).

  19. MC-128 current commutator for silicon strip detector tests

    CERN Document Server

    Anghinolfi, Francis; Chilingarov, A G; Kollegov, M; Ledenev, E K A; Ledenev, E Kuper A

    1996-01-01

    The MC-128 is a CAMAC module designed to simplify routine tests of multichannel semiconductor detectors. It was developed at Budker Institute of Nuclear Physics (BINP) Novosibirsk in collaboration with RD2 as part of the ATLAS SCT development program. The module provides 128 channels, offering sequential measurements of the currents flowing grom detector strips to a grounded Common Bus. Each input stays virtually connected to the Common Bus independently on whether its current is measured or not. Eight inputs are permanently connected to the Common Bus, allowing the connection of additional elements like guard ring structures. The total detector current can be measured as the current flowing through the Common Bus. Measurements are accessible via a CAMAC bus and in analog form via a front panel detector. Optionally, the MC 128 allows the measurement of the capacitance between each strip and the common (high voltage) electrode of the detector at 10 kHz frequency.

  20. A large area position sensitive X-ray detector for astrophysical observations

    NARCIS (Netherlands)

    Mels, W.A.; Lowes, P.; Buurmans, H.B.; Brinkman, A.C.; Naber, A.P.; Rook, A.

    1988-01-01

    A large area position sensitive X-ray detector has been developed for use in the coded mask imaging X-ray spectrometer (COMIS) aboard the USSR research module KVANT. The module was launched on March 31, 1987. The detector, having a sensitive area of 256 × 256 mm2, is a sealed multiwire proportional

  1. Equalized near maximum likelihood detector

    OpenAIRE

    2012-01-01

    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  2. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  3. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  4. COMMISSIONING AND DETECTOR PERFORMANCE GROUPS

    CERN Multimedia

    T. Camporesi

    P5 Commissioning activities The commissioning effort at the pit has made major progress since the last CMS week concerning the installation and operation of the off-detector electronics in USC. The progress has been much slower in the experi¬mental cavern due to the delay in the deployment of the infrastructure which should eventually allow safe powering-up of the front ends. Nevertheless, temporary power connections have allowed operation of slices of subdetectors at any given time. HF, HE, ECAL, DTs, RPCs and CSCs have carried out local commissioning tests with these temporary services. The status of hardware deployment in USC and on the towers/balconies is represented in the detailed table below.   Table 1: Status of installation of off-detector electronics. FEDs are detector dependent hardware modules which perform the first ‘colla¬tion’ of front-end data and send it to Central-data for event building. Tracker, ECAL, HCAL have their front end electronics mo...

  5. A highly sensitive optical detector for use in deep underwater.

    Science.gov (United States)

    Hanada, H.; Hayashino, T.; Ito, M.; Iwasaki, A.; Kawamorita, K.; Kawamoto, H.; Matsumoto, T.; Narita, S.; Takayama, T.; Tanaka, S.; Yamaguchi, A.; Aoki, T.; Mitsui, K.; Ohashi, Y.; Okada, A.; Fukawa, M.; Uehara, S.; Bolesta, J. W.; Gorham, P. W.; Kondo, S.; Learned, J. G.; Matsuno, S.; Mignard, M.; Mitiguy, R.; O'Connor, D. J.; Peterson, V. Z.; Roberts, A.; Rosen, M.; Stenger, V. J.; Takemori, D.; Wilkins, G.; Grieder, P. K. F.; Minkowski, P.; Kitamura, T.; Camerini, U.; Grogan, W.; Jaworski, M.; March, R.; Narita, T.; Nicklaus, D.

    1998-05-01

    The authors have developed an optical detector module for use in deep underwater experiments that will search for high-energy neutrinos from cosmic rays and astronomical sources. This module is sensitive to single photons, is operable under high pressure, functions automatically and is remotely controlled.

  6. Java Physics Generator and Analysis Modules

    CERN Document Server

    Ronan, Michael T

    2003-01-01

    A Java software framework allows modules written in different languages to be used in a high level Object-Oriented (OO) environment. Java Native Interfaces (JNI) for Linear Collider (LC) physics event generators are used in defining a common generator interface package. Portable-JNI for TESLA and Asian JLC detector simulation modules have been written for performing comparisons to the American LC detector simulation. Physics and detector Java analysis modules using prototype HEP class libraries provide high level OO study tools. Complete physics generation, parallel detector simulations and event analysis for full 500 fb$^{-1}$ simulated data samples are performed in single-pass batch jobs. Java histogram objects files are saved for final presentation using the Java Analysis Studio (JAS). The software architecture, JNI designs and overall performance is presented. Comparisons of American, Asian and European detector simulations of Higgsstrahlung events generated by Pandora, Pythia and Whizard are made.

  7. CZT imaging detectors for ProtoEXIST

    CERN Document Server

    Hong, J; Chammas, N; Copete, A; Baker, R G; Barthelmy, S D; Gehrels, N; Cook, W R; Burnham, J A; Harrison, F A; Collins, J; Craig, W W

    2006-01-01

    We describe the detector development for a balloon-borne wide-field hard X-ray (20 - 600 keV) telescope, ProtoEXIST. ProtoEXIST is a pathfinder for both technology and science of the proposed implementation of the Black Hole Finder Probe, Energetic X-ray Imaging Survey telescope (EXIST). The principal technology challenge is the development of large area, close-tiled modules of imaging CZT detectors (1000 cm2 for ProtoEXIST1). We review the updates of the detector design and package concept for ProtoEXIST1 and report the current development status of the CZT detectors, using calibration results of our basic detector unit - 2 x 2 x 0.5 cm CZT crystals with 2.5 mm pixels (8 x 8 array). The current prototype (Rev1) of our detector crystal unit (DCU) shows ~4.5 keV electronics noise (FWHM), and the radiation measurements show the energy resolution (FWHM) of the units is 4.7 keV (7.9%) at 59.5 keV, 5.6 keV (4.6%) at 122 keV, and 7.6 keV (2.1%) at 356 keV. The new (Rev2) DCU with revised design is expected to impro...

  8. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  9. Artefacts of X-ray area detectors caused by diffraction

    CERN Document Server

    Gollwitzer, Christian

    2013-01-01

    When an X-ray area detector based on a single crystalline material, for instance a state of the art hybrid-pixel detector, is illuminated from a point source by monochromatic radiation, a pattern of lines appears, which overlays the detected image. These lines can easily be found by scattering experiments with smooth patterns such as small angle X-ray scattering. The origin of this effect is Bragg reflection in the absorber of the detector. We present experimental images over a photon energy range from 3.4 keV to 10 keV together with a theoretical analysis. The patterns can be exploited to check the alignment of the detector surface to the direct beam, and of individual detector modules to each other for modular detectors, as well as for energy calibration of the radiation.

  10. Preliminary results on underground muon bundles observed in the Frejus proton-decay detector

    Science.gov (United States)

    Degrange, B.

    1985-01-01

    The proton-decay detector installed in the Modane Underground laboratory (4400 mwe) in the Frejus tunnel (French Alps) has recorded 80 880 single muon and 2 322 multi-muon events between March '84 and March '85 (6425 hours of active time). During this period, a part of this modular detector was running, while new modules were being mounted, so that the detector size has continuously increased. The final detector has been completed in May '85.

  11. The DØ detector

    Science.gov (United States)

    Abachi, S.; Abolins, M.; Acharya, B. S.; Adam, I.; Ahn, S.; Aihara, H.; Alvarez, G.; Alves, G. A.; Amos, N.; Anderson, W.; Antipov, Yu.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balderston, J.; Baldin, B.; Bantly, J.; Barasch, E.; Bartlett, J. F.; Bazizi, K.; Behnke, T.; Bezzubov, V.; Bhat, P. C.; Blazey, G.; Blessing, S.; Boehnlein, A.; Borcherding, F.; Borders, J.; Bozko, N.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoy, V.; Butler, J. M.; Callot, O.; Chakraborty, D.; Chekulaev, S.; Chen, J.; Chen, L.-P.; Chen, W.; Choudhary, B. C.; Christenson, J. H.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.; Cutts, D.; Dahl, O. I.; Daniels, B.; De, K.; Demarteau, M.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; Dixon, R.; Draper, P.; Ducros, Y.; Durston-Johnson, S.; Eartly, D.; Eberhard, P. H.; Edmunds, D.; Efimov, A.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eroshin, O.; Evdokimov, V.; Fahey, S.; Fanourakis, G.; Fatyga, M.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finley, D.; Finocchiaro, G.; Fisk, H. E.; Flattum, E.; Forden, G. E.; Fortner, M.; Franzini, P.; Fuess, S.; Gallas, E.; Gao, C. S.; Geld, T. L.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glicenstein, J. F.; Gobbi, B.; Goforth, M.; Good, M. L.; Goozen, F.; Gordon, H.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grossman, N.; Grudberg, P.; Guida, J. A.; Guida, J. M.; Guryn, W.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Hansen, S.; Hauptman, J.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hodel, K.; Hoftun, J. S.; Hubbard, J. R.; Huehn, T.; Huson, R.; Igarashi, S.; Ito, A. S.; James, E.; Jiang, J.; Johns, K.; Johnson, C. R.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jung, C. K.; Kahn, S.; Kanekal, S.; Kernan, A.; Kerth, L.; Kirunin, A.; Klatchko, A.; Klima, B.; Klochkov, B.; Klopfenstein, C.; Klyukhin, V.; Kochetkov, V.; Kohli, J. M.; Kononenko, W.; Kotcher, J.; Kotov, I.; Kourlas, J.; Kozelov, A.; Kozlovsky, E.; Krafczyk, G.; Krempetz, K.; Krishnaswamy, M. R.; Kroon, P.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lanou, R. E.; Laurens, P.; Lee-Franzini, J.; Li, J.; Li, R.; Li-Demarteau, Q. Z.; Lima, J. G. R.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y.-C.; Lloyd-Owen, D.; Lobkowicz, F.; Loken, S. C.; Lokos, S.; Lueking, L.; Maciel, A. K. A.; Madaras, R. J.; Madden, R.; Malamud, E.; Mangeot, Ph.; Manning, I.; Mansoulié, B.; Manzella, V.; Mao, H.-S.; Marcin, M.; Markosky, L.; Marshall, T.; Martin, H. J.; Martin, M. I.; Martin, P. S.; Marx, M.; May, B.; Mayorov, A.; McCarthy, R.; McKinley, J.; Mendoza, D.; Meng, X.-C.; Merritt, K. W.; Milder, A.; Mincer, A.; Mondal, N. K.; Montag, M.; Mooney, P.; Mudan, M.; Mulholland, G. T.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Nemethy, P.; Nešić, D.; Ng, K. K.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Pang, M.; Para, A.; Park, C. H.; Partridge, R.; Paterno, M.; Peryshkin, A.; Peters, M.; Pi, B.; Piekarz, H.; Pischalnikov, Yu.; Pizzuto, D.; Pluquet, A.; Podstavkov, V.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Que, Y.-K.; Quintas, P. Z.; Rahal-Callot, G.; Raja, R.; Rajagopalan, S.; Rao, M. V. S.; Rasmussen, L.; Read, A. L.; Regan, T.; Repond, S.; Riadovikov, V.; Rijssenbeek, M.; Roe, N. A.; Rubinov, P.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Sculli, J.; Selove, W.; Shea, M.; Shkurenkov, A.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, D.; Smith, R. P.; Snow, G. R.; Snyder, S.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stampke, S.; Stephens, R.; Stevenson, M. L.; Stewart, D.; Stocker, F.; Stoyanova, D.; Stredde, H.; Streets, K.; Strovink, M.; Suhanov, A.; Taketani, A.; Tartaglia, M.; Taylor, J. D.; Teiger, J.; Theodosiou, G.; Thompson, J.; Tisserant, S.; Trippe, T. G.; Tuts, P. M.; Van Berg, R.; Vaz, M.; Vishwanath, P. R.; Volkov, A.; Vorobiev, A.; Wahl, H. D.; Wang, D.-C.; Wang, L.-Z.; Weerts, H.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J.; Willis, S.; Wimpenny, S. J.; Wolf, Z.; Womersley, J.; Wood, D. R.; Xia, Y.; Xiao, D.; Xie, P.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yang, M.-J.; Yoshikawa, C.; Youssef, S.; Yu, J.; Zeller, R.; Zhang, S.; Zhou, Y. H.; Zhu, Q.; Zhu, Y.-S.; Zieminska, D.; Zieminski, A.; Zinchenko, A.; Zylberstejn, A.; DØ Collaboration

    1994-01-01

    The DØ detector is a large general purpose detector for the study of short-distance phenomena in high energy antiproton-proton collisions, now in operation at the Fermilab Tevatron collider. The detector focusses upon the detection of electrons, muons, jets and missing transverse momentum. We describe the design and performance of the major elements of the detector, including the tracking chambers, transition radiation detector, liquid argon calorimetry and muon detection. The associated electronics, triggering systems and data acquisition systems are presented. The global mechanical, high voltage, and experiment monitoring and control systems which support the detector are described. We also discuss the design and implementation of software and software support systems that are specific to DØ.

  12. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  13. ATLAS inner detector performance

    CERN Document Server

    Gadomski, S

    2001-01-01

    The ATLAS Inner Detector consists of three subsystems using different tracking detector technologies: silicon pixels, silicon strips and straw tubes. The combination gives ATLAS a robust, hermetic and efficient tracking system, able to reconstruct tracks at the highest foreseen LHC luminosities. The inner detector provides vertex and momentum measurements, electron identification and some $K/\\pi$ separation. Since last year the beam pipe of ATLAS was changed, causing a redesign of the first tracking layer and a deterioration of the impact parameter resolutions.

  14. LHCb Detector Performance

    CERN Document Server

    AUTHOR|(CDS)2075808; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  15. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  16. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  17. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    CERN Document Server

    Kuntz, Katanya B; Song, Hongbin; Webb, James G; Mabrok, Mohamed A; Huntington, Elanor H; Yonezawa, Hidehiro

    2016-01-01

    Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation d...

  18. Detective quantum efficiency of electron area detectors in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Chen, S.; Henderson, R.; Faruqi, A.R. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom)

    2009-08-15

    Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV.

  19. Detective quantum efficiency of electron area detectors in electron microscopy.

    Science.gov (United States)

    McMullan, G; Chen, S; Henderson, R; Faruqi, A R

    2009-08-01

    Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV.

  20. Background radiation measurement with water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bertou, X., E-mail: bertou@cab.cnea.gov.a [CONICET/CNEA, Centro Atomico Bariloche (Argentina); Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malarguee (Argentina)

    2011-05-21

    Water Cherenkov Detectors have the nice property of being mostly calorimeters for cosmic ray induced electrons and photons, while providing a clear signal for muons. At large energy deposited in the detector, they observe small extended air showers. This makes them interesting detectors to study the background of cosmic ray secondaries. Using low threshold scaler counters, one can follow the flux of cosmic rays on top of the atmosphere, and/or study atmospheric effects on the cosmic ray shower development. In this paper, background data from the Pierre Auger Observatory are presented. These data are searched for short time-scale variation (one second scale, as expected from Gamma Ray Bursts), and larger time-scale variations, showing modulation effects due to Solar activity (Forbush decreases). Rapid changes in the background flux are also observed during the crossing of storms over the 3000 km{sup 2} of the ground array.

  1. ... ALICE forges ahead with further detectors

    CERN Multimedia

    2006-01-01

    Following the installation of the HMPID, the project has progressed swiftly with further detectors being lowered into the ALICE cavern. The first supermodule of the ALICE transition radiation detector was successfully installed on 10 October. The TRD collaborators from Germany standing next to the supermodule mounted in a rotating frame (bottom left corner) in the ALICE cavern. In the final configuration, 18 supermodules that make up the transition radiation detector will cylindrically surround the large time projection chamber in the central barrel of the ALICE experiment. Each supermodule is about 7 metre long and consists of 30 drift chambers in six layers. The construction of the modules is a collaboration between five institutes in Germany (Universities of Frankfurt and Heidelberg and Gesellschaft fuer Schwerionenforschung mbH in Darmstadt), Romania (NIPNE Bucharest) and Russia (JINR Dubna) with radiators (See 'Did you know?' section) produced at the University of Muenster, Germany. During the summer, ...

  2. Silicon detector technology development in India for the participation in international experiments

    Indian Academy of Sciences (India)

    Anita Topkar; S Praveenkumar; Bharti Aggarwal; S K Kataria; M D Ghodgaonkar

    2007-12-01

    A specific research and development program has been carried out by BARC in India to develop the technology for large area silicon strip detectors for application in nuclear and high energy physics experiments. These strip detectors will be used as pre-shower detector in the CMS experiment at LHC, CERN for 0/ rejection. The fabrication technology to produce silicon strip detectors with very good uniformity over a large area of ∼ 40 cm2, low leakage currents of the order of 10 nA/cm2 per strip and high breakdown voltage of >500 V has been developed by BARC. The production of detectors is already under way to deliver 1000 detector modules for the CMS and 90% production is completed. In this paper, research and development work carried out to develop the detector fabrication technology is briefly described. The performance of the silicon strip detectors produced in India is presented. The present status of the detector technology is discussed.

  3. Comparative analysis for dose verification of volumetric modulated arc therapy by Varian EPID and PTW Detector 729%Varian EPID和PTW Detector 729在容积旋转调强剂量验证中的比较分析

    Institute of Scientific and Technical Information of China (English)

    孟慧鹏; 孙小喆; 王昊; 孙劲松; 郑爱青; 梁克明

    2015-01-01

    The data of dose verification between Varian EPID and PTW Detector 729 is compared to discuss whether the statistics difference of gamma passing rates between the two methods exists. The RapidArc plans for different body sites of 30 patients undergoing radiation treatment with RapidArc technique were used for the generation of the two verification plans, with one for using the electronic portal imaging device (EPID) of Varian RapidArc systems (Varian medical systems), and the other for using the chamber array detector from PTW(PTW Detector 729). Seven comparative experiments were performed for each pair of the plans, which were measurements inside the target, inside the effective detection area, and the target with expansions of 5 mm,10 mm, 20 mm, 30 mm, and 50 mm, respectively. The gamma passing rate of 3%/3 mm andF-test were used in the quantitative analysis. No statistical difference between the two methods was found for the measurement of the area of target with 30 mm expansion (F=0.395,p>0.05), while statistical difference existed (p0.05),其余6组结果均有统计学差异(p<0.05).两种剂量验证方式各有利弊,对其结论进行比较分析可更全面保障调强放疗计划验证的准确性.

  4. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  5. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  6. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  7. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  8. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  9. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  10. The LDC detector concept

    Indian Academy of Sciences (India)

    Ties Behnke; LDC Concept Group

    2007-11-01

    In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force behind the LDC is the particle flow concept.

  11. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  12. The Gigaton Volume Detector in Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, A. [Institute for Nuclear Research, 60th October Anniversary prospect 7a, Moscow 117132 (Russian Federation); Aynutdinov, V., E-mail: aynutdin@yandex.r [Institute for Nuclear Research, 60th October Anniversary prospect 7a, Moscow 117132 (Russian Federation); Belolaptikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Berezhnev, S. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Bogorodsky, D.; Budnev, N. [Irkutsk State University, Irkutsk (Russian Federation); Danilchenko, I.; Domogatsky, G.; Doroshenko, A. [Institute for Nuclear Research, 60th October Anniversary prospect 7a, Moscow 117132 (Russian Federation); Dyachok, A. [Irkutsk State University, Irkutsk (Russian Federation); Dzhilkibaev, Zh. [Institute for Nuclear Research, 60th October Anniversary prospect 7a, Moscow 117132 (Russian Federation); Ermakov, G. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Fialkovsky, S. [Nizhni Novgorod State Technical University, Nizhni Novgorod (Russian Federation); Gaponenko, O. [Institute for Nuclear Research, 60th October Anniversary prospect 7a, Moscow 117132 (Russian Federation); Golubkov, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Gres' , O.; Gres' , T. [Irkutsk State University, Irkutsk (Russian Federation); Grishin, N. [Skobeltsyn Institute of Nuclear Physics MSU, Moscow (Russian Federation); Grishin, O. [Irkutsk State University, Irkutsk (Russian Federation); Klabukov, A. [Institute for Nuclear Research, 60th October Anniversary prospect 7a, Moscow 117132 (Russian Federation)

    2011-05-21

    The objective of the Baikal Project is the creation of a kilometer-scale high-energy neutrino observatory: the Gigaton Volume Detector (GVD) in Lake Baikal. Basic elements of the GVD - new optical modules, FADC readout units, and underwater communication systems - were investigated and tested in Lake Baikal with prototype strings in 2008-2010. We describe the results of prototype strings operation and review the preliminary design and expected sensitivity of the GVD telescope.

  13. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  14. Nanomechanical resonance detector

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  15. The PERDaix detector

    Energy Technology Data Exchange (ETDEWEB)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany); Kirn, Thomas, E-mail: kirn@physik.rwth-aachen.de [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany); Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhoever, Jens [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany)

    2012-12-11

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246 Multiplication-Sign 400 Multiplication-Sign 859 mm{sup 3}, a geometrical acceptance of 32 cm{sup 2}sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  16. The PERDaix detector

    Science.gov (United States)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman; Kirn, Thomas; Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhöver, Jens

    2012-12-01

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246×400×859 mm3, a geometrical acceptance of 32 cm2sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  17. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  18. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    Science.gov (United States)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  19. Inner detector alignment and top-quark mass measurement with the ATLAS detector

    CERN Document Server

    Moles-Valls, Regina

    This thesis is divided in two parts: one related with the alignment of the ATLAS Inner Detector tracking system and other with the measurement of the top-quark mass. Both topics are connected by the Globalχ2 fitting method. In order to measure the properties of the particles with high accuracy, the ID detector is composed by devices with high intrinsic resolution. If by any chance the position of the modules in the detector is known with worse precision than their intrinsic resolution this may introduce a distortion in the reconstructed trajectory of the particles or at least degrade the tracking resolution. The alignment is the responsible of determining the location of each module with high precision and avoiding therefore any bias in the physics results. During the commissioning of the detector, different alignment exercises were performed for preparing the Globalχ2 algorithm (the CSC , the FDR, weak modes studies,…). At the same time, the ATLAS detector was collecting million of cosmic rays which were...

  20. A silicon detector for neutrino physics

    CERN Document Server

    Kokkonen, J

    2002-01-01

    In order to demonstrate the feasibility of conducting future muon neutrino - tau neutrino oscillation searches using a high-resolution, large-area silicon microstrip detector, the Silicon TARget (STAR) detector was built. STAR was installed in the NOMAD short baseline neutrino oscillation experiment at the CERN SPS neutrino beam, where it recorded approximately 10000 neutrino interactions during the operation of the detector in the period 1997-98. It consists of five layers of silicon detectors interleaved with four layers of passive boron carbide as the target. The target mass is 45 kg, while the total silicon surface area is 1.14 square-meters and contains 32000 readout channels. The individual modules have a length of 72 cm, the longest built to date. The detection of tau particles, produced in tau neutrino charged-current interactions, would require a tracking detector with a precision of a few tens of microns in order to measure the position of the neutrino interaction vertex as well as the impact parame...

  1. Straw detector: 1 - Vacuum: 0

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  2. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  3. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  4. The Belle II Detector

    Science.gov (United States)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II detector is now under construction at the KEK laboratory in Japan. This project represents a substantial upgrade of the Belle detector (and the KEKB accelerator). The Belle II experiment will record 50 ab-1 of data, a factor of 50 more than that recorded by Belle. This large data set, combined with the low backgrounds and high trigger efficiencies characteristic of an e+e- experiment, should provide unprecedented sensitivity to new physics signatures in B and D meson decays, and in τ lepton decays. The detector comprises many forefront subsystems. The vertex detector consists of two inner layers of silicon DEPFET pixels and four outer layers of double-sided silicon strips. These layers surround a beryllium beam pipe having a radius of only 10 mm. Outside of the vertex detector is a large-radius, small-cell drift chamber, an ``imaging time-of-propagation'' detector based on Cerenkov radiation for particle identification, and scintillating fibers and resistive plate chambers used to identify muons. The detector will begin commissioning in 2017.

  5. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  6. Validation studies of the ATLAS pixel detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)]. E-mail: schultes@physik.uni-wuppertal.de; Becks, Karl-Heinz [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Flick, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Henss, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Imhaeuser, Martin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kersten, Susanne [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kind, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Lantzsch, Kerstin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Maettig, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Reeves, Kendall [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Weingarten, Jens [University of Bonn, Nussallee 12, 53115 Bonn (Germany)

    2006-09-01

    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here were obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS)

  7. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  8. A passive FPAA based RF scatter meteor detector

    CERN Document Server

    Popowicz, Adam; Bernacki, Krzysztof; Fietkiewicz, Karol

    2015-01-01

    In the article we present a hardware meteor detector. The detection principle is based on the electromagnetic wave reflection from the ionized meteor trail in the atmosphere. The detector uses the ANADIGM field programmable analogue array (FPAA), which is an attractive alternative for a typically used detecting equipment - a PC computer with dedicated software. We implement an analog signal path using most of available FPAA resources to obtain precise audio signal detection. Our new detector was verified in collaboration with the Polish Fireball Network - the organization which monitors meteor activity in Poland. When compared with currently used signal processing PC software employing real radio meteor scatter signals, our low-cost detector proved to be more precise and reliable. Due to its cost and efficiency superiority over the current solution, the presented module is going to be implemented in the planned distributed detectors system.

  9. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  10. Performance of GLD detector

    Indian Academy of Sciences (India)

    T Yoshioka

    2007-12-01

    Most of the important physics processes to be studied in the international linear collider (ILC) experiment have multi-jets in the final state. In order to achieve better jet energy resolution, the so-called particle flow algorithm (PFA) will be employed and there is a general consensus that PFA derives overall ILC detector design. Four detector concepts for the ILC experiment have been proposed so far in the world; the GLD detector that has a large inner calorimeter radius, which is considered to have an advantage for a PFA, is one of them. In this paper, general scheme and performance of the GLD-PFA will be presented.

  11. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  12. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  13. ATLAS Inner Detector Alignment

    CERN Document Server

    Bocci, A

    2008-01-01

    The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle collisions produced by the Large Hadron Collider at CERN. In order to achieve its physics goals, the ATLAS tracking requires that the positions of the silicon detector elements have to be known to a precision better than 10 μm. Several track-based alignment algorithms have been developed for the Inner Detector. An extensive validation has been performed with simulated events and real data coming from the ATLAS. Results from such validation are reported in this paper.

  14. Directional radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  15. Readout and Trigger for the AFP Detector at ATLAS Experiment

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2016-01-01

    AFP, the ATLAS Forward Proton consists of silicon detectors at 205 m and 217 m on each side of ATLAS. In 2016 two detectors in one side were installed. The FEI4 chips are read at 160 Mbps over the optical fibers. The DAQ system uses a FPGA board with Artix chip and a mezzanine card with RCE data processing module based on a Zynq chip with ARM processor running Linux. In this contribution we give an overview of the AFP detector with the commissioning steps taken to integrate with the ATLAS TDAQ. Furthermore first performance results are presented.

  16. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking regi...

  17. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N.C.

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  18. Novel Photo-Detectors and Photo-Detector Systems

    OpenAIRE

    Danilov, M.

    2008-01-01

    Recent developments in photo-detectors and photo-detector systems are reviewed. The main emphasis is made on Silicon Photo-Multipliers (SiPM) - novel and very attractive photo-detectors. Their main features are described. Properties of detectors manufactured by different producers are compared. Different applications are discussed including calorimeters, muon detection, tracking, Cherenkov light detection, and time of flight measurements.

  19. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  20. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  1. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  2. The LUX Prototype Detector

    CERN Document Server

    Akerib, D S; Bedikian, S; Bernstein, A; Bolozdynya, A; Bradley, A; Cahn, S; Carr, D; Chapman, J J; Clark, K; Classen, T; Curioni, A; Dahl, C E; Dazeley, S; deViveiros, L; Dragowsky, M; Druszkiewicz, E; Fiorucci, S; Gaitskell, R J; Hall, C; Faham, C; Holbrook, B; Kastens, L; Kazkaz, K; Kwong, J; Lander, R; Leonard, D; Malling, D; Mannino, R; McKinsey, D N; Mei, D; Mock, J; Morii, M; Nikkel, J; Phelps, P; Shutt, T; Skulski, W; Sorensen, P; Spaans, J; Steigler, T; Svoboda, R; Sweany, M; Thomson, J; Tripathi, M; Walsh, N; Webb, R; White, J; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    The LUX (Large Underground Xenon) detector is a two-phase xenon Time Projection Chamber (TPC) designed to search for WIMP-nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large ($>$1ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. In this paper we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 meter to be achieved in approximately two days and sustained for the duration of the testing period.

  3. The CLIC Detector Concept

    CERN Document Server

    Pitters, Florian Michael

    2016-01-01

    CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.

  4. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  5. GRAVITY detector systems

    Science.gov (United States)

    Mehrgan, Leander H.; Finger, Gert; Eisenhauer, Frank; Panduro, Johana

    2016-08-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the K-band. It will combine the AO corrected beams of the four VLT telescopes. In total, the GRAVITY instrument uses five eAPD detectors four for the infrared wavefront sensors of each telescope and one for the fringe tracker. In addition two Hawaii2RG arrays are installed, one for the acquisition camera and one for the spectrometer. The SAPHIRA eAPD array is a newly developed near-infrared detector with sub-electron noise performance at frame rates > 1Kfps. For all seven detectors the ESO common controller, NGC, is used. This paper presents an overview and comparison of GRAVITY detector systems and their final performances at the telescope

  6. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  7. Europe plans megaton detector

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    A group of French and Italian particle physicists hopes to carry on the long tradition of building large underground detectors by constructing a device deep under the Alps containing a million tonnes of extremely pure water.

  8. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  9. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  10. Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2007-01-01

    Te pixel detector samples. The results are used for the development of the large area X-ray and Gamma ray detector for the Atmosphere-Space Interactions Monitor (ASIM) planned for the ISS ESA Columbus module. Charge sharing measurements on detector samples with identical size and pixel geometry......In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and Cd...

  11. Experimental and simulation study of the behaviour and operation modes of MSGC+GEM detectors

    CERN Document Server

    Ageron, M; Barvich, T; Beaumont, W; Beckers, T; Bernier, K; Blüm, P; Boulogne, I; Bouvet, D; Brom, J M; Charles, F; Coffin, J; Contardo, D; Daubie, Evelyne; Didierjean, François; De Lentdecker, G; De Troy, J; Devroede, O; Erdmann, M; Ernenwein, J P; Fahrer, M; Flügge, G; Fontaine, J C; Geist, Walter M; Goerlach, U; Gottschalk, M; Helleboid, J M; Huss, D; Iacopi, F; Juillot, P; Kärcher, K; Kühn, F; Lounis, A; Maazouzi, C; Macke, D; Martin, C; Mirabito, L; Moreau, S; Müller, T; Neuberger, D; Nowack, A; Perriès, S; Ripp-Baudot, I; Röderer, F; Schulte, R; Shekhtman, L I; Simonis, H J; Struczinski, W; Tatarinov, A; Thümmel, W H; Udo, Fred; Van der Velde, C; Van Doninck, W K; Van Dyck, C; Vanlaer, P; Van Lancker, L; Weiler, T; Zander, A; Zghiche, A; Zhukov, V

    2002-01-01

    A small series production of detector modules made of MicroStrip Gas Counters (MSGC) and a Gas Electron Multiplier (GEM) foil has been exposed to a high-intensity hadron beam. We report about the reproductibility and stability of the detector responses and about the occurrence and consequences of discharges in the detector. The interdependence of the four voltage differences used in the detector has been studied by simulation and with X-ray measurements. Rate dependence of the signal amplitude is observed. The behaviour of the MSGC+GEM is compared to that of a state-of-the-art MSGC. Influence of various parameters on the detector response is investigated.

  12. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  13. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg, E.; Deyoung, T.; Edsjo, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; LOwder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-03-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B with an expected effective area for TeV neutrinos of {approx} 10{sup 4} m{sup 2}, has been taking data since 1997. Progress with calibration, investigation of ice properties, as well as muon and neutrino data analysis are described. The next stage 20-string detector AMANDA-II with {approx}800 PMTs will be completed in spring 2000.

  14. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  15. Phi factory detector requirements

    Energy Technology Data Exchange (ETDEWEB)

    Arisaka, K.; Atac, M.; Berg, R.; Buchanan, C.; Calvette, M.; Khazin, B.; Kinoshita, K.; Muller, T.; Ohshima, T.; Olsen, S.; Park, J.; Santoni, C.; Shirai, J.; Solodov, E.; Thompson, J.; Triggiani, G.; Ueno, K.; Yamamoto, H.; Detector and Simulation Working Group

    1991-08-01

    We identify the experimental problems and the conditions required for successful phi-factory operation, and show the range of detector parameters which, in conjunction with different machine designs, may meet these conditions. We started by considering, comparing and criticizing the Italian and Novosibirsk designs. With this discussion as a background, we defined the apparent experimental problems and detector constraints. In this article we summarize our understanding. (orig./HSI).

  16. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  17. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  18. Production chain of CMS pixel modules

    CERN Document Server

    2006-01-01

    The pictures show the production chain of pixel modules for the CMS detector. Fig.1: overview of the assembly procedure. Fig.2: bump bonding with ReadOut Chip (ROC) connected to the sensor. Fig.3: glueing a raw module onto the baseplate strips. Fig.4: glueing of the High Density Interconnect (HDI) onto a raw module. Fig.5: pull test after heat reflow. Fig.6: wafer sensor processing, Indium evaporation.

  19. Detectors on the drawing board

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  20. The SuperNEMO tracking detector

    CERN Document Server

    Cascella, M

    2015-01-01

    The SuperNEMO detector will search for neutrinoless double beta decay at the Modane Underground Laboratory on the French-Italian border. This decay mode, if observed, would be proof that the neutrino is its own antiparticle, would constitute evidence for total lepton number violation, and could allow a measurement of the absolute neutrino mass. The SuperNEMO experiment is designed to reach a half-life sensitivity of $10^{26}$ years corresponding to an effective Majorana neutrino mass of $50-100~$meV. The SuperNEMO detector design allows complete topological reconstruction of the double beta decay event enabling excellent levels of background rejection. In the event of a discovery, such topological measurements will be vital in determining the nature of the lepton number violating process. This reconstruction will be performed by a gaseous tracking detector, consisting of 2034 drift cells per module operated in Geiger mode. The tracker of the Demonstrator Module is currently under construction in the UK. This ...

  1. Second-order temporal modulation transfer functions.

    Science.gov (United States)

    Lorenzi, C; Soares, C; Vonner, T

    2001-08-01

    Detection thresholds were measured for a sinusoidal modulation applied to the modulation depth of a sinusoidally amplitude-modulated (SAM) white noise carrier as a function of the frequency of the modulation applied to the modulation depth (referred to as f'm). The SAM noise acted therefore as a "carrier" stimulus of frequency fm, and sinusoidal modulation of the SAM-noise modulation depth generated two additional components in the modulation spectrum: fm-f'm and fm+f'm. The tracking variable was the modulation depth of the sinusoidal variation applied to the "carrier" modulation depth. The resulting "second-order" temporal modulation transfer functions (TMTFs) measured on four listeners for "carrier" modulation frequencies fm of 16, 64, and 256 Hz display a low-pass segment followed by a plateau. This indicates that sensitivity to fluctuations in the strength of amplitude modulation is best for fluctuation rates f'm below about 2-4 Hz when using broadband noise carriers. Measurements of masked modulation detection thresholds for the lower and upper modulation sideband suggest that this capacity is possibly related to the detection of a beat in the sound's temporal envelope. The results appear qualitatively consistent with the predictions of an envelope detector model consisting of a low-pass filtering stage followed by a decision stage. Unlike listeners' performance, a modulation filterbank model using Q values > or = 2 should predict that second-order modulation detection thresholds should decrease at high values of f'm due to the spectral resolution of the modulation sidebands (in the modulation domain). This suggests that, if such modulation filters do exist, their selectivity is poor. In the latter case, the Q value of modulation filters would have to be less than 2. This estimate of modulation filter selectivity is consistent with the results of a previous study using a modulation-masking paradigm [S. D. Ewert and T. Dau, J. Acoust. Soc. Am. 108, 1181

  2. Time expansion chambers of the ALICE Transition Radiation Detector (TRD)

    CERN Multimedia

    2003-01-01

    The TRD is segmented into 18 sectors in the azimuthal angle. Each sector consists of 6 layers in the radial direction and is composed of 5 stacks in the longitudinal direction. This amounts to 540 individual detector modules with a total active area of roughly 750 m2 and 1.2 million readout channels. The largest module is 159 cm long and 120 cm wide.

  3. A Directional Gamma-Ray Detector Based on Scintillator Plates

    CERN Document Server

    Hanna, D; Boyle, P; MacLeod, A M L

    2015-01-01

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  4. The Upgrade of the ATLAS Inner Detector

    CERN Document Server

    Ferrere, D; The ATLAS collaboration

    2012-01-01

    With the Large Hadron Collider (LHC) successfully collecting data at 7 TeV and even at 8 TeV since April 2012, plans are actively advancing for a series of upgrades in phase with the three long shutdown periods leading to detector improvement. The ATLAS collaboration will upgrade at the next shutdown in 2013-2014 its semiconductor pixel tracking detector with a new Insertable BLayer (IBL) between the existing innermost pixel layer and the vacuum pipe of the LHC. The extreme operating conditions at this location led considering the development of new radiation hard pixel sensor technologies and a new front-end readout chip. The IBL community is currently working for producing modules with silicon planar and 3D technology towards the loading on 14 local stave structures as well as the integration around the beam pipe and in the ATLAS detector. The High-Luminosity LHC (HL-LHC) will eventually increase to about five times the LHC design-luminosity some 10-years from now requiring a complete Inner Detector replace...

  5. The ZEUS microvertex detector

    CERN Document Server

    Garfagnini, A

    1999-01-01

    A new vertex detector for the ZEUS experiment at HERA will be installed during the 1999-2000 shutdown, for the high-luminosity runs of HERA. It will allow to reconstruct secondary vertex tracks, coming from the decay of long-lived particles with a lifetime of about 10 sup - sup 1 sup 2 s, and improve the global momentum resolution of the tracking system. The interaction region will be surrounded with single-sided silicon strip detectors, with capacitive charge division: three double layers in the central region (600 detectors), and 4 'wheels' in the forward region (112 silicon planes). Due to the high number of readout channels, 512 readout strips per silicon plane in the barrel region and 480 in the forward part, and the large coverage of the vertex detector (almost 1 m long), the front-end electronics has to be placed on top of the detectors and has to be radiation tolerant since doses up to 2 kGy are expected near the interaction region. The HELIX chip has been chosen as analog chip with a low-noise, charg...

  6. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  7. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  8. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  9. -Regular Modules

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim

    2013-01-01

    Full Text Available We introduced and studied -regular modules as a generalization of -regular rings to modules as well as regular modules (in the sense of Fieldhouse. An -module is called -regular if for each and , there exist and a positive integer such that . The notion of -pure submodules was introduced to generalize pure submodules and proved that an -module is -regular if and only if every submodule of is -pure iff   is a -regular -module for each maximal ideal of . Many characterizations and properties of -regular modules were given. An -module is -regular iff is a -regular ring for each iff is a -regular ring for finitely generated module . If is a -regular module, then .

  10. Measurement of Photomultipier Plateau Curves and Single MIP response in the AD detector at ALICE

    CERN Document Server

    Sanchez Falero, Sebastian De Jesus

    2015-01-01

    The Alice Diffractive (AD) detector is a forward detector in the ALICE experiment at CERN. It is aimed to the triggering on diffractive events and extends the pseudorapidity coverage to about 4.9 < /n/ < 6.3. In this work, a PMT's efficiency plateau and single MIP response are measured using a replica of the detector's scintillator modules, electronic and data acquisition system and cosmic rays as particle source.

  11. Heavy DC sensing theory and double magnetic detector

    Institute of Scientific and Technical Information of China (English)

    任士焱; 张智杰; 周小雄

    2002-01-01

    On-line measurement of heavy dc current has been studied for many years, and devices based on magnetic modulator, magnetic amplifier, optic-fiber have been developed, but harsh environments made all of them are insufficient for on-line measurement. A new sensing theory using magnetic modulator and magnetic amplifier is discussed. The open-loop characteristic of the double detector has only one operating point corresponding to zero ampere turns. The double detector comparator possesses not only high precision, low drift, high linearity and good antimagnetic property from magnetic modulator comparators, but also the perfect stability and reliability from magnetic amplifiers. A double dc comparator with a ratio of 5 000A/1A has been constructed for testing and performance evaluation. The performance and test results show: The error of the double detector dc comparator measured with stable dc currents between 10% and 100% rated current is less than 5×10-5. The double detector dc comparator has successfully achieved rapid and accurate dc step response at 10 000A which is twice over the rated current, which shows the fire-new detector has perfect stability and reliability.

  12. OPERA: Electronic Detector

    CERN Document Server

    Jollet, C

    2010-01-01

    OPERA is an hybrid detector for the ni-tau appearance search in a direct way, and the Electronic Detectors (ED) have the crucial role of triggerring for the neutrino events and of localizing such an interaction inside the target. Another very important task of the ED is to identify the muon since only a correct matching of such a track with a track in the emulsion connected to the vertex of the event allows to reduce the charm background to the desired level. The ED, fully working since 2006, consist of a target tracker (scintillator strips) and a spectrometer (RPC and drift tubes). The different sub-detectors are de- scribed in the poster, as well as their performance both on Monte Carlo (MC) and real data.

  13. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  14. The LHCb Detector Upgrade

    CERN Document Server

    Schindler, H

    2013-01-01

    The LHCb collaboration presented a Letter of Intent (LOI) to the LHCC in March 2011 for a major upgrading of the detector during Long Shutdown 2 (2018) and intends to collect a data sample of 50/fb in the LHC and High-Luminosity-LHC eras. The aim is to operate the experiment at an instantaneous luminosity 2.5 times above the present operational luminosity, which has already been pushed to twice the design value. Reading out the detector at 40MHz allows to increase the trigger efficiencies especially for the hadronic decay modes. The physics case and the strategy for the upgrade have been endorsed by the LHCC. This paper presents briefly the physics motivations for the LHCb upgrade and the proposed changes to the detector and trigger.

  15. JSATS Detector Field Manual

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eric Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flory, Adam E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamarche, Brian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  16. JSATS Detector Field Manual

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eric Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flory, Adam E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamarche, Brian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  17. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  18. The AFP Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  19. Design of a large dynamic range readout unit for the PSD detector of DAMPE

    CERN Document Server

    Zhou, Yong; Sun, Zhiyu; Zhang, Yongjie; Fang, Fang; Chen, Junling; Hu, Bitao

    2016-01-01

    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Paricle Explorer (DAMPE), and a double-dynode readout has been developed. To verify this design, a prototype detector module has been constructed and tested with cosmic rays and heavy ion beams. The results match with the estimation and the readout unit could easily cover the required dynamic range.

  20. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

  1. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  2. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  3. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  4. Edgeless silicon pad detectors

    Science.gov (United States)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  5. Edgeless silicon pad detectors

    Energy Technology Data Exchange (ETDEWEB)

    Perea Solano, B. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: blanca.perea.solano@cern.ch; Abreu, M.C. [LIP and University of Algarve, 8000 Faro (Portugal); Avati, V. [CERN, CH-1211 Geneva 23 (Switzerland); Boccali, T. [INFN Sez. di Pisa and Scuola Normale Superiore, Pisa (Italy); Boccone, V. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Bozzo, M. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Capra, R. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Casagrande, L. [INFN Sez. di Roma 2 and Universita di Roma 2, Rome (Italy); Chen, W. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Eggert, K. [CERN, CH-1211 Geneva 23 (Switzerland); Heijne, E. [CERN, CH-1211 Geneva 23 (Switzerland); Klauke, S. [CERN, CH-1211 Geneva 23 (Switzerland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Maeki, T. [Helsinki Institute of Physics, Helsinki (Finland); Mirabito, L. [CERN, CH-1211 Geneva 23 (Switzerland); Morelli, A. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Niinikoski, T.O. [CERN, CH-1211 Geneva 23 (Switzerland); Oljemark, F. [Helsinki Institute of Physics, Helsinki (Finland); Palmieri, V.G. [Helsinki Institute of Physics, Helsinki (Finland); Rato Mendes, P. [LIP and University of Algarve, 8000 Faro (Portugal); Rodrigues, S. [LIP and University of Algarve, 8000 Faro (Portugal); Siegrist, P. [CERN, CH-1211 Geneva 23 (Switzerland); Silvestris, L. [INFN Sez. Di Bari, Bari (Italy); Sousa, P. [LIP and University of Algarve, 8000 Faro (Portugal); Tapprogge, S. [Helsinki Institute of Physics, Helsinki (Finland); Trocme, B. [Institut de Physique Nucleaire, Villeurbanne (France)

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in 'edgeless' planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5{+-}8{sub stat.}.{+-}6{sub syst.}) {mu}m.

  6. Radiation Detectors and Art

    Science.gov (United States)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  7. Double pass locking and spatial mode locking for gravitational wave detectors

    CERN Document Server

    Cusack, B J; Slagmolen, B; Vine, G D; Gray, M B; McClelland, D E

    2002-01-01

    We present novel techniques for overcoming problems relating to the use of high-power lasers in mode cleaner cavities for second generation laser interferometric gravitational wave detectors. Rearranging the optical components into a double pass locking regime can help to protect locking detectors from damage. Modulator thermal lensing can be avoided by using a modulation-free technique such as tilt locking, or its recently developed cousin, flip locking.

  8. Double pass locking and spatial mode locking for gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, Benedict J; Shaddock, Daniel A; Slagmolen, Bram J J; Vine, Glenn de; Gray, Malcolm B; McClelland, David E [Department of Physics, Faculty of Science, The Australian National University, ACT 0200 (Australia)

    2002-04-07

    We present novel techniques for overcoming problems relating to the use of high-power lasers in mode cleaner cavities for second generation laser interferometric gravitational wave detectors. Rearranging the optical components into a double pass locking regime can help to protect locking detectors from damage. Modulator thermal lensing can be avoided by using a modulation-free technique such as tilt locking, or its recently developed cousin, flip locking.

  9. The Upgraded D0 Detector

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahmed, S N; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, J T; Anderson, S; Andrieu, B; Angstadt, R; Anosov, V; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Badaud, F; Baden, A; Baffioni, S; Bagby, L; Baldin, B; Balm, P W; Banerjee, P; Banerjee, S; Barberis, E; Bardon, O; Barg, W; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bhattacharjee, M; Baturitsky, M A; Bauer, D; Bean, A; Baumbaugh, B; Beauceron, S; Begalli, M; Beaudette, F; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Beutel, D; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Bishoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Bockenthein, E; Bodyagin, V; Böhnlein, A; Boeriu, O; Bolton, T A; Bonamy, P; Bonifas, D; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Bowden, M; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, D; Butler, J M; Cammin, J; Caron, S; Bystrický, J; Canal, L; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Chi, E; Chiche, R; Cho, D K; Choate, R; Choi, S; Choudhary, B; Chopra, S; Christenson, J H; Christiansen, T; Christofek, L; Churin, I; Cisko, G; Claes, D; Clark, A R; Clement, B; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Das, M; Davies, B; Davies, G; Davis, G A; Davis, W; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; de La Taille, C; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Delsart, P A; Del Signore, K; De Maat, R; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doets, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dvornikov, O; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fagan, J; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferapontov, A V; Ferbel, T; Ferreira, M J; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fitzpatrick, T; Flattum, E; Fleuret, F; Flores, R; Foglesong, J; Fortner, M; Fox, H; Franklin, C; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Gillberg, D; Geurkov, G; Ginther, G; Gobbi, B; Goldmann, K; Golling, T; Gollub, N; Golovtsov, V L; Gómez, B; Gómez, G; Gómez, R; Goodwin, R W; Gornushkin, Y; Gounder, K; Goussiou, A; Graham, D; Graham, G; Grannis, P D; Gray, K; Greder, S; Green, D R; Green, J; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gu, W; Guglielmo, J; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggard, E; Haggerty, H; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hance, R; Hanagaki, K; Hanlet, P; Hansen, S; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hazen, E; Hebbeker, T; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Houben, P; Hu, Y; Huang, J; Huang, Y; Hynek, V; Huffman, D; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jacquier, Y; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jayanti, R; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Jouravlev, N I; Juárez, M; Juste, A; Kaan, A P; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Kalmani, S D; Karmanov, D; Kasper, J; Katsanos, I; Kau, D; Kaur, R; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Kim, K H; Kim, T J; Kirsch, N; Klima, B; Klute, M; Kohli, J M; Konrath, J P; Komissarov, E V; Kopal, M; Korablev, V M; Kostritskii, A V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Kuznetsov, O; Krane, J; Kravchuk, N; Krempetz, K; Krider, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kubinski, R; Kuchinsky, N; Kuleshov, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Kuznetsov, V E; Kwarciany, R; Lager, S; Lahrichi, N; Landsberg, G L; Larwill, M; Laurens, P; Lavigne, B; Lazoflores, J; Le Bihan, A C; Le Meur, G; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leitner, R; Leonidopoulos, C; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Lindenmeyer, C; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Litmaath, M; Lizarazo, J; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lü, J; Lubatti, H J; Lucotte, A; Lueking, L; Luo, C; Lynker, M; Lyon, A L; Machado, E; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Maity, M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Manakov, V; Mao, H S; Maravin, Y; Markley, D; Markus, M; Marshall, T; Martens, M; Martin, M; Martin-Chassard, G; Mattingly, S E K; Matulik, M; Mayorov, A A; McCarthy, R; McCroskey, R; McKenna, M; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A S; Mendes, A; Mendoza, D; Mendoza, L; Meng, X; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miao, C; Miettinen, H; Mihalcea, D; Mikhailov, V; Miller, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Moulik, T; Muanza, G S; Mostafa, M; Moua, S; Mulders, M; Mundim, L; Mutaf, Y D; Nagaraj, P; Nagy, E; Naimuddin, M; Nang, F; Narain, M; Narasimhan, V S; Narayanan, A; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neuenschwander, R T; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nozdrin, A; Nunnemann, T; Nurczyk, A; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Olis, D; Oliveira, N; Olivier, B; Olsen, J; Oshima, N; Oshinowo, B O; Oteroy-Garzon, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Pérez, E; Peters, O; Petroff, P; Petteni, M; Phaf, L; Piegaia, R; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompos, A; Polosov, P; Pope, B G; Popkov, E; Porokhovoy, S; Prado da Silva, W L; Pritchard, W; Prokhorov, I; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Ramberg, E; Ramirez-Gomez, R; Rani, K J; Ranjan, K; Rao, M V S; Rapidis, P A; Rapisarda, S; Raskowski, J; Ratoff, P N; Ray, R E; Reay, N W; Rechenmacher, R; Reddy, L V; Regan, T; Renardy, J F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Roco, M T; Rotolo, C; Royon, C; Rubinov, P; Ruchti, R; Rucinski, R; Rud, V I; Rusakovich, N; Russo, P; Sabirov, B; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Satyanarayana, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shankar, H C; Shary, V; Shchukin, A A; Sheahan, P; Shephard, W D; Shivpuri, R K; Shishkin, A A; Shpakov, D; Shupe, M; Sidwell, R A; Simák, V; Sirotenko, V I; Skow, D; Skubic, P L; Slattery, P F; Smith, D E; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Souza, M; Spartana, N; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stefanik, A; Steinberg, J L; Steinbruck, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tentindo-Repond, S; Tamburello, P; Taylor, W; Telford, P; Temple, J; Terentyev, N K; Teterin, V; Thomas, E; Thompson, J; Thooris, B; Titov, M; Toback, D; Tokmenin, V V; Tolian, C; Tomoto, M; Tompkins, D; Toole, T; Torborg, J; Touze, F; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Utes, M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van den Berg, P J; Van Gemmeren, P; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Vaz, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vigneault, M; Villeneuve-Séguier, F; Vishwanath, P R; Vlimant, J R; Von Törne, E; Vorobyov, A; Vreeswijk, M; Vu-Anh, T; Vysotsky, V S; Wahl, H D; Walker, R; Wallace, N; Wang, L; Wang, Z M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; Wetstein, M; White, A; White, V; Whiteson, D; Wicke, D; Wijnen, T A M; Wijngaarden, D A; Wilcer, N; Willutzki, H; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Wu, Z; Xie, Y; Xu, Q; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yarema, R J; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Yoffe, F; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zanabria, M; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zmuda, T; Zutshi, V; Zviagintsev, S; Zverev, E G; Zylberstejn, A

    2005-01-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  10. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  11. Status of the KEDR detector

    CERN Document Server

    Anashin, V V; Baibusinov, B O; Balashov, V; Baldin, E M; Barkov, L M; Barladyan, A K; Barnyakov, M Y; Baru, S E; Bedny, I; Beilin, D M; Blinov, A E; Blinov, V E; Bondarev, D V; Bondar, A E; Buzykaev, A R; Cantoni, P; Chilingarov, A G; Dneprovsky, L V; Eidelman, S I; Epifanov, D A; Frabetti, P L; Gaidarev, P B; Groshev, V R; Karpov, S V; Kiselev, V A; Klimenko, S G; Kolachev, G M; Kononov, S A; Kozlov, V N; Kravchenko, E A; Kulikov, V F; Kurdadze, L M; Kuzmin, A S; Kuznecov, S A; Lanni, F; Lelchuk, M Y; Leontiev, L A; Levichev, E B; Malyshev, V M; Manfredi, P F; Maslennikov, A L; Minakov, G D; Nagaslaev, V P; Naumenkov, A I; Nikitin, S A; Nomerotski, A; Onuchin, A P; Oreshkin, S B; Ovechkin, R; Palombo, F; Peleganchuk, S V; Petrosyan, S S; Pivovarov, S V; Poluektov, A O; Pospelov, G E; Protopopov, I Ya; Re, V; Romanov, L V; Root, N I; Ruban, A A; Savinov, G A; Shamov, A G; Shatilov, D; Shubin, M A; Shusharo, A I; Shwartz, B A; Sidorov, V A; Skovpen, Y I; Smakhtin, V P; Snopkov, R G; Sokolov, A V; Soukharev, A M; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Y; Usov, Y V; Vorobyev, A I; Yushkov, A N; Zatcepin, A V; Zhilich, V N

    2002-01-01

    KEDR is a general-purpose detector for experiments at the VEPP-4M e sup + e sup - -collider in the energy range 2E=2.0-12 GeV. All detector subsystems (except the aerogel Cherenkov counters) have been installed into the detector at VEPP-4M. Some preliminary data have been taken in the energy region of the J/PSI meson. The tuning of the detector and the VEPP-4M collider is in progress. Preliminary results on the detector performance are presented. The future experimental program for the KEDR detector is discussed.

  12. Status of the KEDR detector

    Energy Technology Data Exchange (ETDEWEB)

    Anashin, V.V.; Aulchenko, V.M.; Baibusinov, B.O.; Balashov, V.; Baldin, E.M.; Barkov, L.M.; Barladyan, A.K.; Barnyakov, M.Yu.; Baru, S.E.; Bedny, I.V.; Beilin, D.M.; Blinov, A.E.; Blinov, V.E.; Bondarev, D.V.; Bondar, A.E.; Buzykaev, A.R.; Cantoni, P.; Chilingarov, A.G.; Dneprovsky, L.V.; Eidelman, S.I.; Epifanov, D.A.; Frabetti, P.L.; Gaidarev, P.B.; Groshev, V.R.; Karpov, S.V.; Kiselev, V.A.; Klimenko, S.G.; Kolachev, G.M.; Kononov, S.A.; Kozlov, V.N.; Kravchenko, E.A.; Kulikov, V.F.; Kurdadze, L.M.; Kuzmin, A.S.; Kuznecov, S.A.; Lanni, F.; Lelchuk, M.Yu.; Leontiev, L.A.; Levichev, E.B.; Malyshev, V.M.; Manfredi, P.F.; Maslennikov, A.L.; Minakov, G.D.; Nagaslaev, V.P.; Naumenkov, A.; Nikitin, S.A.; Nomerotsky, A.; Onuchin, A.P.; Oreshkin, S.B.; Ovechkin, R.; Palombo, F.; Peleganchuk, S.V.; Petrosyan, S.S.; Pivovarov, S.V.; Poluektov, A.O.; Pospelov, G.E.; Protopopov, I.Ya.; Re, V.; Romanov, L.V.; Root, N.I.; Ruban, A.A.; Savinov, G.A.; Shamov, A.G.; Shatilov, D.; Shubin, M.A.; Shusharo, A.I.; Shwartz, B.A.; Sidorov, V.A.; Skovpen, Yu.I.; Smakhtin, V.P.; Snopkov, R.G.; Sokolov, A.V.; Soukharev, A.M.; Talyshev, A.A.; Tayursky, V.A.; Telnov, V.I.; Tikhonov, Yu.A. E-mail: tikhonov@cppm.in2p3.fr; Todyshev, K.Yu.; Usov, Yu.V.; Vorobyev, A.I.; Yushkov, A.N.; Zatcepin, A.V.; Zhilich, V.N

    2002-02-01

    KEDR is a general-purpose detector for experiments at the VEPP-4M e{sup +}e{sup -}-collider in the energy range 2E=2.0-12 GeV. All detector subsystems (except the aerogel Cherenkov counters) have been installed into the detector at VEPP-4M. Some preliminary data have been taken in the energy region of the J/{psi} meson. The tuning of the detector and the VEPP-4M collider is in progress. Preliminary results on the detector performance are presented. The future experimental program for the KEDR detector is discussed.

  13. GEM Module Design for the ILD TPC

    CERN Document Server

    Benke, T; Münnich, A; Zenker, K

    2013-01-01

    A Time Projection Chamber (TPC) using micro-pattern gas detectors is planned as the main tracking device for a detector at the next Linear Collider. A novel support structure for Gas Electron Multipliers (GEMs), which minimizes the material and improves the flatness of the foils, has been developed and tested with multiple GEM modules in a large TPC prototype at DESY. Reducing dead material at the GEM module boundaries improves the field homogeneity. In addition, it was shown in simulation that a field shaping ring at the border of the module can improve the charge collection in regions with non-homogeneous fields. This shaping wire was integrated into the module design and a successful test beam campaign with three modules has been carried out. First results regarding resolution and field distortions will be discussed.

  14. Readout scheme for the Baby-MIND detector

    CERN Document Server

    Noah, Etam; Cadoux, F; Favre, Y; Martinez, B; Nicola, L; Parsa, S; Rayner, M; Antonova, M; Fedotov, S; Izmaylov, A; Kleymenova, A; Khabibullin, M; Khotyantsev, A; Kudenko, Y; Likhacheva, V; Mefodiev, A; Mineev, O; Ovsiannikova, T; Shaykhiev, A; Suvorov, S; Yershov, N; Tsenov, R

    2016-01-01

    A readout scheme has been designed for the plastic scintillator bars of the Baby-MIND detector modules. This spectrometer will measure momentum and identify the charge of 1 GeV/c muons with magnetized iron plates interleaved with detector modules. One challenge the detector aims to address is that of keeping high charge identification efficiencies for momenta below 1 GeV/c where multiple scattering in the iron plates degrades momentum resolution. A front-end board has been developed, with 3 CITIROC readout chips per board and up to 96 channels. Hamamatsu MPPCs type S12571-025C photosensors were chosen for readout of wavelength shifting fibers embedded in plastic scintillators. Procurement of the MPPCs has been carried out to instrument 3000 channels in total. Design choices and first results of this readout scheme are presented.

  15. Performance comparison of MoNA and LISA neutron detectors

    Science.gov (United States)

    Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse

    2010-11-01

    In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.

  16. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O' CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  17. IceCube: A Cubic Kilometer Radiation Detector

    OpenAIRE

    Klein, S.; IceCube Collaboration

    2008-01-01

    IceCube is a 1 km^3 neutrino detector now being built at the Amundsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate \

  18. An Uncoventional Approach for a Straw Tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F; Giardoni, M; La Monaca, A; Mensitieri, G.; Ortenzi, B; Pallotta, M.

    2004-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  19. Diamond Pixel Detectors and 3D Diamond Devices

    Science.gov (United States)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  20. CZT Detector and HXI Development at CASS/UCSD

    Science.gov (United States)

    Rothschild, Richard E.; Tomsick, John A.; Matteson, James L.; Pelling, Michael R.; Suchy, Slawomir

    2006-06-01

    The scientific goals and concept design of the Hard X-ray Imager (HXI) for MIRAX are presented to set the context for a discussion of the status of the HXI development. Emphasis is placed upon the RENA ASIC performance, the detector module upgrades, and a planned high altitude balloon flight to validate the HXI design and performance in a near-space environment.

  1. Running experience with the DELPHI pixel detector reflections on design characteristics and system features

    CERN Document Server

    Heuser, J M

    1999-01-01

    The DELPHI experiment at LEP is the first collider experiment with hybrid pixel detectors contributing to its track reconstruction. The pixel detector has been installed in 1996 with the final DELPHI silicon tracker, an assembly of microstrip, ministrip and pixel detectors optimized for the operation at LEP2. It was completed for the physics period in 1997. The pixel detector comprises 1.2 million detector cells of 330*330 mu m/sup 2/. 152 detector modules are arranged in 4 inclined cone-shaped layers which cover polar angles from 10 degrees to 25 degrees . Experience on the system's features has been gained during three years of operation. The article intends to provide information on positive and critical aspects which might be useful for designers of pixel detector systems in forthcoming experiments. (4 refs).

  2. Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, Willy; /SLAC

    2005-07-06

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

  3. The MU-RAY detector for muon radiography of volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Anastasio, A. [INFN-Napoli (Italy); Ambrosino, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Basta, D. [INFN-Napoli (Italy); Bonechi, L. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); Brianzi, M. [Università degli Studi di Firenze, Firenze (Italy); Bross, A. [Fermilab (United States); Callier, S. [LAL, Orsay (France); Caputo, A. [INGV Osservatorio Vesuviano, Napoli (Italy); Ciaranfi, R. [INFN-Firenze (Italy); Cimmino, L. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); D' Alessandro, R. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); D' Auria, L. [INGV Osservatorio Vesuviano, Napoli (Italy); La Taille, C. de [LAL, Orsay (France); Energico, S. [CNR- SPIN, Napoli (Italy); INFN-Napoli (Italy); Garufi, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Giudicepietro, F. [INGV Osservatorio Vesuviano, Napoli (Italy); Lauria, A. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Macedonio, G.; Martini, M. [INGV Osservatorio Vesuviano, Napoli (Italy); Masone, V. [Università Federico II, Napoli (Italy); and others

    2013-12-21

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m{sup 2} prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented.

  4. submitter The TORCH detector R&D;: Status and perspectives

    CERN Document Server

    Gys, T; Castillo García, L; Cussans, D; Föhl, K; Forty, R; Frei, C; Gao, R; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment upgrade. TORCH is using plates of quartz radiator in a modular design. A fraction of the Cherenkov photons produced by charged particles passing through this radiator propagate by total internal reflection, they emerge at the edges and are subsequently focused onto fast, position-sensitive single-photon detectors. The recorded position and arrival time of the photons are used to precisely reconstruct their trajectory and propagation time in the quartz. The on-going R&D; programme aims at demonstrating the TORCH basic concept through the realization of a full detector module and has been organized on the following main development lines: micro-channel plate photon detectors featuring the required granularity and lifetime, dedicated fast front-end electronics preserving the picosecond timing information provided by single p...

  5. Characterization of an in-vacuum PILATUS 1M detector

    CERN Document Server

    Wernecke, Jan; Müller, Peter; Krumrey, Michael

    2013-01-01

    A dedicated in-vacuum X-ray detector based on the hybrid-pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of PTB at the electron storage ring BESSY II in Berlin. Due to its windowless operation, the detector can be used in the entire photon energy range of the beamline from from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS (ASAXS) at absorption edges of light elements. The radiometric and geometric properties of the detector like quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. First grazing incidence SAXS (GISAXS) results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  6. Neutron detector array at IUAC: Design features and instrumentation developments

    Indian Academy of Sciences (India)

    P Sugathan; A Jhingan; K S Golda; T Varughese; S Venkataramanan; N Saneesh; V V Satyanarayana; S K Suman; J Antony; Ruby Shanti; K Singh; S K Saini; A Gupta; A Kothari; P Barua; Rajesh Kumar; J Zacharias; R P Singh; B R Behera; S K Mandal; I M Govil; R K Bhowmik

    2014-11-01

    The characteristics and performance of the newly commissioned neutron detector array at IUAC are described. The array consists of 100 BC501 liquid scintillators mounted in a semispherical geometry and are kept at a distance of 175 cm from the reaction point. Each detector is a 5″ × 5″ cylindrical cell coupled to 5″ diameter photomultiplier tube (PMT). Signal processing is realized using custom-designed home-made integrated electronic modules which perform neutron–gamma discrimination using zero cross timing and time-of-flight (TOF) technique. Compact custom-built high voltage power supply developed using DC–DC converters are used to bias the detector. The neutrons are recorded in coincidence with fission fragments which are detected using multi-wire proportional counters mounted inside a 1m diameter SS target chamber. The detectors and electronics have been tested off-line using radioactive sources and the results are presented.

  7. Test results on silicon micro-strip detectors for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, J.; Dorfan, D.E.; Dubbs, T.; Grillo, A.A.; Kashigin, S.; Kroeger, W.; Pulliam, T.; Rahn, J.; Rowe, W.A.; Sadrozinski, H.F.-W.; Seiden, A.; Spencer, E.; Webster, A.; Wichmann, R.; Wilder, M.; Williams, D.C.; Dane, J.; Lankford, A.; Pier, S.; Schmid, B.; Bonino, R.; Couyoumtzelis, C.; Demierre, P.; Fujita, K.; Handa, T.; Iwata, Y.; Ohsugi, T.; Iwasaki, H.; Kohriki, T.; Kondo, T.; Terada, S.; Unno, Y.; Takashima, R.; Ciocio, A.; Collins, T.; Emes, J.; Gilchriese, M.G.D.; Haber, C.; Kipnis, I.; Shapiro, M.; Siegrist, J.; Spieler, H.; Moorhead, G.; Nakao, M.; Tamura, N.; Dabrowski, W.; Idzik, M.; Godlewski, J.; Grewal, A.; Nickerson, R.; Wastie, R.; Gao, Y.; Gonzalez, S.; Walsh, A.M.; Feng, Z. [California Univ., Santa Cruz, CA (United States). Inst. for Particle Phys.]|[California Univ., Irvine, CA (United States)]|[Geneva Univ. (Switzerland)]|[Hiroshima Univ. (Japan)]|[KEK, Tsukuba (Japan)]|[Kyoto Univ. Education (Japan)]|[Lawrence Berkeley National Lab., CA (United States)]|[Melbourne Univ. (Australia)]|[Okayama Univ. (Japan)]|[IPNT, Krakow (Poland)]|[INP, Krakow (Poland)]|[Oxford Univ. (United Kingdom)]|[Wisconsin Univ., Madison, WI (United States)

    1997-02-11

    We report results from beam tests on silicon microstrip detectors using a binary readout system for ATLAS. The data were collected during the H8 beam test at CERN in August/September 1995 and the KEK test in February 1996. The binary modules tested had been assembled from silicon microstrip detectors of different layout and from front-end electronics chips of different architecture. The efficiency, noise occupancy and position resolution were determined as a function of the threshold setting for various bias voltages and angles of incidence for both irradiated and non-irradiated detectors. In particular, the high spatial resolution of the beam telescope allowed the evaluation of the performance as a function of the track location in between detector strips. (orig.).

  8. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  9. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  10. Sensitive hydrogen leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  11. B-factory detectors

    CERN Document Server

    Marlow, D R

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B sup 0->J/PSI K sub S decays and related modes.

  12. The BABAR Detector

    CERN Document Server

    CERN. Geneva

    2002-01-01

    BABAR, the detector for the SLAC PEP-II asymmetric e+e- B Factory operating at the upsilon 4S resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  13. CALIBRATION OF PHOSWICH DETECTORS

    NARCIS (Netherlands)

    LEEGTE, HKW; KOLDENHOF, EE; BOONSTRA, AL; WILSCHUT, HW

    1992-01-01

    Two important aspects for the calibration of phoswich detector arrays have been investigated. It is shown that common gate ADCs can be used: The loss in particle identification due to fluctuations in the gate timing in multi-hit events can be corrected for by a simple procedure using the measured ti

  14. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  15. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  16. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  17. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  18. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  19. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and fluoresc

  20. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  1. High-resolution ionization detector and array of such detectors

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  2. Correlation based rotation-invariant corner detector

    Science.gov (United States)

    Mazzaferri, Javier; Ledesma, Silvia

    2008-04-01

    In this work we introduce a new approach for corner extraction. The method that allows the corner extraction with rotation invariance is composed by a spiral phase function and a binary amplitude. The designed function can be easily implemented as a filter for a Vander Lugt-like optical correlator. A final image obtained with the detector presents intensity peaks in each corner location. Numerical simulation has been performed on a set of synthetic scenes, modulated either in amplitude or phase. Results that show the very good performance of the method are shown.

  3. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  4. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  5. A new design of a highly segmented neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbeck, Magdalena [Universitaet Koblenz-Landau, Institut fuer Integrierte Naturwissenschaften - Physik, 56070 Koblenz (Germany)

    2013-07-01

    Since neutrons carry no electric charge and therefore do not interact with matter by means of the Coulomb force, the detection of neutrons is particularly challenging. Progress in the development of neutron detectors is of great importance for neutron physics due to the poor data situation compared to experiments with protons. Disadvantages of previously used neutron detectors are their low detection efficiency and counting rate capability. The neutron detection efficiency of about 1 %/cm for typical plastic scintillators necessitates a high detector volume and the counting rate capability of applied photomultipliers of about 1 MHz limits the number of detectable events. Both the detector volume and the number of applied photomultipliers are mainly restricted by the available budget. A new design of a scintillation-based neutron detector is presented. Replacement of conventional photomultiplier tubes by low-prized silicon photon counters and usage of standardized components allow the development of a detector with a high volume and a high segmentation. Due to the planned volume of (0.96 m){sup 3} a detection efficiency close to 100 % can be achieved, at the same time the counting rate load on each photon counter can be kept low because of the high segmentation with single modules with a squared diameter of 2 cm. The neutron detector will be integrated into the experimental setup of the A1 collaboration at MAMI, Mainz, and will e.g. enable precise determination of the neutron's form factors.

  6. Position sensitive solid state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schnatterly, S.E.; Husk, D.

    1986-05-15

    Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.

  7. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  8. ATLAS Detector : Performance and Upgrades

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2016-01-01

    Describe the ATLAS detector and summarize most relevant and recent information about the detector performance in 2016 with LHC colliding bunches at sqrt(s)=13 TeV with luminosity above the nominal value. Describe the different upgrade phases previewed for the detector and main activities already ongoing.

  9. Characterizations of GEM detector prototype

    CERN Document Server

    INSPIRE-00522505; Rudra, Sharmili; Bhattacharya, P.; Sahoo, Sumanya Sekhar; Biswas, S.; Mohanty, B.; Nayak, T.K.; Sahu, P.K.; Sahu, S.

    2016-01-01

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  10. Characterisations of GEM detector prototype

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Rajendra Nath [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, West Bengal (India); Nanda, Amit [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Rudra, Sharmili [Department of Applied Physics, CU, 92, APC Road, Kolkata 700009, West Bengal (India); Bhattacharya, P.; Sahoo, Sumanya Sekhar [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Biswas, S., E-mail: saikat.ino@gmail.com [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Mohanty, B. [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Nayak, T.K. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, West Bengal (India); Sahu, P.K.; Sahu, S. [Institute of Physics, Sachivalaya Marg, P.O.: Sainik School, Bhubaneswar 751005, Odisha (India)

    2016-07-11

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  11. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  12. CIM—Compact intensity modulation

    Science.gov (United States)

    Bleuel, M.; Lang, E.; Gähler, R.; Lal, J.

    2008-07-01

    Compact intensity modulation (CIM), a new method to modulate the intensity of a neutron beam is demonstrated. CIM allows the production of arbitrary signals where the focus point can be chosen and changed without any constraints. A novel feature in this technique compared to spin echo techniques is that the neutron polarization is kept parallel or anti-parallel to the static fields during the passage through the magnetic fields and the beating pattern at the detector is produced by an amplitude modulation (AM) of the adiabatic RF-spin flippers rather than Larmor precession like in neutron spin echo (NSE) instruments; thus, the achievable contrast is very high and the instrument resolution can be changed very quickly. This gives the fascinating possibility at pulsed neutron sources to sweep the modulation frequency of the flippers in order to increase dynamic resolution range during the same neutron pulse.

  13. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  14. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  15. Future liquid Argon detectors

    CERN Document Server

    Rubbia, A

    2013-01-01

    The Liquid Argon Time Projection Chamber offers an innovative technology for a new class of massive detectors for rare-event detection. It is a precise tracking device that allows three-dimensional spatial reconstruction with mm-scale precision of the morphology of ionizing tracks with the imaging quality of a "bubble chamber", provides $dE/dx$ information with high sampling rate, and acts as high-resolution calorimeter for contained events. First proposed in 1977 and after a long maturing process, its holds today the potentialities of opening new physics opportunities by providing excellent tracking and calorimetry performance at the relevant multi-kton mass scales, outperforming other techniques. In this paper, we review future liquid argon detectors presently being discussed by the neutrino physics community.

  16. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  18. The LUCID detector

    CERN Document Server

    Lasagni Manghi, Federico; The ATLAS collaboration

    2015-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  19. UA1 central detector

    CERN Multimedia

    The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6125 sense wires allowed a spectacular 3-D interactive display of reconstructed physics events to be produced.

  20. Metrology with Unknown Detectors.

    Science.gov (United States)

    Altorio, Matteo; Genoni, Marco G; Somma, Fabrizia; Barbieri, Marco

    2016-03-11

    The best possible precision is one of the key figures in metrology, but this is established by the exact response of the detection apparatus, which is often unknown. There exist techniques for detector characterization that have been introduced in the context of quantum technologies but apply as well for ordinary classical coherence; these techniques, though, rely on intense data processing. Here, we show that one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the Cramér-Rao bound allowed by an unknown detector, and we present applications in polarimetry. Further, we show how this formalism provides a useful calculation tool in an estimation problem involving a continuous-variable quantum state, i.e., a quantum harmonic oscillator.

  1. Aerogel for FARICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R.; Gulevich, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Kuyanov, I.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Lopatin, S.A. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Ovtin, I.V.; Podgornov, N.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Porosev, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Predein, A.Yu.; Protsenko, R.S. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation)

    2014-12-01

    We present our current experience in preparation of focusing aerogels for the Focusing Aerogel RICH detector. Multilayer focusing aerogel tiles have been produced in Novosibirsk by a collaboration of the Budker Institute of Nuclear Physics and Boreskov Institute of Catalysis since 2004. We have obtained 2–3–4-layer blocks with the thickness of 30–45 mm. In 2012, the first samples of focusing blocks with continuous density (refractive index) gradient along thickness were produced. This technology can significantly reduce the contribution from the geometric factor of the radiator thickness to the resolution of the measured Cherenkov angle in the FARICH detector. The special installation was used for automatic control of reagents ratio during the synthesis process. The first samples were tested using the digital radiography method and on the electron beam with the FARICH prototype.

  2. Metrology with Unknown Detectors

    CERN Document Server

    Altorio, Matteo; Somma, Fabrizia; Barbieri, Marco

    2015-01-01

    The best possible precision is one of the key figures in metrology, but this is established by the exact response of the detection apparatus, which is often unknown. There exist techniques for detector characterisation, that have been introduced in the context of quantum technologies, but apply as well for ordinary classical coherence; these techniques, though, rely on intense data processing. Here we show that one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the Cram\\'er-Rao bound allowed by an unknown detector, and present applications in polarimetry. Further, we show how this formalism provide a useful calculation tool in an estimation problem involving a continuous-variable quantum state, i.e. a quantum harmonic oscillator.

  3. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  4. Detectors for the space telescope

    Science.gov (United States)

    Kelsall, T.

    1978-01-01

    This review of Space Telescope (ST) detectors is divided into two parts. The first part gives short summaries of detector programs carried out during the final planning stage (Phase B) of the ST and discusses such detectors as Photicon, the MAMA detectors, the CODACON, the University of Maryland ICCD, the Goddard Space Flight Center ICCD, and the 70 mm SEC TV sensor. The second part describes the detectors selected for the first ST flight, including the wide field/planetary camera, the faint object and high resolution spectrographs, and the high speed photometer.

  5. Biological detector and method

    Energy Technology Data Exchange (ETDEWEB)

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  6. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  7. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstrom, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg,E.; Deyoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren,A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark,S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold,M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; de, los, Heros, CP.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering,C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    1999-08-23

    The first stage of the AMANDA High Energy Neutrino Detectorat the South Pole, the 302 PMT array AMANDA-B with an expected effectivearea for TeV neutrinos of similar to 10(4) m(2), has been taking datasince 1997. Progress with calibration, investigation of ice properties,as well as muon and neutrino data analysis are described. The next stage20-string detector AMANDA-II with similar to 800 PMTs will be completedin spring 2000.

  8. The ALEPH detector

    CERN Document Server

    1988-01-01

    For detecting the direction and momenta of charged particles with extreme accuracy, the ALEPH detector had at its core a time projection chamber, for years the world's largest. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons from 1989 to 2000.

  9. LHCb velo detector

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 01 : L. to r.: D. Malinon, Summer Student, J. Libby, Fellow, J. Harvey, Head of CERN LHCb group, D. Schlatter, Head of the EP Division in front of the LHCb velo detector test beam (on the right). Photo 02 : L. to r.: J. Harvey, D. Schlatter, W. Riegler (staff), H.J. Hilke, LHCb Technical Coordinator in front of the muon chamber test beam

  10. Development of Portable Detectors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the “Contractor”) and Sense Holdings, Inc. (the “Participant”) was for the development of hand-held detectors with high sensitivity and selectivity for the detection of explosives, toxic industrial chemicals and materials, and other materials of interest for security applications. The two parties built a series of demonstration and prototype handheld sensors based upon micoelectromechanical systems (MEMS) with electronic readout.

  11. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  12. A New Generic Framework for Track Fitting in Complex Detector Systems

    CERN Document Server

    Höppner, C; Ketzer, B; Paul, S

    2009-01-01

    This paper presents a new framework for track fitting which is usable in a wide range of experiments, independent of the specific event topology, detector setup, or magnetic field arrangement. This goal is achieved through a completely modular design. Fitting algorithms are implemented as interchangeable modules. At present, the framework contains a validated Kalman filter. Track parameterizations and the routines required to extrapolate the track parameters and their covariance matrices through the experiment are also implemented as interchangeable modules. Different track parameterizations and extrapolation routines can be used simultaneously for fitting of the same physical track. Representations of detector hits are the third modular ingredient to the framework. The hit dimensionality and orientation of planar tracking detectors are not restricted. Tracking information from detectors which do not measure the passage of particles in a fixed physical detector plane, e.g. drift chambers or TPCs, is used with...

  13. Development of a detector (ALFA) to measure the absolute LHC luminosity at ATLAS

    CERN Document Server

    Mapelli, A; Ask, S; Barrillon, P; Blanchot, G; Blin, S; Braem, André; Cheiklali, C; de La Taille, C; Di Girolamo, B; Efthymiopoulos, I; Faustino, J; Fournier, D; Franz, S; Grafström, P; Gurriana, L; Haguenauer, M; Hedberg, V; Heller, M; Hoffmann, S; Iwanski, W; Joram, C; Kocnar, A; Lavigne, B; Lundberg, B; Maio, A; Maneira, M J P; Marques, C; Mjörnmark, U; Conde-Muíño, P; Puzo, P; Rijssenbeeck, M; Santos, J P; Saraiva, J G; Seguin-Moreau, N; Soares, S; Stenzel, H; Thioye, M; Valladolid-Gallego, E; Vorobel, V; 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications

    2008-01-01

    The ATLAS collaboration plans to determine the absolute luminosity of the CERN LHC at Interaction Point 1 by measuring the trajectory of protons elastically scattered at very small angles ($\\mu rad$). A scintillating fibre tracker system called ALFA (Absolute Luminosity For ATLAS) is proposed for this measurement. Detector modules will be placed above and below the LHC beam axis in roman pot units at a distance of 240 m on each side of the ATLAS interaction point. They allow the detectors to approach the beam axis to millimeter distance. Overlap detectors also based on the scintillating fibre technology, will measure the precise relative position of the two detector modules. Results obtained during beam tests at DESY and at CERN validate the detectors design and demonstrate the achievable resolution. We also report about radiation hardness studies of the scintillating fibres to estimate the lifetime of the ALFA system at different operating conditions of the LHC.

  14. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  15. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  16. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6125 sense wires allowed a spectacular 3-D interactive display of reconstructed physics events to be produced.

  17. The STAR PXL detector

    Science.gov (United States)

    Contin, G.

    2016-12-01

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Designed to extend the STAR measurement capabilities in the heavy flavor domain, it took data in Au+Au collisions, p+p and p+Au collisions at 0√sNN=20 GeV at RHIC, during the period 2014-2016. The PXL detector is based on 50 μm-thin MAPS sensors with a pitch of 20.7 μm. Each sensor includes an array of nearly 1 million pixels, read out in rolling shutter mode in 185.6 μs. The 170 mW/cm2 power dissipation allows for air cooling and contributes to reduce the global material budget to 0.4% radiation length on the innermost layer. Experience and lessons learned from construction and operations will be presented in this paper. Detector performance and results from 2014 Au+Au data analysis, demonstrating the STAR capabilities of charm reconstruction, will be shown.

  18. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    RPC detector calibration, HV scan Thanks to the high LHC luminosity and to the corresponding high number of muons created in the first part of the 2011 the RPC community had, for the first time, the possibility to calibrate every single detector element (roll).The RPC steering committee provided the guidelines for both data-taking and data analysis and a dedicated task force worked from March to April on this specific issue. The main goal of the RPC calibration was to study the detector efficiency as a function of high-voltage working points, fit the obtained “plateau curve” with a sigmoid function and determine the “best” high-voltage working point of every single roll. On 18th and 19th March, we had eight runs at different voltages. On 27th March, the full analysis was completed, showing that 60% of the rolls had already a very good fit with an average efficiency greater than 93% in the plateau region. To improve the fit we decided to take three more runs (15th April...

  19. Commissioning the SNO+ detector

    Science.gov (United States)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  20. Analysis of Gamma Rays and Cosmic Muons with a Single Detector

    CERN Document Server

    Bachri, Abdel G; Goldschmidt, Azriel

    2011-01-01

    We report on the construction and upgrade of a Lawrence Berkeley National Laboratory Cosmic Muons Detector. We modify the electronics and mechanics to achieve a highly efficient gamma-ray and cosmic-ray detector. Each detector module uses a one-inch-thick scintillator, attached to a photomultiplier tube (PMT) and mounted on a solid aluminum frame. The detector uses scintillation to transform passing radiation into detectable photons that are guided toward a photocathode surface of the PMT, triggering the release of photoelectrons that are then amplified to yield measurable electronic signals. The modules were connected to an electronics section that compared the signals from the two PMTs and logically determined if they were coincidence events. A data-collection device was added for faster and prolonged count rates. A cobalt-60, which produced two gamma rays and a beta particle has been used as a calibration source. To investigate the isotropic behavior of radiation, two detection modules were adjusted to dif...

  1. The STAR Vertex Position Detector

    CERN Document Server

    Llope, W J; Nussbaum, T; Hoffmann, G W; Asselta, K; Brandenburg, J D; Butterworth, J; Camarda, T; Christie, W; Crawford, H J; Dong, X; Engelage, J; Eppley, G; Geurts, F; Hammond, J; Judd, E; McDonald, D L; Perkins, C; Ruan, L; Scheblein, J; Schambach, J J; Soja, R; Xin, K; Yang, C

    2014-01-01

    The 2x3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2x19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event "start time" needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ~100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ~1 cm.

  2. New Dark Matter Detectors using DNA for Nanometer Tracking

    CERN Document Server

    Drukier, Andrzej; Spergel, David; Cantor, Charles; Church, George; Sano, Takeshi

    2012-01-01

    Weakly Interacting Massive Particles (WIMPs) may constitute most of the matter in the Universe. While there are intriguing results from DAMA/LIBRA, CoGeNT and CRESST-II, there is not yet a compelling detection of dark matter. The ability to detect the directionality of recoil nuclei will considerably facilitate detection of WIMPs by means of "annual modulation effect" and "diurnal modulation effect". Directional sensitivity requires either extremely large gas (TPC) detectors or detectors with a few nanometer spatial resolution. In this paper we propose a novel type of dark matter detector: detectors made of DNA could provide nanometer resolution for tracking, an energy threshold of 0.5 keV, and can operate at room temperature. When a WIMP from the Galactic Halo elastically scatters off of a nucleus in the detector, the recoiling nucleus then traverses thousands of strings of single stranded DNA (ssDNA) (all with known base sequences) and severs those ssDNA strands it hits. The location of the break can be ide...

  3. Quality control measurements for digital x-ray detectors.

    Science.gov (United States)

    Marshall, N W; Mackenzie, A; Honey, I D

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and

  4. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  5. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  6. VELO module characterisation Results from the Glasgow LHCb VELO module burn-in

    CERN Document Server

    Bates, A; Marinho, F; Parkes, C; Saavedra, A; Viret, S

    2007-01-01

    The LHCb VErtex LOcator (VELO) modules were constructed at Liverpool University and assembled into the VELO detector halves at CERN. Between these two stages each module was rigorously inspected, tested and thermally cycled in the Glasgow module burn-in setup. The results of the extensive tests are summarised in this note for each one of the tested VELO modules. Major results presented in this note are the full characterisation of the leakage currents, bad channels, signal to noise measurements and metrology correlations. There were multiple small problems that were identified through visual inspections of the modules and the feed back into the production process proved critical. As a result of the electrical and thermal tests one module was withheld from production and reserved as a spare module. In addition further studies are reported which were based on individual modules such as characterisation of the timing of the front end pulse shapes.

  7. Tilt angle dependence of the modulated interference effects in photo-elastic modulators

    Science.gov (United States)

    Talukder, Md. Abdul Ahad; Geerts, Wilhelmus J.

    2017-05-01

    The effect of the PEM tilt angle and incident polarization on the PEM interference is studied for a single axis photo-elastic modulator. The dc, 1ω , and 2ω components of the detector signal vary periodically as a function of PEM tilt angle. Although it is possible to adjust the PEM tilt angle to minimize the 1ω or 2ω detector signal at small tilt angles, it is not possible to null both of them simultaneously. For the case where no analyzer is used, the ac detector signals can be minimized simultaneously by adjusting the polarization angle of the light incident on the PEM and the PEM tilt angle. Direct observations of the detector signal indicate that the effects of refraction index and thickness variations are opposite consistent with a lower polarizability for compressive strain of the modulator.

  8. Tilt angle dependence of the modulated interference effects in photo-elastic modulators

    Directory of Open Access Journals (Sweden)

    Md. Abdul Ahad Talukder

    2017-05-01

    Full Text Available The effect of the PEM tilt angle and incident polarization on the PEM interference is studied for a single axis photo-elastic modulator. The dc, 1ω, and 2ω components of the detector signal vary periodically as a function of PEM tilt angle. Although it is possible to adjust the PEM tilt angle to minimize the 1ω or 2ω detector signal at small tilt angles, it is not possible to null both of them simultaneously. For the case where no analyzer is used, the ac detector signals can be minimized simultaneously by adjusting the polarization angle of the light incident on the PEM and the PEM tilt angle. Direct observations of the detector signal indicate that the effects of refraction index and thickness variations are opposite consistent with a lower polarizability for compressive strain of the modulator.

  9. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.

    2017-01-09

    Precise knowledge of an optical device\\'s frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity\\'s optical response as a function of modulation frequency, which is also used to determine the modulator\\'s frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity\\'s characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  10. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles and generate collisions between them at extraordinary energies. The collisions give birth to showers of new particles. What are they? In order to find out, physicists slip into the role of detectives thanks to the detectors. At the next Discovery Monday you will find out about the different methods used at CERN to detect particles. A cloud chamber will allow you to see the tracks of cosmic particles live. You will also be given the chance to see real modules for the ATLAS and for the LHCb experiments. Strange materials will be on hand, such as crystals that are heavier than iron and yet as transparent as glass... Come to the Microcosm and become a top detective yourself! This event will take place in French. Join us at the Microcosm (Reception Building 33, M...

  11. First fabrication of full 3D-detectors at SINTEF

    Science.gov (United States)

    Hansen, Thor-Erik; Kok, Angela; Hansen, Trond A.; Lietaer, Nicolas; Mielnik, Michal; Storås, Preben; Da'Via, Cinzia; Hasi, Jasmine; Kenney, Chris; Parker, Sherwood

    2009-03-01

    3D-detectors, with electrodes penetrating through the entire substrates have drawn great interests for high energy physics and medical imaging applications. Since its introduction by C. Kenney et al in 1995, many laboratories have begun research on different 3D-detector structures to simplify and industrialise the fabrication process. SINTEF MiNaLab joined the 3D collaboration in 2006 and started the first 3D fabrication run in 2007. This is the first step in an effort to fabricate affordable 3D-detectors in small to medium size production volumes. The first run was fully completed in February 2008 and preliminary results are promising. Good p-n junction characteristics have been shown on selected devices at the chip level with a leakage current of less than 0.5 nA per pixel. Thus SINTEF is the second laboratory in the world after the Stanford Nanofabrication Facility that has succeeded in demonstrating full 3D-detectors with active edge. A full 3D-stacked detector system were formed by bump-bonding the detectors to the ATLAS readout electronics, and successful particle hit maps using an Am-241 source were recorded. Most modules, however, showed largely increased leakage currents after assembly, which is due to the active edge and p-spray acting as part of the total chip pn-junction and not as a depletion stop. This paper describes the first fabrication and the encountered processing issues. The preliminary measurements on both the individual detector chips and the integrated 3D-stacked modules are discussed. A new lot has now been started on p-type wafers, which offers a more robust configuration with the active edge acting as depletion stop instead of part of the pn-junction.

  12. Digital RF phase detector for Linac in FEL accelerator

    Institute of Scientific and Technical Information of China (English)

    YU Lu-Yang; YIN Chong-Xian; LIU De-Kang

    2005-01-01

    The digital RF (Radio Frequency) phase detector based on commercial PXI (PCI eXtensions for Instrumentation) modules for the Linac is fully described in the paper. The DBM (Double Balance Mixer) is used as the phase detector and its control and data acquisition system is based on the PXI bus. The software adopts a curve fitting algorithm. The prototype has been tested in the laboratory and the good resolution, accuracy, reproducibility and reliability are expected. The system does not present the problems of analog solution.

  13. Multiplicity-Vertex Detector Electronics Development for Heavy-Ion Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L., Jr.; Bryan, W.L.; Emery, M.S. [and others

    1995-12-31

    This paper presents the electronics work performed to date for the Multiplicity-Vertex Detector (MVD) for the PHENIX collaboration at RHIC. The detector consists of approximately 34,000 channels of both silicon strips and silicon pads. The per-channel signal processing chain consists of a pre-amplifier gain stage, a current mode summed multiplicity discriminator, a 64 deep analog memory (simultaneous read/write), an analog correlator, and a 10-bit microsecs ADC. The system controller or Heap Manager, supplies all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Prototype performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 mu nwell CMOS process used for fabrication.

  14. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  15. Test beam results from the prototype L3 Silicon Microvertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adam, A.; Adriani, O.; Ahlen, S.; Ambrosi, G.; Babucci, E.; Baksay, L.; Baschirotto, A.; Battiston, R.; Bay, A.; Bencze, G.L.; Bertucci, B.; Biasini, M.; Bilei, G.M.; Bobbink, G.J.; Bosetti, M.; Brooks, M.L.; Burger, W.J.; Busenitz, J.; Camps, C.; Caria, M.; Castellini, G.; Castello, R.; Checcucci, B.; Chen, A.; Coan, T.E.; Commichau, V.; DiBitonto, D.; Duinker, P.; Easo, S.; Extermann, P.; Fiandrini, E.; Gabbanini, A.; Gougas, A.; Hangarter, K.; Hauviller, C.; Herve, A.; Hu, G.; Josa, M.I.; Kapustinsky, J.S.; Kim, D.; Kinnison, W.W.; Kornis, J.; Krastev, V.R.; Landi, G.; Lebeau, M.; Lee, D.M.; Leiste, R.; Lin, W.; Lohmann, W.; Marin, A.; Massetti, R.; Matay, G.; Mills, G.B.; Nowak, H.; Passaleva, G.; Paul, T.; Pauluzzi, M.; Pensotti, S.; Perrin, E.; Rancoita, P.G.; Rattaggi, M.; Rosch, A.; Santocchia, A.; Siedling, R.; Sachwitz, M.; Schmitz, P.; Schoeneich, B.; Servoli, L.; Susinno, G.F.; Terzi, G.; Tesi, M.; Tonisch, F.; Toth, J.; Trowitzsch, G.; Viertel, G.; Vogt, H.; Waldmeier, S.

    1994-05-15

    We report test beam results on the overall system performance of two modules of the L3 Silicon Microvertex Detector exposed to a 50 GeV pion beam. Each module consists of two AC coupled double-sided silicon strip detectors equipped with VLSI readout electronics. The associated data acquisition system comprises an 8 bit FADC, an optical data transmission circuit, a specialized data reduction processor and a synchronization module. A spatial resolution of 7.5 [mu]m and 14 [mu]m for the two coordinates and a detection efficiency in excess of 99% are measured. (orig.)

  16. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  17. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  18. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  19. Design, commissioning and performance of the PIBETA detector at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Frlez, E. E-mail: frlez@virginia.edu; Pocanic, D.; Assamagan, K.A.; Bagaturia, Yu.; Baranov, V.A.; Bertl, W.; Broennimann, Ch.; Bychkov, M.; Crawford, J.F.; Daum, M.; Fluegel, Th.; Frosch, R.; Horisberger, R.; Kalinnikov, V.A.; Karpukhin, V.V.; Khomutov, N.V.; Koglin, J.E.; Korenchenko, A.S.; Korenchenko, S.M.; Kozlowski, T.; Krause, B.; Kravchuk, N.P.; Kuchinsky, N.A.; Li, W.; Lawrence, D.W.; Minehart, R.C.; Mzhavia, D.; Obermeier, H.; Renker, D.; Ritchie, B.G.; Ritt, S.; Sakhelashvili, T.; Schnyder, R.; Sidorkin, V.V.; Slocum, P.L.; Smith, L.C.; Soic, N.; Stephens, W.A.; Supek, I.; Tsamalaidze, Z.; VanDevender, B.A.; Wang, Y.; Wirtz, H.P.; Ziock, K.O.H

    2004-07-01

    We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, {pi}{sup +}{yields}{pi}{sup 0}e{sup +}{nu}{sub e}, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering {approx}3{pi} sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure, which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two 3-month beam periods in 1999/2000 with {pi}{sup +} stopping rates between 1.3{center_dot}10{sup 3} {pi}{sup +}/s and 1.3{center_dot}10{sup 6} {pi}{sup +}/s. We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5-150 MeV, as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds.

  20. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  1. A Very High Spatial Resolution Detector for Small Animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  2. Development of GaAs Detectors for Physics at the LHC

    CERN Multimedia

    Chu, Zhonghua; Krais, R; Rente, C; Syben, O; Tenbusch, F; Toporowsky, M; Xiao, Wenjiang; Cavallini, A; Fiori, F; Edwards, M; Geppert, R; Goppert, R; Haberla, C; Hornung, M F; Irsigler, R; Rogalla, M; Beaumont, S; Raine, C; Skillicorn, I; Margelevicius, J; Meshkinis, S; Smetana, S; Jones, B; Santana, J; Sloan, T; Zdansky, K; Alexiev, D; Donnelly, I J; Canali, C; Chiossi, C; Nava, F; Pavan, P; Kubasta, J; Tomiak, Z; Tchmil, V; Tchountonov, A; Tsioupa, I; Dogru, M; Gray, R; Hou, Yuqian; Manolopoulos, S; Walsh, S; Aizenshtadt, G; Budnitsky, D L; Gossen, A; Khludkov, S; Koretskaya, O B; Okaevitch, L; Potapov, A; Stepanov, V E; Tolbanov, O; Tyagev, A; Matulionis, A; Pozela, J; Kavaliauskiene, G; Kazukauskas, V; Kiliulis, R; Rinkevicius, V; Slenys, S; Storasta, J V

    2002-01-01

    % RD-8 Development of GaAs Detectors for Physics at the LHC \\\\ \\\\The aims of the collaboration are to investigate the available material options, performance and limitations of simple pad, pixel and microstrip GaAs detectors for minimum ionising particles with radiation hardness and speed which are competitive with silicon detectors. This new technology was originally developed within our university laboratories but now benefits from increasing industrial interest and collaboration in detector fabrication. Initial steps have also been taken towards the fabrication of GaAs preamplifiers to match the detectors in radiation hardness. The programme of work aims to construct a demonstration detector module for an LHC forward tracker based on GaAs.

  3. Therapy imaging: a signal-to-noise analysis of metal plate/film detectors.

    Science.gov (United States)

    Munro, P; Rawlinson, J A; Fenster, A

    1987-01-01

    We have measured the modulation transfer functions [MTF (f)'s] and the noise power spectra [NPS (f)] of therapy x-ray detectors irradiated by 60Co, 6- and 18-MV radiotherapy beams. Using these quantities, we have calculated the noise-equivalent quanta [NEQ (f)] and the detective quantum efficiency [DQE (f)] to quantitate the limitations of therapy detectors. The detectors consisted of film or fluorescent screen-film combinations in contact with copper, lead, or tungsten metal plates. The resolution of the detectors was found to be comparable to fluorescent screen-film combinations used in diagnostic radiology, however, the signal-to-noise ratio [SNR (f)] of the detectors was limited due to film granularity. We conclude that improved images can be obtained by using alternative detector systems which have less noise or film granularity.

  4. Characterization and application of a GE amorphous silicon flat panel detector in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.H. [XSD Advanced Photon Source, Argonne National Laboratory (United States)], E-mail: jlee@aps.anl.gov; Almer, J. [XSD Advanced Photon Source, Argonne National Laboratory (United States); Aydiner, C. [Los Alamos National Laboratory (United States); Bernier, J.; Chapman, K.; Chupas, P.; Haeffner, D. [XSD Advanced Photon Source, Argonne National Laboratory (United States); Kump, K. [GE Healthcare (United States); Lee, P.L.; Lienert, U.; Miceli, A. [XSD Advanced Photon Source, Argonne National Laboratory (United States); Vera, G. [GE Healthcare (United States)

    2007-11-11

    Characterization, in the language of synchrotron radiation, was performed on a GE Revolution 41RT flat panel detector using the X-ray light source at the Advanced Photon Source (APS). The detector has an active area of 41x41 cm{sup 2} with 200x200 {mu}m{sup 2} pixel size. The nominal working photon energy is around 80 keV. Modulation transfer function (MTF) was measured in terms of line spread function (LSF) using a 25 {mu}mx1 cm tungsten slit. Memory effects of the detector elements, called lag, were also measured. The large area and fast data capturing rate -8 fps in unbinned mode, 30 fps in binned or region of interest (ROI) mode-make the GE flat panel detector a unique and very versatile detector for synchrotron experiments. In particular, we present data from pair distribution function (PDF) measurements to demonstrate the special features of this detector.

  5. Readout electronics and test bench for the CMS Phase I pixel detector

    CERN Document Server

    Del Burgo, Riccardo

    2016-01-01

    The present CMS pixel detector will be replaced with an upgraded pixel system during the LHC extended technical stop in winter 2016/2017. The CMS Phase 1 pixel upgrade combines a new pixel readout chip, which minimizes detection inefficiencies, with several other design improvements to maintain the excellent tracking performance of CMS at the higher luminosity conditions foreseen for the coming years. The upgraded detector features new readout electronics which require detailed evaluation. For this purpose a test stand has been setup, including a slice of the CMS pixel DAQ system, all components of the upgraded readout chain together with a number of detector modules. The test stand allows for detailed evaluation and verification of all detector components, and is also crucial to develop tests and procedures to be used during the detector assembly and the commissioning and calibration of the detector. In this talk the system test and its functionalities will be described with a focus on the tests performed fo...

  6. A novel demodulator/detector for digital and analog signals on LMR channels

    Science.gov (United States)

    Saulnier, Gary J.; Rafferty, William

    1990-01-01

    The design, implementation, and performance of an all-digital demodulator/detector suitable for differentially encoded phase-shift keying (DPSK), continuous-phase frequency-shift keying (CPFSK), frequency-shift keying (FSK), and analog FM are discussed. In this demodulator/detector, two detectors, one noncoherent and another differentially coherent, operate simultaneously to provide data detection and automatic frequency control (AFC). Test results indicate that the system provides improved performance over the conventional analog quadrature detector for two-period raised-cosine (2RC) CPFSK modulation in additive white Gaussian noise (AWGN) and Rayleigh fading channels. Being all-digital, the demodulator/detector is well suited for integrated circuit implementation. In addition, the system performs as well as the analog quadrature detector for analog FM voice transmissions, thereby maintaining full compatibility with analog land mobile radio (LMR) transmissions.

  7. ANTS2 package: simulation and experimental data processing for Anger camera type detectors

    CERN Document Server

    Morozov, A; Martins, R; Neves, F; Domingos, V; Chepel, V

    2016-01-01

    ANTS2 is a simulation and data processing package developed for position sensitive detectors with Anger camera type readout. The simulation module of ANTS2 is based on ROOT package from CERN, which is used to store the detector geometry and to perform 3D navigation. The module is capable of simulating particle sources, performing particle tracking, generating photons of primary and secondary scintillation, tracing optical photons and generating photosensor signals. The reconstruction module features several position reconstruction methods based on the statistical reconstruction algorithms (including GPU-based implementations), artificial neural networks and k-NN searches. The module can process simulated as well as imported experimental data containing photosensor signals. A custom library for B-spline parameterization of spatial response of photosensors is implemented which can be used to calculate and parameterize the spatial response of a detector. The package includes a graphical user interface with an ex...

  8. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  9. The ATLAS Detector Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J. [University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom)

    2011-06-15

    We present the simulation software for the ATLAS experiment [G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008), S08003] at the Large Hadron Collider [L. Evans and P. Bryant, LHC Machine, JINST 3 (2008), S08001]. The overall infrastructure and some selected features are discussed. In particular, the detector description, the interface to Geant4, event generator support, magnetic field integration improvements, pile-up and digitisation of overlapping events and fast simulation. Also described are performance studies, large scale production and the validation of the simulated output against recent data.

  10. The WELL Detector

    CERN Document Server

    Bellazzini, R; Brez, A; Gariano, G; Latronico, L; Lumb, N; Papanestis, A; Spandre, G; Massai, M M; Raffo, R; Spezziga, M A

    1999-01-01

    We introduce the WELL detector, a new type of position-sensitive gas proportional counter produced using advanced printed circuit board (PCB) technology. The WELL is based on a thin kapton foil, copp erclad on both sides. Charge amplifying micro-wells are etched into the first metal and kapton layers. These end on a micro-strip pattern which is defined on the second metal plane. The array of micr o-strips is used for read-out to obtain 1-D positional information. First results from our systematic assessment of this device are reported.

  11. Flexible composite radiation detector

    Science.gov (United States)

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  12. Microstructured silicon radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.

    2017-03-14

    A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.

  13. PHENIX inner detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.; Bennett, M.J.; Bobrek, M.; Boissevain, J.B.; Boose, S.; Bosze, E.; Britton, C.; Chang, J.; Chi, C.Y.; Chiu, M.; Conway, R.; Cunningham, R.; Denisov, A.; Deshpande, A.; Emery, M.S.; Enokizono, A.; Ericson, N.; Fox, B.; Fung, S.-Y.; Giannotti, P.; Hachiya, T.; Hansen, A.G.; Homma, K.; Jacak, B.V.; Jaffe, D.; Kang, J.H.; Kapustinsky, J.; Kim, S.Y.; Kim, Y.G.; Kohama, T.; Kroon, P.J.; Lenz, W.; Longbotham, N.; Musrock, M.; Nakamura, T.; Ohnishi, H.; Ryu, S.S.; Sakaguchi, A.; Seto, R.; Shiina, T.; Simpson, M.; Simon-Gillo, J.; Sondheim, W.E.; Sugitate, T.; Sullivan, J.P. E-mail: sullivan@lanl.gov; Hecke, H.W. van; Walker, J.W.; White, S.N.; Willis, P.; Xu, N

    2003-03-01

    The timing, location and particle multiplicity of a PHENIX collision are determined by the Beam-Beam Counters (BBC), the Multiplicity/Vertex Detector (MVD) and the Zero-Degree Calorimeters (ZDC). The BBCs provide both the time of interaction and position of a collision from the flight time of prompt particles. The MVD provides a measure of event particle multiplicity, collision vertex position and fluctuations in charged particle distributions. The ZDCs provide information on the most grazing collisions. A Normalization Trigger Counter (NTC) is used to obtain absolute cross-section measurements for p-p collisions. The BBC, MVD and NTC are described below.

  14. Development of a high density pixel multichip module at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, G. [and others

    2001-03-08

    At Fermilab, both pixel detector multichip module and sensor hybridization are being developed for the BTeV experiment. The BTeV pixel detector is based on a design relying on a hybrid approach. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This method offers maximum flexibility in the development process, choice of fabrication technologies, and the choice of sensor material. This paper presents strategies to handle the required data rate and performance results of the first prototype and detector hybridization.

  15. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  16. Scalar top study: Detector optimization

    Indian Academy of Sciences (India)

    C Milsténe; A Sopczak

    2007-11-01

    A vertex detector concept of the linear collider flavour identification (LCFI) collaboration, which studies pixel detectors for heavy quark flavour identification, has been implemented in simulations for -quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two -quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the international linear collider (ILC).

  17. Digital detectors for electron microscopy

    CERN Document Server

    Faruqi, A R

    2002-01-01

    Film has traditionally been used for recording images in transmission electron microscopes but there is an essential need for computer-interfaced electronic detectors. Cooled-CCD detectors, developed over the past few years, though not ideal, are increasingly used as the preferred detection system in a number of applications. We describe briefly the design of CCD-based detectors, along with their main properties, which have been used in electron crystallography. A newer detector design with a much bigger sensitive area, incorporating a 2x2 tiled array of CCDs with tapered fibre optics will overcome some of the limitations of existing CCD detectors. We also describe some preliminary results for 8 keV imaging, from (direct detection) silicon hybrid pixel detectors, which offer advantages over CCDs in terms of better spatial resolution, faster readout with minimal noise.

  18. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  19. The FastGas detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Dalgliesh, R.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.u [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Holt, S.A.; McPhail, D.J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M.; Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2010-04-21

    The development and testing of the FastGas neutron detector is described. Based on a Gas Microstrip Chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing {sup 3}He tubes for specular reflectometry, currently in use on the ISIS reflectometer instruments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  20. The 4th concept detector

    Indian Academy of Sciences (India)

    John Hauptman

    2007-12-01

    The 4th concept detector consists of four detector subsystems, a small-pixel vertex detector, a high-resolution TPC, a new multiple-readout fiber calorimeter and a new dual-solenoid iron-free muon system. We discuss the design of a comprehensive facility that measures and identifies all partons of the standard model, including hadronic → and → decays, with high precision and high e±ciency. We emphasis here the calorimeter and muon systems.

  1. First detectors at the ISR

    CERN Multimedia

    1971-01-01

    Some of the first detectors at the ISR. A CERN/Rome team was looking at proton scattering at very small angles to the beam direction. A detector known as a "Roman pot" is in the foreground on the left. An Aachen/CERN/Genoa/Harvard/Turin team was looking at wider angles with the detectors seen branching off from the rings on the right.

  2. Decoherence of the Unruh detector

    CERN Document Server

    Demers, G

    1995-01-01

    As it is well known, the Minkowski vacuum appears thermally populated to a quantum mechanical detector on a uniformly accelerating course. We investigate how this thermal radiation may contribute to the classical nature of the detector's trajectory through the criteria of decoherence. An uncertainty-type relation is obtained for the detector involving the fluctuation in temperature, the time of flight and the coupling to the bath.

  3. The CMS detector before closure

    CERN Multimedia

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  4. Development and performance of a gamma-ray imaging detector

    Science.gov (United States)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; La Torre, M.; Álvarez, L.; Karelin, D.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2012-09-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV. The innovative concept of focusing gamma-ray telescopes in this energy range, should allow reaching unprecedented sensitivities and angular resolution, thanks to the decoupling of collecting area and detector volume. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). In order to achieve the needed performance, a gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. In order to fulfill the combined requirement of high detection efficiency with good spatial and energy resolution, an initial prototype of a gamma-ray imaging detector based on CdTe pixel detectors is being developed. It consists of a stack of several layers of CdTe detectors with increasing thickness, in order to enhance the gamma-ray absorption in the Compton regime. A CdTe module detector lies in a 11 x 11 pixel detector with a pixel pitch of 1mm attached to the readout chip. Each pixel is bump bonded to a fan-out board made of alumina (Al2O3) substrate and routed to the corresponding input channel of the readout ASIC to measure pixel position and pulse height for each incident gamma-ray photon. We will report the main features of the gamma-ray imaging detector performance such as the energy resolution for a set of radiation sources at different operating temperatures.

  5. MUON DETECTORS: CSC

    CERN Multimedia

    Richard Breedon

    Following the opening of the CMS detector, commissioning of the cathode strip chamber (CSC) system resumed in earnest. Some on-chamber electronics problems could be fixed on the positive endcap when each station became briefly accessible as the steel yokes were peeled off. There was no opportunity to work on the negative endcap chambers during opening; this had to wait instead until the yokes were again separated and the stations accessible during closing. In March, regular detector-operating shifts were resumed every weekday evening during which Local Runs were taken using cosmic rays to monitor and validate repairs and improvements that had taken place during the day. Since April, the CSC system has been collecting cosmic data under shift supervision 24 hours a day on weekdays, and 24/7 operation began in early June. The CSC system arranged shifts for continuous running in the entire first half of 2009. One reward of this effort is that every chamber of the CSC system is alive and recording events. There...

  6. ATLAS Detector Upgrade Prospects

    Science.gov (United States)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  7. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The earliest collision data in 2011 already show that the CSC detector performance is very similar to that seen in 2010. That is discussed in the DPG write-up elsewhere in this Bulletin. This report focuses on a few operational developments, the ME1/1 electronics replacement project, and the preparations at CERN for building the fourth station of CSC chambers ME4/2. During the 2010 LHC run, the CSC detector ran smoothly for the most part and yielded muon triggers and data of excellent quality. Moreover, no major operational problems were found that needed to be fixed during the Extended Technical Stop. Several improvements to software and configuration were however made. One such improvement is the automation of recovery from chamber high-voltage trips. The algorithm, defined by chamber experts, uses the so-called "Expert System" to analyse the trip signals sent from DCS and, based on the frequency and the timing of the signals, respond appropriately. This will make the central DCS shifters...

  8. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    During the last 3 months the RPC group has made impressive improvements in the refinement of the operation tools and understanding of the detector. The full barrel and part of the plus end cap participated systematically to global runs producing millions of trigger on cosmics. The main monitoring tools were robust and efficient in controlling the detector and in diagnosis of problems. After the refinement of the synchronization procedure, detailed studies of the chamber performances, as a function of high voltage and front-end threshold, were pursued. In parallel, new tools for the prompt analysis were developed which have enabled a fast check of the data at the CMS Centre. This effort has been very valuable since it has helped in discovering many minor bugs in the reconstruction software and database which are now being fixed. Unfortunately, a large part of the RE2 station has developed increasing operational current. Some preliminary investigation leads to the conclusion that the serial gas circulation e...

  9. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2013-01-01

    The DT group is undertaking substantial work both for detector maintenance and for detec-tor upgrade. Maintenance interventions on chambers and minicrates require close collaboration between DT, RPC and HO, and are difficult because they depend on the removal of thermal shields and cables on the front and rear of the chambers in order to gain access. The tasks are particularly critical on the central wheel due to the presence of fixed services. Several interventions on the chambers require extraction of the DT+RPC package: a delicate operation due to the very limited space for handling the big chambers, and the most dangerous part of the DT maintenance campaign. The interventions started in July 2013 and will go on until spring 2014. So far out of the 16 chambers with HV problems, 13 have been already repaired, with a global yield of 217 recovered channels. Most of the observed problems were due to displacement of impurities inside the gaseous volume. For the minicrates and FE, repairs occurred on 22 chambe...

  10. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli.

    Substantial progress has been made on the RPC system resulting in a high standard of operation. Impressive improvements have been made in the online software and DCS PVSS protocols that ensure robustness of the configuration phase and reliability of the detector monitoring tasks. In parallel, an important upgrade of CCU ring connectivity was pursued to avoid noise pick-up and consequent  data transmission errors during operation with magnetic field. While the barrel part is already well synchronized thanks to the long cosmics runs, some refinements are still required on the forward part. The "beam splashes" have been useful to cross check  the existing delay constants, but further efforts will be made as soon as a substantial sample of beam-halo events is available. Progress has been made on early detector performance studies. The RPC DQM tool is being extensively used and minor bugs have been found. More plots have been added and more people have been tr...

  11. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  12. Advanced Radiation Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  13. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya and M. Dallavalle

    2010-01-01

    The DT system operation since the 2010 LHC start up is remarkably smooth.
 All parts of the system have behaved very satisfactorily in the last two months of operation with LHC pp collisions. Disconnected HV channels remain at the level of 0.1%, and the loss in detector acceptance because of failures in the readout and Trigger electronics is about 0.4%. The DT DCS-LHC handshake mechanism, which was strengthened after the short 2009 LHC run, operates without major problems. A problem arose with the opto-receivers of the trigger links connecting the detector to USC; the receivers would unlock from transmission for specific frequencies of the LHC lock, in particular during the LHC ramp. For relocking the TX and RX a “re-synch” command had to be issued. The source of the problem has been isolated and cured in the Opto-RX boards and now the system is stable. The Theta trigger chain also has been commissioned and put in operation. Several interventions on the system have been made, pro...

  14. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    The RPC muon detector and trigger are working very well, contributing positively to the high quality of CMS data. Most of 2011 has been used to improve the stability of our system and the monitoring tools used online and offline by the shifters and experts. The high-voltage working point is corrected, chamber-by-chamber, for pressure variation since July 2011. Corrections are applied at PVSS level during the stand-by mode (no collision) and are not changed until the next fill. The single detector calibration, HV scan, of February and the P-correction described before were very important steps towards fine-tuning the stability of the RPC performances. A very detailed analysis of the RPC performances is now ongoing and from preliminary results we observe an important improvements of the cluster size stability in time. The maximum oscillation of the cluster size run by run is now about 1%. At the same time we are not observing the same stability in the detection efficiency that shows an oscillation of about ...

  15. The TALE Fluorescence Detectors

    Science.gov (United States)

    Jui, Charles

    2009-05-01

    The TALE fluorescence detectors are designed to extend the threshold for fluorescence observation by TA down to 3x10^16 eV. It will comprise two main components. The first is a set of 24 telescopes working in stereo, with an existing TA FD station at ˜6 km separation. These will cover between 3-31 degrees in elevation and have azimuthal coverage maximizing the stereo aperture in the 10^18-10^19 eV energy range. The second component consists of 15 telescopes equipped with 4m diameter mirrors and covering the sky between 31 and 73 degrees in elevation. The larger mirror size pushes the physics threshold down to 3x10^16 eV, and provides view of the shower maximum for the lower energy events. The Tower detector will cover one quadrant in azimuth and operate in hybrid mode with the TALE infill array to provide redundant composition measurements from both shower maximum information and muon-to-electron ratio.

  16. VNR CMS Pixel detector replacement

    CERN Document Server

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  17. Tomography of Spatial Mode Detectors

    CERN Document Server

    Bobrov, Ivan; Markov, Anton; Straupe, Stanislav; Kulik, Sergey

    2014-01-01

    Transformation and detection of photons in higher-order spatial modes usually requires complicated holographic techniques. Detectors based on spatial holograms suffer from non-idealities and should be carefully calibrated. We report a novel method for analyzing the quality of projective measurements in spatial mode basis inspired by quantum detector tomography. It allows us to calibrate the detector response using only gaussian beams. We experimentally investigate the inherent inaccuracy of the existing methods of mode transformation and provide a full statistical reconstruction of the POVM (positive operator valued measure) elements for holographic spatial mode detectors.

  18. Position-sensitive superconductor detectors

    Science.gov (United States)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  19. Forward SCT Module Assembly and Quality Control at IFIC Valencia

    CERN Document Server

    Mitsou, V A; Civera, J V; Costa, M J; Escobar, C; Fuster, J; García, C; García-Navarro, J E; González, F; González-Sevilla, S; Lacasta, C; Llosá, G; Martí i García, S; Miñano, M; Modesto, P; Nácher, J; Rodríguez-Oliete, R; Sánchez, F J; Sospedra, L; Strachko, V

    2007-01-01

    This note discusses the assembly and the quality control tests of 282 forward detector modules for the ATLAS Semiconductor Tracker assembled at the Instituto de Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures are outlined and the laboratory equipment is briefly described. Emphasis is given on the module quality achieved in terms of mechanical and electrical stability.

  20. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  1. A detector interferometric calibration experiment for high precision astrometry

    CERN Document Server

    Crouzier, A; Henault, F; Leger, A; Cara, C; LeDuigou, J M; Preis, O; Kern, P; Delboulbe, A; Martin, G; Feautrier, P; Stadler, E; Lafrasse, S; Rochat, S; Ketchazo, C; Donati, M; Doumayrou, E; Lagage, P O; Shao, M; Goullioud, R; Nemati, B; Zhai, C; Behar, E; Potin, S; Saint-Pe, M; Dupont, J

    2016-01-01

    Context: Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5e-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on vari...

  2. Thermal Grease Evaluation for ATLAS Upgrade Micro-Strip Detector.

    CERN Document Server

    Barbier, G; The ATLAS collaboration; Clark, A; Ferrère, D; Pernecker, S; Perrin, E; Streit, KP; Weber, M

    2010-01-01

    The ATLAS upgrade detector foreseen at the phase 2 upgrade of LHC requires a complete new inner detector using silicon pixel and strip detectors. For both technologies, a specific mechanical and thermal design is required. Such a design may use soft thermal interfaces such as grease between the various parts. One foreseeable use would be between the cooling pipe and the thermal block allowing the strip modules to be decoupled from the mechanical and cooling structure. This note describes the technique used and the results obtained when characterizing a few grease samples. The results have been compared with thermal FEA simulations. A thermal conductivity measurement for each sample could be extracted from the measurements, with a systematic uncertainty of less than 6%. Some samples were irradiated to the expected fluence at sLHC and their resulting thermal conductivity compared with the non-irradiated samples.

  3. The ATLAS Inner Detector operation,data quality and tracking performance.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2012-01-01

    The ATLAS Inner Detector comprises silicon and gas based detectors. The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking silicon devices in the Inner Detector of the ATLAS experiment at CERN LHC. And the the Transition Radiation Tracker (TRT), the outermost of the three subsystems of the ATLAS Inner Detector is made of thin-walled proportional-mode drift tubes (straws). The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The TRT is made...

  4. Neutron detector and fabrication method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  5. Performance of silicon pixel detectors at small track incidence angles

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN, as well as simulated data.

  6. Active Well Counting Using New PSD Plastic Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hausladen, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    neutrons are largely below the detector threshold, and the segmented construction of the detector modules allow for separation of true neutron-neutron coincidences from inter-detector scattering using the kinematics of neutron scattering. The results from a series of measurements of a suite of uranium standards are presented, and compared to measurements of the same standards and source configurations using the AWCC. Using these results, the performance of the segmented detectors reconfigured as a well counter is predicted and outperforms the AWCC.

  7. Serial powering of pixel modules

    CERN Document Server

    Stockmanns, Tobias; Hügging, Fabian Georg; Peric, I; Runólfsson, O; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub- micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In par...

  8. Particle detector spatial resolution

    Science.gov (United States)

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  9. Radiation detector with spodumene

    Energy Technology Data Exchange (ETDEWEB)

    D' Amorim, Raquel Aline P.O.; Lima, Hestia Raissa B.R.; Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Sasaki, Jose M., E-mail: sasaki@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work, {beta}-spodumene potentiality as a radiation detector was evaluated by making use of thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) techniques. The pellets were obtained from the {beta}-spodumene powder mixed with Teflon followed by a sintering process of thermal treatments of 300 deg/30 min and 400 deg/1.5 h. The samples were irradiated in standard gamma radiation beams with doses between 5 Gy and 10 kGy. The TL emission curve showed a prominent peak at 160 deg and in the case of TSEE a prominent peak at 145 Celsius approximately. Initial results show that the material is promising for high-dose dosimetry. (author)

  10. Direction sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  11. Pixelated gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  12. Subnanosecond Scintillation Detector

    Science.gov (United States)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  14. Chemical aerosol Raman detector

    Science.gov (United States)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  16. Active fibre optic splitter for the CMS RPC detector

    Energy Technology Data Exchange (ETDEWEB)

    Banzuzi, Kukka [Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, Gustaf Haellstroemin katu 2, FIN-00014 (Finland)]. E-mail: Kukka.Banzuzi@oxinst.fi; Iskanius, Matti [Lappeenranta University of Technology, P.O, Box 20, Lapprenranta, FIN-53851 (Finland); Karjalainen, Ahti [Lappeenranta University of Technology, P.O, Box 20, Lapprenranta, FIN-53851 (Finland); Tuuva, Tuure [Lappeenranta University of Technology, P.O, Box 20, Lapprenranta, FIN-53851 (Finland)

    2006-09-15

    An electronics module has been designed and tested for the CMS RPC detector readout. The module consists of twelve sub-blocks, each of which receives an optical signal at 1.6 GHz, converts it into electronic form for the splitting process and sends it forth to two or four destinations in optical form. It is a critical part in the trigger system of the experiment. Details of the design are presented, as well as test results confirming that the splitter fulfils all system requirements.

  17. The ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4 cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and sensors which can stand radiation levels beyond 5$ imes$10$^{15}$ n$_{eq}$/cm$^{2}$ . ATLAS has developed the new FEI4 chip and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation length and allows detector cooling with CO$_{2}$ at -40 $^{circ}$C coolant temperature. Currently the overall integration and installation procedure is being developed and tested ready for installation in 2013. The paper summarizes the current state of development of IBL modules, first preliminary test results of the new chip ...

  18. Overview of the ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and the sensor which can stand radiation levels beyond 5E15 neq/cm2. ATLAS has developed the new FEI4 and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation and allows detector cooling with CO2 at -40C coolant temperature. Currently the overall integration and installation procedure is being developed and test ready for installation in ATLAS in 2013. The presentation summarizes the current state of development of IBL modules, first preliminary test results of the new chip with new sensors, the construction ...

  19. The SPICE Detector at ISAC

    Directory of Open Access Journals (Sweden)

    Garnsworthy A.B.

    2013-12-01

    Full Text Available A new ancillary detector system for the TIGRESS HPGe array called SPectrometer for Internal Conversion Electrons (SPICE is currently under development. SPICE consists of a segmented electron detector, photon shield and a permanent magnetic lens. SPICE will enable in-beam electron spectroscopy and, in coupling to the TIGRESS HPGe array, coincident gamma-electron spectroscopy with stable and radioactive beams.

  20. Micro-channel plate detector

    Science.gov (United States)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.